
IN
US 20200004699A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0004699 A1

MISHRA et al . (43) Pub . Date : Jan. 2 , 2020

(54) VARIABLE - STRIDE WRITE IN A
MULTI - POINT BUS ARCHITECTURE

(52) U.S. CI .
CPC G06F 13/161 (2013.01) ; G06F 11/1004

(2013.01) ; G06F 13/4282 (2013.01) ; G06F
13/1668 (2013.01) (71) Applicant : QUALCOMM Incorporated , San

Diego , CA (US)

(57) ABSTRACT (72) Inventors : Lalan Jee MISHRA , San Diego , CA
(US) ; Richard Dominic WIETFELDT ,
San Diego , CA (US) ; Helena Deirdre
O'SHEA , San Diego , CA (US)

(21) Appl . No .: 16 / 426,825
(22) Filed : May 30 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 690,721 , filed on Jun .

27 , 2018 .

Systems , methods , and apparatus for improving latency of a
serial bus are described . method performed at a device
coupled to a serial bus includes writing a first data byte
received in a first field of a datagram from a serial bus to a
first register in the slave device , modifying the address
pointer by adding or subtracting a stride value provided in a
second field of the datagram to obtain a modified address
pointer , and writing a second data byte received in a third
field of the datagram to a second register in the slave device .
The first register may be located at an address indicated by
an address pointer and the second register may be located at
an address indicated by the modified address pointer . The
first register and the second register may be located at
non - contiguous addresses .

Publication Classification
(51) Int . Ci .

G06F 13/16 (2006.01)
G06F 13/42 (2006.01)
G06F 11/10 (2006.01)

100

124
102

108 RF
Transceiver

104 118a 120
110

Modem
112

128 Processor
114 Memory

126
116

130 Interface
0000000000
000000000
OD0AB000

122 118b

132 Storage
106

Peripheral
Devices

Processing Circuit

100 .

124

102
108

Patent Application Publication

RF Transceiver
118a

104

120

110

Modem
112

128

Processor
114

Memory

126

116

130

Interface

Jan. 2 , 2020 Sheet 1 of 14

00000I 000000000 DODDODDO

122

118b

132

Storage

106

Peripheral Devices Processing
Circuit

US 2020/0004699 A1

FIG . 1

200

Master Device
202

204

2010

214a

Interface Controller

Receiver

2221
Patent Application Publication

206

Common

Slave 1

Registers

214b

224

Transmitter

Storage

2222

2.12

226
Clock Gen.

228 TXCLK

Processor and / or Control Logic

Slave 2

220

208

Data 216

Clock 218

Slave Device

2220

Jan. 2 , 2020 Sheet 2 of 14

232

240

244a

Sensor Control

Receiver

234

Common

Registers

244b

236

Transmitter

Storage

222N

238

Slave N

242

248 TXCLK

Processor and / or Control Logic

Clock Circuit

US 2020/0004699 A1

246 FIG . 2

300

302

304

Modem

Patent Application Publication

306

310

Modem Baseband Processor

308

RFFE Bus - 1 (330)

RFFE Interface

Tuner (318)

336

312

RFIC
314

Jan. 2. 2020 Sheet 3 of 14

RFFE Bus - 2 (332)

RFFE Interface
316

RFFE Bus - 3 (334)

RFFE Interface

PA (320)

Power Tracker (322)

Switch (324)

LNA (326)

LNA (328)

US 2020/0004699 A1

FIG . 3

400

4042

4043

404N

Peripheral - 2

Peripheral - 3

Peripheral - N

Patent Application Publication

422

404 ,

402

424

Peripheral - 1
Modem

Host Application Processor (SoC)

Jan. 2 , 2020 Sheet 4 of 14

418

414

SPM Master

SPMI Master

412

410

PSH Reset In

406

Reset In

PSH

408

SPMI Slave

SPMI Slave

PMIC .

420

On / Off

Host PMIC

416

Reset

Modem PMIC

US 2020/0004699 A1

FIG . 4

500

Payload (508)

Slave ID

Command Code
Address

Up to 16 Data Bytes

502

504

506

Patent Application Publication

510 .

Payload (508)
B1 B2 B3 B4 B5 B6 B7 18 19 B10 B11 312 313 314 B15 B16

5127
526

524

514 518

Register N + 15 Register N + 14 Register N + 13 Register N + 12 Register N + 11 Register N + 10 Register N + 9 Register N + 8 Register N + 7 Register N + 6 Register N + 5 Register N + 4 Register N + 3 Register N + 2 Register N + 1 Register N

Jan. 2 , 2020 Sheet 5 of 14

522 520

US 2020/0004699 A1

516

FIG . 5

600 .

Payload (602)

606

622

624

626

Patent Application Publication

Address

9047

BI
B2

B3

B4

B5

B6

B7

B8

B13 B9 B10 B11 B12 B13 B14 B15 B16 .

608

628

610

612

Register N + 1

1

Register N + k + 1
Register N + k

630

Register N + j

Jan. 2 , 2020 Sheet 6 of 14

Register N + i + 2 Register N + r + Register N + i

620 618 616

Register N

614

US 2020/0004699 A1

FIG . 6

700 .

1067

Patent Application Publication

VSW End Address (704)

A7
A6

A5

A4

A3

A2
A Al
AO

2 A

A15 A14 A13 A12 A1 A10 A9

A8

Register N + 1 + 3 Register N + i + 2 Register N + 1 + 1 Register N + i

VSW Activated Region (708)

f

Jan. 2 , 2020 Sheet 7 of 14

Register N + 3

VSW Start Address (702)

Register N + 2 Register N + 1 Register N

A7

A6

A5

A4

A3

A2

AL
?0

A15 A14 A13 A12 A11 A10 A9

A8

US 2020/0004699 A1

FIG . 7

800

Payload (802)

Patent Application Publication

Address
BI

B2

B3

B4

B5

B6

B7

B8

B9

BI B10
BIl
B12

B13

B14

B15

B16

804

806

808

810

814

D7

D6

DS

D4

D3

D2 DI

DO

P

Stride (812)

Direction
1 : Move up in address space 0 : Move down in address space

Jan. 2 , 2020 Sheet 8 of 14

818

D7

6 D6

DS

D4

D3 031
D2 D2

D1
DO

?

COTTO

Data (816)

US 2020/0004699 A1

FIG . 8

900

Payload (902)

Patent Application Publication

Start Address
?1

B2

B3

B4

B5

B6

B7
1

B8

B9

B10

BIT
B12

B13

B14

B15

B16

904

906

908

912

D7

D6

D5

D4

D3

D2

D1
DO

St

Data / Stride (910)

Stride Indicator
1 : Byte carries skip stride value
0 : Byte carries data

Jan. 2 , 2020 Sheet 9 of 14 US 2020/0004699 A1

FIG . 9

1000

Patent Application Publication

Payload (1010)
st Up to 16 Data Bytes

Slave ID

VSW Conimand Code

Mode

Address

1002

1004

1006

1008

1012
D7
D6

D5

D4

D3 D2
D2 DI

DO

P

Reserved

Byte Count in Payload (1014)

Jan. 2 , 2020 Sheet 10 of 14

Direction Mode 1 : Forward / Backward Skip Mode

0 : Forward skip only (repurpose parity bit)

US 2020/0004699 A1

FIG . 10

1100

1102

11067

Patent Application Publication

1104

Registers

1108

Command Decoder

1114

VSW Configuration

1116

VSW Active Region Pointers

Finite State Machine

1118

VSW Parity bit Function

Jan. 2 , 2020 Sheet 11 of 14

RO

1110

Address Pointer
1112

Adder / Subtractor

US 2020/0004699 A1

FIG . 11

1200

1214

1216 ,

1222

Patent Application Publication

Module 1

Function 1

Module 2

Function 2

I / O , Control and Other Logic

Module M

Function N

1206

1204

Timeshare

Storage

Processor

1220

1218

Jan. 2 , 2020 Sheet 12 of 14

1212b

1210

RF Transceiver

User Interface

Bus Interface

1212a

Line Interface Transceiver

1208

Processing Circuit

US 2020/0004699 A1

1202

FIG . 12

1300 .

Slave Device

Patent Application Publication

1302

Write a first data byte received in a first field of a datagram from a serial bus to a first register in the slave device , wherein the first register is located at an address indicated by an address pointer

1304

Modify the address pointer by adding or subtracting a stride value provided in a second field of the datagram to obtain a modified address pointer

Jan. 2 , 2020 Sheet 13 of 14

1306

Write a second data byte received in a third field of the datagram to a second register in the slave device , wherein the second register is located at an address indicated by the modified address pointer , and wherein the first register and the second register are located at non - contiguous addresses

US 2020/0004699 A1

FIG . 13

1400

1402

1408

VSW Mode Management Module / Circuit

Patent Application Publication

1420

1406

Code Related To Selecting and VSW Modes

VSW Address Pointer Module / Circuit

1404

Code Related To Managing VSW Address Pointers

VSW Register Write Module / Circuit

Code Related To Register Writes In VSW Modes

Jan. 2 , 2020 Sheet 14 of 14

1422

1414

1412

1418

Physical Layer Modules / Circuits

Processor - Readable Storage Medium

1416

Processor

Processing Circuit

US 2020/0004699 A1

FIG . 14

US 2020/0004699 A1 Jan. 2 , 2020

SUMMARY VARIABLE - STRIDE WRITE IN A
MULTI - POINT BUS ARCHITECTURE

PRIORITY CLAIM
[0001] This application claims priority to and the benefit
of U.S. Provisional Patent Application Ser . No. 62 / 690,721
filed in the U.S. Patent Office on Jun . 27 , 2018 , the entire
content of this application being incorporated herein by
reference as if fully set forth below in its entirety and for all
applicable purposes .

TECHNICAL FIELD

[0002] The present disclosure relates generally to serial
communication over a shared serial bus and , more particu
larly , to optimizing latencies associated with time - critical
data transmitted over the shared serial bus .

BACKGROUND

[0003] Mobile communication devices may include a vari
ety of components including circuit boards , integrated cir
cuit (IC) devices and / or System - on - Chip (SOC) devices . The
components may include processing devices , user interface
components , storage and other peripheral components that
communicate through a shared data communication bus ,
which may include a multi - drop serial bus or a parallel bus .
General - purpose serial interfaces known in the industry
include the Inter - Integrated Circuit (12C or l’C) serial inter
face and its derivatives and alternatives .
[0004] The Mobile Industry Processor Interface (MIPI)
Alliance defines standards for the Improved Inter - Integrated
Circuit (13C) serial interface , the Radio Frequency Front
End (RFFE) interface , the system power management inter
face (SPMI) and other interfaces . These interfaces may be
used to connect processors , sensors and other peripherals ,
for example . In some interfaces , multiple bus masters are
coupled to the serial bus such that two or more devices can
serve as bus master for different types of messages trans
mitted on the serial bus . The RFFE interface defines a
communication interface that can be for controlling va us
radio frequency (RF) front - end devices , including power
amplifier (PA) , low - noise amplifiers (LNAs) , antenna tun
ers , filters , sensors , power management devices , switches ,
etc. These devices may be collocated in a single IC device
or provided in multiple IC devices . In a mobile communi
cations device , multiple antennas and radio transceivers may
support multiple concurrent RF links . The SPMI provides a
hardware interface that may be implemented between base
band or application processors and peripheral components .
In some instances , the SPMI is deployed to support power
management operations within a device .
[0005] A multi - drop serial bus may be implemented using
one or more interface protocols to support high - priority ,
low - latency communication between an application proces
sor and certain peripherals , and other lower - priority com
munication . Latency can be adversely affected when mul
tiple devices coupled to the serial bus are concurrently
active . Degraded latencies can lead to an increase in dropped
packets , session timeouts and retransmissions on the serial
bus . As mobile communication devices continue to include
a greater level of functionality , improved serial communi
cation techniques are needed to improve latencies and / or
improve handling of priority traffic on a serial bus that
couples peripherals and application processors .

[0006] Certain aspects of the disclosure relate to systems ,
apparatus , methods and techniques that can support
increased data rates for a serial bus without increasing bus
clock frequency and without modifying encoding of the data
transmitted on the data line .
[0007] In various aspects of the disclosure , a method
performed at a device coupled to a serial bus includes
writing a first data byte received in a first field of a datagram
from a serial bus to a first register in the slave device ,
modifying the address pointer by adding or subtracting a
stride value provided in a second field of the datagram to
obtain a modified address pointer , and writing a second data
byte received in a third field of the datagram to a second
register in the slave device . The first register may be located
at an address indicated by an address pointer and the second
register may be located at an address indicated by the
modified address pointer . The first register and the second
register may be located at non - contiguous addresses . The
second field may include a bit indicating whether the stride
value is to be added to the address pointer or subtracted from
the address pointer .
[0008] In one aspect , the datagram includes a stride value
that is interleaved between fields carrying a pair of data
bytes to be written to non - contiguous registers in the slave
device . The datagram may include a register address that
serves as an initial address pointer . One or more stride values
may be provided in the datagram when the initial address
pointer indicates an address within an active variable - stride
write region . The active variable - stride write region may be
defined by a start address pointer and an end address pointer
stored in the slave device .
[0009] In one aspect , a parity bit of the first field is set to
a first value indicating that the first data byte is to be written
to the first register , and a parity bit of the second field is set
to a second value indicating that the second field carries the
stride value . The address pointer may be modified by adding
the stride value to the address pointer . The datagram may
include a register address that serves as an initial address
pointer . Parity bits in the datagram may be configured to
distinguish between register write data and stride values
when the initial address pointer indicates an address within
an active variable - stride write region . The active variable
stride write region may be defined by registers configured
with a start address pointer and an end address pointer stored
in the slave device .
[0010] In one aspect , the method includes receiving a
command code in the datagram , and enabling a variable
stride write mode in response to the command code . The
variable - stride write mode may be indicated in mode infor
mation received in the datagram . The mode information may
define whether parity bits in the datagram distinguish
between register write data and stride values . The mode
information may define whether the address pointer is to be
modified by subtracting the stride value .
[0011] In various aspects of the disclosure , an apparatus
has a plurality of registers , an interface circuit adapted to
couple the apparatus to a serial bus and a processor config
ured to cause a first data byte received in a first field of a
datagram received from the serial bus to be written to a first
register . The first register may be located at an address
indicated by an address pointer . The processor may be
further configured to cause the address pointer to be modi
fied by addition or subtraction of a stride value provided in

US 2020/0004699 A1 Jan. 2 , 2020
2

[0025] FIG . 13 is a flowchart that illustrates certain
aspects of a variable - stride write protocol as disclosed
herein .
[0026] FIG . 14 illustrates an example of a hardware imple
mentation for an apparatus adapted in accordance with
certain aspects disclosed herein .

DETAILED DESCRIPTION

a second field of the datagram to obtain a modified address
pointer , and cause a second data byte received in a third field
of the datagram to be written to a second register in the
apparatus . The second register may be located at an address
indicated by the modified address pointer . The first register
and the second register may be located at non - contiguous
addresses .
[0012] In various aspects of the disclosure , a processor
readable storage medium includes code for writing a first
data byte received in a first field of a datagram from a serial
bus to a first register in the slave device , modifying the

ress pointer by adding or subtracting a stride value
provided in a second field of the datagram to obtain a
modified address pointer , and writing a second data byte
received in a third field of the datagram to a second register
in the slave device . The first register may be located at an
address indicated by an address pointer and the second
register may be located at an address indicated by the
modified address pointer . The first register and the second
register may be located at non - contiguous addresses . The
second field may include a bit indicating whether the stride
value is to be added to the address pointer or subtracted from
the address pointer .

[0027] The detailed description set forth below in connec
tion with the appended drawings is intended as a description
of various configurations and is not intended to represent the
only configurations in which the concepts described herein
may be practiced . The detailed description includes specific
details for the purpose of providing a thorough understand
ing of various concepts . However , it will be apparent to
those skilled in the art that these concepts may be practiced
without these specific details . In some instances , well
known structures and components are shown in block dia
gram form in order to avoid obscuring such concepts .
[0028] Several aspects of the invention will now be pre
sented with reference to various apparatus and methods .
These apparatus and methods will be described in the
following detailed description and illustrated in the accom
panying drawings by various blocks , modules , components ,
circuits , steps , processes , algorithms , etc. (collectively
referred to as “ elements ”) . These elements may be imple
mented using electronic hardware , computer software , or
any combination thereof . Whether such elements are imple
mented as hardware or software depends upon the particular
application and design constraints imposed on the overall
system .

BRIEF DESCRIPTION OF THE DRAWINGS

Overview

[0013] FIG . 1 illustrates an apparatus employing a data
link between IC devices that is selectively operated accord
ing to one of plurality of available standards .
[0014] FIG . 2 illustrates a system architecture for an
apparatus employing a data link between IC devices .
[0015] FIG . 3 illustrates a device configuration for cou
pling various radio frequency front - end devices using mul
tiple RFFE buses .
[0016] FIG . 4 illustrates a device that employs an SPMI
bus to couple various devices in accordance with certain
aspects disclosed herein .
[0017] FIG . 5 illustrates certain aspects of a generalized
datagram that may be transmitted over a multi - drop serial
bus .
[0018] FIG . 6 illustrates a first example of a variable - stride
write datagram that enables data to be written to non
contiguous registers in accordance with certain aspects
disclosed herein .
[0019] FIG . 7 illustrates an example of implementation of
selective variable - stride write based on register address
space in accordance with certain aspects disclosed herein .
[0020] FIG . 8 illustrates a second example of a variable
stride write datagram that enables data to be written to
non - contiguous registers in accordance with certain aspects
disclosed herein .
[0021] FIG . 9 illustrates a third example of a variable
stride write datagram that enables data to be written to
non - contiguous registers in accordance with certain aspects
disclosed herein .
[0022] FIG . 10 illustrates an explicit variable - stride write
command code transmitted in accordance with certain
aspects disclosed herein .
[0023] FIG . 11 illustrates a circuit adapted to implement a
variable - stride write protocol in accordance with certain
aspects disclosed herein .
[0024] FIG . 12 illustrates one example of an apparatus
employing a processing circuit that may be adapted accord
ing to certain aspects disclosed herein .

[0029] Devices that include multiple SoC and other IC
devices often employ a shared communication interface that
may include a serial bus or other data communication link to
connect processors with modems and other peripherals . The
serial bus or data communication link may be operated in
accordance with one or more standards or protocols . For
example , the serial bus may be operated in accordance with
an 12C , 13C , SPMI and / or RFFE protocol , or another pro
tocol that can be configured for half - duplex operation .
Increased utilization of serial buses , and / or the imposition of
more stringent timing constraints in support of applications ,
peripherals and sensors can result in demand for reduced
transmission latencies . Transmission latency may include
the time required to terminate a transaction in process on the
serial bus , bus turnaround (between transmit mode and
receive mode) , bus arbitration and / or command transmis
sions specified by protocol .
[0030] In some implementations , a master device may
receive data to be written to different registers in a single
device from an application or another device . The data may
include high - priority messages or information . In one
example , an RFFE interface implemented in a device that
includes a fifth generation (5G) radio access technology
interface may be required to handle high - priority commu
nication between a master device and non - contiguous reg
isters in a various front - end devices . In conventional imple
mentations , the master device may write contiguous
registers in a single transaction . For example , the master
device may receive N bytes ordered such that a first byte is
to be written to a register at a first address (A.) , a second

US 2020/0004699 A1 Jan. 2 , 2020
3

byte is to be written to a register at the next address (Ao + 1) ,
a third byte is to be written to a register at the next address
(A. + 2) and so on , up to an Nth byte that is to be written to
a register at the address (Ao + N - 1) . In these conventional
implementations , the master device is required to write
non - contiguous registers using multiple transactions , and the
master device is required to use multiple transactions to
write contiguous registers when the data for the contiguous
registers is not ordered in sequence of increasing target
register address . For example , multiple transactions may be
required to write data that arrives at the master device
targeted to contiguous registers , but ordered such that the
first byte is targeted to a register with a higher address than
the last byte .
[0031] High bus latency can limit the capabilities and
functionality of a serial bus in certain applications . For
example , bus latency may limit the number of radio fre
quency (RF) devices that can be coupled by an 13C , RFFE
or SPMI bus . In some examples , multiple serial buses may
be implemented to enable RF devices or other low - latency
devices to communicate within tight time constraints ,
including where bus throughput , utilization and / or other
operating characteristics are otherwise easily supported by a
single bus .
[0032] According to certain aspects disclosed herein , bus
latency , throughput and other issues may be addressed when
data and address pointer offset information are interleaved
within a datagram . In one example , a data byte may be
followed by a pointer offset used to update an address
pointer that selects the current or next register to be written .
The address pointer offset information enables non - contigu
ous register writes using a single datagram .
[0033] According to certain aspects disclosed herein ,
address pointer offset information may be provided within a
datagram in which parity bits are repurposed to indicate
whether a data byte includes a value to be written to a
register or address pointer offset information . A data byte
field indicated by a repurposed parity bit as including pointer
offset may be used to update an address pointer that selects
the current or next register to be written . The address pointer
offset information enables non - contiguous register writes
using a single datagram where not all data bytes are followed
or preceded by an address pointer offset .
[0034] Certain aspects disclosed herein may be applicable
to a serial bus operated in accordance with an I2C , 13C ,
SPMI , and / or RFFE protocol , or other protocol . Certain
aspects are applicable to a serial bus operated in half - duplex
mode or full - duplex mode . Certain aspects are applicable to
point - to - point interfaces including UART - based interfaces ,
line multiplexed UART (LM - UART) interfaces , and virtual
GPIO (VGI) and messaging interfaces . Certain aspects are
applicable to multipoint interfaces and / or interfaces oper
ated in point - to - point mode .

(e.g. , MP3 player) , a camera , a game console , an entertain
ment device , a vehicle component , a wearable computing
device (e.g. , a smart watch , a health or fitness tracker ,
eyewear , etc.) , an appliance , a sensor , a security device , a
vending machine , a smart meter , a drone , a multicopter , or
any other similar functioning device .
[0036] FIG . 1 illustrates an example of an apparatus 100
that may employ a data communication bus . The apparatus
100 may include an SoC a processing circuit 102 having
multiple circuits or devices 104 , 106 and / or 108 , which may
be implemented in one or more ASICs or in an SoC . In one
example , the apparatus 100 may be a communication device
and the processing circuit 102 may include a processing
device provided in an ASIC 104 , one or more peripheral
devices 106 , and a transceiver 108 that enables the apparatus
to communicate through an antenna 124 with a radio access
network , a core access network , the Internet and / or another
network .
[0037] The ASIC 104 may have one or more processors
112 , one or more modems 110 , on - board memory 114 , a bus
interface circuit 116 and / or other logic circuits or functions .
The processing circuit 102 may be controlled by an oper
ating system that may provide an application programming
interface (API) layer that enables the one or more processors
112 to execute software modules residing in the on - board
memory 114 or other processor - readable storage 122 pro
vided on the processing circuit 102. The software modules
may include instructions and data stored in the on - board
memory 114 or processor - readable storage 122. The ASIC
104 may access its on - board memory 114 , the processor
readable storage 122 , and / or storage external to the process
ing circuit 102. The on - board memory 114 , the processor
readable storage 122 may include read - only memory (ROM)
or random - access memory (RAM) , electrically erasable
programmable ROM (EEPROM) , flash cards , or any
memory device that can be used in processing systems and
computing platforms . The processing circuit 102 may
include , implement , or have access to a local database or
other parameter storage that can maintain operational
parameters and other information used to configure and
operate the apparatus 100 and / or the processing circuit 102 .
The local database may be implemented using registers , a
database module , flash memory , magnetic media , EEPROM ,
soft or hard disk , or the like . The processing circuit 102 may
also be operably coupled to external devices such as the
antenna 124 , a display 126 , operator controls , such as
switches or buttons 128 , 130 and / or an integrated or external
keypad 132 , among other components . A user interface
module may be configured to operate with the display 126 ,
external keypad 132 , etc. through a dedicated communica
tion link or through one or more serial data interconnects .
[0038] The processing circuit 102 may provide one or
more buses 118a , 1186 , 120 that enable certain devices 104 ,
106 , and / or 108 to communicate . In one example , the ASIC
104 may include a bus interface circuit 116 that includes a
combination of circuits , counters , timers , control logic and
other configurable circuits or modules . In one example , the
bus interface circuit 116 may be configured to operate in
accordance with communication specifications or protocols .
The processing circuit 102 may include or control a power
management function that configures and manages the
operation of the apparatus 100 .
[0039] FIG . 2 illustrates certain aspects of an apparatus
200 that includes multiple devices 202 , and 222 , -2227

Examples of Apparatus that Employ Serial Data
Links

[0035] According to certain aspects , a serial data link may
be used to interconnect electronic devices that are subcom
ponents of an apparatus such as a cellular phone , a smart
phone , a session initiation protocol (SIP) phone , a laptop , a
notebook , a netbook , a smartbook , a personal digital assis
tant (PDA) , a satellite radio , a global positioning system
(GPS) device , a smart home device , intelligent lighting , a
multimedia device , a video device , a digital audio player

US 2020/0004699 A1 Jan. 2 , 2020
4

N coupled to a serial bus 220. The devices 202 and 222 , -222
may be implemented in one or more semiconductor IC
devices , such as an applications processor , SoC or ASIC . In
various implementations the devices 202 and 222-2227
may include , support or operate as a modem , a signal
processing device , a display driver , a camera , a user inter
face , a sensor , a sensor controller , a media player , a trans
ceiver , RFFE devices , and / or other such components or
devices . In some examples , one or more of the slave devices
222 , -222y may be used to control , manage or monitor a
sensor device . Communication between devices 202 and
222 -222y over the serial bus 220 is controlled by a bus
master 202. Certain types of bus can support multiple bus
masters 202 .

[0040] In one example , a master device 202 may include
an interface controller 204 that manages access to the serial
bus , configures dynamic addresses for slave devices 2220
222y and / or causes a clock signal 228 to be transmitted on
a clock line 218 of the serial bus 220. The master device 202
may include configuration registers 206 or other storage
224 , and other control logic 212 configured to handle
protocols and / or higher level functions . The control logic
212 may include a processing circuit such as a state
machine , sequencer , signal processor or general - purpose
processor . The master device 202 includes a transceiver 210
and line drivers / receivers 214a and 214b . The transceiver
210 may include receiver , transmitter and common circuits ,
where the common circuits may include timing , logic and
storage circuits and / or devices . In one example , the trans
mitter encodes and transmits data based on timing in the
clock signal 228 provided by a clock generation circuit 208 .
Other timing clocks 226 may be used by the control logic
212 and other functions , circuits or modules .
[0041] At least one device 222 , -222y may be configured
to operate as a slave device on the serial bus 220 and may
include circuits and modules that support a display , an image
sensor , and / or circuits and modules that control and com
municate with one or more sensors that measure environ
mental conditions . In one example , a slave device 222 ,
configured to operate as a slave device may provide a control
function , module or circuit 232 that includes circuits and
modules to support a display , an image sensor , and / or
circuits and modules that control and communicate with one
or more sensors that measure environmental conditions . The
slave device 222 , may include configuration registers 234 or
other storage 236 , control logic 242 , a transceiver 240 and
line drivers / receivers 244a and 2446. The control logic 242
may include a processing circuit such as a state machine ,
sequencer , signal processor or general - purpose processor .
The transceiver 210 may include receiver , transmitter and
common circuits , where the common circuits may include
timing , logic and storage circuits and / or devices . In one
example , the transmitter encodes and transmits data based
on timing in a clock signal 248 provided by clock generation
and / or recovery circuits 246. The clock signal 248 may be
derived from a signal received from the clock line 218 .
Other timing clocks 238 may be used by the control logic
242 and other functions , circuits or modules .
[0042] The serial bus 220 may be operated in accordance
with 12C , 13C , RFFE , SPMI , or another protocol . At least
one device 202 , 222 , -2227 may be configured to selectively
operate as either a master device or a slave device on the

serial bus 220. Two or more devices 202 , 222 -222y may be
configurable to operate as a master device on the serial bus
220 .
[0043] In some implementations , the serial bus 220 may
be operated in accordance with an 13C protocol . Devices that
communicate using the 13C protocol can coexist on the same
serial bus 220 with devices that communicate using 12C
protocols . The 13C protocols may support different commu
nication modes , including a single data rate (SDR) mode that
is compatible with 12C protocols . High - data - rate (HDR)
modes may provide a data transfer rate between 6 megabits
per second (Mbps) and 16 Mbps , and some HDR modes may
be provide higher data transfer rates . 12C protocols may
conform to de facto I2C standards providing for data rates
that may range between 100 kilobits per second (kbps) and
3.2 Mbps . I2C and 13C protocols may define electrical and
timing aspects for signals transmitted on the 2 - wire serial
bus 220 , in addition to data formats and aspects of bus
control . In some aspects , the 12C and 13C protocols may
define direct current (DC) characteristics affecting certain
signal levels associated with the serial bus 220 , and / or
alternating current (AC) characteristics affecting certain
timing aspects of signals transmitted on the serial bus 220 .
In some examples , a 2 - wire serial bus 220 transmits data on
a data line 216 and a clock signal on the clock line 218. In
some instances , data may be encoded in the signaling state ,
or transitions in signaling state of the data line 216 and the
clock line 218 .
[0044] FIG . 3 is a diagram 300 illustrating an example of
a configuration of communication links in a chipset or
device 302 that employs multiple RFFE buses 330 , 332 , 334
to couple various RF front - end devices 318 , 320 , 322 , 324 ,
326 328. In this example , a modem 304 includes an RFFE
interface 308 that couples the modem 304 to a first RFFE
bus 330. The modem 304 may communicate with a base
band processor 306 and a Radio - Frequency IC (RFIC 312)
through respective communication links 310 , 336 or , in
some implementations , through a common communication
link 310 or 336. The illustrated device 302 may be embodied
in one or more of a mobile communication device , a mobile
telephone , a mobile computing system , a mobile telephone ,
a notebook computer , a tablet computing device , a media
player , a gaming device , a wearable computing device , a
wearable communication device , an appliance , or the like .
[0045] In various examples , the device 302 may be imple
mented with one or more baseband processors 306 , modems
304 , RFICs 312 , multiple communication links 310 , 336 ,
multiple RFFE buses 330 , 332 , 334 and / or other types of
buses . The device 302 may include other processors , cir
cuits , modules and may be configured for various operations
and / or different functionalities . In the example illustrated in
FIG . 3 , the modem 304 is coupled to an RF tuner 318
through its RFFE interface 308 and the first RFFE bus 330 .
The RFIC 312 may include one or more RFFE interfaces
314 , 316 , controllers , state machines and / or processors that
configure and control certain aspects of the RF front - end . In
the illustrated example , the RFIC 312 communicates with a
PA 320 and a power tracking module 322 through a first of
its RFFE interfaces 314 and the second RFFE bus 332. In the
illustrated example , RFIC 312 communicates with a switch
324 and one or more LNAs 326 , 328 through a second of its
RFFE interfaces 316 and the third RFFE bus 334 .
[0046] The MIPI Alliance system power management
interface (SPMI) specifies a hardware interface that may be

US 2020/0004699 A1 Jan. 2 , 2020
5

implemented between baseband or application processors
and peripheral components to support a variety of data
communication functions including data communication
related to power management operations . FIG . 4 illustrates
an example of a system 400 which includes data commu
nication links 410 , 412 , where each of the data communi
cation links 410 , 412 is configured as a two - wire serial bus
operated in accordance with SPMI protocols . In one
example , a first data communication link 410 may be used
to connect an integrated power controller of an application
processor 402 with a voltage regulation system in a first
power management integrated circuit (PMIC 406) , and a
second data communication link 412 may be used to connect
an integrated power controller of modem 404 with a
voltage regulation system in a second PMIC 408. The data
communication links 410 , 412 can be used to accurately
monitor and control processor performance levels required
for a given workload or application and dynamically control
the various supply voltages in real time based on the
performance levels . The data communication links 410 , 412
can be used to carry other types of data between the
application processor 402 and the first PMIC 406 and / or
between the modem 404 , and the second PMIC 408. SPMI
protocols provide for multi - drop serial links that can connect
a variety of different devices and carry a variety of data
types , including data types used for power management .
Some SPMI data communication links may be optimized for
real - time power management functions . Some SPMI data
communication links may be used as a shared bus that
provides high - speed , low - latency connection for devices
where data transmissions may be managed , according to
priorities assigned to different traffic classes .
[0047] In the system 400 illustrated in FIG . 4 , the appli
cation processor 402 that may serve as a host device on
various data communication links 410 , 422 , 424 that couple
multiple peripherals 4042-404y to the application processor
402. The application processor 402 and the modem 4041
may be coupled to respective PMICs 406 , 408 through data
communication links 410 , 412 operated in accordance with
SPMI protocols and controlled by SPMI masters 414 , 418 .
The SPMI masters 414 , 418 communicate with correspond
ing SPMI slaves 416 , 420 provided in the PMICs 406 , 408 ,
and facilitate real - time management and control of the
PMICS 406 , 408. The application processor 402 may be
coupled to the peripherals 404 , -404 y using same or different
types of data communication links 422 , 424. In various
implementations , the data communication links 422 , 424 are
operated in accordance RFFE , SPMI , and / or 13C protocols .
[0048] Bus latency can affect the ability of a serial bus to
handle high - priority , real - time and / or other time - constrained
messages . Low - latency messages , or messages requiring
low bus latency , may relate to sensor status , device - gener
ated real - time events and virtualized general - purpose input /
output (GPIO) . In one example , bus latency can be measured
as the time elapsed between a message becoming available
for transmission and the delivery of the message . In another
example , bus latency can be measured as the time elapsed
between a message becoming available for transmission and
commencement of transmission of the message . Other mea
sures of bus latency may be employed . Bus latency typically
includes delays incurred while higher priority messages are
transmitted , interrupt processing , the time required to ter
minate a datagram in process on the serial bus , the time to
transmit commands causing bus turnaround between trans

mit mode and receive mode , bus arbitration and / or com
mand transmissions specified by protocol .
[0049] Bus latency may be reduced by decreasing the
overhead associated with transmitting data over a multi - drop
serial bus . The overhead may include control signaling such
as the start and stop transmissions in 13C protocols , the
sequence start condition (SSC) and bus park cycle (BPC) in
SPMI and / or RFFE protocols , slave address fields , com
mand codes , and register address fields . Overhead may also
be reduced by writing data in fewer datagrams .
[0050] FIG . 5 illustrates certain aspects of a generalized
datagram 500 that may be transmitted over a multi - drop
serial bus . Control transmissions specific to bus protocols
(not shown in the generalized datagram 500) also contribute
to bus latency . The generalized datagram 500 may be a slave
write datagram and includes a slave identifier field 502 used
to identify one or more slave devices to receive the payload
508. A command code field 504 can be included to specify
the type of datagram and / or operation to be performed , and
a register address field defines the address of the first register
to be written . The generalized datagram 500 is used to
communicate a payload 508 that may include data , virtual
ized GPIO , control information , coexistence messages and /
or other types of information . The illustrated payload 508
includes up to 16 bytes to be written to contiguous registers
within the address space of a slave device commencing at
the address provided in the register address field 506 .
[0051] The configuration and bit - size of the fields 502 ,
504 and 506 may vary based on the protocol used to control
bus operations in an implementation . In one example , the
command code field 504 may indicate the RFFE / SPMI
Extended Register Write Long command and the register
address field 506 may include a 16 - bit address field to enable
data to be written within a 64 kilobyte register space or
address space in a slave device . In another example , the
command code field 504 may indicate the RFFE / SPMI
Extended Register Write command and the register address
field 506 may include an 8 - bit address field to enable data to
be written within a 256 byte register space or address space
in a slave device .
[0052] Different protocols may define different bit - sizes
for the slave identifier field 502. The size and meaning of the
command code field 504 may be protocol - specific , although
certain protocols (e.g. SPMI and RFFE) may provide the
same or similar structures for datagrams and the same or
similar command codes in the command code field 504 .
[0053] According to conventional protocols , data in the
payload 508 is written to a block of contiguous registers 512 .
For example , a 16 - byte payload 508 may be written to a
block of contiguous registers 512 that include 16 registers
located at consecutive addresses . The address of the first
register 516 in the block of contiguous registers 512 is
defined in the register address field 506 and may be used to
initialize a write pointer . The first byte 514 in the payload
508 is written to the first register 516 and the write pointer
is incremented to point to the second register 520 in the
block of contiguous registers 512. The second byte 518 in
the payload 508 is written to the second register 520 and the
write pointer is incremented to point to the third register 522
in the block of contiguous registers 512. The remaining
bytes in the payload 508 are consecutively written to the
block of contiguous registers 512 until the last byte 526 in
the payload 508 is written to the sixteenth register 524 in the
block of contiguous registers 512 .

US 2020/0004699 A1 Jan. 2 , 2020
6

[0054] Conventional implementations of RFFE , SPMI ,
13C and other serial protocols specify a write operation that
is rigidly fixed and directed to contiguous locations com
mencing at an initial address specified by the register
address field 506. Applications such as 5G radios produce
greater volumes of data to be transferred between devices
and often result in the generation of data to be written to
non - contiguous registers in slave devices . The need to
perform multiple write transactions to handle non - contigu
ous writes can increase latency in applications where lower
latencies are required .
[0055] According to certain aspects of this disclosure , a
single datagram can be transmitted in a manner that enables
a slave device to write included data to indicated non
contiguous registers . In some aspects , a variable - stride write
(VSW) capability is provided that enables a write pointer in
the slave device to be adjusted in a non - incremental manner .
[0056] FIG . 6 illustrates an example of a VSW datagram
600 that enables data to be written to non - contiguous
registers in a block of contiguous registers 604. In this
example , up to eight data bytes can be transmitted in a
payload 602 , together with variable stride or address offset
information . In the illustrated example , a first data byte 608
is written to first register 614 (Register N) located at an
address specified by the register address field 606 provided
in the VSW datagram 600. In some examples , the register
address field 606 may be used to initialize a write address
pointer . The next byte 622 in the VSW datagram 600
provides a stride value (i) that is used to adjust the write
address pointer to point to the next register 616 (Register
N + i) . The stride value can be positive or negative . For
example , the third and fifth stride values carried by the sixth
byte 624 and the tenth byte 626 in the payload 602 ,
respectively , are negative numbers that cause the address
pointer to move backwards in the block of contiguous
registers 604. In one example , the third data byte 628 in the
payload 602 is written to a register 630 at an address that is
greater than the address of the register 620 to which the
fourth data byte 610 in the payload 602 is written . In one
example , the sixth data byte 612 in the payload 602 is
written to a register 618 at an address that is lower than the
address of the register to which the fifth data byte in the
payload 602 is written .
[0057] In the example illustrated in FIG . 6 , each of the
eight data bytes in the payload 602 is written to a register
that is non - contiguous with respect to the register receiving
the immediately preceding data byte . In a conventional
system , eight separate datagrams would be required to write
the eight data bytes , where each datagram carries an over
head calculated as the combined number of bits in the start
and stop signaling , the slave identifier , the command code
and the register address field . In the example illustrated in
FIG . 6 , the use of the VSW datagram 600 significantly
reduces bus latency by eliminating the protocol overhead for
7 datagrams .
[0058] According to certain aspects disclosed herein ,
VSW may be selectively enabled within a slave device . FIG .
7 illustrates one example of a selective VSW implementa
tion 700 , where write commands addressed to a starting
register within a portion of the address space in a slave
device may be treated as VSW write command . No changes
to bus protocols are necessary when VSW operation is
activated within a marked subset of the register address
space .

[0059] The subset of the register address space subject to
VSW writes (the active VSW region 708) may be marked
using address pointers 702 , 704. A slave device may be
equipped with a block of registers 706 that are addressable
by a master device over the serial bus . In the illustrated
example , the block of registers 706 may occupy an address
space sufficient to support 64 kilobytes of data . The slave
device may maintain a 16 - bit VSW start address pointer 702
and a 16 - bit VSW end address pointer 704 that define the
active VSW region 708 in the address space . A write
command addressed to a first register that lies within the
active VSW region 708 in the address space is treated as a
VSW write command . A write command addressed to a first
register that lies outside the active VSW region 708 in the
address space is treated as a conventional register write
command .
[0060] In one example , the 16 - bit VSW start address
pointer 702 and the 16 - bit VSW end address pointer 704
may be stored in pairs of registers in the block of registers
706. In other examples , the 16 - bit VSW start address pointer
702 and the 16 - bit VSW end address pointer 704 may be
maintained in local registers of a finite state machine or
another processor that manages communication over the
serial bus .
[0061] FIG . 8 illustrates certain additional aspects of a
VSW datagram 800 , which may correspond to the VSW
datagram 600 illustrated in FIG . 6. The VSW datagram 800
includes a register address field 804 indicating the register
address to which the first data byte 806 of the payload 802
is to be written . The first data byte 806 may include eight
data bits 816 and a parity bit 818. The second byte 808 of the
payload 802 may include a stride value 812 , a direction bit
810 and a parity bit 814. The stride value 812 indicates an
offset from the current write address to the next write
address . The direction bit 810 indicates whether the stride
value 812 should be added to the current write address or
subtracted from the current write address .
[0062] In some implementations , VSW write may involve
single direction variable strides . In these implementations , a
datagram may be configured to carry more data bytes than
the VSW implementation illustrated in FIGS . 6 and 8. For
example , FIG . 9 illustrates a VSW datagram 800 that
allocates bytes to carry stride values only when the next byte
is to be written to a non - contiguous register . In this example ,
the parity bit of each data byte is repurposed to indicate
whether the data byte includes a register value or a stride
value . The parity bit is typically repurposed only in the
active VSW region or when the slave device receives a write
command that explicitly indicates that the write command is
a VSW write command .
[0063] The VSW datagram 900 includes a register address
field 904 indicating the register address to which the first
data byte 906 of the payload 902 is to be written . When the
register address field 904 indicates an address within the
active VSW region or the write command is an explicit VSW
command , the slave device may discontinue parity process
ing for the VSW datagram 900 and treat the parity bit 912
as a stride indicator . For example , the content 910 of the
second data byte 908 in the payload 902 may include a
register value or a stride value . When set to zero , the stride
indicator (repurposed parity bit 912) may indicate that the
data byte 908 contains a register value . When set to one , the
stride indicator (repurposed parity bit 912) may indicate that
the data byte 908 is a stride value used to offset the current

US 2020/0004699 A1 Jan. 2 , 2020
7

write address . When the data byte 908 contains a register
value , the current write address is incremented after the data
byte is written
[0064] FIG . 10 illustrates a VSW datagram 1000 that
includes an explicit VSW command code 1004. The VSW
datagram 1000 includes a slave identifier 1002 followed by
the VSW command code 1004 and mode information 1006 .
The mode information 1006 may define the type of VSW
operation to be performed and other information . One bit
1012 of the mode information 1006 may select between the
forward / backward skip mode illustrated in FIGS . 6 and 8 ,
and the limited , forward skip mode illustrated in FIG.9 that
uses a repurposed parity bit 912. The mode information
1006 may also include a field 1014 that identifies the number
of data bytes to be transmitted in the payload 1010. A
register address field 1008 provided in the VSW datagram
1000 identifies the address of the first register to be written .
The register address field 1008 may be used to initialize a
write address pointer .
[0065) FIG . 11 illustrates a circuit 1100 that may be
included in a serial interface to implement VSW . The circuit
1100 may include a finite state machine 1102 that includes
or implements a command decoder 1104 configured for a
protocol that manages communication over the serial bus .
The command decoder 1104 may be adapted to handle
explicit VSW command codes . The finite state machine
1102 may be configured through configuration registers
1108. The configuration registers 1108 may include one or
more registers 1114 that maintain general VSW configura
tion , including whether VSW is enabled , size of address
space , size of data payloads and so on . The configuration
registers 1108 may include one or more region registers 1116
that identify the VSW active region of the register address
space . In one example , the region registers 1116 correspond
to , or include the VSW start address pointer 702 and the
16 - bit VSW end address pointer 704 illustrated in FIG . 7 .
The configuration registers 1108 may include one or more
function registers 1118 that identify the function of the parity
bits in payload data . For example , the one or more function
registers 1118 may indicate when the parity bit is repur
posed , including in the VSW active region of the register

functions disclosed herein . In accordance with various
aspects of the disclosure , an element , or any portion of an
element , or any combination of elements as disclosed herein
may be implemented using a processing circuit 1202. The
processing circuit 1202 may include one or more processors
1204 that are controlled by some combination of hardware
and software modules . Examples of processors 1204 include
microprocessors , microcontrollers , digital signal processors
(DSPs) , SoCs , ASICs , field programmable gate arrays (FP
GAs) , programmable logic devices (PLDs) , state machines ,
sequencers , gated logic , discrete hardware circuits , and other
suitable hardware configured to perform the various func
tionality described throughout this disclosure . The one or
more processors 1204 may include specialized processors
that perform specific functions , and that may be configured ,
augmented or controlled by one of the software modules
1216. The one or more processors 1204 may be configured
through a combination of software modules 1216 loaded
during initialization , and further configured by loading or
unloading one or more software modules 1216 during opera
tion .
[0068] In the illustrated example , the processing circuit
1202 may be implemented with a bus architecture , repre
sented generally by the bus 1210. The bus 1210 may include
any number of interconnecting buses and bridges depending
on the specific application of the processing circuit 1202 and
the overall design constraints . The bus 1210 links together
various circuits including the one or more processors 1204 ,
and storage 1206. Storage 1206 may include memory
devices and mass storage devices , and may be referred to
herein as computer - readable media and / or processor - read
able media . The bus 1210 may also link various other
circuits such as timing sources , timers , peripherals , voltage
regulators , and power management circuits . A bus interface
1208 may provide an interface between the bus 1210 and
one or more transceivers 1212a , 1212b . A transceiver
1212a , 1212b may be provided for each networking tech
nology supported by the processing circuit . In some
instances , multiple networking technologies may share some
or all of the circuitry or processing modules found in a
transceiver 1212a , 1212b . Each transceiver 1212a , 1212b
provides a means for communicating with various other
apparatus over a transmission medium . In one example , a
transceiver 1212a may be used to couple the apparatus 1200
to a multi - wire bus . In another example , a transceiver 1212b
may be used to connect the apparatus 1200 to a radio access
network . Depending upon the nature of the apparatus 1200 ,
a user interface 1218 (e.g. , keypad , display , speaker , micro
phone , joystick) may also be provided , and may be com
municatively coupled to the bus 1210 directly or through the
bus interface 1208 .
[0069] A processor 1204 may be responsible for managing
the bus 1210 and for general processing that may include the
execution of software stored in a computer - readable medium
that may include the storage 1206. In this respect , the
processing circuit 1202 , including the processor 1204 , may
be used to implement any of the methods , functions and
techniques disclosed herein . The storage 1206 may be used
for storing data that is manipulated by the processor 1204
when executing software , and the software may be config
ured to implement any one of the methods disclosed herein .
[0070] One or more processors 1204 in the processing
circuit 1202 may execute software . Software shall be con
strued broadly to mean instructions , instruction sets , code ,

address space .
[0066] The finite state machine 1102 may be configured to
control access to a block of registers 1106 during VSW
operations . The finite state machine 1102 may operate or
control an address pointer 1110 that can be implemented as
a programmable counter , for example . In conventional
modes of operation , the finite state machine 1102 may cause
the address pointer to be incremented after a register is
written . In VSW modes of operation , the finite state machine
1102 may cause the address pointer to be modified by a
stride value received in a datagram . In one example , the
finite state machine 1102 may cause an adder / subtractor
1112 to add the stride value to the address pointer when
forward strides are indicated by the payload data . In another
example , the finite state machine 1102 may cause the
adder / subtractor 1112 to subtract the stride value from the
address pointer when backward strides are indicated by the
payload data .

Examples of Processing Circuits and Methods
[0067] FIG . 12 is a diagram illustrating an example of a
hardware implementation for an apparatus 1200. In some
examples , the apparatus 1200 may perform one or more

US 2020/0004699 A1 Jan. 2 , 2020
8

code segments , program code , programs , subprograms , soft
ware modules , applications , software applications , software
packages , routines , subroutines , objects , executables ,
threads of execution , procedures , functions , algorithms , etc. ,
whether referred to as software , firmware , middleware ,
microcode , hardware description language , or otherwise .
The software may reside in computer - readable form in the
storage 1206 or in an external computer - readable medium .
The external computer - readable medium and / or storage
1206 may include a non - transitory computer - readable
medium . A non - transitory computer - readable medium
includes , by way of example , a magnetic storage device
(e.g. , hard disk , floppy disk , magnetic strip) , an optical disk
(e.g. , a compact disc (CD) or a digital versatile disc (DVD)) ,
a smart card , a flash memory device (e.g. , a “ flash drive , ” a
card , a stick , or a key drive) , RAM , ROM , a programmable
read - only memory (PROM) , an erasable PROM (EPROM)
including EEPROM , a register , a removable disk , and any
other suitable medium for storing software and / or instruc
tions that may be accessed and read by a computer . The
computer - readable medium and / or storage 1206 may also
include , by way of example , a carrier wave , a transmission
line , and any other suitable medium for transmitting soft
ware and / or instructions that may be accessed and read by a
computer . Computer - readable medium and / or the storage
1206 may reside in the processing circuit 1202 , in the
processor 1204 , external to the processing circuit 1202 , or be
distributed across multiple entities including the processing
circuit 1202. The computer - readable medium and / or storage
1206 may be embodied in a computer program product . By
way of example , a computer program product may include
a computer - readable medium in packaging materials . Those
skilled in the art will recognize how best to implement the
described functionality presented throughout this disclosure
depending on the particular application and the overall
design constraints imposed on the overall system .
[0071] The storage 1206 may maintain software main
tained and / or organized in loadable code segments , modules ,
applications , programs , etc. , which may be referred to herein
as software modules 1216. Each of the software modules
1216 may include instructions and data that , when installed
or loaded on the processing circuit 1202 and executed by the
one or more processors 1204 , contribute to a run - time image
1214 that controls the operation of the one or more proces
sors 1204. When executed , certain instructions may cause
the processing circuit 1202 to perform functions in accor
dance with certain methods , algorithms and processes
described herein .

[0072] Some of the software modules 1216 may be loaded
during initialization of the processing circuit 1202 , and these
software modules 1216 may configure the processing circuit
1202 to enable performance of the various functions dis
closed herein . For example , some software modules 1216
may configure internal devices and / or logic circuits 1222 of
the processor 1204 , and may manage access to external
devices such as a transceiver 1212a , 1212b , the bus interface
1208 , the user interface 1218 , timers , mathematical copro
cessors , and so on . The software modules 1216 may include
a control program and / or an operating system that interacts
with interrupt handlers and device drivers , and that controls
access to various resources provided by the processing
circuit 1202. The resources may include memory , processing
time , access to a transceiver 1212a , 1212b , the user interface
1218 , and so on .

[0073] One or more processors 1204 of the processing
circuit 1202 may be multifunctional , whereby some of the
software modules 1216 are loaded and configured to per
form different functions or different instances of the same
function . The one or more processors 1204 may additionally
be adapted to manage background tasks initiated in response
to inputs from the user interface 1218 , the transceiver 1212a ,
1212b , and device drivers , for example . To support the
performance of multiple functions , the one or more proces
sors 1204 may be configured to provide a multitasking
environment , whereby each of a plurality of functions is
implemented as a set of tasks serviced by the one or more
processors 1204 as needed or desired . In one example , the
multitasking environment may be implemented using a
timesharing program 1220 that passes control of a processor
1204 between different tasks , whereby each task returns
control of the one or more processors 1204 to the timeshar
ing program 1220 upon completion of any outstanding
operations and / or in response to an input such as an inter
rupt . When a task has control of the one or more processors
1204 , the processing circuit is effectively specialized for the
purposes addressed by the function associated with the
controlling task . The timesharing program 1220 may include
an operating system , a main loop that transfers control on a
round - robin basis , a function that allocates control of the one
or more processors 1204 in accordance with a prioritization
of the functions , and / or an interrupt driven main loop that
responds to external events by providing control of the one
or more processors 1204 to a handling function .
[0074] Methods for optimizing virtual GPIO latency may
include an act of parsing various input sources including
sources of GPIO signal state , parameters and / or messages to
be transmitted . The input sources may include hardware
events , configuration data , mask parameters , and register
addresses . Packet - specific latency estimators may be
employed to estimate the latency for corresponding packet
types based upon the parsed parameters . A packet type to be
used for transmission may be selected based on the mini
mum latency calculated or determined for available packet
types . The selected packet type may be identified using a
command code , which may be provided to a packetizer with
a payload to be transmitted . The command code may also
reflect a protocol to be used to transmit the payload . In some
implementations , the physical link used to transmit the
payload may be operated according to different protocols or
different variants of one or more protocols . The protocol to
be used for transmitting the payload may be selected based
on latencies associated with the various available protocols
or variants of protocols .
[0075] FIG . 13 is a flowchart 1300 of a method that may
be performed by a slave device coupled to a serial bus . The
serial bus may be operated in accordance with an 13C ,
RFFE , SPMI protocol or another protocol .
[0076] At block 1302 , the slave device may write a first
data byte received in a first field of a datagram from a serial
bus to a first register in the slave device . The first register
may be located at an address indicated by an address pointer .
At block 1304 , the slave device may modify the address
pointer by adding or subtracting a stride value provided in a
second field of the datagram to obtain a modified address
pointer . At block 1306 , the slave device may write a second
data byte received in a third field of the datagram to a second
register in the slave device . The second register may be
located at an address indicated by the modified address

US 2020/0004699 A1 Jan. 2 , 2020
9

pointer . The first register and the second register may be
located at non - contiguous addresses . The second field may
include a bit indicating whether the stride value is to be
added to the address pointer or subtracted from the address
pointer . The
[0077] In certain implementations , the datagram includes
a stride value that is interleaved between fields carrying a
pair of data bytes to be written to non - contiguous registers
in the slave device . The datagram may include a register
address that serves as an initial address pointer . One or more
stride values may be provided in the datagram when the
initial address pointer indicates an address within an active
variable - stride write region . The active variable - stride write
region may be defined by a start address pointer and an end
address pointer stored in the slave device .
[0078] In some examples , a parity bit of the first field is set
to a first value indicating that the first data byte is to be
written to the first register . A parity bit of the second field
may be set to a second value indicating that the second field
carries the stride value . The address pointer may be modified
by adding the stride value to the address pointer . The
datagram may include a register address that serves as an
initial address pointer . Parity bits in the datagram may be
repurposed to distinguish between register write data and
stride values when the initial address pointer indicates an
address within an active variable - stride write region . The
active variable - stride write region may be defined by regis
ters in the slave device that are configured with a start
address pointer and an end address pointer .
[0079] In certain implementations , the slave device
receives a command code in the datagram , and may enable
a variable - stride write mode in response to the command
code . The variable - stride write mode may be indicated in
mode information received in the datagram . In one example ,
the mode information defines whether parity bits in the
datagram distinguish between register write data and stride
values . In another example , the mode information defines
whether the address pointer is to be modified by subtracting
the stride value .
[0080] FIG . 14 is a diagram illustrating a simplified
example of a hardware implementation for an apparatus
1400 employing a processing circuit 1402. The processing
circuit typically has a controller or processor 1416 that may
include one or more microprocessors , microcontrollers ,
digital signal processors , sequencers and / or state machines .
The processing circuit 1402 may be implemented with a bus
architecture , represented generally by the bus 1420. The bus
1420 may include any number of interconnecting buses and
bridges depending on the specific application of the pro
cessing circuit 1402 and the overall design constraints . The
bus 1420 links together various circuits including one or
more processors and / or hardware modules , represented by
the controller or processor 1416 , the modules or circuits
1404 , 1406 and 1408 and the processor - readable storage
medium 1418. One or more physical layer circuits and / or
modules 1414 may be provided to support communication
over a communication link implemented using a multi - wire
bus 1412 , through an antenna 1422 (to a radio access
network for example) , and so on . The bus 1420 may also
link various other circuits such as timing sources , peripher
als , voltage regulators , and power management circuits ,
which are well known in the art , and therefore , will not be
described any further .

[0081] The processor 1416 is responsible for general pro
cessing , including the execution of software , code and / or
instructions stored on the processor - readable storage
medium 1418. The processor - readable storage medium may
include a non - transitory storage medium . The software ,
when executed by the processor 1416 , causes the processing
circuit 1402 to perform the various functions described
supra for any particular apparatus . The processor - readable
storage medium 1418 may be used for storing data that is
manipulated by the processor 1416 when executing soft
ware . The processing circuit 1402 further includes at least
one of the modules 1404 , 1406 and 1408. The modules 1404 ,
1406 and 1408 may be software modules running in the
processor 1416 , resident / stored in the processor - readable
storage medium 1418 , one or more hardware modules
coupled to the processor 1416 , or some combination thereof .
The modules 1404 , 1406 and 1408 may include microcon
troller instructions , state machine configuration parameters ,
or some combination thereof .
[0082] In one configuration , the apparatus 1400 includes
modules and / or circuits 1408 adapted to configure the appa
ratus 1400 for one or more VSW modes . The apparatus 1400
may include modules and / or circuits 1406 adapted to man
age an address pointer when the apparatus is operated in a
VSW mode , where the modules and / or circuits 1406 are
operable to cause the address pointer to increase or decrease
by variable offsets defined in a VSW datagram . The appa
ratus 1400 may include modules and / or circuits 1404
adapted to write registers at addresses defined by an address
pointer operated in a VSW mode .
[0083] In one example , the apparatus 1400 includes or
operates as a slave device that has various addressable
registers . The physical layer circuits and / or modules 1414 of
the apparatus 1400 may implement an interface circuit
adapted to couple the apparatus 1400 to the multi - wire bus
1412. The apparatus 1400 may have a finite state machine or
other processor 1416 that is configured to cause a first data
byte received in a first field of a datagram received from the
multi - wire bus 1412 to be written to a first register , cause the
address pointer to be modified by addition or subtraction of
a stride value provided in a second field of the datagram to
obtain a modified address pointer , and cause a second data
byte received in a third field of the datagram to be written to
a second register in the apparatus . The first register may be
located at an address indicated by an address pointer . The
second register may be located at an address indicated by the
modified address pointer . The first register and the second
register may be located at non - contiguous addresses . The
second field may include a bit indicating whether the stride
value is to be added to the address pointer or subtracted from
the address pointer .
[0084] In certain implementations , the datagram includes
a stride value that is interleaved between fields carrying a
pair of data bytes to be written to non - contiguous registers
in the slave device . The datagram may include a register
address that serves as an initial address pointer . One or more
stride values may be provided in the datagram when the
initial address pointer indicates an address within an active
variable - stride write region . The active variable - stride write
region may be defined by a start address pointer and an end
address pointer stored in two or more of the plurality of
registers .
[0085] In some examples , a parity bit of the first field is set
to a first value indicating that the first data byte is to be

US 2020/0004699 A1 Jan. 2 , 2020
10

written to the first register , and a parity bit of the second field
is set to a second value indicating that the second field
carries the stride value . The address pointer may be modified
by adding the stride value to the address pointer . The
datagram may include a register address that serves as an
initial address pointer . Parity bits in the datagram may be
configured to distinguish between register write data and
stride values when the initial address pointer indicates an
address within an active variable - stride write region . The
active variable - stride write region is defined by a start
address pointer and an end address pointer stored in two or
more of the plurality of registers .
[0086] In some implementations , the processor 1416 is
further configured to receive a command code from the
datagram , and enable a variable - stride write mode in
response to the command code . The variable - stride write
mode may be indicated in mode information provided in the
datagram . The mode information may define whether parity
bits in the datagram distinguish between register write data
and stride values . The mode information may define whether
the address pointer can be modified by subtracting the stride
value .
[0087] In another example , the processor - readable storage
medium 1418 stores or maintains one or more instructions
which , when executed by the state machine or a processor
1416 of the processing circuit 1402 , cause the processing
circuit 1402 to write a first data byte received in a first field
of a datagram from a serial bus to a first register in the slave
device , modify the address pointer by adding or subtracting
a stride value provided in a second field of the datagram to
obtain a modified address pointer , and write a second data
byte received in a third field of the datagram to a second
register in the slave device . The first register may be located
at an address indicated by an address pointer and the second
register may be located at an address indicated by the
modified address pointer . The first register and the second
register may be located at non - contiguous addresses . The
second field may include a bit indicating whether the stride
value is to be added to the address pointer or subtracted from
the address pointer .
[0088] In one example , the datagram includes a stride
value that is interleaved between fields carrying a pair of
data bytes to be written to non - contiguous registers in the
slave device . The datagram may include or carry a register
address that serves as an initial address pointer . One or more
stride values may be provided in the datagram when the
initial address pointer indicates an address within an active
variable - stride write region . The active variable - stride write
region may be defined by a start address pointer and an end
address pointer stored in the slave device .
[0089] In certain examples , a parity bit of the first field is
set to a first value indicating that the first data byte is to be
written to the first register , and a parity bit of the second field
is set to a second value indicating that the second field
carries the stride value . The address pointer may be modified
by adding the stride value to the address pointer . The
datagram may include a register address that serves as an
initial address pointer . Parity bits in the datagram may be
configured to distinguish between register write data and
stride values when the initial address pointer indicates an
address within an active variable - stride write region . The
active variable - stride write region may be defined by regis
ters configured with a start address pointer and an end
address pointer stored in the slave device .

[0090] In some examples , the processor - readable storage
medium 1418 stores or maintains one or more instructions
that cause the processing circuit 1002 to receive a command
code in the datagram , and enable a variable - stride write
mode in response to the command code . The variable - stride
write mode may be indicated in mode information received
in the datagram . The mode information may define whether
parity bits in the datagram distinguish between register write
data and stride values . The mode information may define
whether the address pointer is to be modified by subtracting
the stride value .
[0091] It is understood that the specific order or hierarchy
of steps in the processes disclosed is an illustration of
exemplary approaches . Based upon design preferences , it is
understood that the specific order or hierarchy of steps in the
processes may be rearranged . Further , some steps may be
combined or omitted . The accompanying method claims
present elements of the various steps in a sample order , and
are not meant to be limited to the specific order or hierarchy
presented .
[0092] The previous description is provided to enable any
person skilled in the art to practice the various aspects
described herein . Various modifications to these aspects will
be readily apparent to those skilled in the art , and the generic
principles defined herein may be applied to other aspects .
Thus , the claims are not intended to be limited to the aspects
shown herein , but is to be accorded the full scope consistent
with the language claims , wherein reference to an element in
the singular is not intended to mean “ one and only one ”
unless specifically so stated , but rather “ one or more . ”
Unless specifically stated otherwise , the term " some ” refers
to one or more . All structural and functional equivalents to
the elements of the various aspects described throughout this
disclosure that are known or later come to be known to those
of ordinary skill in the art are expressly incorporated herein
by reference and are intended to be encompassed by the
claims . Moreover , nothing disclosed herein is intended to be
dedicated to the public regardless of whether such disclosure
is explicitly recited in the claims . No claim element is to be
construed as a means plus function unless the element is
expressly recited using the phrase " means for . ”

1. A method of data communication at a slave device ,
comprising :

writing a first data byte received in a first field of a
datagram from a serial bus to a first register in the slave
device , wherein the first register is located at an address
indicated by an address pointer ;

modifying the address pointer by adding or subtracting a
stride value provided in a second field of the datagram
to obtain a modified address pointer ; and

writing a second data byte received in a third field of the
datagram to a second register in the slave device ,
wherein the second register is located at an address
indicated by the modified address pointer , and wherein
the first register and the second register are located at
non - contiguous addresses .

2. The method of claim 1 , wherein the second field
includes a bit indicating whether the stride value is to be
added to the address pointer or subtracted from the address
pointer .

3. The method of claim 1 , wherein the datagram com
prises a stride value that is interleaved between fields
carrying a pair of data bytes to be written to non - contiguous
registers in the slave device .

US 2020/0004699 A1 Jan. 2 , 2020
11

4. The method of claim 3 , wherein the datagram includes
a register address that serves as an initial address pointer ,
and wherein one or more stride values are provided in the
datagram when the initial address pointer indicates an
address within an active variable - stride write region .

5. The method of claim 4 , wherein the active variable
stride write region is defined by a start address pointer and
an end address pointer stored in the slave device .

6. The method of claim 1 , wherein a parity bit of the first
field is set to a first value indicating that the first data byte
is to be written to the first register , and a parity bit of the
second field is set to a second value indicating that the
second field carries the stride value .

7. The method of claim 6 , wherein the address pointer is
modified by adding the stride value to the address pointer .

8. The method of claim 6 , wherein the datagram includes
a register address that serves as an initial address pointer ,
and wherein parity bits in the datagram are configured to
distinguish between register write data and stride values
when the initial address pointer indicates an address within
an active variable - stride write region .

9. The method of claim 8 , wherein the active variable
stride write region is defined by registers in the slave device
that are configured with a start address pointer and an end
address pointer .

10. The method of claim 1 , further comprising :
receiving a command code in the datagram ; and
enabling a variable - stride write mode in response to the
command code .

11. The method of claim 10 , wherein the variable - stride
write mode is indicated in mode information received in the
datagram .

12. The method of claim 11 , wherein the mode informa
tion defines whether parity bits in the datagram distinguish
between register write data and stride values .

13. The method of claim 11 , wherein the mode informa
tion defines whether the address pointer is to be modified by
subtracting the stride value .

14. An apparatus for data communication comprising :
a plurality of registers ;
an interface circuit adapted to couple the apparatus to a

serial bus ; and
a processor configured to :

cause a first data byte received in a first field of a
datagram received from the serial bus to be written
to a first register , wherein the first register is located
at an address indicated by an address pointer ;

cause the address pointer to be modified by addition or
subtraction of a stride value provided in a second
field of the datagram to obtain a modified address
pointer ; and

cause a second data byte received in a third field of the
datagram to be written to a second register in the
apparatus , wherein the second register is located at
an address indicated by the modified address pointer ,
and wherein the first register and the second register
are located at non - contiguous addresses .

15. The apparatus of claim 14 , wherein the second field
includes a bit indicating whether the stride value is to be
added to the address pointer or subtracted from the address
pointer .

16. The apparatus of claim 14 , wherein the datagram
comprises a stride value that is interleaved between fields

carrying a pair of data bytes to be written to non - contiguous
registers in the plurality of registers .

17. The apparatus of claim 16 , wherein the datagram
includes a register address that serves as an initial address
pointer , and wherein one or more stride values are provided
in the datagram when the initial address pointer indicates an
address within an active variable - stride write region .

18. The apparatus of claim 17 , wherein the active vari
able - stride write region is defined by a start address pointer
and an end address pointer stored in two or more of the
plurality of registers .

19. The apparatus of claim 14 , wherein a parity bit of the
first field is set to a first value indicating that the first data
byte is to be written to the first register , and a parity bit of
the second field is set to a second value indicating that the
second field carries the stride value .

20. The apparatus of claim 19 , wherein the address pointer
is modified by adding the stride value to the address pointer .
21. The apparatus of claim 19 , wherein the datagram

includes a register address that serves as an initial address
pointer , and wherein parity bits in the datagram are config
ured to distinguish between register write data and stride
values when the initial address pointer indicates an address
within an active variable - stride write region .

22. The apparatus of claim 21 , wherein the active vari
able - stride write region is defined by a start address pointer
and an end address pointer stored in two or more of the
plurality of registers .

23. The apparatus of claim 14 , wherein the processor is
further configured to :

receive a command code from the datagram ; and
enable a variable - stride write mode in response to the
command code .

24. The apparatus of claim 23 , wherein the variable - stride
write mode is indicated in mode information provided in the
datagram .

25. The apparatus of claim 24 , wherein the mode infor
mation defines whether parity bits in the datagram distin
guish between register write data and stride values .

26. The apparatus of claim 24 , wherein the mode infor
mation defines whether the address pointer can be modified
by subtracting the stride value .

27. The apparatus of claim 14 , wherein the processor
comprises a finite state machine .

28. A processor - readable storage medium comprising
code for :

writing a first data byte received in a first field of a
datagram from a serial bus to a first register in a slave
device , wherein the first register is located at an address
indicated by an address pointer ;

modifying the address pointer by adding or subtracting a
stride value provided in a second field of the datagram
to obtain a modified address pointer ; and

writing a second data byte received in a third field of the
datagram to a second register in the slave device ,
wherein the second register is located at an address
indicated by the modified address pointer , and wherein
the first register and the second register are located at
non - contiguous addresses .

29. The storage medium of claim 28 , wherein the data
gram comprises a stride value that is interleaved between
fields carrying a pair of data bytes to be written to non
contiguous registers in the slave device .

US 2020/0004699 A1 Jan. 2 , 2020
12

30. The storage medium of claim 28 , wherein a parity bit
of the first field is set to a first value indicating that the first
data byte is to be written to the first register , and a parity bit
of the second field is set to a second value indicating that the
second field carries the stride value .

