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(57) ABSTRACT

A system and method is provided for improving sensor
precision. In a training phase, a relatively low precision
sensor system and a relatively high precision sensor system
may record relatively low precision and relatively high
precision training motion signals respectively of substan-
tially the same training scene. Machine learning may be
performed to generate a transformation mapping informa-
tion from the relatively low precision training motion signal
to the relatively high precision training motion signal. In a
run-time phase, a run-time sensor system having a precision
significantly less than the precision of the relatively high
precision sensor system, may record run-time motion signals
of a run-time scene. The run-time motion signal may be
transformed using the transformation to generate a trans-
formed run-time motion signal with a precision significantly

21, 2017. greater than the precision of the run-time sensor system.
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A DUAL-PRECISION SENSOR SYSTEM
USING HIGH-PRECISION SENSOR DATA TO
TRAIN LOW-PRECISION SENSOR DATA
FOR OBJECT LOCALIZATION IN A
VIRTUAL ENVIRONMENT

FIELD OF THE INVENTION

[0001] Embodiments of the present invention relate gen-
erally to the field of motion detection sensor systems, and
improving the accuracy of low precision motion detection
sensor systems. More particularly, embodiments of the pres-
ent invention relate to the use of motion detection sensors to
detect human (e.g., head) motion in virtual environments,
such as, augmented reality (AR), virtual reality (VR), or
mixed reality (MR) system.

BACKGROUND OF THE INVENTION

[0002] Modern head-mounted displays (HMDs) used in
virtual environments, such as AR, VR and MR headsets,
often employ sensors for estimating head position and
orientation, e.g., in six degrees of freedom (6DOF). HMDs
generally align virtual objects, such as augmented reality
(AR) holograms, with the physical world and render the
virtual objects with a position and orientation according to
the user’s estimated head movements.

[0003] To achieve high accuracy, current positioning and
orientating systems require sensors such as inertial measure-
ment units (IMUs) or camera-based tracking systems, with
a high level of precision, which are usually slower (e.g.,
executing more complex and time-consuming calculations),
consume more powet, are larger in size, and more expensive
than their low precision counterparts.

[0004] Accordingly, there is a need in the art to provide a
faster and more cost-effective solution to location detection
with high levels of accuracy.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

[0005] In orderto overcome the aforementioned problems,
a method and a system is provided for increasing a precision
level of an object localization system.

[0006] In accordance with an embodiment of the inven-
tion, a system and method is provided for improving sensor
precision. In a training phase, a dual-precision sensor system
may record, by a relatively low precision sensor system and
a relatively high precision sensor system, motion signals of
substantially the same training scene to generate a relatively
low precision training motion signal and a relatively high
precision training motion signal, respectively. Machine
learning may be performed to generate a transformation
mapping information from the relatively low precision train-
ing motion signal to information from the relatively high
precision training motion signal. In a run-time phase, a
run-time sensor system may record, by a run-time sensor
system having a precision significantly less than the preci-
sion of the relatively high precision sensor system, motion
signals of a run-time scene to generate a run-time motion
signal. The run-time sensor system may transform the run-
time motion signal using the transformation to generate a
transformed run-time motion signal with a precision signifi-
cantly greater than the precision of the run-time sensor
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system (e.g., approximately equal to or on the order of the
precision of the relatively high precision training motion
signal).

[0007] In accordance with an embodiment of the inven-
tion, a dual-precision sensor system is provided comprising
a relatively low precision sensor system, a relatively high
precision sensor system, and one or more processors con-
figured to train a precision-improving transformation. In a
training phase, the relatively low precision sensor system
and the relatively high precision sensor system may be
configured to record motion signals of substantially the same
target object to generate a relatively low precision training
motion signal and a relatively high precision training motion
signal, respectively. One or more processors may be con-
figured to perform machine learning to generate a transfor-
mation mapping information from the relatively low preci-
sion training motion signal to information from the
relatively high precision training motion signal. When the
transformation is applied to a run-time motion signal
recorded by a run-time sensor system having a precision
significantly less than the precision of the relatively high
precision sensor system, a transformed run-time motion
signal may be produced with a precision significantly greater
than the precision of the run-time sensor system (e.g.,
approximately equal to or on the order of the precision of the
relatively high precision training motion signal).

[0008] In accordance with an embodiment of the inven-
tion, a run-time sensor system is provided comprising one or
more memory units configured to store a transformation
mapping information from a relatively low precision train-
ing motion signal recorded by a relatively low precision
sensor system to information from a relatively high preci-
sion training motion signal recorded by a relatively high
precision sensor system. The run-time sensor system may be
configured to record run-time motion signals, wherein the
run-time sensor system has a precision significantly less than
the precision of the relatively high precision sensors. The
run-time sensor system may comprise one or more processor
configured to transform the run-time motion signal using the
stored transformation to generate a transformed run-time
motion signal with a precision greater than the precision of
the run-time sensors.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The subject matter regarded as the invention is
particularly pointed out and distinctly claimed in the con-
cluding portion of the specification. The invention, however,
both as to organization and method of operation, together
with objects, features, and advantages thereof, may best be
understood by reference to the following detailed descrip-
tion when read with the accompanying drawings in which:
[0010] FIG. 1A is a schematic illustration of a dual-
precision sensor system operating in a training phase in
accordance with some embodiments of the invention;
[0011] FIG. 1B is a schematic illustration of a sensor
system operating in a run-time phase in accordance with
some embodiments of the invention;

[0012] FIG. 2 is a schematic illustration of a dual-preci-
sion sensor system with a first sensing system positioned
separate from a tracked target object and a second sensing
system mounted with the tracked target object in accordance
with some embodiments of the invention;

[0013] FIG. 3 is a schematic illustration of the dual-
precision sensor system with a first and second object
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localization systems both mounted with a tracked target
object in accordance with some embodiments of the inven-
tion;

[0014] FIG. 4 is a schematic illustration of a dual-preci-
sion sensor system with a multi-sensor object localization
system and a single-sensor object localization system in
accordance with some embodiments of the invention; and
[0015] FIG. 5 is a flowchart of a method in accordance
with some embodiments of the invention.

[0016] It will be appreciated that for simplicity and clarity
of illustration, elements shown in the figures have not
necessarily been drawn to scale. For example, the dimen-
sions of some of the elements may be exaggerated relative
to other elements for clarity. Further, where considered
appropriate, reference numerals may be repeated among the
figures to indicate corresponding or analogous elements.

DETAILED DESCRIPTION OF THE
INVENTION

[0017] In the following description, various aspects of the
present invention will be described. For purposes of expla-
nation, specific configurations and details are set forth in
order to provide a thorough understanding of the present
invention. However, it will also be apparent to one skilled in
the art that the present invention may be practiced without
the specific details presented herein. Furthermore, well
known features may be omitted or simplified in order not to
obscure the present invention.

[0018] Unless specifically stated otherwise, as apparent
from the following discussions, it is appreciated that
throughout the specification discussions utilizing terms such
as “processing,” “computing,” “calculating,” “detecting,”
“determining,” or the like, refer to the action and/or pro-
cesses of a computer or computing system, or similar
electronic computing device, that manipulates and/or trans-
forms data represented as physical, such as electronic,
quantities within the computing system’s registers and/or
memories into other data similarly represented as physical
quantities within the computing system’s memories, regis-
ters or other such information storage, transmission or
display devices.

[0019] The term “head-mounted display” or “HMD” may
refer to a display device mounted on a user’s head by an
attachment device such as a harness, a helmet, a rig, or a
visor. In augmented reality (AR) platforms, HMDs combine
images of both the physical or real world (e.g., displayed via
standard optical lenses) and virtual graphics (e.g., displayed
via digital projection) in the user’s field of view. In virtual
reality (VR) platforms, HMDs are used to replace the
physical scene, displaying exclusively virtual graphics (e.g.,
displayed via a LCD screen) in the user’s field of view.
Mixed reality environments combine AR and VR capabili-
ties.

[0020] The term “six degrees of freedom” or “6DOF” may
refer to a freedom of movement of a rigid body in three-
dimensional space. In some cases, the body is free to change
position as forward/backward (surge), up/down (heave),
left/right (sway) translation in three perpendicular axes,
combined with changes in orientation through rotation about
three perpendicular axes, often termed pitch, yaw, and roll.
[0021] The term “motion” may refer to any information
related to the location of a point or a rigid body in space or
time, including but not limited to, position and its deriva-
tives (e.g., speed/velocity, acceleration, etc.), momentum,

Jan. 7, 2021

orientation and its derivatives (e.g., rotational speed/veloc-
ity, rotational acceleration, etc.), angular momentum, abso-
Iute motion at a single point in time, relative or change in
motion between two points in time, and predicted future
motions.

[0022] The term “sensor” may refer to a single sensor or
a sensor system comprising one or multiple sensors. The
sensor or sensor system may include, or be operably con-
nected to, a location detection system operating one or more
processor(s) and/or process(es) that computes, based on raw
sensor measurements, motion measurements (e.g., 6DOF) of
the sensor/system or a target object/position.

[0023] The term “Inertial Measurement Unit” or “IMU”
may refer to a collection of sensors that measures various
physical quantities such as acceleration and rotation speed,
allowing the inferring of the motion of the device from them.

[0024] The term “precision” of a sensor system may refer
to a similarity (e.g., accuracy) or difference (e.g., error
defined by the inverse of similarity) between one or more
motion value(s) computed by the system (or data, e.g. virtual
objects, derived therefrom) compared to one or more bench-
marks or thresholds of true or ideal motion value(s) (e.g.,
measured in the real-world, pre-defined by design, such as a
programmed sequence of motions performed by a robot, or
computed by a high-reliability device and/or process). Pre-
cision may be calculated in many ways, a few examples of
which are provided below. In one embodiment, the precision
of a sensor system may be a measure of similarity or
difference between the computed motion values of the
system and “ground-truth” motion values (e.g., measured
directly in the real-world or using a sensor). For example, if
a device moves ten inches and the system computes a motion
of nine inches, then the precision may be 9 inches or 90%
similarity or 1 inch or 10% error (e.g., percentage error=100-
percentage precision). In another embodiment in virtual
environments, the precision of a sensor system may be a
measure of similarity or difference between the user-per-
ceived motion of a virtual object (e.g., measured by a device
in-line with the use’s field of view) and the target motion of
the virtual object intended to be simulated by a virtual
device. For example, a HMD may simulate a hologram
programmed to move together with a user to appear fixed in
a 3D location from the user’s perspective. Precision may be
a measure of an amount by which the hologram appears to
move independently of the user (e.g., measured assuming
we have ground truth). The amount the hologram appears to
move independently of the user may be calculated, for
example, by first generating a point-hologram at a 3D
location, relative to a starting point of a device (e.g., HMD
attached to the user). At each point in time, given a position
and orientation (x1,y1) of the device (e.g., one provided by
a “ground truth” measurement and one for the device to be
measured), some embodiments of the invention may calcu-
late the location(s) at which the hologram is displayed or
programmed to be displayed in the field of view of a user
(e.g., the actual (x2,y2) coordinates on the display). In some
embodiments, the hologram may not need to actually be
rendered, only the mathematical formula for projecting onto
the display may need to be solved. The precision may be
defined based on the error or distance between the ground
truth position (x1,y1) and the computed position of holo-
gram display (x2,y2) obtained from system. In some
embodiments, pixels may represent a line of sight (e.g., a
direction of a ray of light), and thus it may be more accurate
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to translate the error from pixels to angular error and
represent the precision based on the angular difference.
Precision may be an absolute measure (e.g., distance
between the computed and benchmark motions) or a relative
measure (e.g., a percentage of the error distance compared
to an overall distance or duration of the movement). In some
embodiments, precision may be determined without mea-
suring true motion data (e.g., by system design, statistics, or
measuring an indirect result of the motion, etc.). In some
embodiments, precision may be a category or level (e.g.,
high vs. medium vs. low, based on a range of values) instead
of an exact value.

[0025] In one example, a low-precision system includes a
set of low-quality (e.g., one, two or four) cameras (e.g.,
producing relatively blurry, noisy, or low-resolution images)
and/or an IMU, which are relatively inexpensive, low-
accuracy, and low-power consumptive components. The
cameras and/or an IMU are mounted to a motorized device
that moves according to pre-programmed motions that serve
as the benchmark motion values for comparison to deter-
mine precision. The relative calibration (e.g., relative posi-
tion) of the cameras and/or an IMU may or may not be
known. A high-precision system includes a set of high-
quality cameras, e.g., mounted to the walls, tracking a set of
reflectors that are attached to the tested device. The cameras
are fixed. A calibration is performed before recording. Due
to the knowledge of the target reflectors, the system is able
to detect the reflectors with high accuracy.

[0026] The term “high” or “relatively high” precision and
“low” or “relatively low” precision are relative terms, refer-
ring to a measure of precision relative to each other’s
precision or to a predetermined threshold. A relatively low
precision device has either inferior hardware (e.g., cheaper
materials used in the manufacturing of the sensor(s) causing
poor quality data) or inferior software processes (e.g., solv-
ing fewer equations, ignoring some data, running fewer
computational iterations, or limiting search areas, etc.) than
a relatively high precision device. The relative difference in
precision between relatively high and relatively low preci-
sion may be significant, for example, at least a 15% devia-
tion and preferably at least a 25% deviation. For example, a
low or relatively low precision sensing system achieves a
precision with a motion calculation error of 1-20 mm (e.g.,
3 mm), 0.006-0.1 radian (e.g., 0.01 radian), and/or a stability
of 0.01-2 mm/sample (e.g., 0.2 mm/sample) or greater. In
some example cases, a high or relatively high precision
sensing system achieves a precision with a motion calcula-
tion error of 0-0.9 mm (e.g., 0.1 mm), 0-0.0059 radian (e.g.,
0.001 radian), and/or a stability of 0-0.09 mm/sample (e.g.,
0.02 mm/sample). These values may referrer to the precision
of a system as a whole, while individual sensors or compo-
nents may (or may not) have lesser precision. In some
embodiments, a high precision sensor system may compute
motion at a relatively faster rate than a relatively lower
precision sensor system. For example, a low or relatively
low precision sensing system computes motion at a fre-
quency of 10 frames per second (FPS) or 200 Hz and a high
or relatively high precision sensing system computes motion
at a frequency of 90 FPS or 1000 Hz. Other values or
thresholds may be used.

[0027] According to some embodiments of the invention,
a dual-precision sensors system is provided comprising both
relatively high and relatively low precision sensors (e.g.,
relative to each other or to respective thresholds) for training
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and improving the accuracy of location detection data
recorded by the low-precision sensors. The dual-precision
sensors system may record parallel streams of relatively
high and relatively low precision motion signals of substan-
tially the same scene by the respective relatively high and
relatively low precision sensors. During a training phase, the
dual-precision sensors system may train a model, e.g., using
machine learning, to transform input data from the relatively
low-precision motion signals to output data from the rela-
tively high-precision motion signals. The model may be an
N-layered neural network inputting pairs of corresponding
data of the same scene from the relatively low-precision
sensors and data from the relatively high-precision sensors.
The plurality of (N) neural layers may be trained by machine
learning to transform the relatively low-precision sensor
data into a signal optimized to match the relatively high-
precision sensor data. The number of layers N, as well as the
layer and node weights, may be tuned by machine learning
to achieve an optimized transformation, for example, by
minimizing differences or errors between the transformed
low-precision sensor data and the relatively high-precision
sensor data. In some embodiments, the relatively high and
low precision sensors measure motion (e.g., 6DOF) of/from
different points in space and/or using different coordinate
systems. The relatively high and low precision data may
therefore be normalized to a common position and/or coor-
dinate system. In one embodiment, normalization may be
achieved by using machine learning to learn a normalization
transformation between the different positions or coordinate
systems and apply the normalization transformation to one
or both of the high or low-precision data to normalize the
data. The normalization transformation may be trained
together with, or in a separate initial pre-training phase prior
to, training the precision transformation in the training
phase.

[0028] A sufficient variety of types of motions should be
recorded in the training scene to anticipate the variety of
movements that might occur during a run-time recording.
The input and output data to the model may be sensor
parameters, raw sensor data, or data derived therefrom, such
as motion data, and/or sensor internal parameters, sensor
relative parameters, tracking quality (e.g., an internal mea-
sure that attaches a quality level to a current measurement).

[0029] Once the model is trained, in a run-time phase, a
location detection system, such as a HMD, may use only
sensors having a precision significantly less than the (e.g., by
at least 25%) the precision of the high-precision sensors
used in the training phase. For example, run-time sensors
may have a precision exactly or approximately, e.g., within
10% accuracy, equal to the precision of the low-precision
sensors used in the training phase). The location detection
system may apply the trained transformation to the run-time
(low-precision) sensor data (or motion information derived
therefrom) to improve the precision thereof (e.g., to be
significantly, by at least 25%, and preferably 50% greater
than the precision of the low-precision sensor data, and, in
some embodiments, to approximate, within 10% accuracy,
the precision of the high-precision sensor data, used in the
training phase). Additionally or alternatively, training may
improve the robustness of the run-time motion detection
(e.g., reduce the number of significant errors). Accordingly,
relatively low-precision run-time sensors may be used to
generate relatively high-precision motion data (without
using relatively high-precision sensors).
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[0030] In embodiments, the relatively high-precision sen-
sor system may compute motion at a relatively higher
frequency or rate than a relatively lower frequency or rate
computed using the relatively low-precision sensor system.
During the training phase, the relatively higher frequency
calculations may be input to train the model to improve the
frequency or response time/latency of the run-time motion
calculations. During the run-time phase, the model may
input the run-time sensor data having a relatively low
frequency (e.g., a number of calculation frames on the order
or within 10% of the relatively low-precision sensor system
from the training phase) and may output or predict new
motion data, between low frequency reading frames, to
increase the rate of motion calculations (e.g., to be signifi-
cantly, by at least 25% and preferably 50%, greater than the
frequency of the run-time sensor calculations, and, in some
embodiments, to approximate, within 10% accuracy, the
frequency of the high-precision sensors used in the training
phase). Additionally or alternatively the run-time latency
may improve by training the system with the relatively
higher frequency motion data. For example, the relatively
higher frequency motion data may be used to correlate a
series of low-precision sensor data with specific motions,
such that, during the run-time phase a smaller number of
data samples is needed to compute the same motions relative
to a non-trained run-time dataset.

[0031] Then, still in a run-time phase, the HMD may
render one or more virtual objects in an AR, VR or MR
display according to head motions represented by the trans-
formed motion information. Because the precision and/or
frequency of the motion information is improved by the
transformation, the positioning and realism of the virtual
object in the rendered image is also improved, as compared
to an image rendered from the non-transformed motion
information.

[0032] Inaddition to improving motion detection accuracy
and image rendering accuracy, embodiments of the inven-
tion may also improve the power efficiency of motion
detection systems. Relatively lower-precision sensor sys-
tems generally operate using a relatively lower computa-
tional load, and therefore less power, than relatively higher-
precision sensor systems. Embodiments of the invention,
may thus use less power (using only low-precision sensors)
to achieve the same or similar precision to high-precision
motion detection systems (using more energy consumptive
high-precision sensors). Accordingly, it may be more power
efficient (use less energy) for a motion detection system to
detect motion by processing motion information measured
by low-precision sensors and then transforming that data
into high-precision sensor data according to embodiments of
the invention, as compared to processing motion informa-
tion measured by high-precision sensors.

[0033] System 100 of FIG. 1A may operate a training
phase for run-time system 101 of FIG. 1B to operate a
run-time phase. In the training phase of FIG. 1A, system 100
may perform experiments and simulate scenes used to
adjust, calibrate, and optimize the operational parameters of
a motion detection transformation model prior to its use by
system 101 in the run-time phase of FIG. 1B, during which
the operational parameters of the system (e.g., HMD) are
generally fixed. System 100 of FIG. 1A may use both
relatively low and high precision sensors in the training
phase, using data form the high precision sensors to train the
motion detection transformation to improve motion detec-
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tion based on data from the relatively low precision sensors.
In contrast, system 101 in the run-time phase of FIG. 1B
may use only sensors 111B having precision significantly
less than the precision of the relatively high precision
sensors used in the training phase (e.g., having the same or
similar, increased, or decreased precision as the relatively
low precision sensors used in the training phase) and may
boost the motion detection precision according to the trained
transformation.

[0034] Reference is now made to FIG. 1A, which is a
schematic illustration of a dual-precision sensor system 100
operating in a training phase in accordance with some
embodiments of the invention. System 100 may include a
first object localization system 110A comprising one or more
relatively high precision sensors and a second object local-
ization system 110B comprising one or more relatively low
precision sensors. Relatively high precision sensors may
have a precision that is greater than a precision of the
relatively low precision sensors or a predetermined thresh-
old precision e.g., with a motion calculation error of 1mm
distance, 0.006 radians, and/or a stability error of 0.1
mm/sample. Similarly, relatively low precision sensors may
have a precision that is less than a precision of the relatively
high precision sensors or the same or different predeter-
mined threshold precision. Relatively high precision sensors
may have superior hardware (e.g., a greater resolution
detector array) or superior software processes (e.g., solving
more equations, inputting more data, running a greater
number of computational iterations, etc.) than the relatively
low precision sensors. Precision may be measure of one or
more parameters including, for example, motion calculation
resolution (e.g., pixel density for cameras), frequency, dis-
tance error (absolute or relative/compared to ground-truth or
user-perceived), or any combination thereof. A high preci-
sion sensor system may have different hardware and/or
software than a low precision sensor system. Sensor preci-
sion may vary, for example, based on the number of sensors
(e.g., an increased number typically correlated with
increased precision) and sensor configuration (e.g., distance
between them may effect performance). Camera precision
may vary, for example, based on the number of independent
pixels imaged by the camera, field of view, noise level (e.g.,
quantum efficiency), sensitivity, integration time and lens
quality. IMU precision may vary, for example, based on
random walk noise, bias, change of bias over time, cross-
axis non linearity, sensitivity to temperature, limited
dynamic range, performance depending on signal (e.g.,
different responses to different speeds). Various arrange-
ments of sensors in localization systems 100A and 110B are
described in reference to FIGS. 2-4.

[0035] During the training phase of FIG. 1A, the first
object localization system 110A comprising relatively high
precision sensors and the second object localization system
110B comprising relatively low precision sensors are con-
figured to record motion signals of substantially the same
training scene tracking a target object to generate two
parallel signals, a first relatively low precision motion signal
and a second relatively high precision motion signal, respec-
tively. The motion signals may contain information defining
the motion of the tracked target object in the scene, including
but not limited to, position, speed, velocity, acceleration,
momentum, orientation, rotational speed, rotational velocity,
rotational acceleration, angular momentum, or any combi-
nation or function thereof] all of which may be measured as
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absolute or relative motion, and a current or predicted future
time. The first and second object localization systems 110A
and 110B may record the same scene simultaneously, or may
record a reproduction (e.g., repeated iterations) of the same
object motion separately (e.g., at different times). When the
first and second object localization systems 110A and 110B
record a scene separately, each iteration of the scene may
follow the same movements of the tracked target object in a
manner that preserves the same or similar operational
parameters affecting the object localization. In one example,
a robot or other mechanized device may be programmed to
repeat, in full, exactly (or approximately) the same sequence
of movements in each iteration of the scene to be separately
recorded by the first and second object localization systems
110A and 110B.

[0036] Raw sensor data from system 100 sensors may be
processed to generate motion signals (e.g., position and
orientation information), either locally by embedded cir-
cuitry in the sensors themselves, or by a motion tracking
module in the first and second object localization systems
110A and 110B, and/or by a separate external monitoring
module 120. The motion information may be transferred to,
and received by, computer processor 130 where an analysis
module 140 may analyze the motion signals and train the
system 100 to generate a de-noising function or transforma-
tion 150 that boosts image precision.

[0037] During the training phase, upon computer proces-
sor 130 receiving the relatively high and relatively low
precision motion signals from the first and second object
localization systems 110A and 110B (or via an intermediate
monitoring module 120), the computer processor 130 (e.g.,
analysis module 140) may be configured to perform a
machine learning procedure to generate a transformation
150 that maps information from the relatively low precision
motion signal into information from the relatively high
precision motion signal. In particular, the relatively high
precision motion signal may be used as a benchmark to train
and transform the relatively low precision motion signal into
relatively improved or higher precision motion information.
The processor 130 may perform machine learning using a
variety of training methods including neural networks, direct
database interference, dictionary learning, and others.

[0038] Inembodiments using neural networks, the proces-
sor 130 may perform machine learning using a neural
network that inputs the relatively low precision training
motion signal and relatively high precision training motion
signal corresponding to the same scene or motions. The
neural network trains a transformation 150 by computer
processor 130 to map the relatively low precision motion
signal to fit the relatively high precision motion signal. The
neural network may be configured with a number of layers,
a structure of each layer (number of neurons), and connec-
tion between layers, which may be fixed or tuned by
machine learning. Additionally, multiple networks structures
may be connected, and additional fixed operators (such as
binning, discretization, etc.) may be introduced before or
after the operation of every layer. In one embodiment, the
neural network may have a layout referred to as “Long Short
Term Memory”, in which in each stage only new (non-
redundant) data is input from the sensors, but that also stores
the results of current and previous iterations of the network
(e.g., the same current motion signal may be interpreted
differently if the previous action was running or sitting
down). By only training the neural network based on new
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non-redundant data, while still benefiting from the results of
training previous data, such embodiments may minimize
storage requirements and calculations to improve speed and
increase available memory while achieving the same or
similar results. This is due to the system explicitly learning
the progression of data over time, instead of the need to
observe the entirety of the data at once.

[0039] Inembodiments using direct database interference,
the training phase may include building a database of pairs
of low-quality signals and their high quality counterparts
and possibly structuring the database to optimize search
speed. During the run-time phase, given a low-quality
signal, the processor 130 may search the database for a
plurality of (N) (e.g., 1, 5, . . . ) most similar low-quality
signals (e.g., using an exact or approximate search). The
processor 130 may retrieve from the database the (N)
high-precision signal equivalents of this low-quality signal,
and may merge the (N) retrieved high-precision signals into
a merged signal. The low-quality signal obtained in the
run-time phase may be replaced by the merged signal, which
is based on high-precision data and is generally better
precision than the low-quality run-time signal. The merging
may be performed, for example, by averaging, or weighted
averaging, where the weights are determined as a function of
the difference or similarity between the input run-time
low-precision signal and the selected low-precision signals
from the database (e.g., weight is proportional to inverse
squared distance).

[0040] In embodiments using dictionary learning, the
training phase may connect, link or correlate, for each data
sample, the low-precision signal and the high-precision
signal of the same scene or motions. Then, a training
procedure, such as a K-SVD, may learn a dictionary, which
may be a set of “atom” signals, such that each (or almost all)
training signals can be represented as a weighted combina-
tion of a small number of “atoms” from this dictionary. Each
atom in this dictionary may have a part that is learned from
the low-precision part of the data, and a part that is learned
from the high-precision part of the data. Since the training
stage is jointly executed for the low and high precision data,
each training sample (which contains both low and high
precision parts) may be represented as a weighted combi-
nation of atoms. For example, the low-precision part is
represented as a weighted combination of the low-precision
part of the atom, and the high-precision part of the training
sample is represented as a weighted combination (with the
same respective weights) as the high-precision part of the
same atoms. During the run-time phase, only a low-preci-
sion signal is received, so the processor computes its rep-
resentation as a weighted combination of only a small
number of atoms, and using only the low-precision part of
those atoms (e.g., defined by atom index). The processor
may compute this representation using any “pursuit” pro-
cess, e.g., Orthogonal Matching Pursuit (OMP). Once the
indices of the atoms selected and their weights are deter-
mined, the processor may generate a higher precision signal
to be the weighted sum of the high-precision parts connected
or correlated to the low-precision parts of the low-precision-
sum, using the same weights.

[0041] Reference is now made to FIG. 1B, which is a
schematic illustration of a sensor system 101 operating in a
run-time phase in accordance with some embodiments of the
invention. System 101 may be an augmented reality (AR),
virtual reality (VR), or mixed reality (MR) system employ-
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ing an HMD comprising monitoring module 121, computer
processor 131, analysis module 141, and transformation 150
(output by the training phase of FIG. 1A). Monitoring
module 121 may include, or be operatively connected to,
one or more sensors 111B. Sensors 111B may have a
precision that is approximately or exactly equal to, less than,
or greater than, the precision of the low-precision sensors
used in the training phase system (e.g., sensors in 110B of
FIG. 1A). System 101 does not use sensors having a
precision significantly higher than the precision of the
low-precision sensors (e.g., not approximately equal to the
precision of the relatively high-precision sensors used in the
training phase system, such as, sensors in 110A of FIG. 1A).
System 101 sensors 111B are configured to record sensor
data, which monitoring module 121 (or the sensors them-
selves) are configured to process to generate motion signals
of a run-time scene to generate a relatively low precision
run-time motion signal.

[0042] Then, in the run-time phase, computer processor
131 may be configured to transform the relatively low
precision run-time motion signal using the transformation
150 (generated in the training phase) to a relatively high
precision run-time motion signal (using only relatively low
precision sensors 111B and not using relatively high preci-
sion sensors). Accordingly, the training phase serves to
generate a transformation 150 that improves the precision of
relatively low precision run-time sensors 111B, thereby
providing improved object localization for virtual reality,
augmented reality, and mixed reality applications. The pro-
cessor 130 may adjust the rendering of a virtual object or
hologram projected by the HMD system into the user’s field
of vision according to the transformed motion signal, yield-
ing relatively improved or high accuracy motion information
and corresponding images using only relatively low accu-
racy sensors 111B.

[0043] Reference is made to FIG. 2, which is a schematic
illustration of a dual-precision sensor system 200 with a first
sensing system positioned separate from a tracked target
object 210 and a second sensing system mounted with the
tracked target object 210 in accordance with some embodi-
ments of the invention.

[0044] Both sensing systems 220A and 220B may track
the same motion of a target object or user 210. Target object
210 may be moved during a training scene by a robot, rig,
or other mechanical device. In one embodiment, system 200
includes a relatively high precision sensor monitoring sys-
tem 200A, such as a camera or image tracker, and a
relatively low precision sensor monitoring system 200B,
such as a low-precision IMU. In FIG. 2, one monitoring
system 200A or 200B is mounted on (e.g., physically
attached to), and/or moves together with, the target object
210 (or its mount), detecting the target object’s motion as a
function of its own motion (e.g., under translation and/or
rotation, based on the sensor and target’s relative position).
The other one of the monitoring system 200B or 200A,
respectively, is positioned separately and externally (e.g.,
physically detached) from, and moves independently of, the
target object 210 (or its mount). Generally, the separate
monitoring system is an imager or motion tracker, posi-
tioned (e.g., stationary) with the target object 210 in its field
of view.

[0045] While in the example shown in FIG. 2, the rela-
tively higher precision monitoring system 200A is shown to
be positioned separate from the target object 210 and the
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relatively lower precision monitoring system 200B is co-
mounted with the target object 210, in other embodiments
the relatively higher precision monitoring system 200A is
co-mounted with the target object 210 and the relatively
lower precision monitoring system 200B is positioned sepa-
rate from the target object 210.

[0046] Reference is made to FIG. 3, which is a schematic
illustration of a dual-precision sensor system 300 with both
a first and second object localization systems mounted or
co-located with the tracked target object 310 in accordance
with some embodiments of the invention. Both object local-
ization systems 320A and 320B may be mounted on (e.g.,
physically attached to), and/or move together with, the target
object 310 (or its mount), and may track its motion as a
function of their own motion under a translation and/or
rotation according to the separation in space between each
sensor and target object 310. One of the object localization
systems has a relatively higher precision (e.g., 320A) and the
other one of the object localization systems has a relatively
lower precision (e.g., 320B). In one embodiment, system
300 includes a relatively high precision IMU and a relatively
low precision IMU.

[0047] Reference is made to FIG. 4, which is a schematic
illustration of a dual-precision sensor system 400 with a
multi-sensor object localization system 420A and a single-
sensor object localization system 420B in accordance with
some embodiments of the invention. Each sensor in object
localization systems 420A and 420B may be mounted or
co-located with a tracked target object 410 (as shown) or
may be positioned separately from and facing the target
object 410.

[0048] Multi-sensor object localization system 420A may
include a plurality of sensors 422A, 424A, 426 A, and 428A
(and possibly 420B) operating collectively. Multi-sensor
object localization system 420A, monitoring device 120,
and/or computer processor 130 may be configured to aggre-
gate data from the plurality of sensors 422A-428A, for
example, by averaging or otherwise combining the indi-
vidual sensor data (or motion information derived there-
from), while compensating for axes alignment, to yield
aggregated sensor or motion data with significantly higher
precision than is associated with any individual one of the
sensors. The aggregation function may be weighted based on
sensor precision, proximity to the target object 410 (or its
center of mass), or other parameters. The aggregation func-
tion may be an averaging function, an accumulation func-
tion, a polling function, or a filtering function such as using
a Kalman filter that fuses the measurements with their
covariances to obtain a unified measurement. The aggrega-
tion function may disregard individual readings that diverge
from other sensor(s)’ readings by greater than a predeter-
mined factor, e.g., to eliminate sensor errors. Single-sensor
object localization system 420B may produce readings from
a single sensor alone. Each of the sensors of the relatively
higher and relatively lower object localization systems may
individually have a same (or different) level of precision, but
the plurality of sensors 422A-428A of the relatively higher
precision object localization system 420A are configured to
operate collectively to produce an aggregated motion signal
that has a higher cumulative precision than that of a motion
signal produced by the single sensor 420B alone.

[0049] In one embodiment, the single sensor of the single-
sensor object localization system 420B may have a same or
similar precision level as the precision level of one or more



US 2021/0004075 Al

of the sensors of the multi-sensor object localization system
420A. Additionally or alternatively, the single sensor of the
single-sensor object localization system 420B may be one of
the plurality of sensors of the multi-sensor object localiza-
tion system 420A.

[0050] In general, arelatively lower precision object local-
ization system 420B may include a number (M) of one or
more sensors and the relatively higher object localization
system may include a different number (N) of one or more
sensors. Where the precision of all (M) and (N) sensors are
the same, the relatively lower precision object localization
system 420B may include a relatively lower number (M) of
sensors and the relatively higher object localization system
420A may include a relatively greater number (N) of sensors
relative to each other, such that N>M and N, M are integers.
Where the precision of some or all of the (M) and (N)
sensors are different, the cumulative precision of the motion
data aggregated from the (N) sensors is greater than the
cumulative precision of the motion data aggregated from the
(M) sensors. The sets of (M) and (N) sensors may be
overlapping, inclusive or exclusive sets.

[0051] In general, in addition to the various sensors
arrangements of FIGS. 1A-4, systems according to embodi-
ments of the invention may have any sensor arrangement
including relatively low-precision sensors either internal to
(co-mounted with) the target object, external to (physically
separable from) the target object, or both internal and
external to the target object. Similarly, system sensor
arrangement according to embodiments of the invention
may include relatively high-precision sensors either internal
to (co-mounted with) the target object, external to (physi-
cally separable from) the target object, or both internal and
external to the target object. For example, a system accord-
ing to embodiments of the invention may include a first set
of sensors mounted externally (e.g., on the walls) as well as
an additional set of passive sensors or otherwise assisting
components (e.g., IR reflectors, QR codes) mounted on the
target object. Other example systems may have only external
sensors, e.g., without any sensor mounted with the target
object being tracked.

[0052] In some embodiments, the learning or training
process uses signals that evolve over time, and have some
temporal dependency. So, for example, if a relatively long
session (e.g., above a threshold duration of time, such as, 10,
100, 1000, . . ., seconds) is recorded, the session may be
broken into relatively shorter parts (e.g., 1 second intervals).
The relatively shorter parts may overlap (e.g., a 100 second
session may be divided into more than 100 parts, such as
1000 parts if the parts have a duration of 1 second and start
every 0.1 second). Further, the learning or training process
may have a temporal dependency. For example, the motion
detection of a currently processed part (e.g., a nth 1 second
of data) may be trained to depend on one or more preceding
parts (e.g., any of the 1, . . ., (n-1)th 1 second parts of data).
The temporal dependency may be trained, for example,
using Long Short Term Memory in the context of neural
networks or using different learning algorithms.

[0053] In some embodiments, the high-quality and low-
quality systems may produce different types or formats of
output signals. For example, the high-quality system may
produce a complete motion dataset (e.g., a series of 6DOFs),
while the low-quality system may produce only a partial
dataset (e.g., less than 6DOFs, where an IMU only produces
rotation speed and accelerometer data and a camera only
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produces relative rotation and scale-less translation, i.e., a
direction of movement but not its absolute size). In such
cases, embodiments of the invention may train a model to
transform the low-quality data (e.g., less than 6DOFs) into
the format or data type of the high-quality data (e.g., a 6DOF
dataset).

[0054] In various embodiments, each of the relatively low
precision training motion signal and the relatively high
precision training motion signal is “real” data measured by
one or more sensors or “synthetic” data simulated on a
computer. In some embodiments, both the high-quality data
and low-quality data may be real data measured by sensors.
In other embodiments, the low-quality data may be synthetic
data simulated from real high-quality data, for example,
using a noise model or degradation method. In other
embodiments, both the high-quality data and low-quality
data may be synthetic data, where the high-quality data is
initially simulated and then processed, e.g., using a noise
model or degradation method, to simulate the low-quality
data. In some embodiments, the synthetic high-quality data
and/or low-quality data may be all or part of the data used
in training (e.g., the training dataset may include a mix of
real data and synthetic data).

[0055] In some embodiments, the quality of the sensing
system may not be a product of its own properties, but may
depend on external operating conditions. For example, an
optical tracking system may have better precision in an
environment with an optimal level of light (e.g., enough
light that noise levels are low and the camera can use short
integration time, but not so much that the light saturates the
sensors). Embodiments of the invention may train a model
by recording training input stream using optimal external
operating conditions associated with improved or relatively
high precision data, and sub-optimal external operating
conditions associated with degraded or relatively low pre-
cision data. The model may be applied during run-time to
improve the accuracy of data recorded during sub-optimal
external operating conditions, for example, to approximate
the accuracy of data recorded during optimal external oper-
ating conditions.

[0056] Monitoring modules 120 and 121, computer pro-
cessors 130 and 131, and analysis modules 140 and 141,
may each include one or more controller(s) or processor(s)
for executing operations and one or more memory unit(s) for
storing data and/or instructions (e.g., software) executable
by a processor. Processor(s) may include, for example, a
central processing unit (CPU), a digital signal processor
(DSP), a microprocessor, a controller, a chip, a microchip,
an integrated circuit (IC), or any other suitable multi-
purpose or specific processor or controller. Monitoring mod-
ules 120 and 121, computer processors 130 and 131, and
analysis modules 140 and 141, may each retrieve and/or
store data and/or execute software according to computer
code stored in one or more internal or external memory
unit(s). Memory unit(s) may include, for example, a random
access memory (RAM), a dynamic RAM (DRAM), a flash
memory, a volatile memory, a non-volatile memory, a cache
memory, a buffer, a short term memory unit, a long term
memory unit, or other suitable memory units or storage
units.

[0057] Reference is made to FIG. 5, which is a flowchart
of a method 500 in accordance with some embodiments of
the invention. Training phase operations of method 500 may
be executed by computer processor 130 of system 100 of
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FIG. 1A and run-time phase operations of method 500 may
be executed by computer processor 131 of system 101 of
FIG. 1B. Method 500 may be executed upon a request or
command that is issued by a user, or automatically issued by
another application.

[0058] In training phase operation 510, a relatively low
precision sensor system (e.g., 110B of FIG. 1A) and a
relatively high precision sensor system (e.g., 110A of FIG.
1A) may record a relatively low precision training motion
signal and a relatively high precision training motion signal,
respectively, of substantially the same training scene (e.g.,
tracking the same target object, such as 210 and 310 of
FIGS. 2-3).

[0059] In some embodiments, the relatively low precision
sensor system comprises one or a plurality of (M) sensors
and the relatively high precision sensor system comprises a
plurality of (N) sensors, wherein the number (N) is greater
than the number (M), wherein the plurality of (N) sensors
are configured to operate collectively produce an aggregated
motion signal that has a higher cumulative precision than a
precision of an aggregated motion signal produced by the
one or plurality of (M) sensors.

[0060] In one embodiment, the relatively low precision
sensor system and relatively high precision sensor system
are mounted on a same object as, and move together with,
a target object being tracked in the recorded scene. In
another embodiment, the relatively low precision sensor
system and relatively high precision sensor system are
mounted externally from, and move independently of, a
target object being tracked in the recorded scene. In another
embodiment, one of the relatively low precision sensor
system and relatively high precision sensor system is
mounted on a same object as, and moves together with, a
target object being tracked in the recorded scene, and the
other one of the relatively low precision sensor system and
relatively high precision sensor system is mounted exter-
nally from, and moves independently of, the target object
being tracked in the recorded scene. In another embodiment,
the relatively low precision sensor system or relatively high
precision sensor system includes both a sensor that are both
mounted on a same object as, and moves together with, a
target object being tracked in the recorded scene, and a
sensor that are mounted externally from, and moves inde-
pendently of, the target object being tracked in the recorded
scene.

[0061] In one embodiment, the relatively low precision
sensor system and relatively high precision sensor system
record motion of substantially the same target object simul-
taneously. In one embodiment, the relatively low precision
sensor system and relatively high precision sensor system
record repeated iterations of motion of substantially the
same target object at different times or places.

[0062] In training phase operation 520, one or more pro-
cessors (e.g., computer processor 130 of FIG. 1A) are
configured to generate a transformation (e.g., transformation
150 of FIG. 1A) mapping information from the relatively
low precision training motion signal to information from the
relatively high precision training motion signal. The one or
more processors may train a neural network that inputs pairs
of corresponding information of substantially the same
training scene from the relatively low precision training
motion signal and from the relatively high precision training
motion signal, and generates the transformation by trans-
forming the information from the relatively low precision
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training motion signal into a transformed motion signal
optimized to match the corresponding information from the
relatively high precision training motion signal.

[0063] Insome embodiments, the relatively low precision
sensor system and the relatively high precision sensor sys-
tem measure motion signals for different points in space or
using different coordinate systems, and the one or more
processors may train a second transformation in operation
520 to map the motion signals for the different points in
space or different coordinate systems to motion signals for
a common point in space or a common coordinate system.

[0064] In some embodiments, the relatively low precision
training motion signal and the relatively high precision
training motion signal have different types of motion infor-
mation, wherein the one or more processors may perform
machine learning in operation 520 by generating a transfor-
mation mapping information of the type of the relatively low
precision training motion signal to information of the type of
the relatively high precision training motion signal.

[0065] In run-time phase operation 530, one or more
processors (e.g., computer processor 131 of FIG. 1B) are
configured to record, by a run-time sensor system (e.g., 111B
of FIG. 1B) having a precision significantly less than the
precision of the relatively high precision sensor system (e.g.,
approximately equal to or on the order of the precision of the
relatively low precision sensor system), motion signals of a
run-time scene to generate a run-time motion signal.

[0066] In run-time phase operation 530, one or more
processors (e.g., computer processor 131 of FIG. 1B) are
configured to transform the run-time motion signal using the
transformation to generate a transformed run-time motion
signal with a precision significantly greater than the preci-
sion of the run-time sensor system (e.g., approximately
equal to or on the order of the precision of the relatively high
precision training motion signal).

[0067] Inthe run-time phase, one or more processors (e.g.,
computer processor 131 of FIG. 1B) are configured to render
a virtual object in augmented or virtual reality glasses
according to the transformed run-time motion signal.

[0068] Other operations or orders of operations may be
performed.
[0069] According to some embodiments of the present

invention, a system (e.g., system 100 of FIG. 1A) operating
one or more processors (e.g., computer processor 130 of
FIG. 1A) or method (e.g., method 500 of FIG. 5) may collect
measurements from a first object localization system (e.g.,
110A of FIG. 1A) and from a second object localization
system (e.g., 110B of FIG. 1A) (simultaneously or at sepa-
rate times), wherein the first object localization system is
more precise than the second object localization system,
while the first and the second object localization systems
obtain object localization data of a common object (e.g.,
target object 210 of FIG. 2); monitor operational data
characterizing an operation of the first and second object
localization systems; and generate a model, transformation,
or reciprocal function, based on the operation of the first and
the second object localization system, that when applied to
the second object localization system, improves the preci-
sion of the operation of the second object localization
system, for example, to achieve precision equal to or
approxiamately equal to (within 10% of) the precision of the
first object localization system.
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[0070] According to some embodiments of the present
invention, the transformation may be applied to an object
localization system similar to the second object localization
system.

[0071] According to some embodiments of the present
invention, the common object comprises a rig and wherein
the object localization systems are configured to obtain at
least a relative position and/or orientation of the rig.
[0072] According to some embodiments of the present
invention, the first object localization system is at least
partially external to the common object and wherein the
second object localization system is mounted or physically
attached to the common object (e.g., as shown in FIG. 2).
[0073] According to some embodiments of the present
invention, the first and second object localization systems
are both mounted or physically attached to the common
object (e.g., as shown in FIG. 3).

[0074] According to some embodiments of the present
invention, the object localization systems or sensors com-
prise an image capturing system such as a camera, an inertial
measurement unit (IMU), a depth sensor, an acoustic sensor,
or a combination thereof, and a computational device com-
prising one or more processor(s) and one or more memory
unit(s) to input raw sensor data and output motion informa-
tion (e.g., a 6DOF signal).

[0075] According to some embodiments of the present
invention, the first object localization system comprises a
plurality of discrete sensors (N) and averages or aggregates
their sensor measurements to achieve the relatively higher
precision than the second object localization system, which
comprises a single sensor or a fewer number (M) of sensors
(M<N) than does the first object localization system (e.g., as
shown in FIG. 4).

[0076] Embodiments of the invention referring to a “dual-
precision” sensor system may refer to a system generating
data having at least two precisions, including systems that
generate data having more than two precisions (e.g., an
N-precision sensor system, where N is any integer 34, . . .
). In some embodiments, individual sensors may have dif-
ferent precisions, while additionally or alternatively, indi-
vidual sensors may have the same precisions, but their
motion signal data is aggregated to for one or more groups
of sensors which operate collectively to have different
cumulative precisions.

[0077] Embodiments of the invention are not limited to
AR, VR or MR and the motion detection system, device and
method may be applied to any motion detection technology,
such as autonomous driving, robotics motion, drone navi-
gation, assistance to the blind, motion capture for the
entertainment industry (e.g., creating a realistic model for
games/animations/etc.), physical rehabilitation, etc.

[0078] Insome embodiments, “approximately” may mean
within 10% of, and “significantly” may mean at least 15%
or 25% of, an amount being compared. Other amounts may
be used.

[0079] In order to implement a method according to some
embodiments of the invention, a computer processor may
receive instructions and data from a read-only memory or a
random access memory or both. At least one of aforemen-
tioned method steps is performed by at least one processor
associated with a computer (e.g., computer processor 130 of
FIG. 1A). The computer may also include, or be operatively
coupled to communicate with, one or more storage devices
for storing data files. Storage modules suitable for tangibly
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embodying computer program instructions and data include
all forms of non-volatile memory, including by way of
example semiconductor memory devices, such as EPROM,
EEPROM, and flash memory based solid state disks (SSDs)
and also magneto-optic storage devices.

[0080] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.”

[0081] Embodiments of the invention may include an
article such as a non-transitory computer or processor read-
able medium, or a computer or processor non-transitory
storage medium, such as for example a memory, a disk
drive, or a USB flash memory, encoding, including or
storing instructions, e.g., computer-executable instructions,
which, when executed by a processor or controller, carry out
methods disclosed herein. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0082] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wire-line, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on a computer, partly on the
computer, as a stand-alone software package, partly on the
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the computer through any
type of network, including a local area network (LAN) or a
wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).

[0083] Aspects of the present invention are described
above with reference to flowchart illustrations and/or portion
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the inven-
tion. It will be understood that each portion of the flowchart
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illustrations and/or portion diagrams, and combinations of
portions in the flowchart illustrations and/or portion dia-
grams, can be implemented by computer program instruc-
tions. These computer program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or portion diagram portion or portions.

[0084] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or portion diagram por-
tion or portions.

[0085] The aforementioned flowchart and diagrams illus-
trate the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each portion in the flow-
chart or portion diagrams may represent a module, segment,
or portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the portion may occur out
of the order noted in the figures. For example, two portions
shown in succession may, in fact, be executed substantially
concurrently, or the portions may sometimes be executed in
the reverse order, depending upon the {functionality
involved. It will also be noted that each portion of the
portion diagrams and/or flowchart illustration, and combi-
nations of portions in the portion diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

[0086] Although various features of the invention may be
described in the context of a single embodiment, the features
may also be provided separately or in any suitable combi-
nation. Conversely, although the invention may be described
herein in the context of separate embodiments for clarity, the
invention may also be implemented in a single embodiment.

[0087] Reference in the specification to “some embodi-
ments”, “an embodiment”, “one embodiment” or “other
embodiments” means that a particular feature, structure, or
characteristic described in connection with the embodiments
is included in at least some embodiments, but not necessarily
all embodiments, of the inventions.

[0088] While the invention has been described with
respect to a limited number of embodiments, these should
not be construed as limitations on the scope of the invention,
but rather as exemplifications of some of the preferred
embodiments. Other possible variations, modifications, and
applications are also within the scope of the invention.
Accordingly, the scope of the invention should not be
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limited by what has thus far been described, but by the
appended claims and their legal equivalents.

1. A method for improving sensor precision, the method
comprising:

in a training phase, executed by a dual-precision sensor

system:

recording, by a relatively low precision sensor system
and a relatively high precision sensor system, motion
signals of substantially the same training scene to
generate a relatively low precision training motion
signal and a relatively high precision training motion
signal, respectively;

performing machine learning to generate a transforma-
tion mapping information from the relatively low
precision training motion signal to information from
the relatively high precision training motion signal;

in a run-time phase, executed by a run-time sensor sys-

tem:

recording, by a run-time sensor system having a pre-
cision significantly less than the precision of the
relatively high precision sensor system, motion sig-
nals of a run-time scene to generate a run-time
motion signal; and

transforming the run-time motion signal using the
transformation to generate a transformed run-time
motion signal with a precision significantly greater
than the precision of the run-time sensor system.

2. The method of claim 1 comprising rendering a virtual
object in augmented or virtual reality glasses according to
the transformed run-time motion signal.

3. The method of claim 1 comprising training a neural
network that inputs pairs of corresponding information of
substantially the same training scene from the relatively low
precision training motion signal and from the relatively high
precision training motion signal, and generating the trans-
formation by transforming the information from the rela-
tively low precision training motion signal into a trans-
formed motion signal optimized to match the corresponding
information from the relatively high precision training
motion signal.

4. The method of claim 1, wherein the relatively low
precision sensor system and the relatively high precision
sensor system measure motion signals for different points in
space or using different coordinate systems, and comprising
training a second transformation to map the motion signals
for the different points in space or different coordinate
systems to motion signals for a common point in space or a
common coordinate system.

5. The method of claim 1 wherein the relatively low
precision sensor system and relatively high precision sensor
system are mounted on a same object as, and move together
with, a target object being tracked in the recorded scene.

6. The method of claim 1 wherein the relatively low
precision sensor system and relatively high precision sensor
system are mounted externally from, and move indepen-
dently of, a target object being tracked in the recorded scene.

7. The method of claim 1 wherein one of the relatively
low precision sensor system and relatively high precision
sensor system is mounted on a same object as, and moves
together with, a target object being tracked in the recorded
scene, and the other one of the relatively low precision
sensor system and relatively high precision sensor system is
mounted externally from, and moves independently of, the
target object being tracked in the recorded scene.
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8. The method of claim 1 wherein the relatively low
precision sensor system or relatively high precision sensor
system includes both a sensor that are both mounted on a
same object as, and moves together with, a target object
being tracked in the recorded scene, and a sensor that are
mounted externally from, and moves independently of, the
target object being tracked in the recorded scene.

9. The method of claim 1 wherein the relatively low
precision sensor system comprises one or a plurality of (M)
sensors and the relatively high precision sensor system
comprises a plurality of (N) sensors, wherein the number (N)
is greater than the number (M), wherein the plurality of (N)
sensors are configured to operate collectively produce an
aggregated motion signal that has a higher cumulative
precision than a precision of an aggregated motion signal
produced by the one or plurality of (M) sensors.

10. The method of claim 1 wherein the relatively low
precision sensor system and relatively high precision sensor
system record motion of substantially the same target object
simultaneously.

11. The method of claim 1 wherein the relatively low
precision sensor system and relatively high precision sensor
system record repeated iterations of motion of substantially
the same target object at different times or places.

12. The method of claim 1 wherein the relatively low
precision training motion signal and the relatively high
precision training motion signal have different types of
motion information, wherein said machine learning gener-
ates a transformation mapping information of the type of the
relatively low precision training motion signal to informa-
tion of the type of the relatively high precision training
motion signal.

13. The method of claim 1 wherein each of the relatively
low precision training motion signal and the relatively high
precision training motion signal is real data measured by one
or more sensors or synthetic data simulated on a computer.

14. A dual-precision sensor system comprising:

a relatively low precision sensor system;

a relatively high precision sensor system; and

one or more processors configured to train a precision-

improving transformation:

wherein, in a training phase:

the relatively low precision sensor system and the rela-

tively high precision sensor system are configured to
record motion signals of substantially the same target
object to generate a relatively low precision training
motion signal and a relatively high precision training
motion signal, respectively; and

the one or more processors are configured to perform

machine learning to generate a transformation mapping
information from the relatively low precision training
motion signal to information from the relatively high
precision training motion signal;

wherein when the transformation is applied to a run-time

motion signal recorded by a run-time sensor system
having a precision significantly less than the precision
of the relatively high precision sensor system, a trans-
formed run-time motion signal is produced with a
precision significantly greater than the precision of the
run-time sensor system.

15. The system according to claim 14, wherein the one or
more processors are configured to perform machine learning
by training a neural network that inputs pairs of correspond-
ing information of substantially the same training scene
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from the relatively low precision training motion signal and
from the relatively high precision training motion signal,
and generating the transformation by transforming the infor-
mation from the relatively low precision training motion
signal into a transformed motion signal optimized to match
the corresponding information from the relatively high pre-
cision training motion signal.

16. The system according to claim 14, wherein the rela-
tively low precision sensor system and the relatively high
precision sensor system measure motion signals for different
points in space or using different coordinate systems, and
wherein the one or more processors are configured to train
a second transformation to map the motion signals for the
different points in space or different coordinate systems to
motion signals for a common point in space or a common
coordinate system.

17. The system according to claim 14, wherein the rela-
tively low precision training motion signal and the relatively
high precision training motion signal have different types of
motion information, wherein the one or more processors are
configured to perform machine learning by generating a
transformation mapping information of the type of the
relatively low precision training motion signal to informa-
tion of the type of the relatively high precision training
motion signal.

18. A sensor system comprising:

one or more memory units configured to store a transfor-

mation mapping information from a relatively low
precision training motion signal recorded by a rela-
tively low precision sensor system to information from
a relatively high precision training motion signal
recorded by a relatively high precision sensor system;
a run-time sensor system configured to record run-time
motion signals, wherein the run-time sensor system has
a precision significantly less than the precision of the
relatively high precision sensors; and

one or more processor configured to transform the run-

time motion signal using the stored transformation to
generate a transformed run-time motion signal with a
precision greater than the precision of the run-time
sensors.

19. The system according to claim 14, wherein each
sensor system includes one or more sensors selected from
the group consisting of: an image capturing system, an
inertial measurement unit (IMU), a depth sensor, and an
acoustic sensor.

20. The system according to claim 14 comprising aug-
mented or virtual reality glasses configured to render a
virtual object according to the transformed run-time motion
signal.

21. The system according to claim 14, wherein the rela-
tively low precision sensor system and relatively high pre-
cision sensor system are mounted on a same object as, and
move together with, a target object being tracked in the
recorded scene.

22. The system according to claim 14, wherein the rela-
tively low precision sensor system and relatively high pre-
cision sensor system are mounted externally from, and move
independently of, a target object being tracked in the
recorded scene.

23. The system according to claim 14, wherein one of the
relatively low precision sensor system and relatively high
precision sensor system is mounted on a same object as, and
moves together with, a target object being tracked in the
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recorded scene, and the other one of the relatively low
precision sensor system and relatively high precision sensor
system is mounted externally from, and moves indepen-
dently of, the target object being tracked in the recorded
scene.

24. The system according to claim 14, wherein the rela-
tively low precision sensor system or relatively high preci-
sion sensor system includes both a sensor that are both
mounted on a same object as, and moves together with, a
target object being tracked in the recorded scene, and a
sensor that are mounted externally from, and moves inde-
pendently of, the target object being tracked in the recorded
scene.

25. The system according to claim 14, wherein the rela-
tively low precision sensor system comprises one or a
plurality of (M) sensors and the relatively high precision
sensor system comprises a plurality of (N) sensors, wherein
the number (N) is greater than the number (M), wherein the
plurality of (N) sensors are configured to operate collec-

Jan. 7, 2021

tively produce an aggregated motion signal that has a higher
cumulative precision than a precision of an aggregated
motion signal produced by the one or plurality of (M)
Sensors.

26. The system according to claim 14, wherein the rela-
tively low precision sensor system and relatively high pre-
cision sensor system record motion of substantially the same
target object simultaneously.

27. The system according to claim 14, wherein the rela-
tively low precision sensor system and relatively high pre-
cision sensor system record repeated iterations of motion of
substantially the same target object at different times or
places

28. The system according to claim 14, wherein each of the
relatively low precision training motion signal and the
relatively high precision training motion signal is real data
measured by one or more sensors or synthetic data simulated
on a computer.



