

US008508688B2

(12) United States Patent

Iiyama et al.

(10) **Patent No.:**

(45) **Date of Patent:**

US 8,508,688 B2 Aug. 13, 2013

(54)	ILLUMINATING LENS, LIGHTING DEVICE,
	SURFACE LIGHT SOURCE, AND
	LIQUID-CRYSTAL DISPLAY APPARATUS

(75) Inventors: Tomoko Iiyama, Osaka (JP); Syunsuke

Kimura, Hyogo (JP); Daizaburo

Matsuki, Osaka (JP)

(73) Assignee: Panasonic Corporation, Osaka (JP)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 554 days.

(21) Appl. No.: 12/720,249

(22) Filed: Mar. 9, 2010

(65) **Prior Publication Data**

US 2010/0201911 A1 Aug. 12, 2010

Related U.S. Application Data

(63) Continuation-in-part of application No. PCT/JP2009/003947, filed on Aug. 19, 2009.

(30) Foreign Application Priority Data

Feb. 12, 2009 (JP) 2009-029350

(51) **Int. Cl. G02F 1/1335**

(2006.01)

(52) **U.S. Cl.**

USPC **349/61**; 349/62

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,153,002 B2 12/2006 Kim et al. 7,348,723 B2 3/2008 Yamaguchi et al.

7,474,475	B2	1/2009	Paek et al.
7,602,559	B2	10/2009	Jang et al.
8,075,157	B2	12/2011	Zhang et al.
2004/0246606	A1	12/2004	Benitez et al.
2004/0257826	A1	12/2004	Tatsukawa
2005/0243577	A1	11/2005	Moon
2006/0109669	A1	5/2006	Tanaka et al.
2006/0119250	A1	6/2006	Suehiro et al.
2006/0126343	A1	6/2006	Hsieh et al.
2006/0152932	A1	7/2006	Wu
2006/0239020	A1	10/2006	Albou
2007/0029563	A1	2/2007	Amano et al.

(Continued)

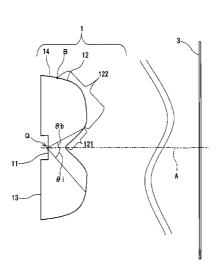
FOREIGN PATENT DOCUMENTS

JP 2004-087411 A 3/2004 JP 2005-011704 1/2005

(Continued)

OTHER PUBLICATIONS

Co-pending U.S. Appl. No. 12/704,813, filed Feb. 12, 2010.


(Continued)

Primary Examiner — Thanh-Nhan P Nguyen (74) Attorney, Agent, or Firm — Hamre, Schumann, Mueller & Larson, P.C.

(57) ABSTRACT

An illuminating lens has a light entrance surface and a light exit surface. The light exit surface has a first light exit surface recessed toward a point on an optical axis A and a second light exit surface extending outwardly from the periphery of the first light exit surface. The first light exit surface includes a transmissive region located in the center of the first light exit surface and a total reflection region located around the transmissive region. The transmissive region transmits light that has been emitted from a starting point Q, which is the position of a light source on the optical axis A, at a relatively small angle with respect to the optical axis A. The total reflection region totally reflects light that has been emitted from the starting point Q at a relatively large angle with respect to the optical axis A.

14 Claims, 21 Drawing Sheets

US 8,508,688 B2 Page 2

(56)	Refere	nces Cited	JP	2006-113556	A	4/2006	
			JP	2006-147448		6/2006	
	ILS PATENT	DOCUMENTS	JP	2006-252841	A	9/2006	
			JP	2006-309242	Α	11/2006	
2007/00472			JP	3875247	B2	11/2006	
2007/00705	30 A1 3/2007		JР	2007-026702		2/2007	
2007/02633	90 A1 11/2007	Timinger et al.	JР	2007-034307	٨	2/2007	
2008/00076	73 A1 1/2008	Shiraishi et al.	JР	2007-034307			
2008/01007	73 A1 5/2008	Hwang et al.				2/2007	
2008/01749	96 A1 7/2008	Lu et al.	JP	2007-096318		4/2007	
2008/02786	55 A1 11/2008	Moon et al.	JР	2007-102139	Α	4/2007	
2008/03037	57 A1 12/2008	Ohkawa et al.	JP	2007-287479		11/2007	
2009/00521			JP	2008-015288		1/2008	
2009/01096			JP	2008-305923	A	12/2008	
2009/02684	69 A1 10/2009	Huang et al.	KR	10-2006-0040502		5/2006	
2009/02737	27 A1 11/2009	Kubota et al.	WO	2007/021149		2/2007	
2010/00202	64 A1 1/2010	Ohkawa					
2010/00539	73 A1 3/2010	Shastry et al.					
2010/01953	35 A1 8/2010			OTHER	PUI	BLICATIONS	
	FOREIGN PATE	NT DOCUMENTS	Co-per	iding U.S. Appl. No.	12/70	04,926, filed Feb.	12, 2010.
JP	2005-317977 A	11/2005	Co-per	iding U.S. Appl. No.	12/70	05,016, filed Feb.	12, 2010.
JP	2006-005791 A	1/2006	Co-per	ding U.S. Appl. No.	12/70	05,076, filed Feb.	12, 2010.

FIG.1

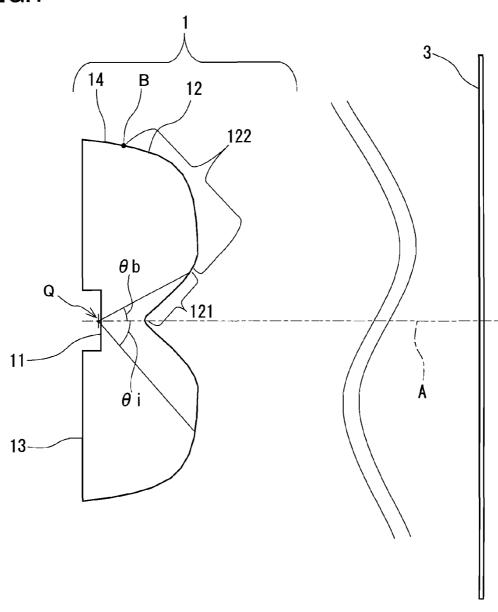


FIG.2

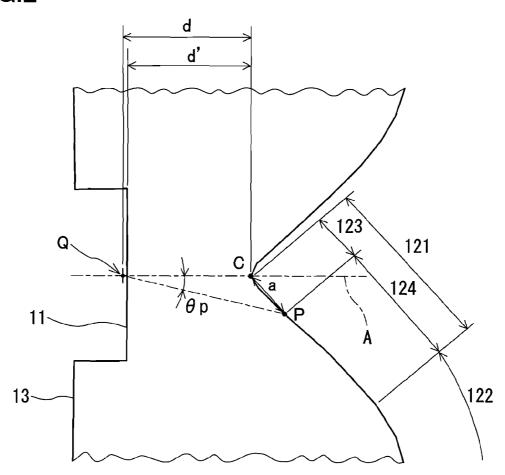


FIG.3

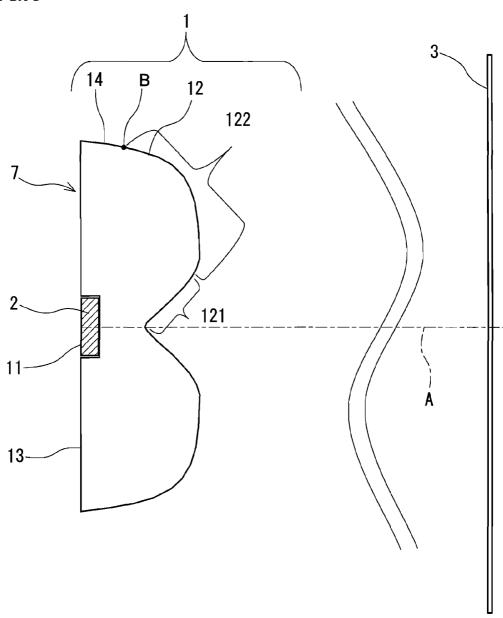


FIG.4

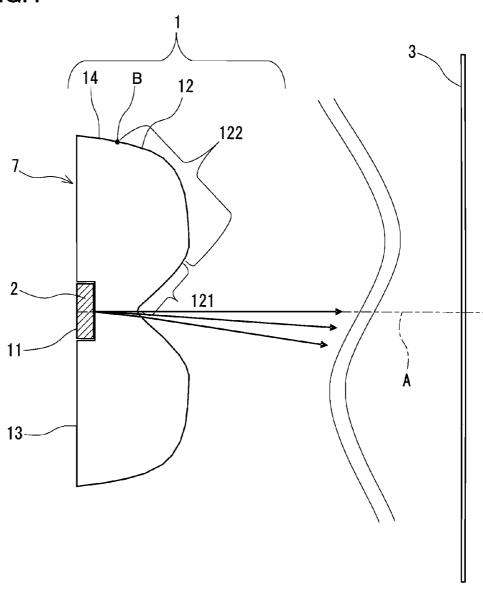


FIG.5

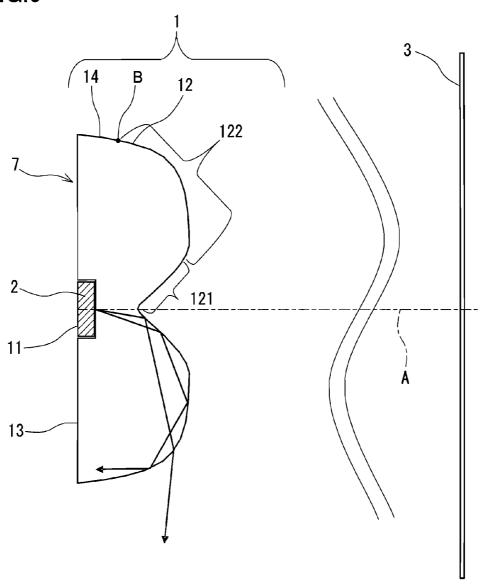


FIG.6

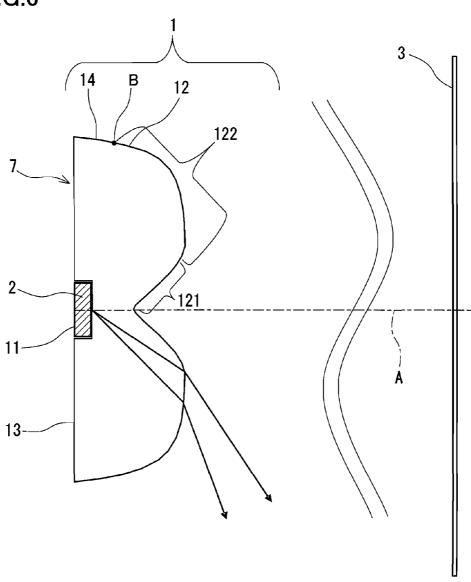


FIG.7

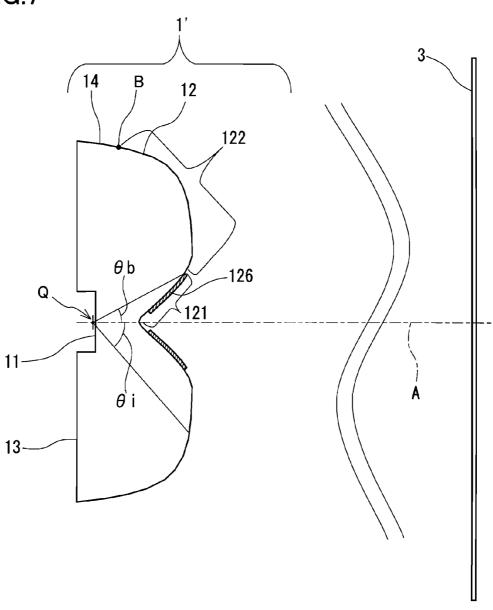


FIG.8

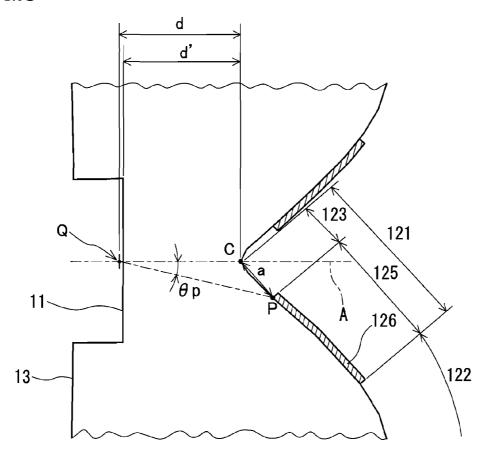


FIG.9

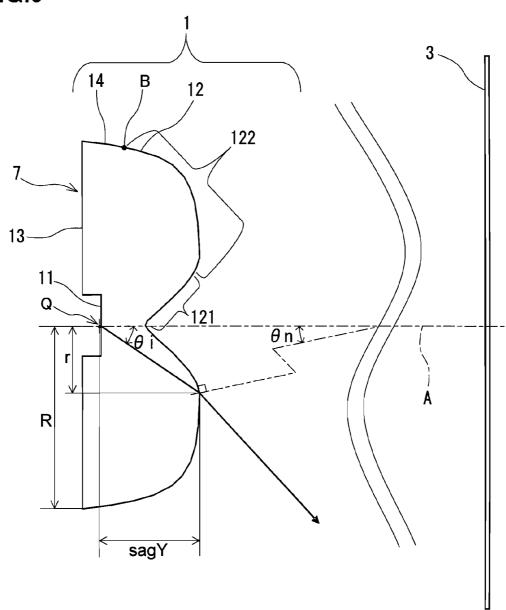


FIG.10

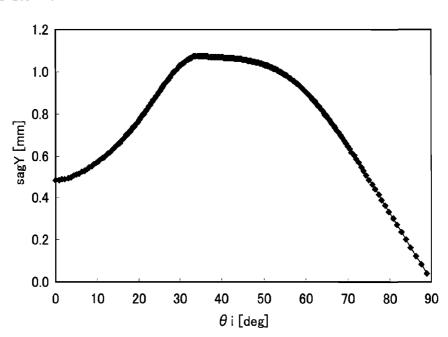


FIG.11

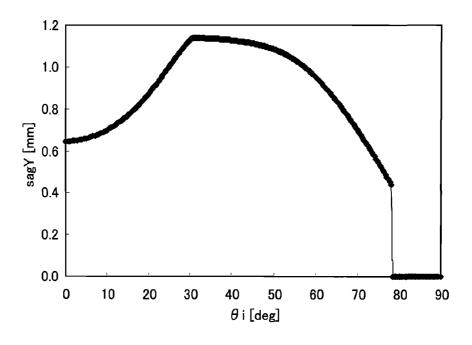


FIG.12

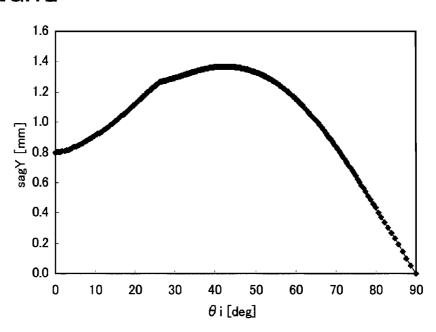
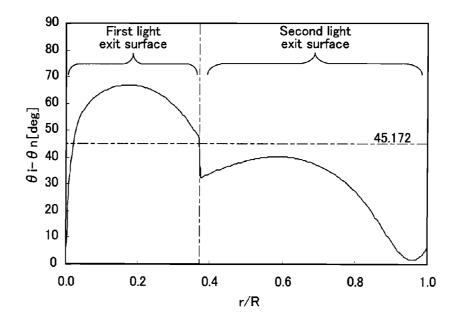
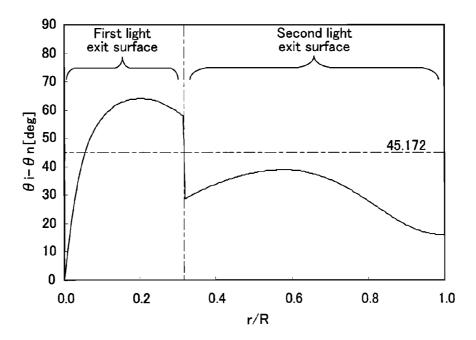




FIG.13

FIG.14

FIG.15

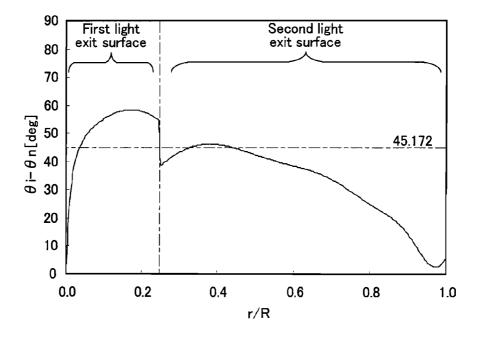


FIG.16

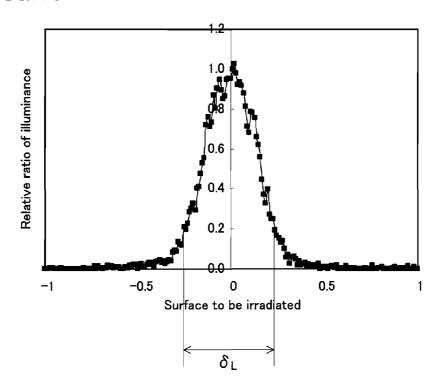


FIG.17

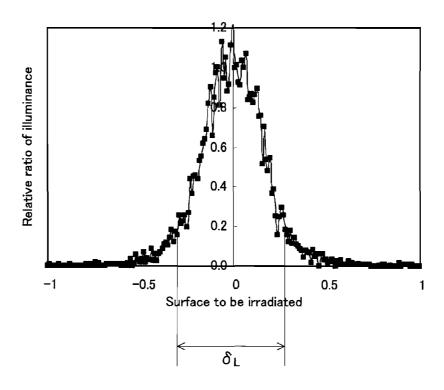


FIG.18

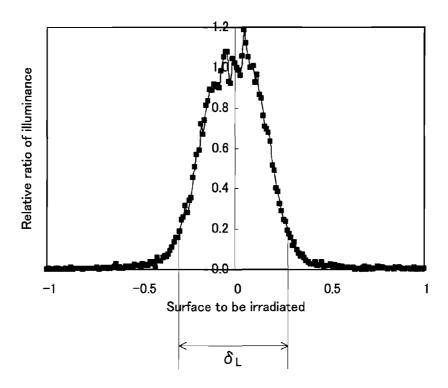



FIG.19

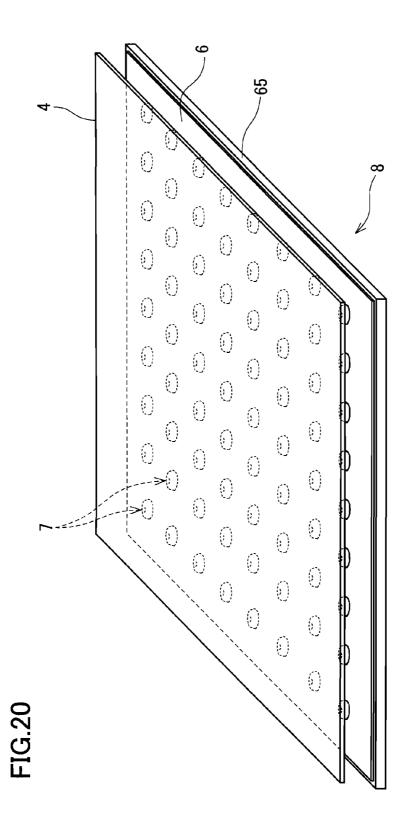


FIG.21

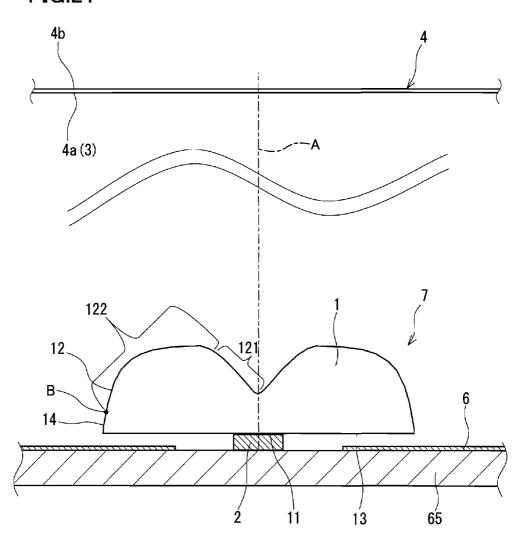


FIG.22

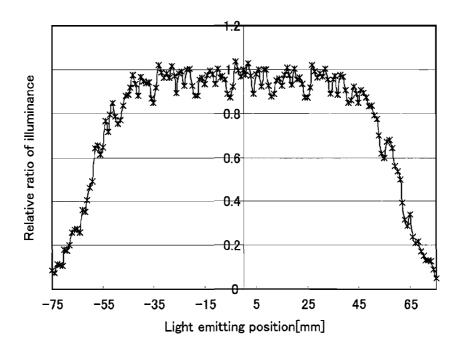


FIG.23

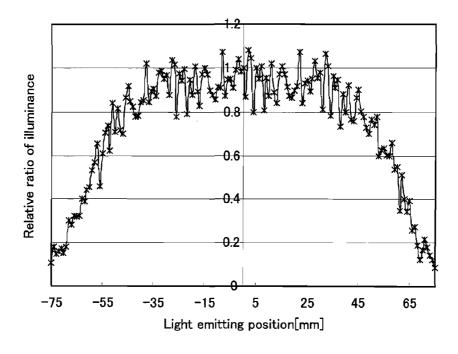
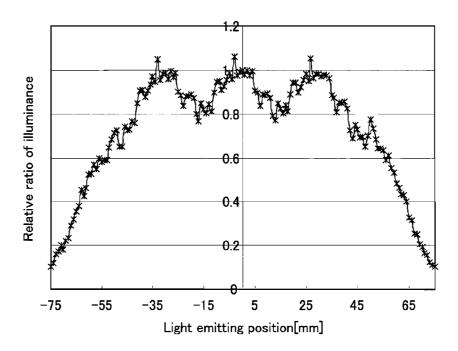
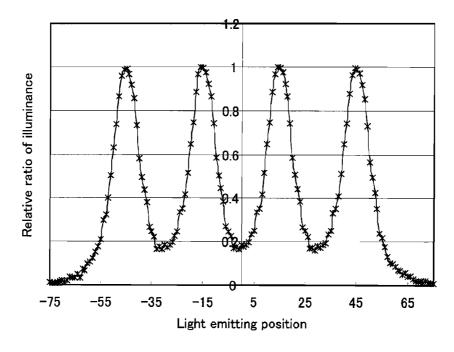




FIG.24

FIG.25

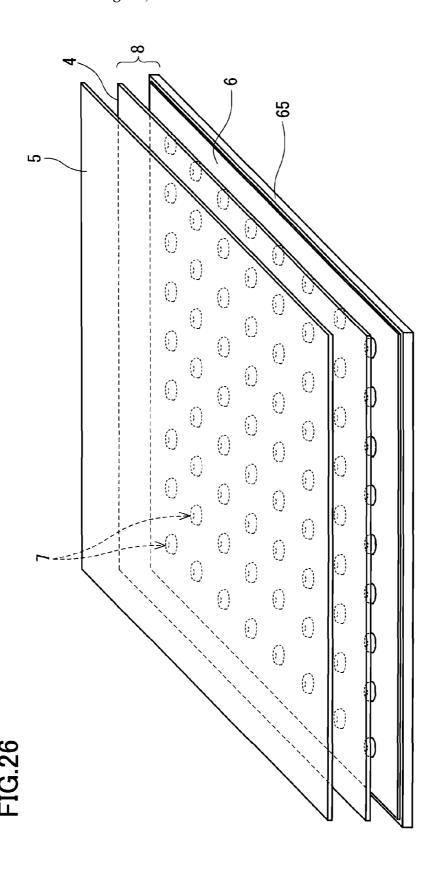


FIG.27

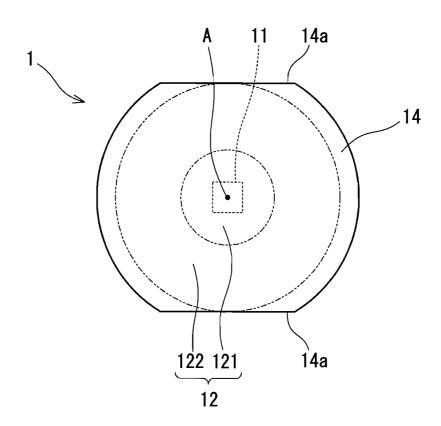


FIG.28A

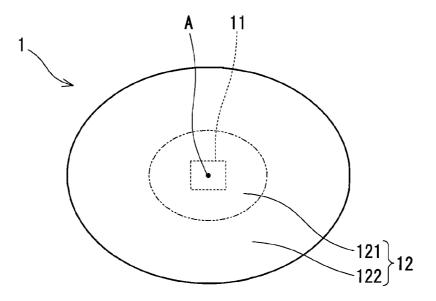
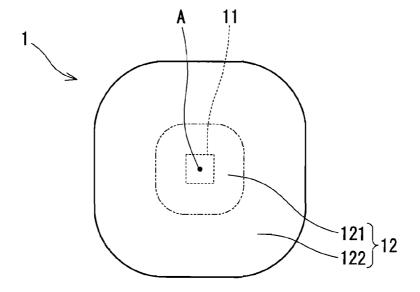



FIG.28B

ILLUMINATING LENS, LIGHTING DEVICE, SURFACE LIGHT SOURCE, AND LIQUID-CRYSTAL DISPLAY APPARATUS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an illuminating lens for widening a range of transmission directions for light from a light source such as a light emitting diode, and to a lighting 10 device using this illuminating lens. The present invention further relates to a surface light source including a plurality of lighting devices, and to a liquid-crystal display apparatus in which this surface light source is disposed behind a liquid-crystal panel to serve as a backlight.

2. Description of Related Art

In a conventional backlight of a large-sized liquid-crystal display apparatus, a number of cold cathode tubes are disposed immediately below a liquid-crystal panel, and these cold cathode tubes are used with other members such as a 20 diffusing plate and a reflecting plate. In recent years, light emitting diodes have been used as light sources for backlights. Light emitting diodes have increased their efficiency recently, and are expected to serve as low-power light sources to replace fluorescent lamps. In the case where light emitting 25 diodes are used as a light source in a liquid-crystal display apparatus, the power consumption of the apparatus can be reduced by controlling the light and dark states of the light emitting diodes according to an image to be displayed.

In a backlight of a liquid-crystal display apparatus using 30 light emitting diodes as a light source, a large number of light emitting diodes are disposed therein instead of cold cathode tubes. The use of a large number of light emitting diodes allows the entire surface of the backlight to have uniform brightness, but the need for such a large number of light 35 emitting diodes is an obstacle to cost reduction. In view of this, attempts to increase the output power of each light emitting diode to reduce the required number of light emitting diodes have been made. For example, Japanese Patent No. 3875247 has proposed a lens that is designed to provide a 40 uniform surface light source with a reduced number of light emitting diodes.

In order to obtain a uniform surface light source with a reduced number of light emitting diodes, the area to be irradiated with the light emitted from each light emitting diode needs to be increased. That is, light emitted from each light emitting diode needs to be spread to obtain a wider range of transmission directions for light from the diode. For this purpose, in Japanese Patent No. 3875247, a lens having a circular shape in a plan view is disposed on a light emitting diode as a chip to control the directivity of the chip. The light exit surface of this lens, through which light exits the lens, has a shape such that a portion in the vicinity of the optical axis is a concave and a portion surrounding the concave is a convex extending continuously from the concave.

A light emitting diode as a chip emits light mostly in the front direction of the light emitting diode chip. In the lens disclosed in Japanese Patent No. 3875247, light that has been emitted in the front direction of the chip is refracted at the concave surface in the vicinity of the optical axis and diffused. As a result, the surface to be irradiated is illuminated to have a wide illuminance distribution with a reduced illuminance in the vicinity of the optical axis.

In the lens disclosed in Japanese Patent No. 3875247, however, the light emitted from the light source needs to be 65 refracted, and therefore the difference in height between the concave and the convex must be reduced to a certain level.

2

SUMMARY OF THE INVENTION

It is an object of the present invention to provide an illuminating lens capable of further widening the range of transmission directions for light from a light source, and to provide a lighting device, a surface light source, and a liquid-crystal display apparatus each including this illuminating lens.

In order to achieve the above object, the present inventors have considered it important, in obtaining a wider range of transmission directions for light from a light source, to distribute radially the intense light that has been emitted in the front direction of the light emitting diode chip, and come up with an idea of distributing radially the light emitted in the front direction of the light emitting diode chip by utilizing intentionally the total reflection of the light. The present invention has been made in view of the above circumstances.

The present invention provides an illuminating lens for spreading light emitted from a light source so that a surface to be irradiated is irradiated with the spread light. The lens includes: a light entrance surface through which the light emitted from the light source enters the lens; and a light exit surface through which the light that has entered the lens exits the lens. In this illuminating lens, the light exit surface has a first light exit surface and a second light exit surface. The first light exit surface is recessed toward a point on an optical axis of the illuminating lens, and the second light exit surface extends outwardly from a periphery of the first light exit surface to form a convex. The first light exit surface has a transmissive region located in the center of the first light exit surface and a total reflection region located around the transmissive region. The transmissive region transmits light that has been emitted from a starting point at a relatively small angle with respect to the optical axis and then reached the first light exit surface, when a position of the light source on the optical axis is defined as the starting point. The total reflection region totally reflects light that has been emitted from the starting point at a relatively large angle with respect to the optical axis and then reached the first light exit surface. The second light exit surface has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point and then reached the second light exit surface.

Herein, "approximately the entire amount" means at least 90% of the entire amount. It may be the entire amount, and may be an amount slightly smaller than the entire amount.

The present invention also provides a lighting device including: a light emitting diode for emitting light; and an illuminating lens for spreading light emitted from the light emitting diode so that a surface to be irradiated is irradiated with the spread light. This illuminating lens is the abovementioned illuminating lens.

The present invention further provides a surface light source including: a plurality of lighting devices arranged in a plane; and a diffusing plate disposed to cover the plurality of lighting devices, and configured to receive on one surface thereof light emitted from the plurality of lighting devices and to emit the light from the other surface thereof in a diffused manner. Each of the plurality of lighting devices is the abovementioned lighting device.

The present invention still further provides a liquid-crystal display apparatus including: a liquid-crystal panel; and the above-mentioned surface light source disposed behind the liquid-crystal panel.

In the illuminating lens configured as described above, the most part of the light that has been emitted from the light source and reached the transmissive region located in the center of the first light exit surface is refracted at the trans-

missive region, and thus the area surrounding the optical axis of the lens on the surface to be irradiated is irradiated with the refracted light. On the other hand, the most part of the light that has been emitted from the light source and reached the total reflection region located on the outer peripheral side of the first light exit surface is totally reflected at the total reflection region. For example, in the case where a reflecting plate is disposed on the light entrance surface side of the illuminating lens, the area of the surface to be irradiated located away from the optical axis of the lens is irradiated with the totally reflected light at the end. Furthermore, the most part of the light that has been emitted from the light source and reached the second light exit surface is refracted at the second light exit surface, and thus the area of the surface to be irradiated located away from the optical axis of the lens is irradiated with the refracted light. Accordingly, the present invention makes it possible to obtain a wider range of transmission directions for light from the light source. Therefore, the outer diameter of the lens of the present invention may be smaller 20 than that of a conventional lens having a concave for only refracting light.

BRIEF DESCRIPTION OF THE DRAWINGS

- FIG. 1 is a schematic diagram of an illuminating lens according to a first embodiment of the present invention.
 - FIG. 2 is an enlarged view of the main portions of FIG. 1.
- FIG. 3 is a schematic diagram of a lighting device according to a second embodiment of the present invention.
- FIG. 4 is a diagram showing optical paths of light rays that reach a transmissive region of a first light exit surface of the lighting device according to the second embodiment of the present invention.
- FIG. 5 is a diagram showing optical paths of light rays that reach a total reflection region of a first light exit surface of the lighting device according to the second embodiment of the present invention.
- FIG. **6** is a diagram showing optical paths of light rays that exist the lighting device through a second light exit surface thereof according to the second embodiment of the present invention.
- FIG. 7 is a schematic diagram of a modified illuminating lens.
 - FIG. 8 is an enlarged view of the main portions of FIG. 7.
- FIG. 9 is a diagram for explaining Examples 1 to 3 of the lighting device according to the second embodiment of the present invention.
- FIG. 10 is a graph showing a relationship between θ i and 50 sagY, which represent the shape of the light exit surface in Example 1 of the lighting device according to the second embodiment of the present invention (i.e., a graph obtained by plotting the values in Table 1).
- FIG. 11 is a graph showing a relationship between θ i and 55 sagY, which represent the shape of the light exit surface in Example 2 of the lighting device according to the second embodiment of the present invention (i.e., a graph obtained by plotting the values in Table 2).
- FIG. 12 is a graph showing a relationship between θ i and 60 sagY, which represent the shape of the light exit surface in Example 3 of the lighting device according to the second embodiment of the present invention (i.e., a graph obtained by plotting the values in Table 3).
- FIG. 13 is a graph showing a relationship between r/R and 65 θ i- θ n in Example 1 of the lighting device according to the second embodiment of the present invention.

4

- FIG. 14 is a graph showing a relationship between r/R and θi - θn in Example 2 of the lighting device according to the second embodiment of the present invention.
- FIG. 15 is a graph showing a relationship between r/R and θi - θn in Example 3 of the lighting device according to the second embodiment of the present invention.
- FIG. 16 shows an illuminance distribution in Example 1 of the lighting device according to the second embodiment of the present invention.
- FIG. 17 shows an illuminance distribution in Example 2 of the lighting device according to the second embodiment of the present invention.
- FIG. 18 shows an illuminance distribution in Example 3 of the lighting device according to the second embodiment of the present invention.
- FIG. 19 shows an illuminance distribution obtained when only light emitting diodes are used to confirm the effects of Examples 1 to 3.
- FIG. 20 is a schematic diagram of a surface light source according to a third embodiment of the present invention.
- FIG. 21 is a partial cross-sectional view of the surface light source according to the third embodiment of the present invention.
- FIG. 22 shows an illuminance distribution obtained whenthe lighting device of Example 1 is used in the surface light source according to the third embodiment of the present invention.
 - FIG. 23 shows an illuminance distribution obtained when the lighting device of Example 2 is used in the surface light source according to the third embodiment of the present invention.
 - FIG. 24 shows an illuminance distribution obtained when the lighting device of Example 3 is used in the surface light source according to the third embodiment of the present invention.
 - FIG. 25 shows an illuminance distribution obtained when a surface light source including lighting devices each composed of only a light emitting diode is used to confirm the effects of Examples 1 to 3.
 - FIG. 26 is a schematic diagram of a liquid-crystal display apparatus according to a fourth embodiment of the present invention
 - FIG. 27 is a plan view of an illuminating lens in which a pair of flat portions are formed on its outer peripheral surface.
 - FIG. **28**A and FIG. **28**B are each a plan view of an illuminating lens of another embodiment.

DETAILED DESCRIPTION OF THE INVENTION

First Embodiment

An illuminating lens according to the first embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an illuminating lens 1 according to the first embodiment. The illuminating lens 1, which is disposed between a light source (not shown in FIG. 1) having directivity and a surface to be irradiated 3, spreads light emitted from the light source and emits the spread light to the surface to be irradiated 3. That is, the illuminating lens 1 widens the range of transmission directions for light from the light source. In the illuminance distribution on the surface to be irradiated 3, the illuminance is greatest on the optical axis A that is the design center line of the illuminating lens 1 and decreases almost monotonically toward the edge. The light source and the illuminating lens 1 are disposed so that their optical axes coincide with each other.

Specifically, the illuminating lens 1 has a light entrance surface 11 through which the light emitted from the light source enters the lens and a light exit surface 12 through which the light that has entered the lens exits the lens. The illuminating lens 1 has a bottom surface 13 surrounding the light entrance surface 11 and facing oppositely to the light exit surface 12. The illuminating lens 1 further has an outer peripheral surface 14 located outwardly of the light exit surface 12 to connect the periphery of the light exit surface 12 and the outer edge of the bottom surface 13.

The light entrance surface 11 need not be rotationally symmetric with respect to the optical axis A. In the present embodiment, the light entrance surface 11 is located closer to the light exit surface 12 than the annular bottom surface 13 surrounding the light entrance surface 11, and the light source is fitted in the recess formed by the level difference between the surfaces 11 and 13. The light entrance surface 11 and the bottom surface 13 may be located on the same level. In this case, the light entrance surface 11 is the area that is connected optically to the light source. The light entrance surface 11 need not necessarily be joined directly to the light source. For example, the light entrance surface 11 may be recessed in a hemispherical shape so that an air space is formed between the light entrance surface 11 and the light source.

In the present embodiment, the light exit surface 12 is rotationally symmetric with respect to the optical axis A. The light exit surface 12 is the area (area located inwardly of a point B shown in FIG. 1) for controlling at least a specified amount (for example, 90%) of light emitted from the light 30 source. The diameter of the light exit surface 12 is the effective diameter of the illuminating lens 1 when viewed from the optical axis direction.

The outer peripheral surface 14 forms a curved surface extending continuously from the light exit surface 12 in the 35 present embodiment, but may be a tapered surface having a linear cross section. Alternatively, the illuminating lens 1 may be provided with a ring portion projecting from the entire periphery of the light exit surface 12 so that the end surface of the ring portion serves as the outer peripheral surface 14, 40 although not illustrated here. The outer peripheral surface 14 need not be rotationally symmetric with respect to the optical axis A. For example, as shown in FIG. 27, the outer peripheral surface 14 may have a pair of flat portions 14a that are parallel to each other across the optical axis A such that the illuminating lens 1 has an oval shape when viewed from the optical axis direction.

The light emitted from the light source enters the illuminating lens 1 through the light entrance surface 11, exits the lens 1 through the light exit surface 12, and then reaches the 50 surface to be irradiated 3. The light emitted from the light source is spread by the action of the light exit surface 12, and reaches a large area of the surface to be irradiated 3.

As the light source, for example, a light emitting diode can be used. Light emitting diodes usually are chips with a rectangular plate shape. Therefore, it is preferable that the light entrance surface 11 of the illuminating lens 1 have a shape conforming to the shape of a light emitting diode to fit in close contact with the light emitting diode. The light emitting diode is in contact with the light entrance surface 11 of the illuminating lens 1 via a bonding agent, and connected optically to the light entrance surface 11. The light emitting diode usually is covered with a sealing resin to avoid contact with air, but the light emitting diode need not be covered with a sealing resin because the illuminating lens 1 serves as a sealing resin. As a 65 conventional sealing resin for a light emitting diode, an epoxy resin, silicone rubber, or the like is used.

6

The illuminating lens 1 is made of a transparent material having a specified refractive index. The refractive index of the transparent material is, for example, about 1.4 to 1.5. Examples of such a transparent material include resins such as epoxy resin, silicone resin, acrylic resin, and polycarbonate, and rubbers such as silicone rubber. Particularly, it is preferable to use epoxy resin, silicone rubber, or the like that has been used as a sealing resin for a light emitting diode.

The light exit surface 12 includes a first light exit surface 121 that is recessed toward a point on the optical axis A, and a second light exit surface 122 extending radially outwardly from the periphery of the first light exit surface 121 to form a convex. Light enters the illuminating lens 1 through the light entrance surface 11 at a wide range of angles. Light that has entered the lens at a small angle with respect to the optical axis A reaches the first light exit surface 121, and light that has entered the lens at a larger angle with respect to the optical axis A reaches the second light exit surface 122.

Next, the shapes of the first light exit surface 121 and the second light exit surface 122 will be described. For that purpose, a starting point Q is defined first, and then light emitted from the starting point Q is assumed. As stated herein, the starting point Q is the position of the light source on the optical axis A. In the case where a light emitting diode is used as a light source, the starting point Q is the point of intersection of the optical axis A and the light emitting surface that is the front surface of the light emitting diode. That is, the starting point Q is spaced from the light entrance surface 11 by the thickness of the above-mentioned bonding agent. When an angle between the optical axis A and a line connecting the starting point Q and the boundary between the first light exit surface 121 and the second light exit surface 122 is θ b, light that has been emitted from the starting point Q at an angle reaches the first light exit surface 121 or the second light exit surface 122 based on the angle θb as a threshold angle.

As shown in FIG. 2, the first light exit surface 121 includes a transmissive region 123 located in the center of the first light exit surface 121 and a total reflection region 124 located around the transmissive region 123. The transmissive region 123 transmits light that has been emitted from the starting point Q at a relatively small angle of less than a specified value of θp with respect to the optical axis A and reached the first light exit surface 121, and the total reflection region 124 totally reflects light that has been emitted from the starting point Q at a relatively large angle of θp or more with respect to the optical axis A and reached the first light exit surface 121. That is, θp is an angle between the optical axis A and a line connecting a point P and the starting point Q, when the point P is a point on the boundary between the transparent region 123 and the total reflection region 124.

On the other hand, the second light exit surface 122 has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point Q and reached the second light exit surface 122. The angle between the optical axis A and the light emitted from the starting point Q increases toward the outer edge of the second light exit surface 122. The angle of the light emitted from the starting point Q with respect to a normal line at the point on the second light exit surface 122 reached by the emitted light is the incident angle of the light with respect to the second light exit surface 122. An excessively large incident angle causes total reflection. The incident angle needs to be kept small in order to prevent total reflection. Accordingly, the second light exit surface 122 has a shape such that the angle between the normal line and the optical axis A increases with increasing distance from the optical axis A. That is, the shape of the second light exit surface 122 is a convex.

The entire second light exit surface 122 need not transmit the light emitted from the starting point Q (i.e., the second light exit surface 122 need not necessarily transmit the entire amount of the light). The second light exit surface 122 may have a shape capable of totally reflecting a part of the light 5 emitted from the starting point Q and transmitting the remaining part of the light.

In the illuminating lens 1 configured as described above, the most part of the light that has been emitted from the light source and reached the transmissive region 123 located in the center of the first light exit surface 121 is refracted at the transmissive region 123, and thus the area surrounding the optical axis A of the lens on the surface to be irradiated 3 is irradiated with the refracted light. On the other hand, the most part of the light that has been emitted from the light source 15 and reached the total reflection region 124 located on the peripheral side of the first light exit surface 121 is totally reflected at the total reflection region 124. For example, in the case where a reflecting plate is disposed on the light entrance surface 11 side of the illuminating lens 1, the area away from 20 the optical axis A of the lens on the surface to be irradiated 3 is irradiated with the totally reflected light at the end. Furthermore, the most part of the light that has been emitted from the light source and reached the second light exit surface 122 is refracted at the second light exit surface 122, and thus the area 25 away from the optical axis A of the lens on the surface to be irradiated 3 is irradiated with the refracted light. Accordingly, the illuminating lens 1 of the present embodiment allows the range of transmission directions for light from the light source to be widened further. Therefore, the outer diameter of 30 In addition, in the case where the surface to be irradiated 3 is the lens of the present embodiment may be smaller than that of a conventional lens having a concave for only refracting light.

The basic configuration of the illuminating lens 1 of the present embodiment has been described so far. A preferable 35 configuration of the illuminating lens 1 of the present embodiment will be described below.

It is preferable that the above-mentioned angle θ b (see FIG. 1) between the optical axis A and the line connecting the starting point Q and the boundary between the first light exit 40 surface 121 and the second light exit surface 122 satisfies the following inequality (1):

20 degrees
$$<\theta b<$$
40 degrees (1)

The inequality (1) defines the range of the first light exit 45 surface 121. The inequality (1) defines the range of the first light exit surface 121 with an angle based on the starting point Q (polar coordinate), and indicates the range of angles at which light to be directed to the surface to be irradiated 3 can be allocated appropriately to an area surrounding the optical 50 axis A of the lens on the surface to be irradiated 3 (hereinafter referred to as a "near-axis area") and an area away from the optical axis A of the lens on the surface to be irradiated 3 (hereinafter referred to as an "outer peripheral area"). When θb is 40 degrees or more, the range of the first light exit 55 surface 121 increases and the light that has been emitted from the light source toward the vicinity of the optical axis is directed excessively outwardly. As a result, the near-axis area of the surface to be irradiated 3 has a low illuminance, which causes an uneven illuminance on the surface 3. On the other 60 hand, when the θ b is 20 degrees or less, the range of the first light exit surface 121 decreases, and thus a large amount of light is directed to the near-axis area of the surface to be irradiated 3 while sufficient light cannot be directed to the outer peripheral area. As a result, not only the surface 3 has an 65 uneven illuminance but also the range of light transmission directions is narrowed.

8

When the point of intersection of the first light exit surface 122 and the optical axis A is denoted as C, the distance between the point C and the starting point Q is denoted as d, and the length of the straight line connecting the point C and the above-mentioned point P is denoted as a, as shown in FIG. **2**, it is preferable that the following inequality (2) is satisfied:

$$1.10 < a/(d \times \tan \theta p) < 1.30$$
 (2)

The inequality (2) defines the range of the transmissive region 123 of the first light exit surface 121, and indicates the amount of light directed to the near-axis area of the surface to be irradiated 3. When "a/(d tan θp)" in the inequality (2) is 1.30 or more, an excessive amount of light passes through the transmissive region 123. As a result, the near-axis area of the surface to be irradiated 3 has a high illuminance, which causes an uneven illuminance on the surface 3. On the other hand, when "a/(d tan θp)" in the inequality (2) is 1.10 or less, the amount of light that passes through the transmissive region 123 decreases excessively. As a result, the near-axis area of the surface to be irradiated 3 has a low illuminance. which causes an uneven illuminance on the surface 3.

Furthermore, it is preferable that the following inequalities (3) and (4) are satisfied. When the thickness of the illuminating lens 1 on the optical axis A (i.e., the distance from the point C to the light entrance surface 11) is denoted as d', and the outermost radius of the illuminating lens 1 is denoted as R, the inequality (3) is expressed as follows:

$$d'/2R < 0.25$$
 (3)

illuminated via the illuminating lens 1, when the distribution width of illuminances of 0.2 or more in an illuminance distribution curve on the surface to be irradiated 3, which is obtained by normalizing illuminances with respect to an illuminance at the center of the optical axis being 1, is denoted as δ_{I} , and in the case where the surface to be irradiated 3 is illuminated only by the light source, when the distribution width of illuminances of 0.2 or more in an illuminance distribution curve on the surface to be irradiated 3, which is obtained by normalizing illuminances with respect to an illuminance at the center of the optical axis being 1, is denoted as δ_s , the inequality (4) is expressed as follows:

$$2.0 < \delta_L / \delta_S < 4.0$$
 (4)

When "d'/2R" in the inequality (3) is 0.25 or more and the inequality (3) is not satisfied, the ratio between the first light exit surface 121 and the second light exit surface 122 is out of balance in the light exit surface 12, which causes an uneven illuminance.

In the inequality (4), " δ_L/δ_S " indicates a ratio of illuminance distribution between the case with the illuminating lens and the case without the illuminating lens. When the value of δ_{r}/δ_{s} is 4.0 or more, the range of light transmission directions is widened, but the illuminated area is excessively large, which causes an insufficient illuminance. On the other hand, when the value of δ_L/δ_S " is 2.0 or less, the lens itself is large in size. As a result, the compact property and the cost effectiveness of the lens decrease, and the range of light transmission directions is narrowed.

The illuminating lens of the present invention also is applicable to light sources (such as lasers and organic ELs) as well as light emitting diodes.

In the present embodiment, the light exit surface 12 is axisymmetric with respect to the optical axis A. The light exit surface 12, however, need not be axisymmetric with respect to the optical axis A. For example, as shown in FIG. 28A, the light exit surface 12 may have an elliptical shape when

viewed from the optical axis direction. This illuminating lens 1 is suitable particularly for an elongated light source. Alternatively, as shown in FIG. 28B, the light exit surface 12 may have a rounded rectangular shape when viewed from the optical axis direction.

(Modification)

Next, a Modified Illuminating Lens 1' Will be Described with Reference to FIG. 7 and FIG. 8. The same components as those in the above-described illuminating lens 1 are denoted by the same reference numerals.

In this illuminating lens 1', the first light exit surface 121 has a specular reflection region 125 covered with a reflective layer 126, instead of the total reflection region 124 (see FIG. 2). Therefore, the light that has been emitted from the starting point Q at an angle of θp or more with respect to the optical axis A and reached the first light exit surface 121 is specularly reflected at the reflective layer 126. The optical path of the specularly reflected light is the same as that of the totally reflected light. The reflective layer 126 may be formed of a reflective film obtained by applying a reflective material on the specular reflection region 125 and curing the material. The reflective layer 126 also may be formed of a reflective sheet attached to the specular reflection region 125.

In the case where specular reflection is utilized as in the present modification, the angle of inclination of the first light exit surface 121 can be reduced compared with the case where total reflection is utilized. Therefore, the flexibility in designing the lens shape can be increased. The specular reflection region 125 may have the same shape as the total reflection region 124. That is, when the specular reflection region 125 is not covered with the reflective layer 126, it may have a shape such that the light that has been emitted from the starting point Q at a specified angle of θp or more with respect to the optical axis A and reached the first light exit surface 121 can be totally reflected.

Second Embodiment

FIG. 3 is a schematic diagram of a lighting device 7 according to a second embodiment of the present invention. This lighting device 7 includes a light emitting diode 2 for emitting light, and an illuminating lens 1 of the first embodiment for spreading light emitted from the light emitting diode 2 so that 45 the surface to be irradiated 3 is irradiated with the spread light.

The light emitting diode 2 is in contact with the light entrance surface 11 of the illuminating lens 1 via a bonding agent, and connected optically to the light entrance surface 11. The light that has exited the illuminating lens 1 through 50 the light exit surface 12 reaches the surface to be irradiated 3, and thus the surface to be irradiated 3 is illuminated with that light.

Light generation in the light emitting diode 2 has no directivity in itself, and a light emitting region has a refractive index of at least 2.0. When light from the light emitting region enters a low refractive region, the refraction of the light at the interface causes the light to have the maximum intensity in the normal direction of the interface and to have a lower intensity as the angle of the light with respect to the normal line increases. As described above, since the light emitting diode 2 has high directivity, it is necessary to widen the range of transmission directions for light therefrom using the illuminating lens 1 to illuminate a larger area.

FIG. 4 is a diagram showing the paths of light rays in the lighting device 7. In FIG. 4, the paths of light rays that are

10

emitted from the light source at small angles and reach the transmissive region 123 (see FIG. 2) of the first light exit surface 121 are described. The light that has been emitted from the light emitting diode 2 passes through the light entrance surface 11 and reaches the transmissive region 123 of the first light exit surface 121. The light that has reached the transmissive region 123 of the first light exit surface 121 passes through the transmissive region 123 while being refracted, and then reaches the surface to be irradiated 3.

FIG. 5 is a diagram showing the paths of light rays in the lighting device 7. In FIG. 5, the paths of light rays that are emitted from the light source at small angles and reach the total reflection region 124 (see FIG. 2) of the first light exit surface 121 are described. The light that has been emitted from the light emitting diode 2 passes through the light entrance surface 11 and reaches the total reflection region 124 of the first light exit surface 121. The light that has reached the total reflection region 124 of the first light exit surface 121 is totally reflected at the total reflection region 124. The light that has traveled near the optical axis A is totally reflected to reach the second light exit surface 122, and then passes through the second light exit surface 122 while being refracted. In the case where a reflecting plate is provided on the side of the light entrance surface 11 of the illuminating lens 1, approximately the entire amount of light that has passed through the second light exit surface 122 reaches the surface to be irradiated 3. On the other hand, the light that has traveled away from the optical axis A is totally reflected to reach the second light exit surface 122. Then, the totally reflected light is reflected one or more times within the illuminating lens 1, passes through the light exit surface 12 while being refracted, and reaches the surface to be irradiated 3.

FIG. 6 is a diagram showing the paths of light rays in the lighting device 7. In FIG. 6, the paths of light rays that are emitted from the light source at larger angles and reach the second light exit surface 122 are described. The light that has been emitted from the light emitting diode 2 passes through the light entrance surface 11 and reaches the second light exit surface 122. In the case where the second light exit surface 122 does not have a shape capable of totally reflecting a part of the light, approximately the entire amount of the light that has reached the second light exit surface 122 passes through the second light exit surface 122 while being refracted, and then reaches the surface to be irradiated 3.

Hereinafter, Examples 1 to 3 are given as specific numerical examples of the present invention.

FIG. 9 is a schematic diagram of a lighting device in Examples 1 to 3 according to the second embodiment of the present invention. Examples 1 to 3 are examples of a lighting device designed to widen the range of transmission directions for light from a 0.45 mm cubic-shaped light emitting diode as a light source. In FIG. 9, θ i is an angle between the optical axis A and a straight line connecting the position of the light source (starting point Q) on the optical axis A and an arbitrary point on the light exit surface 12. In FIG. 9, on is an angle between the optical axis A and a normal line at the arbitrary point on the light exit surface 12, that is, a normal line at a position on the light exit surface 12 reached by the light that has been emitted from the light source position (starting point Q) on the optical axis A at an angle of θ i. Furthermore, in FIG. 9, sagY is a distance along the optical axis A between the light source position (starting point Q) on the optical axis A and the arbitrary point on the light exit surface 12.

11 Example 1

12
TABLE 1-continued

Example	Example 1			TABLE 1-continued		
Table 1 below shows specific nu	ımerical values in I	 Example	θi	$\operatorname{sag} Y$		
1.			26.26	0.941		
	_	5	26.45	0.946		
TABLE	1		26.64 26.83	0.951 0.956		
θi	sagY		27.02	0.961		
			27.21	0.966		
0.00	0.485		27.40	0.971		
0.76 1.52	0.485 0.487	10	27.59 27.77	0.975 0.980		
2.26	0.490		27.96	0.984		
2.99	0.494		28.15	0.989		
3.70	0.499		28.33 28.52	0.993 0.997		
4.38 5.05	0.505 0.511	1.5	28.70	1.001		
5.70	0.517	15	28.89	1.005		
6.33	0.523		29.07	1.009		
6.94	0.530		29.26 29.45	1.013 1.017		
7.53 8.10	0.537 0.544		29.63	1.021		
8.65	0.551	20	29.82	1.024		
9.19	0.558	20	30.00	1.028		
9.71 10.22	0.565 0.572		30.19 30.38	1.031 1.034		
10.22	0.580		30.57	1.038		
11.19	0.587		30.75	1.041		
11.65	0.594	25	30.94	1.044		
12.10 12.54	0.602 0.609	23	31.13 31.32	1.047 1.049		
12.97	0.616		31.51	1.052		
13.38	0.624		31.70	1.055		
13.79	0.631		31.89	1.057		
14.18 14.56	0.638 0.645	30	32.09 32.28	1.060 1.062		
14.94	0.653	50	32.48	1.064		
15.30	0.660		32.67	1.066		
15.66	0.667		32.87 33.07	1.068 1.070		
16.01 16.35	0.675 0.682		33.26	1.072		
16.68	0.689	35	33.47	1.073		
17.00	0.696		33.70	1.074		
17.32 17.63	0.703 0.710		33.94 34.18	1.074 1.073		
17.03	0.717		34.42	1.073		
18.23	0.724		34.66	1.073		
18.52	0.731	40	34.89 35.13	1.073 1.073		
18.81 19.09	0.738 0.745		35.36	1.072		
19.37	0.752		35.60	1.072		
19.64	0.759		35.83	1.072		
19.90 20.17	0.766 0.773		36.06 36.29	1.072 1.072		
20.17	0.779	45	36.52	1.072		
20.68	0.786		36.74	1.071		
20.92	0.793		36.97 37.19	1.071 1.071		
21.17 21.41	0.799 0.806		37.42	1.071		
21.65	0.813		37.64	1.070		
21.88	0.819	50	37.86	1.070		
22.11	0.825 0.832		38.08 38.30	1.070 1.070		
22.34 22.57	0.838		38.52	1.069		
22.79	0.844		38.74	1.069		
23.01	0.850		38.96	1.069		
23.23 23.44	0.857 0.863	55	39.17 39.39	1.069 1.068		
23.66	0.869		39.60	1.068		
23.87	0.875		39.81	1.068		
24.08	0.881		40.02	1.068		
24.28 24.49	0.886 0.892		40.23 40.44	1.067 1.067		
24.69	0.898	60	40.65	1.067		
24.89	0.904		40.86	1.066		
25.09 25.20	0.909		41.06 41.27	1.066 1.066		
25.29 25.49	0.915 0.920		41.47	1.065		
25.68	0.925		41.68	1.065		
25.88	0.931	65	41.88	1.065		
26.07	0.936		42.08	1.064		

13
TABLE 1-continued

56.45

56.65

0.967

0.964

14
TABLE 1-continued

TABLE 1-co	TABLE 1-continued		TABLE 1-	continued	
θί	$\operatorname{sag} Y$		θі	$\operatorname{sag} Y$	
42.28	1.064		56.84	0.961	
42.48	1.063	5	57.04	0.958	
42.68	1.063		57.24	0.955	
42.88 43.08	1.063 1.062		57.44 57.65	0.951 0.948	
43.28	1.062		57.85	0.945	
43.47	1.061		58.06	0.941	
43.67	1.061	10	58.27	0.937	
43.86	1.060		58.47	0.934	
44.06	1.060		58.69	0.930	
44.25	1.059		58.90	0.926	
44.44	1.059		59.12	0.922	
44.63 44.83	1.058 1.058		59.33 59.55	0.918 0.914	
45.02	1.057	15	59.78	0.909	
45.21	1.057		60.00	0.905	
45.39	1.056		60.23	0.900	
45.58	1.055		60.46	0.896	
45.77	1.055		60.69	0.891	
45.96	1.054	20	60.93	0.886	
46.15 46.33	1.053	20	61.17	0.881 0.875	
46.52	1.053 1.052		61.41 61.66	0.870	
46.70	1.051		61.91	0.864	
46.89	1.051		62.16	0.858	
47.07	1.050		62.42	0.852	
47.26	1.049	25	62.69	0.846	
47.44	1.048		62.95	0.840	
47.62	1.047		63.23	0.833	
47.81 47.99	1.047 1.046		63.51 63.79	0.826 0.819	
48.17	1.045		64.08	0.819	
48.35	1.044	30	64.38	0.804	
48.54	1.043	50	64.69	0.796	
48.72	1.042		65.00	0.788	
48.90	1.041		65.32	0.780	
49.08	1.040		65.65	0.771	
49.26 49.44	1.039		65.99	0.762 0.752	
49.62	1.038 1.037	35	66.33 66.69	0.742	
49.80	1.036		67.06	0.732	
49.98	1.034		67.43	0.721	
50.16	1.033		67.83	0.710	
50.34	1.032		68.23	0.698	
50.52	1.031	40	68.65	0.686	
50.70 50.88	1.029 1.028		69.08 69.53	0.673 0.660	
50.88 51.06	1.028		69.53 69.99	0.646	
51.25	1.025		70.47	0.631	
51.43	1.024		70.97	0.616	
51.61	1.022		71.50	0.600	
51.79	1.021	45	72.04	0.583	
51.97	1.019		72.60	0.566	
52.15 52.33	1.017		73.19	0.547	
52.33 52.51	1.016 1.014		73.81 74.45	0.528 0.508	
52.69	1.014		75.13	0.487	
52.88	1.011	50	75.83	0.464	
53.06	1.009		76.57	0.441	
53.24	1.007		77.34	0.416	
53.43	1.005		78.15	0.390	
53.61	1.003		79.00	0.362	
53.79 53.98	1.001 0.999		79.89 80.83	0.333 0.303	
54.16	0.997	55	81.82	0.271	
54.35	0.995		82.85	0.237	
54.54	0.992		83.94	0.201	
54.72	0.990		85.09	0.164	
54.91	0.988		86.29	0.124	
55.10 55.20	0.985	60	87.56	0.082	
55.29 55.48	0.983 0.980		88.88	0.037	
55.67	0.980				
55.87	0.975	EIC :	10 ic o granh aktains 11.	v nlotting the values -	f Ai and
56.06	0.972		10 is a graph obtained b		
56.25	0.970		Table 1. FIG. 13 is a		
56.45	0.967	65 between	n r/R and θi-θn. Here	, r/R is a value obtai:	ned by

FIG. 10 is a graph obtained by plotting the values of θi and sagY in Table 1. FIG. 13 is a graph showing a relationship between r/R and θi-θn. Here, r/R is a value obtained by normalizing, with respect to the outermost radius of the lens, the distance in the direction parallel to the light entrance

surface 11 from the optical axis A to the arbitrary point on the light exit surface 12, where r is the distance in the direction parallel to the light entrance surface from the optical axis to the arbitrary point on the light exit surface, and R is the outermost radius of the lens (see FIG. 9).

 θ i- θ n is an angle of a light ray emitted at an angle of θ i, with respect to a normal line at a point on the light exit surface 12 reached by the light ray, that is, an incident angle of the light ray on the light exit surface 12. As a condition of the total reflection region 124 of the first light exit surface 121, since the refractive index of the transparent material constituting the lens in Example 1 is 1.41, θ i- θ n is 45.172 degrees or more. Accordingly, FIG. 13 shows that in Example 1, the transmissive region 123 of the first light exit surface 121 is a narrow region 124 is a wide region away from the optical axis. FIG. 13 also shows that in Example 1, the entire second light exit surface 122 totally reflects the light emitted from the starting point Q.

In Example 1, d, θp , and a shown in FIG. 2 are 0.485 mm, 4.2 degrees, and 0.042 mm, respectively. Accordingly, $a/(dx \tan \theta p)$ is 1.17, and this value satisfies the above inequality (2).

Furthermore, in Example 1, d' and R shown in FIG. **2** are 0.48 mm and 1.95 mm, respectively. Accordingly, d'/2R is 0.12, and this value satisfies the above inequality (3).

FIG. 16 shows the illuminance distribution on the surface to be irradiated obtained by calculation assuming that the lighting device of Example 1 (i.e., the illuminating lens in 30 FIG. 10 and the light emitting diode) is used and the surface to be irradiated is placed at a distance of 8 mm from the light emitting diode. FIG. 19 shows the illuminance distribution on the surface to be irradiated obtained by calculation assuming that only the same light emitting diode as in FIG. 16 is used 3° and the surface to be irradiated is placed at a distance of 8 mm from the light emitting diode. Each of FIG. 16 and FIG. 19 shows a curve indicating the distribution of illuminances on the surface to be irradiated when the illuminances are normalized with respect to the illuminance at the center of the 40 optical axis being 1. A comparison between FIG. 16 and FIG. 19 shows that the illuminating lens is effective in increasing the illuminated area of the surface to be irradiated.

Furthermore, the distribution width δ_L of illuminances of 0.2 or more on the illuminance distribution curve in FIG. 16 is 0.48, and the distribution width δ_S of illuminances of 0.2 or more on the illuminance distribution curve in FIG. 19 is 0.2. Accordingly, δ_L/δ_S is 2.4, which satisfies the above inequality (4).

Example 2

Table 2 below shows specific numerical values in Example 2.

TABLE 2

	$\operatorname{sag} Y$	θi
	0.647	0.00
	0.647	0.57
60	0.648	1.14
	0.649	1.71
	0.650	2.27
	0.652	2.83
	0.653	3.39
	0.656	3.94
65	0.658	4.48
	0.661	5.02

16

	10			
	TABLE 2-	continued		
	θi	$\operatorname{sag} Y$		
_ '	5.55	0.664		
5	6.07 6.59	0.667 0.670		
	7.09	0.674		
	7.59	0.678		
	8.07	0.682		
10	8.55 9.02	0.686 0.691		
10	9.48	0.695		
	9.93	0.700		
	10.37	0.705 0.710		
	10.80 11.22	0.715		
15	11.64	0.720		
13	12.04	0.726		
	12.44 12.83	0.731 0.736		
	13.21	0.742		
	13.58	0.748		
20	13.94 14.30	0.753		
	14.65	0.759 0.765		
	14.99	0.771		
	15.33	0.776		
	15.66 15.98	0.782 0.788		
25	16.30	0.794		
	16.61	0.800		
	16.91	0.806		
	17.21 17.51	0.812 0.818		
	17.79	0.824		
30	18.08	0.830		
	18.35	0.836		
	18.63 18.89	0.842 0.848		
	19.16	0.854		
	19.42	0.860		
35	19.67 19.92	0.866 0.872		
	20.17	0.878		
	20.42	0.884		
	20.66 20.89	0.890 0.896		
	21.13	0.890		
40	21.36	0.907		
	21.58	0.913		
	21.81 22.03	0.919 0.925		
	22.25	0.930		
4.5	22.46	0.936		
45	22.67 22.88	0.942 0.947		
	23.09	0.953		
	23.30	0.959		
	23.50	0.964		
50	23.70 23.90	0.970 0.975		
30	24.10	0.981		
	24.30	0.986		
	24.49 24.68	0.991 0.997		
	24.87	1.002		
55	25.06	1.007		
	25.25 25.43	1.012		
	25.43 25.62	1.017 1.022		
	25.80	1.027		
	25.99	1.032		
60	26.17 26.35	1.037		
	26.35 26.53	1.042 1.047		
	26.70	1.051		
	26.88	1.056		
	27.06 27.23	1.061 1.065		
65	27.23	1.070		
	27.58	1.074		

18
TABLE 2-continued

TABLE 2-continued			IADLE 2-0	minued
θi	sagY		θі	sagY
				-
27.75 27.93	1.079 1.083	5	43.80 43.99	1.117 1.116
28.10	1.087	,	44.18	1.115
28.27	1.091		44.36	1.114
28.44	1.096		44.55	1.114
28.61	1.100		44.74	1.113
28.78 28.95	1.104 1.108	10	44.92 45.11	1.112 1.112
29.12	1.111	10	45.29	1.111
29.29	1.115		45.48	1.110
29.46	1.119		45.66	1.109
29.63	1.123		45.84	1.108
29.80 29.97	1.126 1.130		46.03 46.21	1.108 1.107
30.14	1.133	15	46.39	1.106
30.31	1.136		46.57	1.105
30.49	1.139		46.75	1.104
30.73	1.139		46.93	1.103
30.98 31.22	1.139 1.139		47.11 47.29	1.102 1.101
31.46	1.139	20	47.47	1.100
31.70	1.138		47.65	1.099
31.94	1.138		47.83	1.098
32.18	1.138		48.01	1.097
32.41 32.65	1.138 1.137		48.18 48.36	1.096 1.095
32.88	1.137	25	48.54	1.093
33.12	1.137		48.71	1.093
33.35	1.137		48.89	1.092
33.58	1.137		49.07	1.091
33.81	1.136 1.136		49.24	1.090 1.088
34.04 34.27	1.136	30	49.42 49.59	1.087
34.50	1.136	30	49.77	1.086
34.73	1.135		49.94	1.085
34.95	1.135		50.12	1.083
35.18	1.135		50.29	1.082
35.40 35.62	1.135 1.134		50.47 50.64	1.081 1.079
35.84	1.134	35	50.82	1.078
36.06	1.134		50.99	1.076
36.28	1.133		51.16	1.075
36.50	1.133		51.34	1.073
36.72 36.94	1.133 1.132		51.51 51.69	1.072 1.070
37.15	1.132	40	51.86	1.069
37.37	1.132		52.03	1.067
37.58	1.131		52.21	1.065
37.79	1.131		52.38	1.064
38.01 38.22	1.131 1.130		52.56 52.73	1.062 1.060
38.43	1.130	45	52.91	1.058
38.64	1.130		53.08	1.056
38.85	1.129		53.26	1.055
39.05	1.129		53.43	1.053
39.26 39.47	1.128 1.128		53.61 53.78	1.051 1.049
39.67	1.128	50	53.96	1.047
39.88	1.127	50	54.13	1.045
40.08	1.127		54.31	1.042
40.28 40.48	1.126		54.49 54.66	1.040
40.48 40.69	1.126 1.125		54.66 54.84	1.038 1.036
40.89	1.125	55	55.02	1.034
41.09	1.124	55	55.19	1.031
41.28	1.124		55.37	1.029
41.48	1.123		55.55 55.72	1.026
41.68 41.88	1.123 1.122		55.73 55.91	1.024 1.021
42.07	1.122		56.09	1.019
42.27	1.121	60	56.27	1.016
42.46	1.121		56.45	1.014
42.65	1.120		56.63	1.011
42.85 43.04	1.120		56.82 57.00	1.008 1.005
43.04 43.23	1.119 1.118		57.00 57.18	1.003
43.42	1.118	65	57.37	0.999
43.61	1.117		57.55	0.996

67.85

68.10

68.36 68.62

68.89

69.15

69.42

69.70

69.97

70.25

70.53

70.81

71.09

71.38

71.67

71.96

72.26

72.56

72.86

73.17

73.47

73.79

74.10

74.42

74.74

75.06

75.39

75.72

76.05

76.39

76.73

0.764

0.757

0.750

0.742

0.735

0.727

0.719

0.711

0.703

0.695

0.687

0.678

0.669

0.661

0.652

0.643

0.633

0.624

0.615

0.605 0.595

0.585

0.575

0.565

0.554

0.544

0.533

0.522

0.511

0.500 0.488

20

TABLE 2	2-continued		TABLE 2-continued		
θі	$\operatorname{sag} Y$		θi	$\operatorname{sag} Y$	
57.74	0.993		77.07	0.477	
57.93	0.990	5	77.42	0.465	
58.11	0.987		77.77	0.453	
58.30	0.984		78.12	0.441	
58.49	0.981		78.47	0.000	
58.68	0.977		78.83	0.000	
58.87	0.974		79.20	0.000	
59.06	0.970	10	79.57	0.000	
59.26	0.967		79.94	0.000	
59.45	0.963		80.31	0.000	
59.64	0.959		80.69	0.000	
59.84	0.956		81.07	0.000	
60.04	0.952		81.45	0.000	
60.23	0.948	15	81.84	0.000	
60.43	0.944	13	82.23	0.000	
60.63	0.940		82.63	0.000	
60.83	0.936		83.03	0.000	
61.04	0.932		83.43	0.000	
61.24	0.927		83.84	0.000	
61.45	0.923		84.25	0.000	
61.65	0.919	20	84.66	0.000	
61.86	0.914		85.08	0.000	
62.07	0.910		85.50	0.000	
62.28	0.905		85.92	0.000	
62.49	0.900		86.35	0.000	
62.71	0.895		86.78	0.000	
62.92	0.890	25	87.21	0.000	
63.14	0.885		87.65	0.000	
63.36	0.880		88.09	0.000	
63.58	0.875		88.54	0.000	
63.80	0.870		88.99	0.000	
64.02	0.864		89.44	0.000	
64.24	0.859	30	89.89	0.000	
64.47	0.853				
64.70	0.848				
64.93	0.842	FIC	3 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 44 1 1 60	
65.16	0.836		\mathfrak{F} . 11 is a graph obtained b		
65.39	0.830	sagY	in Table 2. FIG. 14 is a	graph showing a relation	ship
65.63	0.824		en r/R and θi-θn. r/R and		
65.87	0.818	55		or on milio. I care the s	carre
66.11	0.811	as tno	se in FIG. 13.		
66.35	0.805	In	Example 2, the lens is r	nade of a material havi	กσล
66.59	0.799				
66.84	0.792		tive index of 1.41, as in the	_	
67.09	0.785	above	e. Accordingly, as a con-	dition of the total reflec	ction
67.34	0.778	40 region	n 124 of the first light exit	surface 121, θi-θn is 45	.172
67.59	0.771		es or more, as in the case		
67.05	0.764	degree	es of more, as in the case	or Example 1. Accordin	ıgıy,

degrees or more, as in the case of Example 1. Accordingly, FIG. 14 shows that in Example 2, the transmissive region 123 is wider than that of Example 1, and the total reflection region 124 is narrower than that of Example 1. FIG. 14 also shows that in Example 2, the entire second light exit surface 122 totally reflects the light emitted from the starting point Q.

In Example 2, d, θp , and a shown in FIG. 2 are 0.647 mm, 9.3 degrees, and 0.123 mm, respectively. Accordingly, a/(dx 50 tan θp) is 1.16, and this value satisfies the above inequality (2).

Furthermore, in Example 2, d' and R shown in FIG. 2 are 0.642 mm and 2.1 mm, respectively. Accordingly, d'/2R is 0.15, and this value satisfies the above inequality (3).

FIG. 17 shows the illuminance distribution on the surface to be irradiated obtained by calculation assuming that the lighting device of Example 2 (i.e., the illuminating lens in FIG. 11 and the light emitting diode) is used and the surface to be irradiated is placed at a distance of 8 mm from the light emitting diode. FIG. 17 shows a curve indicating the distribution of illuminances on the surface to be irradiated when the illuminances are normalized with respect to the illuminance at the center of the optical axis being 1, as in the case of 65 FIG. 16. A comparison between FIG. 17 and FIG. 19 shows that the illuminating lens is effective in increasing the illuminated area of the surface to be irradiated.

22 TABLE 3-continued

sagY

Furthermore, the distribution width δ_L of illuminances of 0.2 or more on the illuminance distribution curve in FIG. 17 is 0.5. Accordingly, δ_L/δ_S is 2.5, which satisfies the above inequality (4).

$\theta \mathrm{i}$ 20.367 20.571 20.772 20.972 21.171

	- 1	_
Exam	nle	- 4
LAGIII	$\nu 1 -$	_

is 0.5. Accordingly, δ_L/δ_S is 2.5, wh	nch satisfies the above		01	sag i
inequality (4).			20.367	1.129
		5	20.571	1.134
Example 3			20.772	1.139
Example 3			20.972	1.144
			21.171	1.149
Table 3 below shows specific nume	rical values in Example		21.368	1.154
3.		10	21.563 21.757	1.159 1.164
		10	21.949	1.168
TABLE 3			22.140	1.173
TABLE 3			22.330	1.178
Θ i	sagY		22.518	1.182
			22.705	1.187
0.000	0.800	15	22.892	1.191
0.462	0.800		23.076 23.260	1.196 1.200
0.922 1.379	0.802 0.804		23.443	1.205
1.833	0.806		23.625	1.209
2.282	0.809		23.806	1.213
2.725	0.813	20	23.986	1.218
3.163	0.817	20	24.165	1.222
3.595	0.821		24.344	1.226
4.021	0.826		24.522	1.230
4.441	0.830		24.699 24.875	1.234 1.238
4.855 5.262	0.835 0.840		25.051	1.242
5.664	0.845	25	25.226	1.246
6.059	0.851		25.401	1.250
6.449	0.856		25.575	1.253
6.833	0.861		25.749	1.257
7.211	0.867		25.922	1.261
7.583	0.872		26.095	1.264
7.949	0.878	30	26.290 26.499	1.266 1.268
8.311 8.666	0.883 0.889		26.706	1.269
9.017	0.894		26.913	1.271
9.362	0.900		27.117	1.272
9.703	0.905		27.321	1.274
10.038	0.911	35	27.523	1.275
10.368	0.917		27.724	1.276
10.694	0.922		27.923 28.122	1.278 1.279
11.014 11.331	0.928 0.933		28.318	1.281
11.642	0.939		28.514	1.282
11.950	0.945	40	28.709	1.284
12.253	0.950	40	28.902	1.285
12.551	0.956		29.094	1.287
12.846	0.962		29.284	1.288
13.136	0.967		29.474	1.290 1.291
13.423 13.706	0.973 0.979		29.662 29.849	1.293
13.766	0.984	45	30.035	1.294
14.260	0.990		30.220	1.296
14.531	0.995		30.404	1.297
14.799	1.001		30.586	1.299
15.064	1.007		30.768	1.300
15.325	1.012	50	30.949	1.302 1.303
15.583 15.837	1.018 1.023	50	31.128 31.306	1.305
16.089	1.029		31.484	1.306
16.337	1.034		31.660	1.307
16.583	1.040		31.836	1.309
16.825	1.045		32.010	1.310
17.065	1.051	55	32.184	1.312
17.302	1.056		32.356	1.313
17.536	1.061		32.528 32.699	1.315 1.316
17.768 17.997	1.067 1.072		32.869	1.318
18.224	1.077		33.038	1.319
18.448	1.083		33.206	1.320
18.670	1.088	60	33.374	1.322
18.889	1.093		33.541	1.323
19.107	1.099		33.706	1.325
19.322	1.104		33.872	1.326
19.535	1.109		34.036	1.327
19.746	1.114	65	34.200 34.363	1.329 1.330
19.955 20.162	1.119 1.124		34.525	1.331
20.102	1.147		ションムシ	1.551

TABLE 3-continued

24
TABLE 3-continued

TABLE 3-c	ontinued		TABLE 3-continued	
θi	$\operatorname{sag} Y$		θi	$\operatorname{sag} Y$
34.687	1.333		46.3658	1.359
34.848	1.334	5	46.5113	1.358
35.009	1.335		46.6568	1.357
35.168 35.328	1.337 1.338		46.8023 46.9477	1.357 1.356
35.326	1.339		47.0931	1.355
35.645	1.340		47.2385	1.354
35.802	1.341	10	47.3838	1.353
35.959	1.343		47.5291	1.352
36.116	1.344		47.6744	1.351
36.272	1.345		47.8196	1.350
36.428	1.346		47.9648	1.349
36.583 36.738	1.347 1.348		48.1100 48.2552	1.348 1.347
36.892	1.349	15	48.4004	1.347
37.046	1.350		48.5455	1.345
37.199	1.351		48.6907	1.343
37.352	1.352		48.8358	1.342
37.505	1.353		48.9809	1.341
37.658	1.354	20	49.1261	1.340
37.810	1.355	20	49.2712	1.338
37.962	1.356		49.4164	1.337
38.113	1.357		49.5615	1.336
38.264 38.415	1.357 1.358		49.707 49.852	1.334 1.333
38.566	1.359		49.997	1.332
38.716	1.360	25	50.143	1.330
38.866	1.361		50.288	1.329
39.016	1.361		50.433	1.327
39.166	1.362		50.579	1.326
39.316	1.363		50.724	1.324
39.465	1.363		50.870	1.322
39.614	1.364	30	51.016	1.321
39.763 39.912	1.364 1.365		51.162 51.308	1.319 1.317
40.060	1.365		51.454	1.317
40.209	1.366		51.600	1.314
40.357	1.366		51.746	1.312
40.505	1.367	35	51.893	1.310
40.653	1.367	33	52.040	1.308
40.8007	1.367		52.187	1.306
40.9485	1.368		52.334	1.305
41.0961	1.368		52.481 52.628	1.303
41.2436 41.3910	1.368 1.369		52.776	1.301 1.299
41.5383	1.369	40	52.924	1.296
41.6856	1.369		53.073	1.294
41.8327	1.369		53.221	1.292
41.9797	1.369		53.370	1.290
42.1267	1.369		53.519	1.288
42.2736	1.369	45	53.669	1.285
42.4205	1.369	45	53.819	1.283
42.5672	1.369		53.969	1.281
42.7139 42.8606	1.369 1.369		54.119 54.270	1.278 1.276
43.0072	1.369		54.422	1.273
43.1537	1.369		54.574	1.271
43.3002	1.369	50	54.726	1.268
43.4466	1.369		54.879	1.266
43.5930	1.369		55.032	1.263
43.7393	1.368		55.185	1.260
43.8856	1.368		55.340	1.258
44.0318 44.1780	1.368		55.494 55.649	1.255
44.1780 44.3241	1.367 1.367	55	55.805	1.252 1.249
44.4702	1.367		55.962	1.249
44.6163	1.366		56.119	1.243
44.7623	1.366		56.276	1.240
44.9083	1.365		56.434	1.237
45.0542	1.365	60	56.593	1.234
45.2001	1.364	υυ	56.752	1.230
45.3460	1.364		56.913	1.227
45.4918 45.6375	1.363		57.073 57.235	1.224
45.6375 45.7833	1.363 1.362		57.235 57.397	1.220 1.217
45.7833	1.361		57.560	1.217
46.0746	1.361	65	57.723	1.210
46.2202	1.360		57.888	1.206

76.957

0.562

26 TABLE 3-continued

as shown in FIG. 20. They may be arranged in a staggered

IABLE 3-continued			IABLE 3-	-continued
θi	sagY		θi	$\operatorname{sag} Y$
58.053	1.203		77.507	0.539
58.219	1.199	5	78.083	0.515
58.386	1.195		78.686	0.489
58.553	1.191		79.319	0.462
58.721	1.187		79.983	0.434
58.891	1.183		80.680	0.404
59.060	1.179		81.412	0.373
59.231	1.175	10	82.181	0.340
59.403	1.171		82.990	0.305
59.575	1.167		83.841	0.269
59.749	1.162		84.735	0.230
59.923	1.158		85.676	0.189
60.098	1.154		86.666	0.146
60.274	1.149	15	87.707	0.101
60.451	1.144		88.801	0.053
60.629	1.140		89.952	0.002
60.808	1.135			
60.988	1.130	FIC	10 1	h1
61.169	1.126			by plotting the values of θi and
61.350	1.121	₂₀ sagY i	n Table 3. FIG. 15 is a	graph showing a relationship
61.533	1.116			l θi-θn in FIG. 15 are the same
61.717	1.111		se in FIG. 13.	01 011 111 10 110 110 110 1110 11110
61.902	1.105			
62.088 62.275	1.100 1.095			made of a material having a
		refract	ive index of 1.41, as in the	ne case of Example 1 described
62.463 62.652	1.090 1.084			ndition of the total reflection
62.842	1.079			
63.033	1.073	_	_	it surface 121, θ i- θ n is 45,172
63.226	1.067	degree	s or more, as in the cas	e of Example 1. Accordingly,
63.420	1.062			3, the transmissive region 123
63.615	1.056			_
63.812	1.050			, and the total reflection region
64.010	1.044	³⁰ 124 is	narrower than that of E	xample 1. FIG. 15 also shows
64.209	1.038	that in	Example 3, the second	l light exit surface 122 totally
64.410	1.032			ed from the starting point Q and
64.612	1.025			
64.816	1.019		its the remaining part of	
65.022	1.013	In E	xample 3, d, θ p, and a sh	nown in FIG. 2 are 0.8 mm, 6.0
65.230	1.006			ctively. Accordingly, a/(d×tan
65.439	0.999			
65.651	0.992			sfies the above inequality (2).
65.865	0.985	Furt	hermore, in Example 3,	, d' and R shown in FIG. 2 are
66.080	0.978	0.795 ı	mm and 2.55 mm, responding	ectively. Accordingly, d'/2R is
66.299	0.971	0.16 -	and this value satisfies th	
66.520	0.964			
66.743	0.956			nce distribution on the surface
66.970	0.949	to be i	irradiated obtained by	calculation assuming that the
67.199	0.941			(i.e., the illuminating lens in
67.432	0.933			
67.668	0.925			diode) is used and the surface
67.909	0.916			istance of 8 mm from the light
68.153	0.908	emittin	ng diode. FIG. 18 shows	s a curve indicating the distri-
68.401	0.899			surface to be irradiated when
68.654	0.890			
68.912	0.880			ed with respect to the illumi-
69.176	0.871	nance a	at the center of the optica	al axis being 1, as in the case of
69.445	0.861			en FIG. 18 and FIG. 19 shows
69.720	0.851			ective in increasing the illumi-
70.002	0.840			
70.291	0.829		area of the surface to be	
70.588	0.818	Furt	hermore, the distributio	on width δ_L of illuminances of
70.892	0.807	0.2 or 1	more on the illuminance	e distribution curve in FIG. 18
71.206	0.795			2.8, which satisfies the above
71.528	0.782			2.0, which satisfies the above
71.861	0.769	inequa	lity (4).	
72.205	0.756			
72.560	0.742		Third Em	bodiment
72.927	0.727			
73.308	0.712	co EIC	20 is a schamatic diam	ram of a curface light course
73.703	0.696			ram of a surface light source 8
74.113	0.679			nent of the present invention.
74.539	0.662			cludes a plurality of lighting
74.983	0.644			iment arranged in a plane, and
75.445	0.625			cover the plurality of lighting
75.927	0.605			
76.430	0.584	65 devices	s 7. The fighting devices	7 may be arranged in a matrix

manner.

The surface light source 8 includes a substrate 65 facing the diffusing plate 4 with the lighting devices 7 being disposed therebetween. As shown in FIG. 21, the light emitting diode 2 of each lighting device 7 is mounted on the substrate 65. In the present embodiment, a reflecting plate 6 is disposed on the substrate 65 to cover the substrate 65 with the light emitting diodes 2 being exposed.

In the present embodiment, the light entrance surface 11 of the illuminating lens 1 and the bottom surface 13 surrounding the light entrance surface 11 are on the same level.

The lighting device 7 emits light to one surface 4a of the diffusing plate 4. That is, the one surface 4a of the diffusing plate 4 is the surface to be irradiated 3 that has been described in the first and second embodiments. The diffusing plate 4 emits the light received on its one surface 4a from the other surface 4b in a diffused manner. The lighting devices 7 emit light individually toward a large area of the one surface 4a of the diffusing plate 4 so that the one surface 4a has a uniform illuminance, and upon receiving this light, the diffusing plate 20 4 emits the light diffusely. As a result, the surface light source capable of emitting light having less uneven brightness in the plane is obtained.

The light emitted from the lighting device 7 is diffused by the diffusing plate 4 so that the diffuse light returns to the 25 lighting device side or passes through the diffusing plate 4. The light that has returned to the lighting device side and struck the reflecting plate 6 is reflected at the reflecting plate 6 and again enters the diffusing plate 4.

FIG. 22 shows the illuminance distribution on the light on the side of the lighting device) of the diffusing plate obtained by calculation assuming that four lighting devices of Example 1 each including the illuminating lens in FIG. 10 and the light emitting diode are arranged in a line at a pitch of 20 mm and the diffusing plate is placed at a distance of 8 mm from the light emitting diodes. Small fluctuations in the illuminance distribution are attributed to a small number of light rays to be evaluated in calculating the illuminances. FIG. 23 and FIG. 24 show the illuminance distribution obtained in the same manner when the lighting devices of Example 2 are used and the illuminance distribution obtained when the lighting devices of Example 3 are used, respectively.

FIG. 25 shows the illuminance distribution on the light entrance surface of the diffusing plate obtained by calculation 45 assuming that four light emitting diodes only are arranged in a line with a pitch of 20 mm and the diffusing plate is placed at a distance of 8 mm from the light emitting diodes.

A comparison between FIGS. **22** to **24** and FIG. **25** shows that the illuminating lens is effective in illuminating the light 50 entrance surface of the diffusing plate uniformly.

Fourth Embodiment

FIG. **26** is a schematic diagram of a liquid-crystal display 55 apparatus according to a fourth embodiment of the present invention. This liquid-crystal display apparatus includes a liquid-crystal panel **5**, and a surface light source **8** of the third embodiment disposed behind the liquid-crystal panel **5**.

A plurality of lighting devices 7 each including the light 60 emitting diode 2 and the illuminating lens 1 are arranged in a plane, and the diffusing plate 4 is illuminated by these lighting devices 7. The underside (one surface) of the diffusing plate 4 is irradiated with the light emitted from the lighting devices 7 to have a uniform illuminance, and then the light is diffused 65 by the diffusing plate 4. Thus, the liquid-crystal panel 5 is illuminated by the diffused light.

28

It is preferable that an optical sheet such as a diffusing sheet or a prism sheet is disposed between the liquid-crystal panel 5 and the surface light source 8. In this case, the light that has passed through the diffusing plate 4 further is diffused by the optical sheet and illuminates the liquid-crystal panel 5.

The invention may be embodied in other forms without departing from the spirit or essential characteristics thereof. The embodiments disclosed in this specification are to be considered in all respects as illustrative and not limiting. The scope of the invention is indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.

What is claimed is:

- 1. An illuminating lens for spreading light emitted from a light source so that a surface to be irradiated is irradiated with the spread light, the lens comprising:
 - a light entrance surface through which the light emitted from the light source enters the lens; and
 - a light exit surface through which the light that has entered the lens exits the lens,
 - wherein the light exit surface has a first light exit surface and a second light exit surface, the first light exit surface being recessed toward a point on an optical axis of the illuminating lens, and the second light exit surface extending outwardly from a periphery of the first light exit surface to form a convex,
 - the first light exit surface has a transmissive region located in the center of the first light exit surface and a total reflection region located around the transmissive region, the transmissive region being capable of transmitting light that has been emitted from a starting point at a relatively small angle with respect to the optical axis and then reached the first light exit surface, when a position of the light source on the optical axis is defined as the starting point, and the total reflection region being capable of totally reflecting light that has been emitted from the starting point at a relatively large angle with respect to the optical axis and then reached the first light exit surface, and
 - the second light exit surface has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point and then reached the second light exit surface,
 - wherein the light exit surface is rotationally symmetric with respect to the optical axis.
- 2. The illuminating lens according to claim 1, wherein the light source is a point light source and the light entrance surface has a shape conforming to the shape of the point light source.
- 3. The illuminating lens according to claim 1, wherein when an angle between the optical axis and a line connecting the starting point and a boundary between the first light exit surface and the second light exit surface is defined as θb , the following inequality is satisfied:

20 degrees<θb<40 degrees.

- **4**. The illuminating lens according to claim **1**, wherein the entire second light exit surface transmits the light that has been emitted from the starting point.
- 5. The illuminating lens ac cording to claim 1, wherein the second light exit surface totally reflects a part of the light that has been emitted from the starting point and transmits the remaining part of the light.

29

6. The illuminating lens according to claim 1, wherein when a thickness of the illuminating lens on the optical axis is denoted as d', and an outermost radius of the illuminating lens is denoted as R, the following inequality is satisfied:

d'/2R<0.25, and

in the case where the surface to be irradiated is illuminated via the illuminating lens, when a distribution width of illuminances of 0.2 or more in an illuminance distribution curve on the surface to be irradiated is denoted as δ_L , the illuminance distribution curve being obtained by normalizing illuminances with respect to an illuminance at the center of the optical axis being 1, and in the case where the surface to be irradiated is illuminated only by the light source, when a distribution width of illuminances of 0.2 or more in an illuminance distribution curve on the surface to be irradiated is denoted as δ_S , the illuminance distribution curve being obtained by normalizing illuminances with respect to an illuminance at the center of the optical axis being 1, the following inequality is satisfied:

 $2.0 < \delta_L/\delta_S < 4.0$.

7. A lighting device comprising:

a light emitting diode for emitting light; and

an illuminating lens for spreading light emitted from the light emitting diode so that a surface to be irradiated is irradiated with the spread light,

wherein the illuminating lens is the illuminating lens $_{30}$ according to claim 1.

8. A surface light source comprising:

a plurality of lighting devices arranged in a plane; and

- a diffusing plate disposed to cover the plurality of lighting devices, the diffusing plate being configured to receive on one surface thereof light emitted from the plurality of lighting devices and to emit the light from the other surface thereof in a diffused manner,
- wherein each of the plurality of lighting devices is the lighting device according to claim 7.
- 9. The surface light source according to claim 8, further comprising:
 - a substrate on which the light emitting diode included in each of the plurality of lighting devices is mounted, the substrate facing the diffusing plate with the plurality of 45 lighting devices being disposed therebetween; and
 - a reflecting plate disposed on the substrate to cover the substrate with the light emitting diodes being exposed.
 - **10**. A liquid-crystal display apparatus comprising: a liquid-crystal panel; and
 - the surface light source according to claim ${\bf 8}$ disposed behind the liquid-crystal panel.
- 11. An illuminating lens for spreading light emitted from a light source so that a surface to be irradiated is irradiated with the spread light, the lens comprising:
 - a light entrance surface through which the light emitted from the light source enters the lens; and
 - a light exit surface through which the light that has entered the lens exits the lens,
 - wherein the light exit surface has a first light exit surface and a second light exit surface, the first light exit surface being recessed toward a point on an optical axis of the illuminating lens, and the second light exit surface extending outwardly from a periphery of the first light exit surface to form a convex,

the first light exit surface has a transmissive region located in the center of the first light exit surface and a total 30

reflection region located around the transmissive region, the transmissive region being capable of transmitting light that has been emitted from a starting point at a relatively small angle with respect to the optical axis and then reached the first light exit surface, when a position of the light source on the optical axis is defined as the starting point, and the total reflection region being capable of totally reflecting light that has been emitted from the starting point at a relatively large angle with respect to the optical axis and then reached the first light exit surface, and

- the second light exit surface has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point and then reached the second light exit surface,
- wherein when a point of intersection of the first light exit surface and the optical axis is denoted as C, a point on a boundary between the transmissive region and the total reflection region is denoted as P, a distance between the point C and the starting point is denoted as d, an angle between the optical axis and a line connecting the point P and the starting point is denoted as d, and a length of a straight line connecting the point P and the point P is denoted as d, the following inequality is satisfied:

 $1.10 < a/(d \times \tan \theta p) < 1.30$.

- 12. An illuminating lens for spreading light emitted from a light source so that a surface to be irradiated is irradiated with the spread light, the lens comprising:
 - a light entrance surface through which the light emitted from the light source enters the lens; and
 - a light exit surface through which the light that has entered the lens exits the lens,
 - wherein the light exit surface has a first light exit surface and a second light exit surface, the first light exit surface being recessed toward a point on an optical axis of the illuminating lens, and the second light exit surface extending outwardly from a periphery of the first light exit surface to form a convex,
 - the first light exit surface has a transmissive region located in the center of the first light exit surface and a specular reflection region located around the transmissive region, the transmissive region being capable of transmitting light that has been emitted from a starting point at a relatively small angle with respect to the optical axis and then reached the first light exit surface, when a position of the light source on the optical axis is defined as the starting point, and the specular reflection region being covered with a reflective layer capable of specularly reflecting light that has been emitted from the starting point at a relatively large angle with respect to the optical axis and then reached the first light exit surface, and
 - the second light exit surface has a shape capable of transmitting approximately the entire amount of light that has been emitted from the starting point and then reached the second light exit surface.
- 13. The illuminating lens according to claim 12, wherein the specular reflection region has a shape capable of totally reflecting the light that has been emitted from the starting point at the relatively large angle with respect to the optical axis and then reached the first light exit surface when the specular reflection region is not covered with the reflective layer.
- 14. The illuminating lens according to claim 12, wherein the light exit surface is rotationally symmetric with respect to the optical axis.

* * * * *