(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 109917652 A (43)申请公布日 2019.06.21

- (21)申请号 201910191634.2
- (22)申请日 2019.03.14
- (66)本国优先权数据 201810212243.X 2018.03.15 CN
- (71)申请人 浙江工业大学地址 310014 浙江省杭州市下城区朝晖六区潮王路18号
- (72)发明人 陈强 胡忠君 陈凯杰 胡轶 吴春
- (74)专利代理机构 杭州斯可睿专利事务所有限 公司 33241

代理人 王利强

(51)Int.Cl. *G05B 13/04*(2006.01)

(54)发明名称

一种飞行器对数正切全状态受限控制方法 (57)摘要

一种飞行器对数正切全状态受限控制方法, 针对四旋翼飞行器的动力学系统,选择一种非对称时不变对数正切复合型约束李雅普诺夫函数, 设计一种基于非对称时不变对数正切复合型约 束李雅普诺夫函数的四旋翼飞行器全状态受限 控制方法。非对称时不变对数正切复合型约束李 雅普诺夫函数的设计是为了保证系统的状态和 输出能够限制在一定的范围内,避免过大的超 调,同时还能减少到达时间。从而改善四旋翼飞 行器系统的动态响应性能。本发明提供一种飞行 器对数正切全状态受限控制方法,使系统具有较 好的动态响应过程。 权利要求书7页 说明书14页 附图4页

CN 109917652 A

1.一种飞行器对数正切全状态受限控制方法,其特征在于,包括以下步骤:

步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间以及控制参数,过程如下:

1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的转移矩阵T:

	Γ cosθcosψ	$sin\phi sin heta cos\psi - cos\phi sin\psi$	$cos\phi sin\theta cos\psi + sin\phi sin\psi$	
T =	cosθsinψ	$sin\phi sin\theta sin\psi + cos\phi cos\psi$	$cos\phi sin\theta sin\psi - sin\phi cos\psi$	(1)
	L −sinθ	sinφcosθ	cosφcosθ	

1.2四旋翼飞行器平动过程中的动态模型如下:

$$\begin{bmatrix} 0\\0\\-mg \end{bmatrix} + T \begin{bmatrix} 0\\0\\U_f \end{bmatrix} = m \begin{bmatrix} \ddot{x}\\ \ddot{y}\\ \ddot{z} \end{bmatrix}$$
(2)

其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,U_f表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度;

将式(1)代入式(2)得:

$$\begin{cases} \ddot{x} = \frac{U_f}{m} (\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi) \\ \ddot{y} = \frac{U_f}{m} (\cos\phi \sin\theta \sin\psi - \sin\phi \cos\psi) \\ \ddot{z} = \frac{U_f}{m} \cos\phi \cos\theta - g \end{cases}$$
(3)

1.3四旋翼飞行器转动过程中的动态模型为:

$$\begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{\omega}_p \\ \dot{\omega}_q \\ \dot{\omega}_r \end{bmatrix} + \begin{bmatrix} \omega_p \\ \omega_q \\ \omega_r \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \omega_p \\ \omega_q \\ \omega_r \end{bmatrix}$$
(4)

其中, τ_x , τ_y , τ_z 分别代表机体坐标系上各个轴的力矩分量, I_{xx} , I_{yy} , I_{zz} 分别表示机体坐标系下的各个轴的转动惯量的分量,×表示叉乘, ω_p 表示翻滚角速度, ω_q 表示俯仰角速度, ω_r 表示偏航角速度, $\dot{\omega}_p$ 表示翻滚角加速度, $\dot{\omega}_q$ 表示俯仰角加速度, $\dot{\omega}_r$ 表示偏航角加速度;

考虑到飞行器处于低速飞行或者悬停状态,认为 $\dot{\phi} \approx \omega_p$, $\dot{\theta} \approx \omega_q$, $\dot{\psi} \approx \omega_r$, $\ddot{\phi} \approx \dot{\omega}_p$, $\ddot{\theta} \approx \dot{\omega}_q$, $\ddot{\psi} \approx \dot{\omega}_r$;因此式(4)改写为:

$$\begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \ddot{\phi} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} + \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(5)

联立式(3)和式(5),得到四旋翼飞行器的动力学模型为:

$$\begin{cases} \ddot{z} = \frac{U_f}{m} \cos\phi \cos\theta - g \\ \ddot{x} = \frac{U_f}{m} u_x \\ \ddot{y} = \frac{U_f}{m} u_y \\ \ddot{\phi} = a_1 \dot{\theta} \dot{\psi} + b_1 \tau_x \\ \ddot{\theta} = a_2 \dot{\phi} \dot{\psi} + b_2 \tau_y \\ \ddot{\psi} = a_3 \dot{\phi} \dot{\theta} + b_3 \tau_z \end{cases}$$
(6)

 $\ddagger \psi, u_x = \cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi, u_y = \cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi; a_1 = \frac{l_{yy} - l_{zz}}{l_{xx}}, a_2 = \frac{l_{zz} - l_{xx}}{l_{yy}}, a_3 = \frac{l_{xx} - l_{yy}}{l_{zz}}; b_1 = \frac{1}{l_{xx}}, b_2 = \frac{1}{l_{yy}}, b_3 = \frac{1}{l_{zz}};$

1.4根据式(6),定义 (), 0的期望值分别为:

$$\begin{cases} \phi_d = \arcsin[u_x \cdot \sin\psi - u_y \cdot \cos\psi] \\ \theta_d = \arcsin\left[\frac{u_x}{\cos\phi \cdot \cos\psi} - \frac{\sin\phi \cdot \sin\psi}{\cos\phi \cdot \cos\psi}\right] \end{cases}$$
(7)

其中, ϕ_d 为 ϕ 的期望信号值, θ_d 为 θ 期望信号值, arcsin 为反正弦函数;

步骤2,在每一个采样时刻,计算位置跟踪误差及其一阶导数;计算姿态角跟踪误差及 其一阶导数;设计位置和姿态角控制器,过程如下:

2.1定义z跟踪误差及其一阶导数:

$$e_1 = z - z_d, \dot{e}_1 = \dot{z} - \dot{z}_d$$
 (8)
其中, z_d 表示z的期望信号;
2.2定义q₁₁:

$$q_{11} = \begin{cases} 1, e_1 > 0\\ 0, e_1 \le 0 \end{cases} \tag{9}$$

2.3设计约束李雅普诺夫函数V11:

$$\begin{split} V_{11} &= q_{11} \frac{\kappa_{b1}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_1^2}{2\kappa_{b1}^2} \right) \right] + (1 - q_{11}) \frac{\kappa_{a1}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_1^2}{2\kappa_{a1}^2} \right) \right] (10) \\ & \text{I}, \text{then}, \text{K}_{b1}, \text{b}, \text{b}, \text{thereform} \\ & \left\{ \begin{matrix} K_{b1} > |e_1|_{max}, e_1 > 0 \\ K_{a1} > |e_1|_{max}, e_1 \le 0 \end{matrix} \right. (11) \\ & \text{I}, \text{then}, |e_1|_{max}, \theta_1 \le 0 \\ & \text{I}, \text{then}, |e_1|_{max}, \theta_1 = 0 \\ & \text{I}, \text{then}, |e_1|_{max}, \theta_1 \le 0 \\ & \text{I}, \text{then}, |e_1|_{max}, \theta_1 = 0 \\ & \text{I}, |e_1|_{max}, \theta_1 = 0 \\ & \text{I}, |e_1|_{max}, |e_1|_{max}, \theta_1 = 0 \\ & \text{I}, |e_1|_{max}, |e_1|_$$

 $\alpha_1 = \dot{z}_d - k_{11} e_1 \tag{13}$

其中,k11为正常数: 将式(13)代入式(12),得: $\dot{V}_{11} = -k_{11}m_1e_1 + m_1s_1$ (14)2.5定义q12: $q_{12} = \begin{cases} 1, s_1 > 0\\ 0, s_1 < 0 \end{cases}$ (15)2.6设计约束李雅普诺夫函数V12: $V_{12} = V_{11} + q_{12} \frac{\kappa_{d1}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_1^2}{2\kappa_{d1}^2} \right) \right] + (1 - q_{12}) \frac{\kappa_{c1}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_1^2}{2\kappa_{c1}^2} \right) \right]$ (16)其中,Kd1,Kc1为正常数: $\begin{cases} K_{d1} > |s_1|_{max}, s_1 > 0 \\ K_{c1} > |s_1|_{max}, s_1 \le 0 \end{cases}$ (17)其中, $|e_1|_{max}$ 为 $|e_1|$ 的最大值; 求解式(16)一阶导数,得: $\dot{V}_{12} = -k_{11}m_1e_1 + s_1(m_1 + n_1\dot{s}_1)$ (18)其中, $n_1 = q_{12} \frac{\sec^2\left(\frac{\pi s_1^2}{2\kappa_{d_1}^2}\right)}{1+\tan\left(\frac{\pi s_1^2}{2\kappa_{d_1}^2}\right)} + (1-q_{12}) \frac{\sec^2\left(\frac{\pi s_1^2}{2\kappa_{c_1}^2}\right)}{1+\tan\left(\frac{\pi s_1^2}{2\kappa_{d_1}^2}\right)}, \dot{s}_1$ 表达式为 $\dot{s}_1 = \ddot{z} - \dot{\alpha}_1$ (19)将式(19)和式(6)代入式(18),得: $\dot{V}_{12} = -k_{11}m_1e_1 + s_1[m_1 + n_1 \cdot (\frac{u_f}{m}cos\phi cos\theta - g - \dot{\alpha}_1)]$ (20)2.7设计Uf: $U_f = \frac{m}{\cos\phi\cos\theta} \left[g + \dot{\alpha}_1 - k_{12}s_1 - \frac{m_1}{n_1} \right]$ (21)其中,k12为正常数; 2.8定义x,y跟踪误差分别为e2,e3,则有: $e_2 = x - x_d$, $\dot{e}_2 = \dot{x} - \dot{x}_d$; $e_3 = y - y_d$, $\dot{e}_3 = \dot{y} - \dot{y}_d$ (22)其中,xd,yd分别表示x,y的期望信号; 2.9定义q₂₁,q₃₁: $q_{21} = \begin{cases} 1, e_2 > 0\\ 0, e_2 < 0 \end{cases}$ (23) $q_{31} = \begin{cases} 1, e_3 > 0\\ 0, e_2 \le 0 \end{cases}$ (24)

2.10设计约束李雅普诺夫函数V21,V31:

$$\begin{cases} V_{22} = V_{21} + q_{22} \frac{K_{d2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_2^2}{2K_{d2}^2} \right) \right] + (1 - q_{22}) \frac{K_{c2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_2^2}{2K_{c2}^2} \right) \right] \\ V_{32} = V_{31} + q_{32} \frac{K_{d3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_3^2}{2K_{d3}^2} \right) \right] + (1 - q_{32}) \frac{K_{c3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_3^2}{2K_{c3}^2} \right) \right] \end{cases}$$
(32)

其中,Kc2,Kd2,Kc3,Kd3为正常数:

_

$$\begin{cases} k_{a2} > |s_2|_{\max}, s_2 > 0 \\ K_{c2} > |s_2|_{\max}, s_2 \ge 0 \\ K_{d3} > |s_3|_{\max}, s_3 \ge 0 \\ K_{c3} > |s_2|_{\max}, s_3 \ge 0 \\ K_{c3} > |s_2|_{\max}, s_3 \ge 0 \\ K_{c3} > |s_2|_{\max}, s_3|_{\max}, s_$$

$$q_{j1} = \begin{cases} 1, e_j > 0\\ 0, e_j \le 0 \end{cases}$$
(39)

2.17设计约束李雅普诺夫函数V_{j1}:

$$V_{j1} = q_{j1} \frac{\kappa_{bj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_j^2}{2\kappa_{bj}^2} \right) \right] + (1 - q_{j1}) \frac{\kappa_{aj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_j^2}{2\kappa_{aj}^2} \right) \right]$$
(40)
其中,K_{aj},K_{bj}为正常数:

$$\begin{cases} K_{bj} > [e_j]_{max}, e_j > 0 \\ (K_{aj} > [e_j]_{max}, e_j > 0 \\ (K_{aj} > [e_j]_{max}, b_j = 0] \text{ folder the set of the set o$$

2.21通过式(49)设计T_x,T_y,T_z:

$\begin{cases} \tau_x = \frac{1}{b_1} \left(-a_1 \dot{\theta} \dot{\psi} + \dot{\alpha}_4 - k_{42} s_4 - \frac{m_4}{n_4} \right) \\ \tau_y = \frac{1}{b_2} \left(-a_2 \dot{\phi} \dot{\psi} + \dot{\alpha}_5 - k_{52} s_5 - \frac{m_5}{n_5} \right) \\ \tau_z = \frac{1}{b_3} \left(-a_3 \dot{\phi} \dot{\theta} + \dot{\alpha}_6 - k_{62} s_6 - \frac{m_6}{n_6} \right) \end{cases}$	(50)
其中,k42,k52,k62为正常数;	
步骤3,验证四旋翼飞行器系统的稳定性,过程如下	`:
3.1将式(21)代入式(20),得:	
$\dot{V}_{12} = -k_{11}m_1e_1 - k_{12}n_1s_1^2 \le 0$	(51)
3.2将式(37)代入式(36),得:	
$\begin{cases} \dot{V}_{22} = -k_{21}m_2e_2 - k_{22}n_2s_2^2 \le 0\\ \dot{V}_{32} = -k_{31}m_3e_3 - k_{32}n_3s_3^2 \le 0 \end{cases}$	(52)
3.3将式 (50) 代入式 (49),得	
$\begin{cases} \dot{V}_{42} = -k_{41}m_4e_4 - k_{42}n_4s_4^2 \leq 0\\ \dot{V}_{52} = -k_{51}m_5e_5 - k_{52}n_5s_5^2 \leq 0\\ \dot{V}_{62} = -k_{61}m_6e_6 - k_{62}n_6s_6^2 \leq 0 \end{cases}$	(53)

3.4通过(51),(52),(53)知四旋翼飞行器系统是稳定的。

一种飞行器对数正切全状态受限控制方法

技术领域

[0001] 本发明涉及一种飞行器对数正切全状态受限控制方法,使四旋翼飞行器系统有较好的动态响应过程。

背景技术

[0002] 四旋翼飞行器作为旋翼式飞行器的一种,以其体积小、机动性能好、设计简单、制造成本低廉等优点,吸引了国内外大学、研究机构、公司的广泛关注。然而,由于四旋翼飞行器体积小且重量轻,飞行中易受到外部干扰,如何实现对四旋翼飞行器的高性能运动控制已经成为一个热点问题。针对四旋翼飞行器的控制问题,存在很多控制方法,例如PID控制、自抗扰控制、滑模控制、反步控制等。

[0003] 其中反步控制已经广泛应用于非线性系统,其优点包括响应速度快、实施方便、对 系统不确定和外部干扰的鲁棒性等。传统的反步控制,只是考虑了四旋翼飞行器的稳态性 能,并没有过多地关注其瞬态响应性能。因此,传统的反步控制方法使得四旋翼飞行器系统 在实际情况中的应用有很大阻碍。为解决这一问题,基于约束李雅普诺夫函数的反步控制 方法被提出,这种方法在实际情况中能够有效地改善四旋翼飞行器系统的瞬态性能。

发明内容

[0004] 为了克服现有四旋翼飞行器系统的瞬态性能较差的不足,本发明提供了一种飞行器对数正切全状态受限控制方法,减少了超调量和超调时间,使四旋翼飞行器系统具有一个良好的动态响应性能。

[0005] 为了解决上述技术问题提出的技术方案如下:

[0006] 一种飞行器对数正切全状态受限控制方法,包括以下步骤:

[0007] 步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间以及控制参数,过程如下:

[0008] 1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的转移矩阵T:

 $\begin{bmatrix} \cos\theta\cos\psi & \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi\\ \cos\theta\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi\\ -\sin\theta & \sin\phi\cos\theta & \cos\phi\sin\theta\end{bmatrix}$ (1)

[0010] 其中, φ, θ, ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角, 表示飞行器依次绕 惯性坐标系的各坐标轴旋转的角度;

[0011] 1.2四旋翼飞行器平动过程中的动态模型如下:

$$\begin{bmatrix} 0012 \end{bmatrix} \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + T \begin{bmatrix} 0\\0\\U_f \end{bmatrix} = m \begin{bmatrix} \ddot{x}\\\ddot{y}\\\ddot{z} \end{bmatrix}$$
(2)

[0013] 其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,U_f表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度;

[0014] 将式(1)代入式(2)得:

$$\begin{bmatrix} 0015 \end{bmatrix} \begin{cases} \ddot{x} = \frac{U_f}{m} (\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi) \\ \ddot{y} = \frac{U_f}{m} (\cos\phi \sin\theta \sin\psi - \sin\phi \cos\psi) \\ \ddot{z} = \frac{U_f}{m} \cos\phi \cos\theta - g \end{cases}$$
(3)

$$\begin{bmatrix} 0017 \end{bmatrix} \begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{\omega}_p \\ \dot{\omega}_q \\ \dot{\omega}_r \end{bmatrix} + \begin{bmatrix} \omega_p \\ \omega_q \\ \omega_r \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \omega_p \\ \omega_q \\ \omega_r \end{bmatrix}$$
(4)

[0018] 其中,τ_x,τ_y,τ_z分别代表机体坐标系上各个轴的力矩分量,I_{xx},I_{yy},I_{zz}分别表示机 体坐标系下的各个轴的转动惯量的分量,×表示叉乘,ω_p表示翻滚角速度,ω_q表示俯仰角 速度,ω_r表示偏航角速度, **ώ**_p表示翻滚角加速度, **ώ**_q表示俯仰角加速度, **ώ**_r表示偏航角加 速度;

[0019] 考虑到飞行器处于低速飞行或者悬停状态,认为 $\dot{\phi} \approx \omega_p$, $\dot{\theta} \approx \omega_q$, $\dot{\psi} \approx \omega_r$, $\ddot{\phi} \approx \dot{\omega}_p$, $\ddot{\theta} \approx \dot{\omega}_q$, $\ddot{\psi} \approx \dot{\omega}_r$;因此式(4)改写为:

$$\begin{bmatrix} 0020 \end{bmatrix} \begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \ddot{\phi} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} + \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(5)

[0021] 联立式 (3) 和式 (5),得到四旋翼飞行器的动力学模型为:

$$\begin{bmatrix} 0022 \end{bmatrix} \begin{cases} \ddot{z} = \frac{\partial f}{m} \cos\phi \cos\theta - g \\ \ddot{x} = \frac{\partial f}{m} u_x \\ \ddot{y} = \frac{\partial f}{m} u_y \\ \ddot{y} = \frac{\partial f}{m} u_y \\ \ddot{\phi} = a_1 \dot{\theta} \dot{\psi} + b_1 \tau_x \\ \ddot{\theta} = a_2 \dot{\phi} \dot{\psi} + b_2 \tau_y \\ \ddot{\psi} = a_3 \dot{\phi} \dot{\theta} + b_3 \tau_z \end{cases}$$
(6)

[0023] 其中, $u_x = \cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi$, $u_y = \cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi$; $a_1 = \frac{l_{yy} - l_{zz}}{l_{xx}}$, $a_2 = \frac{l_{zz} - l_{xx}}{l_{yy}}$, $a_3 = \frac{l_{xx} - l_{yy}}{l_{zz}}$; $b_1 = \frac{1}{l_{xx}}$, $b_2 = \frac{1}{l_{yy}}$, $b_3 = \frac{1}{l_{zz}}$; [0024] 1.4根据式(6),定义 ϕ , θ 的期望值分别为: [0025] $\begin{cases} \phi_d = \arcsin[u_x \cdot \sin\psi - u_y \cdot \cos\psi] \\ \theta_d = \arcsin[\frac{u_x}{\cos\phi \cdot \cos\psi} - \frac{\sin\phi \cdot \sin\psi}{\cos\phi \cdot \cos\psi}] \end{cases}$ (7) [0026] 其中, ϕ_d 为 ϕ 的期望信号值, θ_d 为 θ 期望信号值, $\arccos \phi$, $\tan \phi$, $\tan \phi$, $\sin \phi$, \sin

[0028] 2.1定义z跟踪误差及其一阶导数:

[0077]	将式(28)代入式(27),得:	
[0078]	$\begin{cases} \dot{V}_{21} = -k_{21}m_2e_2 + m_2s_2\\ \dot{V}_{31} = -k_{31}m_3e_3 + m_3s_3 \end{cases}$	(29)
[0079]	2.12定义q ₂₂ ,q ₃₂ :	
[0080]	$q_{22} = \begin{cases} 1, s_2 > 0 \\ 0, s_2 \le 0 \end{cases}$	(30)
[0081]	$q_{32} = \begin{cases} 1, s_3 > 0 \\ 0, s_3 \le 0 \end{cases}$	(31)
[0082]	2.13设计李雅普诺夫函数V22,V32:	
[0083]	$\begin{cases} V_{22} = V_{21} + q_{22} \frac{\kappa_{d2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_2^2}{2\kappa_{d2}^2} \right) \right] + \\ V_{32} = V_{31} + q_{32} \frac{\kappa_{d3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_3^2}{2\kappa_{d3}^2} \right) \right] + \end{cases}$	$(1 - q_{22}) \frac{K_{c2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_2^2}{2K_{c2}^2} \right) \right] $ (1 - q_{32}) $\frac{K_{c3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_3^2}{2K_{c3}^2} \right) \right]$ (32)
[0084]	其中,Kc2,Kd2,Kc3,Kd3为正常数:	
[0085]	$\begin{cases} K_{d2} > s_2 _{max}, s_2 > 0 \\ K_{c2} > s_2 _{max}, s_2 \le 0 \\ K_{d3} > s_3 _{max}, s_3 > 0 \\ K_{c3} > s_3 _{max}, s_3 \le 0 \end{cases}$	(33)
[0086]	其中, s ₂ max为 s ₂ 的最大值, s ₃ max为 s ₃	的最大值;
[0087]	求解式(32)一阶导数,得:	
[0088]	$\begin{cases} \dot{V}_{22} = -k_{21}m_2e_2 + s_2(m_2 + n_2\dot{s}_2) \\ \dot{V}_{32} = -k_{31}m_3e_3 + s_3(m_3 + n_3\dot{s}_3) \end{cases}$	(34)
[0089]	其中, $n_2 = q_{22} \frac{\sec^2\left(\frac{\pi s_2^2}{2K_{d2}^2}\right)}{1 + \tan\left(\frac{\pi s_2^2}{2K_{d2}^2}\right)} + (1 - q_{22})$	$)\frac{\sec^{2}\left(\frac{\pi s_{2}^{2}}{2\kappa_{c2}^{2}}\right)}{1+\tan\left(\frac{\pi s_{2}^{2}}{2\kappa_{c2}^{2}}\right)}, n_{3} = q_{32}\frac{\sec^{2}\left(\frac{\pi s_{3}^{2}}{2\kappa_{d3}^{2}}\right)}{1+\tan\left(\frac{\pi s_{3}^{2}}{2\kappa_{d3}^{2}}\right)} + (1 - \frac{\pi s_{3}^{2}}{2\kappa_{d3}^{2}})$
$q_{32})\frac{sec^2}{1+ta}$	$\frac{n\left(\frac{\pi s_3^2}{2\kappa_{c3}^2}\right)}{n\left(\frac{\pi s_3^2}{2\kappa_{c3}^2}\right)}; \dot{s}_2, \dot{s}_3$ 表达式如下	
[0090]	$\begin{cases} \dot{s}_2 = \ddot{x} - \dot{\alpha}_2 \\ \dot{s}_3 = \ddot{y} - \dot{\alpha}_3 \end{cases} $	(35)
[0091]	将式 (35) 和式 (6) 代入式 (34),得:	
[0092]	$\begin{cases} \dot{V}_{22} = -k_{21}m_2e_2 + s_2[m_2 + n_2 \cdot \left(\frac{U_f}{m}u_x - \frac{U_f}{m}u_y - \frac$	$ \begin{array}{c} -\dot{\alpha}_2 \end{array} \right] \\ -\dot{\alpha}_3 \end{array} \right] \tag{36}$
[0093]	2.14设计ux,uy:	
[0094]	$\begin{cases} u_x = \frac{m}{U_f} \left(\dot{\alpha}_2 - k_{22} s_2 - \frac{m_2}{n_2} \right) \\ u_y = \frac{m}{U_f} \left(\dot{\alpha}_3 - k_{32} s_3 - \frac{m_3}{n_3} \right) \end{cases}$	(37)

[0095] 其中,k22,k32为正常数: [0096] 2.15定义姿态角跟踪误差及其一阶导数: $e_i = x_i - x_{id}$, $\dot{e}_i = \dot{x}_i - \dot{x}_{id}$ (38)[0097] 其中, $i=4,5,6,x_4=\phi,x_5=\theta,x_6=\psi,x_{4d}$ 表示 ϕ 的期望值, x_{5d} 表示 θ 的期望值, x_{6d} [0098] 表示 ψ 的期望值, e_4 表示 ϕ 的跟踪误差, e_5 表示 θ 的跟踪误差, e_6 表示 ψ 的跟踪误差; [0099] 2.16定义qil: $q_{j1} = \begin{cases} 1, e_j > 0\\ 0, e_i \le 0 \end{cases}$ [0100] (39)2.17设计约束李雅普诺夫函数Vil: [0101] $V_{j1} = q_{j1} \frac{\kappa_{bj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_j^2}{2\kappa_{bj}^2} \right) \right] + (1 - q_{j1}) \frac{\kappa_{aj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_j^2}{2\kappa_{aj}^2} \right) \right]$ (40) [0102] [0103] 其中,Kai,Kbi为正常数: $\begin{cases} K_{bj} > |e_j|_{max}, e_j > 0\\ K_{aj} > |e_j|_{max}, e_j \le 0 \end{cases}$ [0104] (41)其中, |e_i|_{max}为|e_i|的最大值; [0105] 2.18求解式(40)一阶导数,得: [0106] $\dot{V}_{i1} = m_i (s_i + \alpha_i - \dot{x}_{id})$ (42)[0107] 其中, $m_j = q_{j1} \frac{\sec^2\left(\frac{\pi e_j^2}{2K_{bj}^2}\right)}{1+\tan\left(\frac{\pi e_j^2}{2K_{c}^2}\right)} e_j + (1-q_{j1}) \frac{\sec^2\left(\frac{\pi e_j^2}{2K_{aj}^2}\right)}{1+\tan\left(\frac{\pi e_j^2}{2K_{c}^2}\right)} e_j, s_j = \dot{x}_j - \alpha_j, \alpha_j$ 为虚拟控制 [0108] 量,其表达式为: $[0109] \quad \alpha_i = \dot{x}_{id} - k_{i1}e_i$ (43)其中,kii为正常数: [0110] [0111] 将式(43)代入式(42),得: $\dot{V}_{i1} = -k_{i1}m_ie_i + m_is_i$ (44)[0112] [0113] 2.19定义qi2: $q_{j2} = \begin{cases} 1, s_j > 0\\ 0, s_i \le 0 \end{cases}$ [0114] (45)2.20设计李雅普诺夫函数V,j2: [0115] $V_{j2} = V_{j1} + q_{j2} \frac{\kappa_{dj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_j^2}{2\kappa_{dj}^2} \right) \right] + (1 - q_{j2}) \frac{\kappa_{cj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_j^2}{2\kappa_{cj}^2} \right) \right]$ (46)[0116] 其中,Kdi,Kcj为正常数,满足Kdj<sj<-Kcj; [0117] [0118] 求解式(46)一阶导数,得: $\dot{V}_{i2} = -k_{i1}m_ie_i + s_i(m_i + n_i\dot{s}_i)$ (47)[0119]

$$\begin{bmatrix} 0120 \end{bmatrix} \quad \begin{tabular}{l} & \mbox{\downarrow} \mathbf{p}_{i} = q_{j2} \frac{\sec^{2}\left(\frac{\pi s_{j}^{2}}{2\kappa_{dj}^{2}}\right)}{\mathbf{1} + tan\left(\frac{\pi s_{j}^{2}}{2\kappa_{dj}^{2}}\right)} + (1 - q_{j2}) \frac{\sec^{2}\left(\frac{\pi s_{j}^{2}}{2\kappa_{dj}^{2}}\right)}{\mathbf{1} + tan\left(\frac{\pi s_{j}^{2}}{2\kappa_{dj}^{2}}\right)}, \begin{tabular}{l} & \begin{tabular}{l} & \mbox{\downarrow} = \ddot{x}_{j} - \dot{\alpha}_{j} & (48) \end{tabular} \\ \end{tabular} \begin{bmatrix} 0121 & \mbox{$\dot{s}_{j} = \ddot{x}_{j} - \dot{\alpha}_{j}} & (48) \end{tabular} \\ \hline & \mbox{[0122]} & \mbox{\Re} \pi (48) \end{tabular} \pi (6) \end{tabular} \pi (47), \end{tabular} ; \end{tabular} \\ \end{tabular} \begin{bmatrix} 0122 & \mbox{\Re} \pi (48) \end{tabular} \pi (6) \end{tabular} \pi (47), \end{tabular} ; \end{tabular} \\ \hline & \mbox{[0122]} & \mbox{\Re} \pi (48) \end{tabular} \pi (6) \end{tabular} \pi (47), \end{tabular} ; \end{tabular} \\ \end{tabular} \begin{bmatrix} 0123 & \end{tabular} \frac{\dot{V}_{42}}{\mathbf{x}_{4} = -k_{41}m_{4}e_{4} + s_{4}[m_{4}+n_{4} \cdot (a_{1}\dot{\theta}\dot{\psi} + b_{1}\tau_{x} - \dot{\alpha}_{4})] \\ \end{tabular} \\ \end{tabular} \begin{bmatrix} 0123 & \end{tabular} \frac{\dot{V}_{42}}{\mathbf{x}_{5} = -k_{51}m_{5}e_{5} + s_{5}[m_{5}+n_{5} \cdot (a_{2}\dot{\phi}\dot{\psi} + b_{2}\tau_{y} - \dot{\alpha}_{5})] \\ \end{tabular} \\ \hline & \begin{tabular} \\ \end{tabular} \begin{bmatrix} v_{42} & = -k_{61}m_{6}e_{6} + s_{6}[m_{6}+n_{6} \cdot (a_{3}\dot{\phi}\dot{\theta} + b_{3}\tau_{z} - \dot{\alpha}_{6})] \\ \end{tabular} \\ \end{tabua$$

$$\begin{bmatrix} 0133 \end{bmatrix} \begin{cases} v_{42} = -k_{41}m_4e_4 - k_{42}n_4s_4 \le 0 \\ \dot{V}_{52} = -k_{51}m_5e_5 - k_{52}n_5s_5^2 \le 0 \\ \dot{V}_{62} = -k_{61}m_6e_6 - k_{62}n_6s_6^2 \le 0 \end{cases}$$
(53)

[0134] 3.4通过(51),(52),(53)知四旋翼飞行器系统是稳定的。

[0135] 本发明提供一种飞行器对数正切全状态受限控制方法,改善了系统的瞬态性能,减少了超调量和到达时间。

[0136] 本发明的技术构思为:针对四旋翼飞行器的动力学系统,设计一种飞行器对数正 切全状态受限控制方法。非对称时不变对数正切复合型约束李雅普诺夫函数的设计是为了 保证系统的状态和输出能够限制在一定的范围内,避免过大的超调,同时还能减少到达时 间。从而改善四旋翼飞行器系统的动态响应性能。

[0137] 本发明的有益效果为:全状态受限,降低超调量,减少到达时间,改善瞬态性能。

附图说明

[0138] 图1为本发明的位置跟踪效果示意图。

[0139] 图2为本发明的姿态角跟踪效果示意图。

[0140] 图3为本发明的位置速度跟踪效果示意图。

[0141] 图4为本发明的姿态角速度跟踪效果示意图。

[0142] 图5为本发明的位置控制器输入示意图。

[0143] 图6为本发明的姿态角控制器输入示意图。

[0144] 图7为本发明的控制流程示意图。

具体实施方式

[0145] 下面结合附图对本发明做进一步说明。

[0146] 参照图1-图7,一种飞行器对数正切全状态受限控制方法,包括以下步骤:

[0147] 步骤1,建立四旋翼飞行器系统的动态模型,设定系统的初始值、采样时间以及控制参数,过程如下:

[0148] 1.1确定从基于四旋翼飞行器系统的机体坐标系到基于地球的惯性坐标的转移矩阵T:

 $\begin{bmatrix} 0149 \end{bmatrix} \quad T = \begin{bmatrix} \cos\theta\cos\psi & \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi \\ \cos\theta\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi \\ -\sin\theta & \sin\phi\cos\theta & \cos\phi\sin\theta \end{bmatrix}$ (1)

[0150] 其中, φ, θ, ψ分别是四旋翼飞行器的翻滚角、俯仰角、偏航角, 表示飞行器依次绕 惯性坐标系的各坐标轴旋转的角度;

[0151] 1.2四旋翼飞行器平动过程中的动态模型如下:

$$\begin{bmatrix} 0 \\ 0 \\ -mg \end{bmatrix} + T \begin{bmatrix} 0 \\ 0 \\ U_f \end{bmatrix} = m \begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix}$$
(2)

[0153] 其中,x,y,z分别表示四旋翼飞行器在惯性坐标系下的三个位置,U_f表示四旋翼飞行器的输入力矩,m为四旋翼飞行器的质量,g表示重力加速度;

[0154] 将式(1)代入式(2)得:

$$\begin{bmatrix} 0155 \end{bmatrix} \begin{cases} \ddot{x} = \frac{\partial f}{m} (\cos\phi \sin\theta \cos\psi + \sin\phi \sin\psi) \\ \ddot{y} = \frac{U_f}{m} (\cos\phi \sin\theta \sin\psi - \sin\phi \cos\psi) \\ \ddot{z} = \frac{U_f}{m} \cos\phi \cos\theta - g \end{cases}$$
(3)

[0156] 1.3四旋翼飞行器转动过程中的动态模型为:

$$\begin{bmatrix} 0157 \end{bmatrix} \begin{bmatrix} \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \dot{\omega}_p \\ \dot{\omega}_q \\ \dot{\omega}_r \end{bmatrix} + \begin{bmatrix} \omega_p \\ \omega_q \\ \omega_r \end{bmatrix} \times \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix} \cdot \begin{bmatrix} \omega_p \\ \omega_q \\ \omega_r \end{bmatrix}$$
(4)

[0158] 其中, \u03cm, \u

[0159] 考虑到飞行器处于低速飞行或者悬停状态,姿态角变化较小,认为

$$\begin{split} \dot{\boldsymbol{\phi}} &\approx \omega_{p}, \ \dot{\boldsymbol{\theta}} \approx \omega_{q}, \ \dot{\boldsymbol{\psi}} \approx \omega_{r}, \ \ddot{\boldsymbol{\theta}} \approx \dot{\omega}_{q}, \ \ddot{\boldsymbol{\theta}} \approx \dot{\omega}_{r}, \ \boldsymbol{b} \approx \dot{\omega}_{r}, \ \boldsymbol{\omega}_{r}, \ \boldsymbol{b} \approx \dot{$$

[0206]	$q_{31} = \begin{cases} 1, e_3 > 0\\ 0, e_3 \le 0 \end{cases}$	(24)
[0207]	2.10设计约束李雅普诺夫函数V21,V31:	
[0208]	$\begin{cases} V_{21} = q_{21} \frac{\kappa_{b2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_2^2}{2\kappa_{b2}^2} \right) \right] + (1 - e_2) \\ V_{31} = q_{31} \frac{\kappa_{b3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_3^2}{2\kappa_{b3}^2} \right) \right] + (1 - e_2) \end{cases}$	$\begin{aligned} q_{21} \frac{\kappa_{a2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_2^2}{2\kappa_{a2}^2} \right) \right] \\ q_{31} \frac{\kappa_{a3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi e_3^2}{2\kappa_{a3}^2} \right) \right] \end{aligned} (25)$
[0209]	其中,Ka2,Kb2,Ka3,Kb3为正常数:	
[0210]	$\begin{cases} K_{b2} > e_2 _{max}, e_2 > 0 \\ K_{a2} > e_2 _{max}, e_2 \le 0 \\ K_{b3} > e_3 _{max}, e_3 > 0 \\ K_{a3} > e_3 _{max}, e_3 \le 0 \end{cases}$	(26)
[0211]	其中, e ₂ _{max} 为 e ₂ 的最大值, e ₃ _{max} 为 e ₃	的最大值;
[0212]	2.11求解式(25)一阶导数,得:	
[0213]	$\begin{cases} \dot{V}_{21} = m_2(s_2 + \alpha_2 - \dot{x}_d) \\ \dot{V}_{31} = m_3(s_3 + \alpha_3 - \dot{y}_d) \end{cases}$	(27)
[0214]	其中, $m_2 = q_{21} \frac{\sec^2\left(\frac{\pi e_2^2}{2\kappa_{b2}^2}\right)}{1+\tan\left(\frac{\pi e_2^2}{2\kappa_{b2}^2}\right)} e_2 + (1-q_{21})$	$\frac{\sec^2\left(\frac{\pi e_2^2}{2K_{a2}^2}\right)}{1+\tan\left(\frac{\pi e_2^2}{2K_{a2}^2}\right)}e_2, m_3 = q_{31}\frac{\sec^2\left(\frac{\pi e_3^2}{2K_{b3}^2}\right)}{1+\tan\left(\frac{\pi e_3^2}{2K_{b3}^2}\right)}e_3 + $
$(1-q_{31})$	$\frac{\sec^{2}\left(\frac{\pi e_{3}^{2}}{2\kappa_{a3}^{2}}\right)}{1+\tan\left(\frac{\pi e_{3}^{2}}{2\kappa_{a3}^{2}}\right)}e_{3};s_{2}=\dot{x}-\alpha_{2},s_{3}=\dot{y}-\alpha_{3},\alpha_{2}$,α3为虚拟控制量,其表达式为:
[0215]	$\begin{cases} \alpha_2 = \dot{x}_d - k_{21}e_2 \\ \alpha_3 = \dot{y}_d - k_{31}e_3 \end{cases}$	(28)
[0216]	其中,k21,k31为正常数;	
[0217]	将式 (28) 代入式 (27),得:	
[0218]	$\begin{cases} \dot{V}_{21} = -k_{21}m_2e_2 + m_2s_2 \\ \dot{V}_{31} = -k_{31}m_3e_3 + m_3s_3 \end{cases}$	(29)
[0219]	2.12定义q22,q32:	
[0220]	$q_{22} = \begin{cases} 1, s_2 > 0\\ 0, s_2 \le 0 \end{cases}$	(30)
[0221]	$q_{32} = \begin{cases} 1, s_3 > 0\\ 0, s_3 \le 0 \end{cases}$	(31)
[0222]	2.13设计李雅普诺夫函数V22,V32:	
[0223]	$\begin{cases} V_{22} = V_{21} + q_{22} \frac{\kappa_{d2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_2^2}{2\kappa_{d2}^2} \right) \right] + \\ V_{32} = V_{31} + q_{32} \frac{\kappa_{d3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_3^2}{2\kappa_{d3}^2} \right) \right] + \end{cases}$	$(1 - q_{22}) \frac{\kappa_{c2}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_2^2}{2\kappa_{c2}^2} \right) \right] (1 - q_{32}) \frac{\kappa_{c3}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_3^2}{2\kappa_{c3}^2} \right) \right] $ (32)

[0224] 其中,K_{c2},K_{d2},K_{c3},K_{d3}为正常数:

$$\begin{bmatrix} K_{d2} > |s_2|_{max}, s_2 > 0 \\ K_{d2} > |s_2|_{max}, s_2 \le 0 \\ K_{d3} > |s_3|_{max}, s_3 \le 0 \end{bmatrix}$$
(33)
$$\begin{bmatrix} K_{d3} > |s_3|_{max}, s_3 \le 0 \\ K_{d3} > |s_3|_{max}, s_3 \le 0 \end{bmatrix}$$
(34)
$$\begin{bmatrix} 102261 & \pm n \cdot |s_2|_{max}/h|_{s_2} |\ln \oplus_{\mathbb{Z}} + n_2 s_2 \\ V_{32} = -k_{31}m_3e_3 + s_2(m_2 + n_2 s_2) \\ V_{32} = -k_{31}m_3e_3 + s_3(m_3 + n_3 s_3) \end{bmatrix}$$
(34)
$$\begin{bmatrix} 102291 & \pm u \\ v_3 = -k_{31}m_3e_3 + s_3(m_3 + n_3 s_3) \\ 1 + tan \left(\frac{m_3^2}{2k_{d2}^2}\right) + \left(1 - q_{22}\right) \frac{see^2\left(\frac{m_3^2}{2k_{d2}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d2}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)}, n_3 = q_{32} \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(1 - \frac{q_{22}}{2k_{d3}^2}\right) \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_{d3}^2}\right)} + \left(\frac{m_3^2}{2k_{d3}^2}\right) \frac{see^2\left(\frac{m_3^2}{2k_{d3}^2}\right)}{1 + tan\left(\frac{m_3^2}{2k_$$

[0244]	$\begin{cases} K_{bj} > e_j _{max}, e_j > 0 \\ K_{aj} > e_j _{max}, e_j \le 0 \end{cases}$	(41)
[0245] [0246]	其中, e _j _{max} 为 e _j 的最大值; 2.18求解式(40)一阶导数,得:	
[0247]	$\dot{V}_{j1} = m_j \big(\mathbf{s}_j + \alpha_j - \dot{\mathbf{x}}_{jd} \big)$	(42)
[0248]	其中, $m_j = q_{j1} \frac{\sec^2\left(\frac{\pi e_j^2}{2\kappa_{bj}^2}\right)}{1+\tan\left(\frac{\pi e_j^2}{2\kappa_{bj}^2}\right)} e_j + (1-q_{j1}) \frac{\sec^2\left(1-\frac{\pi e_j^2}{2\kappa_{bj}^2}\right)}{1+t}$	$\frac{c^{2}\left(\frac{\pi e_{j}^{2}}{2K_{aj}^{2}}\right)}{can\left(\frac{\pi e_{j}^{2}}{2K_{aj}^{2}}\right)}e_{j}, s_{j} = \dot{x}_{j} - \alpha_{j}, \alpha_{j}$ 为虚拟控制
量,其表	达式为:	
[0249]	$\alpha_j = \dot{x}_{jd} - k_{j1} e_j \tag{4}$	43)
[0250] [0251]	其中,k _{j1} 为正常数; 将式(43)代入式(42),得:	
[0252]	$\dot{V}_{j1} = -k_{j1}m_je_j + m_js_j$	(44)
[0253]	2.19定义qj2:	
[0254]	$q_{j2} = \begin{cases} 1, s_j > 0\\ 0, s_j \le 0 \end{cases} $	45)
[0255]	2.20设计李雅普诺夫函数V _{j2} :	
[0256]	$V_{j2} = V_{j1} + q_{j2} \frac{\kappa_{dj}^2}{\pi} ln \left[1 + tan \left(\frac{\pi s_j^2}{2\kappa_{dj}^2} \right) \right] + (1 - 1) r^{1/2} r^{1/$	$-q_{j2})\frac{\kappa_{cj}^2}{\pi}ln\left[1+tan\left(\frac{\pi s_j^2}{2\kappa_{cj}^2}\right)\right] (46)$
[0257]	其中,Kdj,Kcj为正常数,满足Kdj <sj<-kcj;< td=""><td></td></sj<-kcj;<>	
[0258]	求解式(46)一阶导数,得:	
[0259]	$\dot{V}_{j2} = -k_{j1}m_je_j + s_j(m_j + n_j\dot{s}_j)$	(47)
[0260]	其中, $n_j = q_{j2} \frac{\sec^2\left(\frac{\pi s_j^2}{2\kappa_{dj}^2}\right)}{1 + \tan\left(\frac{\pi s_j^2}{2\kappa_{dj}^2}\right)} + (1 - q_{j2}) \frac{\sec^2\left(\frac{\pi s_j^2}{2\kappa_{dj}^2}\right)}{1 + \tan\left(\frac{\pi s_j^2}{2\kappa_{dj}^2}\right)}$	$\frac{\frac{\pi s_j^2}{\kappa_{cj}^2}}{\frac{\pi s_j^2}{2\kappa_{cj}^2}}, \dot{s}_j$ 表达式为
[0261]	$\dot{s}_j = \ddot{x}_j - \dot{\alpha}_j \tag{48}$	()
[0262]	将式(48)和式(6)代入式(47),得:	
[0263]	$\begin{cases} \dot{V}_{42} = -k_{41}m_4e_4 + s_4[m_4 + n_4 \cdot (a_1\dot{\theta}\dot{\psi} + b_1]\\ \dot{V}_{52} = -k_{51}m_5e_5 + s_5[m_5 + n_5 \cdot (a_2\dot{\phi}\dot{\psi} + b_2]\\ \dot{V}_{62} = -k_{61}m_6e_6 + s_6[m_6 + n_6 \cdot (a_2\dot{\phi}\dot{\theta} + b_2]\\ \end{cases}$	$ \begin{aligned} {}_{1}\tau_{x} - \dot{\alpha}_{4})] \\ {}_{2}\tau_{y} - \dot{\alpha}_{5})] \qquad (49) \\ {}_{3}\tau_{z} - \dot{\alpha}_{6})] \end{aligned} $
[0264]	2.21通过式 (49) 设计 τ _x , τ _y , τ _z :	5.2 071

[0265]	$\begin{cases} \tau_x = \frac{1}{b_1} \left(-a_1 \dot{\theta} \dot{\psi} + \dot{\alpha}_4 - k_{42} s_4 - \frac{m_4}{n_4} \right) \\ \tau_y = \frac{1}{b_2} \left(-a_2 \dot{\phi} \dot{\psi} + \dot{\alpha}_5 - k_{52} s_5 - \frac{m_5}{n_5} \right) \\ \tau_z = \frac{1}{b_3} \left(-a_3 \dot{\phi} \dot{\theta} + \dot{\alpha}_6 - k_{62} s_6 - \frac{m_6}{n_6} \right) \end{cases}$	(50)
[0266]	其中,k42,k52,k62为正常数;	
[0267]	步骤3,验证四旋翼飞行器系统的稳定性,过程如下	· :
[0268]	3.1将式(21)代入式(20),得:	
[0269]	$\dot{V}_{12} = -k_{11}m_1e_1 - k_{12}n_1s_1^2 \le 0$	(51)
[0270]	3.2将式(37)代入式(36),得:	
[0271]	$\begin{cases} \dot{V}_{22} = -k_{21}m_2e_2 - k_{22}n_2s_2^2 \le 0\\ \dot{V}_{32} = -k_{31}m_3e_3 - k_{32}n_3s_3^2 \le 0 \end{cases}$	(52)
[0272]	3.3将式 (50) 代入式 (49),得	
[0273]	$\begin{cases} \dot{V}_{42} = -k_{41}m_4e_4 - k_{42}n_4s_4^2 \leq 0\\ \dot{V}_{52} = -k_{51}m_5e_5 - k_{52}n_5s_5^2 \leq 0\\ \dot{V}_{62} = -k_{61}m_6e_6 - k_{62}n_6s_6^2 \leq 0 \end{cases}$	(53)

[0274] 3.4通过(51),(52),(53)知四旋翼飞行器系统是稳定的。

[0275] 为了验证所提方法的可行性,本发明给出了该控制方法在MATLAB平台上的仿真结果:

[0276] 参数给定如下:式(2)中m=1.1kg,g=9.81N/kg;式(4)中,I_{xx}=1.22kg•m²,I_{yy}= 1.22kg•m²,I_{zz}=2.2kg•m²;式(8),式(22)和式(38)中_{zd}=1,x_d=1,y_d=1, ψ_d =0.5;式 (13),式(29)和式(43)中k₁₁=2,k₂₁=2,k₃₁=2,k₄₁=2,k₅₁=2,k₆₁=2;式(21),式(37)和式 (50)中k₁₂=2,k₂₂=2,k₃₂=2,k₄₂=2,k₅₂=2,k₆₂=2;式(10),式(26)和式(41)k_{b1}=k_{b2}=k_{b3} =k_{b4}=k_{b5}=k_{b6}=2,k_{a1}=k_{a2}=k_{a3}=k_{a4}=k_{a5}=k_{a6}=2.5;式(17),式(33)和式(45)k_{d1}=k_{d2}= k_{d3}=k_{d4}=k_{d5}=k_{d6}=3.5,k_{c1}=k_{c2}=k_{c3}=k_{c4}=k_{c5}=k_{c6}=4;

[0277] 从图1和图2可知,系统输出具有良好的瞬态特性,到达时间为5.11秒,超调量为 0.0013。

[0278] 从图3和图4可知,系统状态具有良好的瞬态特性,到达时间为5.53秒,超调量为0。

[0279] 综上所述,飞行器对数正切全状态受限控制方法能有效地改善四旋翼飞行器系统 全状态的瞬态性能。

[0280] 以上阐述的是本发明给出的一个实施例表现出的优良优化效果,显然本发明不只 是限于上述实施例,在不偏离本发明基本精神及不超出本发明实质内容所涉及范围的前提 下对其可作种种变形加以实施。

图1

图2

图3

图4

3/4 页

图5

图6

