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METHOD AND SYSTEM FOR GENERATING
A THREE-DIMENSIONAL ULTRASOUND
IMAGE OF A TISSUE VOLUME

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a national stage entry
according to 35 U.S.C. § 371 of PCT Application No.
PCT/SG2019/050564 filed on Nov. 19, 2019; which claims
priority to Singapore Patent Application Serial No.
10201810322Y filed on Nov. 19, 2018; all of which are
incorporated herein by reference in their entirety and for all
purposes.

TECHNICAL FIELD

[0002] The present invention generally relates to a method
and a system for generating a three-dimensional (3D) ultra-
sound image of a tissue volume, and more particularly, with
respect to a freehand ultrasound scanning of the tissue
volume.

BACKGROUND

[0003] Two-dimensional (2D) ultrasound (US) imaging is
safe, inexpensive and widely used in medical practices, as
well as having real-time and high resolution capabilities.
Conventional 2D ultrasound imaging techniques may be
configured to extract a 2D ultrasound image (which may
also be referred to as a cross-sectional image, an image
plane/frame or a B-mode/B-scan image) of the tissue vol-
ume scanned by an ultrasound probe. However, various
conventional 2D ultrasound imaging techniques have the
inherent limitation of relying upon a 2D ultrasound image to
represent a 3D tissue volume. For example, an anatomical
structure such as bone cannot be completely visualized in
2D dimensions. The ultrasound probe may be manually
operated (moved) by an operator to obtain a 2D ultrasound
image (or a series of 2D ultrasound images) of the tissue
volume (e.g., a body organ). These ultrasound images may
then be mentally visualised by an operator (e.g., a radiolo-
gist) to form a subjective impression of the 3D anatomy and
pathology. However, such conventional techniques are time-
consuming, inefficient and inaccurate, which leads to out-
come variability and incorrect diagnosis.

[0004] For example, as the operator is required to know
how to properly position the ultrasound probe on the subject
to capture a medically relevant 2D ultrasound image of an
anatomical structure, an inexperienced operator may have
considerable difficulties capturing medically relevant ultra-
sound images of the anatomical structure. Moreover, such
conventional 2D ultrasound imaging techniques may be
suboptimal for monitoring therapeutic procedures and fol-
low-up examinations, as they only provide a limited sample
of the 3D anatomical structure obtained at one or more
arbitrary locations. Furthermore, at follow-up examinations,
it is often difficult to ensure that the ultrasound probe is
positioned to capture a 2D ultrasound image of an anatomi-
cal structure at the same image plane (same position) with
the same orientation as a previous 2D ultrasound image
captured at a previous examination. Therefore, such con-
ventional 2D ultrasound imaging techniques may further
suffer from lack of repeatability/consistency.

[0005] On the other hand, various conventional 3D ultra-
sound imaging techniques acquire the whole 3D anatomy,
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instead of one or more 2D ultrasound images, and attract
growing interest from researchers/clinicians as they extend
the narrow field-of-view of conventional 2D ultrasound
imaging to allow better illustration of complex anatomy
structures and provide repeatable and precise volume analy-
sis. With a 3D volume data set, operators are able to perform
volume rendering, 3D image segmentation and measure-
ment on the 3D anatomy to extract useful diagnostic infor-
mation.

[0006] Over the past few decades, researchers have pro-
posed various 3D ultrasound imaging techniques for the
construction and visualization of 3D ultrasound volume.
These conventional 3D ultrasound imaging techniques may
generally be divided into two main categories, namely,
direct 3D ultrasound scanning using a 3D ultrasound probe
and 3D image reconstruction from 2D ultrasound scanning
(freehand scanning) using a 2D ultrasound probe.

[0007] Currently, commonly used commercial 3D ultra-
sound probes are based on mechanical scanning or elec-
tronic beam steering. In mechanical scanning, an ultrasound
transducer array and a stepper motor may be integrated into
a dedicated housing of the ultrasound probe, which allows
fast acquisition of a 3D ultrasound volume. In electronic
beam steering, the excitation of individual elements in the
transducer array may be timed such that the ultrasound
waves sweep over the entire 3D volume. However, the
drawbacks of such conventional 3D ultrasound probes are
that, in general, they are relatively bulky and expensive, as
well as being only able to cover a limited field of view due
to the physical size of the ultrasound transducer.

[0008] In 3D image reconstruction from 2D ultrasound
scanning (frechand scanning), a conventional 2D ultrasound
probe may be moved by hand in a desired manner to scan a
tissue volume. For example, the operator may adjust the
pace of the ultrasound probe’s scanning motion to control
the number of 2D ultrasound images acquired of the tissue
volume, and thus, control the resolution of the 3D volumet-
ric data rendered from such 2D ultrasound images acquired.
In such a freehand scanning approach, there generally exist
two categories, namely, freehand scanning with position
tracking (requires tracking hardware such as a position
sensor) to provide location information of the ultrasound
probe and free hand scanning without position tracking.
[0009] In the frechand scanning with position tracking
approach, a position sensor (e.g., a magnetic field sensor or
an optical sensor) may be rigidly attached to the ultrasound
probe. However, performing freehand scanning with a posi-
tion sensor has a number of drawbacks, including non-trivial
and time consuming end-user calibrations when the location
of the position sensor on (with respect to) the ultrasound
probe changes and cumbersome constraints on the scanning
protocol. For example, the operator must be careful not to
stray outside the operating region of the position sensor, and
must consider the limitations of the sensor during scanning,
e.g., keeping a magnetic field sensor away from electro-
magnetic interference, or keeping an optical sensor along a
clear line of sight from the ultrasound probe to sensor.
Accordingly, one of the main obstacles to practical appli-
cations of the freehand scanning with position tracking
approach is the drawbacks associated with the position
sensor itself.

[0010] In the freehand scanning without position tracking
approach (which may also be referred to as a sensorless
freechand scanning approach), patterns of noise within the
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ultrasound images can be decoded to estimate the distance
between images. Conventional speckle decorrelation tech-
niques have been disclosed for performing freehand 3D
ultrasound imaging without requiring position tracking. In
particular, conventional speckle decorrelation techniques are
configured to estimate the relative position and orientation
between a pair of consecutive 2D ultrasound images based
on image speckle decorrelation between these images. How-
ever, such techniques assume that there is a continuity in the
speckle pattern which requires fully developed speckle
areas. The pattern of noise between images may not show
enough continuity to allow use of such techniques, espe-
cially when access to raw data is restricted. Moreover, since
the acquired ultrasound images are based on the superposi-
tion of several phenomena, the assumed mathematical
model may not be valid in practice, which results in poor
estimation/accuracy.

[0011] A need therefore exists to provide a method and a
system for generating a 3D ultrasound image of a tissue
volume (e.g., including one or more internal anatomical
structures) that seek to overcome, or at least ameliorate, one
or more of the deficiencies associated with conventional
methods and systems, and in particular, with respect to a
freehand ultrasound scanning of the tissue volume.

SUMMARY

[0012] According to a first aspect, there is provided a
method for generating a three-dimensional (3D) ultrasound
image of a tissue volume using at least one processor, the
method comprising:

[0013] generating a series of two-dimensional (2D) ultra-
sound images of the tissue volume associated with a plu-
rality of positions, respectively, along a scanning direction
of the tissue volume;

[0014] estimating, for each pair of consecutive 2D ultra-
sound images of the series of 2D ultrasound images, a
distance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classification
of a difference image generated from the pair of consecutive
2D ultrasound images using a deep neural network to
produce a plurality of estimated distances associated with
the plurality of pairs of consecutive 2D ultrasound images,
respectively;

[0015] modifying the number of 2D ultrasound images in
the series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified series of 2D
ultrasound images; and

[0016] rendering the 3D ultrasound image of the tissue
volume based on the modified series of 2D ultrasound
images.

[0017] In various embodiments, the deep neural network
is trained to classify the difference image into one of a
plurality of classes, the plurality of classes corresponding to
a plurality of distance values, respectively; and said distance
is estimated to be the distance value corresponding to the
class in which the difference image is classified into.
[0018] In various embodiments, the difference image com-
prises pixels, each pixel having a difference pixel value
determined based on a difference between pixel values of
corresponding pixels of the pair of consecutive 2D ultra-
sound images.

[0019] In various embodiments, the above-mentioned
modifying the number of 2D ultrasound images comprises
removing each 2D ultrasound image of the series of 2D
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ultrasound images that satisfies a predetermined image
removal condition; and inserting one or more additional 2D
ultrasound images in between each pair of consecutive 2D
ultrasound images that satisfies a predetermined image
insertion condition.

[0020] In various embodiments, the one or more addi-
tional 2D ultrasound images are each generated based on an
interpolation of the pair of consecutive 2D ultrasound
images in between which the one or more additional 2D
ultrasound images are to be inserted.

[0021] In various embodiments, the plurality of distance
values of the plurality of classes, respectively, do not overlap
and are each configured based on a scan resolution.

[0022] In various embodiments, each of the plurality of
distance values is configured as a multiple of the scan
resolution; the predetermined image removal condition for
removing a 2D ultrasound image is based on whether the
estimated distance associated with a first pair of consecutive
2D ultrasound images including the 2D ultrasound image is
equal to a predefined multiple of the scan resolution, and the
predetermined image insertion condition for inserting one or
more additional 2D ultrasound images in between a pair of
consecutive 2D ultrasound images is based on whether the
estimated distance associated with the pair of consecutive
2D ultrasound images is greater than the predefined multiple
of the scan resolution.

[0023] In various embodiments, the predetermined image
removal condition is further based on whether the estimated
distance associated with a second pair of consecutive 2D
ultrasound images including the 2D ultrasound image is
equal to the predefined multiple of the scan resolution,
whereby if the estimated distances associated with the first
pair and the second pair are both equal to the predefined
multiple of the scan resolution, a second distance between
the positions associated with the other 2D ultrasound image
of the first pair and the other 2D ultrasound image of the
second pair is estimated based on a classification of a second
difference image generated from the other 2D ultrasound
image of the first pair and the other 2D ultrasound image of
the second pair using the deep neural network, and the
predetermined image removal condition is further based on
whether the second estimated distance is equal to the pre-
defined multiple of the scan resolution.

[0024] In various embodiments, the number of additional
2D ultrasound images generated is based on the number of
times the estimated distance is a multiple of the scan
resolution.

[0025] Invarious embodiments, the predefined multiple of
the scan resolution is one.

[0026] According to a second aspect, there is provided a
system for generating a three-dimensional (3D) ultrasound
image of a tissue volume, the system comprising:

[0027] an ultrasound transducer;

[0028] a memory; and

[0029] at least one processor communicatively coupled to
the memory and the ultrasound transducer, and configured
to:

[0030] generate a series of two-dimensional (2D) ultra-
sound images of the tissue volume associated with a plu-
rality of positions, respectively, along a scanning direction
of the tissue volume based on a series of ultrasound waves
acquired by the ultrasound transducer at the plurality of
positions;
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[0031] estimate, for each pair of consecutive 2D ultra-
sound images of the series of 2D ultrasound images, a
distance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classification
of a difference image generated from the pair of consecutive
2D ultrasound images using a deep neural network to
produce a plurality of estimated distances associated with
the plurality of pairs of consecutive 2D ultrasound images,
respectively;

[0032] modify the number of 2D ultrasound images in the
series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified set of 2D ultra-
sound images; and

[0033] render the 3D ultrasound image of the tissue vol-
ume based on the modified series of 2D ultrasound images.
[0034] In various embodiments, the deep neural network
is trained to classify the difference image into one of a
plurality of classes, the plurality of classes corresponding to
a plurality of distance values, respectively; and said distance
is estimated to be the distance value corresponding to the
class in which the difference image is classified into.
[0035] In various embodiments, the difference image com-
prises pixels, each pixel having a difference pixel value
determined based on a difference between pixel values of
corresponding pixels of the pair of consecutive 2D ultra-
sound images.

[0036] In various embodiments, the above-mentioned
modify the number of 2D ultrasound images comprises
removing each 2D ultrasound image of the series of 2D
ultrasound images that satisfies a predetermined image
removal condition; and inserting one or more additional 2D
ultrasound images in between each pair of consecutive 2D
ultrasound images that satisfies a predetermined image
insertion condition.

[0037] In various embodiments, the one or more addi-
tional 2D ultrasound images are each generated based on an
interpolation of the pair of consecutive 2D ultrasound
images in between which the one or more additional 2D
ultrasound images are to be inserted.

[0038] In various embodiments, the plurality of distance
values of the plurality of classes, respectively, do not overlap
and are each configured based on a scan resolution.

[0039] In various embodiments, each of the plurality of
distance values is configured as a multiple of the scan
resolution, the predetermined image removal condition for
removing a 2D ultrasound image is based on whether the
estimated distance associated with a first pair of consecutive
2D ultrasound images including the 2D ultrasound image is
equal to a predefined multiple of the scan resolution, and the
predetermined image insertion condition for inserting one or
more additional 2D ultrasound images in between a pair of
consecutive 2D ultrasound images is based on whether the
estimated distance associated with the pair of consecutive
2D ultrasound images is greater than the predefined multiple
of the scan resolution.

[0040] In various embodiments, the predetermined image
removal condition is further based on whether the estimated
distance associated with a second pair of consecutive 2D
ultrasound images including the 2D ultrasound image is
equal to the predefined multiple of the scan resolution,
whereby if the estimated distances associated with the first
pair and the second pair are both equal to the predefined
multiple of the scan resolution, a second distance between
the positions associated with the other 2D ultrasound image
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of the first pair and the other 2D ultrasound image of the
second pair is estimated based on a classification of a second
difference image generated from the other 2D ultrasound
image of the first pair and the other 2D ultrasound image of
the second pair using the deep neural network, and the
predetermined image removal condition is further based on
whether the second estimated distance is equal to the pre-
defined multiple of the scan resolution.

[0041] In various embodiments, the number of additional
2D ultrasound images generated is based on the number of
times the estimated distance is a multiple of the scan
resolution.

[0042] Invarious embodiments, the predefined multiple of
the scan resolution is one.

[0043] In various embodiments, the ultrasound transducer
is installed in a frechand ultrasound probe.

[0044] According to a third aspect, there is provided a
computer program product, embodied in one or more non-
transitory computer-readable storage mediums, comprising
instructions executable by at least one processor to perform
a method for generating a three-dimensional (3D) ultrasound
image of a tissue volume, the method comprising:

[0045] generating a series of two-dimensional (2D) ultra-
sound images of the tissue volume associated with a plu-
rality of positions, respectively, along a scanning direction
of the tissue volume;

[0046] estimating, for each pair of consecutive 2D ultra-
sound images of the series of 2D ultrasound images, a
distance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classification
of a difference image generated from the pair of consecutive
2D ultrasound images using a deep neural network to
produce a plurality of estimated distances associated with
the plurality of pairs of consecutive 2D ultrasound images,
respectively;

[0047] modifying the number of 2D ultrasound images in
the series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified set of 2D ultra-
sound images; and

[0048] rendering the 3D ultrasound image of the tissue
volume based on the modified series of 2D ultrasound
images.

BRIEF DESCRIPTION OF THE DRAWINGS

[0049] The non-limiting embodiments will be better
understood and readily apparent to one of the ordinary skill
in the art from the following written description, by way of
example only, and in conjunction with the drawings, in
which:

[0050] FIG. 1 depicts a schematic flow diagram of a
method for generating a 3D ultrasound image of a tissue
volume according to various embodiments;

[0051] FIG. 2 depicts a schematic block diagram of a
system for generating a 3D ultrasound image of a tissue
volume according to various embodiments, such as corre-
sponding to the method as depicted in FIG. 1;

[0052] FIG. 3 depicts a schematic block diagram of an
exemplary computer system which may be used to realize or
implement the system for generating a 3D ultrasound image
of a tissue volume according to various embodiments, such
as the system as depicted in FIG. 2;

[0053] FIG. 4 depicts an example series of 2D ultrasound
images of a tissue volume associated with a plurality of
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positions, respectively, along a scanning direction of the
tissue volume which are generated according to various
example embodiments;

[0054] FIG. 5 depicts an overview of an example method
for generating a 3D ultrasound image according to various
example embodiments;

[0055] FIG. 6 depicts an overview of steps/operations
performed by a distance predictor for estimating a distance
between the positions associated with a pair of consecutive
2D ultrasound images according to various example
embodiments;

[0056] FIG. 7 depicts a flow diagram of a method of
modifying the number of 2D ultrasound images in a series
of 2D ultrasound images based on a series of estimated
distances to produce a modified series of 2D ultrasound
images according to various example embodiments;

[0057] FIG. 8 depicts an example insertion of interpolated
2D ultrasound images in between a pair of 2D ultrasound
images according to various example embodiments;

[0058] FIG. 9 depicts an example removal of a 2D ultra-
sound image in between a pair of 2D ultrasound images
according to various example embodiments; and

[0059] FIGS. 10A and 10B depict an example overlay of
3D segmentation meshes obtained based on a modified 2D
sweep and an unmodified 2D sweep according to various
example embodiments.

DETAILED DESCRIPTION

[0060] Various embodiments provide a method (com-
puter-implemented method) and a system including a
memory and at least one processor communicatively
coupled to the memory) for generating a three-dimensional
(3D) ultrasound image of a tissue volume (e.g., including
one or more internal anatomical structures), and more par-
ticularly, with respect to a freehand ultrasound scanning of
the tissue volume using an ultrasound probe or transducer
(e.g., an ultrasound probe or transducer configured to cap-
ture a series of two-dimensional (2D) ultrasound images
associated with a plurality of positions along a scanning
direction, which may herein be simply referred to as a 2D
ultrasound probe or transducer). For example, the internal
anatomical structure may be an organ of the human or
animal body, such as but not limited to, any one or more of
hip-bone, elbow, carotid artery, heart, lung(s), stomach,
liver, and kidney(s).

[0061] As mentioned in the background, 2D ultrasound
imaging is safe and inexpensive. However, acquiring a
number of 2D ultrasound images and then mentally visual-
izing them to form a subjective impression of the 3D
anatomy and pathology may be time consuming, inefficient
and inaccurate, leading to outcome variability and incorrect
diagnosis. Therefore, it may be desirable to obtain a 3D
ultrasound image of the tissue volume to allow a better
depiction of the tissue volume (e.g., including one or more
internal anatomical structures), as well as facilitating vol-
ume analysis such that accurate and useful diagnostic infor-
mation may be obtained from the 3D ultrasound image.
However, in general, conventional 3D ultrasound probes
configured to perform direct 3D ultrasound scanning of a
tissue volume are relatively bulky and expensive.

[0062] Accordingly, various embodiments provide a
method and a system for generating a 3D ultrasound image
of'a tissue volume based on a series of 2D ultrasound images
of the tissue volume acquired from scanning the tissue
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volume using a 2D ultrasound transducer, and more particu-
larly, with respect to a freehand ultrasound scanning using a
2D ultrasound transducer. A 3D ultrasound image of the
tissue volume may then be rendered based on the series of
2D ultrasound images (or more specifically, a modified
series of 2D ultrasound images as will be described later
according to various embodiments to, for example, improve
the image resolution in an axial dimension of the 3D
ultrasound image rendered). Such an approach of rendering
a 3D ultrasound image (3D ultrasound volume) advanta-
geously reduces cost as it avoids the use of a relatively
expensive 3D ultrasound probe to scan the tissue volume.
Moreover, the 3D ultrasound images generated according to
various embodiments have advantageously been found to be
satisfactorily similar in quality to the 3D ultrasound images
generated from conventional 3D ultrasound probes (i.e.,
direct 3D ultrasound scanning using a 3D ultrasound probe).

[0063] FIG. 1 depicts a schematic flow diagram of a
method 100 (computer-implemented method) for generating
a 3D ultrasound image of a tissue volume (including one or
more internal anatomical structures) using at least one
processor. The method 100 comprises a step 102 of gener-
ating a series (or sequence or set) of 2D ultrasound images
(which may also be interchangeably referred to as a cross-
sectional image, an image plane, an image frame/slice or a
B-mode/B-scan image) of the tissue volume associated with
a plurality of positions, respectively along a scanning direc-
tion of the tissue volume. In this regard, the series of 2D
ultrasound images may be respectively generated based on
a series of ultrasound waves acquired by an ultrasound
transducer positioned at the plurality of positions with
respect to a plurality of time instances. The method 100
further comprises a step 104 of estimating, for each pair of
consecutive 2D ultrasound images (each pair of immediately
adjacent or neighbouring 2D ultrasound images) of the
series of 2D ultrasound images, a distance between the
positions associated with the pair of consecutive 2D ultra-
sound images based on a classification of a difference image
generated from the pair of comsecutive 2D ultrasound
images using a deep neural network to produce a plurality of
estimated distances associated with the plurality of pairs of
consecutive 2D ultrasound images, respectively; a step 106
of modifying the number of 2D ultrasound images in the
series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified series of 2D
ultrasound images; and a step 108 of rendering the 3D
ultrasound image of tissue volume based on the modified
series of 2D ultrasound images.

[0064] In various embodiments, in relation to step 102, an
ultrasound transducer configured to emit ultrasound waves
with respect to a plane (e.g., a cross-sectional plane perpen-
dicular to the scanning direction) of a tissue volume and
acquire the ultrasound waves reflected from such a plane of
the tissue volume may be used to acquire a series of
ultrasound waves (in time series) at a plurality of positions
along a scanning direction of the tissue volume. Such an
ultrasound transducer may be referred to as a 2D ultrasound
transducer.

[0065] As mentioned hereinbefore, various embodiments
are particularly directed to a freehand ultrasound scanning of
the tissue volume. In this regard, a 2D ultrasound transducer
(or a portable handheld ultrasound probe comprising a 2D
ultrasound transducer) may be moved by an operator along
a scanning direction of the tissue volume (e.g., across a
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length of the tissue volume along an axis) so as to perform
ultrasound scanning of the tissue volume whereby a series of
ultrasound waves are acquired by the 2D ultrasound trans-
ducer at a plurality of positions, respectively, along the
scanning direction with respect to a plurality of time
instances. The ultrasound waves received at each time
instance (at the corresponding position) may then be pro-
cessed to generate a 2D ultrasound image having associated
therewith the corresponding position in a manner known in
the art and thus need not be described herein in detail.
Accordingly, a series of 2D ultrasound images of the tissue
volume may be acquired, each 2D ultrasound image having
an associated position (e.g., tagged or labelled with an
associated position information), for example, correspond-
ing to the position of the 2D ultrasound transducer at which
the ultrasound waves (based on which the 2D ultrasound
image is generated) were acquired or corresponding to the
position/location along the tissue volume at which the
ultrasound waves acquired by 2D ultrasound transducer
were reflected from.

[0066] The 2D ultrasound transducer may be any conven-
tional 2D ultrasound transducer configured to emit and
acquire ultrasound waves with respect to a plane of a tissue
volume and thus need not be described herein in detail. For
example and without limitation, a conventional 2D ultra-
sound transducer may comprise an array of transducer
elements configured to emit and acquire ultrasound waves
with respect to a plane of a tissue volume. Therefore, it will
be appreciated by a person skilled in the art that the present
is not limited to any particular type of 2D ultrasound
transducer.

[0067] In relation to step 104, for each pair of consecutive
2D ultrasound images of the plurality of 2D ultrasound
images, a distance therebetween (which may also be referred
to as a separation, a relative distance or a Euclidean dis-
tance) is estimated, that is, the distance between the posi-
tions associated with the pair of consecutive 2D ultrasound
images is estimated. The distance may be along an axis
parallel to the scanning direction, or along an axis perpen-
dicular to the 2D ultrasound image. In particular, a differ-
ence image is generated from the pair of consecutive 2D
ultrasound images, and the distance between the positions
associated with the pair of consecutive 2D ultrasound
images is estimated based on a classification of such a
difference image using a deep neural network. In this
manner, the distance between the two consecutive 2D ultra-
sound images can advantageously be estimated (or deter-
mined or predicted) without utilizing position tracking,
which thus overcomes, or at least ameliorates, various
deficiencies associated with conventional frechand scanning
approaches that require position tracking. Furthermore, gen-
erating a difference image and then estimating the distance
based on a classification of such a difference image using a
deep neural network has been found to be able to produce a
sufficiently accurate estimate of the actual distance (e.g.,
accurate to the resolution of the ultrasound transducer).

[0068] In various embodiments, in relation to step 106, the
number of 2D ultrasound images in the series of 2D ultra-
sound images generated in step 102 is then modified based
on the plurality of estimated distances. In various embodi-
ments, consecutive 2D ultrasound images that are deter-
mined to be “too close” to each other (e.g., less than to a first
predefined threshold, such as the resolution of the ultrasound
transducer) may have an image thereof removed. In various
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embodiments, consecutive 2D ultrasound images that are
determined to be “too far” apart (e.g., a second predefined
threshold or greater, such as twice the resolution of the
ultrasound transducer or greater) may have one or more
additional 2D ultrasound images (e.g., each being interpo-
lated from the two consecutive 2D ultrasound images)
inserted therebetween. In this manner, for example, the
modified series of 2D ultrasound images would advanta-
geously be substantially evenly or regularly spaced apart
(e.g., spaced apart by the resolution of the ultrasound
transducer), which has been found to result in a significant
improvement in the quality of the 3D ultrasound image of
the tissue volume rendered in step 108 based on such a
modified series of 2D ultrasound images.

[0069] In relation to step 108, various conventional 3D
image rendering techniques for rendering a 3D image based
on a series of 2D images are known in the art and thus need
not be described herein. That is, it can be understood by a
person skilled in the art that any 3D image rendering
technique known in the art as desired or as appropriate may
be applied in step 108 to render the 3D ultrasound image
based on a series of 2D ultrasound images, and the non-
limiting embodiments are not limited to any particular type
of 3D image rendering technique or system.

[0070] In various embodiments, the deep neural network
is trained to classify the difference image into one of a
plurality of classes, the plurality of classes corresponding to
a plurality of distance values, respectively. In this regard, the
distance is estimated to be the distance value corresponding
to the class in which the difference image is classified into.
For example, the plurality of classes may correspond to a
plurality of machine learning classifiers trained for classi-
fying a difference image (as an input) into one of the
plurality of classes, and thus, into the corresponding one of
the distance values (as an output). In various embodiments,
the deep neural network may be trained based on a training
dataset (e.g., a training sample) comprising a plurality of
labelled difference images, each labelled difference image
being labelled (or tagged) with a predetermined one of a
plurality of classes which the difference image belongs to.
For example, each labelled difference image may be
obtained by generating a difference image from two 2D
ultrasound images obtained at a known distance apart, and
then labelling the difference image generated with such a
known distance to obtain the labelled difference image. In
various embodiments, such a known distance may be spe-
cifically configured (or set) or predefined by acquiring the
two 2D ultrasound images at the predefined distance apart,
such as at a multiple of the resolution of the ultrasound
transducer. For example, the above-mentioned two 2D ultra-
sound images may be obtained using a 2D ultrasound
transducer by positioning the 2D ultrasound transducer at
two positions apart corresponding to the predefined distance
at two time instances or a 3D ultrasound transducer by
extracting two 2D ultrasound images at two positions apart
corresponding to the predefined distance from the 3D ultra-
sound image volume acquired by the 3D ultrasound trans-
ducer.

[0071] It will be appreciated by a person skilled in the art
that, in general, a larger number of labelled difference
images in the training dataset may result in a more accurate
deep neural network in classifying future difference image
thereto since there is a larger pool of training sample to train
the deep neural network. Therefore, it will be appreciated by



US 2022/0008041 Al

a person skilled in the art that the non-limiting embodiments
are not limited to any specific number of labelled difference
images in the training dataset, and any number of labelled
difference images may be included in the training dataset as
desired or as appropriate.

[0072] TItwill also be appreciated by a person skilled in the
art that a deep neural network can be trained based on a
training dataset in accordance with various conventional
deep learning techniques known in the art, and thus, it is not
necessary to describe herein in detail on specifically how a
deep neural network is trained based on a training dataset, of
which is known in the art. Accordingly, it will be appreciated
by a person skilled in the art that the non-limiting embodi-
ments are not limited to any specific type of deep neural
network, as long as the deep neural network is capable of
being trained to classify a difference image into one of a
plurality of classes, the plurality of classes corresponding to
a plurality of distance values, respectively. By way of
example only and without limitation, various types of deep
neural network include a convolutional neural network
(CNN), a fully connected network (FCN), a Capsule net-
work and so on. Another method may be to extract features
from the difference image and use other types of classifiers,
such as but not limited to, SVM, Random Forests and so on.
[0073] Invarious embodiments, the difference image com-
prises pixels, each pixel having a difference pixel value
determined based on a difference between pixel values of
corresponding pixels of the pair of consecutive 2D ultra-
sound images, that is, between a pixel value of a corre-
sponding pixel of one of the pair of consecutive 2D ultra-
sound images and a pixel value of a corresponding pixel of
the other one of the pair of consecutive 2D ultrasound
images. For example, a difference image of two images may
be generated by subtracting one image from the other image
of the two images.

[0074] In various embodiments, the step 106 of modifying
the number of 2D ultrasound images comprises removing
each 2D ultrasound image of the series of 2D ultrasound
images that satisfies a predetermined image removal condi-
tion; and inserting one or more additional 2D ultrasound
images in between each pair of consecutive 2D ultrasound
images that satisfies a predetermined image insertion con-
dition.

[0075] In various embodiments, the one or more addi-
tional 2D ultrasound images are each generated based on an
interpolation of the pair of consecutive 2D ultrasound
images in between which the one or more additional 2D
ultrasound images are to be inserted.

[0076] In various embodiments, the plurality of distance
values of the plurality of classes, respectively, do not overlap
(are each different from one another) and are each config-
ured based on a scan resolution (e.g., a scan resolution of the
3D ultrasound transducer used to acquire one or more 3D
ultrasound volumes based on which labelled difference
images in a training dataset are obtained). In various
embodiments, each of the plurality of distance values may
be configured as a multiple of the scan resolution. In various
embodiments, the number of classes may be determined
based on a distance range desired to be covered by the deep
neural network and the scan resolution. By way of an
example only and without limitation, if the distance range
desired to be covered is 0 to 1 cm and the scan resolution is
0.2 mm, 5 classes may be configured, namely, a first class
corresponding to 1x the scan resolution (e.g., 0.2 mm), a
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second class associated with 2x the scan resolution (e.g., 0.4
mm), a third class associated with 3x the scan resolution
(e.g., 0.6 mm) and so on at an interval of 0.2 mm up to a 5%
class associated with 5x the scan resolution. In various
embodiments, if it is desired to reduce the number of classes
(e.g., to reduce complexity), the interval may be increased
such as to be at a larger multiple of the scan resolution, e.g.,
0.4 mm, 0.6 mm, and so on.

[0077] In various embodiments, the scan resolution of the
ultrasound transducer may be indicated by the manufacturer
or may be determined by examining or experimenting the
ultrasound transducer using a pre-calibrated ultrasound
phantom.

[0078] In various embodiments, the predetermined image
removal condition for removing a 2D ultrasound image
(e.g., i” image) is based on whether the estimated distance
associated with a first pair of consecutive 2D ultrasound
images (e.g., (i-1)" image and the i”* image) including the
2D ultrasound image (e.g., the i image) is equal to a
predefined multiple of the scan resolution. In various
embodiments, the predefined multiple of the scan resolution
is one.

[0079] In various embodiments, the predetermined image
removal condition is further based on whether the estimated
distance associated with a second pair of consecutive 2D
ultrasound images (e.g., the i”* image and (i+1)* image)
including the 2D ultrasound image (e.g., the i” image) is
equal to the predefined multiple of the scan resolution. In
this regard, if the estimated distances associated with the
first pair and the second pair are both equal to the predefined
multiple of the scan resolution, a distance (which may be
referred to as a second distance) between the positions
associated with the other 2D ultrasound image (e.g., the
(i-1)" image) of the first pair and the other 2D ultrasound
image (e.g., the (i+1)” image) of the second pair is estimated
based on a classification of a difference image (which may
be referred to as a second difference image) generated from
the other 2D ultrasound image (e.g., the (i-1) image) of the
first pair and the other 2D ultrasound image (e.g., the (i-1)"
image) of the second pair using the deep neural network. In
this regard, the predetermined image removal condition is
further based on whether the second estimated distance is
equal to the predefined multiple of the scan resolution. For
example, if both the first pair and the successive second pair
are each determined to have an estimated distance of 1x the
scan resolution, the distance between the (i-1)” image and
the (i+1)” image is further estimated such that if such a
distance is estimated to be 1x the scan resolution, the
common 2D ultrasound image (e.g., the i” image) amongst
the first and second pair may be removed, for example, as
being redundant or unnecessary. It will be appreciated by a
person skilled in the art that as the deep neural network is
trained to classify the difference image to the closest class,
for example, a difference image associated with a distance
value in between 0 and 1.5x the scan resolution may be
classified into the first class corresponding to 1x the scan
resolution, a difference image associated with a distance
value in between 1.5 and 2.5x the scan resolution may be
classified into the second class corresponding to 2x the scan
resolution, and so on.

[0080] In various embodiments, the predetermined image
insertion condition for inserting one or more additional 2D
ultrasound images in between a pair of consecutive 2D
ultrasound images is based on whether the estimated dis-
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tance associated with the pair of consecutive 2D ultrasound
images is greater than the predefined multiple of the scan
resolution. In various embodiments, the number of addi-
tional 2D ultrasound images generated is based on the
number of times the estimated distance is a multiple of the
scan resolution. By way of an example and without limita-
tion, if the estimated distance associated with a pair of
consecutive 2D ultrasound images is determined to be ‘m’
times greater than the scan resolution, the number of addi-
tional 2D ultrasound images inserted in between the pair
may be ‘m-1°, and more specifically, one additional 2D
ultrasound image at each multiple (i.e., 1 to ‘m-1") of the
scan resolution such that the large separation between the
pair of consecutive 2D ultrasound images may be evenly
inserted with additional 2D ultrasound images.

[0081] In various embodiments, the predefined multiple of
the scan resolution is one. In various other embodiments, the
predefined multiple may be other integer as appropriate,
such as an integer from 2 to 10.

[0082] FIG. 2 depicts a schematic block diagram of a
system 200 for generating a 3D ultrasound image of a tissue
volume according to various embodiments, such as corre-
sponding to the method 100 for generating a 3D ultrasound
image of a tissue volume using at least one processor as
described hereinbefore according to various embodiments.
[0083] The system 200 comprises an ultrasound trans-
ducer 202, a memory 204, and at least one processor 206
communicatively coupled to the memory 204 and the ultra-
sound transducer 202, and configured to: generate a series of
2D ultrasound images of the tissue volume associated with
a plurality of positions, respectively, along a scanning direc-
tion of the tissue volume based on a series of ultrasound
waves acquired by the ultrasound transducer at the plurality
of positions; estimate, for each pair of consecutive 2D
ultrasound images of the plurality of 2D ultrasound images,
a distance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classification
of a difference image generated from the pair of consecutive
2D ultrasound images using a deep neural network to
produce a plurality of estimated distances associated with
the plurality of pairs of consecutive 2D ultrasound images,
respectively; modify the number of 2D ultrasound images in
the series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified set of 2D ultra-
sound images; and render the 3D ultrasound image of the
tissue volume based on the modified series of 2D ultrasound
images.

[0084] It will be appreciated by a person skilled in the art
that the at least one processor 206 may be configured to
perform the required functions or operations through set(s)
of instructions (e.g., software modules) executable by the at
least one processor 206 to perform the required functions or
operations. Accordingly, as shown in FIG. 2, the system 200
may further comprise a 2D ultrasound image generator 208
configured to generate a series of 2D ultrasound images of
the tissue volume associated with a plurality of positions,
respectively, along a scanning direction of the tissue volume
based on a series of ultrasound waves acquired by the
ultrasound transducer at the plurality of positions; a distance
estimator (or distance predictor) 210 configured to estimate,
for each pair of consecutive 2D ultrasound images of the
plurality of 2D ultrasound images, a distance between the
positions associated with the pair of consecutive 2D ultra-
sound images based on a classification of a difference image
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generated from the pair of comsecutive 2D ultrasound
images using a deep neural network to produce a plurality of
estimated distances associated with the plurality of pairs of
consecutive 2D ultrasound images, respectively; an image
series modifier 212 configured to modity the number of 2D
ultrasound images in the series of 2D ultrasound images
based on the plurality of estimated distances to produce a
modified series of 2D ultrasound images; and a 3D image
generator 214 configured to render the 3D ultrasound image
of the internal anatomical structure based on the modified
series of 2D ultrasound images.

[0085] It will be appreciated by a person skilled in the art
that the above-mentioned modules are not necessarily sepa-
rate modules, and one or more modules may be realized by
or implemented as one functional module (e.g., a circuit or
a software program) as desired or as appropriate without
deviating from the scope of the present claims. For example,
the 2D ultrasound image generator 208, the distance esti-
mator 210, the image series modifier 212, and/or the 3D
image generator 214 may be realized (e.g., compiled
together) as one executable software program (e.g., software
application or simply referred to as an “app”), which for
example may be stored in the memory 204 and executable
by the at least one processor 206 to perform the functions/
operations as described herein according to various embodi-
ments.

[0086] In various embodiments, the system 200 corre-
sponds to the method 100 as described hereinbefore with
reference to FIG. 1, therefore, various functions or opera-
tions configured to be performed by the least one processor
206 may correspond to various steps of the method 100
described hereinbefore according to various embodiments,
and thus need not be repeated with respect to the system 200
for clarity and conciseness. In other words, various embodi-
ments described herein in context of the methods are analo-
gously valid for the respective systems or devices, and vice
versa.

[0087] For example, in various embodiments, the memory
204 may have stored therein the 2D ultrasound image
generator 208, the distance estimator 210, the image series
modifier 212 and/or the 3D image generator 214, which
respectively correspond to various steps of the method 100
as described hereinbefore, which are executable by the at
least one processor 206 to perform the corresponding func-
tions/operations as described herein.

[0088] A computing system, a controller, a microcon-
troller or any other system providing a processing capability
may be provided according to various embodiments in the
present disclosure. Such a system may be taken to include
one or more processors and one or more computer-readable
storage mediums. For example, the system 200 described
hereinbefore may include a processor (or controller) 206 and
a computer-readable storage medium (or memory) 204
which are for example used in various processing carried out
therein as described herein. A memory or computer-readable
storage medium used in various embodiments may be a
volatile memory, for example a DRAM (Dynamic Random
Access Memory) or a non-volatile memory, for example a
PROM (Programmable Read Only Memory), an EPROM
(Erasable PROM), EEPROM (Electrically Erasable
PROM), or a flash memory, e.g., a floating gate memory, a
charge trapping memory, an MRAM (Magnetoresistive Ran-
dom Access Memory) or a PCRAM (Phase Change Random
Access Memory).
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[0089] In various embodiments, a “circuit” may be under-
stood as any kind of a logic implementing entity, which may
be special purpose circuitry or a processor executing soft-
ware stored in a memory, firmware, or any combination
thereof. Thus, in an embodiment, a “circuit” may be a
hard-wired logic circuit or a programmable logic circuit
such as a programmable processor, e.g., a MiCrOProcessor
(e.g., a Complex Instruction Set Computer (CISC) processor
or a Reduced Instruction Set Computer (RISC) processor).
A “circuit” may also be a processor executing software, e.g.,
any kind of computer program, e.g., a computer program
using a virtual machine code, e.g., Java. Any other kind of
implementation of the respective functions which will be
described in more detail below may also be understood as a
“circuit” in accordance with various alternative embodi-
ments. Similarly, a “module” may be a portion of a system
according to various embodiments and may encompass a
“circuit” as above, or may be understood to be any kind of
a logic-implementing entity therefrom.

[0090] Some portions of the present disclosure are explic-
itly or implicitly presented in terms of algorithms and
functional or symbolic representations of operations on data
within a computer memory. These algorithmic descriptions
and functional or symbolic representations are the means
used by those skilled in the data processing arts to convey
most effectively the substance of their work to others skilled
in the art. An algorithm is here, and generally, conceived to
be a self-consistent sequence of steps leading to a desired
result. The steps are those requiring physical manipulations
of physical quantities, such as electrical, magnetic or optical
signals capable of being stored, transferred, combined, com-
pared, and otherwise manipulated.

[0091] Unless specifically stated otherwise, and as appar-
ent from the following, it will be appreciated that throughout
the present specification, discussions utilizing terms such as
“generating”, “estimating”, “modifying”, “rendering” or the
like, refer to the actions and processes of a computer system,
or similar electronic device, that manipulates and transforms
data represented as physical quantities within the computer
system into other data similarly represented as physical
quantities within the computer system or other information
storage, transmission or display devices.

[0092] The present specification also discloses a system, a
device or an apparatus for performing the operations/func-
tions of the methods described herein. Such a system, device
or apparatus may be specially constructed for the required
purposes, or may comprise a general purpose computer or
other device selectively activated or reconfigured by a
computer program stored in the computer. The algorithms
presented herein are not inherently related to any particular
computer or other apparatus. Various general-purpose
machines may be used with computer programs in accor-
dance with the teachings herein. Alternatively, the construc-
tion of more specialized apparatus to perform the required
method steps may be appropriate.

[0093] In addition, the present specification also at least
implicitly discloses a computer program or software/func-
tional module, in that it would be apparent to the person
skilled in the art that the individual steps of the methods
described herein may be put into effect by computer code.
The computer program is not intended to be limited to any
particular programming language and implementation
thereof. It will be appreciated that a variety of programming
languages and coding thereof may be used to implement the
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teachings of the disclosure contained herein. Moreover, the
computer program is not intended to be limited to any
particular control flow. There are many other variants of the
computer program, which can use different control flows
without departing from the scope of the claims. It will be
appreciated by a person skilled in the art that various
modules described herein (e.g., the 2D ultrasound image
generator 208, the distance estimator 210, the image series
modifier 212, and/or the 3D image generator 214) may be
software module(s) realized by computer program(s) or
set(s) of instructions executable by a computer processor to
perform the required functions, or may be hardware module
(s) being functional hardware unit(s) designed to perform
the required functions. It will also be appreciated that a
combination of hardware and software modules may be
implemented.

[0094] Furthermore, one or more of the steps of a com-
puter program/module or method described herein may be
performed in parallel rather than sequentially. Such a com-
puter program may be stored on any computer readable
medium. The computer readable medium may include stor-
age devices such as magnetic or optical disks, memory
chips, or other storage devices suitable for interfacing with
a general purpose computer. The computer program when
loaded and executed on such a general-purpose computer
effectively results in an apparatus that implements the steps
of the methods described herein.

[0095] In various embodiments, there is provided a com-
puter program product, embodied in one or more computer-
readable storage mediums (non-transitory computer-read-
able storage medium), comprising instructions (e.g., the 2D
ultrasound image generator 208, the distance estimator 210,
the image set modifier 212, and/or the 3D image generator
214) executable by one or more computer processors to
perform a method 100 for generating a 3D ultrasound image
of a tissue volume as described hereinbefore with reference
to FIG. 1. Accordingly, various computer programs or
modules described herein may be stored in a computer
program product receivable by a system (e.g., a computer
system or an electronic device) therein, such as the system
200 as shown in FIG. 2, for execution by at least one
processor 206 of the system 200 to perform the required or
desired functions.

[0096] The software or functional modules described
herein may also be implemented as hardware modules. More
particularly, in the hardware sense, a module is a functional
hardware unit designed for use with other components or
modules. For example, a module may be implemented using
discrete electronic components, or it can form a portion of
an entire electronic circuit such as an Application Specific
Integrated Circuit (ASIC). Numerous other possibilities
exist. Those skilled in the art will appreciate that the
software or functional module(s) described herein can also
be implemented as a combination of hardware and software
modules.

[0097] It will be appreciated by a person skilled in the art
that the system 200 may made up of separate units or as one
integrated unit. For example, in various embodiments, the
system 200 may comprise a computer system including the
one or more processor 206, the memory 204, the 2D
ultrasound image generator 208, the distance estimator 210,
the image set modifier 212, and the 3D image generator 214,
and a separate ultrasound probe including the ultrasound
transducer 202 communicatively coupled to the computer
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system. In other words, the separate ultrasound probe may
acquire a series of ultrasound waves with respect to a tissue
volume, and the series of ultrasound waves may then be
transmitted (e.g., based on wireless or wired communica-
tion) to the computer system at a different location for
performing the method of generating a 3D ultrasound image
of the tissue volume as described hereinbefore with refer-
ence to FIG. 1. In various other embodiments, the system
200 may correspond to, or may be embodied as, an ultra-
sound probe, including the ultrasound transducer 202, the
one or more processor 206, the memory 204, the 2D
ultrasound image generator 208, the distance estimator 210,
the image set modifier 212, and the 3D image generator 214.

[0098] In various embodiments, the above-mentioned
computer system may be realized by any computer system
(e.g., portable or desktop computer system), such as a
computer system 300 as schematically shown in FIG. 3 as an
example only and without limitation. Various methods/steps
or functional modules (e.g., the 2D ultrasound image gen-
erator 208, the distance estimator 210, the image set modi-
fier 212, and/or the 3D image generator 214) may be
implemented as software, such as a computer program being
executed within the computer system 300, and instructing
the computer system 300 (in particular, one or more pro-
cessors therein) to conduct the methods/functions of various
embodiments described herein. The computer system 300
may comprise a computer module 302, input modules, such
as a keyboard 304 and a mouse 306, and a plurality of output
devices such as a display 308, and a printer 310. The
computer module 302 may be connected to a computer
network 312 via a suitable transceiver device 314, to enable
access to e.g. the Internet or other network systems such as
Local Area Network (LAN) or Wide Area Network (WAN).
The computer module 302 in the example may include a
processor 318 for executing various instructions, a Random
Access Memory (RAM) 320 and a Read Only Memory
(ROM) 322. The computer module 302 may also include a
number of Input/Output (I/0) interfaces, for example I/O
interface 324 to the display 308, and I/O interface 326 to the
keyboard 304. The components of the computer module 302
typically communicate via an interconnected bus 328 and in
a manner known to the person skilled in the relevant art.

[0099] It will be appreciated by a person skilled in the art
that the terminology used herein is for the purpose of
describing various embodiments only and is not intended to
be limiting. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

[0100] Various example embodiments will be described
hereinafter by way of examples only and not limitations. It
will be appreciated by a person skilled in the art that the
present invention may, however, be embodied in various
different forms or configurations and should not be con-
strued as limited to the example embodiments set forth
hereinafter. Rather, these example embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the present invention to
those skilled in the art.
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[0101] Various example embodiments relate to ultrasound
imaging, and more particularly, to the reconstruction of a
complete 3D ultrasound volume from freehand 2D ultra-
sound sweep scans. The 3D ultrasound images may be
constructed (rendered) by precisely estimating the distance
between each pair of consecutive 2D ultrasound images
(which may also be referred to as 2D slices or frames)
obtained using a deep learning neural network specifically
trained for distance prediction. In this regard, it is noted that
estimation of the inter-scan distance is non-trivial for free-
hand scanning without position tracking as there is no
external point of reference for the ultrasound image, unlike
for example, Magnetic Resonance Imaging (MRI).

[0102] Invarious example embodiments, there is provided
a method for generating a 3D ultrasound image of a tissue
volume without utilizing position tracking (which may also
be referred as being sensorless) and speckle decorrelation. In
contrast, various example embodiments directly estimate the
physical distance between a pair of consecutive 2D ultra-
sound images using a convolutional neural network (CNN)
and reconstructs a complete 3D ultrasound volume (3D
ultrasound image) from the 2D ultrasound images acquired
from the frechand 2D ultrasound sweep scans. Such an
approach significantly reduces costs as it is possible to
generate a 3D ultrasound volume using a low cost 2D
ultrasound probe instead of a relatively expensive 3D ultra-
sound probe. It has also been found that the 3D ultrasound
volumes generated according to the method according to
various example embodiments are satisfactorily similar in
quality to 3D ultrasound volumes from a 3D ultrasound
probe (i.e., direct 3D ultrasound scanning using a 3D ultra-
sound probe).

[0103] For illustration purpose only and without limita-
tion, FIG. 4 depicts an example series (or sequence or
plurality) 402 of 2D ultrasound images (e.g., 404a, 4045,
404c, 404d, 404¢) of a tissue volume associated with a
plurality of positions (e.g., 406a, 4065, 406¢, 4064, 406¢),
respectively, along a scanning direction 408 of the tissue
volume which are generated according to various example
embodiments. In this regard, the series 402 of 2D ultrasound
images are generated based on a series of ultrasound waves
acquired by the ultrasound transducer (e.g., installed in the
ultrasound probe 410) at the plurality of positions (e.g.,
406a, 4065, 406¢, 406d, 406¢) along the ultrasound probe’s
scanning direction 408.

[0104] FIG. 5 depicts an overview of an example method
500 for generating a 3D ultrasound image according to
various example embodiments. As shown in FIG. 5, the
example method 500 may include four stages (or modules),
namely, a distance prediction stage (or a distance predictor)
510, a low rate hand movement (LRHM) compensation
stage (or a LRHM compensator) 512q, a high rate hand
movement (HRHM) compensation stage (or a HRHM com-
pensator) 5125, and a 3D volume rendering stage (or a 3D
volume generator) 514. In various example embodiments,
the distance predictor 510 may correspond to the distance
estimator 210, the LRHM compensator 512a and the HRHM
compensator 5126 may correspond to the image series
modifier 212 and the 3D volume generator 514 may corre-
spond to the 3D image generator 214 as described herein-
before according to various embodiments.

[0105] The distance predictor 510 may include a CNN
trained to predict (estimate) the Euclidean distance in a
depth dimension (e.g., the Z-axis shown in FIG. 4, which is



US 2022/0008041 Al

an axis parallel to the scanning direction 408, or along an
axis perpendicular to the 2D ultrasound image) between
consecutive 2D ultrasound scans. The series 402 of 2D
ultrasound images may then be modified based on the series
(or sequence or plurality) 520 of predicted distances from
the distance predictor 510 by the LRHM compensator 512a
and the HRHM compensator 5125 to, for example, account
for variance or inconsistency in the speed of hand movement
during the ultrasound scan.

[0106] The distance predictor 510 will now be described
in further details according to various example embodi-
ments. The distance predictor 510 is configured to directly
estimate the distance between adjacent scans in the Z-direc-
tion based on a training dataset. For example, advantages
associated with the distance predictor 510 include that it
does not require additional inputs (e.g., optical flow maps
along with the original image) for estimating the distance
and that it does not make any assumptions on the structures
present in the image data input (difference image). In various
example embodiments, a difference image (e.g., pixel-wise
intensity difference image) is directly computed for each
pair of consecutive 2D ultrasound images of the series 402
of 2D ultrasound images, and such a difference image
computed is then used as an input to the distance predictor
(e.g., including a CNN) 510. Without wishing to be bound
by theory, it is found according to various embodiments that
the structure of a tissue volume (e.g., internal anatomical
structure) captured in a pair of images with a relatively large
separation may likely have a greater change compared to a
pair of images with a smaller separation. Therefore, the
difference in the pixel intensities, on average, between a pair
of' images having a relatively large separation may be larger.

[0107] For illustration purpose only and without limita-
tion, FIG. 6 depicts an overview of steps/operations per-
formed by the distance predictor 510 for estimating a
distance (d,) 602 between the positions associated with a
pair of consecutive 2D ultrasound images (604a, 6045)
according to various example embodiments. As shown in
FIG. 6, a difference image 606 is generated from the pair of
consecutive 2D ultrasound images (604a, 6045), such as a
pixel-wise intensity difference image. Subsequently, the
difference image 606 generated is input to the trained
distance predictor network (e.g., trained CNN) 608, which
then estimates and outputs the distance (d,,) 602 based on the
difference image 606 received.

[0108] In various example embodiments, the distance pre-
dictor network 608 is trained based on a training dataset
(e.g., a training sample) comprising a plurality of labelled
difference images, each labelled difference image being
labelled (or tagged) with a predetermined one of a plurality
of classes which the difference image belongs to. For
example, each labelled difference image may be obtained by
generating a difference image from a pair of 2D ultrasound
images obtained at a known distance apart, and then label-
ling the difference image generated with such a known
distance to obtain the labelled difference image. In various
example embodiments, the pair of 2D ultrasound images
may be two image slices/frames obtained at a desired
distance apart from a 3D ultrasound image obtained from
direct 3D ultrasound scanning using a 3D ultrasound probe.
For example, from the 3D ultrasound image, a set of image
slices/frames (2D ultrasound images) may be obtained at a
regular or predefined interval apart. In various example
embodiments, the predefined interval apart may be config-
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ured based on the scan resolution of the 3D ultrasound
probe, such as being configured as a multiple of the scan
resolution. In a non-limiting example embodiment, the pre-
defined interval is equal to the scan resolution. For example
and without limitation, values for the scan resolution may
range from 0.1 to 0.3 mm. However, it will be appreciated
that the non-limiting embodiments are not limited to such a
range of scan resolution as, for example, the scan resolution
may increase with improvement in technology. With the set
of image slices/frames obtained at a regular interval apart,
various pairs of 2D ultrasound images at various distances
apart (which will be a multiple of the scan resolution) may
be selected based on which corresponding labelled differ-
ence images may then be generated for inclusion in the
training dataset for training the distance predictor network
608. It will be appreciated by a person skilled in the art that
a number of 3D ultrasound images may be obtained and
labelled difference images may be derived from each 3D
ultrasound image in the same manner as described above for
inclusion in the training dataset.

[0109] By way of an example only and without limitation,
the distance predictor network may be trained to estimate
distance into one of six non-overlapping classes as shown in
Table 1 below.

TABLE 1

Classes associated with a Distance Predictor Network
(e.g.. CNN) and Corresponding Distance Values

Distance Values

Class in terms of Scan
Index Resolution (r)

1 1xr

2 2xr

3 3xr

4 4xr

5 S5xr

6 6 x r or above

[0110] In contrast, conventional techniques of determining
the distance between a pair of consecutive images may
utilize physical measured distances as ground truth, which
require additional position sensor(s) or measurement arm(s).
In such conventional techniques, the accuracy of the ground
truth distances depend on the accuracy of the position
sensors. In comparison to such conventional techniques, for
example, the method of obtaining the distance between a
pair of consecutive images according to various example
embodiments is simpler (e.g., does not require tracking
hardware) and more reliable (e.g., as its accuracy may be
determined by the scan resolution of the 3D ultrasound
probe, which may have a scan resolution of about 0.1 mm).
[0111] The LRHM compensator 512¢ and the HRHM
compensator 5125 will now be described in further details
according to various example embodiments. FIG. 7 depicts
a flow diagram of a method 700 of modifying the number of
2D ultrasound images in the series 402 of 2D ultrasound
images based on the series 520 of estimated distances to
produce a modified series 530 of 2D ultrasound images
according to various example embodiments. At 704, the
sequence/series 520 of predicted/estimated distances
obtained from the distance predictor 510 may be analyzed
sequentially. For example, it is determined whether a first
predicted distance (d,,) of the series 520 of predicted dis-
tances is equal to 1 (which is the predefined multiple of the
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scan resolution in the example embodiment of FIG. 7). If the
first predicted distance is not equal to 1 (and thus, the
predicted distance is an integer greater than 1), at 706, the
HRHM compensator 5126 may be activated to insert addi-
tional 2D ultrasound image(s) in between the corresponding
pair of consecutive 2D ultrasound images. In a non-limiting
embodiment, the number (‘a’) of additional 2D ultrasound
images inserted is based on the number of times (‘m’) the
estimated distance is a multiple of the scan resolution, such
as a=m-1. In a non-limiting embodiment, the one or more
additional 2D ultrasound images are each generated based
on an interpolation of the corresponding pair of consecutive
2D ultrasound images in between which the one or more
additional 2D ultrasound images are to be inserted.

[0112] On the other hand, if the first predicted distance is
equal to 1, at 710, it is determined whether a second
predicted distance (d,,, ;) next in sequence/series is equal to
1. If the second predicted distance is not equal to 1 (and thus,
the predicted distance is an integer greater than 1), at 712,
the count ‘n’ (of the n-th predicted distance in the series 520
of predicted distances) is incremented by 1 (i.e., n=n+1) and
the method/process 700 returns to 704 to analyze the next
predicted distance in the series 520 of predicted distances.
On the other hand, if the second predicted distance is equal
to 1, at 714, the LRHM compensator 512a may be activated
to determine whether to remove the 2D ultrasound image
(e.g., i” image) that is common to both the first and second
pair of consecutive 2D ultrasound images associated with
the first and second predicted distances. In this regard, the
LRHM compensator 512a may be configured to request or
activate the distance predictor 510 to estimate a distance
(e.g., a second distance) between the first 2D ultrasound
image (e.g., the (i-1)” image) in sequence in the first pair
and the second 2D ultrasound image (the (i+1)” image) in
sequence in the second pair. In this regard, if the second
distance is estimated to be equal to 1, the above-mentioned
common 2D ultrasound image (e.g., i image) is removed.

[0113] Accordingly, the HRHM compensator 5126 advan-
tageously accounts for a high rate of hand movement during
the ultrasound scanning, which would otherwise result in
larger than desired distances between adjacent scans (d>1).
For example, the HRMH compensator 5126 may be con-
figured to linearly interpolate between a pair of 2D ultra-
sound images based on the predicted distance between the
pair. As an example, it is noted that the structural details of
a bony structure as a hip at a distance of 0.5 mm apart may
not vary much, and hence, the linear interpolation may be
most suitable in such a case. However, it will be appreciated
by a person skilled in the art that the non-limiting embodi-
ments are not limited to any particular type of interpolation,
and other types of interpolation may be applied as desired or
as appropriate, such as but not limited to, bicubic spline
interpolation, polynomial interpolation or piecewise con-
stant interpolation. By way of an example, assuming that the
predicted distance is 4xr, the HRHM compensator 5126 may
be configured to insert (e.g., evenly) three interpolated 2D
ultrasound images (slices) 810 in between the corresponding
pair of 2D ultrasound images (814a, 8145) as illustrated in
FIG. 8. These interpolated 2D ultrasound images (slices)
810 compensate for the slices that were not captured due to
the high rate of scanning. The HRHM compensator 5126
thus advantageously facilitates the modified series of 2D
ultrasound images to be periodic in space, which in turn
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results in a smooth 3D ultrasound volume rendered based on
the modified series of 2D ultrasound images.

[0114] The LRHM compensator 512a advantageously
accounts for a low rate of hand movement during the
ultrasound scanning, which would otherwise result in mul-
tiple 2D ultrasound images being acquired at the same
physical location or very close to each other (e.g., less than
the scan resolution), which do not add any extra or further
structural information useful for rendering the 3D ultrasound
volume. For each pair of such 2D ultrasound images, as
described hereinbefore, the distance predictor 510 may be
configured to classify the pair (i.e., its difference image) into
a first class corresponding to 1x the scan resolution (r), that
is, estimating the distance (d) between the pair as 1xr. For
example, the LRHM compensator 512a may be configured
to identify each cluster (or group) 904 of two consecutive
predicted distance values (i.e., length of 2) in the series 520
of predicted distance values having the value of 1xr. Each of
such cluster 904 would consist of 3 slices (2D ultrasound
images) and the distance between the first slice (e.g., i”*
slice) 914a and the third slice (e.g., (i+2)" slice) 9145 is
estimated using the distance predictor 510. If the estimated
distance is 1, then the middle slice 914c¢ in the cluster (e.g.,
(i+1)” slice) is discarded as shown in FIG. 9. This is because
if the distance between the first and third slices is estimated
to be 1, then the middle slice has a distance less than the scan
resolution from both the first and the third slices. Therefore,
the middle slice is considered to not add any extra or further
structural information useful for rendering the 3D ultrasound
volume and may thus be removed. The above process is
repeated over the sequence 520 of predicted distance values
for each of such cluster identified.

[0115] By way of an example and without limitation, a
specific example implementation of the distance predictor
510 including a convolutional neural network (CNN) known
as VGG-16 will now be described. However, as explained
hereinbefore, it will be appreciated that the non-limiting
embodiments are not limited to a CNN, let alone VGG-16.
The VGG-16 network includes 16 layers (i.e., 13 convolu-
tional layers and 3 fully connected layers). The algorithms
are written in Python 3.5, and the TFLearn framework (e.g.,
such as described in Tang, Yuan, “T F. Learn: TensorFlow’s
High-level Module for Distributed Machine Learning”,
arXiv preprint arXiv:1612.04251(2016), the content of
which is hereby incorporated by reference in its entirety for
all purposes) was used for training the VGG-16 network
(e.g., such as described in Simonyan, Karen, and Andrew
Zisserman, “Very Deep Convolutional Networks for Large-
scale Image Recognition”, arXiv preprint arXiv:1409.1556
(2014), the content of which is hereby incorporated by
reference in its entirety for all purposes). Various compo-
nents of the CNN in the context of VGG-16 will now be
described.

Convolutional Layers

[0116] FEach convolutional layer may have three compo-
nents, namely, convolution kernels/filters, non-linear activa-
tion functions, and pooling.

Convolution Kernels/Filters

[0117] The convolution operator generates a linear com-
bination of the input image based on a set of weights (W).
Unlike traditional approaches where the mapping is hand-
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crafted, CNNs learn the mapping from the image data in
order to solve a target problem, which according to various
embodiments is estimating the distance between a pair of 2D
ultrasound images. The convolution operator accounts for
the neighbourhood of a pixel and is translation invariant. In
VGG-16, 3x3 convolution kernels may be provided in each
layer. Each convolution analyzes the image data at a par-
ticular scale and captures various features as a feature map.

Non-Linear Activation Functions

[0118] In order to obtain a non-linear mapping, the linear
filter output is used as the input of a non-linear activation
function applied identically to each neuron in a feature map.
In the example implementation, Rectified Linear Unit
(ReLLU) was used as the non-linear activation function in this
network.

Pooling

[0119] The third component of a convolutional layer is
pooling. A pooling operator operates on individual feature
channels, combining nearby feature values into one by the
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selected from a 3D ultrasound volume. The size of the
validation set is set to 80. The input shape of the network is
224x224x3, where all the channels were filled with the
corresponding difference images. Every sample in training
dataset was normalized with the mean computed over all the
training examples. Adaptive gradient algorithm, i.e., Ada-
Grad, was used as the optimizer. The activation function
“softmax” was used for the last layer with six classes. In
addition, the loss function used was “categorical cross-
entropy”. Batch size, number of epochs and learning rate
were set to 64, 50 and 0.001, respectively. The scan reso-
Iution of the 3D ultrasound probe was 0.14 mm in the Z
direction. The approximate prediction and pre-processing
time were 24 and 9 seconds on a GPU, i.e., Tesla K 80, 12
GB GDDRS.

[0124] The VGG-16 network was tested on three different
3D ultrasound volumes with accuracies 0.95%, 0.92% and
0.88%, respectively. Table 3 provides a summary of the
training information in the example training implementa-
tion.

TABLE 3

Summary of the Example Training Implementation

Training  Validation Batch  Number Learning
Network resolution size size size of epochs rate
VGG16 0.14 mm 725 80 64 50 0.001

application of a suitable operator. For example, common
choices include max-pooling (using the max operator) or
sum-pooling (using summation). In the example implemen-
tation, max-pooling was used.

[0120] In the example implementation, the number of
kernels used in each of the convolutional layers is summa-
rized in Table 2 below.

TABLE 2

Number of filters used in each convolutional layer in VGG-16

Number of
Layer Kernels/Filters
1-2 64
3-4 128
5-7 256
8-13 512

[0121] It will be appreciated by a person skilled in the art
that the specific configuration shown in Table 2 is only an
example implementation and is not limited to the specifica-
tion configuration shown.

Fully Connected Layers

[0122] Ina fully-connected layer, each neuron of one layer
is connected to all neurons in subsequent layers. In this
regard, VGG-16 has 4096 neurons in each fully connected
layer and the output of each of the neurons are passed to a
RELU activation function.

Example Training Implementation

[0123] As a non-limiting example, 725 training examples
(i.e., 725 different pairs of 2D ultrasound images) were

[0125] It will be appreciated by a person skilled in the art
that the non-limiting embodiments are not limited to the
specific example implementation of the distance predictor
510 and any type of deep neural network may be imple-
mented, along with suitable parameters/settings, as desired
or as appropriate, in relation to the distance predictor. For
example, in the case of CNN, the CNN may also be
implemented with fully connected layers alone. For
example, activation functions may also be extended to
Sigmoid function. For example, Adam, SGD or other types
of algorithms may be used for the optimizer. For example,
the distance predictor 510 may also be implemented using
other versions of VGG, such as VGG-19, or other types of
pre-trained networks, such as ResNet50, Inception V3, and
Xception. A 3D network may also be used for distance
prediction.

[0126] As an example use case for illustration purpose
only and without limitation, a method for generating a 3D
ultrasound image according to various example embodiment
was performed with respect to an infant hip joint. For
example, ultrasound examination of the hip joint in infants
is crucial in the diagnosis of hip dysplasia. The distance
predictor network was trained using only one 3D ultrasound
volume, with 800 training examples derived from the 3D
ultrasound volume in total, of the hip scanned using a Philips
iU22 scanner (Philips Healthcare, Andover, Mass.) using a
13 MHz linear (Philips 13VL5) transducer in coronal ori-
entation and exported to cartesian DICOM. Each 3D ultra-
sound comprises 256 ultrasound slices of 0.13 mm thick-
ness, each slice containing 411x192 pixels and each pixel
measuring 0.11x0.20 mm.

[0127] The method was then tested on different 3D vol-
umes where the average accuracy of the predicted distance
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values was found to be 92%. The method was also tested on
2D ultrasound sweeps acquired at various rates of hand
movement scanned using a 2D ultrasound probe. In all
cases, it was found that the method was able to generate a
smooth 3D ultrasound volume from the sequence of 2D
ultrasound scans. The reconstructed 3D ultrasound volumes
generated from the method were qualitatively evaluated by
an expert radiologist and found to closely correlate with the
corresponding 3D ultrasound images.

[0128] The method was further validated experimentally
by comparing segmentations of the hip bone obtained from
a 3D scan ultrasound volume (3D scan model) with seg-
mentations obtained from an unmodified 2D sweep (i.e.,
without the series of 2D ultrasound images being modified
as described according to various embodiments) and from a
modified 2D sweep (i.e., with the series of 2D ultrasound
images being modified as described according to various
embodiments) for the same patient. An overlay of the 3D
segmentation meshes obtained in each case is shown in
FIGS. 10A and 10B. In FIGS. 10A and 10B, the lighter
shades indicate a higher distance value (distance difference)
with white colour indicating the highest and black colour
indicating the lowest. It can be seen in FIG. 10B that
considerably large regions in the model segmented from the
unmodified 2D sweep have bright regions indicating large
difference in distance from the 3D scan model. On the other
hand, as can be seen in FIG. 10A, the corresponding regions
in the modified 2D sweep have lower values of distance (i.e.,
lower distance differences) and are hence darker in color.
The mean distance difference between the segmentations
obtained from the modified 2D sweep and the 3D scan
model was 0.4 mm, which indicates that the structural
information in the modified 2D sweep acquired from the 2D
ultrasound probe closely correlates to the 3D scan model
(3D ultrasound volume) obtained directly from the 3D
ultrasound probe.

[0129] While embodiments have been particularly shown
and described with reference to specific embodiments, it
should be understood by those skilled in the art that various
changes in form and detail may be made therein without
departing from the spirit and scope as defined by the
appended claims. The scope is thus indicated by the
appended claims and all changes which come within the
meaning and range of equivalency of the claims are there-
fore intended to be embraced.

1. A method for generating a three-dimensional (3D)
ultrasound image of a tissue volume using at least one
processor, the method comprising:

generating a series of two-dimensional (2D) ultrasound
images of the tissue volume associated with a plurality
of positions, respectively, along a scanning direction of
the tissue volume;

estimating, for each pair of consecutive 2D ultrasound
images of the series of 2D ultrasound images, a dis-
tance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classifi-
cation of a difference image generated from the pair of
consecutive 2D ultrasound images using a deep neural
network to produce a plurality of estimated distances
associated with the plurality of pairs of consecutive 2D
ultrasound images, respectively;
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modifying the number of 2D ultrasound images in the
series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified series of 2D
ultrasound images; and

rendering the 3D ultrasound image of the tissue volume

based on the modified series of 2D ultrasound images.

2. The method according to claim 1, wherein the deep
neural network is trained to classify the difference image
into one of a plurality of classes, the plurality of classes
corresponding to a plurality of distance values, respectively;
and said distance is estimated to be the distance value
corresponding to the class in which the difference image is
classified into.

3. The method according to claim 2, wherein the differ-
ence image comprises pixels, each pixel having a difference
pixel value determined based on a difference between pixel
values of corresponding pixels of the pair of consecutive 2D
ultrasound images.

4. The method according to claim 2, wherein said modi-
fying the number of 2D ultrasound images comprises:

removing each 2D ultrasound image of the series of 2D

ultrasound images that satisfies a predetermined image
removal condition; and

inserting one or more additional 2D ultrasound images in

between each pair of consecutive 2D ultrasound images
that satisfies a predetermined image insertion condi-
tion.

5. The method according to claim 4, wherein the one or
more additional 2D ultrasound images are each generated
based on an interpolation of the pair of consecutive 2D
ultrasound images in between which the one or more addi-
tional 2D ultrasound images are to be inserted.

6. The method according to claim 4, wherein the plurality
of distance values of the plurality of classes, respectively, do
not overlap and are each configured based on a scan reso-
lution.

7. The method according to claim 6,

wherein each of the plurality of distance values is con-

figured as a multiple of the scan resolution,

wherein the predetermined image removal condition for

removing a 2D ultrasound image is based on whether
the estimated distance associated with a first pair of
consecutive 2D ultrasound images including the 2D
ultrasound image is equal to a predefined multiple of
the scan resolution, and

wherein the predetermined image insertion condition for

inserting one or more additional 2D ultrasound images
in between a pair of consecutive 2D ultrasound images
is based on whether the estimated distance associated
with the pair of consecutive 2D ultrasound images is
greater than the predefined multiple of the scan reso-
lution.

8. The method according to claim 7,

wherein the predetermined image removal condition is

further based on whether the estimated distance asso-
ciated with a second pair of consecutive 2D ultrasound
images including the 2D ultrasound image is equal to
the predefined multiple of the scan resolution,
wherein when the estimated distances associated with the
first pair and the second pair are both equal to the
predefined multiple of the scan resolution, a second
distance between the positions associated with the other
2D ultrasound image of the first pair and the other 2D
ultrasound image of the second pair is estimated based
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on a classification of a second difference image gener-
ated from the other 2D ultrasound image of the first pair
and the other 2D ultrasound image of the second pair
using the deep neural network, and the predetermined
image removal condition is further based on whether
the second estimated distance is equal to the predefined
multiple of the scan resolution.

9. (canceled)

10. (canceled)

11. A system for generating a three-dimensional (3D)
ultrasound image of a tissue volume, the system comprising:

an ultrasound transducer;

a memory; and

at least one processor communicatively coupled to the

memory and the ultrasound transducer, and configured
to:

generate a series of two-dimensional (2D) ultrasound

images of the tissue volume associated with a plurality
of positions, respectively, along a scanning direction of
the tissue volume based on a series of ultrasound waves
acquired by the ultrasound transducer at the plurality of
positions;

estimate, for each pair of consecutive 2D ultrasound

images of the series of 2D ultrasound images, a dis-
tance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classifi-
cation of a difference image generated from the pair of
consecutive 2D ultrasound images using a deep neural
network to produce a plurality of estimated distances
associated with the plurality of pairs of consecutive 2D
ultrasound images, respectively;

modify the number of 2D ultrasound images in the series

of 2D ultrasound images based on the plurality of
estimated distances to produce a modified set of 2D
ultrasound images; and

render the 3D ultrasound image of the tissue volume

based on the modified series of 2D ultrasound images.

12. The system according to claim 11, wherein the deep
neural network is trained to classify the difference image
into one of a plurality of classes, the plurality of classes
corresponding to a plurality of distance values, respectively;

and said distance is estimated to be the distance value

corresponding to the class in which the difference
image is classified into.

13. The system according to claim 12, wherein the dif-
ference image comprises pixels, each pixel having a differ-
ence pixel value determined based on a difference between
pixel values of corresponding pixels of the pair of consecu-
tive 2D ultrasound images.

14. The system according to claim 12, wherein said
modify the number of 2D ultrasound images comprises:

removing each 2D ultrasound image of the series of 2D

ultrasound images that satisfies a predetermined image
removal condition; and

inserting one or more additional 2D ultrasound images in

between each pair of consecutive 2D ultrasound images
that satisfies a predetermined image insertion condi-
tion.

15. The system according to claim 14, wherein the one or
more additional 2D ultrasound images are each generated
based on an interpolation of the pair of consecutive 2D
ultrasound images in between which the one or more addi-
tional 2D ultrasound images are to be inserted.
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16. The system according to claim 14, wherein the plu-
rality of distance values of the plurality of classes, respec-
tively, do not overlap and are each configured based on a
scan resolution.

17. The system according to claim 16,

wherein each of the plurality of distance values is con-
figured as a multiple of the scan resolution,

wherein the predetermined image removal condition for
removing a 2D ultrasound image is based on whether
the estimated distance associated with a first pair of
consecutive 2D ultrasound images including the 2D
ultrasound image is equal to a predefined multiple of
the scan resolution, and

wherein the predetermined image insertion condition for
inserting one or more additional 2D ultrasound images
in between a pair of consecutive 2D ultrasound images
is based on whether the estimated distance associated
with the pair of consecutive 2D ultrasound images is
greater than the predefined multiple of the scan reso-
lution.

18. The system according to claim 17,

wherein the predetermined image removal condition is
further based on whether the estimated distance asso-
ciated with a second pair of consecutive 2D ultrasound
images including the 2D ultrasound image is equal to
the predefined multiple of the scan resolution,

wherein if the estimated distances associated with the first
pair and the second pair are both equal to the predefined
multiple of the scan resolution, a second distance
between the positions associated with the other 2D
ultrasound image of the first pair and the other 2D
ultrasound image of the second pair is estimated based
on a classification of a second difference image gener-
ated from the other 2D ultrasound image of the first pair
and the other 2D ultrasound image of the second pair
using the deep neural network, and the predetermined
image removal condition is further based on whether
the second estimated distance is equal to the predefined
multiple of the scan resolution.

19. (canceled)
20. (canceled)

21. The system according to claim 11, wherein the ultra-
sound transducer is installed in a freechand ultrasound probe.

22. A computer program product, embodied in one or
more non-transitory computer-readable storage mediums,
comprising instructions executable by at least one processor
to perform a method for generating a three-dimensional (3D)
ultrasound image of a tissue volume, the method compris-
ing:

generating a series of two-dimensional (2D) ultrasound

images of the tissue volume associated with a plurality
of positions, respectively, along a scanning direction of
the tissue volume;

estimating, for each pair of consecutive 2D ultrasound
images of the series of 2D ultrasound images, a dis-
tance between the positions associated with the pair of
consecutive 2D ultrasound images based on a classifi-
cation of a difference image generated from the pair of
consecutive 2D ultrasound images using a deep neural
network to produce a plurality of estimated distances
associated with the plurality of pairs of consecutive 2D
ultrasound images, respectively;
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modifying the number of 2D ultrasound images in the
series of 2D ultrasound images based on the plurality of
estimated distances to produce a modified set of 2D
ultrasound images; and

rendering the 3D ultrasound image of the tissue volume
based on the modified series of 2D ultrasound images.

23. The method according to claim 6,

wherein the scan resolution is a scan resolution of a 3D
ultrasound transducer, and

wherein the deep neural network is trained based on a
training dataset comprising a plurality of labelled dif-
ference images, each labelled difference image being
labelled with one of the plurality of classes which the
labelled difference image belongs to and each labelled
difference image being formed based on two 2D ultra-
sound images extracted at a predefined distance apart
from a 3D ultrasound image volume acquired by the 3D
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ultrasound transducer, the predefined distance apart
corresponding to one of the plurality of classes.

24. The system according to claim 16,
wherein the scan resolution is a scan resolution of a 3D

ultrasound transducer, and

wherein the deep neural network is trained based on a

training dataset comprising a plurality of labelled dif-
ference images, each labelled difference image being
labelled with one of the plurality of classes which the
labelled difference image belongs to and each labelled
difference image being formed based on two 2D ultra-
sound images extracted at a predefined distance apart
from a 3D ultrasound image volume acquired by the 3D
ultrasound transducer, the predefined distance apart
corresponding to one of the plurality of classes.
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