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SOFTWARE DRIVE DYNAMIC MEMORY 
ALLOCATION AND ADDRESS MAPPING 
FOR DISAGGREGATED MEMORY POOL 

FIELD 

[ 0001 ] The instant disclosure pertains to computing sys 
tems in a pooled memory environment , and in particular ( but 
not exclusively ) to memory access between components in 
a computing system . 

BACKGROUND 

[ 0002 ] Resource disaggregation is becoming increasingly 
prevalent in emerging computing scenarios such as cloud 
( aka hyperscaler ) usages , where disaggregation provides the 
means to manage resource effectively and have uniform 
landscapes for easier management . While storage disaggre 
gation is widely seen in several deployments , for example , 
Amazon S3 , compute and memory disaggregation is also 
becoming prevalent with hyperscalers like Google Cloud . 
[ 0003 ] One of the challenges with disaggregated memory 
architectures ( DMAs ) ( or pooled memory architectures , or 
disaggregate / pooled memory platforms , which may corre 
spond to data centers ) is the overall increased latency to 
memory . Local memory within a node can be accessed 
within 100 ns ( nanoseconds ) or so , whereas the latency 
penalty for accessing disaggregated memory resources over 
a network is much higher . 
[ 0004 ] Current solutions for executing such applications 
on disaggregated architectures being pursued by hyperscal 
ers is to tolerate high remote latencies ( that come with 
disaggregated architectures ) to access hot tables or struc 
tures and rely on CPU caches to cache as much as possible 
locally . However , this provides less than optimal perfor 
mance and limits scalability 

present disclosure may be used include desktop computer 
systems , server computer systems , storage systems , hand 
held devices , tablets , other thin notebooks , systems on a chip 
( SOC ) devices , and embedded applications . Some examples 
of handheld devices include cellular phones , digital cameras , 
media players , personal digital assistants ( PDAs ) , and hand 
held PCs . Embedded applications may include a microcon 
troller , a digital signal processor ( DSP ) , a system on a chip , 
network computers ( NetPC ) , set - top boxes , network hubs , 
wide area network ( WAN ) switches , or any other system that 
can perform the functions and operations taught below . 
Various embodiments of the present disclosure may be used 
in any suitable computing environment , such as a personal 
computing device , a server , a mainframe , a cloud computing 
service provider infrastructure , a datacenter , a communica 
tions service provider infrastructure ( e.g. , one or more 
portions of an Evolved Packet Core ) , or other environment 
comprising a group of computing devices . 
[ 0013 ] FIGS . 1 and 2 below provided some examples of 
disaggregated memory ( or pooled memory ) architectures 
that may be used to implement some embodiments as will be 
described further below in the context of FIG . 3-6 . 
[ 0014 ] FIG . 1 shows an example of disaggregated archi 
tecture including pooled memory . Compute resources , such 
as multi - core processors ( aka CPUs ( central processing 
units ) ) in blade servers or server modules ( not shown ) in two 
compute bricks 102 and 104 in a first rack 106 are selec 
tively coupled to memory resources ( e.g. , DRAM DIMMs , 
NVDIMMs , etc. ) in memory bricks 108 and 110 in a second 
rack 112. Each of compute bricks 102 and 104 include an 
FPGA ( Field Programmable Gate Array 114 and multiple 
ports 116. Similarly , each of memory bricks 108 and 110 
include an FPGA 118 and multiple ports 120. The compute 
bricks also have one or more compute resources such as 
CPUs , or Other Processing Units ( collectively termed 
XPUs ) including one or more of Graphic Processor Units 
( GPUs ) or General Purpose GPUs ( GP - GPUs ) , Tensor Pro 
cessing Unit ( TPU ) Data Processor Units ( DPUs ) , Artificial 
Intelligence ( AI ) processors or AI inference units and / or 
other accelerators , FPGAs and / or other programmable logic 
( used for compute purposes ) , etc. Compute bricks 102 and 
104 are connected to the memory bricks 108 via ports 116 
and 120 and switch or interconnect 122 , which represents 
any type of switch or interconnect structure . For example , 
under embodiments employing Ethernet fabrics , switch / 
interconnect 122 may be an Ethernet switch . Optical 
switches and / or fabrics may also be used , as well as various 
other protocols , Ethernet , InfiniBand , RDMA ( Remote 
Direct Memory Access ) , NVMe - oF ( Non - volatile Memory 
Express over Fabric , RDMA over Converged Ethernet 
( ROCE ) , etc. FPGAs 114 and 118 are programmed to per 
form routing and forwarding operations in hardware . 
[ 0015 ] Generally , a compute brick may have dozens or 
even hundreds of cores , while memory bricks , also referred 
to herein as pooled memory , may have terabytes ( TB ) or 
10's of TB of memory implemented as disaggregated 
memory . The amount of local memory on the compute 
bricks is relatively small and generally limited to bare 
functionality for operating system ( OS ) boot and other such 
usages . 
[ 0016 ] Memory resources within memory bricks 108 and 
110 may in general include any memory device , such as 
random access memory ( RAM ) , non - volatile ( NV ) memory , 
or other memory accessible by devices in system 100 . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] FIG . 1 illustrates a schematic diagram illustrating 
an example of a disaggregated architecture in which com 
pute resources in compute bricks are connected to disaggre 
gated memory in memory bricks . 
[ 0006 ] FIG . 2 illustrates an example disaggregated 
memory architecture including shared memory capable of 
being accessed using load / store techniques by each of a 
plurality of independent nodes . 
[ 0007 ] FIG . 3 illustrates a system - on - a - chip ( SOC ) includ 
ing memory pooling circuitries ( MPCs ) according to one 
embodiment . 
[ 0008 ] FIG . 4 illustrates an embodiment of one of the 
MPCs and one of the Nodes of the SoC of FIG . 3 . 
[ 0009 ] FIG . 5 illustrates a flow for the generation of a local 
memory address ( LMA ) from a host physical address ( HPA ) 
through a device physical address ( DPA ) at a MPC accord 
ing to some embodiments . 
[ 0010 ] FIG . 6 is a flow diagram of a process according to 
some embodiments . 
[ 0011 ] Like reference numbers and designations in the 
various drawings indicate like elements . 

a 

DETAILED DESCRIPTION 
[ 0012 ] Although the drawings depict particular computer 
systems , the concepts of various embodiments are appli 
cable to any suitable integrated circuits and other logic 
devices . Examples of devices in which teachings of the 
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Memory resources may be coupled to a controller hub 
through a memory interface ( not shown ) . Examples of a 
memory interface include a double - data rate ( DDR ) memory 
interface , a dual - channel DDR memory interface , and a 
dynamic RAM ( DRAM ) memory interface . 
[ 0017 ] The controller hub may be a root hub , root com 
plex , or root controller in a Peripheral Component Intercon 
nect Express ( PCIe or PCIE ) interconnection hierarchy 
and / or a Compute Express Link ( CXL ) interconnection 
hierarchy based on the CXL Specification . Examples of a 
controller hub include a chipset , a memory controller hub 
( MCH ) , a northbridge , an interconnect controller hub ( ICH ) 
a southbridge , and a root controller / hub . Often the term 
chipset refers to two physically separate controller hubs , i.e. 
a memory controller hub ( MCH ) coupled to an interconnect 
controller hub ( ICH ) . 
[ 0018 ] Turning to FIG . 2 , a simplified block diagram is 
shown illustrating an example pooled memory / disaggre 
gated memory architecture ( DMA ) 200a including shared 
memory 205 capable of being accessed using load / store 
techniques by each of a plurality of independent nodes 
210a - 210n . For instance , a shared memory controller 215 
can be provided that can accept load / store access requests of 
the various nodes 210a - 210n on the system . Shared memory 
205 can be implemented utilizing synchronous dynamic 
random access memory ( SDRAM ) , dual in - line memory 
modules ( DIMM ) , and other non - volatile memory ( or vola 
tile memory ) as noted previously . Shared memory 205 may 
include memory anywhere in one or more DMAs . Thus , 
shared memory may be shared within a given DMA , or with 
other DMAs communicatively coupled to the given DMA 
via network connectivity , such as via networking chip 220 . 
[ 0019 ] Each node or computing system may itself have 
one or multiple CPUs and CPU sockets and may also include 
local memory that remains insulated from load / store access 
by other nodes in the system . The node can communicate 
with other devices in the pooled memory architecture ( e.g. , 
with shared memory controller 215 , networking controller 
220 , other nodes , etc. ) using one or more protocols , includ 
ing Compute Express Link ( CXL ) ( an interconnect technol 
ogy for removable high - bandwidth devices , such as GPU 
based compute accelerators , in a data - center environment ) , 
PCIe , QPI , Ethernet , among other examples . 
[ 0020 ) SMC 215 may include logic for handling load / store 
requests of nodes 210a - 210n . Load / store requests can be 
received by the SMC 215 over links ( such as CXL ) con 
necting the nodes 210a - 210n to the SMC 215. In some 
implementations the SMC 215 can be implemented as a 
device , such as an application - specific integrated circuit 
( ASIC ) , including logic for servicing the access requests of 
the nodes 210a - 210n for shared memory resources . In other 
instances , the SMC 215 ( as well as shared memory 205 ) can 
reside on a device , chip , or board separate from one or more 
( or even all ) of the nodes 210a - 210n . The SMC may for 
example be part of a node 210a - 210n and located on a CPU 
of such node , it may be within an accelerator device , or part 
of a memory buffer chip . 
[ 0021 ] The SMC 215 can further include logic to coordi 
nate various nodes ' transactions that involve shared memory 
205. Additionally , the SMC can maintain a directory track 
ing access to various data resources , such as each cache line , 
included in shared memory 205. For instance , a data 
resource can be in a shared access state ( e.g. , capable of 
being accessed ( e.g. , loaded or read ) by multiple processing 

and / or I / O devices within a node , simultaneously ) , an exclu 
sive access state ( e.g. , reserved exclusively , if not tempo 
rarily , by a single processing and / or I / O device within a node 
( e.g. , for a store or write operation ) , an uncached state , 
among other potential examples . Further , while each node 
may have direct access to one or more portions of shared 
memory 205 , different addressing schemes and values may 
be employed by the various nodes ( e.g. , 210a - 210n ) result 
ing in the same shared memory data being referred to ( e.g. , 
in an instruction ) by a first node according to a first address 
value and a second node being referring to the same data by 
a second address value . The SMC 215 can include logic , 
including data structures , to map nodes memory access 
requests including HPAs to shared memory resources , for 
example to LMAs , to allow the SMC 215 to interpret the 
various access requests of the various nodes and provide 
access to the intended address of the data from the shared 
memory 205 . 
[ 0022 ] Additionally , in some cases , some portion of shared 
memory ( e.g. , certain partitions , memory blocks , records , 
files , etc. ) may be subject to certain permissions , rules , and 
assignments such that only a portion of the nodes 210a - 210n 
are allowed ( e.g. , by the SMC 215 ) to access the corre 
sponding data . Indeed , each shared memory resource may be 
assigned to a respective ( and in some cases different ) subset 
of the nodes 210a - 210n of the system . These assignments 
can be dynamic and SMC 215 can modify such rules and 
permissions ( e.g. , on - demand , dynamically , etc. ) to accom 
modate new or changed rules , permissions , node assign 
ments and ownership applicable to a given portion of the 
shared memory 205 . 
[ 0023 ] An example SMC 215 can further track various 
transactions involving nodes ( e.g. , 210a - 210n ) in the system 
accessing one or more shared memory resources . For 
instance , SMC 215 can track information for each shared 
memory 205 transaction , including identification of the 
node ( s ) involved in the transaction , progress of the transac 
tion ( e.g. , whether it has been completed ) , among other 
transaction information . This can permit some of the trans 
action - oriented asp its of traditional DMAs to be applied to 
the improved multi - node shared memory architecture 
described herein . Additionally , transaction tracking ( e.g. , by 
the SMC ) can be used to assist in maintaining or enforcing 
the distinct and independent fault domains of each respec 
tive node . For instance , the SMC can maintain the corre 
sponding Node ID for each transaction - in - progress in its 
internal data structures , including in memory , and use that 
information to enforce access rights and maintain individual 
fault - domains for each node . Accordingly , when one of the 
nodes goes down ( e.g. , due to a critical error , triggered 
recovery sequence , or other fault or event ) , only that node 
and its transactions involving the shared memory 205 are 
interrupted ( e.g. , dumped by the SMC ) —transactions of the 
remaining nodes that involve the shared memory 205 con 
tinue on independent of the fault in the other node . 
[ 0024 ] A pooled memory architecture can include multiple 
nodes . Additionally , some example pooled memory archi 
tectures can include multiple SMCs . In some cases , a node 
may be able to access shared memory off a remote SMC to 
which it is not directly attached to ( i.e. , the node's local 
SMC connects to the remote SMC through one or multiple 
SML Link hops ) . The remote SMC may be in the same board 
or could be in a different board . In some cases , some of the 
nodes may be off - system ( e.g. , off board or off chip ) but 

a 

a 
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nonetheless access shared memory 205. For instance , one or 
more off - system nodes can connect directly to the SMC 
using an SML - compliant link , among other examples . Addi 
tionally , other pooled memory architectures that include 
their own SMC and shared memory can also connect with 
the SMC 210 to extend sharing of memory 205 to nodes 
included , for instance , on another board that interface with 
the other SMC connected to the SMC over an SML link . Still 
further , network connections can be tunneled through to 
further extend access to other off - board or off - chip nodes . 
For instance , SML can tunnel over an Ethernet connection 
( e.g. , provided through network controller 220 ) communi 
catively coupling the example pooled memory architecture 
of FIG . 2 with another pooled memory architecture that can 
also include one or more other nodes and allow these nodes 
to also gain access to SMC 215 and thereby shared memory 
205 , among other examples . 
[ 0025 ] In CPU data centers , memory utilization is an 
important aspect of high - performance applications . 
Although adding more local DRAM memory can help 
overall system performance , it may be more costly and less 
efficient to implement , as it may lead to sub - optimal memory 
allocation among multiple CPUs in a given node / computing 
system . 
[ 0026 ] Compute Express Link ( CXL ) based off - chip 
memory pooling solutions provide an effective way to solve 
both cost and memory utilization among multiple nodes but 
with little extra latency as compared with using local 
DRAM . Applying traditional scheduling algorithms either at 
CPU domain or at the Memory Controller ( MC ) domain is 
not enough to maximize the memory allocation and band 
width as multiple CPUs are sharing the same memory pool . 
However , the effective allocation of the memory and flex 
ibility for the same remains undefined in the specification . 
[ 0027 ] Some embodiments propose the use of one or more 
memory pooling circuitries ( MPCs ) to implement a software 
driven dynamic scheduling technique in order to enhance or 
optimize memory utilization of available memory pool 
resources ( i.e. within the shared mem emory ) of a DMA ( such 

data center or a portion of a data center , such as a rack ) 
with optimum granularity . Individual ones of the MPCs may 
include a decoder having a register , such as a translation 
lookaside buffer ( TLB ) . Being able to program the register 
( such as a register within SMC 215 of FIG . 2 ) to dynami 
cally allocate / de - allocate ranges of memory addresses ( i.e. 
memory regions ) of the shared memory among multiple 
CPUs to achieve a high level of performance in the overall 
DMA , such as a data center . “ Dynamic allocation / dealloca 
tion , ” or “ dynamic programming ” as used herein means an 
allocation / deallocation , or programming , which can change , 
for example as a function of time and / or as a function of 
changing parameters . 
[ 0028 ] When considering multiple CPU data centers 
( whether the CPUs are on the same rack or different racks of 
the data center ) and trying to optimize the memory alloca 
tions across CPUs current method have allocated memory is 
fairly static manner , where a set number of memory channels 
on each CPU dictates memory allocation to that CPU . Some 
embodiments provide a memory pooling solution through a 
MPC that is adapted to dynamically allocate memory within 
the shared memory across such CPUs . A novel aspects of 
embodiments is the use of a register , such as a TLB , to 
dynamically manage memory addresses , in this manner 
allowing an optimization of memory bandwidth allocation . 

[ 0029 ] CXL based memory pooling solution provides an 
alternate protocol that runs across a standard PCIe physical 
layer . It uses a flexible CPU port that can auto - negotiate to 
PCIe or CXL . A first generation of the CXL protocol aligns 
to 32 Gbps PCIe 5. CXL may be used in a memory buffer 
environment such as the one shown in FIG . 2 , where 
memory bandwidth expansion , memory capacity expansion , 
and / or storage class memory are to be used . There is 
currently no known hardware - based solution to provide 
optimal memory utilization managed via software in a 
distributed memory architecture . The current memory allo 
cation is not dynamic but static at the time of enumeration . 
[ 0030 ] For a CXL based memory pooling solution , a CPU 
may send a host - physical - address ( HPA ) for any data access 
from the shared memory , such as shared memory 205. The 
HPA may get converted , for example by SMC 215 , to a 
device - physical - address ( DPA ) to map the actual local 
memory address ( LMA ) corresponding to the data to be 
accessed in the shared memory . Current memory controllers 
statically allocate DPA to LMA conversion among multiple 
CPUs in the system , in a static manner , and based on 
available CPU channels . However , the latter solution does 
not provide software executed by the memory controller 
with any visibility into address mapping within the shared 
memory per CPU ( host ) , nor does it provide any control to 
change such DPA to LMA allocation in a dynamic , pro 
grammable manner . 
[ 0031 ] According to some embodiments , a memory 
address map ( also referred to here as a host memory map ) 
for shared memory , implemented and controlled by a 
memory controller of a node in a DMA , may be segmented 
at a relatively small granularity ( e.g. 1 GB segments ) , where 
each segment is dynamically allocated or de - allocated by 
software ( SW ) ( e.g. a programming agent / fabric manager 
and orchestrator ) to respective requesting compute nodes , 
such as nodes 210a - 210n of a disaggregated memory archi 
tecture 200a . The allocation and deallocation may be imple 
mented for example by using one or more memories , such 
as one or more registers , for example one or more TLBs . An 
individual register according to some embodiments may 
store DPA to LMA translation entries such that the LMAS 
obtained as a result of the translation ( translated LMAs ) map 
to memory regions in a corresponding memory controller of 
the register that are non - contiguous with respect to one 
another , and that are at a preprogrammed granularity . 
Memory regions within the shared memory and hence the 
HMM corresponding to the translated LMAs are also to 
exhibit the same granularity . This new software managed 
register implementation advantageously provides a soft 
ware - based innovation of scheduling algorithms that allows 
dynamic memory allocation in a disaggregated memory 
environment . This software - based innovation translates into 
better memory utilization and lower memory access latency . 
[ 0032 ] Latency and throughput are some of the more 
important aspect of off - chip memory applications as com 
pared with on - chip memory applications . The flexibility of 
the dynamic memory of embodiments allows software to 
handle memory allocation in a most efficient way to create 
performance - enhanced system memory map , and further 
provides flexibility to manage blast radius impact and Reli 
ability , Accessibility , Serviceability ( RAS ) solutions across 
host nodes without requiring reboot of a whole system . 
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[ 0033 ] Some embodiments provide a shared memory 
pooling circuitry that dynamically translates DPA to LMA as 
between nodes of a DMA . 
[ 0034 ] Reference will now be made to FIGS . 3-5 in the 
context of further details regarding some embodiments . The 
architectures of FIGS . 3-4 may be used in performing 
methods and implementing operations as described in the 
context of some embodiments herein . 
[ 0035 ] FIG . 3 shows an architecture 300 , such as a system 
on a chip ( SOC ) 300 according to one embodiment . SoC 300 
represents one embodiment of the architecture 200a of FIG . 
2 , with like components referred to with like reference 
numerals . In SoC 300 , four nodes 210 , Node 1 , Node 2 , 
Node 3 and Node 4 ( similar to those of FIG . 2 ) , are 
communicatively coupled to four memory pooling circuit 
ries ( MPCs ) 1-4 , with one of the nodes , such as Node 1 , 
serving as a primary node and the other nodes serving as 
secondary nodes as will be explained further below . MPCs 
1-4 together belong to SMC circuitry 215. Shared memory 
205 in FIG . 3 is represented by clusters of DDR memory 
devices 205-1 , 205-2 . 205-3 and 205-4 , with each cluster 
communicatively coupled to a corresponding one of the 
MPCs 1-4 , although embodiments are not so limited . 
[ 0036 ] FIG . 4 is a schematic view of an architecture 400 
showing an embodiment of one of the MPCs 205 commu 
nicatively coupled with Node 1 of FIG . 3. In particular , FIG . 
4 shows a fragmented memory mapped view of system 
memory for a given host or primary node to a two MC 
enabled device . In the given example , a host System 
Memory Management Unit ( MMU ) of Operating System 
( OS ) with a primary Node , Node 1 , is configured to allocate 
64 GB ( Gigabyte ) to Decoder 0 and 256 GB to Decoder 1 
to a given Node ( such as any of Nodes 1-4 ) for the memory 
pooling circuitry . 
[ 0037 ] In the embodiment of FIG . 4 , MPC 205 includes 
two decoders , Decoder 0 and Decoder 1 and two MCs , 
MC - O and MC - 1 communicatively coupled to one another . 
Each of Decoders 0 and 1 is coupled to both MC - 0 and 
MC - 1 . MPC 205 is coupled to the primary node , Node 1 , 
which has access to and is adapted to program memory 
allocations of the shared memory 205 and within MPCs , 
with the allocations shown in FIG . 4 in the form of Host 
Memory Map ( HMM ) 402 and Decoder 0 and Decoder 1 
registers , Register 0 and Register 1 , respectively . HMM 402 
shows a memory space for the data of shared memory 205 , 
where a memory region 402-0 ( range of one or more 
memory addresses ) is shown as having been allocated to 
Decoder 0 , and a memory region 402-1 is shown as having 
been allocated to Decoder 1 . 

[ 0038 ] The decoders in MPC 205 may include respective 
registers . In particular , the decoders may each include a 
memory , such as a register , for example a TLB , that is to 
store translations of DPA to LMA therefore serving as an 
address - translation cache . A decoder such as Decoder 0 or 
Decoder 1 may include a cache that is implemented as a 
fully associative address space so that each entry maps to a 
valid memory address . Therefore , there will always be a hit 
in the TLB access and it would be minimum access latency 
as a result . If the associated TLB entry for the requested 
address is not valid , then it would be detected as TLB error 
and its handling will be described in further detail in relation 
to FIG . 5. In the shown embodiment , each decoder is 
coupled to both MC - O and MC - 1 . 

[ 0039 ] AMPC may implement various decoders as per the 
CXL 2.0 / CXL 3.0 or later version of CXL Specification for 
initial HPA to DPA address translation . The use of the 
number of registers per MPC according to embodiments is 
implementation specific . A MPC may include separate reg 
isters per decoder per primary node to simplify the design , 
or can have a single register for a given primary node for all 
decoders for address translation . The register index may , 
according to some embodiments , be provided by the most 
significant bits of the DPA . The exact bits to be used for 
register indexing depends on total MC memory size , granu 
larity of memory region etc. For example , for 2 TB ( Tera 
byte ) of local memory with 1 GB of memory granularity , 
then bits 40:30 may be used for indexing the register . This 
example also signifies that the total 2K size of registers are 
needed to generate LMA for every incoming addresses . If 
the register entry is valid , then the register content may be 
used to translate the DPA address to LMA . If register entry 
is not valid , then it will be considered as an erroneous 
transaction and handled according to user implementation . 
The initial register programming according to some embodi 
ments may be performed during an initialization phase of a 
DMA , where the register is programmed by the program 
ming agent , such as a fabric manager , or hypervisor present 
in the platform , such as in a primary node of the architecture . 
It is the programming agent's responsibility to ensure that 
every legal register entry has a correct value to generate the 
corresponding LMA . According to some embodiments , a 
register can also be programmed during run time , but 
handling of all the CPU memory transactions during repro 
gramming is implementation specific . 
[ 0040 ] The register implementation allows the program 
ming agent to select between allocating contiguous and 
non - contiguous memory distribution across multiple nodes 
supported by one or more memory pooling circuitries . 
[ 0041 ] In operation , referring now to FIGS . 3 and 4 , the 
primary Node 1 may execute a memory programming agent , 
such as a hypervisor , to perform a number of operations . In 
particular , the primary Node 1 may , prior to a memory 
transaction based on one or more requests from CPUs in any 
of Nodes 1-4 , cause a programming of the HMM 402 ( i.e. 
of memory addresses in the shared memory ) and of one or 
more MPCs , such as respective MPCs of FIG . 3 . 
[ 0042 ] Programming of the HMM may include allocating 
memory addresses corresponding to memory transactions of 
respective workloads to be non - contiguous with respect to 
one another in the HMM . For example , as seen in FIG . 4 , the 
HMM 402 reflects a shared memory allocation 402-0 of a 
memory region within the shared memory for Decoder 0 , 
and a shared memory allocation 402-1 of a memory region 
within the shared memory for Decoder 1 for MPC 205 . 
Ranges 402-0 and 402-1 may each include one or more 
LMAS . 
[ 0043 ] Programming each of the one or more MPCs may 
include programming a register of the one or more MPCs . 
Programming the register may include programming regis 
ter entries 403-0 or 403-1 ( the entries including information 
to translate DPAs to LMAs ) such that the LMA translations 
result in respective LMAs to be processed by one or more 
memory controllers ( MCs ) coupled to the register based on 
non - contiguous MC memory regions 404-0 or 404-1 in each 
of the one or more MCs address spaces ( representing 
memory space of the one or more MCs ) , the address regions 
having a predetermined granularity chosen by the program 
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ming agent . One or more of the register entries may include 
a field to be used to determine whether a memory access to 
the register is valid , a field to indicate whether MC inter 
leaving is applicable , a field to identify which MC of a 
plurality of MCs are to be used to process a LMA generated 
by a decoding of a DPA using the register , and / or a field to 
indicate the granularity of the address regions . In the shown 
example of FIG . 4 , the granularity is 1 GB , although 
embodiments include any granularity , such as , for example , 
256 KB , 512 KB , 1 GB , 2 GB , 10 GB , or any suitable value 
depending on user implementation . The indication of MC 
interleaving may thus include an indication of an MC to 
which a LMA corresponding to that entry is to be sent after 
a decoding of the register entry by the associated decoder . 
Thus , the programming agent executed by the primary Node 
during the programming stage my cause a programming of 
the register entries to indicate which of a number of inter 
leaved MCs are to process LMAs determined from the 
register entries for memory operations ( read or write opera 
tions ) on corresponding addresses in the shared memory . 
[ 0044 ] The granularity of the address regions in the MC 
address spaces is to correspond to the granularity of corre 
sponding address regions in the HMM . Thus , according to 
some embodiments , the programming agent may program 
the HMM to include address regions having a same granu 
larity as that of the address regions in the MC address spaces 
for a given MPC . 
[ 0045 ] According to some embodiments , as suggested 
above , a MPC 205 may include at least one decoder and at 
least one MC . According to some embodiments , a MPC 205 
may include any number of decoders and any number of 
MCs . According to some embodiments , a decoder of a MPC 
may be communicatively coupled with one or more MCs of 
the MPC , and vice versa . According to some embodiments , 
a MPC may include one or more registers per decoder . 
According to some embodiments , a MPC may include at 
least one register per Node , at least one register per CPU . 
[ 0046 ] After programming has taken place , the HMM 402 
and the MPCs may maintain the same programming until a 
reset operation on the HMM and MPCs . After a reset 
operation , the programming agent may reprogram the HMM 
402 and the MPCs 205-1 to 205-4 . 
[ 0047 ] After the programming stage , the primary Node 1 
may process parallel memory access requests to access 
non - contiguous host memory allocations in the HMM , the 
parallel memory access requests by workloads to be 
executed by one or more of the Nodes 0-4 . 
[ 0048 ] After the programming stage , a memory transac 
tion from one of the Nodes 1-4 in Soc 300 may be received 
by a MPC 205 , and , if a register hit occurs at one of the 
Decoders 0 or 1 , the HPAs for the memory transaction are 
translated into corresponding LMAs through DPAs , and sent 
to a corresponding MC of the MPC . 
[ 0049 ] A HMM , corresponding to a memory address map 
for the shared memory , may thus be implemented and 
controlled by programming , by a primary node , of one or 
more MPCs in a DMA . The HMM may be segmented at a 
relatively small granularity ( e.g. 1 GB segments ) , where 
each segment may be dynamically allocated or deallocated 
by the programming agent to respective requesting compute 
nodes of the DMA , such as respective CPUs of such 
compute nodes . The allocation and deallocation may be 
implemented for example by using one or more memories , 
such as one or more registers , for example one or more 

TLBs . This new software managed register implementation 
advantageously provides a software - based innovation of 
scheduling algorithms that allows dynamic memory alloca 
tion in a disaggregated memory environment . This software 
based innovation translates into better memory utilization 
and lower memory access latency . 
[ 0050 ] Reference is now made to FIG . 5 , which illustrates 
a flow 500 for the generation of LMA from HPA through 
DPA at a MPC , such as any of MPCs 205 of FIG . 3 , 
according to some embodiments . Once a memory transac 
tion request by a CPU of any of Nodes 1-4 is received at the 
MPC with a request for memory access , if the HPA address 
is successfully decoded , the MC translates the HPA to a 
DPA , and finds the corresponding register entry for the 
decode region of the memory address corresponding to the 
DPA . If the register entry is valid , the MC translates the DPA 
to LMA based on the register entry . The decoder logic uses 
the interleaving option in the register to determine the 
destination MC . If interleaving is not enabled , then memory 
transaction with LMA is directed to the pre - defined MC . 
[ 0051 ] Without the register in the MPC , there is no HMM 
visible to a node , and memory address allocation for the 
shared memory is one to one . Thus , in current mechanisms , 
if , at a given time instance , multiple memory access requests 
corresponding to multiple memory transactions are to access 
the same region of the of the shared memory , the prior art 
serializes such memory accesses in time , hence affecting 
latency and bandwidth for shared memory access . Instead , 
according to some embodiments , when a MC decodes and 
accesses the actual memory devices of the shared memory , 
efficient decoding made possible by fragmented memory 
regions of the shared memory advantageously allows the 
execution of parallel operations instead of serialized opera 
tions . 
[ 0052 ] According to embodiments , a primary node , 
through programming , can select , through the execution of 
the programming agent , the location of memory address 
regions in the shared memory as reflected within a HMM 
visible to the primary node . Thus , non - contiguous or frag 
mented memory allocations can result in the shared memory 
based on the selection . In such a case , when two workloads 
are running , they can access corresponding memory address 
regions with the shared memory in parallel . The memory 
address regions correspond to programmed register entries 
within a register of a MPC , the register entries allowing 
memory transactions coming in to determine the address 
regions within the shared memory to be accessed by the 
memory transactions . 
[ 0053 ] According to some embodiments , the program 
ming agent may select the location of the memory address 
regions with the shared memory and thus fragment the 
shared memory into multiple non - contiguous segments 
based on expected memory access traffic for the DMA . In 
such embodiments , the programming agent may have infor 
mation of expected traffic pattern ( expected workload pat 
tern through time ) for the DMA , and may use such infor 
mation to cause programming of the HMM and of one or 
more MPCs . The information of expected traffic pattern 
may , for example , be based on machine learning ( ML ) / the 
use of artificial intelligence ( AI ) through one or more 
performance monitoring programs . 
[ 0054 ] FIG . 6 illustrates an example of a process 600 to be 
performed at a MPC of a DMA according to some embodi 
ments . The process includes , at operation 602 , using register 
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entries of a register of the MPC to translate host physical 
addresses ( HPA ) within memory access requests from 
respective nodes of the DMA into corresponding local 
memory addresses ( LMAs ) of a shared memory of the 
DMA , wherein the LMAs are to map to memory regions of 
the shared memory and to corresponding memory regions of 
a memory controller ( MC ) coupled to the register based on 
a memory size granularity . The process includes , at opera 
tion 604 , using the MC to access the shared memory for 
memory operations based on the memory access requests . 
[ 0055 ] The flow described in FIG . 6 is merely represen 
tative of operations that may occur in particular embodi 
ments . In other embodiments , operations may be performed 
by any other ones of the components described above . 
Various embodiments of the present disclosure contemplate 
any suitable mechanisms for accomplishing the functions 
described herein . Some of the operations illustrated in any of 
FIGS . 4-6 may be repeated , combined , modified , or deleted 
where appropriate . Additionally , operations may be per 
formed in any suitable order without departing from the 
scope of particular embodiments . 
[ 0056 ] A design may go through various stages , from 
creation to simulation to fabrication . Data representing a 
design may represent the design in a number of manners . 
First , as is useful in simulations , the hardware may be 
represented using a hardware description language ( HDL ) or 
another functional description language . Additionally , a cir 
cuit level model with logic and / or transistor gates may be 
produced at some stages of the design process . Furthermore , 
most designs , at some stage , reach a level of data represent 
ing the physical placement of various devices in the hard 
ware model . In the case where conventional semiconductor 
fabrication techniques are used , the data representing the 
hardware model may be the data specifying the presence or 
absence of various features on different mask layers for 
masks used to produce the integrated circuit . In some 
implementations , such data may be stored in a database file 
format such as Graphic Data System II ( GDS II ) , Open 
Artwork System Interchange Standard ( OASIS ) , or similar 
format . 

[ 0057 ] In some implementations , software based hardware 
models , and HDL and other functional description language 
objects can include register transfer language ( RTL ) files , 
among other examples . Such objects can be machine - pars 
able such that a design tool can accept the HDL object ( or 
model ) , parse the HDL object for attributes of the described 
hardware , and determine a physical circuit and / or on - chip 
layout from the object . The output of the design tool can be 
used to manufacture the physical device . For instance , a 
design tool can determine configurations of various hard 
ware and / or firmware elements from the HDL object , such 
as bus widths , registers ( including sizes and types ) , memory 
blocks , physical link paths , fabric topologies , among other 
attributes that would be implemented in order to realize the 
system modeled in the HDL object . Design tools can include 
tools for determining the topology and fabric configurations 
of system on chip ( SoC ) and other hardware device . In some 
instances , the HDL object can be used as the basis for 
developing models and design files that can be used by 
manufacturing equipment to manufacture the described 
hardware . Indeed , an HDL object itself can be provided as 
an input to manufacturing system software to cause the 
described hardware . 

[ 0058 ] In any representation of the design , the data may be 
stored in any form of a machine readable medium . A 
memory or a magnetic or optical storage such as a disc may 
be the machine readable medium to store information trans 
mitted via optical or electrical wave modulated or otherwise 
generated to transmit such information . When an electrical 
carrier wave indicating or carrying the code or design is 
transmitted , to the extent that copying , buffering , or re 
transmission of the electrical signal is performed , a new 
copy is made . Thus , a communication provider or a network 
provider may store on a tangible , machine - readable medium , 
at least temporarily , an article , such as information encoded 
into a carrier wave , embodying techniques of embodiments 
of the present disclosure . The machine - readable medium 
may be tangible and non - transitory . 
[ 0059 ] In various embodiments , a medium storing a rep 
resentation of the design may be provided to a manufactur 
ing system ( e.g. , a semiconductor manufacturing system 
capable of manufacturing an integrated circuit and / or related 
components ) . The design representation may instruct the 
system to manufacture a device capable of performing any 
combination of the functions described above . For example , 
the design representation may instruct the system regarding 
which components to manufacture , how the components 
should be coupled together , where the components should be 
placed on the device , and / or regarding other suitable speci 
fications regarding the device to be manufactured . 
[ 0060 ] A module as used herein refers to any combination 
of hardware , software , and / or firmware . As an example , a 
module includes hardware , such as a micro - controller , asso 
ciated with a non - transitory medium to store code adapted to 
be executed by the micro - controller . Therefore , reference to 
a module , in one embodiment , refers to the hardware , which 
is specifically configured to recognize and / or execute the 
code to be held on a non - transitory medium . Furthermore , in 
another embodiment , use of a module refers to the non 
transitory medium including the code , which is specifically 
adapted to be executed by the microcontroller to perform 
predetermined operations . And as can be inferred , in yet 
another embodiment , the term module ( in this example ) may 
refer to the combination of the microcontroller and the 
non - transitory medium . Often module boundaries that are 
illustrated as separate commonly vary and potentially over 
lap . For example , a first and a second module may share 
hardware , software , firmware , or a combination thereof , 
while potentially retaining some independent hardware , 
software , or firmware . In one embodiment , use of the term 
logic includes hardware , such as transistors , registers , or 
other hardware , such as programmable logic devices . 
[ 0061 ] Logic may be used to implement any of the flows 
described or functionality of the various components of 
FIGS . 2-4 . In various embodiments , logic may include a 
microprocessor or other processing element operable to 
execute software instructions , discrete logic such as an 
application specific integrated circuit ( ASIC ) , a programmed 
logic device such as a field programmable gate array 
( FPGA ) , a storage device containing instructions , combina 
tions of logic devices ( e.g. , as would be found on a printed 
circuit board ) , or other suitable hardware and / or software . 
Logic may include one or more gates or other circuit 
components . In some embodiments , logic may also be fully 
embodied as software . Software may be embodied as a 
software package , code , instructions , instruction sets and / or 
data recorded on non - transitory computer readable storage 
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medium . Firmware may be embodied as code , instructions 
or instruction sets and / or data that are hard - coded ( e.g. , 
nonvolatile ) in storage devices . 
[ 0062 ] Use of the phrase ' to ' or ' configured to , ' in one 
embodiment , refers to arranging , putting together , manufac 
turing , offering to sell , importing , and / or designing an appa 
ratus , hardware , logic , or element to perform a designated or 
determined task . In this example , an apparatus or element 
thereof that is not operating is still ' configured to perform 
a designated task if it is designed , coupled , and / or intercon 
nected to perform said designated task . As a purely illustra 
tive example , a logic gate may provide a 0 or a 1 during 
operation . But a logic gate “ configured to ’ provide an enable 
signal to a clock does not include every potential logic gate 
that may provide a 1 or 0. Instead , the logic gate is one 
coupled in some manner that during operation the 1 or 0 
output is to enable the clock . Note once again that use of the 
term “ configured to ’ does not require operation , but instead 
focus on the latent state of an apparatus , hardware , and / or 
element , where in the latent state the apparatus , hardware , 
and / or element is designed to perform a particular task when 
the apparatus , hardware , and / or element is operating . 
[ 0063 ] Furthermore , use of the phrases ' capable of / to , ' and 
or “ operable to , ' in one embodiment , refers to some appa 
ratus , logic , hardware , and / or element designed in such a 
way to enable use of the apparatus , logic , hardware , and / or 
element in a specified manner . Note as above that use of to , 
capable to , or operable to , in one embodiment , refers to the 
latent state of an apparatus , logic , hardware , and / or element , 
where the apparatus , logic , hardware , and / or element is not 
operating but is designed in such a manner to enable use of 
an apparatus in a specified manner . 
[ 0064 ] A value , as used herein , includes any known rep 
resentation of a number , a state , a logical state , or a binary 
logical state . Often , the use of logic levels , logic values , or 
logical values is also referred to as 1's and O's , which simply 
represents binary logic states . For example , a 1 refers to a 
high logic level and 0 refers to a low logic level . In one 
embodiment , a storage cell , such as a transistor or flash cell , 
may be capable of holding a single logical value or multiple 
logical values . However , other representations of values in 
computer systems have been used . For example , the decimal 
number ten may also be represented as a binary value of 
1010 and a hexadecimal letter A. Therefore , a value includes 
any representation of information capable of being held in a 
computer system . 
[ 0065 ] Moreover , states may be represented by values or 
portions of values . As an example , a first value , such as a 
logical one , may represent a default or initial state , while a 
second value , such as a logical zero , may represent a 
non - default state . In addition , the terms reset and set , in one 
embodiment , refer to a default and an updated value or state , 
respectively . For example , a default value potentially 
includes a high logical value , i.e. reset , while an updated 
value potentially includes a low logical value , i.e. set . Note 
that any combination of values may be utilized to represent 
any number of states . 
[ 0066 ] The embodiments of methods , hardware , software , 
firmware , or code set forth above may be implemented via 
instructions or code stored on a machine - accessible , 
machine readable , computer accessible , or computer read 
able medium which are executable by a processing element . 
A non - transitory machine - accessible / readable medium 
includes any mechanism that provides ( i.e. , stores and / or 

transmits ) information in a form readable by a machine , such 
as a computer or electronic system . For example , a non 
transitory machine - accessible medium includes random - ac 
cess memory ( RAM ) , such as static RAM ( SRAM ) or 
dynamic RAM ( DRAM ) ; ROM ; magnetic or optical storage 
medium ; flash storage devices ; electrical storage devices ; 
optical storage devices ; acoustical storage devices ; other 
form of storage devices for holding information received 
from transitory ( propagated ) signals ( e.g. , carrier waves , 
infrared signals , digital signals ) ; etc. , which are to be dis 
tinguished from the non - transitory mediums that may 
receive information there from . 
[ 0067 ] Instructions used to program logic to perform 
embodiments of the disclosure may be stored within a 
memory in the system , such as DRAM , cache , flash 
memory , or other storage . Furthermore , the instructions can 
be distributed via a network or by way of other computer 
readable media . Thus a machine - readable medium may 
include any mechanism for storing or transmitting informa 
tion in a form readable by a machine ( e.g. , a computer ) , but 
is not limited to , floppy diskettes , optical disks , Compact 
Disc , Read - Only Memory ( CD - ROMs ) , and magneto - opti 
cal disks , Read - Only Memory ( ROMs ) , Random Access 
Memory ( RAM ) , Erasable Programmable Read - Only 
Memory ( EPROM ) , Electrically Erasable Programmable 
Read - Only Memory ( EEPROM ) , magnetic or optical cards , 
flash memory , or a tangible , machine - readable storage used 
in the transmission of information over the Internet via 
electrical , optical , acoustical or other forms of propagated 
signals ( e.g. , carrier waves , infrared signals , digital signals , 
etc. ) . Accordingly , the computer - readable medium includes 
any type of tangible machine - readable medium suitable for 
storing or transmitting electronic instructions or information 
in a form readable by a machine ( e.g. , a computer ) . 

Examples of Some Embodiments are Provided 
Below 

a 

[ 0068 ] Example 1 includes an apparatus of a disaggre 
gated memory architecture ( DMA ) , the DMA including 
nodes and a shared memory to be shared by the nodes , the 
apparatus comprising : a memory controller ( MC ) ; and a 
decoder coupled to the MC and having a register , the 
decoder to be coupled to a node of the DMA , and the register 
to store register entries therein dynamically programmable 
by the node , the decoder to use the register entries to 
translate physical addresses within memory access requests 
from respective nodes of the DMA into corresponding local 
memory addresses ( LMAs ) of the shared memory , wherein 
the LMAs are to map to memory regions of the shared 
memory and to corresponding memory regions of the MC 
based on a predetermined memory size granularity . 
[ 0069 ] Example 2 includes the subject matter of Example 
1 , wherein the register entries are adapted to be erased and 
reprogrammed by the node after a reset operation on the 
shared memory . 
[ 0070 ] Example 3 includes the subject matter of Example 
1 , wherein the register entries are based on expected traffic 
patterns of memory access requests with the DMA . 
[ 0071 ] Example 4 includes the subject matter of Example 
1 , wherein at least some of the LMAs are to map to 
non - contiguous memory regions of the shared memory , and 
to non - contiguous corresponding memory regions of the 
MC . 
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[ 0072 ] Example 5 includes the subject matter of Example 
1 , wherein the decoder is to translate physical addresses 
within a memory access request from one of the respective 
nodes of the DMA into corresponding LMAs of the shared 
memory for said memory access request , wherein the LMAS 
of the shared memory for said memory access request are to 
map to memory regions of the shared memory and to 
corresponding memory regions of the MC based on a 
predetermined memory size granularity . 
[ 0073 ] Example 6 includes the subject matter of Example 
1 , wherein the decoder is further to : receive the memory 
access requests from the respective nodes ; and translate the 
physical addresses into the LMAs in response to a determi 
nation that the physical addresses correspond to one or more 
of the register entries . 
[ 0074 ] Example 7 includes the subject matter of Example 
1 , wherein the decoder is a first decoder , the apparatus 
further including a plurality of second decoders similar to 
the first decoder and coupled to the MC . 
[ 0075 ] Example 8 includes the subject matter of Example 
1 , wherein the MC is a first MC , the apparatus further 
including a plurality of second MCs similar to the first MC 
and coupled to the decoder . 
[ 0076 ] Example 9 includes the subject matter of Example 
8 , wherein individual ones of the register entries include at 
least one a field to determine whether a memory access 
request to the register is valid , a field to indicate whether MC 
interleaving is applicable to the memory access request , or 
a field to determine respective MCs to process respective 
ones of the LMAS . 
[ 0077 ] Example 10 includes the subject matter of Example 
1 , wherein the decoder is a first decoder and the MC is a first 
MC , the apparatus further including : a plurality of second 
decoders similar to the first decoder ; and a plurality of 
second MCs similar to the first MC and coupled to the first 
decoder and the plurality of second decoders . 
[ 0078 ] Example 11 includes the subject matter of Example 
10 , wherein each decoder of the first decoder and of the 
plurality of second decoders is programmable by the node , 
at least some of the first decoder and of the plurality of 
second decoders being programmable by the node to corre 
spond to memory allocations within the shared memory that 
have different sizes with respect to one another . 
[ 0079 ] Example 12 includes the subject matter of any one 
of Examples 7 and 10 , wherein the register is a first register , 
at least some of the first decoder and the plurality of second 
decoders include a plurality of second registers similar to the 
first register 
[ 0080 ] Example 13 includes the subject matter of Example 
1 , wherein the register is a first register , the decoder further 
including a plurality of second registers similar to the first 
register . 
[ 0081 ] Example 14 includes the subject matter of Example 
1 , wherein the memory size granularity is dynamically 
programmable to be one of 1 GB , 2 GB or 10 GB . 
[ 0082 ] Example 15 includes a system of a disaggregated 
memory architecture ( DMA ) , the system comprising : a 
cluster of nodes including respective processing units ; a 
shared memory including a plurality of memory devices 
coupled to the cluster , and a plurality of memory pooling 
circuitries ( MPCs ) coupled to the cluster and to the shared 
memory , each of the MPCs including : a memory controller 
( MC ) ; and a decoder coupled to the MC and having a 
register , the register to store register entries therein dynami 

cally programmable by a primary node of the cluster , the 
decoder to use the register entries to translate physical 
addresses within memory access requests from the cluster 
into corresponding local memory addresses ( LMAs ) of the 
shared memory , wherein the LMAs are to map to memory 
regions of the shared memory and to corresponding memory 
regions of the MC based on a predetermined memory size 
granularity . 
[ 0083 ] Example 16 includes the subject matter of Example 
15 , wherein the register entries are adapted to be erased and 
reprogrammed by the primary node after a reset operation on 
the shared memory . 
[ 0084 ] Example 17 includes the subject matter of Example 
15 , wherein the register entries are based on expected traffic 
patterns of memory access requests within the DMA . 
[ 0085 ] Example 18 includes the subject matter of Example 
15 , wherein at least some of the LMAs are to map to 
non - contiguous memory regions of the shared memory , and 
to non - contiguous corresponding memory regions of the 
MC . 
[ 0086 ] Example 19 includes the subject matter of Example 
15 , wherein the decoder is to translate physical addresses 
within a memory access request from a node of the cluster 
into corresponding LMAs of the shared memory for said 
memory access request , wherein the LMAs of the shared 
memory for said memory access request are to map to 
memory regions of the shared memory and to corresponding 
memory regions of the MC based on a predetermined 
memory size granularity . 
[ 0087 ] Example 20 includes the subject matter of Example 
15 , wherein the decoder is further to : receive the memory 
access requests from the respective nodes ; and translate the 
physical addresses into the LMAs in response to a determi 
nation that the physical addresses correspond to one or more 
of the register entries . 
[ 0088 ] Example 21 includes the subject matter of Example 
15 , wherein the decoder is a first decoder , said each of the 
MPCs further including a plurality of second decoders 
similar to the first decoder and coupled to the MC . 
[ 0089 ] Example 22 includes the subject matter of Example 
15 , wherein the MC is a first MC , said each of the MPCs 
further including a plurality of second MCs similar to the 
first MC and coupled to the decoder . 
[ 0090 ] Example 23 includes the subject matter of Example 
22 , wherein individual ones of the register entries include at 
least one a field to determine whether a memory access 
request to the register is valid , a field to indicate whether MC 
interleaving is applicable to the memory access request , or 
a field to determine respective MCs to process respective 
ones of the LMAS . 
[ 0091 ] Example 24 includes the subject matter of Example 
15 , wherein the decoder is a first decoder and the MC is a 
first MC , said each of the MPCs further including : a plurality 
of second decoders similar to the first decoder , and a 
plurality of second MCs similar to the first MC and coupled 
to the first decoder and the plurality of second decoders . 
[ 0092 ] Example 25 includes the subject matter of Example 
24 , wherein each decoder of the first decoder and of the 
plurality of second decoders is programmable by the pri 
mary node , at least some of the first decoder and of the 
plurality of second decoders being programmable by the 
primary node to correspond to memory allocations within 
the shared memory that have different sizes with respect to 
one another . 
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[ 0093 ] Example 26 includes the subject matter of any one 
of Examples 21 and 24 , wherein the register is a first register , 
at least some of the first decoder and the plurality of second 
decoders include a plurality of second registers similar to the 
first register . 
[ 0094 ] Example 27 includes the subject matter of Example 
15 , wherein the register is a first register , the decoder further 
including a plurality of second registers similar to the first 
register . 
[ 0095 ] Example 28 includes the subject matter of Example 
15 , wherein the memory size granularity is dynamically 
programmable to be one of 1 GB , 2 GB or 10 GB . 
[ 009 ] Example 29 includes a method to be performed at 
an memory pooling circuitry ( MPC ) of a disaggregated 
memory architecture ( DMA ) , the DMA including nodes and 
a shared memory to be shared by the nodes , the method 
comprising : using register entries of a register to translate 
physical addresses within memory access requests from 
respective nodes of the DMA into corresponding local 
memory addresses ( LMAs ) of the shared memory , wherein 
the LMAs are to map to memory regions of the shared 
memory and to corresponding memory regions of a memory 
controller ( MC ) coupled to the register based on a memory 
size granularity ; and using the MC to access the shared 
memory for memory operations based on the memory access 
requests . 
[ 0097 ] Example 30 includes the subject matter of Example 
29 , wherein the memory access requests are first memory 
address requests , the physical addresses are first physical 
addresses , the LMAs are first LMAs , and the memory size 
granularity is a first memory size granularity , the method 
further including : after a reset operation on the shared 
memory , using the register entries to translate second physi 
cal addresses within second memory access requests from 
respective nodes of the DMA into corresponding second 
local memory addresses ( LMAs ) of the shared memory , 
wherein the second LMAs are to map to memory regions of 
the shared memory and to corresponding memory regions of 
a memory controller ( MC ) coupled to the register based on 
a second memory size granularity different from the first 
memory size granularity ; and using the MC to access the 
shared memory for memory operations based on the second 
memory access requests . 
[ 0098 ] Example 31 includes the subject matter of Example 
29 , wherein the register entries are based on expected traffic 
patterns of memory access requests with the DMA . 
[ 0099 ] Example 32 includes the subject matter of Example 
29 , wherein at least some of the LMAs are to map to 
non - contiguous memory regions of the shared memory , and 
to non - contiguous corresponding memory regions of the 
MC . 
[ 0100 ] Example 33 includes the subject matter of Example 
29 , further including translating physical addresses within a 
memory access request from one of the respective nodes of 
the DMA into corresponding LMAs of the shared memory 
for said memory access request , wherein the LMAs of the 
shared memory for said memory access request are to map 
to memory regions of the shared memory and to correspond 
ing memory regions of the MC based on a predetermined 
memory size granularity . 
[ 0101 ] Example 34 includes the subject matter of Example 
29 , further including : receiving the memory access requests 
from the respective nodes ; and translating the physical 

addresses into the LMAs in response to a determination that 
the physical addresses correspond to one or more of the 
register entries . 
[ 0102 ] Example 35 includes the subject matter of Example 
29 , wherein individual ones of the register entries include at 
least one a field to determine whether a memory access 
request to the register is valid , a field to indicate whether MC 
interleaving is applicable to the memory access request , or 
a field to determine respective MCs of the MPC to process 
respective ones of the LMAs . 
[ 0103 ] Example 36 includes the subject matter of Example 
29 , wherein the memory size granularity is dynamically 
programmable to be one of 1 GB , 2 GB or 10 GB . 
[ 0104 ] Example 37 includes at least one non - transitory 
machine readable storage medium having instructions stored 
thereon , the instructions , when executed by an apparatus of 
a disaggregated memory architecture ( DMA ) , to cause the 
apparatus to perform operations including : using register 
entries of a register to translate physical addresses within 
memory access requests from respective nodes of the DMA 
into corresponding local memory addresses ( LMAs ) of the 
shared memory , wherein the LMAs are to map to memory 
regions of the shared memory and to corresponding memory 
regions of a memory controller ( MC ) coupled to the register 
based on a memory size granularity ; and using the MC to 
access the shared memory for memory operations based on 
the memory access requests . 
[ 0105 ] Example 38 includes the subject matter of Example 
37 , wherein the memory access requests are first memory 
address requests , the physical addresses are first physical 
addresses , the LMAs are first LMAs , and the memory size 
granularity is a first memory size granularity , the operations 
further including : after a reset operation on the shared 
memory , using the register entries to translate second physi 
cal addresses within second memory access requests from 
respective nodes of the DMA into corresponding second 
local memory addresses ( LMAs ) of the shared memory , 
wherein the second LMAs are to map to memory regions of 
the shared memory and to corresponding memory regions of 
a memory controller ( MC ) coupled to the register based on 
a second memory size granularity different from the first 
memory size granularity ; and using the MC to access the 
shared memory for memory operations based on the second 
memory access requests . 
[ 0106 ] Example 39 includes the subject matter of Example 
37 , wherein the register entries are based on expected traffic 
patterns of memory access requests with the DMA . 
[ 0107 ] Example 40 includes the subject matter of Example 
37 , wherein at least some of the LMAs are to map to 
non - contiguous memory regions of the shared memory , and 
to non - contiguous corresponding memory regions of the 
MC . 
[ 0108 ] Example 41 includes the subject matter of Example 
37 , the operations further including translating physical 
addresses within a memory access request from one of the 
respective nodes of the DMA into corresponding LMAs of 
the shared memory for said memory access request , wherein 
the LMAs of the shared memory for said memory access 
request are to map to memory regions of the shared memory 
and to corresponding memory regions of the MC based on 
a predetermined memory size granularity . 
[ 0109 ] Example 42 includes the subject matter of Example 
37 , the operations further including : receiving the memory 
access requests from the respective nodes ; and translating 
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the physical addresses into the LMAs in response to a 
determination that the physical addresses correspond to one 
or more of the register entries . 
[ 0110 ] Example 43 includes the subject matter of Example 
36 , wherein individual ones of the register entries include at 
least one a field to determine whether a memory access 
request to the register is valid , a field to indicate whether MC 
interleaving is applicable to the memory access request , or 
a field to determine respective MCs of the MPC to process 
respective ones of the LMAS . 
[ 0111 ] Example 44 includes the subject matter of Example 
37 , wherein the memory size granularity is dynamically 
programmable to be one of 1 GB , 2 GB or 10 GB . 
[ 0112 ] Example 45 includes at least one non - transitory 
machine readable storage medium having instructions stored 
thereon , the instructions , when executed by a computing 
system of a disaggregated memory architecture ( DMA ) 
including a shared memory , to cause the computing system 
to perform operations including : prior to memory access 
requests to access the shared memory , causing a program 
ming of a memory pooling circuitry ( MPC ) including caus 
ing a programming of register entries of one or more 
registers of the MPC with information to be used by a 
decoder of the MPC to translate physical addresses of 
memory access requests to local memory addresses ( LMAs ) 
such that the LMAs are processed by one or more memory 
controllers ( MCs ) coupled to the one or more registers based 
on MC memory regions in each of the one or more MCs , the 
MC memory regions having a predetermined memory size 
granularity ; and processing memory access requests from 
the MPC based on the LMAS . 
[ 0113 ] Example 46 includes the subject matter of Example 
45 , wherein the LMAs map to memory regions of the shared 
memory based on the predetermined memory size granular 
ity . 
[ 0114 ] Example 47 includes the subject matter of Example 
45 , the operations further including erasing and reprogram 
ming the MPC after a reset operation on the shared memory . 
[ 0115 ] Example 48 includes the subject matter of Example 
45 , the operations further including : determining an 
expected traffic pattern of the memory access requests ; and 
causing programming such that the register entries are based 
on the expected traffic patterns . 
[ 0116 ] Example 49 includes the subject matter of Example 
45 , wherein at least some of the LMAs are to map to 
non - contiguous memory regions of the shared memory , and 
to non - contiguous corresponding memory regions of the one 
or more MCs . 
[ 0117 ] Example 50 includes the subject matter of Example 
45 , wherein the memory access requests are from one of a 
plurality of computing systems of the DMA . 
[ 0118 ] Example 51 includes the subject matter of Example 
45 , the operations further including causing a programming 
of register entries of a plurality of registers of the MPC with 
information to be used by a plurality of respective decoders 
of the MPC to translate the physical addresses to the LMAs . 
[ 0119 ] Example 52 includes the subject matter of Example 
45 , the operations further including using a memory man 
agement unit of the computing system to cause the program 
ming . 
[ 0120 ] Example 53 includes the subject matter of Example 
51 , wherein individual ones of the register entries include at 
least one a field to determine whether a memory access 
request to the one or more registers is valid , a field to 

indicate whether MC interleaving is applicable to the 
memory access request , or a field to determine respective 
MCs of the MPC to process respective ones of the LMAS . 
[ 0121 ] Example 54 includes the subject matter of Example 
51 , the operations further including causing programming of 
the shared memory such that memory allocations within the 
shared memory for respective decoders of the MPC have 
different sizes with respect to one another . 
[ 0122 ] Example 55 includes the subject matter of Example 
45 , wherein the operations further including dynamically 
programming the memory size granularity to be one of 1 
GB , 2 GB or 10 GB . 
[ 0123 ] Example 56 includes a method to be performed at 
a computing system of a disaggregated memory architecture 
( DMA ) , the method including performing the operations of 
any one of claims 45-55 . 
[ 0124 ] Example 57 includes a computing system of a 
disaggregated memory architecture ( DMA ) , the computing 
system to perform the operations of any one of claims 45-55 . 
[ 0125 ] Example 58 includes an apparatus of a disaggre 
gated memory architecture ( DMA ) , the apparatus including 
means to perform the method of any one of claims 29-36 . 
[ 0126 ] Example 59 includes a computing system of a 
disaggregated memory architecture ( DMA ) , the computing 
system including means to perform the operations of any 
one of claims 45-55 . 
[ 0127 ] Reference throughout this specification to " one 
embodiment ” or “ an embodiment ” means that a particular 
feature , structure , or characteristic described in connection 
with the embodiment is included in at least one embodiment 
of the present disclosure . Thus , the appearances of the 
phrases “ in one embodiment ” or “ in an embodiment ” in 
various places throughout this specification are not neces 
sarily all referring to the same embodiment . Furthermore , 
the particular features , structures , or characteristics may be 
combined in any suitable manner in one or more embodi 
ments . 
[ 0128 ] In the foregoing specification , a detailed descrip 
tion has been given with reference to specific exemplary 
embodiments . It will , however , be evident that various 
modifications and changes may be made thereto without 
departing from the broader spirit and scope of the disclosure 
as set forth in the appended claims . The specification and 
drawings are , accordingly , to be regarded in an illustrative 
sense rather than a restrictive sense . Furthermore , the fore 
going use of embodiment and other exemplarily language 
does not necessarily refer to the same embodiment or the 
same example , but may refer to different and distinct 
embodiments , as well as potentially the same embodiment . 
What is claimed is : 
1. An apparatus of a disaggregated memory architecture 

( DMA ) , the DMA including nodes and a shared memory to 
be shared by the nodes , the apparatus comprising : 

a memory controller ( MC ) ; and 
a decoder coupled to the MC and having a register , the 

decoder to be coupled to a node of the DMA , and the 
register to store register entries therein dynamically 
programmable by the node , the decoder to use the 
register entries to translate host physical addresses 
( HPA ) within memory access requests from respective 
nodes of the DMA into corresponding local memory 
addresses ( LMAs ) of the shared memory , wherein the 
LMAs are to map to memory regions of the shared 
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memory and to corresponding memory regions of the 
MC based on a predetermined memory size granularity . 

2. The apparatus of claim 1 , wherein the register entries 
are adapted to be erased and reprogrammed by the node after 
a reset operation on the shared memory . 

3. The apparatus of claim 1 , wherein the register entries 
are based on expected traffic patterns of memory access 
requests with the DMA . 

4. The apparatus of claim 1 , wherein at least some of the 
LMAs are to map to non - contiguous memory regions of the 
shared memory , and to non - contiguous corresponding 
memory regions of the MC . 

5. The apparatus of claim 1 , wherein the decoder is to 
translate host physical addresses ( HPA ) within a memory 
access request from one of the respective nodes of the DMA 
into corresponding LMAs of the shared memory for said 
memory access request , wherein the LMAs of the shared 
memory for said memory access request are to map to 
memory regions of the shared memory and to corresponding 
memory regions of the MC based on a predetermined 
memory size granularity . 

6. The apparatus of claim 1 , wherein the decoder is further 

a memory controller ( MC ) ; and 
a decoder coupled to the MC and having a register , the 

register to store register entries therein dynamically 
programmable by a primary node of the cluster , the 
decoder to use the register entries to translate host 
physical addresses ( HPA ) within memory access 
requests from the cluster into corresponding local 
memory addresses ( LMAs ) of the shared memory , 
wherein the LMAs are to map to memory regions of 
the shared memory and to corresponding memory 
regions of the MC based on a predetermined memory 
size granularity . 

13. The system of claim 12 , wherein the register entries 
are adapted to be erased and reprogrammed by the primary 
node after a reset operation on the shared memory . 

14. The system of claim 12 , wherein the register entries 
are based on expected traffic patterns of memory access 
requests within the DMA . 

15. The system of claim 12 , wherein at least some of the 
LMAs are to map to non - contiguous memory regions of the 
shared memory , and to non - contiguous corresponding 
memory regions of the MC . 

16. The system of claim 12 , wherein the decoder is to 
translate host physical addresses ( HPA ) within a memory 
access request from a node of the cluster into corresponding 
LMAs of the shared memory for said memory access 
request , wherein the LMAs of the shared memory for said 
memory access request are to map to memory regions of the 
shared memory and to corresponding memory regions of the 
MC based on a predetermined memory size granularity . 

17. The system of claim 12 , wherein the decoder is further 

to : 

to : 

2 

receive the memory access requests from the respective 
nodes ; and 

translate the host physical addresses ( HPA ) into the LMAS 
in response to a determination that the host physical 
addresses ( HPA ) correspond to single register entry . 

7. The apparatus of claim 1 , wherein the decoder is a first 
decoder and the MC is a first MC , the apparatus further 
including : 

a plurality of second decoders similar to the first decoder , 
and 

a plurality of second MCs similar to the first MC and 
coupled to the first decoder and the plurality of second 
decoders . 

8. The apparatus of claim 7 , wherein individual ones of 
the register entries include at least one field to determine 
whether a memory access request to the register is valid , a 
field to indicate whether MC interleaving is applicable to the 
memory access request , or a field to determine respective 
MCs to process respective ones of the LMAS . 

9. The apparatus of claim 7 , wherein each decoder of the 
first decoder and of the plurality of second decoders is 
programmable by the node , at least some of the first decoder 
and of the plurality of second decoders being programmable 
by the node to correspond to memory allocations within the 
shared memory that have different sizes with respect to one 
another . 

10. The apparatus of claim 7 , wherein the register is a first 
register , at least some of the first decoder and the plurality 
of second decoders include a plurality of second registers 
similar to the first register . 

11. The apparatus of claim 1 , wherein the memory size 
granularity is dynamically programmable to be one of 256 
KB , 512 KB , 1 GB , 2 GB or 10 GB . 

12. A system of a disaggregated memory architecture 
( DMA ) , the system comprising : 

a cluster of nodes including respective processing units ; 
a shared memory including a plurality of memory devices 

coupled to the cluster ; and 
a plurality of memory pooling circuitries ( MPCs ) coupled 

to the cluster and to the shared memory , each of the 
MPCs including : 

receive the memory access requests from the respective 
nodes ; and 

translate the host physical addresses ( HPA ) into the LMAS 
in response to a determination that the host physical 
addresses ( HPA ) correspond to one or more of the 
register entries . 

18. At least one non - transitory machine readable storage 
medium having instructions stored thereon , the instructions , 
when executed by an apparatus of a disaggregated memory 
architecture ( DMA ) , to cause the apparatus to perform 
operations including : 

using register entries of a register to translate host physi 
cal addresses ( HPA ) within memory access requests 
from respective nodes of the DMA into corresponding 
local memory addresses ( LMAs ) of the shared memory , 
wherein the LMAs are to map to memory regions of the 
shared memory and to corresponding memory regions 
of a memory controller ( MC ) coupled to the register 
based on a memory size granularity ; and 

using the MC to access the shared memory for memory 
operations based on the memory access requests . 

19. The storage medium of claim 18 , wherein the memory 
access requests are first memory address requests , the host 
physical addresses ( HPA ) are first host physical addresses 
( HPA ) , the LMAs are first LMAs , and the memory size 
granularity is a first memory size granularity , the operations 
further including : 

after a reset operation on the shared memory , using the 
register entries to translate second host physical 
addresses ( HPA ) within second memory 
requests from respective nodes of the DMA into cor 
responding second local memory addresses ( LMAs ) of 

a 
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US 2022/0004488 A1 Jan. 6. 2022 
12 

the shared memory , wherein the second LMAs are to 
map to memory regions of the shared memory and to 
corresponding memory regions of a memory controller 
( MC ) coupled to the register based on a second 
memory size granularity different from the first 
memory size granularity ; and 

using the MC to access the shared memory for memory 
operations based on the second memory access 
requests . 

20. The storage medium of claim 18 , wherein the register 
entries are based on expected traffic patterns of memory 
access requests with the DMA . 


