a2 United States Patent

Landau et al.

US010121010B2

US 10,121,010 B2
Nov. 6, 2018

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR PREVENTING
EXECUTION OF MALICIOUS
INSTRUCTIONS STORED IN MEMORY AND
MALICIOUS THREADS WITHIN AN
OPERATING SYSTEM OF A COMPUTING
DEVICE

(52) US. CL
CPC GO6F 21/577 (2013.01); GO6F 21/55
(2013.01); GO6F 21/56 (2013.01)
Field of Classification Search
CPC oo, HO4L 9/3247, GO6F 21/577
USPC e 380/200; 726/25

See application file for complete search history.

(58)

(71) Applicant: Endgame, Inc., Atlanta, GA (US) (56) References Cited
(72) Inventors: Gabriel D. Landau, Glen Burnie, MD U.S. PATENT DOCUMENTS
(US); Nicholas Eli Fritts, Annapolis, 8,239,688 B2* 82012 De Atley ...ooo........ GO6F 21/51
MD (US) 700/219
2013/0174257 Al* 72013 Zhouccccee. HO4L 63/1416
(73) Assignee: Endgame, Inc., Arlington, VA (US) 726/23
2016/0117229 Al 4/2016 Epstein
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
%atserét lls Sletjeng ed270£ gdjusted under 35 Primary Examiner — Dant B Shaifer Harriman
SC. 134(b) by 274 days. (74) Attorney, Agent, or Firm — DLA Piper LLP (US)
(21) Appl. No.: 15/153,629 &7 ABSTRACT
In one embodiment, a malicious code prevention module
(22) Filed: May 12, 2016 identifies potentially malicious instructions in volatile
) ’ memory of a computing device and replaces them with
. A innocuous instructions. In another embodiment, the mali-
(65) Prior Publication Data cious code prevention module identifies a potentially mali-
US 2017/0329973 Al Nov. 16, 2017 cious thread within an operating system and replaces the first
instruction in the thread with a new instruction that termi-
(51) Int.Cl nates the thread. Malicious code prevention module prevents
G0;$F 2 157 (2013.01) malicious code from inflicting any harm on the computing
GO6F 21/55 (2013'01) device and its contents.
GO6F 21/56 (2013.01) 9 Claims, 8 Drawing Sheets
Attribute
Information 305
Memory > Address Range | Content Backed By File? | Executable?
120 0351-0450 Program 340 No Yes
|
|
A4
Processor Address Range | Content Backed By File? | Executable?
110 0351-0425 NOP Instructions | Yes Yes
420
MZ'(';;:"‘ 0426-0450 Shell Code 430 | Yes Yes
Prevention
Module
410

US 10,121,010 B2

Sheet 1 of 8

Nov. 6, 2018

U.S. Patent

0€1
3%InaQ

98eJ01s§

0c1

Aowd N

001
Ce]lTq
Sunndwo)

011
10S5320.d

(LYVv 4OI14d) T 3¥NOI4

US 10,121,010 B2

Sheet 2 of 8

Nov. 6, 2018

U.S. Patent

s|x's|eldueul

jeq-a3elols

oxa-Ae|dsiqg

JOpP’igloT]

9|4

0€Z
sa|i4

0¢T
33InaQ

98eJ01S

00€0-10¢20

0020-1000

otz
3|npo Sujuueds

vel

022
sydo|g

011
1055320.d

(LYV ¥OIlY4d) Z 3UNO5I

US 10,121,010 B2

Sheet 3 of 8

Nov. 6, 2018

U.S. Patent

ON ON 09¢€ paudisseun 6666-10L0
ON SOA 0S€ e1eq Jasn 00£0-05t0
SOA ON Ov€ weadoud 0S¥0-TSE0
0EE weadoud
SOA SOA uonedijddy 0S€0-TOE0
(1743
SOA SOA weasosd Aupn 00£0-1020
0T€
SOA SoA | wwelsAs Sunesadp 00Z0-1T000
éo|geandax3y | ¢34 Ag payoeg juajuo) | aduey ssaippy

GOE uonew.loju|
anquny

oY
3InpoN
uojuaAdId
apo)
snonijen

011
1055320.1d

0¢t
Alowdn

€ }NDIH

US 10,121,010 B2

Sheet 4 of 8

Nov. 6, 2018

U.S. Patent

(1137
a|npoN
uoluaAald
apo)
SDA SOA 0cvy °2p0oD [I”YS 05%0-9¢10 snopIen
0747
SIA S9A | suoidNnJIsu| dON SCP0-TSED 0IT
é¢olqendaxy | ¢34 Ag pasjoeg AUO) | dduey ssaippy 1055830.d
A
_
_
SIA ON Ov€ weusoud 0570-TSEO Y4)
éolqendaxy | ¢914 Ag parjoeg JuUdUO) | dsuey sSAIPPY <=7 >horcw_>_
GOE uonew.oju|
anquNY
¥ 34NDId

US 10,121,010 B2

Sheet 5 of 8

Nov. 6, 2018

U.S. Patent

ovs
pealyy

0€S
pealyy

0zs
pealyy

—

01s
J3|npayds

(1] 2

wdisAs Sunesadp

o1t

10SS9204d

(LYVv 4OI14d) S 3¥NOI4

US 10,121,010 B2

Sheet 6 of 8

Nov. 6, 2018

U.S. Patent

(1] 4
3|npoN
uonuanald S9A 0rS pealyL G99/¢-0S/€
apo)
snobljeN ON 0gS peaiyl 0959tE-01SE
011 o€ SOA 025 peatyL 05TZ-0¥TZ
anquny S g9 Ag papoeg Jusuo) aguey ssaippy
_ Y Y) I“
_ ors 0€s 0zs _
_ peaJyl peaJyl peasyl _
“ — — — _
_ 01s |
3|npayds _
L o
01€
wajsAg SunesadQ
ot1 9 34N5OI4
J0ssad0ud

US 10,121,010 B2

Sheet 7 of 8

Nov. 6, 2018

U.S. Patent

TE€L €
——/
0€S

peaayy

peaayy

otv
3|npon

UOIUBAId

apo)
snopijeN

(1)
105533044
L 3-¥NDOI4

US 10,121,010 B2

Sheet 8 of 8

Nov. 6, 2018

U.S. Patent

oY
3|npon
uonuanaad
OE @p0D |I13YS apo)
0zy snopljel
suonanJisu] dON
JuUlNUO) Q.HH
10SS9704
~ d
|
|
|
OvE weisoud O€T
Ulu0) T IS
= 98eJ01§
~
/ .
0¢t
Aowd N
8 JUNDId

US 10,121,010 B2

1
SYSTEM AND METHOD FOR PREVENTING
EXECUTION OF MALICIOUS
INSTRUCTIONS STORED IN MEMORY AND
MALICIOUS THREADS WITHIN AN
OPERATING SYSTEM OF A COMPUTING
DEVICE

FIELD OF THE DISCLOSURE

The present disclosure relates to a system and method for
preventing the execution of malicious instructions stored in
memory of a computing device and the execution of mali-
cious threads within an operating system of the computing
device. The embodiments can prevent harm to the comput-
ing device and its contents and to other devices connected to
the computing device and the content contained on those
devices.

BACKGROUND

As computing devices become increasingly complex,
viruses and malware also are becoming increasingly com-
plex and difficult to detect and prevent. While the prior art
includes many approaches for scanning non-volatile storage
such as a hard disk drive for such threats, the prior art
includes few satisfactory solutions for detecting malicious
code loaded into memory or the processor itself. The prior
art also is lacking in the ability to detect malicious instruc-
tions before they are executed, particularly in situations
where the malicious instructions are “new” and not part of
a well-known virus or malware.

FIG. 1 depicts an exemplary prior art computing device
100 comprising processor 110, memory 120, and storage
device 130. In this example, memory 120 is volatile and can
comprise DRAM, SRAM, SDRAM, or other known
memory devices, and storage device 130 is non-volatile and
can comprise a hard disk drive, solid state drive, flash
memory, or other known storage devices. One of ordinary
skill in the art will understand that processor 110 can include
a single processor core or multiple processor cores as well
as numerous cache memories, as is known in the prior art.

In FIG. 2, data is stored on storage device 130. There are
numerous mechanisms to store data on storage device 130,
and two known mechanisms are shown for illustration
purposes. In one mechanism, data is stored as blocks 220
and can be accessed by logical block address (LBA) or
similar addressing scheme. In another mechanism, data is
stored as files 230 and can be accessed using a file system.
In the prior art, scanning module 210 can be executed by
processor 110 and can scan either blocks 220 or files 230 to
look for malicious code. This often is referred to as virus
scan software and is well-suited for identifying and nulli-
fying known malicious programs that are stored in non-
volatile devices such as in storage device 130.

While prior art techniques are well-suited for detecting
known malicious programs in non-volatile devices, there is
no satisfactory technique for detecting malicious instruc-
tions in processor 110 or memory 120 when the malicious
instructions are not also stored in storage device 130. There
also is no satisfactory technique for detecting unknown
malicious instructions (e.g., newly introduced viruses)
whether stored in storage device 130 or not.

What is needed is a mechanism for detecting malicious
instructions in processor 110 and memory 120 and prevent-
ing their execution. What is further needed is a mechanism
for preventing the execution of unknown malicious instruc-
tions, whether stored on storage device 130 or not.

20

25

30

35

40

45

55

2

Another aspect of the prior art is shown in FIG. 5.
Processor 110 runs operating system 310. Operating system
310 comprises scheduler 510. Operating system 310 is
capable of operating multiple threads at once (such as
threads 520, 530, and 540), where each thread is a set of
code that forms a process or related processes. Scheduler
510 determines which threads to run and it follows various
algorithms to determine when to start and stop a particular
thread. The prior art lacks a technique for identifying a
malicious thread and terminating the execution of such
thread.

Therefore, what is further needed is a mechanism for
preventing the execution of malicious instructions within a
thread in an operating system.

BRIEF SUMMARY OF THE INVENTION

In one embodiment, a malicious code prevention module
identifies potentially malicious instructions in volatile
memory of a computing device and replaces them with
innocuous instructions. In another embodiment, the mali-
cious code prevention module identifies a potentially mali-
cious thread within an operating system and replaces the first
instruction in the thread with a new instruction that termi-
nates the thread. Malicious code prevention module prevents
malicious code from inflicting any harm on the computing
device and its contents.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a prior art computing device.

FIG. 2 depicts prior art virus scan software.

FIG. 3 depicts a malicious code prevention module iden-
tifying potentially malicious instructions.

FIG. 4 depicts the malicious code prevention module
replacing potentially malicious instructions with innocuous
instructions.

FIG. 5 depicts a prior art multi-threaded operating system.

FIG. 6 depicts the malicious code prevention module
identifying a potentially malicious thread within an operat-
ing system.

FIG. 7 depicts the malicious code prevention module
replacing the first instruction in a potentially malicious
thread with a new instruction that terminates the thread.

FIG. 8 depicts the malicious code prevention module
replacing all or part of a set of potentially malicious instruc-
tions in memory that is backed by a file and optionally
replacing all or part of the set of potentially malicious
instructions in a storage device with innocuous instructions.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 3 depicts one embodiment of the invention. The
address space within memory 120 is assigned to various
programs and processes by operating system 310. In this
example, various address ranges have been assigned to
operating system 310 itself, utility program 320, application
program 330, program 340, and user data 350, with an area
360 remaining unassigned. In this example, operating sys-
tem 310 makes available attribute information 305 about
each program or process through an API (application pro-
gramming interface) or other means. Attribute information
305 includes information indicating whether the program or
process is backed by a file (which means it is associated with

US 10,121,010 B2

3

a file stored in storage device 130) and is executable (which
means that it comprises instructions that can be executed by
processor 110).

Programs or processes that are not backed by a file and
that are executable are potentially malicious. Programs or
processes that are not backed by a file are able to evade prior
art virus scan software. Moreover, most malicious entities
are intended to be executed by processor 110.

In FIG. 4, malicious code prevention module 410 identi-
fies program 340 as not backed by a file and executable
using attribute information 305. Malicious code prevention
module 410 then replaces program 340 with one or more
NOP (No Operation) instructions 420 and shell code 430.
The NOP instructions 420 are essentially instructions that do
nothing, and shell code 430 is code that returns processor
110 and operating system 310 to a safe state. Thus, malicious
code prevention module 410 prevents program 340 from
being executed. In situations where program 340 is in fact
malicious, malicious code prevention module 410 will pre-
vent the malicious code from inflicting any further harm on
computing device 100 and its contents.

In another aspect of the invention, malicious code pre-
vention module 410 determines whether each thread that is
about to be executed within operating system 310 is backed
by a file using attribute information 305. In FIG. 6, mali-
cious code prevention module 410 identifies thread 530 as
not backed by a file. It is likely that thread 530 is malicious
code.

In FIG. 7, malicious code prevention module 410 replaces
the first instruction 531 (or, in some instances, series 531 of
instructions if it is unsafe to terminate the thread within the
span of one instruction) in thread 530 with a new instruction
731 (or, in some instances, series 731 of instructions), which
modifies thread 530 into thread 530'. New instruction 731 is
an innocuous instruction, such as return instruction, that
terminates thread 530'. Thus, malicious code prevention
module 410 prevents thread 530 from being executed. In
situations where thread 530 is in fact malicious, malicious
code prevention module 410 will prevent the malicious code
from inflicting any harm on computing device 100 and its
contents.

In the above embodiments, malicious code prevention
module 410 comprises lines of code executable by processor
110. Malicious code prevention module 410 optionally can
be part of the kernel of operating system 310 or can be given
special privileges by operating system 310 (such as the
ability to access attribute information 305 and/or to replace
a thread’s instructions within the underlying program’s
address space in memory before they are executed).

In another embodiment shown in FIG. 8, a malicious
program 340 of instructions is backed by a file stored in
storage device 130. In this embodiment, another module (not
shown) determines that program 340 is malicious. An
example of such module includes prior art antivirus software
or code that detects the lack of a digital signature or
performs outlier detection or the presence of other suspi-
cious behavior. When program 340 is loaded into memory
and is determined to be malicious, the same sequence
described as to FIG. 4 is performed. Specifically, malicious
code prevention module 410 replaces the program 340 of
instructions with one or more No Operation (NOP) instruc-
tions and shell code, thereby preventing execution of the
program of instructions by the processor. However, in addi-
tion, malicious code prevention module 410 replaces all of
part of the program 340 stored in memory 120, and option-
ally, in storage device 130 with one or more No Operation

20

40

45

55

65

4

(NOP) instructions and shell code, thereby completely pre-
venting execution of the program of instructions by the
processor in the future.

The foregoing merely illustrates the principles of the
disclosure. Various modifications and alterations to the
described embodiments will be apparent to those skilled in
the art in view of the teachings herein. It will thus be
appreciated that those skilled in the art will be able to devise
numerous systems, arrangements, and procedures which,
although not explicitly shown or described herein, embody
the principles of the disclosure and can be thus within the
spirit and scope of the disclosure. Various different exem-
plary embodiments can be used together with one another, as
well as interchangeably therewith, as should be understood
by those having ordinary skill in the art. In addition, certain
terms used in the present disclosure, including the specifi-
cation, drawings and claims thereof, can be used synony-
mously in certain instances, including, but not limited to, for
example, data and information. It should be understood that,
while these words, and/or other words that can be synony-
mous to one another, can be used synonymously herein, that
there can be instances when such words can be intended to
not be used synonymously. Further, to the extent that the
prior art knowledge has not been explicitly incorporated by
reference herein above, it is explicitly incorporated herein in
its entirety. All publications referenced are incorporated
herein by reference in their entireties.

The invention claimed is:

1. A method of preventing a program of instructions from
being executed in a computer system comprising a proces-
sor, memory, and a non-volatile storage device, the method
comprising:

loading the program of instructions into memory;

determining if the program of instructions is backed by a

file stored in the non-volatile storage device and is
executable by the processor; and

if the program of instructions is not backed by a file stored

in the non-volatile storage device or is not executable,
identifying the program of instructions as potentially
malicious and replacing the program of instructions
with one or more No Operation (NOP) instructions and
shell code, thereby preventing execution of the poten-
tially malicious program of instructions by the proces-
SOr.

2. The method of claim 1, wherein if the program of
instructions is backed by a file stored in the non-volatile
storage device and is executable, executing the program of
instructions by the processor.

3. The method of claim 1, wherein the determining step
comprises obtaining attribute information from an operating
system running on the processor.

4. The method of claim 1, further comprising: executing
the shell code by the processor to place the processor into a
safe state.

5. The method of claim 2, wherein the determining step
comprises obtaining attribute information for the program of
instructions from an operating system running on the pro-
Cessor.

6. The method of claim 2, further comprising: executing
the shell code by the processor to place the processor into a
safe state.

7. A non-transitory computer-readable medium containing
instructions for causing a processor to perform the following
steps:

determine if a program of instructions in memory is

backed by a file stored in the non-volatile storage
device and is executable by the processor;

US 10,121,010 B2
5

if the program of instructions is not backed by a file stored
in the non-volatile storage device or is not executable,
identify the program of instructions as potentially mali-
cious and replace the program of instructions with one
or more No Operation (NOP) instructions and shell 5
code, thereby preventing execution of the potentially
malicious program of instructions by the processor; and
if the program of instructions is backed by a file stored in
the non-volatile storage device and is executable, allow
the processor to execute the program of instructions. 10
8. A method of preventing a program of instructions from
being executed in a computer system comprising a proces-
sor, memory, and a non-volatile storage device, the method
comprising:
loading the program of instructions into memory; 15
determining if the program of instructions is malicious;
determining if the program of instructions is backed by a
file stored in the non-volatile storage device; and
if the program of instructions is not backed by a file stored
in the non-volatile storage device, identifying the pro- 20
gram of instructions as potentially malicious and
replacing the program of instructions with one or more
No Operation (NOP) instructions and shell code,
thereby preventing execution of the potentially mali-
cious program of instructions by the processor. 25
9. The method of claim 8, further comprising: replacing
all of part of the file stored in the non-volatile storage device
with one or more No Operation (NOP) instructions and shell
code.
30

