
(12) United States Patent

US00724.0185B2

(10) Patent No.: US 7,240,185 B2
Cofler et al. (45) Date of Patent: Jul. 3, 2007

(54) COMPUTER SYSTEM WITH TWO DEBUG 5.546,599 A * 8/1996 Song 71.2/23
WATCH MODES FOR CONTROLLING 5,564.041. A 10/1996 Matsui et al.
EXECUTION OF GUARDED INSTRUCTIONS (Continued)
UPON BREAKPOINT DETECTION

(75) FOREIGN PATENT DOCUMENTS
Inventors: Andrew Cofler, Voreppe (FR); Laurent

Wojcieszak, Meylan (FR); Isabelle EP O 667 576 8, 1995
Sename, Grenoble (FR) (Continued)

(73) Assignee: STMicroelectronics S.A., Gentilly (FR) OTHER PUBLICATIONS
Hennessy and Patterson, “Computer Architecture—A Quantitative

(*) Notice: Subject to any disclaimer, the term of this Approach, 2nd Edition.” 1996, p. 184.*
patent is extended or adjusted under 35
U.S.C. 154(b) by 467 days. (Continued)

Primary Examiner Eddie Chan
(21) Appl. No.: 09/748,785 Assistant Examiner—David J. Huisman

74) Attorney, Agent, or Firm—Lisa K. Jorgenson; James H.
(22) Filed: Dec. 22, 2000 MA WGE Gified & Sacks, P.C. 9.
(65) Prior Publication Data (57) ABSTRACT

US 2001/OOO5881 A1 Jun. 28, 2001 A computer system is provided with precise and non-precise
(30) Foreign Application Priority Data watch modes. The computer system is a pipelined system in

which the fate of an instruction is determined at the decode
Dec. 23, 1999 (GB) 9930586.4 stage. Once instructions have been decoded, it is not pos

sible for them to be “killed later in the pipeline. According
(51) Int. Cl. to the precise watch mode, instructions are held at the

G06F II/36 (2006.01) decode stage until the guard value has been resolved to
(52) U.S. Cl. .. 712/227 determine whether or not that instruction is committed.
(58) Field of Classification Search 712/43, Actions of the decode unit are determined in dependence O

712/214, 215, 226, 227; 717/124, 129, 134 whether or not the instruction is committed when the guard
See application file for complete search history. has been resolved. According to a non-precise watch mode,

(56) References Cited instructions continue to be decoded and executed normally
until a breakpoint instruction has had its guard resolved. At

U.S. PATENT DOCUMENTS that point, an on-chip emulator can take over operations of
the processor in a divert mode. The computer system can

ARE A R his et al take into account different intrusion levels while implement
5.430,862. A 71995 Smith st al. ing the watch modes.
5,442,757 A 8, 1995 McFarland et al.
5,544,311 A 8/1996 Harenberg et al. 18 Claims, 5 Drawing Sheets

PROGRAM

50 OCE
PROGRAMMEMORY
g MEMORY 128 !

g

g OC 28
ADDR-INSI PCWATCH

34
4 21 8 AG 2
y PSRDAG WATCH 32

- Y - - - - -- - - - 1- r REGISTER

coRE 48
p 23
PSR

PFA Pic

divist" 22
PCR 2 DIVERT

as
NSTR - 2. - 42 36

|- - - - - - - - - - - - 40
24 SECONTROL

DECODEf C
ESPAC 44

SLOT3 STO syNCHRON'sATION
SOT2 SLOT M
a - - - as

38

CMM

COMMIT

US 7,240,185 B2

EP
EP
EP
EP

Page 2

U.S. PATENT DOCUMENTS EP O 943 995 9, 1999

5,627,981 A * 5/1997 Adler et al. 71.2/235 OTHER PUBLICATIONS
5,644,703 A 7, 1997 KurakaZu et al. & 8
5,715,440 A 2, 1998 Ohmura et al. 395'sso Hennessy and Patterson, Computer Architecture A Quantitative
5,717.909 A 2/1998 Nemirovsky et al. Approach, 2" Edition.” 1996, p. 180.
5,752,013 A 5/1998 Christensen et al. 395/467 British Search Report from British priority application No.
5,754,839 A 5/1998 Pardo et al. 99305864, filed Dec. 23, 1999.
5,857,094. A 1/1999 Nemirovsky Standard Search Report in connection with British counterpart of
6,353,883 B1* 3/2002 Grochowski et al. 71224 U.S. Appl. No 09748.077.

FOREIGN PATENT DOCUMENTS

O 720 092
O810519 A2

O 849 674 A2
O 869 434

12/1995
12/1997
6, 1998

10, 1998

Standard Search Report in connection with British counterpart of
U.S. Appl. No. 09/748,762.
Standard Search Report in connection with British counterpart of
U.S. Appl. No. 09/748,763.
Standard Search Report in connection with British counterpart of
U.S. Appl. No. 10/021.269.

* cited by examiner

U.S. Patent Jul. 3, 2007 Sheet 1 of 5 US 7,240,185 B2

CONTROL

10 ST100-DSP

OBSERVE

BITS

127 95 63 31 15 16 O
BITS

al-HD-OH-D-CH-)-CH-)
W3 W2 W1 WO

CYCLE 3 CYCLE 2 CYCLE 1 CYCLEO

32 BITS

GP32 SLOT 1 SLOTO SLOT 1 SLOT O

W3 W2 W1 WO

CYCLE 1 CYCLEO

32 BITS

VL1W SLO 3 SLOT 2 SLOT 1 SLOTO

W3 W2 W1 WO

CYCLEO

FIG. 3

U.S. Patent Jul. 3, 2007 Sheet 2 of 5 US 7,240,185 B2

OCE
PROGRAMMEMORY

PROGRAM
MEMORY

WATCH
REGISTER

36

DECODE |
DESPATCH

COMMIT

COMMIT

U.S. Patent Jul. 3, 2007 Sheet 3 of 5 US 7,240,185 B2

MSB LSB

GP16 INSTR 8 INSTR 7 INSTR 6 INSTR 5 INSTR 4 INSTR 3 NSTR 2 INSTR 1

GP32 NSR 4 NSTR 3 NSTR2 NSTR 1

FIG. 4

COMMIT

U.S. Patent Jul. 3, 2007 Sheet 4 of 5 US 7,240,185 B2

OCE 0 DREG SREG1 SGPU --

Post so sorcode og
BT1 BT2 BT3 BT4 F G 7 SREG2 SREGO SNDG

WW

GP32
GP 6

INSTR.
(SLOT 1)

SGS

INSTR.
(SLOTC)

U.S. Patent Jul. 3, 2007 Sheet S of 5 US 7,240,185 B2

CU, PF
PMEM 120 !

- 241 DP 4 PC"NESEIFo

122

il
COMMIT-FIFO IS SENT-FIFO

FG. 9

COMMIT

IS SENT

READ PC FIFO i- 136
READ COMMIT FIFO i- 137

READ IS SENT FIFO i- 138

FIG 10

US 7,240,185 B2
1.

COMPUTER SYSTEM WITH TWO DEBUG
WATCH MODES FOR CONTROLLING

EXECUTION OF GUARDED INSTRUCTIONS
UPON BREAKPOINT DETECTION

FIELD OF THE INVENTION

The present invention relates to a computer system with
localized on-chip debug facility.

BACKGROUND OF THE INVENTION

With the advent of more highly embedded, high perfor
mance processors it is becoming increasingly important to
improve debug facilities to allow these processors to be
properly debugged, preferably in real time and in a non
intrusive fashion.
A single chip integrated circuit can now integrate, on the

same chip, a processor and a debug or emulation unit. The
emulation unit can be connected to an on-chip link which
allows off-chip communication to a similar off-chip link, and
thus to a debug host. This allows the on-chip emulation unit
to behave autonomously in relation to certain observed
conditions of the processor, or to be controlled from the
debug host to allow a user to take over debugging when
necessary.

It is important for an on-chip emulation unit to operate
with very low intrusion levels, particularly for debugging
real time applications. Moreover, it is advantageous if high
priority interrupts can be serviced at full speed, that is ahead
of debugging routines that might be running.
A particular problem arises in debugging processors

which rely on predicated execution. According to the prin
ciple of predicated execution, instructions to be executed are
each guarded against a particular one of a set of guards. The
instruction is finally executed or not depending on resolution
of the guard, that is determination of the value of the guard
as true or false. Normally, if the guard is resolved as true, the
instruction is said to be committed and is executed. If the
guard value is resolved as false, the instruction is not
executed and has no effect on the architectural state of the
machine. It is possible to have so-called falsely guarded
instructions which are committed if the guard is false, and
not executed if the guard is true. In a pipelined machine, the
guard may not be resolved until a number of pipelined cycles
later than the instruction has been fetched from memory.
Thus, debugging schemes which take over the machine
when a particular instruction address has been detected at
the fetch stage may do so unnecessarily in a situation where
the guard value would later have been resolved as false.

It is an object of the present invention to provide a debug
facility which can reduce the level of intrusion in certain
circumstances.

SUMMARY OF THE INVENTION

According to one aspect of the present invention there is
provided a computer system for executing predicated
instructions wherein each instruction includes a guard, the
value of which determines whether or not that instruction is
executed, the computer system comprising: a fetch unit for
fetching instructions to be executed; a decode unit for
decoding said instructions; at least one pipelined execution
unit for executing decoded instructions and being associated
with a guard register file holding values of the guards to
allow resolution of the guards to be made; and an emulation
unit including control circuitry which cooperates with the

10

15

25

30

35

40

45

50

55

60

65

2
decode unit to selectively control the decode unit to imple
ment a precise watch or a non-precise watch on detection of
a breakpoint wherein according to a precise watch, the
instruction causing the breakpoint is held at the decode unit
and, according to a non-precise watch, the instruction caus
ing the breakpoint and Subsequent instructions are permitted
to be supplied and from the decode unit to the at least one
execution unit while guard resolution in said at least one
execution pipeline is awaited.

In the described embodiment, the emulation unit includes
watch circuitry for watching addresses issued by the fetch
unit for fetching instructions to be executed, said watch unit
being operable to add a set of diagnostic flags to the
instructions in dependence on whether or not an instruction
is detected as having a debug effect.
The computer system described herein is particularly

useful when implemented as a single chip. In that case,
off-chip communication links can be provided attached to
the emulation unit.
The computer system can include a program memory for

holding the instructions to be executed. Likewise, the emu
lation unit can be associated with its own emulation program
memory for holding debug code which is executed in a
debug mode.

According to the precise watch mode, when the emulation
unit is in this mode it causes the decode unit to issue a
request to the execution pipeline for guard resolution. The
guard resolution is transmitted to the control circuitry of the
emulation unit which is responsive thereto to control opera
tion of the decode unit. If the instruction is committed, the
emulation unit can take over operation of the computer
system by issuing a divert command or a go command. If the
instruction is not committed, the decode unit can be allowed
to continue decoding and executing the instructions.

If a go command is issued by the emulation unit, the
instruction causing the breakpoint and Subsequent instruc
tions are normally decoded and executed. If a divert com
mand is issued by the emulation unit, the computer system
is set into a debug mode Such that debug code can be fetched
from the program memory associated with the emulation
unit.
When the emulation unit is in a non-precise watch mode,

the instruction causing the breakpoint and Subsequent
instructions are decoded and executed normally until Such
time as the breakpoint-causing instruction reaches the
execution pipeline where its guard is resolved. If its guard is
resolved such that the instruction is committed, a commit
signal is generated to the control circuitry of the emulation
unit which is responsive thereto to set the computer system
into a debug mode.
The computer system can include a microinstruction

generator which receives instructions from the decode unit
and Supplies microinstructions to the execution pipeline,
said microinstructions including fields for holding respec
tive guards to be resolved.

In the described embodiment, the computer system
includes a plurality of parallel pipelined execution units,
including at least two data unit pipelines for executing data
processing instructions and at least two address unit pipe
lines for executing memory access instructions.

According to another aspect of the present invention there
is provided a method of debugging an on-chip processor
which is arranged to execute predicated instructions wherein
each instruction includes a guard, the value of which deter
mines whether or not that instruction is executed, the method
comprising: fetching instructions to be executed; decoding
said instructions; executing decoded instructions, said

US 7,240,185 B2
3

executing step including resolving values of the guards of
the instructions; detecting instructions which have a debug
effect; and acting on said instructions in dependence on
whether the processor is in a precise watch mode or a
non-precise watch mode wherein, according to a precise
watch mode, the said instruction is not decoded and, accord
ing to a non-precise watch mode, the said instruction and
Subsequent instructions are Supplied and executed normally
while guard resolution is awaited.
A breakpoint can be detected as a software breakpoint

instruction having dedicated opcode, or on the program
count (PC) of an instruction as a so-called PC watch
instruction. Thus, the term breakpoint or breakpoint instruc
tion used in the following denotes both software breakpoints
and PC watch breakpoints.

For a better understanding of the present invention and to
show how the same may be carried into effect, reference will
now be made by way of example to the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram showing the context of the
invention;

FIG. 2 is a block diagram of a computer system with an
emulation unit;

FIG. 3 is a sketch illustrating three different instruction
modes of the processor,

FIG. 4 is a diagram illustrating how the diagnostic flags
are Set,

FIG. 5 is a diagram illustrating non-precise PC watching:
FIG. 6 is a diagram illustrating precise PC watching;
FIG. 7 illustrates a microinstruction format;
FIG. 8 is a sketch illustrating the architectural aspects of

guard resolution;
FIG. 9 illustrates schematically FIFOs in the synchroni

Zation unit; and
FIG. 10 illustrates a timing diagram for operation of the

synchronization unit.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 is a diagram illustrating the context of the inven
tion. Reference numeral 2 denotes a single chip integrated
circuit on which is provided a processor 4 which has a high
level of functionality. One of the difficulties which exists
with high performance, highly embedded processors is that
they can be difficult to debug. Thus, an on-chip emulation
(OCE) block 6 is provided on-chip which receives informa
tion from the processor along an observe path 8 and provides
control when necessary along a control path 10. An on-chip
link 12 is connected to the OCE block 6 and provides an
off-chip communication path to an off-chip link 14 which is
connected to a debugger host 16 which acts to control the
on-chip emulator 6. The on-chip emulator 6 can operate
autonomously, implementing certain control routines in
response to certain observed conditions. As will be
described later, the on-chip emulation block includes an
on-chip emulation program memory 50 (FIG. 2) which
holds debugging code ready for execution by the processor
4 when the OCE block 6 has control of the processor 4. The
OCE block 6 also allows control of the processors to be
taken over by the off-chip debugger host 16 via the links 12,
14.

FIG. 2 is a more detailed schematic of the processor 4 in
combination with selected on-chip emulation functional

10

15

25

30

35

40

45

50

55

60

65

4
blocks which form part of the on-chip emulator 6. The
processor 4 comprises a processor core 18 which is con
nected to a program memory 20 which holds code to be
executed by the core. The core comprises a prefetch/align
stage 22, a decode/dispatch stage 24, a microinstruction
generator 26 and four parallel execution pipelines AUo.
AU, DU, and DU. The processor 4 operates in a pipelined
manner Such that all stages can be active at the same time,
on different instructions. The pipeline stages are denoted by
horizontal dotted lines in FIG. 2. It will readily be under
stood that each execution pipeline itself AU, AU, DU and
DU constitutes a number of pipeline stages.
A brief description will now be given of operation of the

core 18 sufficient to understand the functionality of the
on-chip emulator which will be described later. Other details
about the core are not discussed herein.
The program memory 20 contains code in the form of

128-bit long words. Each word contains a plurality of
instructions depending on the instruction mode of the pro
cessor. In this respect, reference is made to FIG. 3.

According to a first instruction mode, a pair of 16-bit
instructions are Supplied during each machine cycle to the
decoder 24 from the prefetch/align stage buffer 22. This pair
is denoted slot.0, slot1 in bit sequences w0, will etc. This is
referred to herein as GP16 superscalar mode.

According to a second instruction mode, two instructions
each having a length of 32 bits are supplied to the decoder
24 from the prefetch/align stage 24 in each machine cycle,
for example wo, will in CYCLE 0. This mode is referred to
herein as GP32 superscalar mode.

According to a third instruction mode, four instructions
w0, will, w2, w8 each of 32 bits in length are supplied to the
decoder in each machine cycle. This is referred to herein as
VLIW mode.

In all modes, each fetch operation initiated to the program
memory 2 retrieves an instruction word of 128 bits in length.
Thus, in GP16 mode, the instruction word comprises eight
16-bit instructions, paired as slot.0, slot1 for each machine
cycle. In GP32 and VLIW mode, the instruction word
comprises four 32-bit instructions.
The prefetch/align stage 22 includes a fetch program

counter 28 which is responsible for issuing addresses to
fetch instruction words from the program memory 20.

Instructions are Supplied to the decode/dispatch stage 24
depending on the instruction mode of the processor. That is,
two GP32 instructions or two GP16 instructions are supplied
in each cycle of operation. In VLIW mode, the four VLIW
Sub-instructions are Supplied simultaneously to the decode/
dispatch stage 24. The decode/dispatch stage 24 issues an
acknowledge signal ACK to say that it has accepted the
instructions to be decoded. It is an important feature of this
machine that, once the decode/dispatch stage 24 has
accepted its instructions and issued an acknowledgement
signal ACK, these instructions will proceed to the remaining
stages of the pipelined core. An instruction cannot be
“killed after the decode/dispatch stage 24, although of
course they may not be executed if the guard is false. The
instruction fetches are speculative since fetched instructions
may never be executed by the core.
The decode/dispatch stage 24 Supplies instructions to the

microinstruction generator 26. The microinstruction genera
tor generates microinstructions for the individual execution
pipelines depending on the nature of the machine instruc
tions. The execution pipelines AU, AU are address unit
pipelines which deal with memory access instructions
including loads and stores. The execution pipelines DU,

US 7,240,185 B2
5

DUI are data unit pipelines which deal with data processing
instructions including arithmetical and logical calculations.
The processor operates on the basis of predicated execu

tion. That is, each instruction in the program memory 20 is
guarded on a guard selected from Go to Gs. Gs always has
a value of one, that is that instruction will always be
executed. The values of the guards are held in an architec
tural guard register file 30. The guard register 30 is associ
ated with the data unit pipelines DU, DU because this is
where most of the guard resolution takes place. Special
instructions allow guard values to be transmitted to and from
the address unit pipelines AU, AU which can, in fact,
maintain its own guard register file. For the purposes of the
functionality of the on-chip emulator 6, the guard register
file 30 associated with the data unit pipeline is the only guard
register file of interest, because this is the master guard
register file which is maintained up to date architecturally.
Thus, this one is used to supply guard values to the OCE.
Until the guard on an instruction has been resolved, it is not
possible to know whether or not the instruction is commit
ted, that is it has been executed Such as to change the
architectural state of the machine. For debugging purposes,
it is important to know whether an instruction is committed
or not. However, this cannot be determined at the decode/
dispatch stage 24 because at that stage there has been no
resolution of the guard of the instruction. Recall also that
there is no mechanism for “killing instructions after they
have been acknowledged by the decode/dispatch stage.

The OCE block 6 comprises a PC watch block 32 which
Snoops addresses issued by the prefetch align state 22 to the
program memory 20. Addresses which it is programmed to
match are held in a watch register 34. When the PC watch
block 32 sees an address which it has been programmed to
watch for, so-called diagnostic flags DIAG are added to the
instruction word before it is supplied to the prefetch/align
stage 22. There are eight possible such diagnostic flags. The
diagnostic flags are set according to the different instruction
modes. If a diagnostic flag is set this denotes that a particular
instruction is a PC (program count) watch, i.e., an instruc
tion of interest to the emulator 6. FIG. 4 illustrates how the
diagnostic flags are set in GP16 and GP32 modes. There are
eight diagnostic flags because there can be up to eight GP16
instructions in a 128 bit fetch line. The PC watch unit has an
exact address of each PC it is looking for and sets the
corresponding flag according to the positions illustrated in
FIG. 4. In GP16 mode, each flag can be set. In GP32 mode,
diagnostic flags can be set on bits 0.2.4 and 6 denoting each
GP32 instruction respectively. In VLIW mode, four GP32
diagnostic flags (bits 0.2.4 and 6) can be set.
The prefetch align stage 22 sends to the decode/dispatch

stage 24 a 4-bit DIAG flag which denotes which, if any, of
the instructions Supplied to the decode/dispatch stage 24 are
a PC watch. In VLIW mode, each bit denotes one VLIW
Sub-instruction.
The system described herein allows two watch modes,

precise and non-precise. Although the following description
of precise and non-precise watching is explained with ref
erence to PC watches, it will be appreciated that the same
principles can be used with software breakpoints. That is,
special instructions can be included in the code executed by
the processor with dedicated opcodes to cause a breakpoint.
Such instructions have the same effect in the following as
instructions which have been tagged as PC watch instruc
tions. According to a precise PC watch, no Subsequent
instructions are allowed to enter the execution pipeline, that
is beyond the decode/dispatch stage 24. The state of the
registers and memory is consistent with the state just before

10

15

25

30

35

40

45

50

55

60

65

6
the breakpoint (because the watched instruction has not been
executed and has therefore not affected the architectural
state of the machine at the point at which the watch is
detected). However, the precise PC watch is intrusive and
can degrade the performance of the processor. Because the
processor is based on predicated execution, there will be
occasions where the instruction would not even have been
executed because the guard would have been resolved as
false. In Such circumstances, the performance of the
machine has been degraded with no debugging value.

This problem is overcome by allowing non-precise PC
watching to be implemented in some circumstances. If the
emulator is set to be non-precise, that instruction, and
Subsequent instructions are allowed to enter the execution
pipeline as normal. If, when the instruction has been
executed the guard is resolved as true, the OCE at that point
can take over operation of the machine for example by
implementing a divert. However, if the guard was resolved
as false, such that the instruction never affected the archi
tectural state of the machine, the on-chip emulator 6 would
take no action and the breakpoint would have caused no
intrusion into the performance of the machine. Thus, the
breakpoint is minimally intrusive and the performance of the
processor is minimally degraded in non-precise PC watch
ing. The instructions that are executed between the break
point and the point at which the on-chip emulator 6 takes
over operation of the processor are known as the non-precise
overrun. There is a small disadvantage for debugging pur
poses, which is that the state of the machine is now archi
tecturally consistent with the state at the point at which the
PC watch instruction becomes committed, that is several
instructions after the break point itself and in fact at the end
of the non-precise overrun. Thus, debugging may be slightly
more complex in this situation, but this is more than offset
by the advantages which are gained by the lack of intrusion
which non-precise PC watching introduces. The on-chip
emulator has in its control registers a user set bit which sets
the OCE mode as precise or non-precise.

In order to implement precise and non-precise PC watch
ing, the on-chip emulator 6 has an OCE control unit 36 and
a synchronization unit 38 for synchronizing the program
count of instructions under watch with commit values Sup
plied by the data unit. The decode/dispatch stage 24 has its
own program counter 40 which holds the PC values of
instructions currently being decoded. The decode/dispatch
unit 24 supplies the PC of each instruction which it receives,
together with a flag identifying PC watch instructions, to the
OCE control unit 36 along line 42. The PC values are held
in a PC FIFO in the synchronization unit 38. Commit values
from the data unit are held in a commit FIFO in the
synchronization unit, and the OCE only validates the PC
watch once it sees that the instruction at that PC was
committed. The action of the emulator 6 while awaiting
guard resolution depends on whether it is in precise or
non-precise watch mode. A signal is returned to the decode/
dispatch unit 24 on line 44 indicating the status of the watch.
The OCE control block 36 can also set the processor into a
debug mode. To achieve this, an architectural bit PSR.DIAG
is set inside the program status register 47. This bit is sent
with the fetch address to a program memory controller 21.
If clear, the fetch is made from the normal program memory.
This bit controls a multiplexor 48 in the program memory
controller. The on-chip emulator 6 has its own program
memory 50 which holds debug code which is executed by
the processor core 18 when in debug mode. When the
PSR.DIAG bit is set, the fetch is made from the OCE
program memory 50 instead of from the normal program

US 7,240,185 B2
7

memory 20. Thus, fetched debug instructions are executed
by the processor as normal instructions.

Reference will now be made to FIG. 5 to explain non
precise PC watching. The PC watch (or software breakpoint)
is detected at the decode/dispatch stage 24 by decoding of
the DIAG flags as described above. The instruction is
acknowledged as normal by the ACK signal. The instruction
is then dispatched as normal to the microinstruction genera
tor 26 and subsequently to the execution pipelines AU
AU, DU and DU. The PC of the instruction is sent from
the decode/dispatch stage 24 to the OCE control block 36.

At the microinstruction generator 26, guards to be
resolved are sent to the data unit pipelines DU DU in the
same microinstruction that the current machine instruction
has been encoded as. The manner in which this is done is
described later. If the guard is resolved such that the instruc
tion is executed, a Commit signal 52 is sent from the data
unit pipelines DU, DU to the on-chip emulator 6. The
on-chip emulator 6 checks the PC value in the PC register 28
and determines from the watch register 34 what action
should be taken in the event of a committed instruction at
that PC value. If that action is a divert, a divert signal 46 is
issued to the multiplexor 48, and the prefetch/align stage is
issued with a branch address to debug code so that the
processor can from that point execute debug code from the
OCE program memory 50.

If the guard had been resolved such that the instruction
was not executed, no Commit signal would be sent to the
on-chip emulator 6 and no debug action would be taken. It
will be appreciated that between detecting the PC watch at
the decode/dispatch stage 24 and resolving the guard value
in the data unit pipelines DU DU, it is possible that a
number of other instructions have been executed. In the case
that the guard was resolved such that the instruction was not
executed, all of these instructions have been properly
executed, and the machine can continue to operate without
intrusion. In the event that the guard value was resolved as
committed, then for debug purposes it will be necessary for
the debug host to “unravel a certain number of instructions
which have been executed in between detection of the PC
watch at the decode/dispatch stage 24 and resolution of the
guard value at the data unit execution pipelines DU DU
(the non-precise overrun).
A precise PC watch will now be described with reference

to FIG. 6. As in the case of non-precise PC watching, the
software breakpoint or PC watch instruction is detected at
the decode/dispatch stage 24. A PC value is sent to the OCE
control block 36 which, in this case, determines that the
instruction is a precise PC watch. This information is
returned to the decode/dispatch stage 24 along line 44, and
the decode/dispatch stage 24 therefore does not issue a
normal acknowledgement instruction. Instead, the decoder
issues an instruction to the data unit pipelines DUp, DU to
request the values of the guards on which the watched
instructions are guarded. The decode/dispatch stage 24
enters a waiting state in which it will receive no further
instructions. When the value of the guard has been resolved
in the data unit execution pipelines DU DU from the
guard register file 30, a Commit signal 52 is sent both to the
on-chip emulator 6 and to the decode/dispatch stage 24. If
the value has been resolved such that the instruction is
committed the value is '1'. If the instruction is not com
mitted the value is “0”. On receiving a Commit value “1”,
the decode/dispatch stage 24 waits for a command from the
emulator 6 to proceed. The command can be a divert
command or a go command. If the command is divert, the
PSR.DIAG bit is set so that debug code is fetched from the

5

10

15

25

30

35

40

45

50

55

60

65

8
OCE program memory 50 and the next instructions therefore
flush out the existing instructions which were in the
prefetch/align stage 22 prior to the instruction which set the
PC watch. If the command is “go', the processor is allowed
to continue executing the code at which the PC watch was
set. It is quite possible to set up a situation Such that the
emulator 6 issues a go command for the first and second
times of a watch instruction being detected, and divert the
third time for example.

Both precise and non-precise PC watches allow interrupts
to be taken. Interrupts are each issued with particular priority
levels. Divert routines for the on-chip emulator also have
their own priority levels. Normally, the on-chip emulator
divert routines would have a high priority level ensuring that
they were executed in place of normal code. However, some
interrupts are so important, particularly for real time sys
tems, that they have a priority level higher than the divert
routines of the on-chip emulator 6. Such interrupt routines
will be executed when the debugger is either in a precise or
non-precise PC operating mode.
When in the precise PC watch mode, an interrupt instruc

tion can be taken while the decode/dispatch stage 24 is
waiting to receive the Commit signal 52. In that case, the
Commit signal which has been received will be ignored and,
when returning from the interrupt routine, the prefetch/align
stage 22 will present again the PC watch instruction or
breakpoint to the decode/dispatch stage, and a new request
will be sent to the data unit pipelines for guard resolution.
The interrupt handler code itself may contain a PC watch

or break point.
For non-precise PC watching, recall that until the Commit

signal is received at the on-chip emulator 6, instructions are
being executed as normal. These can include interrupt
handling instructions. When the guard values have been
resolved, and the Commit signal is sent to the on-chip
emulator 6, as described above this can prompt a divert
routine to be sent to the decode/dispatch unit 24 for some PC
watches. If the interrupt priority is more important than the
on-chip emulator priority, this divert will be acknowledged
only when the interrupt handler has finished.

It will now be described how guard resolutions are dealt
with. FIG. 7 illustrates the format of a microinstruction
accepted by the data unit execution pipelines DUDU. The
microinstruction format has a number of different fields
which are occupied depending on the nature of the machine
instruction which caused the microinstruction to be gener
ated.
The SNDG field is used to implement a sendguard

instruction to allow guard values to be sent between the data
unit pipelines and the address unit pipelines.
The SGDU field indicates that a data unit operation has

been guarded and denotes the guard.
There are three source register fields SREGo, SREG and

SREG, and a destination register field DREG.
The DG field indicates that a guard value has been

modified and is used to synchronize guard values between
the address unit pipelines and the data unit pipelines.
An opcode field denotes the operations to be effected by

the instruction.
The SGLS field indicates that the load/store part of the

instruction is guarded and denotes the guard.
The LDST field indicates that the instruction implements

a store or load in and out of load and store data queues.
These are not illustrated in the drawings or described further
herein because they are not pertinent to the present inven
tion. In brief, they allow data to be queued for accesses to
and from main data memory.

US 7,240,185 B2

The microinstruction format also includes four OCE bits.
Bit 1 indicates that the load/store sendguard guard should be
inverted before being transmitted to the on-chip emulator 6.
This is to take into account instructions which are guarded
on a false guard. Normally, instructions are committed if a
guard value is read as true. Falsely guarded instructions are
committed if the guard value is read as false.

Bit 2 indicates that the value of the guard (i.e. to denote
commit or non-commit) read in the SGLS field should be
sent to the on-chip emulator 6 and the decode/dispatch stage
24.

Bit 3 indicates that the value of the guard (i.e. to denote
commit or non-commit) read in the SGDU field should be
sent to the on-chip emulator 6 and decode/dispatch stage 24.

Bit 4 indicates that a store is for the on-chip emulator 6.
Thus, it can be seen that there are two fields in the

microinstruction which allow guard value resolutions to be
carried out, the SGLS and SGDU fields. As two microin
structions can be received by the data unit pipelines
DU.Sub.0, DU.Sub. 1 simultaneously, it is possible to convey
four guards to be resolved to the data unit pipelines in these
two microinstructions. This is useful because it allows all of
the possible guards in a VLIW word to be transmitted to the
data unit pipelines in the same cycle and thus for the guard
values to be resolved without undue delay. This is dealt with
in the manner shown in FIG. 8. The data unit execution
pipelines DU.Sub.0, DU.Sub.1 contain circuitry for reading
the SGDU and SGLS fields in conjunction with the relevant
OCE bits to access the guard register file 30 and generate the
Commit signal 52 accordingly. The execution pipelines
DU.Sub.0, DU.Sub.1 deal with the fields in a predetermined
order, i.e. DU.Sub. Osgls: DU.Sub. 1sgls; DU.Sub. Osgdu:
DU.Sub. 1sgdu to allow synchronization of the commit sig
nals with respective PCs.

It will be appreciated that at any one time the on-chip
emulator 6 may hold a number of PCs indicating PC watch
instructions which are waiting for respective Commit signals
to be returned from the data unit pipelines. This is dealt with
in the on-chip emulator by the synchronization unit 38
which includes incoming PCs and Commit values. This
allows the Commit signals to be associated with the correct
PCs. This is discussed in more detail in our co-pending U.S.
application Ser. No. 09/340,776 claiming priority from GB
Application No. 9930587.2, entitled A COMPUTER SYS
TEM WITH DEBUG FACILITY FOR DEBUGGING A
PROCESSOR CAPABLE OF PREDICATED EXECU
TION.

For the sake of completeness, the mechanism used in the
synchronization unit 38 will be briefly explained with ref
erence to FIG. 9. Instructions are output by the dispatch
stage 24 which Supplies to a program count FIFO (first in
first out buffer) 120 an indication of the program count and
an indication if the instruction is a load or store instruction.
As the instruction passes through the pipeline stages of the
data unit DU the guard value is resolved by hardware 101,
103 provided in the data unit for the normal execution of
instructions in the data unit and is not additional hardware
for use solely by the debugging operation. In this example
the resolution is shown as occurring at Stage e2 in the
pipeline and the commit signal indicating whether the guard
value is resolved as true or false is Supplied to a commit
FIFO 121. When a load/store instruction is executed in the
pipeline within the address unit AU a signal is sent to a load
store sent FIFO 122 to indicate whether or not the load/store
has been dispatched by the address unit to a data memory

5

10

15

25

30

35

40

45

50

55

60

65

10
controller (not shown). FIFO 120 receives its signals on line
42 of FIG. 2. FIFO 121 receives its signals online 52 of FIG.
2.
The timing of the synchronization system 38 will be

explained with reference to FIG. 10. The cycles of operation
of instruction fetches, execution pipelines and memory
accesses are controlled by clock cycles with a clock signal
as shown at 130 in FIG. 10. The figure illustrates seven
Successive clock cycles and in this example the program
count of the instruction dispatch by dispatch stage 24 occurs
in cycle 2 as shown in the program count line 131. The
commit signal is sent out in cycle 4 as shown in line 132. The
load/store signal from the address unit is provided in cycle
5 as shown in line 133. It will be appreciated that the signal
on line 131 was fed into FIFO 120. The signal on line 132
was fed into FIFO 121. The signal on line 133 was fed into
FIFO 122. Each of the FIFOs 120, 121 and 122 operate on
synchronized clock cycles from the clock signal shown in
FIG. 10. Each of the FIFOs 120-122 is then read in clock
cycle 6 as shown by lines 136, 137 and 138 in FIG. 10. The
result of reading each of those FIFOs on the same clock
cycle 9 will indicate correlation between a commit signals
and any of the events watched on lines 131-133. The
emulator can therefore through use of the synchronization
unit 38 establish the program count which was associated
with a committed instruction and one which gave rise to a
PC watch.
What is claimed is:
1. A computer system for executing predicated instruc

tions wherein each instruction includes a guard, the value of
which determines whether or not that instruction is
executed, the computer system comprising:

a fetch unit for fetching instructions to be executed;
a decode unit for decoding said instructions;
at least one pipelined execution unit for executing

decoded instructions and being associated with a guard
register file holding values of the guards to allow
resolution of the guards to be made; and

an emulation unit including control circuitry which coop
erates with the decode unit to selectively control the
decode unit to implement a precise watch mode or a
non-precise watch mode on detection of a breakpoint
caused by a fetched instruction having a specified
program count or a fetched instruction having a speci
fied opcode, wherein when the decode unit implements
the precise watch mode, the fetched instruction causing
the breakpoint and at least one Subsequent instruction
are not permitted to be executed until after a guard
value associated with the fetched instruction is resolved
and, when the decode unit implements the non-precise
watch mode, the instruction causing the breakpoint and
at least one Subsequent instruction are permitted to be
executed before the guard value associated with the
fetched instruction is resolved.

2. A computer system according to claim 1, which is
implemented on a single chip.

3. A computer system according to claim 1, which
includes a program memory for holding said instructions to
be executed.

4. A computer system according to claim 1, wherein the
emulation unit is associated with an emulation program
memory which holds debug code which is executed in a
debug mode.

5. A computer system according to claim 1, wherein,
when the emulation unit is in a precise watch mode, it is
operable to issue a request to the at least one pipelined
execution unit for guard resolution, the guard resolution

US 7,240,185 B2
11

being transmitted to the control circuitry of the emulation
unit which is responsive thereto to control operation of the
decode unit.

6. A computer system according to claim 5, wherein the
control circuitry of the emulation unit is operable to issue
one of a go command and divert command to the decode unit
responsive to receipt of the guard resolution from the at least
one pipelined execution unit, wherein a go command allows
the instruction which caused the breakpoint and Subsequent
instructions to be normally decoded and executed, and a
divert command sets the computer system into a debug
mode.

7. A computer system according to claim 1, wherein,
when the emulation unit is in non-precise watch mode, the
instruction which caused the breakpoint and Subsequent
instructions are decoded and executed normally until Such
time as said instruction reaches the at least one pipelined
execution unit where its guard is resolved such that a commit
signal is generated to the control circuitry of the emulation
unit, and wherein the emulation unit is responsive to receipt
of the commit signal to set the computer system into a debug
mode.

8. A computer system according to claim 1, which
includes a microinstruction generator which receives
instructions from the decode unit and Supplies microinstruc
tions to the at least one pipelined execution unit, said
microinstructions including fields for holding respective
guards to be resolved.

9. A computer system according to claim 1, which
includes a plurality of parallel pipelined execution units,
including at least two data unit pipelines for executing data
processing instructions and at least two address unit pipe
lines for executing memory access instructions.

10. A method of debugging an on-chip processor which is
arranged to execute predicated instructions wherein each
instruction includes a guard, the value of which determines
whether or not that instruction is executed, the method
comprising:

fetching instructions to be executed;
decoding said instructions;
executing decoded instructions, said executing step

including resolving values of the guards of the instruc
tions; and

detecting instructions which have a debug effect based on
a program count or an opcode of the instructions and
acting on said instructions in dependence on whether
the processor is in a precise watch mode or a non
precise watch mode wherein, according to the precise
watch mode, an instruction having a debug effect and
at least one Subsequent instruction are not permitted to
be executed until after a guard value associated with the
instruction is resolved and, according to a non-precise
watch mode, the instruction and the at least one Sub
sequent instruction are permitted to be executed before
the guard value is resolved.

11. A method according to claim 10, wherein breakpoints
are detected at instructions having certain program counts.

12. A method according to claim 10, wherein breakpoints
are detected at instructions having certain opcodes.

13. A method according to claim 10, wherein, in a precise
watch mode, a request for guard resolution is issued Such
that an instruction guard is resolved prior to execution of the
instruction, selectively causing issue of one of a go com
mand and a debug command responsive to the guard reso
lution.

10

15

25

30

35

40

45

50

55

60

12
14. A method according to claim 12, wherein, in a debug

mode, debug code is executed by the processor.
15. A method according to claim 10, wherein, in a

non-precise watch mode, the instruction which caused the
breakpoint and Subsequent instructions are decoded and
executed normally until Such time as the guard of the
breakpoint instruction has been resolved wherein, if the
guard is resolved such that a position commit signal is
generated, the processor is set into the debug mode.

16. A computer system for executing predicated instruc
tions wherein each instruction includes a guard, the value of
which determines whether or not that instruction is
executed, the computer system comprising:

a fetch unit for fetching instructions to be executed;
a decode unit for decoding said instructions;
at least one pipelined execution unit for executing

decoded instructions and being associated with a guard
register file holding values of the guards to allow
resolution of the guards to be made; and

an emulation unit including control circuitry which coop
erates with the decode unit to selectively control the
decode unit to implement a precise watch mode or a
non-precise watch mode on detection of a breakpoint
caused by a fetched instruction having a specified
program count or a fetched instruction having a speci
fied opcode, wherein when the decode unit implements
the precise watch mode, the fetched instruction causing
the breakpoint and at least one Subsequent instruction
are not permitted to be executed until after a guard
value associated with the fetched instruction is resolved
and, when the decode unit implements the non-precise
watch mode, the fetched instruction causing the break
point and at least one Subsequent instruction are per
mitted to be executed before the guard value is
resolved, wherein, when the decode unit implements
the precise watch mode, the emulation unit is operable
to issue a request to the at least one pipelined execution
unit for guard resolution, the guard resolution being
transmitted to the control circuitry of the emulation unit
which is responsive thereto to control operation of the
decode unit.

17. A computer system according to claim 16, wherein the
control circuitry of the emulation unit is operable to issue
one of a go command and divert command to the decode unit
responsive to receipt of the guard resolution from the at least
one pipelined execution unit, wherein a go command allows
the instruction which caused the breakpoint and Subsequent
instructions to be normally decoded and executed, and a
divert command sets the computer system into a debug
mode.

18. A computer system according to claim 16, wherein,
when the emulation unit is in non-precise watch mode, the
instruction which caused the breakpoint and Subsequent
instructions are decoded and executed normally until Such
time as said instruction reaches the at least one pipelined
execution unit where its guard is resolved such that a commit
signal is generated to the control circuitry of the emulation
unit, and wherein the emulation unit is responsive to receipt
of the commit signal to set the computer system into a debug
mode.

