US 20220004879A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0004879 A1

Huang et al.

43) Pub. Date: Jan. 6, 2022

(54)

(71)
(72)

@

(22)

(63)

(60)

REGULARIZED NEURAL NETWORK
ARCHITECTURE SEARCH

Applicant: Google LL.C, Mountain View, CA (US)

Inventors: Yanping Huang, Mountain View, CA
(US); Alok Aggarwal, Foster City, CA
(US); Quoc V. Le, Sunnyvale, CA
(US); Esteban Alberto Real,
Sunnyvale, CA (US)

Appl. No.: 17/475,137

Filed: Sep. 14, 2021

Related U.S. Application Data

Continuation of application No. 16/906,034, filed on
Jun. 19, 2020, now Pat. No. 11,144,831, which is a
continuation of application No. PCT/US2019/
016515, filed on Feb. 4, 2019.

Provisional application No. 62/625,923, filed on Feb.

Publication Classification

(51) Int. CL
GOG6N 3/08 (2006.01)
GOG6N 3/04 (2006.01)
(52) US.CL
CPC oo GOG6N 3/086 (2013.01); GO6N 3/04
(2013.01)
(57) ABSTRACT

A method for receiving training data for training a neural
network (NN) to perform a machine learning (ML) task and
for determining, using the training data, an optimized NN
architecture for performing the ML task is described. Deter-
mining the optimized NN architecture includes: maintaining
population data comprising, for each candidate architecture
in a population of candidate architectures, (i) data defining
the candidate architecture, and (ii) data specifying how
recently a neural network having the candidate architecture
has been trained while determining the optimized neural
network architecture; and repeatedly performing multiple
operations using each of a plurality of worker computing
units to generate a new candidate architecture based on a
selected candidate architecture having the best measure of
fitness, adding the new candidate architecture to the popu-
lation, and removing from the population the candidate

2, 2018. architecture that was trained least recently.

Trained Neural Network
152

E

Neural Network Architecture Optimization System 100

Worker N
120N

Worker A
120A

A

New Candidate
Architecture 124

Candidate
Architectures 122

A4

Population Repository 110

Training Data 102

Jan. 6,2022 Sheet 1 of 5 US 2022/0004879 Al

Patent Application Publication

I E

201 eleq buiuedy

01T Aoysoday uogejndod

71 Sainsiyoly
ajepipue)

Y

Vel 2noanyoly
ajepipue) mapN

NOZL = = = YOcZi
N JS3IOAA v JONJOM

D01 WwalsAg uoneziwndQ 2JN1Da1YoIY HIOMIDN jBINSN

Y

k432
HIOMIBN JeInaN pautel)

Jan. 6,2022 Sheet 2 of § US 2022/0004879 Al

Patent Application Publication

g¢ "Old

202
fj85 jeuiioN

HE 3 1BUUON

e IBULION

15D (BN

Ve "Old

h 20¢ induj yyomiaN w

N X

N X

N X

$0C 1190 |BwoN

v

90¢ 1190 uolonpay

v

80C {190 [ewlioN

v

D12 1190 uononpay

'

CLE 1130 [BUMON

Y.

y1¢ Yompeu-gng

@PN ndino v_._o\éozw

102
8|90 40 X0BIS

Patent Application Publication Jan. 6,2022 Sheet 3 of 5 US 2022/0004879 A1

300_k‘

FIG. 3

Patent Application Publication Jan. 6,2022 Sheet 4 of 5 US 2022/0004879 A1

W
e
e
hid

FIG. 4A
Op
ytat

FIG. 4B

Patent Application Publication Jan. 6,2022 Sheet 5 of 5 US 2022/0004879 A1

5002‘ Receive training data 501

Maintain population data 502

|2

Select a plurality of candidate architectures from the
population 504

!

Train, for each selected candidate architecture, a new
neural network having the candidate architecture 506

v

Determine for each selected candidate architecture, a
measure of filness 508

:

Generate a new candidate architecture based on the
selected candidate architecture having the best
measure of fitness 510

I

Add the new candidate architecture to the population

512

Remove from the population the candidate architecture
that was trained least recently 514

Repeat for all worker
computing units

h 4

Provide data specifying the optimized architecture
816

FIG. 5

US 2022/0004879 Al

REGULARIZED NEURAL NETWORK
ARCHITECTURE SEARCH

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 16/906,034 filed Jun. 19, 2020, which is a
continuation of International Application No. PCT/US2019/
016515, filed Feb. 4, 2019, which claims priority to U.S.
Provisional Application Ser. No. 62/625,923, filed on Feb. 2,
2018. The disclosure of the prior applications are considered
part of and are incorporated by reference in the disclosure of
this application.

BACKGROUND

[0002] This specification relates to determining architec-
tures for neural networks.

[0003] Neural networks are machine learning models that
employ one or more layers of nonlinear units to predict an
output for a received input. Some neural networks include
one or more hidden layers in addition to an output layer. The
output of each hidden layer is used as input to the next layer
in the network, i.e., the next hidden layer or the output layer.
Each layer of the network generates an output from a
received input in accordance with current values of a respec-
tive set of parameters.

[0004] Some neural networks are recurrent neural net-
works. A recurrent neural network is a neural network that
receives an input sequence and generates an output sequence
from the input sequence. In particular, a recurrent neural
network can use some or all of the internal state of the
network from a previous time step in computing an output
at a current time step. An example of a recurrent neural
network is a long short term (LSTM) neural network that
includes one or more LSTM memory blocks. Each LSTM
memory block can include one or more cells that each
include an input gate, a forget gate, and an output gate that
allow the cell to store previous states for the cell, e.g., for use
in generating a current activation or to be provided to other
components of the LSTM neural network.

SUMMARY

[0005] In general, one innovative aspect of the subject
matter described in this specification can be embodied in
methods for determining an optimized neural network archi-
tecture for a neural network configured to perform a
machine learning task. The method comprises receiving
training data for training a neural network to perform a
machine learning task, the training data comprising a plu-
rality of training examples and a respective target output for
each of the training examples; and determining, using the
training data, an optimized neural network architecture for
performing the machine learning task, comprising: main-
taining population data comprising, for each candidate
architecture in a population of candidate architectures, (i)
data defining the candidate architecture, and (ii) data speci-
fying how recently a neural network having the candidate
architecture has been trained while determining the opti-
mized neural network architecture, and repeatedly perform-
ing the following operations using each of a plurality of
worker computing units each operating asynchronously
from each other worker computing unit: selecting, by the
worker computing unit, a plurality of candidate architectures

Jan. 6, 2022

from the population, training, for each selected candidate
architecture and by the worker computing unit, a new neural
network having the candidate architecture on a training
subset of the training data to determine trained values of
parameters of the new neural network; determining, for each
selected candidate architecture and by the worker computing
unit, a measure of fitness by evaluating a performance of the
trained new neural network on a validation subset of the
training data, generating, by the worker computing unit, a
new candidate architecture based on the selected candidate
architecture having the best measure of fitness, adding the
new candidate architecture to the population, and removing
from the population the candidate architecture that was
trained least recently.

[0006] The method may further comprise providing data
specifying the optimized architecture. The method may
further comprise determining trained values of parameters of
a neural network having the optimized neural network
architecture. The method may further comprise providing
the data specifying the trained parameters. The operations
may further comprise training the new candidate architec-
ture to determine trained values of parameters; and associ-
ating the trained values of the parameters with the new
candidate architecture in the population data. Determining
trained values of parameters of a neural network having the
optimized neural network architecture may comprise select-
ing, as the trained values of the parameters of the neural
network having the optimized neural network architecture,
trained values that are associated with the architecture that
is associated with the best measure of fitness. Determining
trained values of parameters of a neural network having the
optimized neural network architecture may comprise further
training the neural network having the optimized neural
network architecture on more training data to determine the
trained values. Training, for each selected candidate archi-
tecture and by the worker computing unit, a new neural
network having the candidate architecture on a training
subset of the training data to determine trained values of
parameters of the new neural network may comprise training
the new neural network starting from the values that are
associated with the candidate architecture in the population
data. The method may further comprise initializing the
population with a plurality of default candidate architec-
tures. For each candidate architecture, the data defining the
candidate architecture may identify an architecture for one
or more cells that are each repeated multiple times to
generate the candidate architecture. Generating, by the
worker computing unit, a new candidate architecture based
on the selected candidate architecture having the best mea-
sure of fitness may comprise modifying the architecture for
at least one of the cells in the candidate architecture having
the best measure of fitness. Modifying the architecture for a
cell may comprise randomly selecting a mutation from a set
of mutations; and applying the randomly selected mutation
to the architecture for the cell. Modifying the architecture for
a cell may comprise processing data specifying the candi-
date architecture having the best measure of fitness using a
mutation neural network, wherein the mutation neural net-
work has been trained to process a network input comprising
the data to generate the new candidate architecture. Deter-
mining, using the training data, an optimized neural network
architecture for performing the machine learning task may
comprise selecting the candidate architecture in the popu-
lation having the best fitness as the optimized architecture.

US 2022/0004879 Al

The machine learning task may be one or more of the
following: image processing, image classification, speech
recognition and natural language processing.

[0007] Other embodiments of this aspect include corre-
sponding computer systems, apparatus, and computer pro-
grams recorded on one or more computer storage devices,
each configured to perform the actions of the methods. A
system of one or more computers can be configured to
perform particular operations or actions by virtue of soft-
ware, firmware, hardware, or any combination thereof
installed on the system that in operation may cause the
system to perform the actions. One or more computer
programs can be configured to perform particular operations
or actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus
to perform the actions.

[0008] The subject matter described in this specification
can be implemented in particular embodiments so as to
realize one or more of the following advantages. By deter-
mining the architecture of a neural network using the aging
evolution techniques described in this specification, a sys-
tem can determine a network architecture that achieves or
even exceeds state of the art performance on any of a variety
of machine learning tasks, e.g., image classification or
another image processing task. In particular, the techniques
use each of multiple worker computing units to generate a
new architecture by mutating a corresponding candidate
architecture having the best measure of fitness at each
iteration, to add the new architecture to a population of
candidate architectures, and to remove an old architecture
that was trained least recently from the population. By
removing the least recently trained architecture (or the oldest
architecture) at each iteration, the system allows all candi-
date architectures in the population to have a short lifespan.
Therefore, the population is wholly renewed frequently,
leading to more diversity and more exploration, which
results in better architecture search results while retaining
the system’s efficiency thanks to the simplicity of aging
evolution. Further, because only the best candidate archi-
tectures are selected to be mutated, the described techniques
allow the population of candidate architecture to signifi-
cantly improve over time. Thus, the resultant optimized
architecture for the neural network has better performance
(e.g., better accuracy) when performing the particular
machine learning task compared to those generated by
existing neural network architecture search methods. The
techniques can determine this optimized architecture while
requiring minimal hyper-parameters and minimal to no user
input. Additionally, the system can determine this architec-
ture in a manner that leverages distributed processing, i.e.,
by distributing the training operations among the multiple
worker computing units that operate asynchronously, to
determine the optimized architecture more rapidly. The
operations for determining an optimized architecture have
been adapted such that the operations may be carried out
asynchronously and in parallel by distributed worker com-
puting units to determine the optimized architecture more
efficiently.

[0009] The details of one or more embodiments of the
subject matter described in this specification are set forth in
the accompanying drawings and the description below.
Other features, aspects, and advantages of the subject matter
will become apparent from the description, the drawings,
and the claims.

Jan. 6, 2022

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 shows an architecture of an example neural
network architecture optimization system.

[0011] FIGS. 2A and 2B illustrate an example candidate
architecture of a neural network for performing a machine
learning task.

[0012] FIG. 3 shows an example architecture of a cell.
[0013] FIGS. 4A and 4B illustrate examples of a mutation.
[0014] FIG. 5 is a flow diagram of an example process for

determining an optimized neural network architecture for
performing a machine learning task.

[0015] Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

[0016] This specification describes a neural network archi-
tecture optimization system implemented as computer pro-
grams on one or more computers in one or more locations
that determines an optimal network architecture for a neural
network configured to perform a particular machine learning
task. Depending on the task, the neural network can be
configured to receive any kind of digital data input and to
generate any kind of score, classification, or regression
output based on the input.

[0017] For example, if the inputs to the neural network are
images or features that have been extracted from images, the
output generated by the neural network for a given image
may be scores for each of a set of object categories, with
each score representing an estimated likelihood that the
image contains an image of an object belonging to the
category.

[0018] As another example, if the inputs to the neural
network are Internet resources (e.g., web pages), documents,
or portions of documents or features extracted from Internet
resources, documents, or portions of documents, the output
generated by the neural network for a given Internet
resource, document, or portion of a document may be a score
for each of a set of topics, with each score representing an
estimated likelihood that the Internet resource, document, or
document portion is about the topic.

[0019] As another example, if the inputs to the neural
network are features of an impression context for a particu-
lar advertisement, the output generated by the neural net-
work may be a score that represents an estimated likelihood
that the particular advertisement will be clicked on.

[0020] As another example, if the inputs to the neural
network are features of a personalized recommendation for
a user, e.g., features characterizing the context for the
recommendation, e.g., features characterizing previous
actions taken by the user, the output generated by the neural
network may be a score for each of a set of content items,
with each score representing an estimated likelihood that the
user will respond favorably to being recommended the
content item.

[0021] As another example, if the input to the neural
network is a sequence of text in one language, the output
generated by the neural network may be a score for each of
a set of pieces of text in another language, with each score
representing an estimated likelihood that the piece of text in
the other language is a proper translation of the input text
into the other language.

[0022] As another example, if the input to the neural
network is a sequence representing a spoken utterance, the

US 2022/0004879 Al

output generated by the neural network may be a score for
each of a set of pieces of text, each score representing an
estimated likelihood that the piece of text is the correct
transcript for the utterance.

[0023] FIG. 1 shows an example neural network architec-
ture optimization system 100. The neural network architec-
ture optimization system 100 is an example of a system
implemented as computer programs on one or more com-
puters in one or more locations, in which the systems,
components, and techniques described below can be imple-
mented.

[0024] The neural network architecture optimization sys-
tem 100 is a system that receives, i.e., from a user of the
system, training data 102 for training a neural network to
perform a machine learning task and uses the training data
102 to determine an optimal neural network architecture for
performing the machine learning task and to train a neural
network having the optimal neural network architecture to
determine trained values of parameters of the neural net-
work.

[0025] The training data 102 generally includes multiple
training examples and a respective target output for each
training example. The target output for a given training
example is the output that should be generated by the trained
neural network by processing the given training example.
The system 100 divides the received training data into a
training subset, a validation subset, and, optionally, a test
subset.

[0026] The system 100 can receive the training data 102 in
any of a variety of ways. For example, the system 100 can
receive training data as an upload from a remote user of the
system over a data communication network, e.g., using an
application programming interface (API) made available by
the system 100. As another example, the system 100 can
receive an input from a user specifying which data that is
already maintained by the system 100 should be used as the
training data 102.

[0027] The neural network architecture optimization sys-
tem 100 generates data 152 specifying a trained neural
network using the training data 102. The data 152 specifies
an optimal architecture of a trained neural network and
trained values of the parameters of a trained neural network
having the optimal architecture.

[0028] Once the neural network architecture optimization
system 100 has generated the data 152, the neural network
architecture optimization system 100 can instantiate a
trained neural network using the trained neural network data
152 and use the trained neural network to process new
received inputs to perform the machine learning task, e.g.,
through the API provided by the system. That is, the system
100 can receive inputs to be processed, use the trained neural
network to process the inputs, and provide the outputs
generated by the trained neural network or data derived from
the generated outputs in response to the received inputs.
Instead or in addition, the system 100 can store the trained
neural network data 152 for later use in instantiating a
trained neural network, or can transmit the trained neural
network data 152 to another system for use in instantiating
a trained neural network, or output the data 152 to the user
that submitted the training data.

[0029] The machine learning task is a task that is specified

by the user that submits the training data 102 to the system
100.

Jan. 6, 2022

[0030] In some implementations, the user explicitly
defines the task by submitting data identifying the task to the
neural network architecture optimization system 100 with
the training data 102. For example, the system 100 may
present a user interface on a user device of the user that
allows the user to select the task from a list of tasks
supported by the system 100. That is, the neural network
architecture optimization system 100 can maintain a list of
machine learning tasks, e.g., image processing tasks like
image classification, speech recognition tasks, natural lan-
guage processing tasks like sentiment analysis, and so on.
The system 100 can allow the user to select one of the
maintained tasks as the task for which the training data is to
be used by selecting one of the tasks in the user interface.
[0031] In some other implementations, the training data
102 submitted by the user specifies the machine learning
task. That is, the neural network architecture optimization
system 100 defines the task as a task to process inputs having
the same format and structure as the training examples in the
training data 102 in order to generate outputs having the
same format and structure as the target outputs for the
training examples. For example, if the training examples are
images having a certain resolution and the target outputs are
one-thousand dimensional vectors, the system 100 can iden-
tify the task as a task to map an image having the certain
resolution to a one-thousand dimensional vector. For
example, the one-thousand dimensional target output vec-
tors may have a single element with a non-zero value. The
position of the non-zero value indicates which of 1000
classes the training example image belongs to. In this
example, the system 100 may identify that the task is to map
an image to a one-thousand dimensional probability vector.
Each element represents the probability that the image
belongs to the respective class. The CIFAR-1000 dataset,
which consists of 50000 training examples paired with a
target output classification selected from 1000 possible
classes, is an example of such training data 102. CIFAR-10
is a related dataset where the classification is one of ten
possible classes. Another example of suitable training data
102 is the MNIST dataset where the training examples are
images of handwritten digits and the target output is the digit
which these represent. The target output may be represented
as a ten dimensional vector having a single non-zero value,
with the position of the non-zero value indicating the
respective digit.

[0032] The neural network architecture optimization sys-
tem 100 includes a population repository 110 and multiple
worker computing units (also referred to as “workers”)
120 A-N that operate independently of one another to update
the data stored in the population repository 110.

[0033] At any given time during the training, the popula-
tion repository 110 is implemented as one or more storage
devices in one or more physical locations and stores data
specifying the current population of candidate neural net-
work architectures. The system 100 can initialize the popu-
lation repository with one or more default neural network
architectures.

[0034] The population repository 110 stores population
data including, for each candidate architecture in the popu-
lation of candidate architectures, (i) data defining the can-
didate architecture, and (ii) data specifying how recently a
neural network having the candidate architecture has been
trained. Optionally, the population repository 110 can also
store, for each candidate architecture, an instance of a neural

US 2022/0004879 Al

network having the architecture, current values of param-
eters for the neural network having the architecture, or
additional metadata characterizing the architecture.

[0035] Each of the candidate architectures in the popula-
tion includes a stack of multiple cells. In some cases, in
addition to the stack of cells, a candidate architecture
includes one or more other neural network layers, e.g., an
output layer and/or one or more other types of layers. For
example, a candidate architecture may include a stack of
cells followed by a softmax classification neural network
layer. An example of a candidate architecture in the popu-
lation is described in more detail below with reference to
FIG. 2.

[0036] Generally, a cell is a fully convolutional neural
network that is configured to receive a cell input and to
generate a cell output for the cell input. In some implemen-
tations, each cell in a stack of cells of a candidate architec-
ture may receive a direct input from the previous cell and a
skip input from the cell before the previous cell.

[0037] A cell includes multiple operation blocks, for
example three, five, or ten operation blocks. Each operation
block in the cell receives one or more respective input
hidden states, and uses a corresponding pairwise combina-
tion to construct a respective output hidden state from the
input hidden states. In particular, a pairwise combination
applies a first operation to an first input hidden state, applies
a second operation to a second hidden state, and combines
the outputs of the first and second operations to generate an
output hidden state.

[0038] A given candidate architecture in the population of
candidate architectures is specified by a plurality of pairwise
combinations that form a cell that is repeated through the
candidate architecture. In some implementations where each
candidate architecture in the population includes a stack of
cells of different types, a given candidate architecture can be
specified by respective pairwise combinations for each type
of cells.

[0039] For example, a given candidate architecture can
include a stack of cells of two different type: normal cells
and reduction cells. The candidate architecture can be speci-
fied by five pairwise combinations that make up the normal
cell and five pairwise combinations that make up the reduc-
tion cell.

[0040] An example architecture of a cell and pairwise
combinations are described in more detail below with ref-
erence to FIG. 3.

[0041] Each of the workers 120A-120N is implemented as
one or more computer programs and data deployed to be
executed on a respective computing unit. The computing
units are configured so that they can operate independently
of each other. In some implementations, only partial inde-
pendence of operation is achieved, for example, because
workers share some resources. A computing unit may be,
e.g., a computer, a core within a computer having multiple
cores, or other hardware or software within a computer
capable of independently performing the computation for a
worker.

[0042] Each of the workers 120A-120N iteratively
updates the population of possible neural network architec-
tures in the population repository 102 to improve the fitness
of the population. Each worker operates independently and
asynchronously from each other worker.

Jan. 6, 2022

[0043] In particular, at each iteration, a given worker
120A-120N (for example, worker 120A) selects a plurality
of candidate architectures (e.g., candidate architecture 122)
from the population.

[0044] The given worker then trains, for each selected
candidate architecture, a new neural network having the
candidate architecture on a training subset of the training
data 102 to determine trained values of parameters of the
new neural network. The worker can train the new neural
network starting from the parameter values that are associ-
ated with the candidate architecture in the population data.
[0045] The worker determines, for each selected candidate
architecture, a measure of fitness by evaluating a perfor-
mance of the trained new neural network on a validation
subset of the training data. The measure of fitness can be any
measure that is appropriate for the machine learning task and
that measures the performance of the neural network on the
machine learning task. For example, measures of fitness can
include various classification errors, intersection-over-union
measures, reward or return metrics, and so on.

[0046] The worker generates a new candidate architecture
(e.g., new candidate architecture 124) based on the selected
candidate architecture having the best measure of fitness. In
particular, the worker modifies the architecture for at least
one of the cells in the candidate architecture having the best
measure of fitness.

[0047] In some implementations, the worker mutates the
selected candidate architecture by processing data specify-
ing the selected candidate architecture through a mutation
neural network. The mutation neural network is a neural
network that has been trained to receive an input that
includes data specifying an architecture and to generate an
output that defines another architecture that is different than
the input architecture.

[0048] In some other implementations, the worker main-
tains data identifying a set of possible mutations that can be
applied to an input architecture. For instance, the worker can
randomly select a mutation from a set of mutations, and
apply the randomly selected mutation to the selected can-
didate architecture.

[0049] The set of possible mutations can include any of a
variety of architecture modifications that represent the addi-
tion, removal, or modification of a component from an
architecture or a change in a hyper-parameter for the training
of the neural network having the architecture. Examples of
a mutation are described in detail below with reference to
FIG. 4.

[0050] After generating the new candidate architecture
from the selected candidate architecture having the best
measure of fitness, the worker then adds the new candidate
architecture to the population, and removes from the popu-
lation the candidate architecture that was trained least
recently. By removing the least recently trained architecture
(or the oldest architecture) at each iteration, the system 100
allows all candidate architectures in the population to have
a short lifespan. Therefore, the population is wholly renewed
frequently, leading to more diversity and more exploration,
which results in better architecture search results while
retaining the system’s efficiency. The process for selecting
candidate architectures from the population, adding a new
candidate architecture that is generated based on the selected
candidate architecture having the best measure of fitness,
and removing the oldest candidate architecture from the
population may be referred to as “aging evolution” or

US 2022/0004879 Al

“regularized evolution.” The aging evolution is simple
because it has few meta-parameters, most of which do not
need tuning, thereby reducing computational costs associ-
ated with searching (as compared to other techniques that
requires training an agent/controller which is often itself a
neural network with many weights and their optimization
has more meta-parameters to adjust: learning rate schedule,
greediness, batching, replay buffer, etc.) Further, as only the
candidate architecture having the best measure of fitness at
each iteration is selected to be mutated, the regularized
evolution process allows the population of candidate archi-
tecture to improve over time, resulting in an optimized
neural network having better performance (e.g., better accu-
racy) when performing the particular machine learning task
compared to existing neural network architecture search
methods.

[0051] Once termination criteria for the training have been
satisfied (e.g., after more than a threshold number of itera-
tions have been performed or after the best fit candidate
neural network in the population repository has a fitness that
exceeds a threshold), the neural network architecture opti-
mization system 100 selects an optimal neural network
architecture from the architectures remaining in the popu-
lation or, in some cases, from all of the architectures that
were in the population at any point during the training.

[0052] In particular, in some implementations, the neural
network architecture optimization system 100 selects the
architecture in the population that has the best measure of
fitness. In other implementations, the neural network archi-
tecture optimization system 100 tracks measures of fitness
for architectures even after those architectures are removed
from the population and selects the architecture that has the
best measure of fitness using the tracked measures of fitness.

[0053] To generate the data 152 specifying the trained
neural network, in some implementations, the neural net-
work architecture optimization system 100 obtains the
trained values for the parameters of a trained neural network
having the optimal neural network architecture from the
population repository 110. In some other implementations,
the system 100 trains a neural network having the optimized
architecture, e.g., either from scratch or to fine-tune the
parameter values generated as a result of determining the
optimized architecture for the neural network. The system
can further train the neural network having the optimized
neural network architecture on more training data to deter-
mine the final trained values of the trained neural network.

[0054] The system 100 then uses the trained neural net-
work to process requests received by users, e.g., through the
API provided by the system. In other implementations, the
system can provide the data specifying the optimized archi-
tecture and, optionally, the trained parameter values, in
response to receiving the training data 102, e.g., to a user
over a data communication network.

[0055] In implementations where the system 100 gener-
ates a test subset from the training data, the system also tests
the performance of a trained neural network having the
optimized neural network architecture on the test subset to
determine a measure of fitness of the trained neural network
on the user-specified machine learning task. The system 100
can then provide the measure of fitness for presentation to
the user that submitted the training data or store the measure
of fitness in association with the trained values of the
parameters of the trained neural network.

Jan. 6, 2022

[0056] FIGS. 2A and 2B illustrates an example architec-
ture of a neural network 200 for performing a machine
learning task.

[0057] The neural network 200 includes a stack of cells
201. The stack 201 includes multiple cells that are stacked
one after the other.

[0058] Insome implementations, the cells in the stack 201
are of the same cell types, i.e., all of the cells have the same
architecture but may have different parameter values. In
some implementations, the cells in the stack 201 are of
different cell types. For example, as shown in FIG. 2A, stack
201 includes cells of two types: normal cells and reduction
cells. In particular, stack 201 includes a stack of N normal
cells 204 followed by a reduction cell 206 followed by a
stack of N normal cells 208 followed by a reduction cell 210
followed by a stack of N normal cells 212. All normal cells
have the same architecture, as are reduction cells. The
architecture of the normal cells is independent of that of the
reduction cells. Normal cells and reduction cells are
described in more detail in B. Zoph, V. Vasudevan, J. Shlens,
and Q. V. Le, “Learning transferable architectures for
scalable image recognition.” In CVPR, 2018, available at
http://arxiv.org/pdt/1707.07012.pdf.

[0059] Generally, each cell in the stack 201 is configured
to receive as input one or more outputs of one or more
preceding cells and to process the input to generate an output
for the input. For example, each cell is configured to receive
a direct input from a previous cell (that immediately pre-
cedes the current cell) and a skip input from the cell before
the previous cell. As shown in the example of FIG. 2B, each
cell has two input activation tensors and one output. The first
cell in the stack 201 receives two copies of the network input
202 as input. Each cell following the first cell receives as
input the outputs of the preceding two cells.

[0060] In some implementations, to reduce computational
costs associated with processing an input image, every
application of the reduction cell can be followed by a
convolution operation of stride 2 that reduces the image size
of'the output of the reduction cell. Normal cells can preserve
the image size.

[0061] The neural network 200 includes a sub-network
214 following the stack of cells 201. The sub-network 214
is configured to receive as input the output of the stack of
cells 201 and to process the output of the stack 201 to
generate the network output 216. As an example, the sub-
network 214 includes a soft-max classification neural net-
work layer.

[0062] FIG. 3 shows an example architecture of a cell 300.
[0063] The cell 300 includes a plurality of operation
blocks: blocks 302, 304, 306, 308, and 310. The cell 300
receives two input tensors that are considered hidden states
“0” and “1.” More hidden states of the cell 300 are then
constructed through pairwise combinations. For example,
the pairwise combination applies a first operation to an first
hidden state, applies a second operation to a second hidden
state, and combines (by adding or concatenating) the outputs
of the first and second operations to generate a new hidden
state. The first, and second operations are selected from a
predetermined set of possible operations including, for
example, convolutions, pooling layers.

[0064] As shown in FIG. 3, the first pairwise combination
of block 302 applies a 3x3 average pooling operation to
hidden state 0 and a 3x3 max pooling operation to hidden
state 1, in order to produce hidden state 2. The next pairwise

US 2022/0004879 Al

combination can choose from hidden states 0, 1, and 2 to
produce hidden state 3 (in this example, the pairwise com-
bination of block 304 chooses hidden states 0 and 1 as
input), and so on. After five pairwise combinations corre-
sponding to five blocks, any hidden states that remain
unused (e.g., hidden states 5 and 6 in FIG. 3) are concat-
enated to form the output of the cell 300 (hidden state 7).
[0065] FIGS. 4A and 4B illustrate examples of a mutation.
[0066] In particular, FIG. 4A illustrates a hidden state
mutation, which includes making a random choice of
whether to modify the normal cell or the reduction cell of a
given candidate architecture. Once a cell is chosen, the
hidden state mutation selects one of the five pairwise com-
binations uniformly at random. The hidden state mutation
then selects one of the two operations 402 and 404 of the
selected pairwise combination uniformly at random, and
replaces a hidden state associated with the selected operation
with another hidden state from within the cell. As shown in
FIG. 4A, the selected operation 404 has one hidden state 3.
The mutation replaces this hidden state with hidden state 4
from within the cell. To keep the feed-forward property of
the convolutional neural network architecture of the cell, the
hidden state associated with the selected operation can be
replaced subject to a constraint that no loops are formed.
[0067] FIG. 4B illustrates an operation mutation that oper-
ates similar to the hidden state mutation as far as selecting
one of the two cells, one of the five pairwise combinations,
and one of the two operations of the selected pairwise
combination. Instead of modifying the hidden state associ-
ated with the selected operation, the operation mutation
modifies the selected operation itself. In particular, the
operation mutation replaces the selected operation with an
operation that is randomly selected from a predetermined set
of operations. For example, the predetermined set of opera-
tions may include, but not be limited to, 3x3 depthwise-
separable convolution, 5x5 depthwise-separable convolu-
tion, 7x7 depthwise-separable convolution, 1x7 followed by
7x1 convolution, identity, 3x3 average pooling, 3x3 max
pooling, and 3x3 dilated convolution.

[0068] As shown in FIG. 4B, operation 406 is replaced
with a none operation 408 (e.g., an identity operation that
allows an input of the identity operation to pass through
without changing the input, i.e., the output of the identity
operation is the same as the input).

[0069] FIG. 5 is a flow diagram of an example process for
determining an optimized neural network architecture for
performing a machine learning task. For convenience, the
process 500 will be described as being performed by a
system of one or more computers located in one or more
locations. For example, a neural network architecture opti-
mization system, e.g., the neural network architecture opti-
mization system 100 of FIG. 1, appropriately programmed
in accordance with this specification, can perform the pro-
cess 500.

[0070] The system receives training data for training a
neural network to perform a machine learning task (step
501). The training data includes a plurality of training
examples and a respective target output for each of the
training examples. The system divides the received training
data into a training subset, a validation subset, and, option-
ally, a test subset.

[0071] The system maintains population data in a popu-
lation repository (step 502). The system can initialize the
population repository with one or more default neural net-

Jan. 6, 2022

work architectures. The population data includes, for each
candidate architecture in a population of candidate architec-
tures, (i) data defining the candidate architecture, and (ii)
data specifying how recently a neural network having the
candidate architecture has been trained while determining
the optimized neural network architecture.

[0072] The system repeatedly performs the following
steps 504-514 using each of a plurality of worker computing
units until termination criteria for the training have been
satisfied. Each worker operates asynchronously from each
other worker.

[0073] The system selects, by the worker computing unit,
a plurality of candidate architectures from the population
(step 504).

[0074] The system trains, for each selected candidate
architecture and by the worker computing unit, a new neural
network having the candidate architecture on a training
subset of the training data to determine trained values of
parameters of the new neural network (step 506). The
worker can train the new neural network starting from the
parameter values that are associated with the candidate
architecture in the population data.

[0075] The system determines, for each selected candidate
architecture and by the worker computing unit, a measure of
fitness by evaluating a performance of the trained new
neural network on a validation subset of the training data
(step 508). The measure of fitness can be any measure that
is appropriate for the machine learning task and that mea-
sures the performance of the neural network on the machine
learning task. For example, measures of fitness can include
various classification errors, intersection-over-union mea-
sures, reward or return metrics, and so on.

[0076] The system generates, by the worker computing
unit, a new candidate architecture based on the selected
candidate architecture having the best measure of fitness
(step 510). In particular, the worker modifies the architecture
for at least one of the cells in the candidate architecture
having the best measure of fitness.

[0077] In some implementations, the worker mutates the
selected candidate architecture by processing data specify-
ing the selected candidate architecture through a mutation
neural network. The mutation neural network is a neural
network that has been trained to receive an input that
includes data specifying an architecture and to generate an
output that defines another architecture that is different than
the input architecture.

[0078] In some other implementations, the worker main-
tains data identifying a set of possible mutations that can be
applied to an input architecture. For instance, the worker can
randomly select a mutation from a set of mutations, and
apply the randomly selected mutation to the selected can-
didate architecture.

[0079] The set of possible mutations can include any of a
variety of architecture modifications that represent the addi-
tion, removal, or modification of a component from an
architecture or a change in a hyper-parameter for the training
of the neural network having the architecture.

[0080] The system adds the new candidate architecture to
the population (step 512).

[0081] The system removes from the population the can-
didate architecture that was trained least recently (step 514).
By removing the least recently trained architecture (or the
oldest architecture) at each iteration under aging evolution,
the system allows all candidate architectures in the popula-

US 2022/0004879 Al

tion to have a short lifespan. Therefore, the population is
wholly renewed frequently, leading to more diversity and
more exploration, which results in better neural network
architecture search results while retaining the system’s effi-
ciency (thanks to the simplicity of aging evolution).
[0082] The system provides data specifying the optimized
architecture (step 516). In particular, the system selects the
best fit candidate neural network architecture as the opti-
mized neural network architecture to be used to carry out the
machine learning task. That is, once the workers are done
performing iterations and termination criteria have been
satisfied, e.g., after more than a threshold number of itera-
tions have been performed or after the best fit candidate
neural network in the population repository has a fitness that
exceeds a threshold, the system selects the best fit candidate
neural network architecture as the final neural network
architecture be used in carrying out the machine learning
task.

[0083] In some implementations, the system obtains the
trained values for the parameters of a trained neural network
having the optimized neural network architecture from the
population repository. In some other implementations, the
system trains a neural network having the optimized archi-
tecture, e.g., either from scratch or to fine-tune the parameter
values generated as a result of determining the optimized
architecture for the neural network. The system can further
train the neural network having the optimized neural net-
work architecture on more training data to determine the
final trained values of the trained neural network.

[0084] The system then uses the trained neural network to
process requests received by users, e.g., through the API
provided by the system. In other implementations, the
system can provide the data specifying the optimized archi-
tecture and, optionally, the trained parameter values, in
response to receiving the training data, e.g., to a user over a
data communication network.

[0085] In implementations where the system generates a
test subset from the training data, the system also tests the
performance of a trained neural network having the opti-
mized neural network architecture on the test subset to
determine a measure of fitness of the trained neural network
on the user-specified machine learning task. The system can
then provide the measure of fitness for presentation to the
user that submitted the training data or store the measure of
fitness in association with the trained values of the param-
eters of the trained neural network.

[0086] As only the candidate architecture having the best
measure of fitness at each iteration is selected to be mutated,
the above method allows the population of candidate archi-
tectures to improve over time, resulting in an optimized
neural network having better performance (e.g., better accu-
racy) when performing the particular machine learning task
compared to existing neural network architecture search
methods.

[0087] Further, using the described method, the system
can automatically generate a resultant trained neural net-
work that is able to achieve performance on a machine
learning task competitive with or exceeding state-of-the-art
hand-designed models while requiring little or no input from
a neural network designer.

[0088] This specification uses the term “configured” in
connection with systems and computer program compo-
nents. For a system of one or more computers to be
configured to perform particular operations or actions means

Jan. 6, 2022

that the system has installed on it software, firmware,
hardware, or a combination of them that in operation cause
the system to perform the operations or actions. For one or
more computer programs to be configured to perform par-
ticular operations or actions means that the one or more
programs include instructions that, when executed by data
processing apparatus, cause the apparatus to perform the
operations or actions.

[0089] Embodiments of the subject matter and the func-
tional operations described in this specification can be
implemented in digital electronic circuitry, in tangibly-
embodied computer software or firmware, in computer hard-
ware, including the structures disclosed in this specification
and their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non transitory
storage medium for execution by, or to control the operation
of, data processing apparatus. The computer storage medium
can be a machine-readable storage device, a machine-read-
able storage substrate, a random or serial access memory
device, or a combination of one or more of them. Alterna-
tively or in addition, the program instructions can be
encoded on an artificially generated propagated signal, e.g.,
a machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus for execution by a data
processing apparatus.

[0090] The term “data processing apparatus” refers to data
processing hardware and encompasses all kinds of appara-
tus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can also be,
or further include, special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli-
cation specific integrated circuit). The apparatus can option-
ally include, in addition to hardware, code that creates an
execution environment for computer programs, e.g., code
that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.

[0091] A computer program, which may also be referred
to or described as a program, software, a software applica-
tion, an app, a module, a software module, a script, or code,
can be written in any form of programming language,
including compiled or interpreted languages, or declarative
or procedural languages; and it can be deployed in any form,
including as a stand alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A program may, but need not, correspond to a
file in a file system. A program can be stored in a portion of
a file that holds other programs or data, e.g., one or more
scripts stored in a markup language document, in a single
file dedicated to the program in question, or in multiple
coordinated files, e.g., files that store one or more modules,
sub programs, or portions of code. A computer program can
be deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a data communication
network.

[0092] In this specification, the term “database” is used
broadly to refer to any collection of data: the data does not
need to be structured in any particular way, or structured at

US 2022/0004879 Al

all, and it can be stored on storage devices in one or more
locations. Thus, for example, the index database can include
multiple collections of data, each of which may be organized
and accessed differently.

[0093] Similarly, in this specification the term “engine” is
used broadly to refer to a software-based system, subsystem,
or process that is programmed to perform one or more
specific functions. Generally, an engine will be implemented
as one or more software modules or components, installed
on one or more computers in one or more locations. In some
cases, one or more computers will be dedicated to a par-
ticular engine; in other cases, multiple engines can be
installed and running on the same computer or computers.
[0094] The processes and logic flows described in this
specification can be performed by one or more program-
mable computers executing one or more computer programs
to perform functions by operating on input data and gener-
ating output. The processes and logic flows can also be
performed by special purpose logic circuitry, e.g., an FPGA
or an ASIC, or by a combination of special purpose logic
circuitry and one or more programmed computers.

[0095] Computers suitable for the execution of a computer
program can be based on general or special purpose micro-
processors or both, or any other kind of central processing
unit. Generally, a central processing unit will receive
instructions and data from a read only memory or a random
access memory or both. The essential elements of a com-
puter are a central processing unit for performing or execut-
ing instructions and one or more memory devices for storing
instructions and data. The central processing unit and the
memory can be supplemented by, or incorporated in, special
purpose logic circuitry. Generally, a computer will also
include, or be operatively coupled to receive data from or
transfer data to, or both, one or more mass storage devices
for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such
devices. Moreover, a computer can be embedded in another
device, e.g., a mobile telephone, a personal digital assistant
(PDA), a mobile audio or video player, a game console, a
Global Positioning System (GPS) receiver, or a portable
storage device, e.g., a universal serial bus (USB) flash drive,
to name just a few.

[0096] Computer readable media suitable for storing com-
puter program instructions and data include all forms of non
volatile memory, media and memory devices, including by
way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks.

[0097] To provide for interaction with a user, embodi-
ments of the subject matter described in this specification
can be implemented on a computer having a display device,
e.g., a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor, for displaying information to the user and
a keyboard and a pointing device, e.g., a mouse or a
trackball, by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback,
e.g., visual feedback, auditory feedback, or tactile feedback;
and input from the user can be received in any form,
including acoustic, speech, or tactile input. In addition, a
computer can interact with a user by sending documents to
and receiving documents from a device that is used by the

Jan. 6, 2022

user; for example, by sending web pages to a web browser
on a user’s device in response to requests received from the
web browser. Also, a computer can interact with a user by
sending text messages or other forms of message to a
personal device, e.g., a smartphone that is running a mes-
saging application, and receiving responsive messages from
the user in return.

[0098] Data processing apparatus for implementing
machine learning models can also include, for example,
special-purpose hardware accelerator units for processing
common and compute-intensive parts of machine learning
training or production, i.e., inference, workloads.

[0099] Machine learning models can be implemented and
deployed using a machine learning framework, e.g., a Ten-
sorFlow framework, a Microsoft Cognitive Toolkit frame-
work, an Apache Singa framework, or an Apache MXNet
framework.

[0100] Embodiments of the subject matter described in
this specification can be implemented in a computing system
that includes a back end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface, a web browser,
or an app through which a user can interact with an imple-
mentation of the subject matter described in this specifica-
tion, or any combination of one or more such back end,
middleware, or front end components. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN) and a wide area network (WAN), e.g., the
Internet.

[0101] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In some
embodiments, a server transmits data, e.g., an HTML page,
to a user device, e.g., for purposes of displaying data to and
receiving user input from a user interacting with the device,
which acts as a client. Data generated at the user device, e.g.,
a result of the user interaction, can be received at the server
from the device.

[0102] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any invention or on the scope of
what may be claimed, but rather as descriptions of features
that may be specific to particular embodiments of particular
inventions. Certain features that are described in this speci-
fication in the context of separate embodiments can also be
implemented in combination in a single embodiment. Con-
versely, various features that are described in the context of
a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination.
Moreover, although features may be described above as
acting in certain combinations and even initially be claimed
as such, one or more features from a claimed combination
can in some cases be excised from the combination, and the
claimed combination may be directed to a subcombination
or variation of a subcombination.

[0103] Similarly, while operations are depicted in the
drawings and recited in the claims in a particular order, this
should not be understood as requiring that such operations

US 2022/0004879 Al

be performed in the particular order shown or in sequential
order, or that all illustrated operations be performed, to
achieve desirable results. In certain circumstances, multi-
tasking and parallel processing may be advantageous. More-
over, the separation of various system modules and compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,
and it should be understood that the described program
components and systems can generally be integrated
together in a single software product or packaged into
multiple software products.
[0104] Particular embodiments of the subject matter have
been described. Other embodiments are within the scope of
the following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In some cases, multitasking and parallel
processing may be advantageous.
1. (canceled)
2. A method comprising:
receiving training data for training a neural network to
perform a machine learning task, the training data
comprising a plurality of training examples and a
respective target output for each of the training
examples; and
determining, using the training data, an optimized neural
network architecture for performing the machine learn-
ing task, comprising:
maintaining population data comprising, for each can-
didate architecture in a population of candidate
architectures, (i) data defining the candidate archi-
tecture, and (i) data specifying how recently a neural
network having the candidate architecture has been
trained while determining the optimized neural net-
work architecture, and
repeatedly performing the following using each of a
plurality of worker computing units each operating
asynchronously from each other worker computing
unit:
selecting, by the worker computing unit, a plurality
of candidate architectures from the population,
training, for each selected candidate architecture and
by the worker computing unit, a new neural net-
work having the candidate architecture on a train-
ing subset of the training data to determine trained
values of parameters of the new neural network;
determining, for each selected candidate architecture
and by the worker computing unit, a measure of
fitness by evaluating a performance of the trained
new neural network on a validation subset of the
training data,
generating, by the worker computing unit, a new
candidate architecture based on the selected can-
didate architecture having the best measure of
fitness, wherein generating the new candidate
architecture comprises:
randomly selecting a mutation from a set of muta-
tions, the set of mutations comprising an opera-
tion mutation that randomly selects one of a
plurality of cells of the selected candidate archi-
tecture and replaces at least one of the opera-
tions previously performed within the selected

Jan. 6, 2022

cell in the selected candidate architecture with
another operation that is randomly selected
from a predetermined set of operations, and
applying the randomly selected mutation to the
selected candidate architecture, and
adding the new candidate architecture to the popu-
lation.

3. The method of claim 2, further comprising:

providing data specifying the optimized neural network

architecture.

4. The method of claim 2, further comprising:

determining trained values of parameters of a neural

network having the optimized neural network architec-
ture.

5. The method of claim 4, further comprising:

providing the data specitying the trained parameters.

6. The method of claim 4, the operations further com-
prising:

training the new candidate architecture to determine

trained values of parameters; and

associating the trained values of the parameters with the

new candidate architecture in the population data.

7. The method of claim 4, wherein determining trained
values of parameters of a neural network having the opti-
mized neural network architecture comprises:

selecting, as the trained values of the parameters of the

neural network having the optimized neural network
architecture, trained values that are associated with the
architecture that is associated with the best measure of
fitness.

8. The method of claim 4, wherein determining trained
values of parameters of a neural network having the opti-
mized neural network architecture comprises:

further training the neural network having the optimized

neural network architecture on more training data to
determine the trained values.

9. The method of claim 4, wherein training, for each
selected candidate architecture and by the worker computing
unit, a new neural network having the candidate architecture
on a training subset of the training data to determine trained
values of parameters of the new neural network comprises:
training the new neural network starting from the values that
are associated with the candidate architecture in the popu-
lation data.

10. The method of claim 2, further comprising:

initializing the population with a plurality of default

candidate architectures.

11. The method of claim 2, wherein, for each candidate
architecture, the data defining the candidate architecture
identifies an architecture for one or more cells that are each
repeated multiple times to generate the candidate architec-
ture.

12. The method of claim 2, wherein determining, using
the training data, an optimized neural network architecture
for performing the machine learning task further comprises:

selecting the candidate architecture in the population

having the best fitness as the optimized architecture.

13. The method of claim 2, wherein the machine learning
task is one or more of the following: image processing,
image classification, speech recognition and natural lan-
guage processing.

14. A system comprising one or more computers and one
or more storage devices storing instructions that, when

US 2022/0004879 Al

executed by the one or more computers, cause the one or
more computers to perform operations comprising:
receiving training data for training a neural network to
perform a machine learning task, the training data
comprising a plurality of training examples and a
respective target output for each of the training
examples; and
determining, using the training data, an optimized neural
network architecture for performing the machine learn-
ing task, comprising:
maintaining population data comprising, for each can-
didate architecture in a population of candidate
architectures, (i) data defining the candidate archi-
tecture, and (i) data specifying how recently a neural
network having the candidate architecture has been
trained while determining the optimized neural net-
work architecture, and
repeatedly performing the following using each of a
plurality of worker computing units each operating
asynchronously from each other worker computing
unit:
selecting, by the worker computing unit, a plurality
of candidate architectures from the population,
training, for each selected candidate architecture and
by the worker computing unit, a new neural net-
work having the candidate architecture on a train-
ing subset of the training data to determine trained
values of parameters of the new neural network;
determining, for each selected candidate architecture
and by the worker computing unit, a measure of
fitness by evaluating a performance of the trained
new neural network on a validation subset of the
training data,
generating, by the worker computing unit, a new
candidate architecture based on the selected can-
didate architecture having the best measure of
fitness, wherein generating the new candidate
architecture comprises:
randomly selecting a mutation from a set of muta-
tions, the set of mutations comprising an opera-
tion mutation that randomly selects one of a
plurality of cells of the selected candidate archi-
tecture and replaces at least one of the opera-
tions previously performed within the selected
cell in the selected candidate architecture with
another operation that is randomly selected
from a predetermined set of operations, and
applying the randomly selected mutation to the
selected candidate architecture, and
adding the new candidate architecture to the popu-
lation.

15. The system of claim 14, wherein, for each candidate
architecture, the data defining the candidate architecture
identifies an architecture for one or more cells that are each
repeated multiple times to generate the candidate architec-
ture.

16. The system of claim 14, wherein the operations for
determining, using the training data, an optimized neural
network architecture for performing the machine learning
task further comprise:

selecting the candidate architecture in the population

having the best fitness as the optimized architecture.

17. The system of claim 14, wherein the operations further
comprise:

Jan. 6, 2022

determining trained values of parameters of a neural
network having the optimized neural network architec-
ture.

18. The system of claim 17, wherein the operations further
comprise:

providing the data specitying the trained parameters.

19. The system of claim 17, wherein the operations further
comprise:

training the new candidate architecture to determine

trained values of parameters; and

associating the trained values of the parameters with the

new candidate architecture in the population data.

20. The system of claim 17, wherein the operations for
determining trained values of parameters of a neural net-
work having the optimized neural network architecture
comprise:

selecting, as the trained values of the parameters of the

neural network having the optimized neural network
architecture, trained values that are associated with the
architecture that is associated with the best measure of
fitness.

21. One or more non-transitory computer storage media
encoded with instructions that, when executed by one or
more computers, cause the one or more computers to per-
form operations comprising:

receiving training data for training a neural network to

perform a machine learning task, the training data
comprising a plurality of training examples and a
respective target output for each of the training
examples; and

determining, using the training data, an optimized neural

network architecture for performing the machine learn-
ing task, comprising:
maintaining population data comprising, for each can-
didate architecture in a population of candidate
architectures, (i) data defining the candidate archi-
tecture, and (ii) data specifying how recently a neural
network having the candidate architecture has been
trained while determining the optimized neural net-
work architecture, and
repeatedly performing the following using each of a
plurality of worker computing units each operating
asynchronously from each other worker computing
unit:
selecting, by the worker computing unit, a plurality
of candidate architectures from the population,
training, for each selected candidate architecture and
by the worker computing unit, a new neural net-
work having the candidate architecture on a train-
ing subset of the training data to determine trained
values of parameters of the new neural network;
determining, for each selected candidate architecture
and by the worker computing unit, a measure of
fitness by evaluating a performance of the trained
new neural network on a validation subset of the
training data,
generating, by the worker computing unit, a new
candidate architecture based on the selected can-
didate architecture having the best measure of
fitness, wherein generating the new candidate
architecture comprises:
randomly selecting a mutation from a set of muta-
tions, the set of mutations comprising an opera-
tion mutation that randomly selects one of a

US 2022/0004879 Al Jan. 6, 2022
11

plurality of cells of the selected candidate archi-
tecture and replaces at least one of the opera-
tions previously performed within the selected
cell in the selected candidate architecture with
another operation that is randomly selected
from a predetermined set of operations, and

applying the randomly selected mutation to the
selected candidate architecture, and

adding the new candidate architecture to the popu-
lation.

