
US010121010B2

(12) United States Patent
Landau et al .

(10) Patent No . : US 10 , 121 , 010 B2
(45) Date of Patent : Nov . 6 , 2018

(52) (54) SYSTEM AND METHOD FOR PREVENTING
EXECUTION OF MALICIOUS
INSTRUCTIONS STORED IN MEMORY AND
MALICIOUS THREADS WITHIN AN
OPERATING SYSTEM OF A COMPUTING
DEVICE

58)

U . S . CI .
CPC G06F 21 / 577 (2013 . 01) ; G06F 21 / 55

(2013 . 01) ; G06F 21 / 56 (2013 . 01)
Field of Classification Search
CPC . H04L 9 / 3247 ; G06F 21 / 577
USPC 380 / 200 ; 726 / 25
See application file for complete search history .

References Cited
U . S . PATENT DOCUMENTS

.

(71) Applicant : Endgame , Inc . , Atlanta , GA (US) (56)

(72) Inventors : Gabriel D . Landau , Glen Burnie , MD
(US) ; Nicholas Eli Fritts , Annapolis ,
MD (US)

(73) Assignee : Endgame , Inc . , Arlington , VA (US)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U . S . C . 154 (b) by 274 days .

(21) Appl . No . : 15 / 153 , 629

, 239 , 088 B2 * 8 / 2012 De Atley G06F 21 / 51
709 / 219

2013 / 0174257 A1 * 7 / 2013 Zhou H04L 63 / 1416
726 / 23

2016 / 0117229 A14 / 2016 Epstein
* cited by examiner
Primary Examiner — Dant B Shaifer Harriman
(74) Attorney , Agent , or Firm — DLA Piper LLP (US)
(57) ABSTRACT
In one embodiment , a malicious code prevention module
identifies potentially malicious instructions in volatile
memory of a computing device and replaces them with
innocuous instructions . In another embodiment , the mali
cious code prevention module identifies a potentially mali
cious thread within an operating system and replaces the first
instruction in the thread with a new instruction that termi
nates the thread . Malicious code prevention module prevents
malicious code from inflicting any harm on the computing
device and its contents .

9 Claims , 8 Drawing Sheets

(22) Filed : May 12 , 2016

(65) Prior Publication Data
US 2017 / 0329973 A1 Nov . 16 , 2017

(51) Int . Cl .
G06F 21 / 57
G06F 21 / 55
G06F 21 / 56

(2013 . 01)
(2013 . 01)
(2013 . 01)

Attribute
Information 305

Address Range Content Backed By File ? Executable ? Memory
120 0351 - 0450 Program 340 No Yes

Address Range Content Backed By File ? Executable ? Processor
110 0351 - 0425 NOP Instructions

420
Yes Yes Yes

0426 - 0450 Shell Code 430 Yes Yes Malicious
Code

Prevention
Module
410

U . S . Patent Nov . 6 , 2018 Sheet 1 of 8 US 10 , 121 , 010 B2

Memory 120 Storage Device 130
Computing Device 100

Processor 110
FIGURE 1 (PRIOR ART)

FIGURE 2 (PRIOR ART)

Blocks 220

U . S . Patent

LBA

Processor 110
Scanning Module 210

0001 - 0200

Nov . 6 , 2018

0201 - 0300

Storage Device 130

Files 230

Sheet 2 of 8

File
Letter . doc Display . exe Storage . bat Financials . xls

US 10 , 121 , 010 B2

FIGURE 3

Attribute Information 305

atent

Executable ?

Backed By File ?

Yes

Yes

Address Range Content 0001 - 0200 Operating System
310

0201 - 0300 Utility Program
320

Yes

Yes

Nov . 6 , 2018

Memory 120

0301 - 0350

Yes

Yes

Application Program 330

0351 - 0450

Program 340

NO

Yes

Sheet 3 of 8

0450 - 0700

User Data 350

Yes

No

0701 - 9999

Unassigned 360

No

Processor 110

No

No

Malicious Code Prevention Module 410

US 10 , 121 , 010 B2

FIGURE 4

U . S . Patent

Attribute Information 305

Memory

Address Range

Content

Backed By File ?

Executable ?

Nov . 6 , 2018

-

>

120

0351 - 0450

Program 340

No

Yes

Address Range

Executable ?

Processor 110

Content

Backed By File ?

NOP Instructions | Yes

420

Sheet 4 of 8

0351 - 0425

Yes

0426 - 0450

Shell Code 430

Yes

Yes

Malicious Code Prevention Module 410

US 10 , 121 , 010 B2

FIGURE 5 (PRIOR ART)

U . S . Patent

Processor 110 Operating System 310

- - - 1

Scheduler 510

Nov . 6 , 2018

-

Thread 520

Thread 530

Thread 540

Sheet 5 of 8

- - - -

US 10 , 121 , 010 B2

FIGURE 6

Processor 110

U . S . Patent

Operating System 310

-

-

Scheduler 510

Nov . 6 , 2018

Thread 520

Thread 530

Thread 540

Sheet 6 of 8

Address Range

Content

Backed By File ?

Attribute Information

2140 - 2150

Thread 520

Yes

305

3540 - 3560

Thread 530

No

Processor 110
Malicious Code Prevention Module 410

3750 - 3765

Thread 540

Yes

US 10 , 121 , 010 B2

U . S . Patent Nov . 6 , 2018 Sheet 7 of 8 US 10 , 121 , 010 B2

Thread 530 ' L 731

Thread 530 531

Malicious Code Prevention Module 410

Processor 110 FIGURE 7

FIGURE 8

Memory 120

U . S . Patent

Storage Device 130

Content

Nov . 6 , 2018

Program 340

Processor

Sheet 8 of 8

Content

110

NOP Instructions 420 Shell Code 430

Malicious Code Prevention Module 410

US 10 , 121 , 010 B2

US 10 , 121 , 010 B2
SYSTEM AND METHOD FOR PREVENTING Another aspect of the prior art is shown in FIG . 5 .

EXECUTION OF MALICIOUS Processor 110 runs operating system 310 . Operating system
INSTRUCTIONS STORED IN MEMORY AND 310 comprises scheduler 510 . Operating system 310 is

MALICIOUS THREADS WITHIN AN capable of operating multiple threads at once (such as
OPERATING SYSTEM OF A COMPUTING 5 threads 520 , 530 , and 540) , where each thread is a set of

DEVICE code that forms a process or related processes . Scheduler
510 determines which threads to run and it follows various

FIELD OF THE DISCLOSURE algorithms to determine when to start and stop a particular
thread . The prior art lacks a technique for identifying a

The present disclosure relates to a system and method for 10 malicious thread and terminating the execution of such
preventing the execution of malicious instructions stored in thread . memory of a computing device and the execution of mali Therefore , what is further needed is a mechanism for cious threads within an operating system of the computing preventing the execution of malicious instructions within a device . The embodiments can prevent harm to the comput thread in an operating system . ing device and its contents and to other devices connected to 15
the computing device and the content contained on those BRIEF SUMMARY OF THE INVENTION devices .

BACKGROUND In one embodiment , a malicious code prevention module
20 identifies potentially malicious instructions in volatile

As computing devices become increasingly complex , memory of a computing device and replaces them with
viruses and malware also are becoming increasingly com innocuous instructions . In another embodiment , the mali
plex and difficult to detect and prevent . While the prior art cious code prevention module identifies a potentially mali
includes many approaches for scanning non - volatile storage cious thread within an operating system and replaces the first
such as a hard disk drive for such threats , the prior art 25 instruction in the thread with a new instruction that termi
includes few satisfactory solutions for detecting malicious nates the thread . Malicious code prevention module prevents
code loaded into memory or the processor itself . The prior malicious code from inflicting any harm on the computing
art also is lacking in the ability to detect malicious instruc - device and its contents .
tions before they are executed , particularly in situations
where the malicious instructions are “ new ” and not part of 30 BRIEF DESCRIPTION OF THE DRAWINGS
a well - known virus or malware .

FIG . 1 depicts an exemplary prior art computing device FIG . 1 depicts a prior art computing device .
100 comprising processor 110 , memory 120 , and storage FIG . 2 depicts prior art virus scan software .
device 130 . In this example , memory 120 is volatile and can FIG . 3 depicts a malicious code prevention module iden
comprise DRAM , SRAM , SDRAM , or other known 35 tifying potentially malicious instructions .
memory devices , and storage device 130 is non - volatile and FIG . 4 depicts the malicious code prevention module can comprise a hard disk drive , solid state drive , flash replacing potentially malicious instructions with innocuous memory , or other known storage devices . One of ordinary instructions . skill in the art will understand that processor 110 can include FIG . 5 depicts a prior art multi - threaded operating system . a single processor core or multiple processor cores as well 40
as numerous cache memories , as is known in the prior art . FIG . 6 depicts the malicious code prevention module

In FIG . 2 , data is stored on storage device 130 . There are identifying a potentially malicious thread within an operat
numerous mechanisms to store data on storage device 130 , ing system .
and two known mechanisms are shown for illustration FIG . 7 depicts the malicious code prevention module
purposes . In one mechanism , data is stored as blocks 220 45 replacing the first instruction in a potentially malicious
and can be accessed by logical block address (LBA) or thread with a new instruction that terminates the thread .
similar addressing scheme . In another mechanism , data is FIG . 8 depicts the malicious code prevention module
stored as files 230 and can be accessed using a file system . replacing all or part of a set of potentially malicious instruc
In the prior art , scanning module 210 can be executed by tions in memory that is backed by a file and optionally
processor 110 and can scan either blocks 220 or files 230 to 50 replacing all or part of the set of potentially malicious
look for malicious code . This often is referred to as virus instructions in a storage device with innocuous instructions .
scan software and is well - suited for identifying and nulli
fying known malicious programs that are stored in non DETAILED DESCRIPTION OF PREFERRED
volatile devices such as in storage device 130 . EMBODIMENTS
While prior art techniques are well - suited for detecting 55

known malicious programs in non - volatile devices , there is FIG . 3 depicts one embodiment of the invention . The
no satisfactory technique for detecting malicious instruc - address space within memory 120 is assigned to various
tions in processor 110 or memory 120 when the malicious programs and processes by operating system 310 . In this
instructions are not also stored in storage device 130 . There example , various address ranges have been assigned to
also is no satisfactory technique for detecting unknown 60 operating system 310 itself , utility program 320 , application
malicious instructions (e . g . , newly introduced viruses) program 330 , program 340 , and user data 350 , with an area
whether stored in storage device 130 or not . 360 remaining unassigned . In this example , operating sys

What is needed is a mechanism for detecting malicious tem 310 makes available attribute information 305 about
instructions in processor 110 and memory 120 and prevent - each program or process through an API (application pro
ing their execution . What is further needed is a mechanism 65 gramming interface) or other means . Attribute information
for preventing the execution of unknown malicious instruc - 305 includes information indicating whether the program or
tions , whether stored on storage device 130 or not . process is backed by a file (which means it is associated with

US 10 , 121 , 010 B2

a file stored in storage device 130) and is executable (which (NOP) instructions and shell code , thereby completely pre
means that it comprises instructions that can be executed by venting execution of the program of instructions by the
processor 110) . processor in the future .

Programs or processes that are not backed by a file and The foregoing merely illustrates the principles of the
that are executable are potentially malicious . Programs or 5 disclosure . Various modifications and alterations to the
processes that are not backed by a file are able to evade prior described embodiments will be apparent to those skilled in
art virus scan software . Moreover , most malicious entities the art in view of the teachings herein . It will thus be
are intended to be executed by processor 110 . appreciated that those skilled in the art will be able to devise

In FIG . 4 , malicious code prevention module 410 identi numerous systems , arrangements , and procedures which ,
fies program 340 as not backed by a file and executable 10 although not explicitly shown or described herein , embody

the principles of the disclosure and can be thus within the using attribute information 305 . Malicious code prevention spirit and scope of the disclosure . Various different exem module 410 then replaces program 340 with one or more plary embodiments can be used together with one another , as NOP (No Operation) instructions 420 and shell code 430 . well as interchangeably therewith , as should be understood
The NOP instructions 420 are essentially instructions that do ons that do 15 by those having ordinary skill in the art . In addition , certain
nothing , and shell code 430 is code that returns processor terms used in the present disclosure , including the specifi
110 and operating system 310 to a safe state . Thus , malicious cation , drawings and claims thereof , can be used synony
code prevention module 410 prevents program 340 from mously in certain instances , including , but not limited to , for
being executed . In situations where program 340 is in fact example , data and information . It should be understood that ,
malicious , malicious code prevention module 410 will pre - 20 while these words , and / or other words that can be synony
vent the malicious code from inflicting any further harm on mous to one another , can be used synonymously herein , that
computing device 100 and its contents . there can be instances when such words can be intended to

In another aspect of the invention , malicious code pre - not be used synonymously . Further , to the extent that the
vention module 410 determines whether each thread that is prior art knowledge has not been explicitly incorporated by
about to be executed within operating system 310 is backed 25 reference herein above , it is explicitly incorporated herein in
by a file using attribute information 305 . In FIG . 6 , mali - its entirety . All publications referenced are incorporated
cious code prevention module 410 identifies thread 530 as herein by reference in their entireties .
not backed by a file . It is likely that thread 530 is malicious The invention claimed is :
code . 1 . A method of preventing a program of instructions from

In FIG . 7 , malicious code prevention module 410 replaces 30 being executed in a computer system comprising a proces
the first instruction 531 (or , in some instances , series 531 of sor , memory , and a non - volatile storage device , the method
instructions if it is unsafe to terminate the thread within the comprising :
span of one instruction) in thread 530 with a new instruction loading the program of instructions into memory ;
731 (or , in some instances , series 731 of instructions) , which determining if the program of instructions is backed by a
modifies thread 530 into thread 530 ' . New instruction 731 is 35 file stored in the non - volatile storage device and is
an innocuous instruction , such as return instruction , that executable by the processor ; and
terminates thread 530 ' . Thus , malicious code prevention if the program of instructions is not backed by a file stored
module 410 prevents thread 530 from being executed . In in the non - volatile storage device or is not executable ,
situations where thread 530 is in fact malicious , malicious identifying the program of instructions as potentially
code prevention module 410 will prevent the malicious code 40 malicious and replacing the program of instructions
from inflicting any harm on computing device 100 and its with one or more No Operation (NOP) instructions and
contents . shell code , thereby preventing execution of the poten

In the above embodiments , malicious code prevention tially malicious program of instructions by the proces
module 410 comprises lines of code executable by processor sor .
110 . Malicious code prevention module 410 optionally can 45 2 . The method of claim 1 , wherein if the program of
be part of the kernel of operating system 310 or can be given instructions is backed by a file stored in the non - volatile
special privileges by operating system 310 (such as the storage device and is executable , executing the program of
ability to access attribute information 305 and / or to replace instructions by the processor .
a thread ' s instructions within the underlying program ’ s 3 . The method of claim 1 , wherein the determining step
address space in memory before they are executed) . 50 comprises obtaining attribute information from an operating

In another embodiment shown in FIG . 8 , a malicious system running on the processor .
program 340 of instructions is backed by a file stored in 4 . The method of claim 1 , further comprising : executing
storage device 130 . In this embodiment , another module (not the shell code by the processor to place the processor into a
shown) determines that program 340 is malicious . An safe state .
example of such module includes prior art antivirus software 55 5 . The method of claim 2 , wherein the determining step
or code that detects the lack of a digital signature or comprises obtaining attribute information for the program of
performs outlier detection or the presence of other suspi - instructions from an operating system running on the pro
cious behavior . When program 340 is loaded into memory cessor .
and is determined to be malicious , the same sequence 6 . The method of claim 2 , further comprising : executing
described as to FIG . 4 is performed . Specifically , malicious 60 the shell code by the processor to place the processor into a
code prevention module 410 replaces the program 340 of safe state .
instructions with one or more No Operation (NOP) instruc - 7 . A non - transitory computer - readable medium containing
tions and shell code , thereby preventing execution of the instructions for causing a processor to perform the following
program of instructions by the processor . However , in addi - steps :
tion , malicious code prevention module 410 replaces all of 65 determine if a program of instructions in memory is
part of the program 340 stored in memory 120 , and option backed by a file stored in the non - volatile storage
ally , in storage device 130 with one or more No Operation device and is executable by the processor ;

US 10 , 121 , 010 B2

if the program of instructions is not backed by a file stored
in the non - volatile storage device or is not executable ,
identify the program of instructions as potentially mali
cious and replace the program of instructions with one
or more No Operation (NOP) instructions and shell 5
code , thereby preventing execution of the potentially
malicious program of instructions by the processor ; and

if the program of instructions is backed by a file stored in
the non - volatile storage device and is executable , allow
the processor to execute the program of instructions . 10

8 . A method of preventing a program of instructions from
being executed in a computer system comprising a proces
sor , memory , and a non - volatile storage device , the method
comprising :

loading the program of instructions into memory ;
determining if the program of instructions is malicious ;
determining if the program of instructions is backed by a

file stored in the non - volatile storage device ; and
if the program of instructions is not backed by a file stored

in the non - volatile storage device , identifying the pro - 20
gram of instructions as potentially malicious and
replacing the program of instructions with one or more
No Operation (NOP) instructions and shell code ,
thereby preventing execution of the potentially mali
cious program of instructions by the processor .

9 . The method of claim 8 , further comprising : replacing
all of part of the file stored in the non - volatile storage device
with one or more No Operation (NOP) instructions and shell
code .

15

25

30

