
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2015/144544 Al
1 October 2015 (01.10.2015) W I P0 I P CT

(51) International Patent Classification: ald, William; IBM Corporation, Mail Drop 7q4a/p334,
G06F 9/50 (2006.01) G06F 9/38 (2006.01) 2455 South Rd, Poughkeepsie, New York 12601-5400

) .a (US). BUSABA, Fadi, Yusuf; IBM Corporation, Mail
(21) International Application Number: Drop P312, 2455 South Rd, Poughkeepsie, New York

PCT/EP2015/055746 12601-5400 (US). KUBALA, Jeffrey, Paul; IBM Corpor

(22) International Filing Date: ation, Mail Drop P340, 2455 South Rd, Poughkeepsie,
19 March 2015 (19.03.2015) New York 12601-5400 (US). BRADBURY, Jonathan,

David; IBM Corporation, 2455 South Rd, Poughkeepsie,
(25) Filing Language: English New York 12601-5400 (US). HELLER, Lisa, Cranton;

(26) Publication Language: English IBM Corporation, Mail Drop A85/p310, 2455 South Rd,
Poughkeepsie, New York 12601-5400 (US). SLEGEL,

(30) Priority Data: Timothy; IBM Corporation, Mail Drop MS-P310, 2455
14/226,881 27 March 2014 (27.03.2014) US South Rd, Poughkeepsie, New York 12601-5400 (US).

(71) Applicant: INTERNATIONAL BUSINESS MA- (72) Inventor: GAINEY JR, Charles (deceased).
CHINES CORPORATION [US/US]; New Orchard
Road, Armonk, New York 10504 (US). (72) Inventor: JACOBI, Christian; IBM Corporation, 2455

(71) Applicant (for MG only): IBM UNITED KINGDOM South Rd, Poughkeepsie, New York 12601-5400 (US).

LIMITED [GB/GB]; PO Box 41, North Harbour, Ports- (74) Agent: SHAW, Anita; IBM United Kingdom Limited, In
mouth Hampshire P06 3AU (GB). tellectual Property Law, Hursley Park, Winchester Hamp

shire S021 2JN (GB).
(72) Inventors: GREINER, Dan; IBM Corporation, Mail Drop

Syl/090/f374, 555 Bailey Ave, Santa Teresa Lab, San Jose, (81) Designated States (unless otherwise indicated, for every
- California 95141-1003 (US). FARRELL, Mark; IBM kind of national protection available): AE, AG, AL, AM,

Corporation, Mail Drop P310, 2455 South Rd, Poughkeep- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

sie, New York 12601-5400 (US). OSISEK, Damian, Leo; BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
IBM Corporation, Mail Drop G28g/250-2, 1701 North St, DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
Endicott, New York 13760-5553 (US). SCHMIDT, Don- HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

[Continued on next page]

(54) Title: DYNAMIC ENABLEMENT OF MULTITHREADING

(57) Abstract: Embodiments relate to dynamic
enablement of multithreading. According to an

502 Execute Primary Thread in aspect, a computer system includes a configura
ST mode tion with a core configurable between a single

thread (ST) mode and a multithreading (MT)
504 Fetch Set-MT mode mode. The ST mode addresses a primary

Instruction thread, and the MT mode addresses the primary
S50thread and one or more secondary threads on

Get Number of Threads shared resources of the core. The computer sys
510 tem also includes a multithreading facility con

505 Multiple No Remain in ST figured to control the configuration to perform
Threads? mode a method. The method includes executing

Ye the primary thread in the ST mode, an MT
512 mode setting instruction. A number of threads

Enable MT mode requested is obtained from a location specified

514 by the MT mode setting instruction. Based on

Execute Prima and determining that the number of threads reques
Secondary Threads ted indicates multiple threads, the MT mode is

518 enabled to execute the multiple threads includ

1 Reset or Ye aDi sable MT mode and ing the primary thread and the one or more sec

eactivate? es ReainNumber of Threads Unless ondary threads.
eatvtClearing Reset

No FIG.5

W O 2 0 15/14 4 5 4 4 A 1|l l l| |lll l| | || | I|||||||I| I||||||||||||||I|||||||||||||||||||I|||I|||||||
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT,
SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
ZM, ZW. GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(84) Designated States (unless otherwise indicated, for every Published:
kind of regional protection available): ARIPO (BW, GH' _ with international search report (Art. 21(3))
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

WO 2015/144544 PCT/EP2015/055746

DYNAMIC ENABLEMENT OF MULTITHREADING

BACKGROUND

[0001] The present invention relates generally to a computer system supporting multiple

threads, and more specifically, to dynamic enablement of multithreading in a computer system.

[0002] As processor speed of computer systems has increased over the past decades, there

has not been a proportional increase in the speed in which the memory of such computer

systems can be accessed. Thus, the faster the processor's cycle time, the more pronounced is the

delay of waiting for data to be fetched from memory. The effects of such delays have been

mitigated by various levels of caching, and in recent processors, by multithreading (MT).

[0003] MT allows various core resources of a processor to be shared by a plurality of

instruction streams known as threads. Core resources can include execution units, caches,

translation-lookaside buffers (TLBs), and the like, which may be collectively referred to

generally as a core. During latency caused by a cache-miss or other delay in one thread, one or

more other threads can utilize the core resources, thus increasing the utilization of the core

resources. In a super-scalar processor simultaneous-multithreading (SMT) implementation,

multiple threads may be simultaneously serviced by the core resources of one or more cores.

[0004] In contemporary hardware platforms, MT is typically implemented in a manner that

is transparent to an operating system (OS) that runs on the MT hardware. One aspect of this

characteristic is that the OS does not require modification to utilize the MT hardware. However,

transparent MT operation with respect to the OS can result in high variability of response time,

capacity provisioning, capacity planning, and billing. This variability can occur because the OS

is unaware of whether its tasks have exclusive control of a core, or whether its tasks are

executing as threads that share a core. By design, the highest capacity for a memory-intensive

workload on MT-capable hardware is achievable when there is a high average thread density

when the cores are in use. Additional capacity may be due to increased cache exploitation

WO 2015/144544 PCT/EP2015/055746

2

provided by MT. If an OS does not consistently maintain high average thread densities for

utilized cores, then the additional overall throughput capacity provided by MT will not be

available. For example, if the hardware runs a single MT thread per core when there is low

compute utilization and runs with high thread density when there is high compute utilization,

then it can be very difficult to determine how much total MT compute capacity is available to

the workload. This hardware variability in the MT thread exploitation can lead to variability in

both transaction response times and in billing in a similar fashion as previously described with

respect to capacity.

SUMMARY

[0005] Embodiments include a system, method, and computer program product for dynamic

enablement of multithreading. According to one aspect, a computer system includes a

configuration with a core configurable between a single thread (ST) mode and a multithreading

(MT) mode. The ST mode addresses a primary thread, and the MT mode addresses the primary

thread and one or more secondary threads on shared resources of the core. The computer

system also includes a multithreading facility configured to control the configuration to perform

a method. The method includes executing in the primary thread in the ST mode, an MT mode

setting instruction. A number of threads requested is obtained from a location specified by the

MT mode setting instruction. Based on determining that the number of threads requested

indicates multiple threads, the MT mode is enabled to execute the multiple threads including the

primary thread and the one or more secondary threads.

[0006] According to another aspect, a computer-implemented method for dynamic

enablement of multithreading in a configuration is provided. The configuration includes a core

configurable between an ST mode and an MT mode, where the ST mode addresses a primary

thread and the MT mode addresses the primary thread and one or more secondary threads on

shared resources of the core. The method includes executing in the primary thread in the ST

mode, an MT mode setting instruction. A number of threads requested is obtained from a

location specified by the MT mode setting instruction. Based on determining that the number of

WO 2015/144544 PCT/EP2015/055746

3

threads requested indicates multiple threads, the MT mode is enabled to execute the multiple

threads including the primary thread and the one or more secondary threads.

[0007] A further aspect includes a computer program product for implementing dynamic

enablement of multithreading in a configuration. The configuration includes a core configurable

between an ST mode and an MT mode, where the ST mode addresses a primary thread and the

MT mode addresses the primary thread and one or more secondary threads on shared resources

of the core. The computer program product includes a computer readable storage medium

having program instructions embodied therewith, where the computer readable storage medium

is not a signal. The program instructions are readable by a processing circuit to cause the

processing circuit to perform a method. The method includes executing in the primary thread in

the ST mode on the core of the configuration, an MT mode setting instruction. A number of

threads requested is obtained from a location specified by the MT mode setting instruction.

Based on determining that the number of threads requested indicates multiple threads, the MT

mode is enabled to execute the multiple threads including the primary thread and one or more

secondary threads.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0008] The subject matter which is regarded as embodiments is particularly pointed out and

distinctly claimed in the claims at the conclusion of the specification. The forgoing and other

features, and advantages of the embodiments are apparent from the following detailed

description taken in conjunction with the accompanying drawings in which:

FIG. 1A depicts a computing environment that may be implemented in accordance

with an embodiment;

FIG. lB depicts a computing environment that may be implemented in accordance

with an embodiment;

FIG. 2 depicts processing circuitry of a core that may be implemented in accordance

with an embodiment;

WO 2015/144544 PCT/EP2015/055746

4

FIG. 3 depicts a computing environment that may be implemented in accordance

with an embodiment;

FIG. 4 depicts an example of hypervisor context retention in a computing

environment that may be implemented in accordance with an embodiment;

FIG. 5 depicts a process flow for dynamic enablement of multithreading in

accordance with an embodiment;

FIG. 6A depicts an example of a CPU address expansion process in accordance with

an embodiment;

FIG. 6B depicts an example of a CPU address contraction process in accordance

with an embodiment;

FIG. 7 depicts a process flow for a set-multithreading order in accordance with an

embodiment;

FIG. 8 depicts an example of storing multithreading capability information in

accordance with an embodiment;

FIG. 9 depicts a process flow for determining multithreading capability in

accordance with an embodiment;

FIG. 10 depicts an example of various thread context locations in accordance with an

embodiment;

FIG. 11 depicts an example of multithreading register preservation in accordance

with an embodiment;

FIG. 12 depicts a process flow for multithreading register preservation in accordance

with an embodiment;

FIG. 13 depicts an example of multithreading register restoration in accordance with

an embodiment;

FIG. 14 depicts a process flow for multithreading register restoration in accordance

with an embodiment; and

FIG. 15 depicts a computer-readable medium according to an embodiment.

DETAILED DESCRIPTION

WO 2015/144544 PCT/EP2015/055746

5

[0009] Exemplary embodiments provide multithreading operation in a computer system that

supports a single thread and a multithreading mode of operation. As used herein, a logical

thread refers to a single instruction stream and its associated state. That is, at an architecture

level, each logical thread represents an independent central processing unit (CPU) or processor.

At a hardware level, a thread is the execution of an instruction stream associated with a logical

thread, combined with the maintaining of that guest state, when the thread is dispatched.

Therefore, the terms "thread" and "CPU" may be used interchangeably herein.

[0010] In an exemplary embodiment, a CPU contains sequencing and processing facilities

for instruction execution, interruption action, timing functions, initial program loading, and

other machine-related functions. A CPU defines logical functions that may map to a variety of

underlying physical implementations. The CPU, in executing instructions, can process binary

integers and floating-point numbers (e.g., binary, decimal, and hexadecimal) of fixed length,

decimal integers of variable length, and logical information of either fixed or variable length.

Processing may be in parallel or in series. The width of processing elements, multiplicity of

shifting paths, and the degree of simultaneity in performing different types of arithmetic can

differ from one model of CPU to another without affecting the logical results.

[0011] Instructions which the CPU executes can include a number of instruction classes,

such as: general, decimal, floating-point-support (FPS), binary-floating-point (BFP), decimal

floating-point (DFP), hexadecimal-floating-point (HFP), control, and I/O instructions. The

general instructions can be used in performing binary-integer-arithmetic operations and logical,

branching, and other non-arithmetic operations. The decimal instructions operate on data in

decimal format. The BFP, DFP, and HFP instructions operate on data in BFP, DFP, and HFP

formats, respectively, while the FPS instructions operate on floating-point data independent of

the format or convert from one format to another. Privileged control instructions and the 1/0

instructions can be executed when the CPU is in a supervisor state, and semi-privileged control

instructions can be executed in a problem state, subject to appropriate authorization

mechanisms.

WO 2015/144544 PCT/EP2015/055746

6

[0012] The CPU provides registers which are available to programs but do not have

addressable representations in main storage. The registers can include, for instance, a current

program-status word (PSW), general registers, floating-point registers and a floating-point

control register, vector registers, control registers, access registers, a prefix register, a time-of

day (TOD)-programmable register, and registers for a clock comparator and CPU timer. This

set of registers may be referred to as the CPU's architected register context. Each CPU in a

configuration can provide access to a TOD clock, which may be shared by all CPUs in the

configuration. An instruction operation code can determine which type of register is to be used

in an operation.

[0013] Each CPU may have a type attribute that indicates whether it provides a full

complement of functions and facilities (e.g., a general CPU), or whether it is intended to process

specific types of workloads (e.g., a specialty CPU). A primary CPU is either a general CPU or a

CPU having the same type as the CPU started following a last initial program load (IPL)

operation (the IPL CPU). A secondary CPU is any CPU other than a general CPU having a

CPU type that differs from the IPL CPU.

[0014] A multithreading facility may be available on a computer system that implements a

supporting architecture. The multithreading facility provides support for multithreading to

enable a group of threads, which may also be referred to as CPUs, that share a core. When the

multithreading facility is enabled, the CPUs within a core may share certain hardware resources

such as execution units or caches. When one CPU in a core is waiting for hardware resources

(typically, while waiting for a memory access), other CPUs in the core can utilize the shared

resources in the core rather than have them remain idle. When the multithreading facility is

installed and enabled, a thread is synonymous with a CPU that is a member of a core. When the

multithreading facility is not installed, or the facility is installed but not enabled, a core

comprises a single CPU or thread.

[0015] When the multithreading facility is installed, it may be enabled by execution of a set

multithreading signal processor (SIGP) order. In an exemplary embodiment, when the

WO 2015/144544 PCT/EP2015/055746

7

multithreading facility is enabled, the number of CPUs in a configuration is increased by a

multiple, the value of which is determined by a program-specified maximum thread

identification (PSMTID). The number of CPUs in a core can be one more than the PSMTID. A

number of CPUs corresponding to this multiple are grouped into a core. Each core of the same

CPU type in a configuration can have the same number of CPUs. Each CPU within a core is of

the same CPU type; however, based on the model and CPU type, some CPUs within a core may

not be operational.

[0016] In an exemplary embodiment, a control program, such as an operating system (OS),

explicitly enables multithreading in order for it to be usable by the configuration that the OS

manages. Alternatively, a hypervisor can enable multithreading and guests of the hypervisor

and their applications can benefit transparently. An application program is generally unaware of

whether multithreading has been enabled. When multithreading is enabled, the CPU addresses

of all CPUs in the configuration are adjusted to include a core identification (or core ID) in the

leftmost bits of the address and a thread identification (thread ID, or TID) in the rightmost bits

of the address. The core ID may also be referred to as a core address value, and the TID may be

referred to as a thread address value. CPUs within a core may share certain hardware facilities

such as execution units or lower-level caches, thus execution within one CPU of a core may

affect the performance of other CPUs in the core.

[0017] In order to manage changes associated with dynamically switching one or more

cores of a configuration between single thread and multithreading modes, a number of support

features are included. To maintain compatibility with programs that do not support

multithreading, a single thread mode may be the default mode upon a reset or deactivation.

Exemplary embodiments include features to preserve, communicate, and restore thread context

from the multithreading mode to support analysis and/or restoration of the thread context after

transitioning from the multithreading mode to the single thread mode.

[0018] A computing environment that may be implemented by an exemplary embodiment

can be based, for example, on the z/Architecture offered by International Business Machines

WO 2015/144544 PCT/EP2015/055746

8

Corporation, Armonk, New York. The z/Architecture is described in an IBM® publication

entitled, "z/Architecture Principles of Operation," IBM Publication No. SA22-7832-09, August

2012, which is hereby incorporated herein by reference in its entirety. In one example, a

computing environment based on the z/Architecture includes an eServer zSeries, offered by

International Business Machines Corporation, Armonk, New York. A computing environment

can include, for example, a processor complex with one or more partitions (e.g., logical

partitions) with one or more cores (e.g., processor cores), and one or more levels of hypervisors

as further described herein.

[0019] FIG. 1A shows a computer system 100 as an example of a computing environment

that supports multithreading (MT). In the example of FIG. 1A, the computer system 100

includes a plurality of processor cores 102, an input/output (I/O) subsystem 104, and system

memory 160. The I/O subsystem 104 can provide access to I/O devices known in the art. The

processor cores 102, also referred to simply as "cores" herein, can include processing circuitry

with supporting elements. In the example of FIG. 1A, five cores 102 are depicted as core 1 110,

core2 120, core3 130, core4 140, and core5 150; however, a greater or fewer number of cores

102 is also contemplated. An MT facility 103 may be a hardware component of each of the

cores 102. In this example, each of the cores 102 is capable of supporting up to four threads.

For instance, corel 110 can support threads 111, 112, 113, and 114. Core2 120 can support

threads 121, 122, 123, and 124. Core3 130 can support threads 131, 132, 133, and 134. Core4

140 can support threads 141, 142, 143, and 144. Core5 150 can support threads 151, 152, 153,

and 154. Note that not all four threads of each core 102 may be operational at any instant. For

example, in core3 130, threads 131 and 132 can be operational while threads 133 and 134 are

allowed to be operational (depicted with shading).

[0020] FIG. 1A also depicts the system memory 160 of the computer system 100, where

parts of the system memory 160 are apportioned to logical partitionI (LPAR1) 170, LPAR2

180, and LPAR3 190. The LPARs 170, 180, 190 represent virtualized computing systems (also

known as configurations) in which an operating system such as LinuxTM or the IBM® z/OSTM,

z/VM, or zTPF operating system may be executed. FIG. 1A also shows the apportionment of

WO 2015/144544 PCT/EP2015/055746

9

the cores 102 to the LPARs 170, 180, 190. In this illustration, corel 110 and core2 120 are

dedicated for use by LPAR1 170. Core3 130 is dedicated for use by LPAR2 180, and core5 150

is dedicated for use by LPAR3 190. Core4 140 may be shared between LPAR2 180 and LPAR3

190, but is shown as being assigned to LPAR2 180 in FIG. 1A. LPAR3 190 shows an example

of two different types of cores 102 being employed by the partition, where core4 140 allows

multiple threads to be operational, but core 150 does not allow multiple threads to be

operational in this example. In the example of FIG. 1A, LPAR1 170 provides processing

resources for OS 171 and programs 172, 173, 174, and 175. LPAR2 180 provides processing

resources for OS 181 and programs 182, 183, and 184. LPAR4 190 provides processing

resources for OS 191 and programs 192 and 193.

[0021] Under control of an operating system executing in an LPAR, programs are executed

on the threads of a core. In an exemplary embodiment, an individual thread executes only one

program at time; however, a program that is designed to be re-entrant may be executed on

multiple threads or cores simultaneously. For example, program 172 of OS 171 of LPAR1 170

may be executing on threads 111 and 113 in corel 110 and in threads 121 and 124 of core2 120.

Subject to the control of an OS, different programs may be dispatched on the same or different

threads, subject to dispatching rules and quality-of-service agreements.

[0022] Also residing in the system memory 160 are various levels of firmware, including for

example, Millicode 162 and LPAR hypervisor 163. The Millicode 162 can be embodied as

firmware to support lower-level system functions. The LPAR hypervisor 163 may be, for

example, licensed internal code such as the IBM Processor-Resource / System Manager T M

(PR/SMTM). The LPAR hypervisor 163 can establish the LPARs 170, 180, 190 and may

manage dispatching on the cores 102. When the MT facility 103 is installed in the computer

system 100, the Millicode 162 and LPAR hypervisor 163 also contain MT facility support code

164 and 165 respectively. The MT facility support code 164 and 165 may be considered part of

the MT facility 103, as logic to support MT can be distributed between the Millicode 162,

LPAR hypervisor 163, and the cores 102. Although not depicted, each of the OSs 171, 181, 191

WO 2015/144544 PCT/EP2015/055746

10

can also include MT facility support code to enable and exploit MT in their respective LPARs

170, 180, 190.

[0023] FIG. lB shows the same computing system 100 as FIG. 1A, except that in the

computing environment of FIG. IB, core4 140 is now assigned to LPAR3 190 instead of

LPAR2 180. Also note that unlike FIG. 1A, where threads 143 and 144 were not operational, in

FIG. IB, all four threads 141-144 are currently operational when LPAR3 190 is dispatched on

core4 140. The dispatching and undispatching of an LPAR on a core 102 is dynamic, and at

other times other LPARs (not shown) may be operating on the same cores 102.

[0024] Turning now to FIG. 2, a block diagram of processing circuitry 200 for

implementing a processing core, such as one of the cores 102 in FIGS. 1A and 1B, is generally

shown in accordance with an embodiment. The processing circuitry 200 is an example of a

processing circuit that can support one or more threads simultaneously in a MT environment.

The processing circuitry 200 shown in FIG. 2 includes a system controller interface unit 202

that can couple the processing circuitry 200 to other processors and peripheral devices. The

system controller interface unit 202 can also connect a Dcache 204, which reads and stores data

values, an Icache 208, which reads program instructions, and a cache interface unit 206 to

external memory, processors, and other peripheral devices.

[0025] The Icache 208 can provide loading of instruction streams in conjunction with an

instruction fetch unit (IFU) 210, which pre-fetches instructions and may include speculative

loading and branch prediction capabilities. The fetched instructions can be provided to an

instruction decode unit (IDU) 212 for decoding into instruction processing data.

[0026] The IDU 212 can provide the instructions to an issue unit 214 which can control the

issuing of the instructions to various execution units, such as one or more fixed point units

(FXU) 216 for executing general operations and one or more floating point units (FPU) 218 for

executing floating point operations. The FPUs 218 can include a binary floating point unit

(BFU) 220, a decimal floating point unit (DFU) 222, or any other floating point unit. The issue

WO 2015/144544 PCT/EP2015/055746

11

unit 214 can also be coupled to one or more load/store units (LSU) 228 via one or more LSU

pipelines. The multiple LSU pipelines are treated as execution units for performing loads and

stores and address generation for branches. Both the LSU 228 and the IFU 210 can utilize a

translation-lookaside-buffer (TLB) 230 to provide buffered translations for the operand and

instruction addresses.

[0027] The FXU 216 and FPU 218 are coupled to various resources such as general-purpose

registers (GPR) 224 and floating point registers (FPR) 226. The GPR 224 and FPR 226 provide

data value storage for data values loaded and stored from the Dcache 204 by a LSU 228.

[0028] The processing circuitry 200 can also include counters and/or timers 250 to support

system time-base generation and diagnostic actions. For example, the counters and/or timers

250 may be used to support time-of-day, as well as various diagnostic and measurement

facilities.

[0029] Turning now to FIG. 3, a computing environment similar to FIG. 1A is depicted

except that in FIG. 3, a second-level hypervisor 300 is executing in LPAR2 180 of the computer

system 100. The second-level hypervisor 300, for example, the IBM z/VM operating system,

includes MT support code 301, similar to the MT support code 165 provided by the LPAR

(first-level) hypervisor 163. The second-level hypervisor 300 provides support for a plurality of

virtual machines 310, 320, and 330 (also referred to as configurations) in which guest operating

systems 311, 321, and 331 operate respectively. The guest operating systems 311, 321, and 331

may include, for example, LinuxTM or the IBM@ z/OSTM, z/VM, or z/TPF OS, or may include a

guest development environment such as the IBM conversational monitor system (CMS). Each

guest OS 311, 321, and 331 may or may not enable multithreading, in which case the second

level hypervisor 300 may be responsible for dispatching the guest OSs 311, 321, 331 and

associated programs 312, 313, 322, 323, 332, and 333 using the physical processing resources

(cores 130, 140 and threads 131-134, 141-144) that are available to the LPAR2 180 in which the

second-level hypervisor 300 operates. The programs 312, 313, 322, 323, 332, 333 of the

various virtual machines 310, 320, 330 can execute on the threads 131-134, 141-144 available to

WO 2015/144544 PCT/EP2015/055746

12

the respective guest OSs 311, 321, and 331. The guest OSs 311, 321, and 331 need not include

MT support code, as they can benefit from MT transparently if the second-level hypervisor 300

exploits multithreading.

[0030] Turning now to FIG. 4, an example of hypervisor context retention in a computing

environment that may be implemented in accordance with an embodiment is depicted. In the

example of FIG. 4, a number of support structures are depicted within the LPAR hypervisor 163

of FIGS. 1A and 1B. For example, structures 410 can support LPAR1 170 of FIG. 1A,

including state descriptions and satellite blocks that store architected register context (i.e., thread

context) for logical threads 411, 412, 413, 414, 421, 422, 423, 424 which are currently running

on physical threads 111, 112, 113, 114, 121, 122, 123, 124 as shown in FIG 1A. While these

logical threads are dispatched, the physical threads hold the current architected register context

of the threads. The architected register context will be maintained in the state descriptions and

satellite blocks when they are no longer dispatched. Structures 430 can support LPAR2 180 of

FIG. 1A, including state descriptions and satellite blocks that store architected register context

for logical threads 431, 432, 441, 442 which are currently running on physical threads 131, 132,

141, 142 as shown in FIG. 1A. Structures 450 can support LPAR3 190 of FIG. 1A, including

state descriptions and satellite blocks that store architected register context for logical threads

451 which is currently running on physical thread 151 as shown in FIG. 1A. Structures 450 also

include state descriptions and satellite blocks that store architected register context for logical

threads 461, 462, 463 and 464 which are not currently dispatched on a physical processor (as

shown with shading). Other structures supporting LPARs that are not dispatched on physical

cores can also be retained by the LPAR hypervisor 163, such as structures 470 for an LPAR A

(not depicted in FIG. 1A) including state descriptions and satellite structures for logical threads

471, 472, 473, and 474. Further structure examples include structures 480 supporting non

dispatched LPAR B (not depicted in FIG. 1A) including state descriptions and satellite

structures for logical threads 481 and 482, as well as structures 484 for non-dispatched LPAR C

(not depicted in FIG. 1A) for logical thread 485.

WO 2015/144544 PCT/EP2015/055746

13

[0031] Although a number of structures are depicted in the example of FIG. 4, it will be

understood that additional structures can be supported by the LPAR hypervisor 163 and

elsewhere in computer system 100 to manage multithreading. For example, structures to

support multithreading of virtual machines 310, 320, 330 of FIG. 3 can be retained by the

second-level hypervisor 300 of FIG. 3.

[0032] Turning now to FIG. 5, a process flow 500 for dynamic enablement of

multithreading is depicted in accordance with an embodiment. At block 502, a primary thread

executes in a single thread (ST) mode. At block 504, a multithreading (MT) mode setting

instruction is fetched in the ST mode. In executing this instruction as depicted collectively at

505, a number of threads requested from a location specified by the MT mode setting instruction

is obtained at block 506. The location can be specified by a parameter register when issuing the

set-MT mode instruction. The MT mode setting instruction can be a signal processor (SIGP)

instruction including a set-MT order and a program-specified maximum thread-id (PSMTID)

associated with the number of threads requested. An example of a process associated with a set

MT order of a SIGP instruction is further described herein in reference to FIG. 7.

[0033] Continuing with process 500, at block 508, a determination is performed as to

whether the number of threads requested indicates multiple threads. For example, multiple

threads can be indicated by a value greater than one. In embodiments where a value of zero

indicates a single thread, a value of one or more than one can indicate multiple threads. Based

on determining that the number of threads requested does not indicate multiple threads, the core

remains in ST mode at block 510, the execution of the set-MT mode instruction is complete, and

control returns to block 502. Based on determining that the number of threads requested

indicates multiple threads, MT mode is enabled at block 512, and the execution of the set-MT

mode instruction is complete. At block 514, multiple threads are executed including the

primary and one or more secondary threads. At block 516, if there is no reset or deactivation,

the process 500 loops back to block 514; otherwise, at block 518, MT mode is disabled based on

a reset or a deactivation of the configuration which reverts to ST mode. As part of disabling the

WO 2015/144544 PCT/EP2015/055746

14

MT mode, the number of threads (PSMTID) is retained for a non-clearing reset or zeroed for a

clearing reset. The process 500 returns to block 502.

[0034] A CPU can enter a load state when a load-normal, load-with-dump, load-clear, or

load-clear-list-directed key is activated. If a channel-command word (CCW)-type initial

program-loading operation is completed successfully, the CPU changes from the load state to

the operating state.

[0035] A CPU reset can be used to clear equipment-check indications and any resultant

unpredictability in the CPU state with the least amount of information destroyed. In particular,

it can be used to clear check conditions when the CPU state is to be preserved for analysis or

resumption of the operation. If a CPU reset is caused by the activation of the load-normal or

load-with-dump key, (a) it can set an architectural mode to a default mode, and (b) if the

multithreading facility is installed and enabled, multithreading is disabled. When the CPU reset

sets the default mode, it can save the current PSW so that PSW can be restored.

[0036] An initial CPU reset provides functions of a CPU reset together with initialization of

the current PSW, CPU timer, clock comparator, and other registers, such as: breaking-event

address, captured-PSW, control, floating-point-control, prefix, and TOD programmable

registers. The initial CPU reset can set the architectural mode to the default mode if it is caused

by activation of the load-normal or load-with-dump key. If multithreading is enabled when an

initial CPU reset is caused by activation of the load-normal or load-with-dump key, the initial

CPU-reset functions can be performed for the lowest-numbered CPU of a core, and the CPU

reset is performed for all other CPUs in the core. A clearing reset causes the initial CPU reset

and subsystem reset to be performed and, additionally, clears or initializes all storage locations

and registers in all CPUs in the configuration, with the exception of the TOD clock. Clearing

does not affect external storage, such as direct-access storage devices used by the control

program to hold the contents of unaddressable pages.

WO 2015/144544 PCT/EP2015/055746

15

[0037] A CPU power-on reset causes the initial CPU reset to be performed and clears the

contents of general registers, access registers, control registers, and floating-point registers to

zeroes/default values with a valid checking-block code. It will be understood that clearing or

initializing of states need not be to zero values but can default to non-zero values in the cleared

state. If a CPU power-on reset establishes the configuration, it can set the architectural mode to

the default mode; otherwise, it may set the architectural mode to that of the CPUs already in the

configuration. CPU reset, initial CPU reset, subsystem reset, and clear reset may be initiated

manually.

[0038] In exemplary embodiments, each CPU has a number assigned, called its CPU

address. A CPU address uniquely identifies one CPU within a configuration. A CPU is

designated by specifying this address in a CPU-address field of a SIGP instruction. A CPU

signaling a malfunction alert, emergency signal, or external call can be identified by storing this

address in the CPU-address field with the interruption. The CPU address is assigned by a

configuration-definition process and is not typically changed as a result of reconfiguration

changes. A program can determine the address of a CPU by using a store CPU address

instruction. The store CPU address instruction can also be used to identify a CPU address by

which a CPU is identified in a multiprocessing configuration.

[0039] When multithreading is enabled, the CPU address can include a core identification

(core ID), concatenated with an identification of a CPU within the core. The CPU identification

within a core is a thread identification (thread ID, or TID). Within a configuration, all cores

provide the same number of CPUs; however, depending on the model and CPU type, some

CPUs in a core may not be operational.

[0040] Based on the PSMTID of a parameter register used by the signal processor set

multithreading order, a fixed number of bits represent the thread identification. This number of

bits is referred to as the TID width.

WO 2015/144544 PCT/EP2015/055746

16

[0041] The core ID can be formed from the rightmost bits of the CPU address before

multithreading is enabled. The core ID is shifted left by TID-width bits, resulting in the

leftmost bits of the CPU address after multithreading is available. The thread ID has the same

TID-width number of bits, and occupies the rightmost bits of the CPU address after

multithreading is enabled. Thread IDs can be assigned in a contiguous range of numbers. Table

1 illustrates an example relationship of the PSMTID, the TID width and the CPU-address bits

comprising the core identification and thread identification.

PSMTID TID Width CPU Address Bits

Core ID Thread ID

0 0 0-15

1 1 0-14 15

2-3 2 0-13 14-15

4-7 3 0-12 13-15

8-15 4 0-11 12-15

16-31 5 0-10 11-15

Table 1 - Example address bit mapping

[0042] Address expansion is depicted in FIG. 6A as an example of a CPU address expansion

process 600A in accordance with an embodiment. At block 602, a primary thread can be

accessed in the ST mode using a core address value 604 as a number of CPU address bits.

Arrow 606 indicates switching from the ST mode to the MT mode. At block 608, the primary

thread or one or more secondary threads can be accessed in the MT mode using an expanded

address value 610. The expanded address value 610 includes the core address value 604 shifted

as a shifted core address value 612 and concatenated with a thread address value 614. The

shifted core address value 612 is a core identifier (core ID), and the thread address value 614 is

a thread identifier (TID). The shifted core address value 612 can be shifted by an amount based

WO 2015/144544 PCT/EP2015/055746

17

on a requested maximum thread identifier, e.g., PSMTID. A number of TID bits in the thread

address value 614 can be determined based on the PSMTID as shown in table 1 above. The

thread address value 614 can be concatenated to low order bits of the shifted core address value

612 to form the expanded address value 610. A thread address value 614 of all zeroes would

designate the primary thread, and values greater than zero identify and address secondary

threads.

[0043] When switching between the MT mode and ST mode, either the core address value

604 (ST mode) or the expanded address value 610 (MT mode) is selected to use as a CPU

address in a respective ST mode or MT mode. The core address value 604 is an example of a

standard-format address used in ST mode, and the core reverts from the MT mode to the ST

mode based on disabling the MT mode. In an exemplary embodiment, only the primary thread

(i.e., not secondary threads) is accessible based on disabling the MT mode. FIG. 6B depicts an

example of a CPU address contraction process 600B in accordance with an embodiment. Arrow

616 of FIG. 6B illustrates switching from the MT mode of block 608 back to the ST mode of

block 602. Reversion from the MT mode to the ST mode can include shifting the expanded

address value 610 to the right and eliminating the thread address value 614 to form a standard

format address including the core address value 604 (core ID) as the CPU address from the

shifted core address value 612.

[0044] When a reset function disables multithreading, (a) the CPU address(es) of the

CPU(s) having the thread-ID zero are shifted to the right by the same TID-width number of bits

used during enablement, (b) zeroes are inserted in the TID-width number of bits on the left of

the address, and (c) the CPU address reverts to its original non-multithreading format (i.e.,

standard-format address). All CPUs in a core having nonzero thread IDs when multithreading is

enabled are no longer operational when multithreading is disabled.

[0045] When multithreading is not enabled, the CPU address remains unchanged from the

value assigned by the configuration-definition process. In this case, the thread identification

does not exist.

WO 2015/144544 PCT/EP2015/055746

18

[0046] A number of signal processor orders can provide orders to CPUs including, for

example, start, stop, restart, stop and store status, initial CPU reset, CPU reset, store status at

address, set architecture, sense running status, set multithreading, store additional status at

address, and the like. An initial CPU reset or a CPU reset can be initiated by a signal processor

instruction and does not affect the architectural mode or other CPUs, does not disable

multithreading, and does not cause 1/0 to be reset.

[0047] A set architecture order specifies an architectural mode to which all CPUs in the

configuration are to be set. Architecture differences can include different addressing modes,

register definitions, and instructions supported by the CPUs. Upon a change in architectural

mode, select bit fields of registers can be set to a default state (e.g., zeroed), access-register

translation lookaside buffers (ALBs) and translation lookaside buffers (TLBs) of all CPUs in the

configuration are cleared, and a serialization and checkpoint-synchronization function can be

performed on all CPUs in the configuration.

[0048] A sense running status order can indicate whether an addressed CPU is running. In

ST mode, an indicator can be returned as a running/not running status. In MT mode, an

indicator can be used to identify whether any CPU of the core in which the addressed CPU is a

member is running, or all CPUs of the core in which the addressed CPU is a member are not

running.

[0049] A set-MT order enables the multithreading facility. Bit positions of a parameter

register can contain the PSMTID to be provided in the configuration. The PSMTID can be

defined as one less than the number of CPUs to be made addressable in each core. For example,

a value of 3 in designated bit positions indicates that a maximum of four threads are to be

provided. The contents of a CPU-address register of the SIGP instruction can be ignored as all

CPUs in the configuration are considered to be addressed. If accepted, the set-MT order is

completed by all CPUs during the execution of the SIGP instruction. With reference to FIG. 7,

a process 700 for a SIGP set-MT order 702 is depicted. An error indication can be provided and

enablement of the MT mode prevented based on determining that the SIGP set-MT order 702

WO 2015/144544 PCT/EP2015/055746

19

was issued with one or more of: an invalid order, an incorrect state, and an invalid parameter, as

further described herein in reference to the process 700 of FIG. 7.

[0050] If the multithreading facility is not installed at block 704 or the CPU is not enabled

in a valid architecture mode 708, then the set-MT order is not accepted and an invalid order

indication may be returned at blocks 706 or 710 respectively. If the other CPUs in the

configuration are not in the stopped or check-stop state at block 712, or if the configuration is

already enabled for multithreading at block 716, the set-MT order is not accepted and an

incorrect state indication may be returned at block 714 or 718 respectively.

[0051] If the PSMTID is invalid at block 720, then the set-MT order is not accepted and an

invalid parameter indication may be returned at block 722. When the PSMTID is zero at block

724, the configuration is not enabled for multithreading, remains in ST mode, and provides any

status as a condition code at block 728. In an exemplary embodiment, when the PSMTID is

valid and nonzero, at block 726, the configuration is enabled for multithreading, resulting in

CPU-address expansion, the ALBs and TLBs of all CPUs in the configuration are cleared of

their contents, and a serialization and checkpoint-synchronization function is performed on all

CPUs in the configuration. Status can be provided at block 728 in a condition code. Upon

successful completion, all CPUs other than the CPU executing the set-MT order remain in the

stopped or check-stop state. However, if a CPU was in the check-stop state before

multithreading is enabled, it may be unpredictable whether the CPUs having nonzero thread IDs

in the same core are placed in the stopped or check-stopped state.

[0052] A thread context may also be referred to as an architected register context. The

architected register context (that is, the contents of the PSW, CPU timer, clock comparator,

general registers, floating-point registers and floating-point control register, vector registers,

control registers, access registers, prefix register, and TOD-programmable register, etc.) of each

CPU before multithreading is enabled becomes the architected register context of the CPU

having TID zero of each respective core after multithreading is enabled. Similarly, the

architected register context of the CPU having TID zero of each core of an MT-enabled

WO 2015/144544 PCT/EP2015/055746

20

configuration becomes the architected register context of each respective CPU when

multithreading is disabled as a result of the activation of a load-normal or load-with-dump key.

[0053] The architected register context of all CPUs having a nonzero thread identification

can be retained when the multithreading facility is disabled as a result of the activation of a

load-normal or load-with-dump key operation. If the multithreading facility is subsequently re

enabled without an intervening clear reset, the architected register context of all CPUs having a

nonzero thread identification are restored.

[0054] When multithreading is re-enabled after having been disabled by the activation of the

load-normal or load-with-dump key, if the value of the PSMTID in bits of the parameter register

differs from that used in the preceding enablement, then the architected register context of all

CPUs having nonzero thread IDs can be unpredictable.

[0055] A store system information instruction can be used to store information about a

component or components of a configuration into a system-information block (SYSIB). The

SYSIB can include an MT installed field, an MT general field, a total CPU/core count, a

configured CPU/core count, a standby CPU/core count, a reserved CPU/core count, and other

fields. The MT installed field can indicate whether the multithreading facility is installed and

may also indicate the highest supported TID for a first core type, e.g., a specialty core type. The

MT general field can indicate the highest supported TID for a second core type, e.g., a general

core type. The highest supported TID in the MT general field may be limited to being less than

or equal to the highest supported TID in the MT installed field. The total CPU/core count may

indicate a total number of general CPUs or cores comprising general CPUs in the configuration,

whether in the configured, standby, or reserved state. The configured CPU/core count can

indicate a number of general CPUs or cores comprising general CPUs in the configured state,

i.e., in the configuration and ready to execute programs. The standby CPU/core count indicates

a number of general CPUs or cores comprising general CPUs in the standby state, i.e., not

available to be used to execute programs until placed in the configured state. The reserved

CPU/core count indicates a number of general CPUs or cores comprising general CPUs in the

WO 2015/144544 PCT/EP2015/055746

21

reserved state, i.e., unavailable to be used to execute programs and unable to be placed in the

configured state.

[0056] FIG. 8 depicts an example of storing multithreading capability information in

accordance with an embodiment. A program executing in a thread, such as thread of core

800A, may fetch a STORE SYSTEM INFORMATION (ST SI) instruction 830 from memory

801 of a configuration 850 such as an LPAR. The execution of the STSI instruction may result

in the storing 832 of a system information block (SYSIB) 802. In the example of FIG. 8, the

SYSIB 802 includes an MT installed identifier 804 indicating whether the configuration 850

supports multithreading. The SYSIB 802 also includes a maximum thread identifier of a highest

supported thread of a core 800A/800B that can be provided as a maximum TID per core 806 for

specialty cores and a maximum TID for general cores 808. The SYSIB 802 may also include a

current program-specified maximum thread identifier (PSMTID) 809. The current PSMTID

809 reflects a multithreading mode as enabled in configuration 850 by the program. The current

PSMTID 809 may not be defined if the STSI instruction 830 is executed at a basic-machine

level.

[0057] A program executing in a thread, such as thread2 of a core 800B, may also fetch a

SERVICE CALL (SERVC) instruction 834 from memory 801 of the configuration 850, where

the instruction specifies a read-system-control-program-information (read-SCP-info, or RSCPI)

command. The execution of the RSCPI command may cause a service-call control block

(SCCB) 810 to be stored 836 in the memory 801. In an exemplary embodiment, the SCCB 810

stored by the execution of the RSCPI command provides similar and additional information that

may not be available in the SYSIB 802. In the example of FIG. 8, the SCCB 810 includes an

MT installed identifier 812 indicating whether the core 800B supports multithreading. The

SCCB 810 also includes a maximum thread identifier of a highest supported thread of the core

800B that can be provided as a maximum TID per core 814 for specialty cores and a maximum

TID for general cores 816. The values of 812-816 of the SCCB 810 are equivalent to the values

804-808 that may be accessible in the SYSIB 802. Additionally, the SCCB 810 can include a

last-set program-specified maximum thread identifier of a highest supported thread of the core

WO 2015/144544 PCT/EP2015/055746

22

800B, which is also referred to the as a last-set program-specified maximum thread identifier

(PSMTID) 818. The SCCB 810 can also include a mask of PSMTID values acceptable on the

set-MT order as a PSMTID supported mask 820. The PSMTID supported mask 820 can be

used to identify supported CPUs/threads when fewer than the number defined by the max TID

per core 814 are desired.

[0058] It will be understood that the cores 800A and 800B include other aspects that are not

depicted in this example. Furthermore, the SYSIB 802 and the SCCB 810 can include

additional values beyond those depicted in the example of FIG. 8.

[0059] FIG. 9 depicts a process flow 900 for determining multithreading capability in

accordance with an embodiment. At block 902, the core executes a retrieve multithreading

capability information (RMTCI) instruction, which can be, for instance, any one of a SERVC

instruction or a STSI instruction. At block 904, thread identification information is obtained

that identifies a multithreading capability of a configuration. At block 906, the obtained thread

identification information is stored. At block 908, it is determined whether the configuration

previously had multithreading enabled based on the obtained thread identification information.

[0060] As previously described, the SERVC instruction is configured to store thread

identification information in a response block in memory (e.g., SCCB 810 of FIG. 8), and the

STSI instruction is configured to store the thread identification information in a SYSIB in

memory (e.g., SYSIB 802 of FIG. 8). The obtained thread information can include an MT

installed identifier (e.g., MT installed identifier 804 or 812 of FIG. 8) indicating whether the

core supports multithreading. The obtained thread information may also include a maximum

thread identifier of a highest supported thread of the core (e.g., maximum TID values 806, 808,

814, or 816 of FIG. 8). The obtained thread information can include a current program

specified maximum thread identifier (e.g., current PSMTID 809 of FIG. 8) and a last-set

program-specified maximum thread identifier (e.g., PSMTID 818 of FIG. 8). The response

block can include a mask of bits indicating specific thread identifiers that are individually

supported (e.g., PSMTID supported mask 820 of FIG. 8). The determination that the

WO 2015/144544 PCT/EP2015/055746

23

configuration previously had MT enabled may be based on a non-zero value in the last-set

program-specified maximum thread identifier (e.g., last-set PSMTID > 0). In an exemplary

embodiment, the configuration supports a plurality of core types.

[0061] In exemplary embodiments, registers and values such as program counter values,

which may be included in the registers or managed separately, are captured as thread context.

When address expansion occurs in MT mode, additional thread context becomes accessible. As

previously described in reference to FIG. 6, a CPU address is formed for each core in a

configuration. The CPU address may be inspected by the store CPU address instruction, it

appears in other structures, and it is used in various SIGP orders. When MT is not enabled, this

addressing scheme remains unchanged. When MT is enabled, the CPU address undergoes an

expansion process. As previously described, the non-MT-enabled portion of the CPU address

can be shifted left sufficient bits to accommodate the TID. For example, if an operating system

issued the SIGP set-MT order with a PSMTID value 1, the CPU address would be shifted left by

1 bit; if PSMTID was 2 or 3, the CPU address would be shifted left by 2 bits, if PSMTID is 4-7,

the CPU address would be shifted left by 3 bits, and so forth.

[0062] When multithreading is subsequently disabled (as a result of a clear reset or CPU

reset caused by a load-normal operation), CPU address contraction occurs. The MT-enabled

CPU address can be shifted right by the same number of PSMTID bits used in the SIGP set-MT

order that enabled MT, and the thread-ID portion of the address disappears. The thread context

that is accessible during MT mode can reside in one or more locations, such as the example

depicted in FIG. 10. In the example of FIG. 10, a configuration 1000 includes core 1002 and

may include other cores (not depicted). Memory 1006 can include configuration memory 1005

as part of the configuration 1000 and host/firmware memory 1007 that is separate from the

configuration 1000. The host/firmware memory 1007 can include a state-description block

1008 maintained by a host, which may store a thread context 1010 for a thread (e.g., thread n in

FIG. 10). A satellite block 1012 may be anchored to the state-description block 1008 in the

memory 1006 as part of the host/firmware memory 1007, where the satellite block 1012 can

include thread context 1014 as an alternative to the thread context 1010 or in combination with

WO 2015/144544 PCT/EP2015/055746

24

the thread context 1010. Each thread may have a corresponding state-description block 1008

and optionally a satellite block 1012, where thread context 1010 or thread context 1014 can be

stored. As a further alternative, hardware context registers 1016 can be used to store a thread

context 1018, for instance, in core 1002. The examples of thread context 1010, 1014, and 1018

can be used in combination or separately as storage options. Alternate storage options can be

employed in embodiments. Regardless of where thread context is maintained, upon address

contraction, the thread context may no longer be directly accessible, but can be preserved for

access by a dump program.

[0063] When MT is disabled, the CPU-address-contraction process makes threads 1-n of a

core no longer addressable; similarly, the thread context including architected registers is no

longer visible to a program. If MT was disabled as a result of a CPU reset resulting from a non

clearing load operation, the register context of threads 1-n is retained; these data may

subsequently be inspected if the configuration is returned to the MT mode. Register context for

each guest thread can be maintained by a host in the thread's state-description block 1008 (or as

in the case of vector registers, in a satellite block 1012 anchored in the state description) as

depicted in FIG. 10.

[0064] Retention of the context of threads 1-n during the disablement of MT is a diagnostic

feature for the state of the threads to be dumped following an OS failure. Following an OS

failure, an operator may choose to run a stand-alone-dump (SADMP) program to capture the

memory and thread context of the system at the time of the failure. However, loading the

SADMP program can cause the configuration to revert to a default architectural mode with ST

mode enabled, thus MT is disabled. But, because SADMP is loaded by a non-clearing load

operation, the register context of threads 1-n of each core is retained. SADMP can determine

whether MT was enabled in the configuration being dumped by examining the results of a

SERVC read-SCP-information command's response block. This number can subsequently be

used as input to the SIGP set-MT order to re-enable MT at the same level as before.

WO 2015/144544 PCT/EP2015/055746

25

[0065] FIG. 11 depicts an example of multithreading register preservation in accordance

with an embodiment. A system, such as a computer system 1100 of FIG. 11, may include

multiple configurations 1102 and 1104. In the example of FIG. 11, configuration 1102 includes

core 1106 and core 1108, and configuration 1104 includes core 1110 and core 1112. Each of

the configurations 1102 and 1104 can independently be switched between ST and MT modes at

different times. Each of the configurations 1102 and 1104 of the computer system 1100 is

configurable with a different number of maximum thread-IDs to support a simultaneously

enabled different number of threads at each of the configurations 1102 and 1104. In the

example of FIG. 11, cores 1106 and 1108 each support a maximum of two threads while

configuration 1102 is in MT mode 1114, whereas cores 1110 and 1112 each support a

maximum of four threads while configuration 1104 is in MT mode 1116.

[0066] While MT mode 1114 is enabled in configuration 1102, both TID 0 and TID 1 are

accessible as separate thread contexts, such as separate instances of thread context 1115. At

time 1118, the MT mode 1114 may be disabled by a load-normal operation or a non-clearing

reset for the configuration 1102, which switches both cores 1106 and 1108 into ST mode 1120.

Due to address contraction as previously described, TIDO registers are accessible in ST mode

1120; however, TIDI registers that were accessible in the MT mode 1114 are retained but no

longer accessible. For example, the TIDI registers may be embodied as thread context 1010,

1014, or 1018 of FIG. 10, where an address that was available with address expansion is no

longer accessible after address contraction upon switching to ST mode 1120.

[0067] While configuration 1104 has MT mode 1116 enabled, TIDO, TID1, TID2, and TID3

registers are accessible as separate thread context, such as separate instances of thread context

1010, 1014, or 1018 of FIG. 10. In this example, TIDO represents a primary thread and TIDI

TID3 represent secondary threads that are separately maintained for each of the cores 1110 and

1112. At time 1122, the MT mode 1116 may be disabled by a clearing reset for the

configuration 1104, which switches both cores 1110 and 1112 into ST mode 1124. The clearing

reset at time 1122 can clear all of the registers of TIDO, TIDI, TID2, and TID3. Due to address

contraction as previously described, TIDO registers are accessible in ST mode 1124; however,

WO 2015/144544 PCT/EP2015/055746

26

TID1, TID2, and TID3 registers that were accessible in the MT mode 1116 are retained in a

cleared state but no longer accessible. As depicted in FIG. 11, operations can be independently

performed on each configuration 1102 and 1104 at different times 1118 and 1122 with the

effects localized to each configuration 1102 and 1104. Thus, configuration 1102 can be in ST

mode 1120 while configuration 1104 is in MT mode 1116, and the ST/MT modes need not be

aligned for all configurations of the computer system 1100.

[0068] FIG. 12 depicts a process flow 1200 for multithreading register preservation in

accordance with an embodiment. At block 1202, based on determining by a core in the MT

mode, that MT is to be disabled in the core, switching from the MT mode to the ST mode is

performed. The primary thread of the MT mode can be maintained as the only thread of the ST

mode. One or more thread contexts that include program accessible register values and program

counter values of secondary threads are made inaccessible to application programs. At block

1204, based on the switching, an operation type (e.g., clearing vs. non-clearing) is determined to

either clear the program accessible register values or retain the program accessible register

values is performed. At block 1206, based on a non-clearing operation, it is determined that the

program accessible register values are to be retained. At block 1208, based on a clearing

operation, it is determined that the program accessible registers are to be cleared.

[0069] As previously described, the program accessible register values and program counter

values of thread context can include program general purpose registers, floating-point registers,

control registers, access registers, a prefix register, and TOD programmable registers. The

control registers can include a floating-point control register, runtime-instrumentation controls,

CPU-measurement controls, and the like. Other examples of registers that can be included in

the thread context include a program-status word (e.g., including a program counter/instruction

address, condition code, and other information to control instruction sequencing and to

determine CPU state), vector registers, a CPU timer, a clock comparator, a breaking-event

address register, and other registers known in the art. As previously described, the PSMTID is

set based on a last successfully executed signal processor instruction that caused MT to be

enabled. Based on switching to the MT mode, the program accessible register values are made

WO 2015/144544 PCT/EP2015/055746

27

accessible to application programs based on corresponding secondary threads being re-enabled.

For example, switching from ST mode 1120 back to MT mode 1114 in FIG. 11 allows TIDI

registers to be accessed, and TIDI may be re-enabled. Thread context can be maintained in any

of: a state-description block, a satellite block anchored to the state-description block in memory,

or a context register, such as thread context 1010, 1014, or 1018 of FIG. 10.

[0070] A primary thread context can include program accessible register values and

program counter values of a primary thread, e.g. TIDO and TIDO registers for configuration

1104 of FIG. 11, where the primary thread context is accessible to application programs in both

the ST mode 1124 and the MT mode 1116. A secondary thread context can include program

accessible register values and program counter values of a secondary thread, e.g. TID1-TID3

and TID 1 -TID3 registers for configuration 1104 of FIG. 11.

[0071] FIG. 13 depicts an example of multithreading register restoration in accordance with

an embodiment. The example of FIG. 13 includes a computer system 1300 with a single

configuration 1302. The configuration 1302 includes core 1304, core 1306, and core 1308.

Each of the cores 1304-1308 includes a maximum of four threads (TIDO, TIDI, TID2, and

TID3) in this example. In MT mode 1310, all of thread context of TIDO-TID3 is available in

cores 1304-1308. At time 1312, the MT mode 1310 may be disabled by a load-normal

operation or a non-clearing reset of the configuration 1302, which switches cores 1304-1308

into ST mode 1314. In ST mode 1314, TIDO registers remain accessible, and TID1-TID3

registers are inaccessible but are retained for each of the cores 1304-1308. At time 1316, MT

can be re-enabled by execution of a SIGP set-MT order to enter a resumed MT mode 1318. In

the resumed MT mode 1318, access to thread context of TID1-TID3 registers for each of the

cores 1304-1308 is restored. This enables inspection of all of the thread's registers, including

the TID1 -TID3 registers, by a dump program, such as stand-alone dump program 1320, to save

thread context information for analysis.

[0072] FIG. 14 depicts a process flow 1400 for multithreading register restoration in

accordance with an embodiment as may be employed by a stand-alone dumping (SADMP)

WO 2015/144544 PCT/EP2015/055746

28

program, such as stand-alone dump program 1320 of FIG. 13, to capture the architected register

context of threads following the failure of an operating system. At block 1405, a SADMP

program is loaded via a non-clearing load operation (e.g., load normal or load-with-dump). The

non-clearing load operation implicitly causes the configuration to revert to the ST mode, such as

ST mode 1314 for configuration 1302 of FIG. 13. The SADMP program can then query

whether the MT facility is available in the configuration at block 1410 by using the STSI or

SERVC instruction. If MT is installed, the SADMP program queries the last-set program

specified maximum thread identification (PSMTID) set for the configuration at block 1415. If

MT had never previously been set for the configuration, the last-set PSMTID value will be zero.

The SADMP program can then execute the instruction to re-enable multithreading at block 1420

at whatever the last-set PSMTID was (even if it was zero). If the query at block 1410 reveals

that MT is not installed, then no attempt is made to query the last-set PSMTID value at block

1415 or re-enable MT at block 1420.

[0073] The SADMP program attempts to signal each other CPU (thread) in the

configuration to save its architected register context in a predefined location in memory. If MT

was not previously enabled prior to loading SADMP, the CPU addresses are the normal, non

expanded format. If MT was previously enabled, the CPU addresses are the expanded format

including a core ID and thread ID. SADMP begins with a CPU address (N) of zero at block

1425, and determines whether that CPU address represents the CPU upon which SADMP is

executing at block 1430. If so, that CPU/thread is skipped, and N is incremented to the next

value at block 1450. If N differs from the current CPU address, then that CPU/thread is

signaled to store its architected register context in memory, for example, by the execution of

either a SIGP store-status-at-address order or a SIGP stop-and-store-status order at block 1435.

If the configuration includes a vector facility, a SIGP store-additional-status-at-address order

may also be executed to store the contents of the CPU/thread's vector registers. A

determination is made as to whether the signal of block 1435 was successful at block 1440. If

successful, the SADMP program may save the CPU/thread's register context in a dump file on

tape or disk at block 1445, and processing continues by incrementing N at block 1450. If the

signal of block 1435 is not successful (for example, if the thread is not operational) as

WO 2015/144544 PCT/EP2015/055746

29

determined by block 1440, then it is skipped, and processing continues by incrementing N at

block 1450. The value of the CPU address used in signaling (N) is incremented at block 1450,

and a determination is made as to whether N is now greater than the highest-possible CPU

address for the configuration at block 1455. If N is not greater than the highest-possible CPU

address for the configuration, then processing continues by determining whether N represents

the current CPU/thread under which the SADMP program is executing at block 1430. If N is

greater than the highest-possible CPU address for the configuration, then the architected register

context restoration and dumping has completed at block 1460.

[0074] Although FIG. 14 is described with respect to one core of a configuration, it will be

understood that the process flow 1400 of FIG. 14 can be extended to run through the maximum

CPU address across all cores of a configuration that includes multiple cores. Additional

accommodations can be made in configurations to support dumping for an OS that does not

support MT or a program that is MT-aware but does not exploit MT. For example, a clearing

reset can be performed prior to loading an OS that does not support MT in the configuration to

prevent an MT-aware stand-alone dump program from attempting to dump any secondary

threads from the configuration. As another example, a program that is MT-aware but does not

exploit MT, can issue a set-MT order with a corresponding maximum thread-id of zero prior to

executing a stand-alone dump program for the configuration.

[0075] Technical effects and benefits include providing dynamic enablement of

multithreading in a computer system that supports both a single thread mode and a

multithreading mode of operation.

[0076] The system described herein enables software to mitigate hardware variability by

requiring an OS to explicitly "opt in" to exploit the MT hardware. When the OS understands

the MT nature of the execution environment, the OS has the ability to explicitly manage the per

core thread densities (to the best of its ability, given a workload dispatch pattern). The OS has

the option to maintain high thread densities even when compute resources are less utilized,

thereby mitigating much of the variability in total compute capacity that is seen on other MT

WO 2015/144544 PCT/EP2015/055746

30

implementations. As a direct result of maintaining high thread densities, both the transaction

response times and billing aspects may be more consistent.

[0077] Embodiments include a system, method, and computer program product for dynamic

enablement of multithreading. According to one aspect, a computer system includes a

configuration with a core configurable between a single thread (ST) mode and a multithreading

(MT) mode. The ST mode addresses a primary thread, and the MT mode addresses the primary

thread and one or more secondary threads on shared resources of the core. The computer

system also includes a multithreading facility configured to control the configuration to perform

a method. The method includes executing in the primary thread in the ST mode, an MT mode

setting instruction. A number of threads requested is obtained from a location specified by the

MT mode setting instruction. Based on determining that the number of threads requested

indicates multiple threads, the MT mode is enabled to execute the multiple threads including the

primary thread and the one or more secondary threads.

[0078] According to another aspect, a computer-implemented method for dynamic

enablement of multithreading in a configuration is provided. The configuration includes a core

configurable between an ST mode and an MT mode, where the ST mode addresses a primary

thread and the MT mode addresses the primary thread and one or more secondary threads on

shared resources of the core. The method includes executing in the primary thread in the ST

mode, an MT mode setting instruction. A number of threads requested is obtained from a

location specified by the MT mode setting instruction. Based on determining that the number of

threads requested indicates multiple threads, the MT mode is enabled to execute the multiple

threads including the primary thread and the one or more secondary threads.

[0079] A further aspect includes a computer program product for implementing dynamic

enablement of multithreading in a configuration. The configuration includes a core configurable

between an ST mode and an MT mode, where the ST mode addresses a primary thread and the

MT mode addresses the primary thread and one or more secondary threads on shared resources

of the core. The computer program product includes a computer readable storage medium

WO 2015/144544 PCT/EP2015/055746

31

having program instructions embodied therewith, where the computer readable storage medium

is not a signal. The program instructions are readable by a processing circuit to cause the

processing circuit to perform a method. The method includes executing in the primary thread in

the ST mode on the core of the configuration, an MT mode setting instruction. A number of

threads requested is obtained from a location specified by the MT mode setting instruction.

Based on determining that the number of threads requested indicates multiple threads, the MT

mode is enabled to execute the multiple threads including the primary thread and one or more

secondary threads.

[0080] In addition to one or more of the features described above, or as an alternative,

further embodiments can include where the MT mode setting instruction is a signal processor

(SIGP) instruction that can be issued from an operating system. The SIGP instruction can

include a set-MT order and a program specified maximum thread-id (PSMTID) associated with

the number of threads requested.

[0081] In addition to one or more of the features described above, or as an alternative,

further embodiments can include enabling the MT mode based on executing the set-MT order

with a non-zero value of the PSMTID, and remaining in the ST mode and preventing

enablement of the MT mode based on executing the set-MT order with a zero value of the

PSMTID.

[0082] In addition to one or more of the features described above, or as an alternative,

further embodiments can include where an error indication is provided and enablement of the

MT mode is prevented based on determining that the set-MT order was issued with one or more

of: an invalid order, an incorrect state, and an invalid parameter.

[0083] In addition to one or more of the features described above, or as an alternative,

further embodiments can include where the MT mode is disabled based on a reset or a

deactivation of the configuration, and one or more secondary thread contexts and a last-set

PSMTID are retained for a non-clearing reset or zeroed for a clearing reset.

WO 2015/144544 PCT/EP2015/055746

32

[0084] In addition to one or more of the features described above, or as an alternative,

further embodiments can include where the configuration defaults to the ST mode upon the reset

or the deactivation or activation of the configuration.

[0085] In addition to one or more of the features described above, or as an alternative,

further embodiments can include where an executing program is provided with an indication of

a maximum thread-id based on a response to a service call (SERVC) instruction or a store

system information (STSI) instruction.

[0086] In addition to one or more of the features described above, or as an alternative,

further embodiments can include a plurality of configurations, where each of the configurations

of the computer system is configurable with a different number of maximum thread-ids to

support a simultaneously enabled different number of threads at each of the configurations.

[0087] The terminology used herein is for the purpose of describing particular embodiments

only and is not intended to be limiting of the invention. As used herein, the singular forms "a",

"an" and "the" are intended to include the plural forms as well, unless the context clearly

indicates otherwise. It will be further understood that the terms "comprises" and/or

"comprising," when used in this specification, specify the presence of stated features, integers,

steps, operations, elements, and/or components, but do not preclude the presence or addition of

one or more other features, integers, steps, operations, element components, and/or groups

thereof.

[0088] The corresponding structures, materials, acts, and equivalents of all means or step

plus function elements in the claims below are intended to include any structure, material, or act

for performing the function in combination with other claimed elements as specifically claimed.

The description of the present invention has been presented for purposes of illustration and

description, but is not intended to be exhaustive or limited to the invention in the form

disclosed. Many modifications and variations will be apparent to those of ordinary skill in the

art without departing from the scope and spirit of the invention. The embodiment was chosen

WO 2015/144544 PCT/EP2015/055746

33

and described in order to best explain the principles of the invention and the practical

application, and to enable others of ordinary skill in the art to understand the invention for

various embodiments with various modifications as are suited to the particular use

contemplated.

[0089] The descriptions of the various embodiments of the present invention have been

presented for purposes of illustration, but are not intended to be exhaustive or limited to the

embodiments disclosed. Many modifications and variations will be apparent to those of

ordinary skill in the art without departing from the scope and spirit of the described

embodiments. The terminology used herein was chosen to best explain the principles of the

embodiments, the practical application or technical improvement over technologies found in the

marketplace, or to enable others of ordinary skill in the art to understand the embodiments

disclosed herein.

[0090] Referring now to FIG. 15, a computer program product 1500 in accordance with an

embodiment that includes a computer readable storage medium 1502 and program instructions

1504 is generally shown.

[0091] The present invention may be a system, a method, and/or a computer program

product. The computer program product may include a computer readable storage medium (or

media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[0092] The computer readable storage medium can be a tangible device that can retain and

store instructions for use by an instruction execution device. The computer readable storage

medium may be, for example, but is not limited to, an electronic storage device, a magnetic

storage device, an optical storage device, an electromagnetic storage device, a semiconductor

storage device, or any suitable combination of the foregoing. A non-exhaustive list of more

specific examples of the computer readable storage medium includes the following: a portable

computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM),

WO 2015/144544 PCT/EP2015/055746

34

an erasable programmable read-only memory (EPROM or Flash memory), a static random

access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital

versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as

punch-cards or raised structures in a groove having instructions recorded thereon, and any

suitable combination of the foregoing. A computer readable storage medium, as used herein, is

not to be construed as being transitory signals per se, such as radio waves or other freely

propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or

other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical

signals transmitted through a wire.

[0093] Computer readable program instructions described herein can be downloaded to

respective computing/processing devices from a computer readable storage medium or to an

external computer or external storage device via a network, for example, the Internet, a local

area network, a wide area network and/or a wireless network. The network may comprise

copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls,

switches, gateway computers and/or edge servers. A network adapter card or network interface

in each computing/processing device receives computer readable program instructions from the

network and forwards the computer readable program instructions for storage in a computer

readable storage medium within the respective computing/processing device.

[0094] Computer readable program instructions for carrying out operations of the present

invention may be assembler instructions, instruction-set-architecture (ISA) instructions,

machine instructions, machine dependent instructions, microcode, firmware instructions, state

setting data, or either source code or object code written in any combination of one or more

programming languages, including an object oriented programming language such as Smalltalk,

C++ or the like, and conventional procedural programming languages, such as the "C"

programming language or similar programming languages. The computer readable program

instructions may execute entirely on the user's computer, partly on the user's computer, as a

stand-alone software package, partly on the user's computer and partly on a remote computer or

entirely on the remote computer or server. In the latter scenario, the remote computer may be

WO 2015/144544 PCT/EP2015/055746

35

connected to the user's computer through any type of network, including a local area network

(LAN) or a wide area network (WAN), or the connection may be made to an external computer

(for example, through the Internet using an Internet Service Provider). In some embodiments,

electronic circuitry including, for example, programmable logic circuitry, field-programmable

gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable

program instructions by utilizing state information of the computer readable program

instructions to personalize the electronic circuitry, in order to perform aspects of the present

invention

[0095] Aspects of the present invention are described herein with reference to flowchart

illustrations and/or block diagrams of methods, apparatus (systems), and computer program

products according to embodiments of the invention. It will be understood that each block of

the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart

illustrations and/or block diagrams, can be implemented by computer readable program

instructions.

[0096] These computer readable program instructions may be provided to a processor of a

general purpose computer, special purpose computer, or other programmable data processing

apparatus to produce a machine, such that the instructions, which execute via the processor of

the computer or other programmable data processing apparatus, create means for implementing

the functions/acts specified in the flowchart and/or block diagram block or blocks. These

computer readable program instructions may also be stored in a computer readable storage

medium that can direct a computer, a programmable data processing apparatus, and/or other

devices to function in a particular manner, such that the computer readable storage medium

having instructions stored therein comprises an article of manufacture including instructions

which implement aspects of the function/act specified in the flowchart and/or block diagram

block or blocks.

[0097] The computer readable program instructions may also be loaded onto a computer,

other programmable data processing apparatus, or other device to cause a series of operational

WO 2015/144544 PCT/EP2015/055746

36

steps to be performed on the computer, other programmable apparatus or other device to

produce a computer implemented process, such that the instructions which execute on the

computer, other programmable apparatus, or other device implement the functions/acts specified

in the flowchart and/or block diagram block or blocks.

[0098] The flowchart and block diagrams in the Figures illustrate the architecture,

functionality, and operation of possible implementations of systems, methods, and computer

program products according to various embodiments of the present invention. In this regard,

each block in the flowchart or block diagrams may represent a module, segment, or portion of

instructions, which comprises one or more executable instructions for implementing the

specified logical function(s). In some alternative implementations, the functions noted in the

block may occur out of the order noted in the figures. For example, two blocks shown in

succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be

executed in the reverse order, depending upon the functionality involved. It will also be noted

that each block of the block diagrams and/or flowchart illustration, and combinations of blocks

in the block diagrams and/or flowchart illustration, can be implemented by special purpose

hardware-based systems that perform the specified functions or acts or carry out combinations

of special purpose hardware and computer instructions.

WO 2015/144544 PCT/EP2015/055746

37

CLAIMS

1. A computer system, comprising:

a configuration comprising a core configurable between a single thread (ST) mode

and a multithreading (MT) mode, the ST mode addressing a primary thread and the MT mode

addressing the primary thread and one or more secondary threads on shared resources of the

core; and

a multithreading facility configured to control the configuration to perform a method

comprising:

executing in the primary thread in the ST mode, an MT mode setting instruction;

obtaining a number of threads requested from a location specified by the MT mode

setting instruction; and

based on determining that the number of threads requested indicates multiple

threads, enabling the MT mode to execute the multiple threads comprising the primary thread

and the one or more secondary threads.

2. The computer system according to claim 1, wherein the MT mode setting instruction

is a signal processor (SIGP) instruction from an operating system, the SIGP instruction

comprising a set-MT order and a program specified maximum thread-id (PSMTID) associated

with the number of threads requested.

3. The computer system according to claim 2, further comprising:

enabling the MT mode based on executing the set-MT order with a non-zero value of

the PSMTID; and

remaining in the ST mode and preventing enablement of the MT mode based on

executing the set-MT order with a zero value of the PSMTID.

4. The computer system according to claim 3, wherein an error indication is provided

and enablement of the MT mode is prevented based on determining that the set-MT order was

issued with one or more of: an invalid order, an incorrect state, and an invalid parameter.

WO 2015/144544 PCT/EP2015/055746

38

5. The computer system according to claim 2, wherein the MT mode is disabled based

on a reset or a deactivation of the configuration, and one or more secondary thread contexts and

a last-set PSMTID are retained for a non-clearing reset or zeroed for a clearing reset.

6. The computer system according to claim 5, wherein the configuration defaults to the

ST mode upon the reset or the deactivation or activation of the configuration.

7. The computer system according to claim 1, wherein an executing program is

provided with an indication of a maximum thread-id based on a response to a service call

(SERVC) instruction or a store system information (STSI) instruction.

8. The computer system according to claim 1, further comprising a plurality of

configurations, wherein each of the configurations of the computer system is configurable with

a different number of maximum thread-ids to support a simultaneously enabled different

number of threads at each of the configurations.

9. A computer-implemented method for dynamic enablement of multithreading in a

configuration comprising a core configurable between a single thread (ST) mode and a

multithreading (MT) mode, the ST mode addressing a primary thread and the MT mode

addressing the primary thread and one or more secondary threads on shared resources of the

core, the method comprising:

executing in the primary thread in the ST mode, an MT mode setting instruction;

obtaining a number of threads requested from a location specified by the MT mode

setting instruction; and

based on determining that the number of threads requested indicates multiple

threads, enabling the MT mode to execute the multiple threads comprising the primary thread

and the one or more secondary threads.

10. The method according to claim 9, wherein the MT mode setting instruction is a

signal processor (SIGP) instruction from an operating system, the SIGP instruction comprising a

WO 2015/144544 PCT/EP2015/055746

39

set-MT order and a program specified maximum thread-id (PSMTID) associated with the

number of threads requested.

11. The method according to claim 10, further comprising:

enabling the MT mode based on executing the set-MT order with a non-zero value of

the PSMTID; and

remaining in the ST mode and preventing enablement of the MT mode based on

executing the set-MT order with a zero value of the PSMTID.

12. The method according to claim 11, wherein an error indication is provided and

enablement of the MT mode is prevented based on determining that the set-MT order was issued

with one or more of: an invalid order, an incorrect state, and an invalid parameter.

13. The method according to claim 10, wherein the MT mode is disabled based on a

reset or a deactivation of the configuration, and one or more secondary thread contexts and a

last-set PSMTID are retained for a non-clearing reset or zeroed for a clearing reset.

14. The method according to claim 9, wherein an executing program is provided with an

indication of a maximum thread-id based on a response to a service call (SERVC) instruction or

a store system information (STSI) instruction.

15. The method according to claim 9, further comprising a plurality of configurations,

wherein each of the configurations of the computer system is configurable with a different

number of maximum thread-ids to support a simultaneously enabled different number of threads

at each of the configurations.

16. A computer program product for implementing dynamic enablement of

multithreading in a configuration comprising a core configurable between a single thread (ST)

mode and a multithreading (MT) mode, the ST mode addressing a primary thread and the MT

WO 2015/144544 PCT/EP2015/055746

40

mode addressing the primary thread and one or more secondary threads on shared resources of

the core, the computer program product comprising:

a computer readable storage medium having program instructions embodied

therewith, wherein the computer readable storage medium is not a signal, the program

instructions readable by a processing circuit to cause the processing circuit to perform a method

comprising:

executing in the primary thread in the ST mode on the core of the configuration, an

MT mode setting instruction;

obtaining a number of threads requested from a location specified by the MT mode

setting instruction; and

based on determining that the number of threads requested indicates multiple

threads, enabling the MT mode to execute the multiple threads comprising the primary thread

and the one or more secondary threads.

17. The computer program product according to claim 16, wherein the MT mode setting

instruction is a signal processor (SIGP) instruction from an operating system, the SIGP

instruction comprising a set-MT order and a program specified maximum thread-id (PSMTID)

associated with the number of threads requested.

18. The computer program product according to claim 17, further comprising:

enabling the MT mode based on executing the set-MT order with a non-zero value of

the PSMTID; and

remaining in the ST mode and preventing enablement of the MT mode based on

executing the set-MT order with a zero value of the PSMTID.

19. The computer program product according to claim 18, wherein an error indication is

provided and enablement of the MT mode is prevented based on determining that the set-MT

order was issued with one or more of: an invalid order, an incorrect state, and an invalid

parameter.

WO 2015/144544 PCT/EP2015/055746

41

20. The computer program product according to claim 17, wherein the MT mode is

disabled based on a reset or a deactivation of the configuration, and one or more secondary

thread contexts and a last-set PSMTID are retained for a non-clearing reset or zeroed for a

clearing reset.

	Abstract
	Description
	Claims
	Drawings

