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SYSTEM, METHOD AND COMPUTER PROGRAM PRODUCT FOR A
PROGRAMMABLE PIXEL PROCESSING MODEL WITH INSTRUCTION

SET

RELATED APPLICATIONS

The present application is a continuation-in-part of an application filed
05/31/2000 under serial number 09/586,249, and an application filed 12/06/1999 under
serial number 09/454,516, now issued as U.S. Pat. No.: 6,198,488,

FIELD OF THE INVENTION

The present invention relates to computer graphics, and more particularly to

providing programmability in a computer graphics processing pipeline.

BACKGROUND OF THE INVENTION

Graphics application program interfaces (API’s) have been instrumental in
allowing applications to be written to a standard interface and to be run on multiple
platforms, i.e. operating systems. Examples of such graphics API’s include Open
Graphics Library (OpenGL®) and Direct 3D™ (D3D™) pipelines. OpenGL® is the
computer industry's standard graphics API for defining 2-D and 3-D graphic images.
With OpenGL®, an application can create the same effects in any operating system
using any OpenGL®-adhering graphics adapter. OpenGL® specifies a set of commands
or immediately executed functions. Each command directs a drawing action or causes

special effects.

Thus, in any computer system which supports this OpenGL® standard, the
operating system(s) and application software programs can make calls according to the
standard, without knowing exactly any specifics regarding the hardware configuration
of the system. This is accomplished by providing a complete library of low-level

graphics manipulation commands, which can be used to implement graphics operations.



10

15

20

25

30

WO 02/103633 PCT/US02/19504

A significant benefit is afforded by providing a predefined set of commands in
graphics API’s such as OpenGL®. By restricting the allowable operations, such
commands can be highly optimized in the driver and hardware implementing the
graphics API. On the other hand, one major drawback of this approach is that changes
to the graphics API are difficult and slow to be implemented. It may take years for a

new feature to be broadly adopted across multiple vendors.

With the integration of transform operations into high speed graphics chips and
the higher integration levels allowed by semiconductor manufacturing, it is now
possible to make part of the pipeline accessible to the application writer. There is thus
aneed to exploit this trend in order to afford increased flexibility in visual effects. In
particular, there is a need to provide a new computer graphics programming model and
instruction set that allows convenient implementation of changes to the graphics API,
while preserving the driver and hardware optimization afforded by currently established

graphics APT’s.
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Disclosure of the Invention

A system, method and computer program product are provided for
programmable pixel processing in a computer graphics pipeline. Initially, pixel data is
received from a source buffer. Thereafter, programmable operations are performed on
the pixel data in order to generate output. The operations are programmable in that a
user may utilize instructions from a predetermined instruction set for generating the

same. Such output is stored in a register.

In one embodiment of the present invention, the output stored in the register
may be used in performing the programmable operations on the data. Further, the pixel
data may include a position, a pixel diffuse color, a specular color, a fog value, and/or a

plurality of texture coordinates.

In still another embodiment of the present invention, an operation may be
performed involving the output. Such operation may include a scissor operation, a
color format conversion, an alpha test operation, a z-buffer/stencil operation, a blend

operation, a logic operation, a dither operation, and/or a writemask operation.

In yet another embodiment of the present invention, additional standard
operations may be performed utilizing a standard graphics application program
interface (API). For example, the API may include at least one of OpenGL® and
D3D™.

As an option, the pixel data may be negated and/or swizzled prior to performing
the programmable operations thereon. Further, the programmable operations may

include a texture fetch operation. Such texture fetch operation may involve a slope.

In still yet another embodiment, the programmable operations may support
multiple levels of precision. Such levels of precision may include full floating point,

half floating point, and fixed point. Further, the programmable operations may be
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capable of converting the pixel data from a first level of precision to a second level of
precision for packing the pixel data into a destination, performing calculations, or any
other purpose. Optionally, the programmable operations may be capable of clamping
the pixel data for packing the pixel data into a destination. The programmable

operations may also be capable of removing, or “killing,” the pixel data.

The instruction set of programmable operations may include a no operation,
texture fetch, move, derivative, multiply, addition, multiply and addition, reciprocal,
reciprocal square root, three component dot product, four component dot product,
distance vector, minimum, maximum, pack, unpack, set on less than, set on greater or
equal than, floor, fraction, kill pixel, exponential base two (2), logarithm base two (2),
and light coefficients.

By this design, the present invention allows a user to program a portion of the
graphics pipeline that handles pixel processing. This results in an increased flexibility
in generating visual effects. Further, the programmable pixel processing of the present
invention allows remaining portions of the graphics pipeline, i.e. primitive processing,
to be controlled by a standard graphics application program interface (API) for the

purpose of preserving hardware optimizations.

These and other advantages of the present invention will become apparent upon

reading the following detailed description and studying the various figures of the drawings.
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BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects and advantages are better understood from the
following detailed description of a preferred embodiment of the invention with

reference to the drawings, in which:

Figure 1 is a schematic diagram illustrating a graphics pipeline in accordance

with one embodiment of the present invention;

Figure 2 illustrates the overall operation of the various components of the

graphics pipeline of Figure 1;

Figure 3 is a schematic diagram illustrating an exemplary model of the pixel

processing module in accordance with one embodiment of the present invention;

Figure 4 is a flowchart illustrating the method by which the programming model
of Figure 3 carries out programmable pixel processing in the computer graphics

pipeline;

Figure 5 is a detailed table showing various attributes handled by the pixel

source buffer; and

Figure 6 illustrates an instruction set of programmable operations that may be

carried out by one embodiment of the present invention.
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DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 is a schematic diagram illustrating a graphics pipeline in accordance
with one embodiment of the present invention. As shown, the present embodiment
involves a plurality of modules including an attribute buffer 50, a transform module 52,
a lighting module 54, a rasterization module 56 with a set-up module 57, and a pixel

processing module 58.

As an option, each of the foregoing modules may be situated on a single
semiconductor platform. In the present description, the single semiconductor platform
may refer to a sole unitary semiconductor-based integrated circuit or chip. It should be
noted that the term single semiconductor platform may also refer to multi-chip modules
with increased connectivity which simulate on-chip operation, and make substantial
improvements over utilizing a conventional CPU and bus implementation. Of course,
the present invention may also be implemented on multiple semiconductor platforms

and/or utilizing a conventional CPU and bus implementation.

During operation, the buffer 50 is included for gathering and maintaining a
plurality of attributes. Completed vertices are processed by the transform module 52
and then sent to the lighting module 54. The transform module 52 generates parameters
for the lighting module 54 to light. The output of the lighting module 54 is screen
space data suitable for the set-up module which, in turn, sets up primitives. Thereafter,
rasterization module 56 carries out rasterization of the primitives. In particular, the
rasterization module 56 passes on pixel data including, but not limited to a position, a
pixel diffuse color, a specular color, a fog value, a plurality of texture coordinates,
and/or any other information relating to the pixels involved with the processing in the

graphics pipeline.

A pixel processing module 58 is coupled to the rasterization module 56 for

processing the pixel data. The pixel processing module 58 begins by reading the pixel
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data generated by the rasterization module 56. In operation, the pixel processing

module 58 outputs a color and a depth value.

Table 1 illustrates operations that may be done after the pixel processing module
58 is finished. A standard application program interface (API) state may be used as

appropriate, as will soon become apparent.

Table 1

Scissor

Color Format Conversion
Alpha Test
Zbuffer/Stencil
Blendfunction

Logicop

Dither

Writemask

Figure 2 illustrates a high level operation 200 of the pixel processing module 58
of Figure 1. As shown, it is constantly determined in decision 202 whether current
operation invokes a programmable pixel model of the present invention. If so, a mode
is enabled that partially supercedes the pixel processing of the standard graphics APL,

thus providing increased flexibility in generating visual effects. See operation 204.

When disabled, the present invention allows increased or exclusive control of
the graphics pipeline by the standard graphics API, as indicated in operation 206. In
one embodiment, states of the standard graphics API may not be overruled by invoking
the programmable pixel mode of the present invention. In one embodiment, no
graphics API state may be directly accessible by the present invention, with the

exception of the bound texture state.

In one embodiment, the standard graphics API may include Open Graphics
Library (OpenGL®) and/or D3D™ APIs. OpenGLP? is the computer industry's standard
API for defining 2-D and 3-D graphic images. With OpenGL®, an application can

create the same effects in any operating system using any OpenGL®—adhering graphics
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adapter. OpenGL® specifies a set of commands or immediately executed functions.
Each command directs a drawing action or causes special effects. OpenGL® and
D3D™ APIs are commonly known to those of ordinary skill, and more information on
the same may be had by reference to the OpenGL® specification Version 2.1, which is

incorporated herein by reference in its entirety.

As is well known, OpenGL® mandates a certain set of configurable
computations defining transformation, texture coordinate generation and
transformation, and lighting. Several extensions have been developed to provide

further computations to OpenGL®.

Figure 3 is a schematic diagram illustrating an exemplary model 300 of the pixel
processing module 58 in accordance with one embodiment of the present invention.
Such programming model 300 may be adapted to work with hardware accelerators of

various configuration and/or with central processing unit (CPU) processing.

As shown in Figure 3, the pixel processing module 58 includes a functional
module 302 that is capable of carrying out a plurality of different types of operations.
The functional module 302 is equipped with three inputs and an output. Associated
with each of the three inputs are a swizzling module 304 and a negating module 306 for
purposes that will be set forth hereinafter in greater detail. Data swizzling is useful
when generating vectors. Such technique allows the efficient generation of a vector

cross product and other vectors.

The functional module 302 is capable of carrying out programmable operations
and supporting multiple levels of precision. Such levels of precision may include full
floating point (i.e. 32-bit), half floating point (i.e. 16-bit), and fixed point. More
information regarding the programmable operations and the various levels of precision

will be set forth hereinafter in greater detail.
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Coupled to the output of the functional module 302 is an input of a register file
308 having three outputs. The register file 308 is also equipped with a vector
component writemask module 309. The register file 308 has single write and triple
read access. The contents of the register file 308 are initialized to (0,0,0,0) at the start

of program execution.

Also included are a pixel source buffer 312 and a constant source buffer 314.
The pixel source buffer 312 stores data in the form of pixel data, and may be equipped
with write access and/or at least single read access. The constant source buffer 314
stores data in the form of constant data, and may also be equipped with write access

and/or at least single read access. It may be read using an absolute address.

In one exemplary embodiment, the pixel source buffer 312 is twelve (12) quad-
floats in size (12*128 bits). Operation of the pixel processor module 58 may be
commenced when all pixel attributes are valid. The position contains x and y in integer
(D3D™) and +0.5 (OpenGL®) window coordinates, z is normalized to the range (0,1),
and 1/w is in homogeneous clip space. Such attributes may be mandatory in the current
exemplary embodiment. The pixel attributes may also be perspective correct. The
colors and fog value may be generated at a lower precision, while the texture
coordinates may be generated in high precision, i.e. 32-bit floating point. Figure 5is a

detailed table 500 showing various attributes handled by the pixel source buffer 312.

Each of the inputs of the functional module 302 is equipped with a multiplexer
316. This allows the outputs of the register file 308, pixel source buffer 312, and
constant source buffer 314 to be fed to the inputs of the functional module 302. This is
facilitated by buses 318.

While not shown, the functional module 302 may also be coupled to a texture
fetch module (not shown) for fetching texture data. Such texture fetch module may also
be coupled to the register file 308. It should be noted that frame buffer contents are

only visible to the pixel processing module 58 via texture fetches.
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There need not necessarily be an explicit connection between texture
coordinates and the textures that they may access. It is possible to use the same
coordinate, or generated coordinates, to access any of the active textures as many times
as desired and in any sequence desired. Programs are allowed access to sixteen (16)
active textures. If an accessed texture is not bound, the texture fetch may return
(0,0,0,0). The texture fetch instruction specifies the texture identifier desired (i.e.
between 0 and 15). In one embodiment, texture components that are in fixed point
form may have a bias (0.0,-0.5) and a multiply operation (2x,1x) applied to them before
they are returned to the pixel processing module 58. This capability need not
necessarily apply to floating point texture components. A texture fetch may return the

data at the destination precision.

The pixel processing module 58 of Figure 3 works well with hardware
accelerators. In use, pixels are processed independently. Only one pixel is visible to the
pixel processing module 58. As an option, there may be one 4-bit condition code

register initialized as equal to 0 at program start.

Figure 4 is a flowchart illustrating the method 400 by which the model of Figure
3 carries out programmable pixel processing in the computer graphics pipeline.
Initially, in operation 402, data is received from a pixel source buffer 312. Such data
may include any type of information that is involved during the processing of pixels in
the computer graphics pipeline. Further, the pixel source buffer 312 may include any
type of memory capable of storing data.

Thereafter, in operation 404, programmable operations, i.e. pixel processing
102, are performed on the data in order to generate output. The programmable
operations are capable of generating output that may be stored in the register file 308 in
operation 406. During operation 408, the output stored in the register file 308 is used in

performing the programmable operations on the data. Thus, the register file 308 may



10

15

20

25

30

WO 02/103633 PCT/US02/19504
11

include any type of memory capable of allowing the execution of the programmable

operations on the output.

By this design, the present invention allows a user to program a portion of the
graphics pipeline that handles pixel processing. This results in an increased flexibility
in generating visual effects. Further, the programmable pixel processing of the present
invention allows remaining portions of the graphics pipeline to be controlled by the

standard API for the purpose of preserving hardware optimizations.

During operation, only one pixel is processed at a time in the functional module
302 that performs the programmable operations. As such, the pixels may be processed
independently. Further, the various foregoing operations may be processed for multiple

pixels in parallel.

In one embodiment of the present invention, a constant may be received, and the
programmable operations may be performed based on the constant. During operation,
the constant may be stored in and received from the constant source buffer 314.

Further, the constant may be accessed in the constant source buffer 314 using an
absolute or relative address. As an option, there may be one or more address registers
for use during reads from the constant source buffer 314. It may be initialized to “0” at
the start of program execution in operation 204 of Figure 2. Further, the constant
source buffer 314 may be written with a program which may or may not be exposed to

users.

The register file 308 may be equipped with single write and triple read access.
Register contents may be initialized to (0,0,0,0) at the start of program execution in

operation 204 of Figure 2.

Figure 6 illustrates an instruction set of programmable operations 600 that may
be carried out by the present invention, in accordance with one embodiment. As shown

in Figure 6, such programmable operations 600 include a no operation, texture fetch,
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move, derivative, multiply, addition, multiply and addition, reciprocal, reciprocal
square root, three component dot product, four component dot product, distance vector,
minimum, maximum, pack, unpack, set on less than, set on greater or equal than, floor,
fraction, kill pixel, exponential base two (2), logarithm base two (2), and light

coefficients.

An exemplary assembly language will now be set forth in the context of which
the foregoing operations may be executed. Such language refers to a plurality of
resources delineated in Table 2. Note the correspondence with the various components

of the model 300 of Figure 3.

Table 2
Pixel Source - pl*] of size 12 vectors
(192B)
Constant Memory - c[*] of size 32 vectors
(512B)

Data Registers/Output - RO-R7,H0-H15,I0-I7 of size 8,16,8 vectors
(128B)

Condition Codes - RC,HC,IC of size 4 bits
Instruction Storage of size 128 instructions

The data registers and memory locations include four corﬁponent floating point
precision. Further, the registers may be accessed as full floating point precision
(fp32:R0-R7), half floating point precision (fp16:HO0-H15), or signed 12-bit fixed point
precision (s12:10-17). These overlap as follows: RO/HO-H1/I0-I1, R1/H2-H3/12-13,
R2/H4-H5/14-15, etc.

Vector components may be swizzled before use via four subscripts (xyzw). An

arbitrary component re-mapping may be done. Some examples are shown in Table 3.

Table 3

.XyzZw means source(x,y,z,w) -> input(x,y,z,w)
.ZZXy means source(X,y,z,w) -> input(z,z,x,y)
.XXXX means source(x,yY,z,w) -> input(x,x,x,x)
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Shortcuts: no subscripts refers to .xyzw (same as writemask)
is the same as .xXxXx
is the same as .yyyy
is the same as .zzzz
is the same as .wwww

£ N K

All source operands (except condition codes) may be negated by putting a *-¢
sign in front. The condition codes can be changed whenever data is written (by adding
a ‘c’ to the op-code) and sharing the writemask with the destination. If there is no other
destination, RC or HC or IC may be used as a dummy write register. When data is
written, each component may compared to 0.0 and its status recorded if the writemask

for that component is enabled.

The condition codes are sourced as EQ(equal), NE(not equal), LT(less),
GE(greater or equal), LE(less or equal), GT(greater), FL(false), and TR(true), which
generates four (4) bits of condition code by applying the specified comparison. As a

source (for KIL and writemask modification), the condition codes may be swizzled.

Writes to the register, condition codes, and RC are maskable. Each component
is written only if it appears as a destination subscript (from xyzw). Specifying no
writemask is the same as a writemask of xyzw. No swizzling may be possible for
writemask, and subscripts may be ordered (x before y before z before w). It is also
possible to modify the write mask by the condition codes (at the beginning of the
instruction) by an ‘AND’ operation as set forth in Table 4. It should be noted that

condition codes here have swizzle control.

Table 4
destination (GT.x) //writemask[4] = 1111 & GT.xxxXxX
destination.xw(EQ.yyzz) //writemask[4] = x00w & EQ.yyzz

An exemplary assembler format is set forth in Table 5.

Table 5
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OPCODE DESTINATION, SOURCE (S)

Valid sources are the pixel source, constants, and registers. Valid destinations
are registers, RC, HC, and IC. Output data is taken from the register file 308. It should
be noted that vertex programs use the functional module 302 for output. A particular
API mode allows seléction of an output format for the color and depth values, and

whether the program will generate a new depth value.

A blend function and alpha testing may or may not be available based on the
color output format. For example, a blend function and alpha testing may be available
if the selected color format is four (4) unsigned bytes. The final color is taken from
register RO, HO, or 10. The final color vector, regardless of the precision format, may be

stored into a frame buffer assuming a similarly sized color buffer.

If a depth value is to be generated, the final value of R1.x, H1.x, or I1.x holds
the new depth value. If depth is not to be generated, the standard pipeline depth is used.
Depth is normalized to a (0,1) range which is clamped and scaled by hardware to fit the
final depth buffer test format. The depth writemask may apply.

As mentioned earlier, three formats are supported for vector components. More
information regarding precision will now be set forth in the context of an exemplary

embodiment. Table 6 illustrates each of the various formats.

Table 6

Floating point: fp32 (s.e8.m23)

Floating point: fplé (s.e5.ml10)

Signed fixed point: s12 (2.10 in 2’s complement,
range of -2 to +2047/1024),

where:
fp32 refers to a 32-bit floating point precision

fplé refers to a 16-bit floating point precision
sl2 refers to fixed point precision
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It may not necessarily be possible to mix formats inside a vector. Further, in
one embodiment, no floating point exceptions or interrupts may be supported. Denorms
may be flushed to zero, and NaN may be treated as infinity. Negative 0.0 may also be

treated as positive 0.0 in comparisons.

In 32-bit floating point mode, the RCP and RSQ instructions may deliver
mantissa results accurate to 1.0/(2*%22). Moreover, the approximate output (.z) in the
EXP and LOG instructions only have to be accurate to 1.0/(2**11). The LIT instruction
output (.z) allows error equivalent to the combination of the EXP and LOG

combination implementing a power function.

In 16-bit floating point mode, the RCP, RSQ, LOG, and EXP instructions
deliver results accurate to within one least significant bit of the correct answer. LIT has
at least the accuracy of a LOG, multiply, and EXP sequence in 16-bit floating point
mode. In fixed point mode, all calculations are performed and then clamped into the

valid range.

Since distance is calculated as (d*d)*(1/sqrt(d*d)), 0.0 multiplied by infinity
may be 0.0. Since if/then/else evaluation is done by multiplying by 1.0/0.0 and adding
the values set forth in Table 7.

Table 7
0.0 * x = 0.0 for all x (including infinity and NaN)
1.0 * x = x for all x (including infinity and NaN)
0.0 + x = x for all x (including infinity and NaN)

In one embodiment, the registers may be grouped into 128-bit chunks, each of
which may be used as a single 4*{p32 quad-float, two 4*fp16 quad-floats, or two 4*s12
quad-fixed point. There are eight (8) such chunks allowing a maximum of eight (8)
registers in fp32 mode and sixteen (16) registers in fp16. It should be noted that there
are only eight (8) s12 registers.
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The present invention is allowed to use mixed precision registers as sources and
destination to an instruction. In this case, conversion to destination precision is done
before the instruction is executed. The instruction itself is performed at the destination
precision.

If a 128-bit chunk is read in a different format from which it was last written,
0.0 is returned. Pixel source and constants may be in 32-bit floating point precision, but

may be reduced to lower precision by the destination.

More information will now be set forth regarding each of the programmable

operations 600 of Figure 6.

No Operation (NOP)

Format:

NOP

Description:

No Operation.

Examples:

NOP

Texture Fetch (TEX,TXP,TXD)

Format:

TEX [c¢] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw],#tid
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TXP [c] D[.xyzw][(RC[.xyzw])],[-1SO[.xyzw],#tid
TXD [c] D[.xyzw][(RC[.xyzw]]],[-]SO[.xyzw}],[-]S1[.xyzw],
[-1S2[ xyzw],#tid

Description:

The contents of the source vector are used as a texture coordinate indexing into
the specified (via tid:0-15) texture map. The filtered vector resulting is placed into the
destination as a quad-float. TEX generates a texture fetch of (x,y,z) while TXP
generates a texture fetch of (x/w,y/w,z/w). TXD allows specification of the derivative in
x (S1) and y (S2). These may be used for LOD/anisotropic calculations. TXD generates

a texture fetch of (x,y,z).

Operation:

Table 8 sets forth an example of operation associated with the TEX, TXP, and

TXD instructions.

Table 8

sourceQ.c¥**; /* c is x or vy or z or w */
sourceQ.*c**;
sourceQ.**c¥*;
gsource(. ***c;
if (-source0)
t = -t;

2 N

t
t
t.
t
i

g = TextureFetch (t, texid);

if (destination.x) R.x = .X;
if (destination.y) R.y = 4.y;
if (destination.z) R.z = q.3z;
if (destination.w) R.w = q.w;

Examples:

TEX R2,R33 //Fetch from texture 3 using R3 as coords.



WO 02/103633 PCT/US02/19504

18
Derivative X (DDX)
Format:
5 DDX[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw]

Description:

DDX operates to ensure that the rate of change of the components of the source

10  with respect to the horizontal axis ‘X’ are placed into the destination.

Operation:

Table 9 sets forth an example of operation associated with the DDX instruction.
15
Table 9

sourcel.c*#*%; /* ¢ s x or y or z or w %/
sourcel.*c**;
sourcel.**c*;
sourcel.***¢;
£ (-sourceo0)
t = -t;

20

g NN N
VoI

ket oof o T

25 d(t.x)/dx;
d(t.y)/dx;
d(t.z)/dx;

d(t.w)/dx;

Q9 Q.
g NN
Buounoun

30 if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

?UFU';U'/'U
T N< R
nww
C Q

<

35  Examples:

DDX R2,R1 //Fetch x derivatives of R1

Derivative Y (DDY)



10

15

20

25

30

35

WO 02/103633 PCT/US02/19504
19

Format:

DDY[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw]

Description:

DDY operates to ensure that the rate of change of the components of the source

with respect to the vertical axis Y’ is placed into the destination.

Operation:

Table 10 sets forth an example of operation associated with the DDY

instruction.

Table 10

sourceQ.c**%; /* ¢ is x or y or 2z or w */
sourcel.*c**;

sourceQ.**¢g*;

sourceQ.***c;

source0)

= -t;

-t oof oot
Fhe o o
s NN K

t ~
CUononon

d(t.x) /dy;
d(t.y)/dy;
d(t.z)/dy;
d(t.w)/ay;

LS I

2048
5 NN K

-
th

(destination.x)
(destination.y)
if (destination.z)
if (destination.w)

He

h
el i
§ Nk
LI T O |
ie]
.:N. s

Examples:

DDY R2,R0 //Fetch y derivatives of RO

Move (MOYV)
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Format:

MOV[c] D[.xyzw][(RC[.xyzw])],[-]1SO[.xyzw]

Description:

MOV operates to move the contents of the source into a destination.

Operation:

Table 11 sets forth an example of operation associated with the MOV

instruction.

Table 11

sourcel.c***; /* ¢ is x or y or z or w */
sourcel.*c**;

sourcel.**c*;

sourcel.**¥*c;

source0)

= —t,‘

He ot of o of

T nkk
t —~

coanonn

mmwunu
ct
N

if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

g NN

P
W nnu
Q

N

Examples:

MOV RC,-R3 //Compare negative R3 to 0.0 and save
MOV R2,p[POS]l.w //Move w component of v[POS] into xyzw components
of R2
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MOV Rlxyw,R2x //Move
R1

Multiply (MUL)

Format:

PCT/US02/19504
21

x component of R2 into x,y,w components of

MUL[c] D[.xyzw] [(RC[.xyzw])],[-]SO[.xyzw],[~]S1 [.xyzw]

Description:

MUL operates to multiply sourc
times anything is 0.0.

Operation:

es into a destination. It should be noted that 0.0

Table 12 sets forth an example of operation associated with the MUL

instruction.

sourceol.
sourcel.
sourceo0.
source0.
source0)
= —t;

H-¢F ot ot oF
Hhie o » o
2NN X
 —~
o

sourcel.
sourcel.
sourcel.
sourcel.
sourcel)
= -u;

===~

TR
e~

Voo

t.x*u.x;

t.z*u.gz;
t.w*u.w;

Q.80
g NN X
I nun

if (destination.x)
if (destination.y)

Table 12

ckkk; /* ¢ is x or y or zZ or w */
*c**;
**C*;
***c;

oxF*; /* ¢ is x or v or z or w */
*c**;
**c*'-
***c;

t.y*u.y;

R
R

non

.X
Y
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Examples:

if (destination.z) R.z
if (destination.w) R.w

22

PCT/US02/19504

MUL H6,H5,c[CON5] //H6.xyzw = H5.xyzw * c[CON5].xyzw
MUL Hé6.x,H5.w,-H7 //H6.x=HS5.w*-H7.x

Add (ADD)

Format:

ADD[c] D[.xyzw][(RC[.xyzw])],[-]1SO[.xyzw],[-]1S1[.xyzw]

Description:

ADD serves to add sources into a destination.

Operation:

Table 13 sets forth an example of operation associated with the ADD

instruction.

sourceo0.
sourceQ.
sourceo0.
source0.
sourceo)
= —t;

ERSICRY
LA L I I |

H- ot ot oo

£

o~

sourcel.

sourcel.

sourcel.

sourcel,

f (-sourcel)
u = -u;

o

g.Xx = t.X+u.x;

Table 13

c***’-
*C**;
**c*;
***c;

C***;
*c**;
**c*;
***c;

/* ¢ is x or y or z or w */

/* ¢ is x or vy or z or w */
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q.y = t.ytu.y;
g.z = t.z2+u.3;
q.w = t.w+a.w;
if (destination.x) R.Xx = g.X;
if (destination.y) R.y = q.y;
if (destination.z) R.z = g.z;
if (destination.w) R.w = q.w;

Examples:

ADD HC.x,H5.x,c[CONS5] //Compare HS5.x+c[CONS5].x to 0.0 and set RC.x
ADD H6.x,HS5,-H7 //H6x=H5x-H7x
ADD H6,-H5,c[CON5] //H6.xyzw = -H5.xyzw + c[CONS5].xyzw

Multiply And Add (MAD)

Format:

MADI[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw],[-]S1[.xyzw],
[-1S2[ xyzw]

Description:

MAD serves to multiply and add sources into a destination. It should be noted

that 0.0 times anything is 0.0.

Operation:

Table 14 sets forth an example of operation associated with the MAD

instruction.

Table 14

sourcel.c***; /* ¢ is X or y or z or w */
sourcel.*g**;
sourcel.**c*;

o of o
NNM
wowon
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t.w = source0.***c;
if (-source0)
t = -t;

sourcel.gc**%; /¥ ¢ is8 X or y or z or w %/
sourcel.*c**;
sourcel.**c*;
sourcel.***¢c;
f (-sourcel)
u = -u;

s NN X
Wouwonon

}—'-FCC:F

source2.c***; /* c is x or vy or z or w */
sourcel.¥*c**;
source2 . **c*;
source2 . *¥*¥*c;
source2)
= —V;

= NN K
[ I

BB

£

<

t.X*u.x+v.Xx;
t.y*u.y+v.y;
t.z¥u.z2+v.2;
L. WU W+V.W;

Qa0
g NN M
i nnu

if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

AHxw
= NN
W
Q

Examples:

MAD H6,-H5,p[POS],-H3  //H6 = -HS5 * p[POS] - H3
MAD H6.2,H5.w,p[POSL,HS //H6.z=H5.w * p[POS].z + H5.2

Reciprocal (RCP)
Format:

RCP[c] D[.xyzw][(RC[.xyzw])],[-1S0.[xyzw]
Description:

RCP inverts source scalar into a destination. The source may have one subscript.

Output may be exactly 1.0 if the input is exactly 1.0.

RCP(-Inf) gives (-0.0,-0.0,-0.0,-0.0)



5

10

15

20

25

30

35

40

WO 02/103633 PCT/US02/19504
25

RCP(-0.0) gives (-Inf,-Inf,-Inf,-Inf)
RCP(+0.0) gives (+Inf,+Inf,+Inf,+Inf)
RCP(+Inf) gives (0.0,0.0,0.0,0.0)

Operation:

Table 15 sets forth an example of operation associated with the RCP instruction.

Table 15

t.X = sourcel.c***; /* ¢ is Xx or y or z or w */
t.y = sourcel.*c**;
t.z = sourcel.**c*;
t.w = sourcel.***c;
if (-source0)

t = -t;
if (t.x == 1.0)

g.X = g.y = .2 = q.w = 1.0;
else

q.X = .Yy = g.2 = g.w = 1.0/t.x; where |g.x -
IEEE(1.0/t.x)| < 1/(2*%22) for all 1.0<=t.x<2.0
if (destination.x) R.x = q.X;
if (destination.y) R.y = q.Vy;
if (destination.z) R.z = ¢.z;
if (destination.w) R.w = q.w;

Examples:

RCP R2,c[14]x /IR2.xyzw = 1/c[14].x
RCP R2.w,R3.z /R2.w=1/R3.2z

Reciprocal Square Root (RSQ)

Format:

RSQ[c] DLxyzw][(RC[.xyzwl)],[-1S0.[xyzw]

Description:
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RSQ performs an inverse square root of absolute value of source scalar into a

destination. The source may have one subscript. Output may be exactly 1.0 if the input

is exactly 1.0.

RSQ(0.0) gives (+Inf,+Inf,+Inf,+Inf)

RSQ(Inf) gives (0.0,0.0,0.0,0.0)

Operation:

Table 16 sets forth an example of operation associated with the RSQ instruction.

Table 16

t.X = sourcel.c**%*;
t.y = source0.*c**;
t.z = sourcel.**c*;
t.w = sourcel.***c;
if (-source0)

t = -t;
if (t.x == 1.0)

g.x = dg.y = q.
else

g.X=q.y=g.z=q.w=1.

IEEE (1.0/sqrt (t.

if (destination.
if (destination.
if (destinatiom.
if (destination.

Examples:

x) ) |

x)
v)
z)
w)

bl B ]

/* ¢ is X or y or 2 or w */

g.w = 1.0;

0/sqrt(abs(t.x)); with |g.x -
< 1/(2*%%22) for 1.0<=t.x<4.0

X = g.X;
Y = q.Yq
.2 = q.2;
W= g.w;

RSQ R3,R3y //R3 = 1/sqrt(abs(R3.y))
RSQ R2.w,p[9]x //R2.w = 1/sqrt(abs(p[9].x))

Three Component Dot Product (DP3)

Format:
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DP3[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw],[-]S1[.xyzw]

Description:

DP3 performs a three component dot product of the sources into a destination. It

should be noted that 0.0 times anything is 0.0.

Operation:

Table 17 sets forth an example of operation associated with the DP3 instruction.

Table 17

source(.c**%; /¥ ¢ ls X or y or 2 or w ¥/
sourcel.*c**;

sourcel.**c¥*;

sourcel.**%*c;

source0)

= -t;

H- ot ot oot
H o . . .
g NN R

o~
[

sourcel.c¥*+*; /* ¢ is X or v or z or w */
sourcel.*c**;
sourcel.**c¥*;
sourcel.***c;
f (-sourcel)
u = -u;

g NN
[ T |

Hogoee

g.Xx = dg.y = g.2 = g.w = t.x*u.X + t.y*u.y + t.z*u.z;

if (destination.x) R.xX = q.X;
if (destination.y) R.y = q.¥;
if (destination.z) R.z = g.Z;
if (destination.w) R.w = g.w;

Examples:

DP3 H6,H3,H4 /[H6.xyzw = H3.x*H4.x + H3.y*H4.y + H3.z*¥H4.z
DP3 H6.w,H3,H4 //H6.w=H3.x*H4.x+H3.y*H4.y + H3.z*H4.z

Four Component Dot Product (DP4)
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DP4fc] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw],[-]1S1[.xyzw]

Description:

DP4 performs a four component dot product of the sources into a destination. It

should be noted that 0.0 times anything is 0.0.

Operation:

Table 18 sets forth an example of operation associated with the DP4 instruction.

Examples:

Table 18

sourcel.c***; /* ¢ is x or vy or z or w */
sourceQ.*c*%*;

sourcel.**c*;

source(Q.***C;

source0)

= -t;

Rt oot o of
Fhe « o o
NN K

t —~
Conowon

sourcel.c¥**%; /* ¢ is x or y or z or w */
sourcel.*c#**;
sourcel.**g¥*;
. sourcel.***¢c;
if (-sourcel)
u = -u;

= t.x*u.x + t.y*u.y + t.z*u.z

+Q
X
]
£
<
.Il
1Q
N

It
iQ
£

I

if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

£ N K
[ S | B |

e

DP4 H6,p[POS],c[MVO] //H6.xyzw =p.x*c.x +p.y¥c.y +p.z*¥c.z + p.w*c.w
DP4 H6.xw,p[POS].w,H3 //H6.xw = p.w*H3.x + p.w*H3.y + p.w*H3.z +

p-w*H3.w
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Distance Vector (DST)

Format:

DST[c] D[.xyzw][(RC[.xyzw])],[-]1SO[.xyzw],[-]S1[.xyzw]

Description:

DST calculates a distance vector. A first source vector is assumed to be
(NA,d*d,d*d,NA) and second source vector is assumed to be (NA,1/d,NA,1/d). A
destination vector is then (1,d,d*d,1/d). It should be noted that 0.0 times anything is 0.0.

Operation:

Table 19 sets forth an example of operation associated with the DST instruction.

Table 19

sourcel.c***; /* ¢ is x or y or z or w */
sourcel.*c**;
sourcel. **c¥*;
. sourcel.***c;
if (-sourcel)
t = -t;

T N N
N

ot of o o

s

sourcel.c***; /* ¢ is x or Yy Or 2 Or W */
sourcel.*c**;
sourcel. **c¥*;
sourcel.***c;
f (-sourcel)
u = -u;

NN X
oo

e e ee

1
*u.y;

7

QaQaa
s NN N
mononon
[~ e e i =
g N< O

.
7

if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

bl e i
2 N R
onowon
Q
b A
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Examples:

DST R2,R3,H4

Minimum (MIN)

Format:

30

PCT/US02/19504

//R2.xyzw = (1.0,R3.y*H4.y,R3.2,H4.W)

MIN[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw],[-]S1[.xyzw]

Description:

MIN serves to move a minimum of sources into a destination.

Operation:

Table 20 sets forth an example of operation associated with the MIN instruction.

5 N N
o

et o o o

Hh »

s NN X
[T

P-g F (=~

QQQQ
.
s NN N

He e
th Fh Fh

if

o

e o~

Table 20

—

source0)
= —t;

sourcel)
= —u'-

(t.
(t.
(t.
(t.

g NN X
AANANNA
seeeg

(destination
(destination
(destination
(destination

.X)
-Y)

z)

W)

LX)
.Y)
.Z)
W)

sourceQ.c***;
sourceQ.*c**;
sourcel.**c*;
sourceQ.***c;

sourcel.c***;
sourcel. *c**;
sourcel. ¥*c*;
sourcel.,***c;

) ) ) )

Ll e

ct o ot ot

/¥ ¢ is X or y or z or w */

/* ¢ is X or y or z or w */

X u.xX;
Yo ouly;
.2 @ u.z;
W u.wy
X = (.X;
Y = 4.Yi
zZ = d.-2z;
w = g.w;
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Examples:

MIN R2,R3,HO //R2 = component min(R3,H0)
MIN R2x,R3.zHO //R2.x=min(R3.z,H0.x)
MIN CH,R3.zHO //Compare min(R3.z,HO.xyzw) to 0.0 and set RC

Maximum (MAX)

Format:

MAX]c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw],[-]S1[.xyzw]

Description:

MAX moves a maximum of sources into a destination.

Operation:

Table 21 sets forth an example of operation associated with the MAX

instruction.

Table 21

sourcel.g*%*; /* ¢ is X or y or 2 or w */
sourcel.*c**,;
gsourcel.**c*;
sourcel.***c;
f (-source0)
t = -t;

g Nk
o un

B- ot of of o

sourcel.c**%*; /* ¢ is X or y or z or w */
sourcel.*c**,;
sourcel.**c%;
sourcel.¥***c,
f (-sourcel)
u = -u;

2 N

mou

g.Xx = (t.x >= u.x) ? t.x : u.x;
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qg.y = (t.y >=u.y) ? t.y : u.y;
g.z = (t.z >= u.2) ? t.2 : u.2;
g.w= (t.w>= u.w) ? t.w : u.w;
if (destination.x) R.x = g.X;
if (destination.y) R.y = q.y;
if (destination.z) R.z = g.z;
if (destination.w) R.w = q.w;

Examples:

MAX R2,R3,HO //R2 = component max(R3,H0)
MAX R2.w,R3.xHO //R2.w=max(R3.x,HO.w)

Pack2 (PK2)

Format:

PK2[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw]

Description:

PK2 packs two source components (.xy after swizzle) into a destination. The
destination may be a fp32 “R” register. The source components are converted into fp16

format and packed into a destination.

Operation:

Table 22 sets forth an example of operation associated with the PK2 instruction.

Table 22
t.x = sourcel.c**%; /* ¢ is x oxr vy or z or w */
t.y = sourcel.*c#**;
t.z = sourcel.**c¥*;
t.w = sourcel.**%c;
if (-source0)

t ~

= -t;
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t.x = fpl6(t.x);
t.y = fplée(t.y);
g.Xx = qg.y = g.2 = g.w = ((£.x) | (t.y<<16)); /* raw
bit packing */
if (destination.x) R.x = q.X;
if (destination.y) R.y = q.y;
if (destination.z) R.z = g.z;
if (destination.w) R.w = q.w;

Examples:

PK2 RO0.z,R3 // pack x,y components of R3 into RO.z
Pack4 (PK4)
Format:

PK4[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw]

Description:

PK4 packs four source components into a destination. The destination may be a

fp32 “R” register. The source components are clamped to the range (-1.008,1.0) before

being packed into a destination as unsigned 8bit bytes.

Operation:

Table 23 sets forth an example of operation associated with the PK4 instruction.

sourcel

2 N R
[ LA N 1

H-ct ¢t o o

£ (-source0)
t = -t;

source0.
sourcel.
sourcel.

Table 23
LoEEE, /* ¢ is X or y or z or w */
*C**,‘
*-kc*l-
***c;
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g.x = t.x; if (g.x > 1.0) g.x = 1.0; else if (g.x < -
1.008) g.x = -1.008;
g.y = t.y; if (g.y » 1.0) g.y = 1.0; else if (g.y < -
1.008) g.y = -1.008;
q.z = t.z; if (g.z > 1.0) g.z2 = 1.0; else if (g.z < -
1.008) g.z = -1.008;
g.w=t.w; if (gq.w > 1.0) g.w = 1.0; else if (g.w < -
1.008) g.w = -1.008;
ub.x = 127.0*g.x + 128; /* ub is unsigned byte vector */
ub.y = 127.0*%q.y + 128;
ub.z = 127.0%q.z + 128;
ub.w = 127.0*g.w + 128;
g.X = q.¥Y = g.2 = g.w = ({ub.x) | (ub.y<<8) | (ub.z<<16) |
(ub.w<<24)); /* raw bit packing */
if (destination.x) R.X = q.X;
if (destination.y) R.y = q.y;
if (destination.z) R.z = (¢.3;
if (destination.w) R.w = q.w;
Examples:
PK4 RO0.z,R3 // pack 4 components of R3 into R0.z
Unpack2 (UP2)
Format:

UP2[c] D[.xyzw][(RC[.xyzw])1,[-]S0.[xyzw]

Description:

UP2 unpacks source component into a destination. The source may be a fp32

“R” register scalar. The source component is assumed to be a packed fp16 pair.

Operation:

Table 24 sets forth an example of operation associated with the UP2 instruction.

Table 24
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t.x = sourceQ.c%**; /* ¢ is x or y or z or w */
t.y = source0.*c¥**;
t.z = sourcel.**c¥*;
t.w = source0.***c;
if (-sourceo0)
t = -t;
qg.x = g.z = (t.x>> 0) & Oxffff; /* use raw bits of t.x
*/
g.vy = g.w = {t.x>>16) & Oxffff; /* use raw bits of t.x
*/
i1f (destination.x) R.X = g.X;
if (destination.y) R.y = g.¥y;
if (destination.z) R.z = .2;
1f (destination.w) R.w = g.w;
Examples:
UP2 RO.xy,R3.y // unpack two components of R3.y into R0.xy
Unpack4 (UP4)
Format:

UP4[c] D[.xyzw][(RC[.xyzw])],[-]1S0.[xyzw]

Description:

UP4 unpacks source component into a destination. The source may be a fp32
“R” register scalar. The source component is assumed to be a packed unsigned 8-bit
quartet and all are biased and scaled back into the range (-1.008,1.0) before assignment

to destination.

Operation:

Table 25 sets forth an example of operation associated with the UP4 instruction.
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Table 25

sourcel.c***;
sourcel.*c**;
sourcel.**c*;
sourcel.***c;
source0)

= -t;

Re ot o of of
Fhe + o -«
S NN X
o~
Cnon oo

(Et.x>> 0) & Oxff;
{t.x>> 8) & Oxff;
(t.x>>16) & Oxff;
(t.x>>24) & Oxff;

2 NN

o nu

(g-x - 128)/127.0
(q.y - 128)/127.0
(g.z .0

.0

(q.w

128) /127
128) /127

QaQ.Q Q00K

PRV

oo
[ I

[N
t+h

(destination.x) R.x
if (destination.y) R.y
if (destination.z) R.z
if (destination.w) R.w

Examples:
UP4 ROR3.x
Set On Less Than (SLT)

Format:

SLT[c] D[.xyzw][(RC[.xyzw])],[-]1SO[.xyzw],[-]S1[.xyzw]

Description:

SLT sets the destination to 1.0/0.0 if source0 is less_than/greater_or_equal to

i
.
1
;
i

/*

/*
/*

use
use
use
use

sourcel. The following relationships should be noted:

/¥ ¢ is x or y or =z

raw bits
raw bits
raw bits
raw bits

SetEQ RO,R1 = (SGE RO,R1) * (SGE —R0,-R1)
SefNE RO,R1 = (SLT RO,R1) + (SLT —RO,-R1)

SetLE RO,R1 = SGE —R0,-R1

oxr

of
of
of
of

PCT/US02/19504

o F oo oof
MoK XN

*/

// unpack four components of R3.x into RO.xyzw
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SetGT RO,R1 = SLT —R0,-R1

Operation:

PCT/US02/19504

Table 26 sets forth an example of operation associated with the SLT instruction.

I
7
17

i

17
7

i

RV VR

t.X = sourcel.c**%*
t.y = sourcel.*c**
t.z = sourcel.**c¥*;
t.w = sourcel.***c
if (-sourceo0)
t = -t;
u.X = sourcel.c***
u.y = sourcel,*c**;
u.z = sourcel.,**c¥*
u.w = sourcel.***q;
if (-sourcel)
u = -u;

g.x = (E.x < u.x)
g.y = (£.y < u.y)
g.z = (t.z2 < u.z)
g.w = (t.w < u.w)
if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

Examples:

SLT HA4,H3H7

Table 26

/* ¢ is X or y or 2 or w */

/* ¢ is X or or z or w */
Y

//H4.xyzw = (H3.xyzw < H7.xyzw ? 1.0 : 0.0)

SLT H3.xz,H6.w,H4 //H3.xz=(H6.w<H4.xyzw ?1.0:0.0)

Set On Greater Or Equal Than (SGE)

Format:

SGE[c] D[.xyzw][(RC[.xyzw])],[-]SO[ xyzw],[-]S1[.xyzw]



10

15

20

25

30

35

40

WO 02/103633

Description:

PCT/US02/19504
38

SGE sets the destination to 1.0/0.0 if sourceO is greater or_equal/less_than

sourcel.

Operation:

Table 27 sets forth an example of operation associated with the SGE instruction.

Examples:

SGE H4,H3,H7

un =

o —

LR L | S|

source0)
= -t;

Lmnonon

—

sourcel)

@ o
5 N M

V VYV
non

nwwn

v

(destination.x)
(destination.y)
(destination.z)
(destination.w)

source0.
sourcel.
source0l.
sourcegl.

sourcel.
sourcel.
sourcel.
sourcel.

Table 27

c***;
FOwk
**c*;
***C,‘

/*

¢ ls x or yor z or w */

cr*E; /* cis X or y or z2 or w */
Ok .

!
**C*,’

***c;

LX)

.2)
W)

ceceo

N
AVIRLV NN BV )
R R R
[oNelNe e

Eg S
nnouon

Ve i i
12 QQ Q
[

/A4 xyzw = (H3.xyzw >=H7.xyzw ? 1.0 : 0.0)

SGE H3.xzH6.w,H4 //H3.xz=(H6.w>=H4.xyzw ? 1.0 : 0.0)

Floor (FLR)

Format:
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FLR[c] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw]

Description:

FLR set the destination to floor of source.

Operation:

Table 28 sets forth an example of operation associated with the FLR instruction.

t.x = source0.
t.y = source0.
t.z = source0.
t.w = sourcel.
if (-sourceol)
t = -t;
g.x = floor(t
qg.y = floor(t
g.z = floor(t.
g.w = floor(t

c***l-
*c**l-
**c*;
***c;

.X);
Y) i

z);

W) ;

if (destination.x)
if (destination.y)
i1f (destination.z)
if (destination.w)

Examples:

FLR HA4.z,R3

Fraction (FRC)

Format:

Table 28

/* c is x or y or z or w */

hononou

//H4.z = floor(R3.z)

FRCJc] D[.xyzw][(RC[.xyzw])],[-]SO[.xyzw]



5

10

15

20

25

30

35

WO 02/103633 PCT/US02/19504
40

Description:

FRC sets a destination to a fractional part of a source. The fraction is 0.0 <=

fraction < 1.0.

Operation:

Table 29 sets forth an example of operation associated with the FRC instruction.

Table 29

t.X = sourcel.c***; /* c is x or y or z or w */

t.y = source0.*c¥**;

t.z = sourcel.**c¥*;

t.w = sourcel.***c;

if (-sourceo0)

t = -t;

g.x = t.x - floor(t.x);

qg.y = t.y - £loor(t.y);

g.z = t.z - £loor(t.z);

g.w = t.w - £loor(t.w);

if (destination.x) R.Xx = g.X;

if (destimation.y) R.y = g.y;

if (destination.z) R.z = g.z;

if (destination.w) R.w = g.w;
Examples:

FRC H4.zR3 //H4.z =R3.z - floor(R3.2)

Kill Pixel (KIL)
Format:

KIL RC[.xyzw]
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Description:

KIL kills the pixel based on any of the RC bits (post swizzle) being TRUE. KIL

cannot set the condition codes.

Operation:

Table 30 sets forth an example of operation associated with the KIL instruction.

Table 30
b.x = RC.a**%; /* ¢ is x or y or z or w */
b.y = RC.*%c**;
b.z = RC.*%c¥%;
b.w = RC.*%%g;

if (b.x | b.y | b.z | b.w)
Kill pixel;

Examples:

KIL EQ //Kill pixel if RC x or y or z or w are = 0.0
KILLTx //Kill pixel if RC x bit < 0.0
KIL NE.xxzz //Kill pixel if x or z RC bits !=0.0
Exponential Base 2 (EXP)
Format:
EXP[c] D[.xyzw][(RC[.xyzw])],[-]S0.[xyzw]

Description:

EXP generates an approximate answer in dest.z and allows for a more accurate

answer of dest.x*FUNC(dest.y) where FUNC is some user approximation to 2**dest.y



5

10

15

20

25

30

35

40

WO 02/103633 PCT/US02/19504
42

(0.0 <= dest.y < 1.0). EXP accepts a scalar source0. Reduced precision arithmetic is

acceptable in evaluating dest.z.

EXP(-Inf) or underflow gives (0.0,0.0,0.0,1.0)
EXP(+Inf) or overflow gives (+Inf,0.0,+Inf,1.0)

Operation:

Table 31 sets forth an example of operation associated with the EXP instruction.

Table 31

E.x = sourceQ.c¥*%*; /* c is x or y or 2 or w */
t.y = source0.*c*%;
t.z = sourcel.**c*;
t.w = sourceQ.***c;
if (-source0)

t = -t;
g.x = 2**TruncateTo-Infinity(t.x);
g.y = t.x - TruncateTo-Infinity(t.x);
g.z = g.X * APPX(Q.V); where
Iexp(q.y*LNz)-APPX(q.y)l < 1/(2**11) for all 0<=qg.y<1.0
g.w = 1.0;
if (destination.x) R.x = J.X;
if (destination.y) R.y = q.Y;
if (destination.z) R.z = q.Zz;
if (destination.w) R.w = q.w;

Examples:

EXP H4,R3.z
Logarithm Base 2 (LOG)
Format:

LOG[c] D[.xyzw][(RC[.xyzw])],[-]S0.[xyzw]



10

15

20

25

WO 02/103633

Description:

43

PCT/US02/19504

LOG generates an approximate answer in dest.z and allows for a more accurate

answer of dest.x+FUNC(dest.y) where FUNC is some user approximation of

log2(dest.y) (1.0 <= dest.y < 2.0). LOG accepts a scalar source0 of which the sign bit is

ignored. LOG provides reduced precision arithmetic is acceptable in evaluating dest.z.

LOG(0.0) gives (-Inf,1.0,-Inf,1.0)
LOG(Inf) gives (Inf,1.0,Inf,1.0)

Operation:

Table 32 sets forth an example of operation associated with the LOG

instruction.

£ Nk

now o

He ot o o ot

£

sourcel.c***;
sourcel.*c**;
sourcel. *%c*;
source0.***c;
(-source0)

t = -t;

if

Table 32

(abs(t.x) t= 0.0) {

/* ¢ is x or y or 2 or w */

g.x = exponent (t.x) (-128.0 <= e < 127)

g.y = mantissa(t.x) (L.0 <= m < 2.0)
g.z = g.x + APPX(qg.y) where |logl(g.y)/LN2-
APPX(q.y)| < 1/(2%*11) for all 1.0<=q.y<2.0
q.w = 1.0;
else {
g.x = -inf; q.y = 1.0; g.z2 = -inf; g.w = 1.0;
}
if (destination.x) R.X = gq.x;
if (destimation.y) R.y = q.y;
if (destination.z) R.z = q.z;
if (destination.w) R.w = gq.w;

Examples:
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LOG H4,R3.z

Light Coefficients (LIT)

Format:

LIT[c] D[.xyzw][RC[.xyzw])L.[-]SO[ xyzw]

Description:

LIT provides lighting partial support. LIT calculates lighting coefficients from
two dot products and a power (which gets clamped to —128.0<power<128.0). Source

vector is:

Source0.x =n*l (unit normal and light vectors)
Source0.y = n*h (unit normal and halfangle vectors)
Source0.z is unused

Source(.w = power

Reduced precision arithmetic is acceptable in evaluating dest.z. Allowed error is
equivalent to a power function combining the LOG and EXP instructions
(EXP(w*LOG(y))). An implementation may support at least 8 fraction bits in the
power. It should be noted that since 0.0 times anything may be 0.0, taking any base to
the power of 0.0 yields 1.0.

Operation:

Table 33 sets forth an example of operation associated with the LIT instruction.

Table 33
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source0

source0.

source0.

source0.

if (-source0)
t = -t;

o o oof oo
g NN X

nononon

if (t.w < -127
power is 8.8

else if (t.w > 127.9961) t.w

if (t.x < 0.0)
if (t.y < 0.0)

g.x = 1.0;

/* ambient */

q.y = t.x;

/* diffuse */

g.z = {t.x > 0
/* specular */
g.w = 1.0;

if (destination.x)
if (destination.y)
if (destination.z)
if (destination.w)

Examples:

LIT ROR3

PCT/US02/19504
45

Lokkk; /* cis x or y or z or w */

*c**;
**c*;

‘k**c;

.9961) t.w -127.9961; /* assuming

*/

n

127.9961;

t.x
t.y

0.0;
0.0;

.0 ? EXP(t.w*LOG(t.y)) : 0.0);

A m

= N K

nnnn
Q
>

Appendix A sets forth a plurality of programming examples.

APPENDIX A

The #define statements are meant for a cpp run.

1)

; Absolute Value H4 = abs(

MAX H4,RO0, -RO;

2)

; Cross Product | i 3

RO)

k | into R2
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; |RO.x RO.y RO.zZ|
; |R1.x R1.y R1.z|

MUL R2,RO.zxyw,R1.yzXw;
MAD R2,RO.yzxw,R1l.2xyw,-R2;

4)

; reduce R1 to fundamental period

PCT/US02/19504

#define PERIOD 70; location PERIOD is 1.0/ (2%PI),2%PI,0.0,0.0

MUL RO,R1,c[PERIOD] .x; //divide by period
FRC R2,R0;
MUL R2,R2,c[PERIOD].y; //multiply by period

5)

; H4 = p->weight.x*H2 + (1.0-p->weight.x)*H3

#define IWGT 8; gsource weight

ADD H4,H2,-H3;
MAD H4,plIWGT].x,H4,H3;

6)
; RO = (6T.x || LT.y) ? Rl : R2;
MOV RO,R2;

MOV RO(GT.x),R1;
MOV RO(LT.y),R1;

; RO.Y (EQ.Xzw && LT.y) ? Rl.z
MOV RO.y,R1.z;

MOV RO.y(NE.xzww),R2.w;
MOV RO.yY(GE.y),R2.w;

: R2

/ /LERP

SW;
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While various embodiments have been described above, it should be understood
that they have been presented by way of example only, and not limitation. Thus, the
breadth and scope of a preferred embodiment should not be limited by any of the above
described exemplary embodiments, but should be defined only in accordance with the

following claims and their equivalents.
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CLAIMS

What is claimed is:

(2)
(b)

(©

A method for programmable pixel processing in a computer graphics
pipeline, comprising:

receiving pixel data from a source buffer;

performing programmable operations on the pixel data in order to generate
output, wherein the operations are programmable by a user utilizing
instructions from a predetermined instruction set; and

storing the output in a register.

The method as recited in claim 1, wherein the output stored in the register is

used in performing the programmable operations on the pixel data.

The method as recited in claim 1, wherein the pixel data includes a position,
a pixel diffuse color, a specular color, a fog value, and a plurality of texture

coordinates.

The method as recited in claim 1, wherein the pixel data is selected from the
group consisting of a position, a pixel diffuse color, a specular color, a fog

value, and a plurality of texture coordinates.

The method as recited in claim 1, and further comprising performing an
operation involving the output, the operation selected from the group
consisting of a scissor operation, a color format conversion, an alpha test
operation, a z-buffer/stencil operation, a blend operation, a logic operation, a

dither operation, and a writemask operation.
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13.

14.

15.
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The method as recited in claim 1, wherein further standard operations are
performed on the pixel data utilizing a standard graphics application program

interface (API).

The method as recited in 1, wherein the output includes a color value and a

depth value .

The method as recited in claim 1, and further comprising negating the pixel

data prior to performing the programmable operations thereon.

The method as recited in claim 1, and further comprising swizzling the pixel

data prior to performing the programmable operations thereon.

The method as recited in claim 1, wherein the programmable operations

includes a texture fetch operation.

The method as recited in claim 10, wherein the texture fetch operation

involves a slope.

The method as recited in claim 10, wherein the texture fetch operation is

capable of being used in a level of detail (LOD) calculation.

The method as recited in claim 1, wherein the programmable operations

support multiple levels of precision.

The method as recited in claim 13, wherein the levels of precision include

full floating point, half floating point, and fixed point.

The method as recited in claim 13, wherein the programmable operations are
capable of converting the pixel data from a first level of precision to a second

level of precision.
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The method as recited in claim 1, wherein the programmable operations are
capable of clamping the pixel data for packing the pixel data into a

destination.

The method as recited in claim 1, wherein condition codes are initialized

prior to the programmable operations being performed.

The method as recited in claim 1, wherein the programmable operations are

capable of removing the pixel data.

The method as recited in claim 1, wherein the programmable operations are
selected from the group consisting of a no operation, texture fetch, move,
derivative, multiply, addition, multiply and addition, reciprocal, reciprocal
square root, fhree component dot product, four component dot product,
distance vector, minimum, maximum, pack, unpack, set on less than, set on
greater or equal than, floor, fraction, kill pixel, exponential base two (2),

logarithm base two (2), and light coefficients.

A computer program product for programmable pixel processing in a
computer graphics pipeline, comprising:

computer code for receiving pixel data from a source buffer;

computer code for performing programmable operations on the pixel data in
order to generate output, wherein the operations are programmable by a user
utilizing instructions from a predetermined instruction set; and

computer code for storing the output in a register.

A system for programmable pixel processing, comprising:
a source buffer for storing pixel data;
a functional module coupled to the source buffer for performing

programmable operations on the pixel data received therefrom in order to

PCT/US02/19504
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(a)
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(c)

23.

(a)

. (b)
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24,

(2)

(b)

(©)
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generate output, wherein the operations are programmable by a user utilizing
instructions from a predetermined instruction set; and

a register coupled to the functional module for storing the output.

A method for programmable pixel processing in a computer graphics
pipeline, comprising:

receiving pixel data from a source buffer;

performing programmable operations on the pixel data in order to generate
output, wherein the operations are programmable by a user utilizing
instructions from a predetermined instruction set, and the programmable
operations support multiple levels of precision; and

converting the pixel data from a first level of precision to a second level of

precision.

A method for programmable pixel processing in a computer graphics
pipeline, comprising:

receiving pixel data from a source buffer;

performing programmable operations on the pixel data including a texture
fetch in order to generate output, wherein the operations are programmable
by a user utilizing instructions from a predetermined instruction set; and

storing the output in a register.

A method for programmable pixel processing in a computer graphics
pipeline, comprising:

determining whether the graphics pipeline is operating in a programmable
mode;

performing programmable operations on pixel data in order to generate
output if it is determined that the graphics pipeline is operating in the
programmable mode; and

performing standard operations on the pixel data in order to generate output

in accordance with a standard graphics application program interface if it is
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determined that the graphics pipeline is not operating in the programmable

mode.

The method as recited in claim 24, wherein the standard graphics application

program interface includes OpenGL®.

A computer program product for programmable pixel processing in a
computer graphics pipeline, comprising:

computer code for determining whether the graphics pipeline is operating in
a programmable mode;

computer code for performing programmable operations on pixel data in
order to generate output if it is determined that the graphics pipeline is
operating in the programmable mode; and

computer code for performing standard operations on the pixel data in order
to generate output in accordance with a standard graphics application
program interface if it is determined that the graphics pipeline is not

operating in the programmable mode.

The computer program product as recited in claim 26, wherein the standard

graphics application program interface includes OpenGL®.

A system for programmable pixel processing in a computer graphics
pipeline, comprising:

means for determining whether the graphics pipeline is operating in a
programmable mode;

means for performing programmable operations on pixel data in order to
generate output if it is determined that the graphics pipeline is operating in
the programmable mode; and

means for performing standard operations on the pixel data in order to

generate output in accordance with a standard graphics application program
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interface if it is determined that the graphics pipeline is not operating in the

programmable mode.

The computer program product as recited in claim 29, wherein the standard

graphics application program interface includes OpenGL®.

A method for programmable pixel processing in a computer graphics
pipeline, comprising:

determining whether the graphics pipeline is operating in a programmable
mode;

performing programmable operations on pixel data in order to generate
output if it is determined that the graphics pipeline is operating in the
programmable mode; and

performing standard operations on the pixel data in order to generate output
in accordance with a standard graphics application program interface if it is
determined that the graphics pipeline is not operating in the programmable
mode;

wherein the programmable operations are selected from the group consisting
of a no operation, texture fetch, move, derivative, multiply, addition,
multiply and addition, reciprocal, reciprocal square root, three component dot
product, four component dot product, distance vector, minimum, maximum,
pack, unpack, set on less than, set on greater or equal than, floor, fraction,
kill pixel, exponential base two (2), logarithm base two (2), and light

coefficients

A method for programmable processing in a computer graphics
pipeline, comprising:
receiving pixel data including texture information; and
performing programmable operations on the pixel data in order to generate
output, wherein the operations are programmable by a user utilizing

instructions from a predetermined instruction set;
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wherein the operations include a mathematical operation for altering the

texture information of the pixel data.

A method for programmable processing in a computer graphics pipeline,
comprising:

providing pixel data including texture information; and

performing programmable operations on the pixel data in order to generate
output, wherein the operations are programmable by a user utilizing
instructions from a predetermined instruction set;

wherein the operations include a mathematical operation for altering the

texture information of the pixel data.

A method for programmable processing in a computer graphics pipeline,
comprising:

receiving pixel data including color information; and

performing programmable operations on the pixel data in order to generate
output, wherein the operations are programmable by a user utilizing
instructions from a predetermined instruction set;

wherein the operations include a mathematical operation for altering the

color information of the pixel data.

A method for programmable processing in a computer graphics pipeline,
comprising:

receiving pixel data including texture information and color information; and
performing programmable operations on the pixel data in order to generate
output, wherein the operations are programmable by a user utilizing

instructions from a single instruction set.

PCT/US02/19504
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Slot | Attribute Description
0 Position X, Y,2,1/W
1 Diffuse Color R,G,B,A
2 Specular Color R,G,B,A
3 Fog Distance ¥,0.0,0.0,1.0
4 Texturel s, T,R,Q
5 Texturel S,T,R,Q
6 Texture2 S, T,R,Q
7 Texture3 S,T,R,Q
8 Textured s, T,R,Q
9 Textures s, T,R,Q
10 Texture6 s, T,R,Q
11 Texture?7 S, T,R,Q
Figure 5
600
OPCODE INPUT(scalar or vector) OUTPUT(scalar or vector)
NOP
TEX, TXP v v
TXD V,V,V v
DDX, DDY v v
MOV v v
MUL v,V v
ADD v,V v
MAD v.V.V v
RCP s Ssss
RSQ S S8Ss
DP3 v,V 5SssS
DP4 v,V Ssss
DST v,V v
MIN,MAX v,V v
PK2, PK4 v s
UP2,UP4 ] v
SLT, SGE v,V v
FRC, FLR v v
KIL RC
EXP K] v
LOG S 4
LIT v v

Figure 6
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