
USOO7751400B2

(12) United States Patent (10) Patent No.: US 7,751,400 B2
Haynie et al. (45) Date of Patent: *Jul. 6, 2010

(54) METHOD, SYSTEM, AND COMPUTER 2004/O133634 A1* 7/2004 Luke et al. TO9,203
PROGRAMI PRODUCT FORETHERNET 2005/0125593 A1* 6/2005 Karpoffet al. T11/4
VIRTUALIZATION USING AN ELASTC FIFO 2009, O168681 A1 7, 2009 Moon
MEMORY TO FACLITATE FLOW OF 2009/0213857 A1* 8/2009 Haynie et al. 370,394
UNKNOWN TRAFFICTO VIRTUAL, HOSTS

(75) Inventors: Howard M. Haynie, Wappingers Falls,
NY (US); Jeffrey C. Hanscom,
Poughkeepsie, NY (US); Jeffrey M.
Turner, Poughkeepsie, NY (US)

(73) Assignee: International Business Machines
Coproration, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 181 days.

This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 12/036,821

(22) Filed: Feb. 25, 2008

(65) Prior Publication Data

US 2009/0225665 A1 Sep. 10, 2009

(51) Int. Cl.
H04L 2/28 (2006.01)
G06F II/00 (2006.01)

(52) U.S. Cl. 370/392; 370/248: 370/401;
711/203; 709/238

(58) Field of Classification Search 370/230 232,
370/248-422; 71 1/4, 114, 203; 709/220,

709/238; 700/2
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,586,936 B2 * 9/2009 Arimilli et al. 370/463
2002/0112113 A1* 8/2002 Karpoffet al. T1 1/4
2003/0051048 A1 3f2003 Watson et al. TO9,238
2004/01 17438 A1* 6/2004 Considine et al. TO9,203

201

EORE
(ABAFTER)

p

VIRTAZATION ROUTER
200

2009/0225.665 A1 9/2009 Haynie et al.

OTHER PUBLICATIONS

Z/Architecture Principles of Operation, International Business
Machines Corporation, SA22-7832-05, Sixth Edition (Apr. 2007).

* cited by examiner
Primary Examiner Afsar M. Qureshi
(74) Attorney, Agent, or Firm—Cantor Colburn LLP; Steven
Chiu

(57) ABSTRACT

A packet that represents unknown traffic for a virtual host is
received. A first test is performed to ascertain whether or not
a destination connection can be determined for the received
packet wherein, if a destination connection can be deter
mined, a second test is performed to ascertain whether or not
one or more connection-specific resources required to send
the packet to a virtual host memory corresponding to the
destination connection are available. If a destination connec
tion for the packet cannot be determined, the packet is passed
to a store engine. If the one or more connection-specific
resources are not available, the packet is passed to the store
engine. The store engine obtains a free packet buffer from a
FIFO memory. The store engine moves the packet into the
free packet buffer and submits the free packet buffer to the
elastic FIFO memory. A monitoring procedure is performed
to detect both an availability of connection-specific resources
and a presence of one or more waiting packets with a known
destination connection. When (i) a destination connection
with one or more waiting packets, and (ii) available connec
tion-specific resources, are both detected, removing the
packet from the local data store; allocating the one or more
connection-specific resources required to send the packet to
the virtual host memory corresponding to the connection
destination; and writing the packet to the virtual host memory.

21 Claims, 6 Drawing Sheets

223

WRUARAEXE

22

RTAS
MEMORY

U.S. Patent Jul. 6, 2010 Sheet 1 of 6 US 7,751,400 B2

RECEIVE APACKETREPRESENTING UNKNOWN TRAFFIC 101
FROMANETWORK, THE PACKET INCLUDING AHEADER

103
NO A PARSER EXAMINES THE HEADER. A FIRST TEST IS PERFORMED:

CAN THE PARSER DETERMINEADESTINATION
CONNECTION FOR THE RECEIVED PACKET

YES

ALOCAL ENGINE BLOCKS THE OBTAINING OF THE ONE OR MORE 107
CONNECTION-SPECIFICRESOURCES WHENONE ORMORE ADDITIONAL PACKETS
FOR THE DESTINATION CONNECTIONALREADY EXIST IN AN ELASTICFIFO MEMORY

105
ASECONDTEST IS PERFORMED. CAN AN ALLOCATOR OBTAIN ONE OR NO

MORE CONNECTION-SPECIFICRESOURCES REQUIRED TO SEND THE PACKET
TO AVIRTUALHOST CORRESPONDING TO THE DESTINATION CONNECTION

YES

IF THE ALLOCATOR OBTAINS ONE ORMORE CONNECTION-SPECIFICRESOURCES, 109
A SEND ENGINE WRITES THE PACKET TO AWIRTUAL, HOST MEMORY

IF THE PARSER DOES NOT DETERMINE A DESTINATION CONNECTION 111
FOR THE PACKET, THE PACKET IS PASSED TO ASTORE ENGINE

IF THE ALLOCATOR FALS IN THE ATTEMPTTO OBTAIN ONE ORMORE CONNECTION- 113
SPECIFICRESOURCES, THE ALLOCATOR PASSES THE PACKET TO THE STORE ENGINE

THE STORE ENGINE OBTAINSA FREE PACKET BUFFER FROM 115
THEELASTICFIFOMEMORY, WHEREIN THE FREE PACKET BUFFERISAN
EMPTY PACKET-SIZED BLOCK OF MEMORY IN A LOCAL DATA STORE

N

FIG. IA

U.S. Patent Jul. 6, 2010 Sheet 2 of 6 US 7,751,400 B2

THE STORE ENGINE MOVES THE PACKET INTO THE FREE PACKETBUFFER 117
ANDSUBMTS THE FREE PACKET BUFFER TO THE ELASTICFIFO MEMORY is

ANASSISTENGINE DETERMINES AND ASSIGNSA DESTINATION I 19
CONNECTION TO ANY PACKETTHAT WAS SUBMITED TO THEELASTIC

FIFO MEMORY WITHOUTAKNOWN DESTINATION CONNECTION

121
THE LOCAL ENGINE CONTINUOUSLY OR PERIODICALLY OR REPEATEDLY
MONITORS BOTH THE ALLOCATOR AND THE EASTCFIFO MEMORY.

THE ALLOCATOR IS MONITORED FOR ANAVAILABILITY OF CONNECTION-SPECIFIC
RESOURCES, AND THEELASTICFIFO MEMORY IS MONITORED FOR A PRESENCE

OF ONE ORMORE PACKETS WITHKNOWN DESTINATION CONNECTIONS

129
WHEN RESOURCES BECOMEAVAILABLE FOR A DESTINATION CONNECTION WHICH

PREVIOUSLY LACKED CONNECTION-SPECIFICRESOURCES, THE LOCAL ENGINEGAINS
EXCLUSIVE ACCESS TO THE CONNECTION-SPECIFICRESOURCES VIA THE ALLOCATORUNTIL

NOMORE PACKETS FOR THAT DESTINATION CONNECTION EXIST IN THEELASTICFIFO MEMORY

WHENA DESTINATION CONNECTION WITHBOTH WAITING PACKETS ANDAVAILABLE 123
CONNECTION-SPECIFICRESOURCESIS MONITORED BY THE LOCAL ENGINE, THE

PACKET IS REMOVED FROM THE LOCALDATA STORE AND PASSED TO THE ALLOCATOR

THE ALLOCATOR ALLOCATES THE CONNECTION-SPECIFICRESOURCES REQUIRED TO SEND I25
THAT PACKET TO AVIRTUALHOST CORRESPONDING TO THE CONNECTION DESTINATION

THE SEND ENGINE WRITES THE PACKET TO THE VIRTUALHOST MEMORY 127

FIG. IB

US 7,751,400 B2 Sheet 3 of 6 Jul. 6, 2010 U.S. Patent

IZZ
£33

º “0IH

Z 16.

Z

6

030Z903
I0%

US 7,751,400 B2 U.S. Patent

Ys
S
v

U.S. Patent Jul. 6, 2010 Sheet 5 of 6 US 7,751,400 B2

501 500

NAMED QUEUES

LIST NAME
(SPECIALTYPES
OF PACKETS)

ran r aw w w - w - - w w w w

III:
III

n I

NUMBERED QUEUES

LIST NUMBER NORMAL BUFFER
(CONTAINSA PACKET)

U.S. Patent Jul. 6, 2010 Sheet 6 of 6 US 7,751,400 B2

300
COMPUTER SYSTEM

MEMORY

PROCESSOR O

*320

SIGNAL
BEARING
MEDIUM

FIG. 5

US 7,751,400 B2
1.

METHOD, SYSTEM, AND COMPUTER
PROGRAMI PRODUCT FORETHERNET

VIRTUALIZATION USING AN ELASTC FIFO
MEMORY TO EACILITATE FLOW OF

UNKNOWN TRAFFICTO VIRTUAL, HOSTS

BACKGROUND OF THE INVENTION

This invention relates generally to network virtualization
and, more particularly, to methods, systems, computer pro
gram products, and hardware products for implementing Eth
ernet virtualization routers using an elastic FIFO memory to
facilitate flow of unknown traffic to virtual hosts.

A shortcoming with existing network virtualization tech
niques is that routers which service a relatively large number
of communication channels are oftentimes notable to achieve
the necessary bandwidth to keep packets moving. As conges
tion builds, the router may place back pressure on a network
to avoid accepting additional packets, or packets may be
dropped altogether. Moreover, a shortage in channel-specific
resources for one or two channels may cause packet through
put in other channels to Suffer as well. Accordingly, it would
be advantageous to provide an enhanced technique for Eth
ernet virtualization that overcomes the foregoing deficiencies
and that is capable of expeditiously moving packets to a
desired destination connection.

BRIEF SUMMARY OF THE INVENTION

Exemplary embodiments include a method for Ethernet
virtualization using an elastic FIFO memory to facilitate flow
of unknown traffic to virtual hosts. The method comprises
receiving a packet that represents unknown traffic on a net
work and destined for a virtual host; performing a first test to
ascertain whether or not a destination connection can be
determined for the received packet wherein, if a destination
connection can be determined, a second test is performed to
ascertain whether or not one or more connection-specific
resources required to send the packet to a virtual host memory
corresponding to the destination connection are available; ifa
destination connection for the packet cannot be determined,
passing the packet to a store engine; if the one or more
connection-specific resources are not available, passing the
packet to the store engine; the store engine obtaining a free
packet buffer from an elastic first-in, first-out (FIFO)
memory, wherein the free packet buffer is an empty packet
sized block of memory in a local data store; the store engine
moving the packet into the free packet buffer and Submitting
the free packet buffer to the elastic FIFO memory; performing
a monitoring procedure to detect both an availability of con
nection-specific resources and a presence of one or more
waiting packets with a known destination connection; when a
destination connection with: (i) one or more waiting packets,
and (ii) available connection-specific resources; are both
detected, removing the packet from the local data store; allo
cating the one or more connection-specific resources required
to send the packet to the virtual host memory corresponding
to the connection destination; and writing the packet to the
virtual host memory.
A system, and a computer program product corresponding

to the above-summarized method is also described and
claimed herein. Other systems, methods, and computer pro
gram products according to embodiments will be or become
apparent to one with skill in the art upon review of the fol
lowing drawings and detailed description. It is intended that
all Such additional systems, methods, and computer program

10

15

25

30

35

40

45

50

55

60

65

2
products be included within this description, be within the
Scope of the present invention, and be protected by the accom
panying claims.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are
numbered alike in the several FIGURES:

FIGS. 1A and 1B together comprise a flowchart setting
forth an illustrative operational sequence for Ethernet virtu
alization using an elastic FIFO memory to facilitate flow of
unknown traffic to a virtual host;

FIG. 2 is a block diagram setting forth an illustrative sys
tem for Ethernet virtualization using an elastic FIFO memory
to facilitate flow of unknown traffic to a virtual host;

FIG. 3 is a data structure diagram setting forth an illustra
tive receive buffer for use with the system of FIG. 2;

FIG. 4 is a data structure diagram setting forth an illustra
tive elastic FIFO for use with the system of FIG. 2; and

FIG. 5 is a block diagram setting forth an illustrative com
puter program product for Ethernet virtualization using an
elastic FIFO memory to facilitate flow of unknown traffic to a
virtual host.
The detailed description explains the preferred embodi

ments of the invention, together with advantages and features,
by way of example with reference to the drawings.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

An exemplary embodiment of the present invention per
mits a hardware Ethernet virtualization router which serves a
large number of communications channels to maintain high
bandwidth by ensuring that packets can continue moving.
The router avoids having to place back pressure on the net
work or having to drop packets, which are undesirable alter
natives to moving packets. Thus, the technical effects and
benefits include allowing an Ethernet virtualization router
servicing any number of communications channels to con
tinually move traffic efficiently regardless of packet types or
shortages in channel-specific resources. High bandwidth can
be maintained in spite of the unpredictable and bursty traffic
patterns inherent to Ethernet networks. Packet order is main
tained on a host-by-host basis and does not stall the flow of
packets to one virtual machine because of a shortage of
resources required for another virtual machine. Packets
requiring special attention, such as multicast packets, packets
for which connections cannot be determined by a parser, or
address resolution protocol (ARP) packets, may also be
handled using the methods disclosed herein.

FIGS. 1A and 1B together comprise a flowchart setting
forth an illustrative operational sequence for Ethernet virtu
alization using an elastic FIFO memory to facilitate flow of
unknown traffic to a virtual host, and FIG. 2 is a block dia
gram setting forth an illustrative system for Ethernet virtual
ization using an elastic FIFO memory to facilitate flow of
unknown traffic to a virtual host. Although FIGS. 1A and 1B
show a linearly sequential series of operations, this is solely
for purposes of clarity and illustration, as some of the steps
could be performed in parallel or in a sequence other than
what is shown in FIGS. 1A and 1B. The operational sequence

US 7,751,400 B2
3

of FIGS. 1A and 1B commences at block 101 (FIG. 1A)
where a packet is received that represents unknown traffic
destined for a virtual host. The packet is received from a
network. The received packet includes aheader. Illustratively,
the received packet may be written into a relatively small
optional receive buffer 203 (FIG. 2) as the packet arrives from
a network adapter 201. The receive buffer 203 is not strictly
required.

At block 103 (FIG. 1A), a parser 205 (FIG. 2) examines
each packets headers (for example, layer 2, layer 3, etc.) and
a first test is performed to ascertain whether or not a destina
tion connection can be determined for the received packet.
The affirmative branch from block 103 leads to block 107,
and the negative branch from block 103 leads to block 111
(described in greater detail hereinafter). If the parser 205
(FIG. 2) can determine a destination connection for the
packet, following block 107 at block105 (FIG. 1A), a second
test is performed to ascertain whether or not one or more
connection-specific resources required to send the packet to a
virtual host memory corresponding to the destination connec
tion are available. The one or more connection-specific
resources are available if they can be obtained for allocation
by a resource allocation mechanism Such as an allocator 207
(FIG. 2). For example, the allocator 207 attempts to obtain
one or more connection-specific resources required to send
that packet to a virtual machine 223 that corresponds to the
destination connection. Note that the terms “virtual machine'
and “virtual host are used interchangeably herein. The affir
mative branch from block 105 leads to block 109 (to be
described in greater detail hereinafter), whereas the negative
branch from block 105 leads to block 113 (to be described in
greater detail hereinafter).

Although the illustrative configuration of FIG. 2 shows one
virtual machine 223, this is for purposes of clarity, as the
system of FIG.2 may contain a plurality of virtual machines.
For example, a practical system may include hundreds or
thousands of virtual machines. With hundreds orthousands of
virtual machines running on a single physical host, there may
be scattered shortages of resources for some Small Subset of
the virtual machines at any given time. Within the physical
machine, a hypervisor may allocate differing resources to
different virtual machines. For example, some virtual
machines may have higher priority and therefore get more
time-slices than others. Or, some virtual machines may have
more physical storage allocated for use as receive buffers. A
real-world System hosting thousands of virtual machines may
not operate perfectly at all times with regard to resource
management. Likewise, scattered resource shortages may be
attributed to the inherently bursty nature of Ethernet traffic.

At block 107 (FIG. 1A), a local engine 213 (FIG. 2) blocks
the allocator 207 from allocating resources to new packets
when packets for the same connection already exist within an
elastic first-in, first-out (FIFO) 500 memory because of a
previous lack of resources. At block 109 (FIG. 1A), if the
allocator 207 is successful in obtaining the resources, a send
engine 209 (FIG. 2) writes the packet to a virtual host memory
221 associated with the virtual machine 223. If the parser 205
does not determine the packet's connection (FIG. 1A, block
111), it passes the packet to a store engine 211 (FIG. 2). At
block 113 (FIG. 1A), if the allocator 207 (FIG. 2) fails in its
attempt to obtain the required resources (which could be
because the resources are not available or because the local
engine currently has priority access to those resources), the
allocator 207 passes the packet to the store engine 211.

Next, at block 115 (FIG. 1A), for each packet it is to
service, the store engine 211 (FIG. 2) obtains a free packet
buffer from the elastic FIFO 500. A free packet buffer is an

10

15

25

30

35

40

45

50

55

60

65

4
empty packet-sized block of memory in a local data store 215.
The store engine 211 moves the packet into that buffer (FIG.
1B, block 117) and submits the used buffer to the elastic FIFO
500 (FIG. 2). If a free packet buffer resource is not available,
the packet is dropped or, optionally, the store engine 211 can
wait for that shared resource to become available provided
sufficient buffering, such as the receive buffer, is available.
Since a packets connection must be determined before it can
be sent to the virtual host memory 221, at block 119 (FIG.1B)
an assist engine 217 (FIG. 2) determines and assigns connec
tions to packets that were submitted to the elastic FIFO 500
without known connections (i.e. those packets which arrived
from the parser 205).
The procedure of FIGS. 1A and 1B progresses to block 121

(FIG.1B) where the local engine 213 (FIG.2) continuously or
periodically or repeatedly monitors both the allocator 207 for
connection-specific resources and the elastic FIFO 500 for
the presence of packets with known destination connections.
When resources become available for a connection which had
previously lacked resources, block 129, the local engine 213
(FIG. 2) gains exclusive access to those resources, via the
allocator 207, until no more packets for that connection exist
in the elastic FIFO 500. The operations of block 129 (FIG.
1B) are critical to maintaining packet order within destination
connections. At block 123 (FIG. 1B), when a connection with
both waiting packets and available resources is seen, the
packet is removed from the local data store 215 (FIG. 2) and
passed to the allocator 207. The allocator 207 allocates the
connection-specific resources required to send that packet to
a virtual machine 223 corresponding to the connection desti
nation (FIG. 1B, block 125). Since the local engine 213 (FIG.
2) already determined that the resources were available and
claimed them for the packet, the allocator 207 is successful
and the packet is written to virtual host memory 221 by the
send engine 209 at block 127 (FIG. 1B).
The parser 205 (FIG. 2), allocator 207, send engine 209,

store engine 211, local engine 213, local data store 215,
elastic FIFO 500, and assist engine 217 together comprise a
virtualization router 200. The router 200 is referred to as a
virtualization router because it supports communication
channels to a plurality of virtual machines which are called
destination connections. Such as virtual machine 223, provid
ing the illusion to each virtual machine 223 that it possesses
its own network interface card (Such as the network adapter
201), when in fact only a single high-speed adapter (i.e., the
network adapter 201) is present. The network adapter 201 is
run in promiscuous mode to receive all packets off the net
work. The router 200 determines the correct connection for
each packet and moves the packet to a memory space (i.e.,
virtual host memory 221) of a corresponding virtual machine
223.

Inbound Ethernet traffic flow is inherently bursty. Multiple
shared and non-shared resources are required for each con
nection in order to move its packets. With inherently limited
resources which must be carefully managed, one of the func
tions performed by the router 200 is to handle the bursty
traffic in Such a way as to minimize packet loss and retrans
mission for each connection in the context of virtual hosts,
thereby maximizing network efficiency.

FIG. 3 is a data structure diagram setting forth an illustra
tive receive buffer 401 for implementing the optional receive
buffer 203 of FIG. 2. Incoming bursts of packet data are
initially written directly into the receive buffer 401 (FIG. 3),
which is managed with a queue of records called an addrq
403. Each record 405 contains various information about a
burst including a pointer into the receive buffer 401 where the
data was written. All packets are removed from the receive

US 7,751,400 B2
5

buffer 401 in the same order that they were previously written
(as the packets arrived from the network adapter 201, FIG. 2).
If the packet at the head of the addrq 403 (FIG.3) as indicated
by a head pointer 407 is not a type of packet that requires
special handling and if all required resources are available to
move the packet, the packet is sent directly to its connection
destination (virtual host memory 221, FIG. 2). Otherwise, if
the packet is a special type or if one or more of the resources
is not available, the packet is sent to the elastic FIFO 500.
As the head pointer 407 (FIG. 3) moves forward (i.e., in a

downward direction wherein FIG. 3 is oriented such that the
reference numerals are upright), packets for connections with
ample resources continue to be sent directly to their connec
tion destinations even while packets for other connections
without resources are sent to the elastic FIFO 500 (FIG. 2).
Similarly, by the same mechanism, packets that do not require
special consideration can be sent directly to their destinations
while packets that require extra processing (e.g. multicast
packets) can be sent to the elastic FIFO 500 to be serviced by
an independently-running assist engine. In this way, the flow
of all packets continues through the router 200 consistently
without stalls or hesitations.

FIG. 4 is a data structure diagram setting forth an illustra
tive elastic FIFO 500 memory (FIGS. 2 and 4) for use with the
system of FIG. 2 and the method of FIG.1. The elastic FIFO
500 (FIG. 4) includes a large array of linked lists of packet
buffers, as well as all the functionality required to maintain
those lists and allow them to be put to a useful purpose. The
elastic FIFO 500 serves to manage the flow of packets that can
not be sent directly from the receive buffer 203 (FIG. 2) to one
of the virtual machines such as the virtual machine 223. The
elastic FIFO 500 (FIG. 4) is called "elastic” because it
changes shape with changes in either or both of: (a) the
number of active connections, or (b) the total number of
packets contained by the FIFO. In its entirety, the memory
footprint of the elastic FIFO 500 can be increased or
decreased over time as free buffers are dynamically added or
removed.
The elastic FIFO 500 is also called “elastic’ because it is

actually a collection of queues on which packet buffers and
pointers to packet buffers are held. These pointers to packet
buffers are shown in FIG. 4 as indirect buffers 505.i, where i
is any positive integer greater than Zero. The packet buffers
are shown in FIG. 4 as normal buffers 507.j where j is any
positive integer greater than Zero. There are named queues
501 for free normal buffers 507.j of various sizes. These
named queues 501 also include a named queue for free indi
rect buffers 505.i. Indirect buffers 505.ii only occupy a small
amount of memory, as they merely point to a normal buffer
507.j, but these indirect buffers 505.i do occupy some
memory and are thus obtained as needed from the free list so
that they may be enqueued to a numbered list. Since the
elastic FIFO 500 is elastic, additional free indirect buffers
505.ican be added as necessary, and these buffers may also be
taken away if the free list becomes excessively long. There is
no direct relationship between the total number of indirect
buffers 505.ii and normal buffers 507.j. At any given time,
some number of the normal buffers 507.j will be occupied by
packets, though ideally most should be free most of the time.

There are two categories of queues within the elastic FIFO
500: named queues 501 and numbered queues 503. When a
packet is sent to the elastic FIFO 500 because it requires
special consideration, it is placed on a named queue of named
queues 501, as opposed to being placed on a numbered con
nection queue of numbered queues 503. Each named queue of
named queues 501 includes a list name A, B, C, D, Z that
reflects a special packet type placed on that queue. Packets

5

10

15

25

30

35

40

45

50

55

60

65

6
placed on named queues 501 must ultimately be moved to
numbered queues 503. Packets on a numbered queue of num
bered queues 503 can be sent to a corresponding destination
connections virtual host memory 221 (FIG. 2) as soon as the
required connection-specific resources are available.
Named queues 501 (FIG. 4) are also used for implementing

pools of various types of free buffers, which are buffers that
are not currently associated with a packet. A free buffer is
obtained for each packet that is to be locally stored, and that
buffer is returned to the pool from which it originated once the
packet has been removed from local storage and sent to Vir
tual host memory 221 (FIG. 2). When the special packet type
is multicast or broadcast, the packet must be moved from a
“multicast' or “broadcast named queue of named queues
501 (FIG. 4) to a plurality of numbered queues in numbered
queues 503 so it may be sent to multiple virtual machines
including virtual machine 223 (FIG. 2), wherein potentially
thousands of Such virtual machines are present. The assist
engine 217 efficiently performs this task through the use of
indirect buffers 505.ii (FIG. 4).

There are two types of packet buffers that may be put on a
numbered queue of numbered queues 503: normal buffers
507.j and indirect buffers 505.i. Indirect buffers 505.ido not
contain data themselves, but merely point to a normal buffer
507.j. The assist engine 217 (FIG. 2) removes a normal buffer
507.j (FIG. 4) from a named queue of named queues 501,
obtains multiple free indirect buffers 505.i from the elastic
FIFO 500, points those indirect buffers 505.ii at the normal
buffer 507.j, and enqueues those indirect buffers 505.i to the
appropriate numbered queues 503.

Every normal buffer 507.j carries a use count 509. A nor
mal buffers use count 509 is usually 1 but can be higher when
the normal buffer 507.j is the targetofanindirect buffer 505.i.
A normal buffer 507.j that is directly sitting on a queue has a
use count of 1, while a normal buffer 507.jpointed to by one
or more indirect buffers 505.i (which are sitting on one or
more queues) has a use count equal to the number of indirect
buffers 505.ipointing to it. A normal buffer 507.j that is the
target of an indirect buffer 505.ican not itself directly exist on
any queue. Each time a copy of the packet in the normal buffer
507.j is sent to virtual host memory 221 (FIG. 2), an indirect
buffer 505.i (FIG. 4) pointing to it is removed from a num
bered queue of numbered queues 503 and the normal buffers
use count 509 is decremented by 1 (provided it is still greater
than 1). When the normal buffer's use count 509 reaches 1, it
is returned to the pool of free normal buffers 507.j at the same
time a final indirect buffer 505.ipointing to the normal buffer
507.j is dequeued and returned to the pool of free indirect
buffers 505.i.

The local engine 213 (FIG. 2) performs the task of dequeu
ing buffers from the numbered queues 503 (FIG. 4), via the
interface provided by the elastic FIFO 500, so the packets
contained within or pointed to by those buffers can be sent to
virtual host memory 221 (FIG. 2). As soon as the allocator
207 fails to obtain virtual host memory 221 for one packet for
a given connection, it must send all Subsequent packets for
that connection to the local data store 215 in order to maintain
packet order for that connection. One task performed by the
local engine 213 is to empty queues containing packets that
have accumulated, due to resource shortages, so packets may
once again flow directly from the network adapter 201 to
virtual host memory 221, i.e. without being stored first. The
local engine 213 obtains exclusive access to connection-spe
cific resources until the local engine determines that it has
emptied a destination connection’s queue and relinquishes
that exclusivity.

US 7,751,400 B2
7

FIG. 5 is a block diagram setting forth an illustrative com
puter program product for Ethernet virtualization using an
elastic FIFO memory to facilitate flow of unknown traffic to a
virtual host. The system includes a computer 300 operatively
coupled to a signal bearing medium 340 via an input/output
interface (I/O) 330. The signal bearing medium 340 may
include a representation of instructions for Ethernet virtual
ization using an elastic FIFO memory to facilitate flow of
unknown traffic to a virtual host, and may be implemented as,
e.g., information permanently stored on non-writeable Stor
age media (e.g., read-only memory devices within a com
puter, such as CD-ROM disks readable by a CD-ROM drive),
alterable information stored on a writeable storage media
(e.g., floppy disks within a diskette drive or hard disk drive),
information conveyed to a computer by a communications
medium, Such as through a computer or telephone network,
including wireless or broadband communications networks,
Such as the Internet, etc.
The computer 300 includes a processor 310 that processes

information for Ethernet virtualization using an elastic FIFO
memory to facilitate flow of unknown traffic to a virtual host,
wherein the information is represented, e.g., on the signal
bearing medium 340 and communicated to the computer 300
via the I/O 330, wherein the processor 310 saves information
as appropriate into a memory 320. Illustratively, the processor
310 corresponds to the processing mechanism 106 of FIG.1.
Returning now to FIG. 6, this information may also be saved
into the memory 320, e.g., via communication with the I/O
330 and the signal bearing medium 340.
The processor 310 executes a program for implementing

Ethernet virtualization using an elastic FIFO memory to
facilitate flow of unknown traffic to a virtual host. The pro
cessor 310 implements instructions for receiving a packet that
represents unknown traffic destined for a virtual host on a
network, performing a first test to ascertain whether or not a
destination connection can be determined for the received
packet wherein, if a destination connection can be deter
mined, a second test is performed to ascertain whether or not
one or more connection-specific resources required to send
the packet to a virtual host memory corresponding to the
destination connection are available; if a destination connec
tion for the packet cannot be determined, passing the packet to
a store engine; if the one or more connection-specific
resources are not available, passing the packet to the store
engine; the store engine obtaining a free packet buffer from an
elastic first-in, first-out (FIFO) memory, wherein the free
packet buffer is an empty packet-sized block of memory in a
local data store; the store engine moving the packet into the
free packet buffer and submitting the free packet buffer to the
elastic FIFO memory; performing a monitoring procedure to
detect both an availability of connection-specific resources
and a presence of one or more waiting packets with a known
destination connection; when a destination connection with:
(i) one or more waiting packets, and (ii) available connection
specific resources; are both detected, removing the packet
from the local data store; allocating the one or more connec
tion-specific resources required to send the packet to the
virtual host memory corresponding to the connection desti
nation; and writing the packet to the virtual host memory. The
foregoing steps may be implemented as a program or
sequence of instructions within the memory 320, or on a
signal bearing medium, Such as the medium 340, and
executed by the processor 310.
As described above, the embodiments of the invention may

be embodied in the form of computer-implemented processes
and apparatuses for practicing those processes. Embodiments
of the invention may also be embodied in the form of com
puter program code containing instructions embodied in tan
gible media, such as floppy diskettes, CD-ROMs, hard drives,
or any other computer-readable storage medium, wherein,

10

15

25

30

35

40

45

50

55

60

65

8
when the computer program code is loaded into and executed
by a computer, the computer becomes an apparatus for prac
ticing the invention. The present invention can also be embod
ied in the form of computer program code, for example,
whether stored in a storage medium, loaded into and/or
executed by a computer, or transmitted over Some transmis
sion medium, Such as over electrical wiring or cabling,
through fiber optics, or via electromagnetic radiation,
wherein, when the computer program code is loaded into and
executed by a computer, the computer becomes an apparatus
for practicing the invention. When implemented on a general
purpose microprocessor, the computer program code seg
ments configure the microprocessor to create specific logic
circuits.

While the invention has been described with reference to
exemplary embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the invention without departing
from the essential scope thereof. Therefore, it is intended that
the invention not be limited to the particular embodiment
disclosed as the best mode contemplated for carrying out this
invention, but that the invention will include all embodiments
falling within the scope of the appended claims. Moreover,
the use of the terms first, second, etc. do not denote any order
or importance, but rather the terms first, second, etc. are used
to distinguish one element from another.
We claim:
1. A method for Ethernet virtualization using an elastic

FIFO memory to facilitate flow of unknown traffic to a virtual
host, the method comprising:

receiving a packet that represents unknown traffic on a
network;

performing a first test to ascertain whether or not a desti
nation connection can be determined for the received
packet wherein, if a destination connection can be deter
mined, a second test is performed to ascertain whether or
not one or more connection-specific resources required
to send the packet to a virtual host memory correspond
ing to the destination connection are available;

if a destination connection for the packet cannot be deter
mined, passing the packet to a store engine;

if the one or more connection-specific resources are not
available, passing the packet to the store engine;

the store engine obtaining a free packet buffer from an
elastic first-in, first-out (FIFO) memory, wherein the
free packet buffer is an empty packet-sized block of
memory in a local data store;

the store engine moving the packet into the free packet
buffer and submitting the free packet buffer to the elastic
FIFO memory;

performing a monitoring procedure to detect both an avail
ability of connection-specific resources and a presence
of one or more waiting packets with a known destination
connection;

when a destination connection with one or more waiting
packets and available connection-specific resources; are
both detected, removing the packet from the local data
Store;

allocating the one or more connection-specific resources
required to send the packet to the virtual host memory
corresponding to the destination connection; and

writing the packet to the virtual host memory.
2. The method of claim 1 wherein the first test is performed

by examining a header of the packet, the method further
including storing the received packet in a receive buffer.

US 7,751,400 B2

3. The method of claim 1 wherein the one or more connec
tion-specific resources are rendered as unavailable if one or
more additional packets for the destination connection
already exist in the elastic FIFO memory.

4. The method of claim 1 wherein, if one or more connec
tion-specific resources are available as determined by the
second test, writing the packet to the virtual host memory.

5. The method of claim 1 wherein a destination connection
is determined for and assigned to any packet that has been
submitted to the elastic FIFO memory without a known des
tination connection.

6. The method of claim 1 wherein, when resources become
available for a destination connection for which one or more
connection-specific resources were previously unavailable,
granting exclusive access to the one or more connection
specific resources for the destination connection.

7. The method of claim 6 further including terminating the
exclusive access when no more packets for that destination
connection exist in the elastic FIFO memory.

8. A system for Ethernet virtualization using an elastic
FIFO memory to facilitate flow of unknown traffic to a virtual
host, the system comprising:

a parser configured to receive a packet representing
unknown traffic on a network and to attempt to deter
mine a destination connection for the packet;

an allocator; operatively coupled to the parser, the allocator
configured to attempt to obtain one or more connection
specific resources required to send the packet to a virtual
host memory corresponding to the destination connec
tion, the attempting responsive to the parser determining
a destination connection for the packet;

a store engine operatively coupled to the allocator, the store
engine configured to receive the packet, wherein if the
parser does not determine a destination connection for
the packet, the parser passes the packet to the store
engine and wherein, if the allocator fails in the attempt to
obtain the one or more connection-specific resources,
the allocator passes the packet to the store engine;

an elastic first-in, first-out (FIFO) memory operatively
coupled to the store engine, the FIFO memory config
ured to store a free packet buffer, wherein the store
engine obtains the free packet buffer from the elastic
FIFO memory, and wherein the free packet buffer is an
empty packet-sized block of memory in a local data
store; the store engine moving the packet into the free
packet buffer and submitting the free packet buffer to the
elastic FIFO memory;

a local engine configured to monitor both the allocator and
the elastic FIFO memory; the allocator being monitored
for an availability of connection-specific resources, and
the elastic FIFO memory being monitored for a presence
of one or more waiting packets with a known destination
connection; wherein, when a destination connection
with both one or more waiting packets and available
connection-specific resources is monitored by the local
engine, the packet is removed from the local data store
and passed to the allocator; and wherein the allocator
allocates the one or more connection-specific resources
required to send the packet to a virtual host memory
corresponding to the destination connection; and

a send engine operatively coupled to the allocator, the send
engine configured to write the packet to the virtual host
memory.

9. The system of claim 8 wherein the parser is further
configured to examine a header of the packet, and the system
further includes a receive buffer operatively coupled to the
parser configured to store the received packet.

10. The system of claim 8 wherein the one or more con
nection-specific resources are rendered as unavailable if one

10

15

25

30

35

40

45

50

55

60

65

10
or more additional packets for the destination connection
already exist in the elastic FIFO memory.

11. The system of claim 8 wherein the packet is written to
the virtual host memory in response to one or more connec
tion-specific resources being obtained by the allocator.

12. The system of claim 8 wherein a destination connection
is determined for and assigned to any packet that has been
submitted to the elastic FIFO memory without a known des
tination connection.

13. The system of claim 8 wherein, when resources are
obtained for a destination connection for which one or more
connection-specific resources were previously unavailable,
granting exclusive access to the local engine to obtain the one
or more connection-specific resources for the destination
connection.

14. The system of claim 13 wherein the local engine is
further configured to terminate the exclusive access when no
more packets for that destination connection exist in the elas
tic FIFO memory.

15. A computer program product for facilitating Ethernet
virtualization using an elastic FIFO memory to facilitate flow
of unknown traffic to a virtual host, the computer program
product comprising:

a tangible storage medium readable by a processing circuit
and storing instructions for execution by the processing
circuit for performing a method comprising:

receiving a packet that represents unknown traffic on a
network;

performing a first test to ascertain whether or not a desti
nation connection can be determined for the received
packet wherein, if a destination connection can be deter
mined, a second test is performed to ascertain whether or
not one or more connection-specific resources required
to send the packet to a virtual host memory correspond
ing to the destination connection are available;

if a destination connection for the packet cannot be deter
mined, passing the packet to a store engine;

if the one or more connection-specific resources are not
available, passing the packet to the store engine;

the store engine obtaining a free packet buffer from an
elastic first-in, first-out (FIFO) memory, wherein the
free packet buffer is an empty packet-sized block of
memory in a local data store;

the store engine moving the packet into the free packet
buffer and submitting the free packet buffer to the elastic
FIFO memory;

performing a monitoring procedure to detect both an avail
ability of connection-specific resources and a presence
of one or more waiting packets with a known destination
connection;

when a destination connection with one or more waiting
packets and available connection-specific resources are
both detected, removing the packet from the local data
Store;

allocating the one or more connection-specific resources
required to send the packet to the virtual host memory
corresponding to the destination connection destination;
and

writing the packet to the virtual host memory.
16. The computer program product of claim 15 wherein the

first test is performed by examining a header of the packet,
and the method further comprises storing the received packet
in a receive buffer.

17. The computer program product of claim 15 wherein the
one or more connection-specific resources are rendered as
unavailable if one or more additional packets for the destina
tion connection already exist in the elastic FIFO memory.

US 7,751,400 B2
11

18. The computer program product of claim 15 wherein, if
one or more connection-specific resources are available as
determined by the second test, writing the packet to the virtual
host memory.

19. The computer program product of claim 15 wherein a
destination connection is determined for and assigned to any
packet that has been submitted to the elastic FIFO memory
without a known destination connection.

20. The computer program product of claim 15 wherein,
when resources become available for a destination connec

12
tion for which one or more connection-specific resources
were previously unavailable, granting exclusive access to the
one or more connection-specific resources for the destination
connection.

21. The computer program product of claim 20 wherein the
method further comprises terminating the exclusive access
when no more packets for that destination connection exist in
the elastic FIFO memory.

k k k k k

