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(57) ABSTRACT

A human expert creates sentences in a formal grammar to
describe the state of a physical system through aspects of the
behavior of such systems. A software process combines these
sentences with historical data about physical systems of the
same type and uses machine learning to generate a model that
detects this state in such systems. These models are able to
detect important states of physical systems, such as states that
are predictive of future failures, without needing precise guid-
ance from a human user.
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SYSTEMS AND METHODS FOR
GENERATING MODELS FOR PHYSICAL
SYSTEMS USING SENTENCES IN A FORMAL
GRAMMAR

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 14/716,666, filed May 19, 2015, which claims
the benefit of priority to U.S. Provisional Application No.
62/000,113, filed May 19, 2014, the contents of which are
incorporated by reference in their entireties. Where a defini-
tion or use of a term in a reference that is incorporated by
reference is inconsistent or contrary to the definition of that
term provided herein, the definition of that term provided
herein is deemed to be controlling.

FIELD OF THE INVENTION
[0002] The field of the invention is machine learning tech-
nology.
BACKGROUND
[0003] The background description includes information

that may be useful in understanding the present invention. Itis
not an admission that any of the information provided herein
is prior art or relevant to the presently claimed invention, or
that any publication specifically or implicitly referenced is
prior art.

[0004] Physical systems including but not limited to indus-
trial plant, power generation equipment, oil field equipment,
and transportation systems, are prone to unexpected failure
and inefficient operation. Such equipment is often provided
with sensors which generate data that can be used to improve
performance and predict impending failure.

[0005] Existing techniques for developing sophisticated
models for these systems in order to predict failure far in
advance and to optimize performance require extensive
development effort either through the direct development of
new algorithms or through the use of statistical modeling
tools such as ‘SPSS’ or ‘SAS’. As such, existing methods are
rarely used and cannot be deployed to deal with performance
optimization and failure prediction where extensive develop-
ment or modeling work is not cost effective or where
resources for such work are in short supply.

[0006] A technique which allows human users familiar
with the physical systems to build models using a more
expressive paradigm would enable a significant reduction in
the cost and effort required to build new models, allowing
such models to be developed for the many classes of physical
systems for which existing techniques have not been applied
due to cost or resource constraints.

SUMMARY OF THE INVENTION

[0007] The present invention provides apparatus, systems,
and methods for detecting the state of a physical system
through the novel application of language processing and
machine learning.

[0008] The states to be detected may include states that
arise in advance of a failure of the system to be monitored and
hence are predictive of a failure. Such states, when detected
by the system, can be used to alert users of the system to
perform preventative maintenance, ensure replacement parts
or systems are available, or change the operating parameters
of the system to delay or prevent the failure.
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[0009] The states to be detected may also include operating
conditions that result in suboptimal efficiency of the system.
In this case, detection of these states may be used to alert users
of'the system to alter the operating parameters of the system
or take other action to ensure that the system is operating
optimally.

[0010] Some aspects of the inventive subject matter pro-
vides for a technique, GAME (Grammar-Augmented Mod-
eling Environment), for creating models for detecting the
state of a physical system through the novel application of
language processing and machine learning.

[0011] This technique allows human users to develop mod-
els for physical systems by interacting with a computer pro-
gram in a familiar subset of a natural language (such as
English, French, etc.) rather than requiring them to use a
computer language (such as ‘R’) or to use a complex model-
ing tool (such as ‘SAS’ or ‘SPSS”). Furthermore, through the
use of machine learning the present technique operates on
indefinite instructions from the human user rather than requir-
ing a precise definition of the properties of the final model.
[0012] In GAME, a formal grammar is used to describe a
subset of the natural (human) language to be used for mod-
eling. The formal grammar consists of a set of production
rules that specify which sentences can be expressed by the
user. This will consist of a small subset of all possible sen-
tences in the natural language. The grammar allows users of
GAME to build sentences interactively to describe patterns in
the behavior of physical systems.

[0013] Various objects, features, aspects and advantages of
the inventive subject matter will become more apparent from
the following detailed description of preferred embodiments,
along with the accompanying drawing figures in which like
numerals represent like components.

BRIEF DESCRIPTION OF THE DRAWING

[0014] FIG. 1 illustrates an operating environment for a
prediction model system.

[0015] FIG. 2 illustrates an example of associating a data
pattern model object with a description input.

[0016] FIG. 3 illustrates a process of using an improved
machine learning algorithm to generate a prediction model.

DETAILED DESCRIPTION

[0017] Throughout the following discussion, numerous
references will be made regarding servers, services, inter-
faces, engines, modules, clients, peers, portals, platforms, or
other systems formed from computing devices. It should be
appreciated that the use of such terms is deemed to represent
one or more computing devices having at least one processor
(e.g., ASIC, FPGA, DSP, x86, ARM, ColdFire, GPU, multi-
core processors, etc.) configured to execute software instruc-
tions stored on a computer readable tangible, non-transitory
medium (e.g., hard drive, solid state drive, RAM, flash, ROM,
etc.). For example, a server can include one or more comput-
ers operating as a web server, database server, or other type of
computer server in a manner to fulfill described roles, respon-
sibilities, or functions. One should further appreciate the dis-
closed computer-based algorithms, processes, methods, or
other types of instruction sets can be embodied as a computer
program product comprising a non-transitory, tangible com-
puter readable media storing the instructions that cause a
processor to execute the disclosed steps. The various servers,
systems, databases, or interfaces can exchange data using
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standardized protocols or algorithms, possibly based on
HTTP, HTTPS, AES, public-private key exchanges, web ser-
vice APIs, known financial transaction protocols, or other
electronic information exchanging methods. Data exchanges
can be conducted over a packet-switched network, a circuit-
switched network, the Internet, LAN, WAN, VPN, or other
type of network.

[0018] Asused inthe description herein and throughout the
claims that follow, when a system, engine, or a module is
described as configured to perform a set of functions, the
meaning of “configured to” or “programmed to” is defined as
one or more processors being programmed by a set of soft-
ware instructions to perform the set of functions.

[0019] One should appreciate that the disclosed modeling
system provides numerous advantageous technical effects,
especially in the field of machine learning. For example, the
modeling system of some embodiments enables accurate and
efficient recognition of patterns relevant to the states of a
particular physical system, by using a formal language to
improve the machine learning algorithm.

[0020] The following discussion provides many example
embodiments of the inventive subject matter. Although each
embodiment represents a single combination of inventive
elements, the inventive subject matter is considered to include
all possible combinations of the disclosed elements. Thus if
one embodiment comprises elements A, B, and C, and a
second embodiment comprises elements B and D, then the
inventive subject matter is also considered to include other
remaining combinations of A, B, C, or D, even if not explicitly
disclosed.

[0021] As used herein, and unless the context dictates oth-
erwise, the term “coupled to” is intended to include both
direct coupling (in which two elements that are coupled to
each other contact each other) and indirect coupling (in which
at least one additional element is located between the two
elements). Therefore, the terms “coupled to” and “coupled
with” are used synonymously.

[0022] In some embodiments, the numbers expressing
quantities of ingredients, properties such as concentration,
reaction conditions, and so forth, used to describe and claim
certain embodiments of the inventive subject matter are to be
understood as being modified in some instances by the term
“about.”” Accordingly, in some embodiments, the numerical
parameters set forth in the written description and attached
claims are approximations that can vary depending upon the
desired properties sought to be obtained by a particular
embodiment. In some embodiments, the numerical param-
eters should be construed in light of the number of reported
significant digits and by applying ordinary rounding tech-
niques. Notwithstanding that the numerical ranges and
parameters setting forth the broad scope of some embodi-
ments of the inventive subject matter are approximations, the
numerical values set forth in the specific examples are
reported as precisely as practicable. The numerical values
presented in some embodiments of the inventive subject mat-
ter may contain certain errors necessarily resulting from the
standard deviation found in their respective testing measure-
ments.

[0023] Asusedinthe description herein and throughout the
claims that follow, the meaning of “a,” “an,” and “the”
includes plural reference unless the context clearly dictates
otherwise. Also, as used in the description herein, the mean-
ing of “in” includes “in” and “on” unless the context clearly
dictates otherwise.
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[0024] Unless the context dictates the contrary, all ranges
set forth herein should be interpreted as being inclusive of
their endpoints and open-ended ranges should be interpreted
to include only commercially practical values. The recitation
of ranges of values herein is merely intended to serve as a
shorthand method of referring individually to each separate
value falling within the range. Unless otherwise indicated
herein, each individual value within a range is incorporated
into the specification as if it were individually recited herein.
Similarly, all lists of values should be considered as inclusive
of intermediate values unless the context indicates the con-
trary.

[0025] All methods described herein can be performed in
any suitable order unless otherwise indicated herein or oth-
erwise clearly contradicted by context. The use of any and all
examples, or exemplary language (e.g. “such as”) provided
with respect to certain embodiments herein is intended
merely to better illuminate the inventive subject matter and
does not pose a limitation on the scope of the inventive subject
matter otherwise claimed. No language in the specification
should be construed as indicating any non-claimed element
essential to the practice of the inventive subject matter.

[0026] Groupings of alternative elements or embodiments
of the inventive subject matter disclosed herein are not to be
construed as limitations. Each group member can be referred
to and claimed individually or in any combination with other
members of the group or other elements found herein. One or
more members of a group can be included in, or deleted from,
a group for reasons of convenience and/or patentability.
When any such inclusion or deletion occurs, the specification
is herein deemed to contain the group as modified thus ful-
filling the written description of all Markush groups used in
the appended claims.

[0027] In one aspect of the inventive subject matter, sys-
tems and methods for improving accuracy and efficiency of
machine learning are presented. In some embodiments, the
system improves the accuracy and efficiency of machine
learning by using a formal language to assist in identifying
data patterns that are relevant to a particular physical system.
The improved machine learning can be applied to generate
prediction model for complex physical systems.

[0028] FIG. 1 illustrates an operating environment 100 of
such a system. The operating environment 100 includes a
prediction model engine 105, a physical system 110, a data-
base 115, a user interface 120, and a subject matter expert
125. Preferably, physical system 110 is a complex system that
includes numerous devices working together to perform cer-
tain tasks. Examples of such a complex physical system
include an oil and refinery system, a construction site, a
human body, or other system with similar complexities. In
some embodiments, physical system 110 includes multiple
sensor modules (e.g., sensor modules 130a-130f). Each ofthe
sensor modules (130a-130f) includes a sensor for detecting
an environmental value (e.g., temperature, pressure, speed,
orientation, acceleration, oxygen level, blood sugar level,
etc.) related to the well-being of an element within physical
system 110. The sensors can include different types of sensors
such as temperature sensor, pressure sensor, speedometer,
accelerometer, oxygen sensor, blood sugar detector, etc.

[0029] The subject matter expert 125 is a human expert who
has expertise in the operation of physical system 110. Pref-
erably, the subject matter expert 125 is capable of identifying
a state or condition of physical system 110 (e.g., high likeli-
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hood of failure, part wearing out soon, etc.) upon studying the
sensor data obtained from sensor modules 130a-130f
[0030] Prediction model engine 105 includes a prediction
model manager 135, a parameter generation module 140, a
machine learning module 145, a data pattern association
module 150, a user interface 155, and a sensor interface 160.
Prediction model engine 105 is also communicatively
coupled with database 115.

[0031] It is contemplated that a formal language is devel-
oped to describe different patterns of the sensor data retrieved
from sensor modules 130a-130f. In some embodiments, the
formal language is designed to be universal and can be used
for different types of physical system 110, while in other
embodiments, the formal language is designed to work spe-
cifically with a particular physical system 110. When the
formal language is designed to work specifically with a par-
ticular physical system (e.g., physical system 110), the word
library of the formal language can be more specific and tai-
lored to that physical system. For example, if the physical
system is an oil refinery system, the word library can include
words such as pressure, temperature, etc. In addition, with the
help of the subject matter expert 125, the formal language
definitions can indicate possible relationship between difter-
ent words. For example, the formal language definitions can
include an association between pressure and temperature so
that one can form a phrase under the definitions to describe
the relationship between the pressure and the temperature
(e.g., “pressure rises as temperature drops,” etc.).

[0032] Once the formal language is developed, the defini-
tions of the formal language are obtained by prediction model
engine 105 and stored in database 115. It is noted that the
definitions of the formal language define how phrases can be
formed using the formal language. Similarly, the definitions
can also be used by prediction model engine 105 to parse a
phrase provided via user interface 120.

[0033] Insomeembodiments, prediction model engine 105
is programmed to generate different data pattern template
models for describing different types of data patterns. For
example, prediction model engine 105 is programmed to
generate a saw-tooth pattern template model for describing a
saw-tooth data pattern, a spike template model for describing
a spike data pattern, a sudden change template model for
describing a data pattern that suddenly increases or decreases,
and any other template models for describing other known
patterns.

[0034] Using the formal language definitions, prediction
model engine 105 is programmed to make associations
between different phrases and different data pattern template
models. In some embodiments, prediction model engine 105
uses a parsing structure such as a tree structure (e.g., a K-D
tree, etc.) in parsing phrases and then associating the phrase
with a data pattern template model (i.e., a data pattern type).
In these embodiments, each node in the tree represents a
different word that is part of the formal language. The con-
nections between the nodes are generated by prediction
model engine 105 using the formal language definitions. A
connection between two nodes represents a possibility that a
phrase consists of the two words corresponding to the two
nodes next to each other according to the formal language
definitions. In the embodiments where the connection also
includes a direction, the direction signifies the order in which
the two words appear in the phrase.

[0035] Once prediction model engine 105 has obtained the
formal language definitions and created the parsing structure,
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prediction model manager 135 is programmed to begin
retrieving sensor data from sensor modules 130a-130f of
physical system 110 via sensor interface 160. In some
embodiments, prediction model manager 135 is programmed
to repetitively and periodically (e.g., every second, every
minute, every hour, etc.) retrieving sensor data from sensor
modules 130a-130f over a period of time.

[0036] As prediction model manager 135 is retrieving new
sensor data from sensor modules 130a-130f, prediction
model manager 135 is programmed to present the retrieved
sensor data on a display device (e.g., computer 120) via user
interface 155 for a subject matter expert (e.g., subject matter
expert 125) to view. In some of these embodiments, predic-
tion model manager 135 is programmed to present the sensor
data in real-time (e.g., within 3 seconds of retrieving the data).
In addition, prediction model manager 135 is programmed to
present the sensor data over a period of time in a graphical
form. For example, sensor data retrieved from the same sen-
sor module can be used to generate a graph (e.g., a line graph,
etc.) for presentation.

[0037] As the sensor data is being presented at computer
120, prediction model manager 135 is programmed to prompt
subject matter expert 125 (via computer 120) for description
input (e.g., verbal input, etc.) that describes the sensor data
being displayed. In some embodiments, prediction model
manager 135 is programmed to instruct subject matter expert
125 to provide input only to the portions of sensor data that
subject matter expert 125 believes are significant to the well-
being of physical system 110 (e.g., parts wearing out soon,
indication of system failure soon, etc.).

[0038] In addition, prediction model manager 135 is also
programmed to provide an interface (via user interface mod-
ule 155) that enables subject matter expert 125 to select a
portion of the sensor data displayed on computer 120, such
that as prediction model manager 135 receives description
input from subject matter expert 125, prediction model man-
ager 135 is programmed to use data pattern association mod-
ule 150 to associate the description input with the portion of
sensor data being displayed on computer 120 (or selected by
subject matter expert 125).

[0039] Upon receiving the description input, data pattern
association module 150 is programmed to parse the input
using the parsing structure stored in database 115. The pars-
ing of the input should result in either an indication of an
invalid phrase or an association with a data pattern template
model. In the event that the phrase is determined to be invalid
according to the formal language definitions, prediction
model manager 135 is programmed to send a signal to com-
puter 120 to display an error message. Conversely, if the
phrase is associated with one of the data pattern template
models stored in database 115, data pattern association mod-
ule 150 is programmed to instantiate a new instance of the
data pattern model and then add the information derived from
the portion of the sensor data to the newly instantiated data
pattern model.

[0040] Prediction model engine 105 is programmed to con-
tinuously present updated sensor data and repetitively collect
description input from subject matter expert 125 and instan-
tiate new data pattern model over a period of time. Based on
the information from the instantiated data pattern models,
parameter generation module 140 is programmed to estimate
parameters that can be fed into machine learning module 145
for more efficient machine learning performance over the
data set obtained from sensor modules 130a-130f
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[0041] Ingenerating When instantiating a new data pattern
model from a data pattern template, for example a sawtooth
pattern template, parameter generation module 140 needs to
specify the parameters of that pattern. These parameters
define the characteristics of the pattern to be detected. For
example, with a sawtooth pattern, the range of amplitudes and
frequencies of the waveforms to be detected and their offset
from zero. In some embodiments, these parameters are set by
the user and be incorporated into the data pattern template. In
other embodiments, parameter generation module 140 will
create initial estimates for the parameters by examining the
waveform selected by the human expert. For example, in the
case of a sawtooth pattern template, parameter generation
module 140 will examine a historical waveform labeled by
the human expert as being a sawtooth and determine the range
of amplitudes, frequencies, and offsets of the highlighted
waveform to use as initial estimates of these parameters. In
some embodiments, parameter generation module 140 is also
programmed to optimize the parameters for the instantiated
data pattern models. Once the parameters are estimated, pre-
diction model manager 135 is programmed to feed the param-
eters along with the data set retrieved from sensor modules
130a-130f over a period of time (the “collective dataset™) to
machine learning module 145. Since parameter estimation
relies on one or a small number of examples, the parameters
may not be sufficiently accurate. The machine learning mod-
ule 145 starts with the estimated parameters and continuously
optimizes them using new dataset and input from the human
expert so that their accuracy is improved. Machine learning
techniques such as adaptive gradient descent and simulated
annealing are used to optimize the parameters. Optimization
relies on historical data (the “collective dataset”) which
includes information on any failure or suboptimal perfor-
mance events. The machine learning module 145 optimizes
the parameters by looking at a mixture of historical datasets at
times and on assets where the kind of failure or suboptimal
performance to be predicted or detected is known to have
occurred. These ‘known positive’ datasets are used alongside
a random selection of ‘known negative’ datasets to drive
machine learning in a classic supervised machine learning
scenario.

[0042] Machine learning module 145 is then programmed
to use the parameters to perform machine learning algorithms
on the collective dataset to generate a prediction model. Dif-
ferent embodiments of prediction model engine 105 use dif-
ferent machine learning algorithms to generate the prediction
model. In some embodiments, more than one algorithm is
used to produce more accurate prediction model. Prediction
model manager 135 continues to optimize the parameters for
the data pattern models and feed the optimized parameters
(and updated data pattern models) into the prediction model
to improve its performance.

[0043] Once the prediction model is generated, prediction
model engine 105 is programmed to execute the prediction
model on new sensor data retrieved from sensor modules
130a-130f (preferably in real-time). Using the prediction
model, prediction model engine 105 is programmed to detect
and determine a status of physical system 110 based on the
newly retrieved sensor data.

[0044] The detected status of physical system 110 can be
used in many ways. For example, prediction model engine
105 of some embodiments is also communicatively coupled
with elements 1654-165¢ of physical system 110. Each of
elements 165a-165¢ are configurable to different settings. For
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example, element 165a can be a pump, which can be config-
ured to different power levels, different speed levels, different
flow levels, etc. Element 1655 can be a valve that can be
configured to open or shut, and different flow levels. Element
165¢ can be a boiler that can be configured to different heat
levels.

[0045] Insomeembodiments, prediction model engine 105
is programmed to configure the different elements (e.g., ele-
ments 165a-165¢) of physical system 110 based on the status
of'physical system 110 detected by machine learning module
145. In some of these embodiments, prediction model engine
105 is programmed to configure elements 165a-165¢ by
sending control signals to elements 165a-165c¢.

[0046] FIG. 2 shows how prediction model engine 105 uses
the formal language to produce parameters that are fed into
machine learning algorithms in more detail. Specifically,
FIG. 2 illustrates that prediction model engine 105 is present-
ing a graph 205 representing sensor data retrieved from at
least one of the sensor modules 1304-130f. In this example,
graph 205 shows the sensor data forming a saw-tooth pattern
over a period of time. As shown, the sensor data also has an
overall trend of increasing in value, where the sensor data is
approximately at around value ‘a’ immediately prior to the
saw-tooth pattern, and ends approximately at around value
‘b’ immediately after the saw-tooth pattern.

[0047] As prediction model engine 105 is presenting the
graph 205, prediction model engine 105 is configured to
obtain description input from subject matter expert 125. In
this example, subject matter expert 125 provides description
input 210 in a verbal form, by way of speaking out the phrase
“saw-tooth trending up,” as subject matter expert 125 is view-
ing graph 205 on the screen.

[0048] Once obtained description input 210, prediction
model engine 105 enumerates the many data pattern template
models in database 115 and determines a template model that
best fit the description input 210. As mentioned before, each
of the data pattern template models includes template
attribute-value pairs to describe a particular data pattern. FIG.
2 illustrates the detail of three exemplary data pattern tem-
plate models—a saw-tooth pattern template model 215, a
spike template model 210, and a sudden change template
model 215. It is noted that prediction model 105 is not limited
to including these three template models and can include
many other different template models as well.

[0049] Saw-tooth pattern template model 215 includes
attributes ‘element,” ‘data type,” ‘direction,” ‘beginning value
range,” and ‘ending value range.’” Attribute ‘element’ repre-
sents which element of physical system 110 the sensor data is
representing (e.g., a specific pump, a specific valve, etc.),
attribute ‘data type’ represents what type of information is
collected associated with the element (e.g., pressure data,
temperature data, etc.), attribute ‘direction’ represents
whether the sensor data is trending up, down, or flat, attribute
‘beginning value range’ represents a range of sensor data
value range immediately before the data pattern begins, and
attribute ‘ending value range’ represents a range of sensor
data value immediately after the data pattern ends.

[0050] Spike template model 220 has attributes ‘clement,’
data type,' spike direction,’ ‘beginning value range,” and
‘spike value range.” Attribute ‘element’ represents which ele-
ment of physical system 110 the sensor data is representing
(e.g., a specific pump, a specific valve, etc.), attribute ‘data
type’ represents what type of information is collected associ-
ated with the element (e.g., pressure data, temperature data,
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etc.), attribute ‘spike direction’ represents whether the data
pattern spikes up or down, attribute ‘beginning value range’
represents the sensor data value range immediately before the
data pattern begins, and attribute ‘spike value range’ repre-
sents the sensor data value range at the peak or trough.
[0051] Sudden change template model has attributes ‘ele-
ment,” data type,' direction,’ ‘beginning value range,” and
‘ending value range.” Attribute ‘element’ represents which
element of physical system 110 the sensor data is represent-
ing (e.g., a specific pump, a specific valve, etc.), attribute
‘data type’ represents what type of information is collected
associated with the element (e.g., pressure data, temperature
data, etc.), attribute ‘direction’ represents whether the sensor
data is trending up, down, or flat, attribute ‘beginning value
range’ represents a range of sensor data value range immedi-
ately before the data pattern begins, and attribute ‘ending
value range’ represents a range of sensor data value immedi-
ately after the data pattern ends. These attributes only repre-
sent exemplary attributes for a model, other attributes for
these or other model objects include time, dates, etc.

[0052] In addition, these data pattern template models rep-
resent only a few exemplary template models. It is contem-
plated that other data pattern template models that represent
other types of data patterns (e.g., step data pattern) or even
template models that represent relationships between two
different sensor data types. For example, a template model
can represent an inverse relationship between a specific
pump’s pressure and the specific pump’s temperature of
physical system 110.

[0053] Prediction model engine 105 of some embodiments
parses description input 210 (e.g., using a tree structure) to
arrive at one of the many data pattern template models. In this
example, prediction model engine 105 selects saw-tooth pat-
tern template model 215 based on description input 210. In
some embodiments, once prediction model engine 105
arrives at a particular template model, prediction model
engine 105 instantiates a model object based on the arrived
template model. In this example, prediction model engine
105 instantiates a saw-tooth pattern model object 230. In
addition, prediction model engine 105 also fills in values to
the attributes of this object—it inserts value ‘pump’ for
attribute ‘element,” value “pressure’ for attribute ‘data type,’
value ‘up’ for attribute ‘direction,” value ‘a’ for attribute
‘beginning value range,” and value ‘b’ for attribute ‘ending
value range.’

[0054] In some embodiments, before instantiating a new
data pattern model object, prediction model engine 105 first
determines if there is another data pattern model object that
has been instantiated for the same type of element, data type,
and data pattern. For example, if prediction model engine 105
determines that a saw-tooth pattern model object has been
instantiated for that specific pump and for pressure, instead of
instantiating another data pattern model object, prediction
model engine 105 updates the existing model object. In these
embodiments, prediction model engine 105 is programmed to
update values associated with attributes ‘beginning value
range’ and ‘ending value range.’

[0055] Forexample, if the beginning values are different on
two separate instants in which subject matter expert 125 is
describing the same data pattern (same direction) on the same
type of sensor data about the same element of physical system
110, prediction model engine 105 can take the average in
some embodiments, and can state a range of values that
includes both of the beginning values in other embodiments.
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Prediction model engine 105 can do the same for ending value
range or any other attributes that can vary.

[0056] Asprediction model engine 105 continues to receive
description input from subject matter expert 125, prediction
model engine 105 will keep instantiating data pattern model
objects and/or updating existing data pattern model objects,
based on the data pattern type prediction model engine 105
derives from the description input.

[0057] Based on the data pattern model objects, prediction
model engine 105 estimates a set of parameters to be used in
one or more machine learning algorithms. In some embodi-
ments, as prediction model engine 105 receives enough
description input and generates model objects that suffi-
ciently representing subject matter expert 125’s perspective
of physical system 110, prediction model engine 105 can
further optimize the parameters. Prediction model engine 105
then feeds the set of parameters to one or more machine
learning algorithms to generate a prediction model for physi-
cal system 110.

[0058] FIG. 3 illustrates a process 300 to generate a predic-
tion model using the methods as described above. The process
300 begins by obtaining (at step 305) formal language defi-
nitions that is capable of describing data patterns of a physical
system from, preferably, a data scientist. The process 300
then retrieve (at step 310) sensor data from the physical sys-
tem. As sensor data is being received from the physical sys-
tem, the process 300 presents (at step 315) a portion of the
sensor data to a subject matter expert.

[0059] Preferably, the subject matter expert will provide
description input when the expert recognizes a data pattern
from the portion of sensor data being displayed. Thus, the
process 300 receives (at step 320) a description input from the
subject matter expert while presenting the portion of sensor
data.

[0060] The process 300 then identifies (at step 325) a data
pattern model by parsing the description using the formal
language definitions. Once a data pattern model is identified,
the process 300 either (a) instantiates (at step 330) a new data
pattern model object that corresponds to the identified data
pattern model or (b) updates (at step 330) an existing data
pattern model object. The process 300 also generates (at step
335) an association between the data pattern model object and
the portion of the sensor data being presented to the subject
matter expert. Next, the process 300 estimates (at step 340) a
machine learning parameter for the prediction model. The
process 300 uses the estimated parameters to perform
machine learning on the retrieved data set to generate (at step
345) a prediction model.

[0061] In some embodiments, the process 300 performs
steps 310-345 repetitively when new sensor data is retrieved.
As new parameters are generated, the process 300 continues
to update the parameters to the machine learning algorithms.
After instantiating and updating sufficient data pattern model
objects, the parameters are optimized for the physical system,
and the updated prediction model will become more and more
accurate as the process continues to learn from updated sen-
sor data and input from subject matter expert.

[0062] It should be apparent to those skilled in the art that
many more modifications besides those already described are
possible without departing from the inventive concepts
herein. The inventive subject matter, therefore, is not to be
restricted except in the spirit of the appended claims. More-
over, in interpreting both the specification and the claims, all
terms should be interpreted in the broadest possible manner
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consistent with the context. In particular, the terms “com-
prises” and “comprising” should be interpreted as referring to
elements, components, or steps in a non-exclusive manner,
indicating that the referenced elements, components, or steps
can be present, or utilized, or combined with other elements,
components, or steps that are not expressly referenced. Where
the specification claims refers to at least one of something
selected from the group consisting of A, B, C . . . and N, the
text should be interpreted as requiring only one element from
the group, not A plus N, or B plus N, etc.

What is claimed is:

1. A method of generating a predictive model for operation
of a physical system, comprising:

obtaining definitions of a formal language capable of

describing a plurality of data patterns significant to the
operation of the physical system;

monitoring sensor data associated with the physical system

over a period of time;

iteratively: (1) displaying a representation of the monitored

sensor data to a user via the interface, (2) receiving, via
the interface, a description from the user describing the
presented sensor data, (3) identifying one data pattern
out of the plurality of data patterns by parsing the
description using the definitions of the formal language,
and (4) generating an association between the identified
data pattern and a portion of the sensor data displayed to
the user via the interface;

calculating a parameter to be used in a machine learning

algorithm based on the generated associations between
the data patterns and the different portions of the sensor
data; and

generating a predictive model for the operation of the

physical system by applying the estimated parameter to
the machine learning algorithm.

2. The method of claim 1, wherein the physical system
comprises at least one of a machinery, an organic matter, a
person.

3. The method of claim 1, wherein the description com-
prises a noun and a verb.

4. The method of claim 1, wherein the description com-
prises a noun and an adjective.

5. The method of claim 1, wherein calculating the param-
eter comprising estimating the parameter based on descrip-
tions and characteristics of associated historical sensor data.

6. The method of claim 1, wherein calculating the param-
eter comprises deriving the parameter from historical sensor
data retrieved at different instances in time, wherein a subset
of'the historical sensor data is associated with a description of
failure or suboptimal performance.

7. The method of claim 1, wherein calculating the param-
eter comprises estimating the parameter from the description
associated with sensor data and optimizing the parameter
using a machine learning algorithm.

8. The method of claim 1, further comprising:

applying the predictive model to a set of current sensor

data; and

triggering an alert when the predictive model indicates an

occurrence of an event.

9. The method of claim 1, further comprising:

applying the predictive model to a set of current sensor

data; and

adjusting an operating parameter of a part within the physi-

cal system when the predictive model indicates an
occurrence of an event.
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10. The method of claim 1, wherein the representation of
the sensor data comprises a graphical representation of the
sensor data.

11. The method of claim 1, further comprising selecting a
feature of the sensor data that is significant to the operation of
the physical system.

12. The method of claim 11, wherein estimating a param-
eter comprises estimating the parameter based on the selected
features.

13. The method of claim 1, wherein the parameter is a
common characteristic of the portions of sensor data.

14. A predictive model generation system for generating a
predictive model for a physical system, comprising:

a plurality of sensors configured to obtain environmental

data associated with the physical system;

a user interface comprising a display device and an input

device;

a database storing a plurality of data pattern templates; and

a predictive engine comprising a processor and memory

storing software instructions that when executed by the

processor perform the following steps:

obtaining definitions of a formal language capable of
describing the plurality of data patterns significant to
the operation of the physical system,

iteratively: (1) retrieving sensor data from the plurality
of sensors, (2) configuring the user interface to
present a representation of the retrieved sensor data to
a user, (3) receiving, via the user interface, a descrip-
tion from the user describing the presented sensor
data, (4) identifying one data pattern out of the plu-
rality of data patterns by parsing the description using
the definitions of the formal language, and (5) gener-
ating an association between the identified data pat-
tern and a portion of the sensor data displayed to the
user via the user interface,

calculating a parameter to be used in a machine learning
algorithm based on the generated associations
between the data patterns and the different portions of
the sensor data, and

generating a predictive model for the operation of the
physical system by applying the estimated parameter
to the machine learning algorithm.

15. The system of claim 14, wherein the software instruc-
tions further perform the step of calculating the parameter by
estimating the parameter based on descriptions and charac-
teristics of associated historical sensor data.

16. The system of claim 14, wherein the software instruc-
tions further perform the step of calculating the parameter by
deriving the parameter from historical sensor data retrieved at
different instances in time, wherein a subset of the historical
sensor data is associated with a description of failure or sub-
optimal performance.

17. The system of claim 14, wherein the software instruc-
tions further perform the step of calculating the parameter by
estimating the parameter from the description associated with
sensor data and optimizing the parameter using a machine
learning algorithm.

18. The system of claim 14, wherein the software instruc-
tions further perform the steps of:

applying the predictive model to a set of current sensor

data; and

triggering an alert when the predictive model indicates an

occurrence of an event.
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19. The system of claim 14, wherein the software instruc-
tions further perform the steps of:
applying the predictive model to a set of current sensor
data; and
adjusting an operating parameter of a part within the physi-
cal system when the predictive model indicates an
occurrence of an event.
20. The system of claim 1, wherein the parameter is a
common characteristic of the portions of sensor data.

#* #* #* #* #*
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