
US 20220004488A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0004488 A1

Paul et al . (43) Pub . Date : Jan. 6 , 2022

(52) (54) SOFTWARE DRIVE DYNAMIC MEMORY
ALLOCATION AND ADDRESS MAPPING
FOR DISAGGREGATED MEMORY POOL

U.S. CI .
CPC G06F 12/0238 (2013.01) ; G06F 12/0607

(2013.01) ; G06F 12/0646 (2013.01) ; G06F
12/1081 (2013.01)

(71) Applicant : Intel Corporation , Santa Clara , CA
(US) (57) ABSTRACT

(72) Inventors : Barun Bikash Paul , San Jose , CA
(US) ; Rita Deepak Gupta , Cedar Park ,
TX (US) ; Suresh Thirumandas ,
Cupertino , CA (US)

(73) Assignee : Intel Corporation , Santa Clara , CA
(US)

(21) Appl . No .: 17 / 482,304

The apparatus of a disaggregated memory architecture
(DMA) including a shared memory and multiple nodes is
programmable by a primary node of the DMA . The primary
node executes a programming agent to , prior to memory
access requests to access the shared memory , cause pro
gramming of register entries of one or more registers of a
memory pooling circuitry (MPC) with information to be
used by a decoder of the MPC to translate host physical
addresses (HPA) of memory access requests of the nodes to
local memory addresses (LMAs) . The LMAs are to be
processed by one or more memory controllers (MCs)
coupled to the one or more registers based on MC memory
regions in each of the one or more MCs , the MC memory regions having a predetermined memory size granularity . At
least some of the LMAs map to non - contiguous memory
regions of the shared memory and of the one or more MCs .

(22) Filed : Sep. 22 , 2021
Publication Classification

(51) Int . Ci .
G06F 12/02
GOOF 12/1081
G06F 12/06

(2006.01)
(2006.01)
(2006.01)

?

?

3
3
?
2
2
? 3

}
1
1
1
1

3

Memory
1

3
1
}
2

114 2
1
3

tod (16 (typ) 2
3

3
} 2

2

? ?? 2
?
,
1
7

Memory
} 2

?? ? 3
?

?

3

TA to 3 E
2

.?????? ????? ... ?????? : , ???? . .???????? ?????? ???????? : ????? ???? . ???? . ????? ????? .?????? . ??? . ???????? . : ??? .. ????? ? ???? : ???? ????? ?????? ???????? ????? ???? ?????? ??????? . ????? 3 .

Patent Application Publication Jan. 6 , 2022 Sheet 1 of 6 US 2022/0004488 A1

… . . . w A. WWW.33 - www.xxsy - www.ws ?

3 Cry (112
{

“ ...-- : - ; . - --F tor …… . vty … . wwry , " v ; ^ ------ : - ;

? ?

st

A ? N4 , N , W.444444444444,444,44,4 ,,,, MAMAMA MAYA M. . AAAA .

2 Airity FIG .
?

54 ** 44 % } } * , ' , 5 ' , 44444 444.44 % Y * } { 4 }

BAN

............ avtt . , vt . , www.vli .. … ::

*** ***

? 744 WWW.W ... WW **** **********
+++++++++ W +++++++

… . . ^ vt . It t . J. Sty.tw , h :
(104 any

200a
5

205

Share

Patent Application Publication

12

SHARED MEMORY CONTROLLER CIRCUITRY

210a

CXL

210n " ?

Jan. 6 , 2022 Sheet 2 of 6

2

OXL

Ver

Yrrrrrrr

Networking chip
1

1

Network Connectivity

US 2022/0004488 A1

FIG . 2

300

210

Patent Application Publication

Node 1

Node 2

Node 3

Node 3

Networking Chip
220

215

XXXXX

Memory pooling circuitry 1

Memory pooling circuitry 2

Memory pooling circuitry 3

Memory pooling circuitry 3

Jan. 6 , 2022 Sheet 3 of 6

XXXX

205-1

205-2

205-3

205-4

US 2022/0004488 A1

FIG . 3

I

WIN

WW

women

1
WWWW

1

WWW

1

WWW

RAAK

**

402

Decoder 1

Register 1

Host Memory Map

3FFHL

404-1

403-1

404-0

100H) 008HK

Patent Application Publication

| LOCAL_MEMO_SIZE

402-11

MC - 0

MC

Deade Register_RNG1_BAGE
003H

4168

LOCAL MEMO BASE

RONG Decode Registero_RNG3_BASE

1GB

001H

000H

?? ???

Decode Registero_RNGO_BASE
Decoder 0

403-1

60000140_0000_0000H | DECODE1_SIZE booo 0100_0000_0000H DECODE1 BASE

1GB

M1GB * 1GB $ 168 M1GB

Decode Register1_RNG2_BABE Decode Register RNG1_BA
I

Decade Registero RNGU_BASE

Decode Register1_RNGO BASE
256GB

Decode Registero RNG1_BASE

??

040HK

1GB

co

1 020H

Jan. 6 , 2022 Sheet 4 of 6

402-0

008H 007H2

I Decode Register1 RNGO BAS Decode Register1 RNGO_BA?E

Decode Registero_ SIZE
0000 0050 0000

0000H

1GB

Decode Register1_MNG2 BASE Decoce Register1_KNG1_BASE Decode Register_ANG2_BASZ . Decoce Register_ANG7_BASE Decode Register_KNGO_BASE
64GB

1

I

* -1GE

I

22168 168
Decode Register RNG2 BASE Decode Registero RNG7_BASE

Decode Registero
BASE

booo 0040 0000 0000H

- 1 GB

002HI 000H

001H1

booo .

53166

0000 0000 0000H

Decode Register1_RNG3_BADI

Register 0

L

COO
oooooo
1000020

000000
ondaco
000000
Odoo
acaoca
02020

cacano
aco000

CADO
ooooo
oooooo
000000
Googget
1000000
ocacao
1000000

gan
oooooo
000000
CO
Qacaco
200
Q000

02

002002
0000 *

1000gat
000020
4000cc

US 2022/0004488 A1

Node 1

304

FIG . 4

400

Patent Application Publication

Received CPU

Yes

MC interleaving enabled ?

Find TLB entry for decode region Yes

HPA

No

MC determination based on MC interleaving

We

No

Yes

Addr positively decoded ?

Is TLB entry valid ?

Translate addr with TLB
LMA

Jan. 6 , 2022 Sheet 5 of 6

No Txn to MC , graceful handling

Yes

No

DPA

Addr , translation based on host interleaving

No Txn to MC , graceful handling

Send MC

500

FIG . 5

US 2022/0004488 A1

Patent Application Publication Jan. 6 , 2022 Sheet 6 of 6 US 2022/0004488 A1

600

using register entries of a register of a
memory pooling circuitry in a

disaggregated memory architecture
(DMA) to translate physical addresses
within memory access requests from
respective nodes of the DMA into

corresponding local memory addresses
(LMAS) of a shared memory of the DMA ,
wherein the LMAs are to map to memory

regions of the shared memory and to
corresponding memory regions of a

memory controller (MC) coupled to the
register based on a memory size

granularity

602

604
using the MC to access the shared memory

for memory operations based on the
memory access requests

FIG . 6

US 2022/0004488 Al Jan. 6. 2022
1

SOFTWARE DRIVE DYNAMIC MEMORY
ALLOCATION AND ADDRESS MAPPING
FOR DISAGGREGATED MEMORY POOL

FIELD

[0001] The instant disclosure pertains to computing sys
tems in a pooled memory environment , and in particular (but
not exclusively) to memory access between components in
a computing system .

BACKGROUND

[0002] Resource disaggregation is becoming increasingly
prevalent in emerging computing scenarios such as cloud
(aka hyperscaler) usages , where disaggregation provides the
means to manage resource effectively and have uniform
landscapes for easier management . While storage disaggre
gation is widely seen in several deployments , for example ,
Amazon S3 , compute and memory disaggregation is also
becoming prevalent with hyperscalers like Google Cloud .
[0003] One of the challenges with disaggregated memory
architectures (DMAs) (or pooled memory architectures , or
disaggregate / pooled memory platforms , which may corre
spond to data centers) is the overall increased latency to
memory . Local memory within a node can be accessed
within 100 ns (nanoseconds) or so , whereas the latency
penalty for accessing disaggregated memory resources over
a network is much higher .
[0004] Current solutions for executing such applications
on disaggregated architectures being pursued by hyperscal
ers is to tolerate high remote latencies (that come with
disaggregated architectures) to access hot tables or struc
tures and rely on CPU caches to cache as much as possible
locally . However , this provides less than optimal perfor
mance and limits scalability

present disclosure may be used include desktop computer
systems , server computer systems , storage systems , hand
held devices , tablets , other thin notebooks , systems on a chip
(SOC) devices , and embedded applications . Some examples
of handheld devices include cellular phones , digital cameras ,
media players , personal digital assistants (PDAs) , and hand
held PCs . Embedded applications may include a microcon
troller , a digital signal processor (DSP) , a system on a chip ,
network computers (NetPC) , set - top boxes , network hubs ,
wide area network (WAN) switches , or any other system that
can perform the functions and operations taught below .
Various embodiments of the present disclosure may be used
in any suitable computing environment , such as a personal
computing device , a server , a mainframe , a cloud computing
service provider infrastructure , a datacenter , a communica
tions service provider infrastructure (e.g. , one or more
portions of an Evolved Packet Core) , or other environment
comprising a group of computing devices .
[0013] FIGS . 1 and 2 below provided some examples of
disaggregated memory (or pooled memory) architectures
that may be used to implement some embodiments as will be
described further below in the context of FIG . 3-6 .
[0014] FIG . 1 shows an example of disaggregated archi
tecture including pooled memory . Compute resources , such
as multi - core processors (aka CPUs (central processing
units)) in blade servers or server modules (not shown) in two
compute bricks 102 and 104 in a first rack 106 are selec
tively coupled to memory resources (e.g. , DRAM DIMMs ,
NVDIMMs , etc.) in memory bricks 108 and 110 in a second
rack 112. Each of compute bricks 102 and 104 include an
FPGA (Field Programmable Gate Array 114 and multiple
ports 116. Similarly , each of memory bricks 108 and 110
include an FPGA 118 and multiple ports 120. The compute
bricks also have one or more compute resources such as
CPUs , or Other Processing Units (collectively termed
XPUs) including one or more of Graphic Processor Units
(GPUs) or General Purpose GPUs (GP - GPUs) , Tensor Pro
cessing Unit (TPU) Data Processor Units (DPUs) , Artificial
Intelligence (AI) processors or AI inference units and / or
other accelerators , FPGAs and / or other programmable logic
(used for compute purposes) , etc. Compute bricks 102 and
104 are connected to the memory bricks 108 via ports 116
and 120 and switch or interconnect 122 , which represents
any type of switch or interconnect structure . For example ,
under embodiments employing Ethernet fabrics , switch /
interconnect 122 may be an Ethernet switch . Optical
switches and / or fabrics may also be used , as well as various
other protocols , Ethernet , InfiniBand , RDMA (Remote
Direct Memory Access) , NVMe - oF (Non - volatile Memory
Express over Fabric , RDMA over Converged Ethernet
(ROCE) , etc. FPGAs 114 and 118 are programmed to per
form routing and forwarding operations in hardware .
[0015] Generally , a compute brick may have dozens or
even hundreds of cores , while memory bricks , also referred
to herein as pooled memory , may have terabytes (TB) or
10's of TB of memory implemented as disaggregated
memory . The amount of local memory on the compute
bricks is relatively small and generally limited to bare
functionality for operating system (OS) boot and other such
usages .
[0016] Memory resources within memory bricks 108 and
110 may in general include any memory device , such as
random access memory (RAM) , non - volatile (NV) memory ,
or other memory accessible by devices in system 100 .

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG . 1 illustrates a schematic diagram illustrating
an example of a disaggregated architecture in which com
pute resources in compute bricks are connected to disaggre
gated memory in memory bricks .
[0006] FIG . 2 illustrates an example disaggregated
memory architecture including shared memory capable of
being accessed using load / store techniques by each of a
plurality of independent nodes .
[0007] FIG . 3 illustrates a system - on - a - chip (SOC) includ
ing memory pooling circuitries (MPCs) according to one
embodiment .
[0008] FIG . 4 illustrates an embodiment of one of the
MPCs and one of the Nodes of the SoC of FIG . 3 .
[0009] FIG . 5 illustrates a flow for the generation of a local
memory address (LMA) from a host physical address (HPA)
through a device physical address (DPA) at a MPC accord
ing to some embodiments .
[0010] FIG . 6 is a flow diagram of a process according to
some embodiments .
[0011] Like reference numbers and designations in the
various drawings indicate like elements .

a

DETAILED DESCRIPTION
[0012] Although the drawings depict particular computer
systems , the concepts of various embodiments are appli
cable to any suitable integrated circuits and other logic
devices . Examples of devices in which teachings of the

US 2022/0004488 A1 Jan. 6. 2022
2

a

a

a

Memory resources may be coupled to a controller hub
through a memory interface (not shown) . Examples of a
memory interface include a double - data rate (DDR) memory
interface , a dual - channel DDR memory interface , and a
dynamic RAM (DRAM) memory interface .
[0017] The controller hub may be a root hub , root com
plex , or root controller in a Peripheral Component Intercon
nect Express (PCIe or PCIE) interconnection hierarchy
and / or a Compute Express Link (CXL) interconnection
hierarchy based on the CXL Specification . Examples of a
controller hub include a chipset , a memory controller hub
(MCH) , a northbridge , an interconnect controller hub (ICH)
a southbridge , and a root controller / hub . Often the term
chipset refers to two physically separate controller hubs , i.e.
a memory controller hub (MCH) coupled to an interconnect
controller hub (ICH) .
[0018] Turning to FIG . 2 , a simplified block diagram is
shown illustrating an example pooled memory / disaggre
gated memory architecture (DMA) 200a including shared
memory 205 capable of being accessed using load / store
techniques by each of a plurality of independent nodes
210a - 210n . For instance , a shared memory controller 215
can be provided that can accept load / store access requests of
the various nodes 210a - 210n on the system . Shared memory
205 can be implemented utilizing synchronous dynamic
random access memory (SDRAM) , dual in - line memory
modules (DIMM) , and other non - volatile memory (or vola
tile memory) as noted previously . Shared memory 205 may
include memory anywhere in one or more DMAs . Thus ,
shared memory may be shared within a given DMA , or with
other DMAs communicatively coupled to the given DMA
via network connectivity , such as via networking chip 220 .
[0019] Each node or computing system may itself have
one or multiple CPUs and CPU sockets and may also include
local memory that remains insulated from load / store access
by other nodes in the system . The node can communicate
with other devices in the pooled memory architecture (e.g. ,
with shared memory controller 215 , networking controller
220 , other nodes , etc.) using one or more protocols , includ
ing Compute Express Link (CXL) (an interconnect technol
ogy for removable high - bandwidth devices , such as GPU
based compute accelerators , in a data - center environment) ,
PCIe , QPI , Ethernet , among other examples .
[0020) SMC 215 may include logic for handling load / store
requests of nodes 210a - 210n . Load / store requests can be
received by the SMC 215 over links (such as CXL) con
necting the nodes 210a - 210n to the SMC 215. In some
implementations the SMC 215 can be implemented as a
device , such as an application - specific integrated circuit
(ASIC) , including logic for servicing the access requests of
the nodes 210a - 210n for shared memory resources . In other
instances , the SMC 215 (as well as shared memory 205) can
reside on a device , chip , or board separate from one or more
(or even all) of the nodes 210a - 210n . The SMC may for
example be part of a node 210a - 210n and located on a CPU
of such node , it may be within an accelerator device , or part
of a memory buffer chip .
[0021] The SMC 215 can further include logic to coordi
nate various nodes ' transactions that involve shared memory
205. Additionally , the SMC can maintain a directory track
ing access to various data resources , such as each cache line ,
included in shared memory 205. For instance , a data
resource can be in a shared access state (e.g. , capable of
being accessed (e.g. , loaded or read) by multiple processing

and / or I / O devices within a node , simultaneously) , an exclu
sive access state (e.g. , reserved exclusively , if not tempo
rarily , by a single processing and / or I / O device within a node
(e.g. , for a store or write operation) , an uncached state ,
among other potential examples . Further , while each node
may have direct access to one or more portions of shared
memory 205 , different addressing schemes and values may
be employed by the various nodes (e.g. , 210a - 210n) result
ing in the same shared memory data being referred to (e.g. ,
in an instruction) by a first node according to a first address
value and a second node being referring to the same data by
a second address value . The SMC 215 can include logic ,
including data structures , to map nodes memory access
requests including HPAs to shared memory resources , for
example to LMAs , to allow the SMC 215 to interpret the
various access requests of the various nodes and provide
access to the intended address of the data from the shared
memory 205 .
[0022] Additionally , in some cases , some portion of shared
memory (e.g. , certain partitions , memory blocks , records ,
files , etc.) may be subject to certain permissions , rules , and
assignments such that only a portion of the nodes 210a - 210n
are allowed (e.g. , by the SMC 215) to access the corre
sponding data . Indeed , each shared memory resource may be
assigned to a respective (and in some cases different) subset
of the nodes 210a - 210n of the system . These assignments
can be dynamic and SMC 215 can modify such rules and
permissions (e.g. , on - demand , dynamically , etc.) to accom
modate new or changed rules , permissions , node assign
ments and ownership applicable to a given portion of the
shared memory 205 .
[0023] An example SMC 215 can further track various
transactions involving nodes (e.g. , 210a - 210n) in the system
accessing one or more shared memory resources . For
instance , SMC 215 can track information for each shared
memory 205 transaction , including identification of the
node (s) involved in the transaction , progress of the transac
tion (e.g. , whether it has been completed) , among other
transaction information . This can permit some of the trans
action - oriented asp its of traditional DMAs to be applied to
the improved multi - node shared memory architecture
described herein . Additionally , transaction tracking (e.g. , by
the SMC) can be used to assist in maintaining or enforcing
the distinct and independent fault domains of each respec
tive node . For instance , the SMC can maintain the corre
sponding Node ID for each transaction - in - progress in its
internal data structures , including in memory , and use that
information to enforce access rights and maintain individual
fault - domains for each node . Accordingly , when one of the
nodes goes down (e.g. , due to a critical error , triggered
recovery sequence , or other fault or event) , only that node
and its transactions involving the shared memory 205 are
interrupted (e.g. , dumped by the SMC) —transactions of the
remaining nodes that involve the shared memory 205 con
tinue on independent of the fault in the other node .
[0024] A pooled memory architecture can include multiple
nodes . Additionally , some example pooled memory archi
tectures can include multiple SMCs . In some cases , a node
may be able to access shared memory off a remote SMC to
which it is not directly attached to (i.e. , the node's local
SMC connects to the remote SMC through one or multiple
SML Link hops) . The remote SMC may be in the same board
or could be in a different board . In some cases , some of the
nodes may be off - system (e.g. , off board or off chip) but

a

a

US 2022/0004488 A1 Jan. 6. 2022
3

nonetheless access shared memory 205. For instance , one or
more off - system nodes can connect directly to the SMC
using an SML - compliant link , among other examples . Addi
tionally , other pooled memory architectures that include
their own SMC and shared memory can also connect with
the SMC 210 to extend sharing of memory 205 to nodes
included , for instance , on another board that interface with
the other SMC connected to the SMC over an SML link . Still
further , network connections can be tunneled through to
further extend access to other off - board or off - chip nodes .
For instance , SML can tunnel over an Ethernet connection
(e.g. , provided through network controller 220) communi
catively coupling the example pooled memory architecture
of FIG . 2 with another pooled memory architecture that can
also include one or more other nodes and allow these nodes
to also gain access to SMC 215 and thereby shared memory
205 , among other examples .
[0025] In CPU data centers , memory utilization is an
important aspect of high - performance applications .
Although adding more local DRAM memory can help
overall system performance , it may be more costly and less
efficient to implement , as it may lead to sub - optimal memory
allocation among multiple CPUs in a given node / computing
system .
[0026] Compute Express Link (CXL) based off - chip
memory pooling solutions provide an effective way to solve
both cost and memory utilization among multiple nodes but
with little extra latency as compared with using local
DRAM . Applying traditional scheduling algorithms either at
CPU domain or at the Memory Controller (MC) domain is
not enough to maximize the memory allocation and band
width as multiple CPUs are sharing the same memory pool .
However , the effective allocation of the memory and flex
ibility for the same remains undefined in the specification .
[0027] Some embodiments propose the use of one or more
memory pooling circuitries (MPCs) to implement a software
driven dynamic scheduling technique in order to enhance or
optimize memory utilization of available memory pool
resources (i.e. within the shared mem emory) of a DMA (such

data center or a portion of a data center , such as a rack)
with optimum granularity . Individual ones of the MPCs may
include a decoder having a register , such as a translation
lookaside buffer (TLB) . Being able to program the register
(such as a register within SMC 215 of FIG . 2) to dynami
cally allocate / de - allocate ranges of memory addresses (i.e.
memory regions) of the shared memory among multiple
CPUs to achieve a high level of performance in the overall
DMA , such as a data center . “ Dynamic allocation / dealloca
tion , ” or “ dynamic programming ” as used herein means an
allocation / deallocation , or programming , which can change ,
for example as a function of time and / or as a function of
changing parameters .
[0028] When considering multiple CPU data centers
(whether the CPUs are on the same rack or different racks of
the data center) and trying to optimize the memory alloca
tions across CPUs current method have allocated memory is
fairly static manner , where a set number of memory channels
on each CPU dictates memory allocation to that CPU . Some
embodiments provide a memory pooling solution through a
MPC that is adapted to dynamically allocate memory within
the shared memory across such CPUs . A novel aspects of
embodiments is the use of a register , such as a TLB , to
dynamically manage memory addresses , in this manner
allowing an optimization of memory bandwidth allocation .

[0029] CXL based memory pooling solution provides an
alternate protocol that runs across a standard PCIe physical
layer . It uses a flexible CPU port that can auto - negotiate to
PCIe or CXL . A first generation of the CXL protocol aligns
to 32 Gbps PCIe 5. CXL may be used in a memory buffer
environment such as the one shown in FIG . 2 , where
memory bandwidth expansion , memory capacity expansion ,
and / or storage class memory are to be used . There is
currently no known hardware - based solution to provide
optimal memory utilization managed via software in a
distributed memory architecture . The current memory allo
cation is not dynamic but static at the time of enumeration .
[0030] For a CXL based memory pooling solution , a CPU
may send a host - physical - address (HPA) for any data access
from the shared memory , such as shared memory 205. The
HPA may get converted , for example by SMC 215 , to a
device - physical - address (DPA) to map the actual local
memory address (LMA) corresponding to the data to be
accessed in the shared memory . Current memory controllers
statically allocate DPA to LMA conversion among multiple
CPUs in the system , in a static manner , and based on
available CPU channels . However , the latter solution does
not provide software executed by the memory controller
with any visibility into address mapping within the shared
memory per CPU (host) , nor does it provide any control to
change such DPA to LMA allocation in a dynamic , pro
grammable manner .
[0031] According to some embodiments , a memory
address map (also referred to here as a host memory map)
for shared memory , implemented and controlled by a
memory controller of a node in a DMA , may be segmented
at a relatively small granularity (e.g. 1 GB segments) , where
each segment is dynamically allocated or de - allocated by
software (SW) (e.g. a programming agent / fabric manager
and orchestrator) to respective requesting compute nodes ,
such as nodes 210a - 210n of a disaggregated memory archi
tecture 200a . The allocation and deallocation may be imple
mented for example by using one or more memories , such
as one or more registers , for example one or more TLBs . An
individual register according to some embodiments may
store DPA to LMA translation entries such that the LMAS
obtained as a result of the translation (translated LMAs) map
to memory regions in a corresponding memory controller of
the register that are non - contiguous with respect to one
another , and that are at a preprogrammed granularity .
Memory regions within the shared memory and hence the
HMM corresponding to the translated LMAs are also to
exhibit the same granularity . This new software managed
register implementation advantageously provides a soft
ware - based innovation of scheduling algorithms that allows
dynamic memory allocation in a disaggregated memory
environment . This software - based innovation translates into
better memory utilization and lower memory access latency .
[0032] Latency and throughput are some of the more
important aspect of off - chip memory applications as com
pared with on - chip memory applications . The flexibility of
the dynamic memory of embodiments allows software to
handle memory allocation in a most efficient way to create
performance - enhanced system memory map , and further
provides flexibility to manage blast radius impact and Reli
ability , Accessibility , Serviceability (RAS) solutions across
host nodes without requiring reboot of a whole system .

a

as

US 2022/0004488 A1 Jan. 6. 2022
4

[0033] Some embodiments provide a shared memory
pooling circuitry that dynamically translates DPA to LMA as
between nodes of a DMA .
[0034] Reference will now be made to FIGS . 3-5 in the
context of further details regarding some embodiments . The
architectures of FIGS . 3-4 may be used in performing
methods and implementing operations as described in the
context of some embodiments herein .
[0035] FIG . 3 shows an architecture 300 , such as a system
on a chip (SOC) 300 according to one embodiment . SoC 300
represents one embodiment of the architecture 200a of FIG .
2 , with like components referred to with like reference
numerals . In SoC 300 , four nodes 210 , Node 1 , Node 2 ,
Node 3 and Node 4 (similar to those of FIG . 2) , are
communicatively coupled to four memory pooling circuit
ries (MPCs) 1-4 , with one of the nodes , such as Node 1 ,
serving as a primary node and the other nodes serving as
secondary nodes as will be explained further below . MPCs
1-4 together belong to SMC circuitry 215. Shared memory
205 in FIG . 3 is represented by clusters of DDR memory
devices 205-1 , 205-2 . 205-3 and 205-4 , with each cluster
communicatively coupled to a corresponding one of the
MPCs 1-4 , although embodiments are not so limited .
[0036] FIG . 4 is a schematic view of an architecture 400
showing an embodiment of one of the MPCs 205 commu
nicatively coupled with Node 1 of FIG . 3. In particular , FIG .
4 shows a fragmented memory mapped view of system
memory for a given host or primary node to a two MC
enabled device . In the given example , a host System
Memory Management Unit (MMU) of Operating System
(OS) with a primary Node , Node 1 , is configured to allocate
64 GB (Gigabyte) to Decoder 0 and 256 GB to Decoder 1
to a given Node (such as any of Nodes 1-4) for the memory
pooling circuitry .
[0037] In the embodiment of FIG . 4 , MPC 205 includes
two decoders , Decoder 0 and Decoder 1 and two MCs ,
MC - O and MC - 1 communicatively coupled to one another .
Each of Decoders 0 and 1 is coupled to both MC - 0 and
MC - 1 . MPC 205 is coupled to the primary node , Node 1 ,
which has access to and is adapted to program memory
allocations of the shared memory 205 and within MPCs ,
with the allocations shown in FIG . 4 in the form of Host
Memory Map (HMM) 402 and Decoder 0 and Decoder 1
registers , Register 0 and Register 1 , respectively . HMM 402
shows a memory space for the data of shared memory 205 ,
where a memory region 402-0 (range of one or more
memory addresses) is shown as having been allocated to
Decoder 0 , and a memory region 402-1 is shown as having
been allocated to Decoder 1 .

[0038] The decoders in MPC 205 may include respective
registers . In particular , the decoders may each include a
memory , such as a register , for example a TLB , that is to
store translations of DPA to LMA therefore serving as an
address - translation cache . A decoder such as Decoder 0 or
Decoder 1 may include a cache that is implemented as a
fully associative address space so that each entry maps to a
valid memory address . Therefore , there will always be a hit
in the TLB access and it would be minimum access latency
as a result . If the associated TLB entry for the requested
address is not valid , then it would be detected as TLB error
and its handling will be described in further detail in relation
to FIG . 5. In the shown embodiment , each decoder is
coupled to both MC - O and MC - 1 .

[0039] AMPC may implement various decoders as per the
CXL 2.0 / CXL 3.0 or later version of CXL Specification for
initial HPA to DPA address translation . The use of the
number of registers per MPC according to embodiments is
implementation specific . A MPC may include separate reg
isters per decoder per primary node to simplify the design ,
or can have a single register for a given primary node for all
decoders for address translation . The register index may ,
according to some embodiments , be provided by the most
significant bits of the DPA . The exact bits to be used for
register indexing depends on total MC memory size , granu
larity of memory region etc. For example , for 2 TB (Tera
byte) of local memory with 1 GB of memory granularity ,
then bits 40:30 may be used for indexing the register . This
example also signifies that the total 2K size of registers are
needed to generate LMA for every incoming addresses . If
the register entry is valid , then the register content may be
used to translate the DPA address to LMA . If register entry
is not valid , then it will be considered as an erroneous
transaction and handled according to user implementation .
The initial register programming according to some embodi
ments may be performed during an initialization phase of a
DMA , where the register is programmed by the program
ming agent , such as a fabric manager , or hypervisor present
in the platform , such as in a primary node of the architecture .
It is the programming agent's responsibility to ensure that
every legal register entry has a correct value to generate the
corresponding LMA . According to some embodiments , a
register can also be programmed during run time , but
handling of all the CPU memory transactions during repro
gramming is implementation specific .
[0040] The register implementation allows the program
ming agent to select between allocating contiguous and
non - contiguous memory distribution across multiple nodes
supported by one or more memory pooling circuitries .
[0041] In operation , referring now to FIGS . 3 and 4 , the
primary Node 1 may execute a memory programming agent ,
such as a hypervisor , to perform a number of operations . In
particular , the primary Node 1 may , prior to a memory
transaction based on one or more requests from CPUs in any
of Nodes 1-4 , cause a programming of the HMM 402 (i.e.
of memory addresses in the shared memory) and of one or
more MPCs , such as respective MPCs of FIG . 3 .
[0042] Programming of the HMM may include allocating
memory addresses corresponding to memory transactions of
respective workloads to be non - contiguous with respect to
one another in the HMM . For example , as seen in FIG . 4 , the
HMM 402 reflects a shared memory allocation 402-0 of a
memory region within the shared memory for Decoder 0 ,
and a shared memory allocation 402-1 of a memory region
within the shared memory for Decoder 1 for MPC 205 .
Ranges 402-0 and 402-1 may each include one or more
LMAS .
[0043] Programming each of the one or more MPCs may
include programming a register of the one or more MPCs .
Programming the register may include programming regis
ter entries 403-0 or 403-1 (the entries including information
to translate DPAs to LMAs) such that the LMA translations
result in respective LMAs to be processed by one or more
memory controllers (MCs) coupled to the register based on
non - contiguous MC memory regions 404-0 or 404-1 in each
of the one or more MCs address spaces (representing
memory space of the one or more MCs) , the address regions
having a predetermined granularity chosen by the program

a

US 2022/0004488 A1 Jan. 6. 2022
5

a

ming agent . One or more of the register entries may include
a field to be used to determine whether a memory access to
the register is valid , a field to indicate whether MC inter
leaving is applicable , a field to identify which MC of a
plurality of MCs are to be used to process a LMA generated
by a decoding of a DPA using the register , and / or a field to
indicate the granularity of the address regions . In the shown
example of FIG . 4 , the granularity is 1 GB , although
embodiments include any granularity , such as , for example ,
256 KB , 512 KB , 1 GB , 2 GB , 10 GB , or any suitable value
depending on user implementation . The indication of MC
interleaving may thus include an indication of an MC to
which a LMA corresponding to that entry is to be sent after
a decoding of the register entry by the associated decoder .
Thus , the programming agent executed by the primary Node
during the programming stage my cause a programming of
the register entries to indicate which of a number of inter
leaved MCs are to process LMAs determined from the
register entries for memory operations (read or write opera
tions) on corresponding addresses in the shared memory .
[0044] The granularity of the address regions in the MC
address spaces is to correspond to the granularity of corre
sponding address regions in the HMM . Thus , according to
some embodiments , the programming agent may program
the HMM to include address regions having a same granu
larity as that of the address regions in the MC address spaces
for a given MPC .
[0045] According to some embodiments , as suggested
above , a MPC 205 may include at least one decoder and at
least one MC . According to some embodiments , a MPC 205
may include any number of decoders and any number of
MCs . According to some embodiments , a decoder of a MPC
may be communicatively coupled with one or more MCs of
the MPC , and vice versa . According to some embodiments ,
a MPC may include one or more registers per decoder .
According to some embodiments , a MPC may include at
least one register per Node , at least one register per CPU .
[0046] After programming has taken place , the HMM 402
and the MPCs may maintain the same programming until a
reset operation on the HMM and MPCs . After a reset
operation , the programming agent may reprogram the HMM
402 and the MPCs 205-1 to 205-4 .
[0047] After the programming stage , the primary Node 1
may process parallel memory access requests to access
non - contiguous host memory allocations in the HMM , the
parallel memory access requests by workloads to be
executed by one or more of the Nodes 0-4 .
[0048] After the programming stage , a memory transac
tion from one of the Nodes 1-4 in Soc 300 may be received
by a MPC 205 , and , if a register hit occurs at one of the
Decoders 0 or 1 , the HPAs for the memory transaction are
translated into corresponding LMAs through DPAs , and sent
to a corresponding MC of the MPC .
[0049] A HMM , corresponding to a memory address map
for the shared memory , may thus be implemented and
controlled by programming , by a primary node , of one or
more MPCs in a DMA . The HMM may be segmented at a
relatively small granularity (e.g. 1 GB segments) , where
each segment may be dynamically allocated or deallocated
by the programming agent to respective requesting compute
nodes of the DMA , such as respective CPUs of such
compute nodes . The allocation and deallocation may be
implemented for example by using one or more memories ,
such as one or more registers , for example one or more

TLBs . This new software managed register implementation
advantageously provides a software - based innovation of
scheduling algorithms that allows dynamic memory alloca
tion in a disaggregated memory environment . This software
based innovation translates into better memory utilization
and lower memory access latency .
[0050] Reference is now made to FIG . 5 , which illustrates
a flow 500 for the generation of LMA from HPA through
DPA at a MPC , such as any of MPCs 205 of FIG . 3 ,
according to some embodiments . Once a memory transac
tion request by a CPU of any of Nodes 1-4 is received at the
MPC with a request for memory access , if the HPA address
is successfully decoded , the MC translates the HPA to a
DPA , and finds the corresponding register entry for the
decode region of the memory address corresponding to the
DPA . If the register entry is valid , the MC translates the DPA
to LMA based on the register entry . The decoder logic uses
the interleaving option in the register to determine the
destination MC . If interleaving is not enabled , then memory
transaction with LMA is directed to the pre - defined MC .
[0051] Without the register in the MPC , there is no HMM
visible to a node , and memory address allocation for the
shared memory is one to one . Thus , in current mechanisms ,
if , at a given time instance , multiple memory access requests
corresponding to multiple memory transactions are to access
the same region of the of the shared memory , the prior art
serializes such memory accesses in time , hence affecting
latency and bandwidth for shared memory access . Instead ,
according to some embodiments , when a MC decodes and
accesses the actual memory devices of the shared memory ,
efficient decoding made possible by fragmented memory
regions of the shared memory advantageously allows the
execution of parallel operations instead of serialized opera
tions .
[0052] According to embodiments , a primary node ,
through programming , can select , through the execution of
the programming agent , the location of memory address
regions in the shared memory as reflected within a HMM
visible to the primary node . Thus , non - contiguous or frag
mented memory allocations can result in the shared memory
based on the selection . In such a case , when two workloads
are running , they can access corresponding memory address
regions with the shared memory in parallel . The memory
address regions correspond to programmed register entries
within a register of a MPC , the register entries allowing
memory transactions coming in to determine the address
regions within the shared memory to be accessed by the
memory transactions .
[0053] According to some embodiments , the program
ming agent may select the location of the memory address
regions with the shared memory and thus fragment the
shared memory into multiple non - contiguous segments
based on expected memory access traffic for the DMA . In
such embodiments , the programming agent may have infor
mation of expected traffic pattern (expected workload pat
tern through time) for the DMA , and may use such infor
mation to cause programming of the HMM and of one or
more MPCs . The information of expected traffic pattern
may , for example , be based on machine learning (ML) / the
use of artificial intelligence (AI) through one or more
performance monitoring programs .
[0054] FIG . 6 illustrates an example of a process 600 to be
performed at a MPC of a DMA according to some embodi
ments . The process includes , at operation 602 , using register

2

US 2022/0004488 A1 Jan. 6. 2022
6

a

a

entries of a register of the MPC to translate host physical
addresses (HPA) within memory access requests from
respective nodes of the DMA into corresponding local
memory addresses (LMAs) of a shared memory of the
DMA , wherein the LMAs are to map to memory regions of
the shared memory and to corresponding memory regions of
a memory controller (MC) coupled to the register based on
a memory size granularity . The process includes , at opera
tion 604 , using the MC to access the shared memory for
memory operations based on the memory access requests .
[0055] The flow described in FIG . 6 is merely represen
tative of operations that may occur in particular embodi
ments . In other embodiments , operations may be performed
by any other ones of the components described above .
Various embodiments of the present disclosure contemplate
any suitable mechanisms for accomplishing the functions
described herein . Some of the operations illustrated in any of
FIGS . 4-6 may be repeated , combined , modified , or deleted
where appropriate . Additionally , operations may be per
formed in any suitable order without departing from the
scope of particular embodiments .
[0056] A design may go through various stages , from
creation to simulation to fabrication . Data representing a
design may represent the design in a number of manners .
First , as is useful in simulations , the hardware may be
represented using a hardware description language (HDL) or
another functional description language . Additionally , a cir
cuit level model with logic and / or transistor gates may be
produced at some stages of the design process . Furthermore ,
most designs , at some stage , reach a level of data represent
ing the physical placement of various devices in the hard
ware model . In the case where conventional semiconductor
fabrication techniques are used , the data representing the
hardware model may be the data specifying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit . In some
implementations , such data may be stored in a database file
format such as Graphic Data System II (GDS II) , Open
Artwork System Interchange Standard (OASIS) , or similar
format .

[0057] In some implementations , software based hardware
models , and HDL and other functional description language
objects can include register transfer language (RTL) files ,
among other examples . Such objects can be machine - pars
able such that a design tool can accept the HDL object (or
model) , parse the HDL object for attributes of the described
hardware , and determine a physical circuit and / or on - chip
layout from the object . The output of the design tool can be
used to manufacture the physical device . For instance , a
design tool can determine configurations of various hard
ware and / or firmware elements from the HDL object , such
as bus widths , registers (including sizes and types) , memory
blocks , physical link paths , fabric topologies , among other
attributes that would be implemented in order to realize the
system modeled in the HDL object . Design tools can include
tools for determining the topology and fabric configurations
of system on chip (SoC) and other hardware device . In some
instances , the HDL object can be used as the basis for
developing models and design files that can be used by
manufacturing equipment to manufacture the described
hardware . Indeed , an HDL object itself can be provided as
an input to manufacturing system software to cause the
described hardware .

[0058] In any representation of the design , the data may be
stored in any form of a machine readable medium . A
memory or a magnetic or optical storage such as a disc may
be the machine readable medium to store information trans
mitted via optical or electrical wave modulated or otherwise
generated to transmit such information . When an electrical
carrier wave indicating or carrying the code or design is
transmitted , to the extent that copying , buffering , or re
transmission of the electrical signal is performed , a new
copy is made . Thus , a communication provider or a network
provider may store on a tangible , machine - readable medium ,
at least temporarily , an article , such as information encoded
into a carrier wave , embodying techniques of embodiments
of the present disclosure . The machine - readable medium
may be tangible and non - transitory .
[0059] In various embodiments , a medium storing a rep
resentation of the design may be provided to a manufactur
ing system (e.g. , a semiconductor manufacturing system
capable of manufacturing an integrated circuit and / or related
components) . The design representation may instruct the
system to manufacture a device capable of performing any
combination of the functions described above . For example ,
the design representation may instruct the system regarding
which components to manufacture , how the components
should be coupled together , where the components should be
placed on the device , and / or regarding other suitable speci
fications regarding the device to be manufactured .
[0060] A module as used herein refers to any combination
of hardware , software , and / or firmware . As an example , a
module includes hardware , such as a micro - controller , asso
ciated with a non - transitory medium to store code adapted to
be executed by the micro - controller . Therefore , reference to
a module , in one embodiment , refers to the hardware , which
is specifically configured to recognize and / or execute the
code to be held on a non - transitory medium . Furthermore , in
another embodiment , use of a module refers to the non
transitory medium including the code , which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations . And as can be inferred , in yet
another embodiment , the term module (in this example) may
refer to the combination of the microcontroller and the
non - transitory medium . Often module boundaries that are
illustrated as separate commonly vary and potentially over
lap . For example , a first and a second module may share
hardware , software , firmware , or a combination thereof ,
while potentially retaining some independent hardware ,
software , or firmware . In one embodiment , use of the term
logic includes hardware , such as transistors , registers , or
other hardware , such as programmable logic devices .
[0061] Logic may be used to implement any of the flows
described or functionality of the various components of
FIGS . 2-4 . In various embodiments , logic may include a
microprocessor or other processing element operable to
execute software instructions , discrete logic such as an
application specific integrated circuit (ASIC) , a programmed
logic device such as a field programmable gate array
(FPGA) , a storage device containing instructions , combina
tions of logic devices (e.g. , as would be found on a printed
circuit board) , or other suitable hardware and / or software .
Logic may include one or more gates or other circuit
components . In some embodiments , logic may also be fully
embodied as software . Software may be embodied as a
software package , code , instructions , instruction sets and / or
data recorded on non - transitory computer readable storage

US 2022/0004488 A1 Jan. 6. 2022
7

>

medium . Firmware may be embodied as code , instructions
or instruction sets and / or data that are hard - coded (e.g. ,
nonvolatile) in storage devices .
[0062] Use of the phrase ' to ' or ' configured to , ' in one
embodiment , refers to arranging , putting together , manufac
turing , offering to sell , importing , and / or designing an appa
ratus , hardware , logic , or element to perform a designated or
determined task . In this example , an apparatus or element
thereof that is not operating is still ' configured to perform
a designated task if it is designed , coupled , and / or intercon
nected to perform said designated task . As a purely illustra
tive example , a logic gate may provide a 0 or a 1 during
operation . But a logic gate “ configured to ’ provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or 0. Instead , the logic gate is one
coupled in some manner that during operation the 1 or 0
output is to enable the clock . Note once again that use of the
term “ configured to ’ does not require operation , but instead
focus on the latent state of an apparatus , hardware , and / or
element , where in the latent state the apparatus , hardware ,
and / or element is designed to perform a particular task when
the apparatus , hardware , and / or element is operating .
[0063] Furthermore , use of the phrases ' capable of / to , ' and
or “ operable to , ' in one embodiment , refers to some appa
ratus , logic , hardware , and / or element designed in such a
way to enable use of the apparatus , logic , hardware , and / or
element in a specified manner . Note as above that use of to ,
capable to , or operable to , in one embodiment , refers to the
latent state of an apparatus , logic , hardware , and / or element ,
where the apparatus , logic , hardware , and / or element is not
operating but is designed in such a manner to enable use of
an apparatus in a specified manner .
[0064] A value , as used herein , includes any known rep
resentation of a number , a state , a logical state , or a binary
logical state . Often , the use of logic levels , logic values , or
logical values is also referred to as 1's and O's , which simply
represents binary logic states . For example , a 1 refers to a
high logic level and 0 refers to a low logic level . In one
embodiment , a storage cell , such as a transistor or flash cell ,
may be capable of holding a single logical value or multiple
logical values . However , other representations of values in
computer systems have been used . For example , the decimal
number ten may also be represented as a binary value of
1010 and a hexadecimal letter A. Therefore , a value includes
any representation of information capable of being held in a
computer system .
[0065] Moreover , states may be represented by values or
portions of values . As an example , a first value , such as a
logical one , may represent a default or initial state , while a
second value , such as a logical zero , may represent a
non - default state . In addition , the terms reset and set , in one
embodiment , refer to a default and an updated value or state ,
respectively . For example , a default value potentially
includes a high logical value , i.e. reset , while an updated
value potentially includes a low logical value , i.e. set . Note
that any combination of values may be utilized to represent
any number of states .
[0066] The embodiments of methods , hardware , software ,
firmware , or code set forth above may be implemented via
instructions or code stored on a machine - accessible ,
machine readable , computer accessible , or computer read
able medium which are executable by a processing element .
A non - transitory machine - accessible / readable medium
includes any mechanism that provides (i.e. , stores and / or

transmits) information in a form readable by a machine , such
as a computer or electronic system . For example , a non
transitory machine - accessible medium includes random - ac
cess memory (RAM) , such as static RAM (SRAM) or
dynamic RAM (DRAM) ; ROM ; magnetic or optical storage
medium ; flash storage devices ; electrical storage devices ;
optical storage devices ; acoustical storage devices ; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g. , carrier waves ,
infrared signals , digital signals) ; etc. , which are to be dis
tinguished from the non - transitory mediums that may
receive information there from .
[0067] Instructions used to program logic to perform
embodiments of the disclosure may be stored within a
memory in the system , such as DRAM , cache , flash
memory , or other storage . Furthermore , the instructions can
be distributed via a network or by way of other computer
readable media . Thus a machine - readable medium may
include any mechanism for storing or transmitting informa
tion in a form readable by a machine (e.g. , a computer) , but
is not limited to , floppy diskettes , optical disks , Compact
Disc , Read - Only Memory (CD - ROMs) , and magneto - opti
cal disks , Read - Only Memory (ROMs) , Random Access
Memory (RAM) , Erasable Programmable Read - Only
Memory (EPROM) , Electrically Erasable Programmable
Read - Only Memory (EEPROM) , magnetic or optical cards ,
flash memory , or a tangible , machine - readable storage used
in the transmission of information over the Internet via
electrical , optical , acoustical or other forms of propagated
signals (e.g. , carrier waves , infrared signals , digital signals ,
etc.) . Accordingly , the computer - readable medium includes
any type of tangible machine - readable medium suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e.g. , a computer) .

Examples of Some Embodiments are Provided
Below

a

[0068] Example 1 includes an apparatus of a disaggre
gated memory architecture (DMA) , the DMA including
nodes and a shared memory to be shared by the nodes , the
apparatus comprising : a memory controller (MC) ; and a
decoder coupled to the MC and having a register , the
decoder to be coupled to a node of the DMA , and the register
to store register entries therein dynamically programmable
by the node , the decoder to use the register entries to
translate physical addresses within memory access requests
from respective nodes of the DMA into corresponding local
memory addresses (LMAs) of the shared memory , wherein
the LMAs are to map to memory regions of the shared
memory and to corresponding memory regions of the MC
based on a predetermined memory size granularity .
[0069] Example 2 includes the subject matter of Example
1 , wherein the register entries are adapted to be erased and
reprogrammed by the node after a reset operation on the
shared memory .
[0070] Example 3 includes the subject matter of Example
1 , wherein the register entries are based on expected traffic
patterns of memory access requests with the DMA .
[0071] Example 4 includes the subject matter of Example
1 , wherein at least some of the LMAs are to map to
non - contiguous memory regions of the shared memory , and
to non - contiguous corresponding memory regions of the
MC .

a

US 2022/0004488 A1 Jan. 6. 2022
8

a

a a

[0072] Example 5 includes the subject matter of Example
1 , wherein the decoder is to translate physical addresses
within a memory access request from one of the respective
nodes of the DMA into corresponding LMAs of the shared
memory for said memory access request , wherein the LMAS
of the shared memory for said memory access request are to
map to memory regions of the shared memory and to
corresponding memory regions of the MC based on a
predetermined memory size granularity .
[0073] Example 6 includes the subject matter of Example
1 , wherein the decoder is further to : receive the memory
access requests from the respective nodes ; and translate the
physical addresses into the LMAs in response to a determi
nation that the physical addresses correspond to one or more
of the register entries .
[0074] Example 7 includes the subject matter of Example
1 , wherein the decoder is a first decoder , the apparatus
further including a plurality of second decoders similar to
the first decoder and coupled to the MC .
[0075] Example 8 includes the subject matter of Example
1 , wherein the MC is a first MC , the apparatus further
including a plurality of second MCs similar to the first MC
and coupled to the decoder .
[0076] Example 9 includes the subject matter of Example
8 , wherein individual ones of the register entries include at
least one a field to determine whether a memory access
request to the register is valid , a field to indicate whether MC
interleaving is applicable to the memory access request , or
a field to determine respective MCs to process respective
ones of the LMAS .
[0077] Example 10 includes the subject matter of Example
1 , wherein the decoder is a first decoder and the MC is a first
MC , the apparatus further including : a plurality of second
decoders similar to the first decoder ; and a plurality of
second MCs similar to the first MC and coupled to the first
decoder and the plurality of second decoders .
[0078] Example 11 includes the subject matter of Example
10 , wherein each decoder of the first decoder and of the
plurality of second decoders is programmable by the node ,
at least some of the first decoder and of the plurality of
second decoders being programmable by the node to corre
spond to memory allocations within the shared memory that
have different sizes with respect to one another .
[0079] Example 12 includes the subject matter of any one
of Examples 7 and 10 , wherein the register is a first register ,
at least some of the first decoder and the plurality of second
decoders include a plurality of second registers similar to the
first register
[0080] Example 13 includes the subject matter of Example
1 , wherein the register is a first register , the decoder further
including a plurality of second registers similar to the first
register .
[0081] Example 14 includes the subject matter of Example
1 , wherein the memory size granularity is dynamically
programmable to be one of 1 GB , 2 GB or 10 GB .
[0082] Example 15 includes a system of a disaggregated
memory architecture (DMA) , the system comprising : a
cluster of nodes including respective processing units ; a
shared memory including a plurality of memory devices
coupled to the cluster , and a plurality of memory pooling
circuitries (MPCs) coupled to the cluster and to the shared
memory , each of the MPCs including : a memory controller
(MC) ; and a decoder coupled to the MC and having a
register , the register to store register entries therein dynami

cally programmable by a primary node of the cluster , the
decoder to use the register entries to translate physical
addresses within memory access requests from the cluster
into corresponding local memory addresses (LMAs) of the
shared memory , wherein the LMAs are to map to memory
regions of the shared memory and to corresponding memory
regions of the MC based on a predetermined memory size
granularity .
[0083] Example 16 includes the subject matter of Example
15 , wherein the register entries are adapted to be erased and
reprogrammed by the primary node after a reset operation on
the shared memory .
[0084] Example 17 includes the subject matter of Example
15 , wherein the register entries are based on expected traffic
patterns of memory access requests within the DMA .
[0085] Example 18 includes the subject matter of Example
15 , wherein at least some of the LMAs are to map to
non - contiguous memory regions of the shared memory , and
to non - contiguous corresponding memory regions of the
MC .
[0086] Example 19 includes the subject matter of Example
15 , wherein the decoder is to translate physical addresses
within a memory access request from a node of the cluster
into corresponding LMAs of the shared memory for said
memory access request , wherein the LMAs of the shared
memory for said memory access request are to map to
memory regions of the shared memory and to corresponding
memory regions of the MC based on a predetermined
memory size granularity .
[0087] Example 20 includes the subject matter of Example
15 , wherein the decoder is further to : receive the memory
access requests from the respective nodes ; and translate the
physical addresses into the LMAs in response to a determi
nation that the physical addresses correspond to one or more
of the register entries .
[0088] Example 21 includes the subject matter of Example
15 , wherein the decoder is a first decoder , said each of the
MPCs further including a plurality of second decoders
similar to the first decoder and coupled to the MC .
[0089] Example 22 includes the subject matter of Example
15 , wherein the MC is a first MC , said each of the MPCs
further including a plurality of second MCs similar to the
first MC and coupled to the decoder .
[0090] Example 23 includes the subject matter of Example
22 , wherein individual ones of the register entries include at
least one a field to determine whether a memory access
request to the register is valid , a field to indicate whether MC
interleaving is applicable to the memory access request , or
a field to determine respective MCs to process respective
ones of the LMAS .
[0091] Example 24 includes the subject matter of Example
15 , wherein the decoder is a first decoder and the MC is a
first MC , said each of the MPCs further including : a plurality
of second decoders similar to the first decoder , and a
plurality of second MCs similar to the first MC and coupled
to the first decoder and the plurality of second decoders .
[0092] Example 25 includes the subject matter of Example
24 , wherein each decoder of the first decoder and of the
plurality of second decoders is programmable by the pri
mary node , at least some of the first decoder and of the
plurality of second decoders being programmable by the
primary node to correspond to memory allocations within
the shared memory that have different sizes with respect to
one another .

a

US 2022/0004488 A1 Jan. 6. 2022
9

a

a

[0093] Example 26 includes the subject matter of any one
of Examples 21 and 24 , wherein the register is a first register ,
at least some of the first decoder and the plurality of second
decoders include a plurality of second registers similar to the
first register .
[0094] Example 27 includes the subject matter of Example
15 , wherein the register is a first register , the decoder further
including a plurality of second registers similar to the first
register .
[0095] Example 28 includes the subject matter of Example
15 , wherein the memory size granularity is dynamically
programmable to be one of 1 GB , 2 GB or 10 GB .
[009] Example 29 includes a method to be performed at
an memory pooling circuitry (MPC) of a disaggregated
memory architecture (DMA) , the DMA including nodes and
a shared memory to be shared by the nodes , the method
comprising : using register entries of a register to translate
physical addresses within memory access requests from
respective nodes of the DMA into corresponding local
memory addresses (LMAs) of the shared memory , wherein
the LMAs are to map to memory regions of the shared
memory and to corresponding memory regions of a memory
controller (MC) coupled to the register based on a memory
size granularity ; and using the MC to access the shared
memory for memory operations based on the memory access
requests .
[0097] Example 30 includes the subject matter of Example
29 , wherein the memory access requests are first memory
address requests , the physical addresses are first physical
addresses , the LMAs are first LMAs , and the memory size
granularity is a first memory size granularity , the method
further including : after a reset operation on the shared
memory , using the register entries to translate second physi
cal addresses within second memory access requests from
respective nodes of the DMA into corresponding second
local memory addresses (LMAs) of the shared memory ,
wherein the second LMAs are to map to memory regions of
the shared memory and to corresponding memory regions of
a memory controller (MC) coupled to the register based on
a second memory size granularity different from the first
memory size granularity ; and using the MC to access the
shared memory for memory operations based on the second
memory access requests .
[0098] Example 31 includes the subject matter of Example
29 , wherein the register entries are based on expected traffic
patterns of memory access requests with the DMA .
[0099] Example 32 includes the subject matter of Example
29 , wherein at least some of the LMAs are to map to
non - contiguous memory regions of the shared memory , and
to non - contiguous corresponding memory regions of the
MC .
[0100] Example 33 includes the subject matter of Example
29 , further including translating physical addresses within a
memory access request from one of the respective nodes of
the DMA into corresponding LMAs of the shared memory
for said memory access request , wherein the LMAs of the
shared memory for said memory access request are to map
to memory regions of the shared memory and to correspond
ing memory regions of the MC based on a predetermined
memory size granularity .
[0101] Example 34 includes the subject matter of Example
29 , further including : receiving the memory access requests
from the respective nodes ; and translating the physical

addresses into the LMAs in response to a determination that
the physical addresses correspond to one or more of the
register entries .
[0102] Example 35 includes the subject matter of Example
29 , wherein individual ones of the register entries include at
least one a field to determine whether a memory access
request to the register is valid , a field to indicate whether MC
interleaving is applicable to the memory access request , or
a field to determine respective MCs of the MPC to process
respective ones of the LMAs .
[0103] Example 36 includes the subject matter of Example
29 , wherein the memory size granularity is dynamically
programmable to be one of 1 GB , 2 GB or 10 GB .
[0104] Example 37 includes at least one non - transitory
machine readable storage medium having instructions stored
thereon , the instructions , when executed by an apparatus of
a disaggregated memory architecture (DMA) , to cause the
apparatus to perform operations including : using register
entries of a register to translate physical addresses within
memory access requests from respective nodes of the DMA
into corresponding local memory addresses (LMAs) of the
shared memory , wherein the LMAs are to map to memory
regions of the shared memory and to corresponding memory
regions of a memory controller (MC) coupled to the register
based on a memory size granularity ; and using the MC to
access the shared memory for memory operations based on
the memory access requests .
[0105] Example 38 includes the subject matter of Example
37 , wherein the memory access requests are first memory
address requests , the physical addresses are first physical
addresses , the LMAs are first LMAs , and the memory size
granularity is a first memory size granularity , the operations
further including : after a reset operation on the shared
memory , using the register entries to translate second physi
cal addresses within second memory access requests from
respective nodes of the DMA into corresponding second
local memory addresses (LMAs) of the shared memory ,
wherein the second LMAs are to map to memory regions of
the shared memory and to corresponding memory regions of
a memory controller (MC) coupled to the register based on
a second memory size granularity different from the first
memory size granularity ; and using the MC to access the
shared memory for memory operations based on the second
memory access requests .
[0106] Example 39 includes the subject matter of Example
37 , wherein the register entries are based on expected traffic
patterns of memory access requests with the DMA .
[0107] Example 40 includes the subject matter of Example
37 , wherein at least some of the LMAs are to map to
non - contiguous memory regions of the shared memory , and
to non - contiguous corresponding memory regions of the
MC .
[0108] Example 41 includes the subject matter of Example
37 , the operations further including translating physical
addresses within a memory access request from one of the
respective nodes of the DMA into corresponding LMAs of
the shared memory for said memory access request , wherein
the LMAs of the shared memory for said memory access
request are to map to memory regions of the shared memory
and to corresponding memory regions of the MC based on
a predetermined memory size granularity .
[0109] Example 42 includes the subject matter of Example
37 , the operations further including : receiving the memory
access requests from the respective nodes ; and translating

US 2022/0004488 A1 Jan. 6. 2022
10

a

the physical addresses into the LMAs in response to a
determination that the physical addresses correspond to one
or more of the register entries .
[0110] Example 43 includes the subject matter of Example
36 , wherein individual ones of the register entries include at
least one a field to determine whether a memory access
request to the register is valid , a field to indicate whether MC
interleaving is applicable to the memory access request , or
a field to determine respective MCs of the MPC to process
respective ones of the LMAS .
[0111] Example 44 includes the subject matter of Example
37 , wherein the memory size granularity is dynamically
programmable to be one of 1 GB , 2 GB or 10 GB .
[0112] Example 45 includes at least one non - transitory
machine readable storage medium having instructions stored
thereon , the instructions , when executed by a computing
system of a disaggregated memory architecture (DMA)
including a shared memory , to cause the computing system
to perform operations including : prior to memory access
requests to access the shared memory , causing a program
ming of a memory pooling circuitry (MPC) including caus
ing a programming of register entries of one or more
registers of the MPC with information to be used by a
decoder of the MPC to translate physical addresses of
memory access requests to local memory addresses (LMAs)
such that the LMAs are processed by one or more memory
controllers (MCs) coupled to the one or more registers based
on MC memory regions in each of the one or more MCs , the
MC memory regions having a predetermined memory size
granularity ; and processing memory access requests from
the MPC based on the LMAS .
[0113] Example 46 includes the subject matter of Example
45 , wherein the LMAs map to memory regions of the shared
memory based on the predetermined memory size granular
ity .
[0114] Example 47 includes the subject matter of Example
45 , the operations further including erasing and reprogram
ming the MPC after a reset operation on the shared memory .
[0115] Example 48 includes the subject matter of Example
45 , the operations further including : determining an
expected traffic pattern of the memory access requests ; and
causing programming such that the register entries are based
on the expected traffic patterns .
[0116] Example 49 includes the subject matter of Example
45 , wherein at least some of the LMAs are to map to
non - contiguous memory regions of the shared memory , and
to non - contiguous corresponding memory regions of the one
or more MCs .
[0117] Example 50 includes the subject matter of Example
45 , wherein the memory access requests are from one of a
plurality of computing systems of the DMA .
[0118] Example 51 includes the subject matter of Example
45 , the operations further including causing a programming
of register entries of a plurality of registers of the MPC with
information to be used by a plurality of respective decoders
of the MPC to translate the physical addresses to the LMAs .
[0119] Example 52 includes the subject matter of Example
45 , the operations further including using a memory man
agement unit of the computing system to cause the program
ming .
[0120] Example 53 includes the subject matter of Example
51 , wherein individual ones of the register entries include at
least one a field to determine whether a memory access
request to the one or more registers is valid , a field to

indicate whether MC interleaving is applicable to the
memory access request , or a field to determine respective
MCs of the MPC to process respective ones of the LMAS .
[0121] Example 54 includes the subject matter of Example
51 , the operations further including causing programming of
the shared memory such that memory allocations within the
shared memory for respective decoders of the MPC have
different sizes with respect to one another .
[0122] Example 55 includes the subject matter of Example
45 , wherein the operations further including dynamically
programming the memory size granularity to be one of 1
GB , 2 GB or 10 GB .
[0123] Example 56 includes a method to be performed at
a computing system of a disaggregated memory architecture
(DMA) , the method including performing the operations of
any one of claims 45-55 .
[0124] Example 57 includes a computing system of a
disaggregated memory architecture (DMA) , the computing
system to perform the operations of any one of claims 45-55 .
[0125] Example 58 includes an apparatus of a disaggre
gated memory architecture (DMA) , the apparatus including
means to perform the method of any one of claims 29-36 .
[0126] Example 59 includes a computing system of a
disaggregated memory architecture (DMA) , the computing
system including means to perform the operations of any
one of claims 45-55 .
[0127] Reference throughout this specification to " one
embodiment ” or “ an embodiment ” means that a particular
feature , structure , or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present disclosure . Thus , the appearances of the
phrases “ in one embodiment ” or “ in an embodiment ” in
various places throughout this specification are not neces
sarily all referring to the same embodiment . Furthermore ,
the particular features , structures , or characteristics may be
combined in any suitable manner in one or more embodi
ments .
[0128] In the foregoing specification , a detailed descrip
tion has been given with reference to specific exemplary
embodiments . It will , however , be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the disclosure
as set forth in the appended claims . The specification and
drawings are , accordingly , to be regarded in an illustrative
sense rather than a restrictive sense . Furthermore , the fore
going use of embodiment and other exemplarily language
does not necessarily refer to the same embodiment or the
same example , but may refer to different and distinct
embodiments , as well as potentially the same embodiment .
What is claimed is :
1. An apparatus of a disaggregated memory architecture

(DMA) , the DMA including nodes and a shared memory to
be shared by the nodes , the apparatus comprising :

a memory controller (MC) ; and
a decoder coupled to the MC and having a register , the

decoder to be coupled to a node of the DMA , and the
register to store register entries therein dynamically
programmable by the node , the decoder to use the
register entries to translate host physical addresses
(HPA) within memory access requests from respective
nodes of the DMA into corresponding local memory
addresses (LMAs) of the shared memory , wherein the
LMAs are to map to memory regions of the shared

a

US 2022/0004488 A1 Jan. 6. 2022
11

memory and to corresponding memory regions of the
MC based on a predetermined memory size granularity .

2. The apparatus of claim 1 , wherein the register entries
are adapted to be erased and reprogrammed by the node after
a reset operation on the shared memory .

3. The apparatus of claim 1 , wherein the register entries
are based on expected traffic patterns of memory access
requests with the DMA .

4. The apparatus of claim 1 , wherein at least some of the
LMAs are to map to non - contiguous memory regions of the
shared memory , and to non - contiguous corresponding
memory regions of the MC .

5. The apparatus of claim 1 , wherein the decoder is to
translate host physical addresses (HPA) within a memory
access request from one of the respective nodes of the DMA
into corresponding LMAs of the shared memory for said
memory access request , wherein the LMAs of the shared
memory for said memory access request are to map to
memory regions of the shared memory and to corresponding
memory regions of the MC based on a predetermined
memory size granularity .

6. The apparatus of claim 1 , wherein the decoder is further

a memory controller (MC) ; and
a decoder coupled to the MC and having a register , the

register to store register entries therein dynamically
programmable by a primary node of the cluster , the
decoder to use the register entries to translate host
physical addresses (HPA) within memory access
requests from the cluster into corresponding local
memory addresses (LMAs) of the shared memory ,
wherein the LMAs are to map to memory regions of
the shared memory and to corresponding memory
regions of the MC based on a predetermined memory
size granularity .

13. The system of claim 12 , wherein the register entries
are adapted to be erased and reprogrammed by the primary
node after a reset operation on the shared memory .

14. The system of claim 12 , wherein the register entries
are based on expected traffic patterns of memory access
requests within the DMA .

15. The system of claim 12 , wherein at least some of the
LMAs are to map to non - contiguous memory regions of the
shared memory , and to non - contiguous corresponding
memory regions of the MC .

16. The system of claim 12 , wherein the decoder is to
translate host physical addresses (HPA) within a memory
access request from a node of the cluster into corresponding
LMAs of the shared memory for said memory access
request , wherein the LMAs of the shared memory for said
memory access request are to map to memory regions of the
shared memory and to corresponding memory regions of the
MC based on a predetermined memory size granularity .

17. The system of claim 12 , wherein the decoder is further

to :

to :

2

receive the memory access requests from the respective
nodes ; and

translate the host physical addresses (HPA) into the LMAS
in response to a determination that the host physical
addresses (HPA) correspond to single register entry .

7. The apparatus of claim 1 , wherein the decoder is a first
decoder and the MC is a first MC , the apparatus further
including :

a plurality of second decoders similar to the first decoder ,
and

a plurality of second MCs similar to the first MC and
coupled to the first decoder and the plurality of second
decoders .

8. The apparatus of claim 7 , wherein individual ones of
the register entries include at least one field to determine
whether a memory access request to the register is valid , a
field to indicate whether MC interleaving is applicable to the
memory access request , or a field to determine respective
MCs to process respective ones of the LMAS .

9. The apparatus of claim 7 , wherein each decoder of the
first decoder and of the plurality of second decoders is
programmable by the node , at least some of the first decoder
and of the plurality of second decoders being programmable
by the node to correspond to memory allocations within the
shared memory that have different sizes with respect to one
another .

10. The apparatus of claim 7 , wherein the register is a first
register , at least some of the first decoder and the plurality
of second decoders include a plurality of second registers
similar to the first register .

11. The apparatus of claim 1 , wherein the memory size
granularity is dynamically programmable to be one of 256
KB , 512 KB , 1 GB , 2 GB or 10 GB .

12. A system of a disaggregated memory architecture
(DMA) , the system comprising :

a cluster of nodes including respective processing units ;
a shared memory including a plurality of memory devices

coupled to the cluster ; and
a plurality of memory pooling circuitries (MPCs) coupled

to the cluster and to the shared memory , each of the
MPCs including :

receive the memory access requests from the respective
nodes ; and

translate the host physical addresses (HPA) into the LMAS
in response to a determination that the host physical
addresses (HPA) correspond to one or more of the
register entries .

18. At least one non - transitory machine readable storage
medium having instructions stored thereon , the instructions ,
when executed by an apparatus of a disaggregated memory
architecture (DMA) , to cause the apparatus to perform
operations including :

using register entries of a register to translate host physi
cal addresses (HPA) within memory access requests
from respective nodes of the DMA into corresponding
local memory addresses (LMAs) of the shared memory ,
wherein the LMAs are to map to memory regions of the
shared memory and to corresponding memory regions
of a memory controller (MC) coupled to the register
based on a memory size granularity ; and

using the MC to access the shared memory for memory
operations based on the memory access requests .

19. The storage medium of claim 18 , wherein the memory
access requests are first memory address requests , the host
physical addresses (HPA) are first host physical addresses
(HPA) , the LMAs are first LMAs , and the memory size
granularity is a first memory size granularity , the operations
further including :

after a reset operation on the shared memory , using the
register entries to translate second host physical
addresses (HPA) within second memory
requests from respective nodes of the DMA into cor
responding second local memory addresses (LMAs) of

a

access

US 2022/0004488 A1 Jan. 6. 2022
12

the shared memory , wherein the second LMAs are to
map to memory regions of the shared memory and to
corresponding memory regions of a memory controller
(MC) coupled to the register based on a second
memory size granularity different from the first
memory size granularity ; and

using the MC to access the shared memory for memory
operations based on the second memory access
requests .

20. The storage medium of claim 18 , wherein the register
entries are based on expected traffic patterns of memory
access requests with the DMA .

