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(57) ABSTRACT

A 3D shape is reconstructed from a topogram. A generative
network is machine trained. The generative network
includes a topogram encoder for inputting the topogram and
a decoder to output the 3D shape from the output of the
encoder. For training, one or more other encoders are
included, such as for input of a mask and/or input of a 3D
shape as a regularlizer. The topogram encoder and decoder
are trained with the other encoder or encoders outputting to
the decoder. For application, the topogram encoder and
decoder as trained, with or without the encoder for the mask
and without the encoder for the 3D shape, are used to
estimate the 3D shape for a patient from input of the
topogram for that patient.
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THREE-DIMENSIONAL SHAPE
RECONSTRUCTION FROM A TOPOGRAM
IN MEDICAL IMAGING

RELATED APPLICATION

[0001] The present patent document is a U.S. National
Phase application of PCT/EP2019/064161 filed on May 31,
2019, which claims the benefit of the filing date under 35
U.S.C. § 119(e) of Provisional U.S. Patent Application Ser.
No. 62/775,440, filed Dec. 5, 2018, which is hereby incor-
porated by reference.

BACKGROUND

[0002] The present embodiments relate to observing real-
istic organ shape. Accurate depiction of internal organs, such
as the liver, may allow for more accurate health screening,
early diagnosis, and planning of procedures to target specific
locations in the human body. Visualization of three-dimen-
sional (3D) organs assists in clinical applications such as
surgical planning and post-surgical assessment, as well as
pathology detection and disease diagnosis.

[0003] The liver and other organs may exhibit highly
heterogeneous shape variation, making the liver difficult to
segment. Liver volume segmentation is performed semi-
automatically or automatically using statistical shape mod-
els, sigmoid-edge modelling, graph-cut, or other processes.
Automatic deep learning-based methods may be used. How-
ever, these methods rely on volume information available
from a computed tomography (CT) scan. Existing delinea-
tion tools delineate the 2D shape in each slice of the 3D CT
volume and combine the set of predictions into the 3D
shape. This intermediate slice-by-slice processing may
introduce an additional source of error to the overall shape
prediction quality due to the lack of spatial context. The
procedures to obtain the CT scans involve long patient-
doctor interaction time, costly machinery, and exposure to a
dose of radiation. The practical challenges in obtaining the
CT scans may preclude obtaining accurate 3D organ depic-
tions.

[0004] Topograms, which are projected 2D images from
tomographic devices, such as X-ray, may be more easily
obtained, be less costly, require less radiation, and are often
used by medical professionals. Delineating 3D organ shape
from two-dimensional (2D) X-ray images (e.g., topograms)
is difficult due to visual ambiguities and information loss as
a result of projection in X-ray imaging. 2D shape extraction
from X-ray is particularly complex as projection may result
in complex or fuzzy textures, boundaries and anatomical
part overlap. To mitigate these challenges, traditional meth-
ods use prior knowledge, such as motion patterns or inten-
sity and background analysis, in order to perform X-ray
segmentation. More recent methods focus on learning to
segment using deep neural networks. For example, an X-ray
image is decomposed into non-overlapping components
using a generative adversarial network (GAN) to improve
segmentation quality. Unpaired image-image translation
techniques are applied to learn to segment the X-ray image
by observing CT scan segmentation. These methods achieve
results on 2D shape delineation and segmentation tasks but
not 3D.

[0005] Inthe computer vision domain, deep generative 3D
shape models based on variational auto-encoder networks
(VAE) and generative adversarial networks (GAN) are
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trained to generate complex topologies of shapes. Combined
with a mapping from image space, these methods are able to
infer 3D shape predictions from 2D observations. To obtain
more detailed and accurate predictions, input annotations,
such as landmarks or masks, are often used to guide the
synthesis process. For example, 2D landmarks are incorpo-
rated for alignment optimization of a skinned vertex-based
human shape model to image observations. Landmark anno-
tations may guide synthesis of observed 3D shape in input
images. Landmarks or silhouettes may be incorporated to
formulate additional objective terms to improve perfor-
mance in 3D shape reconstruction and synthesis problems.
However, these computer vision-based systems may not deal
well with the noise and complexity from medical scanning
and blending in projection-based medical imaging in par-
ticular.

SUMMARY

[0006] Systems, methods, and instructions on computer
readable media are provided for reconstruction of a 3D
shape from a topogram. A generative network is machine
trained. The generative network includes a topogram
encoder for inputting the topogram and a decoder to output
the 3D shape from the output of the decoder. For training,
one or more other encoders are included, such as for input
of' a mask and/or input of a 3D shape as a regularlizer. The
topogram encoder and decoder are trained with the other
encoder or encoders outputting to the decoder. For applica-
tion, the topogram encoder and decoder as trained, with or
without the encoder for the mask and without the encoder for
the 3D shape, are used to estimate the 3D shape for a patient
from input of the topogram for that patient.

[0007] In a first aspect, a method is provided for recon-
struction of a 3D shape from a patient topogram in a medical
imaging system. The patient topogram representing a pro-
jection through a patient in two dimensions is acquired. The
3D shape of an object represented in the patient topogram is
reconstructed by a machine-learned generative network in
response to input of the patient topogram to the machine-
learned generative network. Information from the 3D shape
is displayed.

[0008] The topogram is acquired with an x-ray imager or
other projection imager. The 3D shape is reconstructed as an
outer surface of the object, such as a surface mesh of the
liver. The x-ray image includes the projection of the object,
such as the organ, and the organ of the patient is recon-
structed.

[0009] In one embodiment, the machine-learned genera-
tive network was trained as a generative adversarial network
or was trained as a network with an encoder and decoder
based on variational auto-encoding. In some embodiments,
the network has a topogram encoder configured to receive
the patient topogram and having been trained with a 3D
shape encoder, which received as input training 3D repre-
sentations in training data, and with the topogram encoder,
which received as input training topograms in the training
data. In other embodiments, the network has a topogram
encoder configured to receive the patient topogram and
having been trained with a mask encoder, which received as
input masks in training data. In yet another embodiment, the
machine-learned generative network was trained with a 3D
shape encoder, which received as input 3D representations
in training data, and with a mask encoder, which received as
input masks in training data. For reconstruction, any of these
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embodiments reconstructs in response to input of the patient
topogram with or without a mask of the object from the
patient topogram.

[0010] In one approach, the displayed information is a 3D
rendering of the 3D shape of the object. In another approach,
the displayed information is a quantity, such as volume,
determined from the 3D shape.

[0011] In a second aspect, a method is provided for
machine-training to reconstruct a 3D representation of
anatomy from a first topogram in a medical imaging system.
A machine learning architecture having a first encoder
configured to receive second topograms as input and a
second encoder configured to receive masks or first 3D
shapes as input is defined. The machine learning architecture
is used to machine learn to output the 3D representation in
response to input of the first topogram. A machine-learned
model resulting from the machine learning is stored for later
application.

[0012] In one embodiment, the architecture is defined as a
decoder configured to receive outputs of the first and second
encoders and to output second 3D shapes in response to
receipt of the outputs of the first and second encoders. In one
example, the architecture is defined where the second
encoder is configured to receive the masks and a third
encoder is configured to receive the first 3D shapes as input.
In one approach, the architecture is defined as a generative
model based on variational auto-encoding.

[0013] In a third aspect, a medical imaging system is
provided for 3D organ estimation. An X-ray imager is
configured to generate an X-ray image of a patient. An
image processor is configured to generate an estimation of
the 3D organ from input of the X-ray image to a machine-
learned model. The machine-learned model is configured to
receive as input views from a single direction where the
X-ray image is of a view from the single direction. A display
is configured to display information from the estimation of
the 3D organ.

[0014] In one embodiment, the machine-learned model
was trained using a first encoder for topograms and a second
encoder for 3D shapes. In another embodiment, the
machine-learned model was trained using a first encoder for
topograms and a second encoder for organ contours in the
topograms. In yet another embodiment, the machine-learned
model was trained using a first encoder for topograms, a
second encoder for 3D shapes, and a third encoder for organ
contours in the topograms.

[0015] Any one or more of the aspects described above
may be used alone or in combination. Any aspect or
approach used for one type of claim (e.g., method or system)
may be used in another type of claim (e.g., method, system,
or computer readable medium). These and other aspects,
features and advantages will become apparent from the
following detailed description of preferred embodiments,
which is to be read in connection with the accompanying
drawings. The present invention is defined by the following
claims, and nothing in this section should be taken as a
limitation on those claims. Further aspects and advantages
of the invention are discussed below in conjunction with the
preferred embodiments and may be later claimed indepen-
dently or in combination.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The components and the figures are not necessarily
to scale, emphasis instead being placed upon illustrating the
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principles of the embodiments. Moreover, in the figures, like
reference numerals designate corresponding parts through-
out the different views.

[0017] FIG. 1 is a flow chart diagram of one embodiment
of' a method for machine-training to reconstruct a 3D rep-
resentation of anatomy from a topogram in a medical
imaging system;

[0018] FIGS. 2 and 3 illustrate example architectures for
machine training for 3D shape estimation from a 2D topo-
gram;

[0019] FIG. 4 is a flow chart diagram of one embodiment
of'a method for reconstruction of a 3D shape from a patient
topogram in a medical imaging system;

[0020] FIG. 5 shows 3D shape variations in livers from CT
scans;
[0021] FIG. 6 shows example 3D organ shape reconstruc-

tions from example topograms using different architectures
in training;

[0022] FIG. 7 shows example 2D projections from predi-
cated 3D organ shapes; and

[0023] FIG. 8 is a block diagram of one embodiment of a
system for 3D organ estimation from a topogram.

DETAILED DESCRIPTION OF EMBODIMENTS

[0024] 3D organ shape is reconstructed from a topogram
Image. For example, liver shape in three dimensions is
predicted using a generative model. 3D organ shape is
automatically predicted directly from topogram images,
which are easier to acquire and have limited exposure to
radiation during acquisition as compared to volume CT
scans. A 2D mask may be input to the generative model for
improved prediction accuracy. Automatic or semi-automatic
approaches to 3D organ shape reconstruction from topo-
grams may be used to accurately predict the shape of the
observed 3D organ given a single topogram or projection
image. In an automatic delineation, the 3D shape is output
from the topogram image only. In the semi-automatic delin-
eation, the user outlines the approximate two-dimensional
mask, which is used in conjunction with the topogram to
obtain a more accurate 3D shape prediction.

[0025] In one embodiment, a generative shape model
includes a 3D shape encoder and decoder and an encoder
from 2D observations (topogram only or topogram and
mask). The 3D shape encoder and decoder form a variational
auto-encoder (VAE) generative model in order to represent
each shape observation using a compact low-dimensional
representation. The topogram and optional mask encoders
map the partial observations from images (and masks when
provided) to the coordinates of the corresponding shape
observations. The entire architecture is optimized end-to-
end in order to simultaneously infer shapes from topogram
image observations and to learn the underlying shape space.
This allows simultaneous learning of a generative shape
space covering complex shape variations from the 3D super-
visions and inference of the shapes from input 2D observa-
tions.

[0026] Inthe examples used herein, the organ of interest is
the liver. The organ shape prediction approach is general and
may be used for organs other than human liver, such as the
lungs or kidney. The prediction approach may be used for
other anatomy rather than a specific organ. The prediction
approach may be used for inserted or non-natural objects,
such as stents or joints.
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[0027] FIG. 1 is a flow chart diagram of one embodiment
of' a method for machine-training to reconstruct a 3D rep-
resentation of anatomy from a topogram in a medical
imaging system. A model is machine trained to predict the
3D shape of an organ from a single topogram or only images
from one view direction (e.g., one or more topograms from
the same or different times with projection along a same
axis, such as a single topogram image and a mask created
from the topogram). A generator model is machine trained to
predict the 3D shape from the 2D projection. Alternatively,
the machine is trained to predict 3D shape from topograms
from different view directions without the iterative recon-
struction of tomography. The model may be trained using
encoders for receiving the topograms, 3D shapes, and/or
masks and a decoder for outputting the 3D shape from the
values of features provided by the encoders.

[0028] The method is performed in the order shown (i.e.,
top to bottom or numerical) or a different order. For
example, acts 11, 12, and 13 are performed in any order.
Additional, different, or fewer acts may be provided. For
example, act 11 is provided without acts 12 and 13. In
another example, only one of act 12 or 13 is provided with
act 11 as part of act 10. As yet another example, acts for
acquiring training data and/or application of the machine-
learned generator model are included. The method is per-
formed by a computer, server, workstation, or the system of
FIG. 8 with access to a memory or database for storing
training data or values of parameters of the architecture
and/or generative model.

[0029] In act 10, a machine learning architecture is
defined. A programmer programs or configures the archi-
tecture. For example, the type of machine learning is
selected. An architecture or arrangement of nodes, layers,
processing, operations, or another characteristic of the
model to be learned is set. The number of layers or units,
type of learning, and other characteristics of the network are
controlled by the programmer or user. In other embodi-
ments, one or more aspects (e.g., number of nodes, number
of layers or units, or type of learning) are defined and
selected by the machine during the learning. Using graphical
programming, menu selections, or other approach, the archi-
tecture is defined.

[0030] In one embodiment, a generative (e.g., image-to-
image) network is defined. Any machine training architec-
ture for outputting a spatial distribution from an input spatial
distribution may be used. The architecture is a neural
network, such as a fully connected neural network or a
convolutional neural network. The architecture includes one
or more encoders and a decoder, such as in a U-net arrange-
ment. A convolutional-to-transposed-convolutional network
may be used. One segment (e.g., encoder) of layers or units
applies convolution to increase abstractness or compression
of an input topogram. The most abstract feature values (e.g.,
bottleneck) are then output to another segment. The other
segment (e.g., decoder) of layers or units then applies
transposed convolution to decrease abstractness or compres-
sion, resulting in outputting of a 3D shape.

[0031] In one embodiment, the architecture is defined to
be a generative adversarial network (GAN). The GAN
includes a generator, such as the image-to-image or U-Net,
and a discriminator. The generator includes an encoder
(convolutional) network and decoder (transposed-convolu-
tional) network with a connection between passing features
at a greatest level of compression or abstractness from the
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encoder to the decoder. Skip connections from the encoder
to the decoder at lesser levels of compression may be
included. The adversarial network is used in training to learn
to distinguish the output of the generator from ground truth.
The generator learns to output more realistic 3D shapes
while the discriminator learns to better distinguish in itera-
tive training. The generator, once trained, is used without the
discriminator in testing or application. In other embodi-
ments, the generator may be trained without the discrimi-
nator.

[0032] The generator is a deep architecture, which may
include convolutional neural network (CNN) or deep belief
nets (DBN). Other deep networks may be used. CNN learns
feed-forward mapping functions while DBN learns a gen-
erative model of data. In addition, CNN uses shared weights
for all local regions while DBN is a fully connected network
(i.e., having different weights for all regions of an image).
The training of CNN is entirely discriminative through
back-propagation. DBN, on the other hand, employs the
layer-wise unsupervised training (e.g., pre-training) fol-
lowed by the discriminative refinement with back-propaga-
tion if necessary.

[0033] The network is defined as a plurality of sequential
feature units or layers. Sequential is used to indicate the
general flow of output feature values from one layer to input
to a next layer. The information from the next layer is fed to
a next layer, and so on until the final output. The layers may
only feed forward or may be bi-directional, including some
feedback to a previous layer. The nodes of each layer or unit
may connect with all or only a sub-set of nodes of a previous
or subsequent layer or unit.

[0034] Rather than pre-programming the features and try-
ing to relate the features to attributes, the deep architecture
is defined to learn the features at different levels of abstrac-
tion based on an input image with or without pre-processing.
The features are learned to reconstruct lower level features
(i.e., features at a more abstract or compressed level). For
example, features for reconstructing a topogram are learned.
For a next unit, features for reconstructing the features of the
previous unit are learned, providing more abstraction. Each
node of the unit represents a feature. Different units are
provided for learning different features.

[0035] Within a unit or layer, any number of nodes is
provided. For example, 100 nodes are provided. Later or
subsequent units may have more, fewer, or the same number
of' nodes. In general, for convolution, subsequent units have
more abstraction. For transposed convolution to reconstruct,
the level of abstraction reverses. Each unit or layer reduces
the level of abstraction or compression.

[0036] The features of the nodes are learned by the
machine using any building blocks. For example, auto-
encoder (AE) or restricted Boltzmann machine (RBM)
approaches are used. AE transforms data linearly, and then
applies a non-linear rectification, like a sigmoid function.
The objective function of AE is the expected mean square
error between the input image and reconstructed images
using the learned features. AE may be trained using sto-
chastic gradient descent or other approach to learn, by the
machine, the features leading to the best reconstruction.
Variational AE (VAE) may be used. The objective function
of RBM is an energy function. Exact computation of the
likelihood term associated with RBM is intractable. There-
fore, an approximate algorithm, such as contrastive-diver-
gence based on k-step Gibb sampling or other, is used to
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train the RBM to reconstruct the image from features.
Sparsity or denoising techniques (e.g., sparse denoising AE
(SDAE)) may be employed. Enforcing sparsity within hid-
den layers (i.e., only a small number of units in hidden layers
are activated at one time) may also regularize the network.
In other embodiments, at least one unit is a convolution with
ReLU activation or is a batch normalization with a ReLU
activation followed by a convolution layer (BN+LeakyRU+
convolution). Max pooling, upsampling, downsampling,
and/or softmax layers or units may be used. Different units
may be of the same or different type.

[0037] Any now known or later developed architectures
may be used. A support vector machine, Bayesian network,
other neural networks, or other arrangements may be used.
Other neural networks may be used.

[0038] In one embodiment, a generative shape model is
defined to include one or more encoders from 2D observa-
tions. FIGS. 2 and 3 show two embodiments of the defined
architectures for learning and application. One encoder 24
receives as input topograms 21. FIGS. 2 and 3 show another
3D shape encoder 26 to receive 3D shapes 22 as input. FIG.
3 shows another mask encoder 23 to receive a mask 20 as 2D
input. In other embodiments, the mask encoder 23 is pro-
vided without the 3D shape encoder 26. The mask encoder
23 is shown as being part of the learning (i.e., all of FIG. 3)
and testing pipelines, but may be used in just the learning
and not the testing pipeline in other embodiments. In both
FIGS. 2 and 3, the 3D shape encoder 26 is used in just the
learning pipeline and not the testing pipeline. The learning
pipeline in FIGS. 2 and 3 is all of the architecture shown
(e.g., testing pipeline and the encoder 26 shown outside of
the testing pipeline).

[0039] The 3D shape encoder 26 receives as input a 3D
shape 22, such as the ground truth 3D shape from a CT scan.
This 3D shape encoder 26 is used as a regularlizer in training
and not used in application (i.e., testing pipeline) as the 3D
shape is not known for input. The generative model has the
3D shape encoder 26 and a decoder 28 shared by all the
encoders 23, 24, 26 by receiving bottleneck feature values
27 from the different encoders 23, 24, 26. The 3D shape
encoder 26 learns to map the 3D shapes of organs to their
coordinates in the latent space, and the decoder 28 learns to
reconstruct the shapes back from their coordinates. This
generative model receives as input a set of examples E={
(s,1)} where s&S is the example shape 22 and i€l is the
corresponding topogram image 21 observation. The genera-
tive model G=(Q, P) includes encoding component Q. Q(zls)
maps shape s to its latent coordinate z in the stochastic low
dimensional space distributed according to prior distribution
p(z), and P (slz) maps the latent coordinate z back to the
shape space S.

[0040] The 3D shape encoder 26 maps an observation,
represented with a 64 by 64 by 64 voxel grid to a 200-
dimensional latent vector z. Other size voxel grids and/or
vectors may be used. The normal distribution parameters are
defined p=0 and o=1 for the variational auto-encoder model
but other parameter values may be used. The architecture of
the 3D shape encoder 26, according to one example embodi-
ment, has five convolutional layers with output sizes 64,
128, 256, 512, 200, kernel size 4 for each layer, and padding
sizes 1, 1, 1, 1 and 0. The convolutional layers are separated
by batch-normalization and RelLU layers. Other sizes, num-
bers of layers, and/or types of layers may be used.
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[0041] The decoder 28 architecture mirrors that of the 3D
shape encoder 26. The decoder 28 may mirror other encod-
ers 24, 23 or may have a different arrangement than the
mirror of any of the encoders 23, 24, 26 in other embodi-
ments. The decoder 28 is defined to receive outputs 27 of the
encoders 23, 24, and/or 26 and output a predicted 3D shape
29 in response to receipt or input of the output values (e.g.,
outputs 27). The decoder 28 is defined as a transpose-
convolutional network.

[0042] The topogram or 2D image encoder 24 receives
topograms 21 as input. For training, the topograms I of the
training data are received. For application, a patient topo-
gram is received. The topogram encoder 24 learns to map
two-dimensional projection observations to the coordinates
of the corresponding shapes. Given a generative model G,
the topogram image encoder 24 is learned so that for each
observation (s, 1)EE, the image i is mapped to the coordinate
location z"=I, (i) such that the reconstructed shape 29, G(z"),
and the ground truth shape 22, s, are as close as possible.

[0043] Inone embodiment, the topogram encoder 24 takes
a 1 by 256 by 256 topogram image and outputs a 200-
dimensional latent shape vector z". The topogram encoder
24 is defined to have five convolutional layers with the
number of outputs 64, 128, 256, 512, 200, kernel sizes 11,
5,5, 5, 8 and strides 4, 2, 2, 2, 1, separated by batch-
normalization and rectified linear units (ReL.U). Other num-
bers of layers, input resolutions, outputs, sizes, strides, or
types of layers may be used.

[0044] The mask encoder 23 receives as input masks 20.
The masks 20 are formed from the topogram images 21, so
have a same view direction or projection angle as the
topograms 21. The mask 20 is a binary designation or
labeling by pixel as representing or not representing the
object for which the 3D shape 29 is to be predicted. In other
embodiments, the mask 20 is a border or outline (i.e., a
contour) of the object in the topogram 21. Other types of
input (e.g., landmarks) that can be encoded using a neural
network may also be applied in place of or with masks to
improve prediction accuracy.

[0045] The mask encoder 23, if used, may or may not be
used in application and is used in training. FIG. 2 shows an
example not using the mask encoder 23. FIG. 3 shows the
mask encoder 23 used for both testing and learning. The
mask encoder 23 and the 2D image encoder 24 are a joint
topogram and mask encoder, 12, that predicts the latent
coordinate of the organ shape given the 2D mask 20 and
topogram 21. The mask information, when provided, helps
generate a more accurate prediction. For each observation (s,
1)EE, given a topogram i and a mask k=P r(s)EK, where
Pr(*) is an orthographic projection operator, the joint topo-
gram and mask encoder 23, 24 learns to outputs z"=L,(i, k)
so that G(z) and s are as close as possible. In alternative
embodiments, the mask encoder 23 is used in the defined
architecture of FIG. 2 instead of the 3D shape encoder 26.
In other alternative embodiments, the mask encoder 23 is
used for learning but not testing.

[0046] In one embodiment, the topogram and mask
encoder, 1,, is defined to have a topogram encoder 24
branch, a mask encoder 23 branch and a common combiner
network 25, so that the observations are mapped to a
common latent coordinate z~. The combiner network 25 is a
convolutional layer network but may have other arrange-
ments. The topogram encoder 24 branch has the same
architecture as the topogram encoder 24 discussed above



US 2022/0028129 Al

and maps the topogram 21 to an intermediate 200-dimen-
sional feature v,. The mask encoder 23 branch receives a 1
by 64 by 64 binary mask image and learns to map to a
200-dimensional vector v, using five convolutional layers
with kernel sizes of 3, 3, 3, 3, 3 and strides 4, 2, 2, 2, 2,
separated by batch-normalizations and rectified linear units
(ReLU). Other numbers of layers, sizes, strides, and/or types
of layers may be used. The outputs of the encoders 23, 24,
v, and v,, are then concatenated and run through the com-
biner network 25, which is a single fully connected layer to
predict a joint 200-dimensional latent coordinate z". Other
types of layers, sizes, and/or numbers of layers may be used
for the combiner network 25.

[0047] Referring again to FIG. 1, a processor (e.g., image
processor) machine learns with the machine learning archi-
tecture to output the 3D representation 29 in response to
input of the topogram 21. For machine training, training data
is acquired. The training data includes pairs of topograms 21
with ground truth shapes 22 of the objects (e.g., organ such
as liver) represented in the topograms 22. The samples of the
training data may also include masks, such as manually or
automatically generated masks 20 for the topograms 21. The
training data forms a database of shape and X-ray (two-
dimensional observation) pairs.

[0048] For training, various optimizers may be used, such
as Adadelta, SGD, RMSprop, or Adam. The weights of the
network are randomly initialized, but another initialization
may be used. End-to-end training is performed, but one or
more features may be set. The various encoders 23, 24, 26
and decoder 28 with or without the combiner 25 are trained
together or jointly rather than sequentially. A combined or
single loss function comparing the predicted 3D shape 29
with the ground truth is used to update the various parts of
the architecture. Batch normalization, dropout, and data
augmentation are not used, but may be (e.g., using batch
normalization and dropout). During the optimization, the
different distinguishing features are learned. The features
providing an indication of 3D shape from a topogram or
topogram and mask are learned.

[0049] For training the architectures of FIG. 2 or 3, the
training phase involves training the generative model (3D
shape encoder 26 and decoder 28) jointly with the 2D
observation encoders (topogram encoder 24 or the topogram
encoder 24, mask encoder 23, and combiner 25) in an
end-to-end procedure. During testing, only the 2D observa-
tions are necessary for 3D shape prediction.

[0050] The optimizer minimizes an error or loss, such as
the Mean Squared Error (MSE), Huber loss L1 loss, or 1.2
loss. In one embodiment, the loss function of the generative
model is composed of a reconstruction loss L. and a
distribution loss L, for variational auto-encoder training.
L,.. is the binary cross entropy (BCE) error that measures
the difference between the ground truth shape s E S and the
predicted shape s’ES. For example, L,,.. is represented by:

1 N
Liee(s. 8') = = > sulogs), + (1 = sy)log(1 ~s))
n—-1

where N=64°. Other size or resolution may be used for N.
L, 1s the distribution loss that enforces the latent distribu-
tion of z, to match its prior distribution L ,(z; =KL (Q(zls)
p(z)), where p(z)=N(u, 0°). The image encoder loss is the
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binary cross entropy (BCE) loss L,, (s, G(2")). The loss of
the combined mask encoder 23 and topogram encoder 24, 1,,
is the binary cross entropy (BCE) error L, (s, G(Z7)). An
additional mask loss may be used, such as given by:

Lol =2, Mk, log k'n+(1-k )log(1-kn).

This mask loss ensures that the input mask k and the
projected mask k™ of the predicted shape (i.e., K™=P r(G(z")))
match. Other loss functions may be used for any of the
encoders.

[0051] For combined training, all the components of the
system are optimized together in an end-to-end training
process using a combined objective, such as given by:

L=a,L,.. (5540 L g +03L,..(5,G(z
NHOL (KK,

where a.,_, are weights applied to each type of loss, z =7~
if training the topogram-mask encoder 23, 24, and z =7
when training the topogram-only encoder 24. o,L,, (s, s°) is
the reconstruction loss of the VAE and .1, (s, G(z )) is
the 2D-3D reconstruction loss. The model may be trained
without the shape encoder, ie. 0,=0 and a,=0. Other
combined loss functions may be used.

[0052] In act 18 of FIG. 1, the processor stores the trained
model in memory. The various values of parameters of the
architecture as defined are determined in training. These
values and the architecture are stored in memory. This stored
model may be used by the same or a different processor to
predict a 3D shape from an input topogram or input topo-
gram and mask. The stored machine-learned model may be
duplicated in different systems for application to topograms
by the different systems. For example, different worksta-
tions, computers, servers, medical scanners (e.g., X-ray
imager), or other medical imaging systems apply the
machine-learned model to topograms for different patients.
[0053] FIG. 4 shows one embodiment of a method for
reconstruction of a 3D shape from a patient topogram in a
medical imaging system. The machine-learned model, such
as the machine-learned generative network trained as dis-
cussed for FIG. 1, is applied for a given patient. A topogram,
such as a single topogram, with or without a mask is input
to the machine-learned model, which outputs a prediction of
the 3D shape of an object represented in the topogram.
[0054] The method is performed in the order shown (e.g.,
top to bottom or numerical), but other orders may be used.
Additional, different or fewer acts may be provided. For
example, act 44 is not provided. In another example, an act
for generating a mask manually or automatically from the
topogram is included.

[0055] The method of FIG. 4 is implemented by a medical
imaging system. The medical imaging system may be a
computer, server, workstation, or medical imager or scanner.
For example, an X-ray imager implements the acts. In
another example, an X-ray imager or processor acquires the
topogram in act 40; the same or different processor recon-
structs in act 42; and a display device or screen displays in
act 44. Other devices may be used.

[0056] In act 40, a single patient topogram is acquired.
Multiple topograms from different times and/or different
view directions (e.g., orientation of the x-ray source relative
to the patient) may be acquired. The topogram is an X-ray
image or other image representing a projection (e.g., inte-
gration) along one dimension to a 2D image (e.g., NxM
where N and M are integers greater than one).
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[0057] The acquisition is by scanning the patient. For
example, an X-ray imager generates X-rays directed at the
patient. A detector on an opposite side of an X-ray source
detects the X-rays, providing an indication of X-ray inten-
sity per pixel of the detector. In other embodiments, the
acquisition is from transfer over a computer network or
loading from memory. For example, the X-ray image is
acquired from a picture archival and communications sys-
tem (PACS).

[0058] The topogram for the patient includes a projection
of an object of interest, such as the liver. The entire object
in 2D is represented in the topogram (i.e., projection of the
object to 2D). Alternatively, only part of the object is
represented. The topogram may represent other objects or
devices, such as other organs, bone, or inserted devices.
Alternatively, the topogram is processed to remove infor-
mation from other objects.

[0059] A mask may be generated from the topogram. For
example, segmentation is applied. A machine-learned model
segments the object, identitying locations representing the
object in the topogram. Other segmentation, such as based
on thresholding, gradients, or another algorithm may be
used. In other embodiments, the user manually enters the
segmentation, such as tracing a boundary of the object in the
topogram.

[0060] In act 42, an image processor reconstructs the 3D
shape of an object represented in the patient topogram, such
as reconstructing a liver or other organ of the patient in 3D
(i.e., representation of spatial extent over three dimensions).
The 3D shape is reconstructed as an outer surface of the
object. The outer surface that led to the topogram represen-
tation of the object is estimated. The outer surface may be a
continuous surface, voxel representation, or a mesh. Alter-
natively, the 3D shape is reconstructed as a solid (e.g., outer
surface and interior).

[0061] The topogram with or without a mask is input to a
machine-learned generative network, which outputs the 3D
shape. For example, the topogram and mask at a same
resolution are input as two channels to the generative
network. Any inputs for which the generative network is
trained to use are applied as an input feature vector, such as
(a) just the single topogram or (b) just the single topogram
and a single mask.

[0062] The encoder or encoders calculate values for
bottleneck and other features in response to the input to the
encoder or encoders. A decoder generates the 3D shape from
the bottleneck features or bottleneck and other features. Skip
connections may be used, so the 3D shape may be generated
from values for features in skip connections and values for
bottleneck features. The encoder (e.g., topogram encoder) or
encoders (e.g., topogram and mask encoders) were trained in
conjunction with (e.g., jointly with) 3D shape and/or mask
encoders not used in the application.

[0063] In response to the input, the generative network
outputs a synthetic estimation of the 3D shape of the object.
Any parameterization of the shape may be used, such as a
voxel, mesh, or continuous surface representation. In an
alternative embodiment, the 3D shape is output as an ani-
mation of 3D renderings of the object (e.g., sequence of 2D
views rendered from different viewing directions).

[0064] In act 44, the image processor generates an image,
and a display displays the image. The image includes
information from the 3D shape. The image is generated as a
visual representation of the 3D shape. Volume rendering or
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another 3D rendering is used to generate the image. Alter-
natively or additionally, the image includes alphanumeric
text, graph, or another indicator of a quantity characterizing
the 3D shape, such as the volume of the 3D shape or a
measure of surface smoothness or variance.

[0065] The topogram and/or mask may be included in the
image or displayed at a same time as the information. Other
patient information may also be displayed.

[0066] The image may be output to a display, into a patient
medical record, and/or to a report. The information from the
3D shape may be used for diagnosis, prognosis, treatment
planning, or other purpose.

[0067] In one embodiment of training and application,
a,;=50.0, a,=0.1, 0;=50.0 and ,=0.0001 if the mask is
provided as input or a,=0 otherwise (i.e., for a topogram
only approach). All models are trained using the Adam
optimizer with learning rate 0.0001 for 250 epochs and batch
size of 32. The training data is for the task of estimating a
3D shape of the human liver and predicting the volume. Due
to their heterogeneous and diffusive shape, automatic liver
segmentation is a very complex problem. In a less complex
approach, the 3D shape of the liver is estimated from a 2D
topogram image and optionally a 2D mask. Voxel grids are
used as the base representation, and results are visualized
using 2D projections or 3D meshes obtained using marching
cubes. The effect of shape context provided by the mask
observations is investigated by evaluating a baseline where
3D shape is predicted directly from the mask.

[0068] To conduct an experimental evaluation, 2129
abdominal CT scans (e.g., 3D volumetric images of the
abdomen covering the liver) are collected from several
different hospital sites. The liver shapes are segmented from
the CT scans using a volumetric segmentation approach, and
topograms and masks are extracted via 2D projection.
Example renderings of 3D shapes from the dataset are
shown in FIG. 5. 1554 scans are used for training, and 575
scans are used for testing.

[0069] Given a learned generative model of liver shapes
including an image encoder that estimates a latent space
vector given a topogram image (and mask, if given), the 3D
liver shape is output. This 3D shape is projected back onto
the topogram image plane to perform two-dimensional
delineation to test accuracy. Visually delineating accurate
shape from topograms is particularly difficult due to visual
ambiguities, such as color contrast and fuzzy boundaries.
Using the trained architecture of FIG. 2 or 3, the 3D shapes
may be automatically predicted from the topogram. The
prediction, given a two-dimensional mask annotation, may
be refined or made more accurate.

[0070] FIG. 6 shows qualitative evaluation. In FIG. 6, the
3D reconstruction results are visualized. The first column is
a visualization of the input topogram, the second column is
the visualization of the ground truth 3D shape (surface or
volume rendering of the 3D shape), the third column is the
visualization of the result of the topogram-only approach
(i.e., trained using the architecture of FIG. 2), the fourth
column is the visualization of the result of the topogram+
mask approach (i.e., trained using the architecture of FIG.
3), and the fifth and sixth columns are visualizations of
projected masks of the corresponding two approaches, over-
laid with the ground truth masks. Each row corresponds to
a different example.

[0071] Both proposed approaches (i.e., trained with FIGS.
2 and 3) are able to capture significant variation in the
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observed shapes, such as a prominent dome on the right lobe
in Example 1 of FIG. 6 and shape of the left lobe in Example
5 of FIG. 6. The topogram+mask method is able to convey
more topological details compared to the topogram-only
method, such as an elongated interior tip in Examples 1 and
4, protrusion off left lobe in Examples 2 and 3, and overall
topology in Example 5, where the mask-based method
corrects the hole artifact introduced by the topogram-only
method. Overall, the 3D surfaces in predictions from the
mask-based method are visually closer to the ground truth.

[0072] FIG. 7 shows projection of the 3D shape predic-
tions directly on the input topograms. The ground truth
projections are shown in first row, the topogram only pre-
diction projections are shown in the second row, and the
topogram+mask projections are shown in third row. By
predicting the 3D shape of the organ, an accurate 2D
segmentation of the input topograms via projection may be
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shape variations such as critical cases of incorrect tip or
bulge presence prediction.

[0074] The mask-only approach may be used to show
whether the provided mask provides too much context,
rendering the problem of 3D shape prediction a much easier
task. In Table 1, the performance of this baseline and the two
methods that receive the topogram as input are compared.
The mask only method is unable to achieve the same quality
of results as the topogram-based methods, generating sig-
nificantly lower mean IoU and Dice errors, and a much
larger Hausdortf error. The topogram images contain impor-
tant information, such as shape layout, that is complemen-
tary to the context extracted from masks, and thus both
inputs are may be used for high quality reconstruction.
[0075] Automatic volume measurement of main organs is
often important for medical analysis (e.g., diagnosis, prog-
nosis, or planning). The predicted 3D shape may be used to
directly measure organ volume. Organ volume is given from
a topogram. Table 2 shows a comparison of volume errors.

Metric

Mask Only Topogram Only Topogram + Mask

Volume Error (V) 0.34 0.10 0.06

generated and displayed or used to calculate a quantity. The
displayed images allow visualization of the corresponding
inferred 2D segmentation. The shape reconstruction network
(in both topogram only and topogram+mask methods) learns
to emphasize characteristic parts of the organ shape, such as
the curves in the right lobe and interior tip.

[0073] Ina quantitative evaluation, several metrics may be
used to quantitatively compare 3D shape reconstructions.
The machine-learned generative model of FIG. 2 (topogram
only in application), the machine-learned generative model
of FIG. 3 (topogram+mask in application), and a mask only
(i.e., FIG. 2 where a mask encoder 23 is used instead of the
topogram encoder 24, learning to reconstruct 3D shape
directly from mask with no topogram image being provided)
are tested. Volume-based metrics of intersection over union
(IoU) and Dice coefficients are used. A surface-based metric
of Hausdorft distance is used. Table 1 shows the results:

Metric (Mean) Mask Only  Topogram Only  Topogram + Mask
10U 0.58 0.78 0.82
Dice 0.73 0.87 0.90
Hausdorff 28.28 7.10 5.00

The volume error is a difference of the proposed approaches
to a volume of a voxelized 3D segmentation of the liver,
obtained from segmentation of the 3D CT, as the ground
truth. Given the 3D shape prediction, the predicted volume
is measured as the number of voxels in the generated shape.
The number of voxels is converted to milliliters (mL) using
scanning configuration parameters, which indicate a volume
of each voxel. The volume error prediction used is
VANV eVl V, where V, and V, are the volumes of
the predicted and ground truth organs, respectively.

[0076] On average, the liver volume is predicted to 6%
error with the topogram+mask method and to 10% error
with the topogram only method. The mask-only based
method is unable to predict volume accurately, since it
cannot predict the correct 3D topology.

[0077] The above qualitative and quantitative compari-
sons are based on using a machine-learned generative net-
work. The same architectures using the same training data
may be trained as a GAN (e.g., 3D VAE-GAN) by including
a discriminator in adversarial training. The discriminator in
this baseline typically encourages more uniform predictions
compared to a VAE-based method without the discriminator,
thus discouraging generation of more diverse shape topolo-
gies. Quantitatively, GAN achieves lower quality results
than the both VAE-based methods without the discriminator
in training. Table 3 shows the difference in results for the
volume quantity and 3D shape errors.

Volume Prediction Shape Reconstruction

Volume Error (V) TIoU Dice Hausdorff
Variational Autoencoder (VAE) 0.10/0.06 0.78/0.82  0.87/0.90 7.10/5.00
(without/with mask)
Adversarial (3D-GAN) 0.21 0.61 0.75 10.50

Performance Difference

109%/250% 22%/26% 14%/17%  48%/110%

The topogram+mask approach outperforms the topogram
only approach according to all of the metrics, but especially
according to Hausdorftf distance, which is very sensitive to

The 3D-GAN approach suffers in surface-based error and
volume error due to its tendency to predict an average shape
irrespective of the input.
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[0078] 3D organ shape reconstruction from topograms is
an extremely challenging problem in medical imaging.
Among other challenges, it is a difficult problem because the
input X-ray images may contain projection artifacts that
reconstruction methods need to handle, in addition to pre-
dicting the topology of occluded and unseen parts the 3D
organ. Despite the visual ambiguities present in this type of
imagery, it is possible to predict 3D organ shape directly
from topograms. It is also possible to improve the quality of
the prediction by providing supplementary two-dimensional
shape information in the form of masks. By defining the
shape space in training using the 3D shape ground truth as
an input, accurate 3D shape estimation is provided.

[0079] FIG. 8 shows a medical imaging system for 3D
organ estimation. The medical imaging system includes the
display 80, memory 84, and image processor 82. The display
80, image processor 82, and memory 84 may be part of the
medical imager 86, a computer, server, workstation, or other
medical system for image processing medical images from
a scan of a patient. A workstation or computer without the
medical imager 86 may be used as the medical imaging
system.

[0080] Additional, different, or fewer components may be
provided. For example, a computer network is included for
remote 3D shape generation of a locally captured topogram.
As another example, a user input device (e.g., keyboard,
buttons, sliders, dials, trackball, mouse, or other device) is
provided for user mask input or creation from a displayed
topogram.

[0081] The medical imager 86 is a medical diagnostic
scanning system configured to generate a projection (i.e.,
topogram) image of the patient. In one embodiment, the
medical imager 86 is an X-ray imager to generate an X-ray
image of the patient. An X-ray source and detector are
positioned on opposite sides of at least part of the patient 88.
The X-ray source generates X-rays, which pass through the
patient 88 and impinge upon the detector. The X-ray imager
reads from the detector the intensities of the X-rays at
different locations. The reading at each location represents
contribution from tissues in the patient along a ray from the
X-ray source to the location, providing a projection collaps-
ing the third dimension. Other projection imagers may be
used.

[0082] The medical imager 86 is configured to generate
the X-ray image as representing a volume object in the
patient in the two dimensions of the projection. The con-
figuration uses settings for one or more parameters, such as
an X-ray source voltage, table position and/or range of
movement, gantry position and/or range of movement,
focus, field of view, collimation, detector thresholds, image
processing settings, filtering settings, and/or image genera-
tion settings.

[0083] The image processor 82 is a control processor,
general processor, digital signal processor, 3D data proces-
sor, graphics processing unit, application specific integrated
circuit, field programmable gate array, digital circuit, analog
circuit, artificial intelligence processor, combinations
thereof, or other now known or later developed device for
processing medical image data, such as a topogram. The
image processor 82 is a single device, a plurality of devices,
or a network of devices. For more than one device, parallel
or sequential division of processing may be used. Different
devices making up the image processor 82 may perform
different functions, such as applying a machine-learned
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model to an X-ray image by one device and rendering a view
of the 3D shape output from the application by another
device. In one embodiment, the image processor 82 is a
control processor or other processor of a medical diagnostic
imaging system, such as the medical imager 86. The image
processor 82 operates pursuant to stored instructions, hard-
ware, and/or firmware to perform various acts described
herein.

[0084] The image processor 82 is configured to train a
machine learning architecture. Based on a user provided or
other source of the network architecture and training data,
the image processor 82 learns features for encoders, decod-
ers, discriminators, or other network parts to train the model.
The result of the machine training is a machine-learned
model or models for 3D shape prediction with or without
mask parameterization.

[0085] Alternatively or additionally, the image processor
82 is configured to apply one or more machine-learned
models. The machine-learned model is applied as a stand-
alone application on the workstation or a local device or as
a service deployed on a computer network (cloud) architec-
ture.

[0086] The machine-learned model generates an estima-
tion of a 3D shape of an organ or anatomy of the patient in
response to input of the X-ray image or X-ray image and
mask. For example, a machine-learned generative network is
applied to a X-ray image or X-ray image and mask for the
patient 88. The machine-learned model includes input chan-
nels and corresponding modules (e.g., encoders) for the
X-ray image and the mask, if provided. When being trained,
the model includes an input channel and module (e.g.,
encoder) for a 3D shape and/or mask for regularization. The
resulting X-ray image encoder with or without the mask
encoder are then used in application without one or more
encoders that were used in the training.

[0087] A single X-ray image may be used to predict the 3D
shape. The X-ray image alone or the X-ray image and a
mask image derived from the X-ray image are input to
generate the estimation of the 3D shape of the organ or other
object. The inputs are all views of the patient 88 from a same
direction, such as using the same projection lines in parallel
or as diverging from a common source. The views from the
single direction are input to estimate the 3D shape. In
alternative embodiments, views from different directions are
input to estimate the 3D shape without tomography.
[0088] Based on the previous training, the machine-
learned model generates a 3D shape in response to applica-
tion of the X-ray image with or without a mask image. The
image processor 82 may be configured to calculate a quan-
tity or quantities from the 3D shape, such as a volume.
[0089] The image processor 82 is configured to generate
an image. The 3D shape output from the machine-learned
model may be volume or surface rendered to create an
image. Alternatively, annotations or graphics, such as for a
quantity determined from the 3D shape, may be the gener-
ated image (e.g., displaying a report with the quantity) or
may be added to the X-ray image. In another alternative, the
image processor 82 projects from the predicted 3D shape to
create a segmentation or mask. The projection is displayed
or used to segment the X-ray image where the segmentation
is displayed as the image.

[0090] The display 80 is a CRT, LCD, projector, plasma,
printer, tablet, smart phone or other now known or later
developed display device for displaying the generated
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image. The display 80 displays a medical image generated
from information from the predicted 3D shape, such as
information for an estimated 3D organ.

[0091] The X-ray image, mask, network definition, fea-
tures, machine-learned model, training data, output 3D
shape, information derived from the 3D shape, image,
and/or other information are stored in a computer readable
memory, such as the memory 84. The memory 84 is an
external storage device, RAM, ROM, database, and/or a
local memory (e.g., solid state drive or hard drive). The same
or different non-transitory computer readable media may be
used for the instructions and other data. The memory 84 may
be implemented using a database management system
(DBMS) and residing on a memory, such as a hard disk,
RAM, or removable media. Alternatively, the memory 84 is
internal to the processor 82 (e.g. cache).

[0092] The instructions for implementing the training or
application processes, the methods, and/or the techniques
discussed herein are provided on non-transitory computer-
readable storage media or memories, such as a cache, buffer,
RAM, removable media, hard drive or other computer
readable storage media (e.g., the memory 84). Computer
readable storage media include various types of volatile and
nonvolatile storage media. The functions, acts or tasks
illustrated in the figures or described herein are executed in
response to one or more sets of instructions stored in or on
computer readable storage media. The functions, acts or
tasks are independent of the particular type of instructions
set, storage media, processor or processing strategy and may
be performed by software, hardware, integrated circuits,
firmware, micro code and the like, operating alone or in
combination.

[0093] In one embodiment, the instructions are stored on
a removable media device for reading by local or remote
systems. In other embodiments, the instructions are stored in
a remote location for transfer through a computer network.
In yet other embodiments, the instructions are stored within
a given computer, CPU, GPU or system. Because some of
the constituent system components and method steps
depicted in the accompanying figures may be implemented
in software, the actual connections between the system
components (or the process steps) may differ depending
upon the manner in which the present embodiments are
programmed.

[0094] Various improvements described herein may be
used together or separately. Although illustrative embodi-
ments of the present invention have been described herein
with reference to the accompanying drawings, it is to be
understood that the invention is not limited to those precise
embodiments, and that various other changes and modifi-
cations may be affected therein by one skilled in the art
without departing from the scope or spirit of the invention.

What is claimed is:

1. A method for reconstruction of a three-dimensional
shape from a patient topogram in a medical imaging system,
the method comprising:

acquiring the patient topogram representing a projection

through a patient in two dimensions;

reconstructing the three-dimensional shape of an object

represented in the patient topogram, the reconstructing
being by a machine-learned generative network in
response to input of the patient topogram to the
machine-learned generative network; and

displaying information from the three-dimensional shape.
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2. The method of claim 1 wherein acquiring comprises
acquiring with an x-ray imager.

3. The method of claim 1 wherein reconstructing com-
prises reconstructing the three-dimensional shape as an outer
surface of the object.

4. The method of claim 1 wherein acquiring comprises
acquiring an x-ray image as the patient topogram, the x-ray
image including the projection of the object, the object
comprising an organ, and wherein reconstructing comprises
reconstructing the organ of the patient.

5. The method of claim 1 wherein reconstructing com-
prises reconstructing by the machine-learned generative
network having been trained as a generative adversarial
network.

6. The method of claim 1 wherein reconstructing com-
prises reconstructing by the machine-learned generative
network comprising an encoder and decoder based on varia-
tional auto-encoding.

7. The method of claim 1 wherein reconstructing com-
prises reconstructing by the machine-learned generative
network having a topogram encoder configured to receive
the patient topogram and having been trained with a three-
dimensional shape encoder, which received as input three-
dimensional representations in training data, and with the
topogram encoder, which received as input training topo-
grams in the training data.

8. The method of claim 1 wherein reconstructing com-
prises reconstructing by the machine-learned generative
network having a topogram encoder configured to receive
the patient topogram and having been trained with a mask
encoder, which received as input masks in training data, and
the topogram encoder, which received as input training
topograms in the training data.

9. The method of claim 8 wherein reconstructing com-
prises reconstructing by the machine-learned generative
network having been trained with a three-dimensional shape
encoder, which received as input three-dimensional repre-
sentations in training data.

10. The method of claim 8 wherein reconstructing com-
prises reconstructing in response to input of the patient
topogram and a mask of the object from the patient topo-
gram.

11. The method of claim 1 wherein displaying comprises
displaying a three-dimensional rendering of the three-di-
mensional shape of the object.

12. The method of claim 1 wherein displaying comprises
displaying a quantity determined from the three-dimensional
shape.

13. A method for machine-training to reconstruct a three-
dimensional representation of anatomy from a first topogram
in a medical imaging system, the method comprising:

defining a machine learning architecture having a first

encoder configured to receive second topograms as
input and a second encoder configured to receive masks
or first three-dimensional shapes as input;

machine learning with the machine learning architecture

to output the three-dimensional representation in
response to input of the first topogram; and

storing a machine-learned model resulting from the

machine learning.

14. The method of claim 13 wherein defining comprises
defining a decoder configured to receive outputs of the first
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and second encoders and to output second three-dimensional
shapes in response to receipt of the outputs of the first and
second encoders.

15. The method of claim 13 wherein defining comprises
defining the second encoder as configured to receive the
masks and further defining a third encoder configured to
receive the first three-dimensional shapes as input.

16. The method of claim 13 wherein defining comprises
defining the machine learning architecture as a generative
model based on variational auto-encoding.

17. A medical imaging system for three-dimensional
organ estimation, the medical imaging system comprising:

an X-ray imager to generate an X-ray image of a patient;

an image processor configured to generate an estimation
of the three-dimensional organ from input of the X-ray
image to a machine-learned model, the machine-
learned model configured to receive as input views

Jan. 27,2022

from a single direction, the X-ray image being a view
from the single direction; and

a display configured to display information from the

estimation of the three-dimensional organ.

18. The medical imaging system of claim 17 wherein the
machine-learned model was trained using a first encoder for
topograms and a second encoder for three-dimensional
shapes.

19. The medical imaging system of claim 17 wherein the
machine-learned model was trained using a first encoder for
topograms and a second encoder for organ contours in the
topograms.

20. The medical imaging system of claim 17 wherein the
machine-learned model was trained using a first encoder for
topograms, a second encoder for three-dimensional shapes,
and a third encoder for organ contours in the topograms.

#* #* #* #* #*



