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1. 

COMPUTER SYSTEM WITH TWO DEBUG 
WATCH MODES FOR CONTROLLING 

EXECUTION OF GUARDED INSTRUCTIONS 
UPON BREAKPOINT DETECTION 

FIELD OF THE INVENTION 

The present invention relates to a computer system with 
localized on-chip debug facility. 

BACKGROUND OF THE INVENTION 

With the advent of more highly embedded, high perfor 
mance processors it is becoming increasingly important to 
improve debug facilities to allow these processors to be 
properly debugged, preferably in real time and in a non 
intrusive fashion. 
A single chip integrated circuit can now integrate, on the 

same chip, a processor and a debug or emulation unit. The 
emulation unit can be connected to an on-chip link which 
allows off-chip communication to a similar off-chip link, and 
thus to a debug host. This allows the on-chip emulation unit 
to behave autonomously in relation to certain observed 
conditions of the processor, or to be controlled from the 
debug host to allow a user to take over debugging when 
necessary. 

It is important for an on-chip emulation unit to operate 
with very low intrusion levels, particularly for debugging 
real time applications. Moreover, it is advantageous if high 
priority interrupts can be serviced at full speed, that is ahead 
of debugging routines that might be running. 
A particular problem arises in debugging processors 

which rely on predicated execution. According to the prin 
ciple of predicated execution, instructions to be executed are 
each guarded against a particular one of a set of guards. The 
instruction is finally executed or not depending on resolution 
of the guard, that is determination of the value of the guard 
as true or false. Normally, if the guard is resolved as true, the 
instruction is said to be committed and is executed. If the 
guard value is resolved as false, the instruction is not 
executed and has no effect on the architectural state of the 
machine. It is possible to have so-called falsely guarded 
instructions which are committed if the guard is false, and 
not executed if the guard is true. In a pipelined machine, the 
guard may not be resolved until a number of pipelined cycles 
later than the instruction has been fetched from memory. 
Thus, debugging schemes which take over the machine 
when a particular instruction address has been detected at 
the fetch stage may do so unnecessarily in a situation where 
the guard value would later have been resolved as false. 

It is an object of the present invention to provide a debug 
facility which can reduce the level of intrusion in certain 
circumstances. 

SUMMARY OF THE INVENTION 

According to one aspect of the present invention there is 
provided a computer system for executing predicated 
instructions wherein each instruction includes a guard, the 
value of which determines whether or not that instruction is 
executed, the computer system comprising: a fetch unit for 
fetching instructions to be executed; a decode unit for 
decoding said instructions; at least one pipelined execution 
unit for executing decoded instructions and being associated 
with a guard register file holding values of the guards to 
allow resolution of the guards to be made; and an emulation 
unit including control circuitry which cooperates with the 
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2 
decode unit to selectively control the decode unit to imple 
ment a precise watch or a non-precise watch on detection of 
a breakpoint wherein according to a precise watch, the 
instruction causing the breakpoint is held at the decode unit 
and, according to a non-precise watch, the instruction caus 
ing the breakpoint and Subsequent instructions are permitted 
to be supplied and from the decode unit to the at least one 
execution unit while guard resolution in said at least one 
execution pipeline is awaited. 

In the described embodiment, the emulation unit includes 
watch circuitry for watching addresses issued by the fetch 
unit for fetching instructions to be executed, said watch unit 
being operable to add a set of diagnostic flags to the 
instructions in dependence on whether or not an instruction 
is detected as having a debug effect. 
The computer system described herein is particularly 

useful when implemented as a single chip. In that case, 
off-chip communication links can be provided attached to 
the emulation unit. 
The computer system can include a program memory for 

holding the instructions to be executed. Likewise, the emu 
lation unit can be associated with its own emulation program 
memory for holding debug code which is executed in a 
debug mode. 

According to the precise watch mode, when the emulation 
unit is in this mode it causes the decode unit to issue a 
request to the execution pipeline for guard resolution. The 
guard resolution is transmitted to the control circuitry of the 
emulation unit which is responsive thereto to control opera 
tion of the decode unit. If the instruction is committed, the 
emulation unit can take over operation of the computer 
system by issuing a divert command or a go command. If the 
instruction is not committed, the decode unit can be allowed 
to continue decoding and executing the instructions. 

If a go command is issued by the emulation unit, the 
instruction causing the breakpoint and Subsequent instruc 
tions are normally decoded and executed. If a divert com 
mand is issued by the emulation unit, the computer system 
is set into a debug mode Such that debug code can be fetched 
from the program memory associated with the emulation 
unit. 
When the emulation unit is in a non-precise watch mode, 

the instruction causing the breakpoint and Subsequent 
instructions are decoded and executed normally until Such 
time as the breakpoint-causing instruction reaches the 
execution pipeline where its guard is resolved. If its guard is 
resolved such that the instruction is committed, a commit 
signal is generated to the control circuitry of the emulation 
unit which is responsive thereto to set the computer system 
into a debug mode. 
The computer system can include a microinstruction 

generator which receives instructions from the decode unit 
and Supplies microinstructions to the execution pipeline, 
said microinstructions including fields for holding respec 
tive guards to be resolved. 

In the described embodiment, the computer system 
includes a plurality of parallel pipelined execution units, 
including at least two data unit pipelines for executing data 
processing instructions and at least two address unit pipe 
lines for executing memory access instructions. 

According to another aspect of the present invention there 
is provided a method of debugging an on-chip processor 
which is arranged to execute predicated instructions wherein 
each instruction includes a guard, the value of which deter 
mines whether or not that instruction is executed, the method 
comprising: fetching instructions to be executed; decoding 
said instructions; executing decoded instructions, said 
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executing step including resolving values of the guards of 
the instructions; detecting instructions which have a debug 
effect; and acting on said instructions in dependence on 
whether the processor is in a precise watch mode or a 
non-precise watch mode wherein, according to a precise 
watch mode, the said instruction is not decoded and, accord 
ing to a non-precise watch mode, the said instruction and 
Subsequent instructions are Supplied and executed normally 
while guard resolution is awaited. 
A breakpoint can be detected as a software breakpoint 

instruction having dedicated opcode, or on the program 
count (PC) of an instruction as a so-called PC watch 
instruction. Thus, the term breakpoint or breakpoint instruc 
tion used in the following denotes both software breakpoints 
and PC watch breakpoints. 

For a better understanding of the present invention and to 
show how the same may be carried into effect, reference will 
now be made by way of example to the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram showing the context of the 
invention; 

FIG. 2 is a block diagram of a computer system with an 
emulation unit; 

FIG. 3 is a sketch illustrating three different instruction 
modes of the processor, 

FIG. 4 is a diagram illustrating how the diagnostic flags 
are Set, 

FIG. 5 is a diagram illustrating non-precise PC watching: 
FIG. 6 is a diagram illustrating precise PC watching; 
FIG. 7 illustrates a microinstruction format; 
FIG. 8 is a sketch illustrating the architectural aspects of 

guard resolution; 
FIG. 9 illustrates schematically FIFOs in the synchroni 

Zation unit; and 
FIG. 10 illustrates a timing diagram for operation of the 

synchronization unit. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

FIG. 1 is a diagram illustrating the context of the inven 
tion. Reference numeral 2 denotes a single chip integrated 
circuit on which is provided a processor 4 which has a high 
level of functionality. One of the difficulties which exists 
with high performance, highly embedded processors is that 
they can be difficult to debug. Thus, an on-chip emulation 
(OCE) block 6 is provided on-chip which receives informa 
tion from the processor along an observe path 8 and provides 
control when necessary along a control path 10. An on-chip 
link 12 is connected to the OCE block 6 and provides an 
off-chip communication path to an off-chip link 14 which is 
connected to a debugger host 16 which acts to control the 
on-chip emulator 6. The on-chip emulator 6 can operate 
autonomously, implementing certain control routines in 
response to certain observed conditions. As will be 
described later, the on-chip emulation block includes an 
on-chip emulation program memory 50 (FIG. 2) which 
holds debugging code ready for execution by the processor 
4 when the OCE block 6 has control of the processor 4. The 
OCE block 6 also allows control of the processors to be 
taken over by the off-chip debugger host 16 via the links 12, 
14. 

FIG. 2 is a more detailed schematic of the processor 4 in 
combination with selected on-chip emulation functional 
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4 
blocks which form part of the on-chip emulator 6. The 
processor 4 comprises a processor core 18 which is con 
nected to a program memory 20 which holds code to be 
executed by the core. The core comprises a prefetch/align 
stage 22, a decode/dispatch stage 24, a microinstruction 
generator 26 and four parallel execution pipelines AUo. 
AU, DU, and DU. The processor 4 operates in a pipelined 
manner Such that all stages can be active at the same time, 
on different instructions. The pipeline stages are denoted by 
horizontal dotted lines in FIG. 2. It will readily be under 
stood that each execution pipeline itself AU, AU, DU and 
DU constitutes a number of pipeline stages. 
A brief description will now be given of operation of the 

core 18 sufficient to understand the functionality of the 
on-chip emulator which will be described later. Other details 
about the core are not discussed herein. 
The program memory 20 contains code in the form of 

128-bit long words. Each word contains a plurality of 
instructions depending on the instruction mode of the pro 
cessor. In this respect, reference is made to FIG. 3. 

According to a first instruction mode, a pair of 16-bit 
instructions are Supplied during each machine cycle to the 
decoder 24 from the prefetch/align stage buffer 22. This pair 
is denoted slot.0, slot1 in bit sequences w0, will etc. This is 
referred to herein as GP16 superscalar mode. 

According to a second instruction mode, two instructions 
each having a length of 32 bits are supplied to the decoder 
24 from the prefetch/align stage 24 in each machine cycle, 
for example wo, will in CYCLE 0. This mode is referred to 
herein as GP32 superscalar mode. 

According to a third instruction mode, four instructions 
w0, will, w2, w8 each of 32 bits in length are supplied to the 
decoder in each machine cycle. This is referred to herein as 
VLIW mode. 

In all modes, each fetch operation initiated to the program 
memory 2 retrieves an instruction word of 128 bits in length. 
Thus, in GP16 mode, the instruction word comprises eight 
16-bit instructions, paired as slot.0, slot1 for each machine 
cycle. In GP32 and VLIW mode, the instruction word 
comprises four 32-bit instructions. 
The prefetch/align stage 22 includes a fetch program 

counter 28 which is responsible for issuing addresses to 
fetch instruction words from the program memory 20. 

Instructions are Supplied to the decode/dispatch stage 24 
depending on the instruction mode of the processor. That is, 
two GP32 instructions or two GP16 instructions are supplied 
in each cycle of operation. In VLIW mode, the four VLIW 
Sub-instructions are Supplied simultaneously to the decode/ 
dispatch stage 24. The decode/dispatch stage 24 issues an 
acknowledge signal ACK to say that it has accepted the 
instructions to be decoded. It is an important feature of this 
machine that, once the decode/dispatch stage 24 has 
accepted its instructions and issued an acknowledgement 
signal ACK, these instructions will proceed to the remaining 
stages of the pipelined core. An instruction cannot be 
“killed after the decode/dispatch stage 24, although of 
course they may not be executed if the guard is false. The 
instruction fetches are speculative since fetched instructions 
may never be executed by the core. 
The decode/dispatch stage 24 Supplies instructions to the 

microinstruction generator 26. The microinstruction genera 
tor generates microinstructions for the individual execution 
pipelines depending on the nature of the machine instruc 
tions. The execution pipelines AU, AU are address unit 
pipelines which deal with memory access instructions 
including loads and stores. The execution pipelines DU, 
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DUI are data unit pipelines which deal with data processing 
instructions including arithmetical and logical calculations. 
The processor operates on the basis of predicated execu 

tion. That is, each instruction in the program memory 20 is 
guarded on a guard selected from Go to Gs. Gs always has 
a value of one, that is that instruction will always be 
executed. The values of the guards are held in an architec 
tural guard register file 30. The guard register 30 is associ 
ated with the data unit pipelines DU, DU because this is 
where most of the guard resolution takes place. Special 
instructions allow guard values to be transmitted to and from 
the address unit pipelines AU, AU which can, in fact, 
maintain its own guard register file. For the purposes of the 
functionality of the on-chip emulator 6, the guard register 
file 30 associated with the data unit pipeline is the only guard 
register file of interest, because this is the master guard 
register file which is maintained up to date architecturally. 
Thus, this one is used to supply guard values to the OCE. 
Until the guard on an instruction has been resolved, it is not 
possible to know whether or not the instruction is commit 
ted, that is it has been executed Such as to change the 
architectural state of the machine. For debugging purposes, 
it is important to know whether an instruction is committed 
or not. However, this cannot be determined at the decode/ 
dispatch stage 24 because at that stage there has been no 
resolution of the guard of the instruction. Recall also that 
there is no mechanism for “killing instructions after they 
have been acknowledged by the decode/dispatch stage. 

The OCE block 6 comprises a PC watch block 32 which 
Snoops addresses issued by the prefetch align state 22 to the 
program memory 20. Addresses which it is programmed to 
match are held in a watch register 34. When the PC watch 
block 32 sees an address which it has been programmed to 
watch for, so-called diagnostic flags DIAG are added to the 
instruction word before it is supplied to the prefetch/align 
stage 22. There are eight possible such diagnostic flags. The 
diagnostic flags are set according to the different instruction 
modes. If a diagnostic flag is set this denotes that a particular 
instruction is a PC (program count) watch, i.e., an instruc 
tion of interest to the emulator 6. FIG. 4 illustrates how the 
diagnostic flags are set in GP16 and GP32 modes. There are 
eight diagnostic flags because there can be up to eight GP16 
instructions in a 128 bit fetch line. The PC watch unit has an 
exact address of each PC it is looking for and sets the 
corresponding flag according to the positions illustrated in 
FIG. 4. In GP16 mode, each flag can be set. In GP32 mode, 
diagnostic flags can be set on bits 0.2.4 and 6 denoting each 
GP32 instruction respectively. In VLIW mode, four GP32 
diagnostic flags (bits 0.2.4 and 6) can be set. 
The prefetch align stage 22 sends to the decode/dispatch 

stage 24 a 4-bit DIAG flag which denotes which, if any, of 
the instructions Supplied to the decode/dispatch stage 24 are 
a PC watch. In VLIW mode, each bit denotes one VLIW 
Sub-instruction. 
The system described herein allows two watch modes, 

precise and non-precise. Although the following description 
of precise and non-precise watching is explained with ref 
erence to PC watches, it will be appreciated that the same 
principles can be used with software breakpoints. That is, 
special instructions can be included in the code executed by 
the processor with dedicated opcodes to cause a breakpoint. 
Such instructions have the same effect in the following as 
instructions which have been tagged as PC watch instruc 
tions. According to a precise PC watch, no Subsequent 
instructions are allowed to enter the execution pipeline, that 
is beyond the decode/dispatch stage 24. The state of the 
registers and memory is consistent with the state just before 
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6 
the breakpoint (because the watched instruction has not been 
executed and has therefore not affected the architectural 
state of the machine at the point at which the watch is 
detected). However, the precise PC watch is intrusive and 
can degrade the performance of the processor. Because the 
processor is based on predicated execution, there will be 
occasions where the instruction would not even have been 
executed because the guard would have been resolved as 
false. In Such circumstances, the performance of the 
machine has been degraded with no debugging value. 

This problem is overcome by allowing non-precise PC 
watching to be implemented in some circumstances. If the 
emulator is set to be non-precise, that instruction, and 
Subsequent instructions are allowed to enter the execution 
pipeline as normal. If, when the instruction has been 
executed the guard is resolved as true, the OCE at that point 
can take over operation of the machine for example by 
implementing a divert. However, if the guard was resolved 
as false, such that the instruction never affected the archi 
tectural state of the machine, the on-chip emulator 6 would 
take no action and the breakpoint would have caused no 
intrusion into the performance of the machine. Thus, the 
breakpoint is minimally intrusive and the performance of the 
processor is minimally degraded in non-precise PC watch 
ing. The instructions that are executed between the break 
point and the point at which the on-chip emulator 6 takes 
over operation of the processor are known as the non-precise 
overrun. There is a small disadvantage for debugging pur 
poses, which is that the state of the machine is now archi 
tecturally consistent with the state at the point at which the 
PC watch instruction becomes committed, that is several 
instructions after the break point itself and in fact at the end 
of the non-precise overrun. Thus, debugging may be slightly 
more complex in this situation, but this is more than offset 
by the advantages which are gained by the lack of intrusion 
which non-precise PC watching introduces. The on-chip 
emulator has in its control registers a user set bit which sets 
the OCE mode as precise or non-precise. 

In order to implement precise and non-precise PC watch 
ing, the on-chip emulator 6 has an OCE control unit 36 and 
a synchronization unit 38 for synchronizing the program 
count of instructions under watch with commit values Sup 
plied by the data unit. The decode/dispatch stage 24 has its 
own program counter 40 which holds the PC values of 
instructions currently being decoded. The decode/dispatch 
unit 24 supplies the PC of each instruction which it receives, 
together with a flag identifying PC watch instructions, to the 
OCE control unit 36 along line 42. The PC values are held 
in a PC FIFO in the synchronization unit 38. Commit values 
from the data unit are held in a commit FIFO in the 
synchronization unit, and the OCE only validates the PC 
watch once it sees that the instruction at that PC was 
committed. The action of the emulator 6 while awaiting 
guard resolution depends on whether it is in precise or 
non-precise watch mode. A signal is returned to the decode/ 
dispatch unit 24 on line 44 indicating the status of the watch. 
The OCE control block 36 can also set the processor into a 
debug mode. To achieve this, an architectural bit PSR.DIAG 
is set inside the program status register 47. This bit is sent 
with the fetch address to a program memory controller 21. 
If clear, the fetch is made from the normal program memory. 
This bit controls a multiplexor 48 in the program memory 
controller. The on-chip emulator 6 has its own program 
memory 50 which holds debug code which is executed by 
the processor core 18 when in debug mode. When the 
PSR.DIAG bit is set, the fetch is made from the OCE 
program memory 50 instead of from the normal program 
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memory 20. Thus, fetched debug instructions are executed 
by the processor as normal instructions. 

Reference will now be made to FIG. 5 to explain non 
precise PC watching. The PC watch (or software breakpoint) 
is detected at the decode/dispatch stage 24 by decoding of 
the DIAG flags as described above. The instruction is 
acknowledged as normal by the ACK signal. The instruction 
is then dispatched as normal to the microinstruction genera 
tor 26 and subsequently to the execution pipelines AU 
AU, DU and DU. The PC of the instruction is sent from 
the decode/dispatch stage 24 to the OCE control block 36. 

At the microinstruction generator 26, guards to be 
resolved are sent to the data unit pipelines DU DU in the 
same microinstruction that the current machine instruction 
has been encoded as. The manner in which this is done is 
described later. If the guard is resolved such that the instruc 
tion is executed, a Commit signal 52 is sent from the data 
unit pipelines DU, DU to the on-chip emulator 6. The 
on-chip emulator 6 checks the PC value in the PC register 28 
and determines from the watch register 34 what action 
should be taken in the event of a committed instruction at 
that PC value. If that action is a divert, a divert signal 46 is 
issued to the multiplexor 48, and the prefetch/align stage is 
issued with a branch address to debug code so that the 
processor can from that point execute debug code from the 
OCE program memory 50. 

If the guard had been resolved such that the instruction 
was not executed, no Commit signal would be sent to the 
on-chip emulator 6 and no debug action would be taken. It 
will be appreciated that between detecting the PC watch at 
the decode/dispatch stage 24 and resolving the guard value 
in the data unit pipelines DU DU, it is possible that a 
number of other instructions have been executed. In the case 
that the guard was resolved such that the instruction was not 
executed, all of these instructions have been properly 
executed, and the machine can continue to operate without 
intrusion. In the event that the guard value was resolved as 
committed, then for debug purposes it will be necessary for 
the debug host to “unravel a certain number of instructions 
which have been executed in between detection of the PC 
watch at the decode/dispatch stage 24 and resolution of the 
guard value at the data unit execution pipelines DU DU 
(the non-precise overrun). 
A precise PC watch will now be described with reference 

to FIG. 6. As in the case of non-precise PC watching, the 
software breakpoint or PC watch instruction is detected at 
the decode/dispatch stage 24. A PC value is sent to the OCE 
control block 36 which, in this case, determines that the 
instruction is a precise PC watch. This information is 
returned to the decode/dispatch stage 24 along line 44, and 
the decode/dispatch stage 24 therefore does not issue a 
normal acknowledgement instruction. Instead, the decoder 
issues an instruction to the data unit pipelines DUp, DU to 
request the values of the guards on which the watched 
instructions are guarded. The decode/dispatch stage 24 
enters a waiting state in which it will receive no further 
instructions. When the value of the guard has been resolved 
in the data unit execution pipelines DU DU from the 
guard register file 30, a Commit signal 52 is sent both to the 
on-chip emulator 6 and to the decode/dispatch stage 24. If 
the value has been resolved such that the instruction is 
committed the value is '1'. If the instruction is not com 
mitted the value is “0”. On receiving a Commit value “1”, 
the decode/dispatch stage 24 waits for a command from the 
emulator 6 to proceed. The command can be a divert 
command or a go command. If the command is divert, the 
PSR.DIAG bit is set so that debug code is fetched from the 
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8 
OCE program memory 50 and the next instructions therefore 
flush out the existing instructions which were in the 
prefetch/align stage 22 prior to the instruction which set the 
PC watch. If the command is “go', the processor is allowed 
to continue executing the code at which the PC watch was 
set. It is quite possible to set up a situation Such that the 
emulator 6 issues a go command for the first and second 
times of a watch instruction being detected, and divert the 
third time for example. 

Both precise and non-precise PC watches allow interrupts 
to be taken. Interrupts are each issued with particular priority 
levels. Divert routines for the on-chip emulator also have 
their own priority levels. Normally, the on-chip emulator 
divert routines would have a high priority level ensuring that 
they were executed in place of normal code. However, some 
interrupts are so important, particularly for real time sys 
tems, that they have a priority level higher than the divert 
routines of the on-chip emulator 6. Such interrupt routines 
will be executed when the debugger is either in a precise or 
non-precise PC operating mode. 
When in the precise PC watch mode, an interrupt instruc 

tion can be taken while the decode/dispatch stage 24 is 
waiting to receive the Commit signal 52. In that case, the 
Commit signal which has been received will be ignored and, 
when returning from the interrupt routine, the prefetch/align 
stage 22 will present again the PC watch instruction or 
breakpoint to the decode/dispatch stage, and a new request 
will be sent to the data unit pipelines for guard resolution. 
The interrupt handler code itself may contain a PC watch 

or break point. 
For non-precise PC watching, recall that until the Commit 

signal is received at the on-chip emulator 6, instructions are 
being executed as normal. These can include interrupt 
handling instructions. When the guard values have been 
resolved, and the Commit signal is sent to the on-chip 
emulator 6, as described above this can prompt a divert 
routine to be sent to the decode/dispatch unit 24 for some PC 
watches. If the interrupt priority is more important than the 
on-chip emulator priority, this divert will be acknowledged 
only when the interrupt handler has finished. 

It will now be described how guard resolutions are dealt 
with. FIG. 7 illustrates the format of a microinstruction 
accepted by the data unit execution pipelines DUDU. The 
microinstruction format has a number of different fields 
which are occupied depending on the nature of the machine 
instruction which caused the microinstruction to be gener 
ated. 
The SNDG field is used to implement a sendguard 

instruction to allow guard values to be sent between the data 
unit pipelines and the address unit pipelines. 
The SGDU field indicates that a data unit operation has 

been guarded and denotes the guard. 
There are three source register fields SREGo, SREG and 

SREG, and a destination register field DREG. 
The DG field indicates that a guard value has been 

modified and is used to synchronize guard values between 
the address unit pipelines and the data unit pipelines. 
An opcode field denotes the operations to be effected by 

the instruction. 
The SGLS field indicates that the load/store part of the 

instruction is guarded and denotes the guard. 
The LDST field indicates that the instruction implements 

a store or load in and out of load and store data queues. 
These are not illustrated in the drawings or described further 
herein because they are not pertinent to the present inven 
tion. In brief, they allow data to be queued for accesses to 
and from main data memory. 



US 7,240,185 B2 

The microinstruction format also includes four OCE bits. 
Bit 1 indicates that the load/store sendguard guard should be 
inverted before being transmitted to the on-chip emulator 6. 
This is to take into account instructions which are guarded 
on a false guard. Normally, instructions are committed if a 
guard value is read as true. Falsely guarded instructions are 
committed if the guard value is read as false. 

Bit 2 indicates that the value of the guard (i.e. to denote 
commit or non-commit) read in the SGLS field should be 
sent to the on-chip emulator 6 and the decode/dispatch stage 
24. 

Bit 3 indicates that the value of the guard (i.e. to denote 
commit or non-commit) read in the SGDU field should be 
sent to the on-chip emulator 6 and decode/dispatch stage 24. 

Bit 4 indicates that a store is for the on-chip emulator 6. 
Thus, it can be seen that there are two fields in the 

microinstruction which allow guard value resolutions to be 
carried out, the SGLS and SGDU fields. As two microin 
structions can be received by the data unit pipelines 
DU.Sub.0, DU.Sub. 1 simultaneously, it is possible to convey 
four guards to be resolved to the data unit pipelines in these 
two microinstructions. This is useful because it allows all of 
the possible guards in a VLIW word to be transmitted to the 
data unit pipelines in the same cycle and thus for the guard 
values to be resolved without undue delay. This is dealt with 
in the manner shown in FIG. 8. The data unit execution 
pipelines DU.Sub.0, DU.Sub.1 contain circuitry for reading 
the SGDU and SGLS fields in conjunction with the relevant 
OCE bits to access the guard register file 30 and generate the 
Commit signal 52 accordingly. The execution pipelines 
DU.Sub.0, DU.Sub.1 deal with the fields in a predetermined 
order, i.e. DU.Sub. Osgls: DU.Sub. 1sgls; DU.Sub. Osgdu: 
DU.Sub. 1sgdu to allow synchronization of the commit sig 
nals with respective PCs. 

It will be appreciated that at any one time the on-chip 
emulator 6 may hold a number of PCs indicating PC watch 
instructions which are waiting for respective Commit signals 
to be returned from the data unit pipelines. This is dealt with 
in the on-chip emulator by the synchronization unit 38 
which includes incoming PCs and Commit values. This 
allows the Commit signals to be associated with the correct 
PCs. This is discussed in more detail in our co-pending U.S. 
application Ser. No. 09/340,776 claiming priority from GB 
Application No. 9930587.2, entitled A COMPUTER SYS 
TEM WITH DEBUG FACILITY FOR DEBUGGING A 
PROCESSOR CAPABLE OF PREDICATED EXECU 
TION. 

For the sake of completeness, the mechanism used in the 
synchronization unit 38 will be briefly explained with ref 
erence to FIG. 9. Instructions are output by the dispatch 
stage 24 which Supplies to a program count FIFO (first in 
first out buffer) 120 an indication of the program count and 
an indication if the instruction is a load or store instruction. 
As the instruction passes through the pipeline stages of the 
data unit DU the guard value is resolved by hardware 101, 
103 provided in the data unit for the normal execution of 
instructions in the data unit and is not additional hardware 
for use solely by the debugging operation. In this example 
the resolution is shown as occurring at Stage e2 in the 
pipeline and the commit signal indicating whether the guard 
value is resolved as true or false is Supplied to a commit 
FIFO 121. When a load/store instruction is executed in the 
pipeline within the address unit AU a signal is sent to a load 
store sent FIFO 122 to indicate whether or not the load/store 
has been dispatched by the address unit to a data memory 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
controller (not shown). FIFO 120 receives its signals on line 
42 of FIG. 2. FIFO 121 receives its signals online 52 of FIG. 
2. 
The timing of the synchronization system 38 will be 

explained with reference to FIG. 10. The cycles of operation 
of instruction fetches, execution pipelines and memory 
accesses are controlled by clock cycles with a clock signal 
as shown at 130 in FIG. 10. The figure illustrates seven 
Successive clock cycles and in this example the program 
count of the instruction dispatch by dispatch stage 24 occurs 
in cycle 2 as shown in the program count line 131. The 
commit signal is sent out in cycle 4 as shown in line 132. The 
load/store signal from the address unit is provided in cycle 
5 as shown in line 133. It will be appreciated that the signal 
on line 131 was fed into FIFO 120. The signal on line 132 
was fed into FIFO 121. The signal on line 133 was fed into 
FIFO 122. Each of the FIFOs 120, 121 and 122 operate on 
synchronized clock cycles from the clock signal shown in 
FIG. 10. Each of the FIFOs 120-122 is then read in clock 
cycle 6 as shown by lines 136, 137 and 138 in FIG. 10. The 
result of reading each of those FIFOs on the same clock 
cycle 9 will indicate correlation between a commit signals 
and any of the events watched on lines 131-133. The 
emulator can therefore through use of the synchronization 
unit 38 establish the program count which was associated 
with a committed instruction and one which gave rise to a 
PC watch. 
What is claimed is: 
1. A computer system for executing predicated instruc 

tions wherein each instruction includes a guard, the value of 
which determines whether or not that instruction is 
executed, the computer system comprising: 

a fetch unit for fetching instructions to be executed; 
a decode unit for decoding said instructions; 
at least one pipelined execution unit for executing 

decoded instructions and being associated with a guard 
register file holding values of the guards to allow 
resolution of the guards to be made; and 

an emulation unit including control circuitry which coop 
erates with the decode unit to selectively control the 
decode unit to implement a precise watch mode or a 
non-precise watch mode on detection of a breakpoint 
caused by a fetched instruction having a specified 
program count or a fetched instruction having a speci 
fied opcode, wherein when the decode unit implements 
the precise watch mode, the fetched instruction causing 
the breakpoint and at least one Subsequent instruction 
are not permitted to be executed until after a guard 
value associated with the fetched instruction is resolved 
and, when the decode unit implements the non-precise 
watch mode, the instruction causing the breakpoint and 
at least one Subsequent instruction are permitted to be 
executed before the guard value associated with the 
fetched instruction is resolved. 

2. A computer system according to claim 1, which is 
implemented on a single chip. 

3. A computer system according to claim 1, which 
includes a program memory for holding said instructions to 
be executed. 

4. A computer system according to claim 1, wherein the 
emulation unit is associated with an emulation program 
memory which holds debug code which is executed in a 
debug mode. 

5. A computer system according to claim 1, wherein, 
when the emulation unit is in a precise watch mode, it is 
operable to issue a request to the at least one pipelined 
execution unit for guard resolution, the guard resolution 
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being transmitted to the control circuitry of the emulation 
unit which is responsive thereto to control operation of the 
decode unit. 

6. A computer system according to claim 5, wherein the 
control circuitry of the emulation unit is operable to issue 
one of a go command and divert command to the decode unit 
responsive to receipt of the guard resolution from the at least 
one pipelined execution unit, wherein a go command allows 
the instruction which caused the breakpoint and Subsequent 
instructions to be normally decoded and executed, and a 
divert command sets the computer system into a debug 
mode. 

7. A computer system according to claim 1, wherein, 
when the emulation unit is in non-precise watch mode, the 
instruction which caused the breakpoint and Subsequent 
instructions are decoded and executed normally until Such 
time as said instruction reaches the at least one pipelined 
execution unit where its guard is resolved such that a commit 
signal is generated to the control circuitry of the emulation 
unit, and wherein the emulation unit is responsive to receipt 
of the commit signal to set the computer system into a debug 
mode. 

8. A computer system according to claim 1, which 
includes a microinstruction generator which receives 
instructions from the decode unit and Supplies microinstruc 
tions to the at least one pipelined execution unit, said 
microinstructions including fields for holding respective 
guards to be resolved. 

9. A computer system according to claim 1, which 
includes a plurality of parallel pipelined execution units, 
including at least two data unit pipelines for executing data 
processing instructions and at least two address unit pipe 
lines for executing memory access instructions. 

10. A method of debugging an on-chip processor which is 
arranged to execute predicated instructions wherein each 
instruction includes a guard, the value of which determines 
whether or not that instruction is executed, the method 
comprising: 

fetching instructions to be executed; 
decoding said instructions; 
executing decoded instructions, said executing step 

including resolving values of the guards of the instruc 
tions; and 

detecting instructions which have a debug effect based on 
a program count or an opcode of the instructions and 
acting on said instructions in dependence on whether 
the processor is in a precise watch mode or a non 
precise watch mode wherein, according to the precise 
watch mode, an instruction having a debug effect and 
at least one Subsequent instruction are not permitted to 
be executed until after a guard value associated with the 
instruction is resolved and, according to a non-precise 
watch mode, the instruction and the at least one Sub 
sequent instruction are permitted to be executed before 
the guard value is resolved. 

11. A method according to claim 10, wherein breakpoints 
are detected at instructions having certain program counts. 

12. A method according to claim 10, wherein breakpoints 
are detected at instructions having certain opcodes. 

13. A method according to claim 10, wherein, in a precise 
watch mode, a request for guard resolution is issued Such 
that an instruction guard is resolved prior to execution of the 
instruction, selectively causing issue of one of a go com 
mand and a debug command responsive to the guard reso 
lution. 
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14. A method according to claim 12, wherein, in a debug 

mode, debug code is executed by the processor. 
15. A method according to claim 10, wherein, in a 

non-precise watch mode, the instruction which caused the 
breakpoint and Subsequent instructions are decoded and 
executed normally until Such time as the guard of the 
breakpoint instruction has been resolved wherein, if the 
guard is resolved such that a position commit signal is 
generated, the processor is set into the debug mode. 

16. A computer system for executing predicated instruc 
tions wherein each instruction includes a guard, the value of 
which determines whether or not that instruction is 
executed, the computer system comprising: 

a fetch unit for fetching instructions to be executed; 
a decode unit for decoding said instructions; 
at least one pipelined execution unit for executing 

decoded instructions and being associated with a guard 
register file holding values of the guards to allow 
resolution of the guards to be made; and 

an emulation unit including control circuitry which coop 
erates with the decode unit to selectively control the 
decode unit to implement a precise watch mode or a 
non-precise watch mode on detection of a breakpoint 
caused by a fetched instruction having a specified 
program count or a fetched instruction having a speci 
fied opcode, wherein when the decode unit implements 
the precise watch mode, the fetched instruction causing 
the breakpoint and at least one Subsequent instruction 
are not permitted to be executed until after a guard 
value associated with the fetched instruction is resolved 
and, when the decode unit implements the non-precise 
watch mode, the fetched instruction causing the break 
point and at least one Subsequent instruction are per 
mitted to be executed before the guard value is 
resolved, wherein, when the decode unit implements 
the precise watch mode, the emulation unit is operable 
to issue a request to the at least one pipelined execution 
unit for guard resolution, the guard resolution being 
transmitted to the control circuitry of the emulation unit 
which is responsive thereto to control operation of the 
decode unit. 

17. A computer system according to claim 16, wherein the 
control circuitry of the emulation unit is operable to issue 
one of a go command and divert command to the decode unit 
responsive to receipt of the guard resolution from the at least 
one pipelined execution unit, wherein a go command allows 
the instruction which caused the breakpoint and Subsequent 
instructions to be normally decoded and executed, and a 
divert command sets the computer system into a debug 
mode. 

18. A computer system according to claim 16, wherein, 
when the emulation unit is in non-precise watch mode, the 
instruction which caused the breakpoint and Subsequent 
instructions are decoded and executed normally until Such 
time as said instruction reaches the at least one pipelined 
execution unit where its guard is resolved such that a commit 
signal is generated to the control circuitry of the emulation 
unit, and wherein the emulation unit is responsive to receipt 
of the commit signal to set the computer system into a debug 
mode. 


