US 20150012916A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0012916 A1

AIGLSTORFER 43) Pub. Date: Jan. 8, 2015
(54) SYSTEMS AND METHODS FOR EXECUTING Publication Classification
AN APPLICATION ON A MOBILE DEVICE
(51) Imnt.ClL
(71) Applicant: MFOUNDRY, INC., Jacksonville, FL. GO6F 9/445 (2006.01)
(US) GOGF 9/45 (2006.01)
GOGF 9/44 (2006.01)
(72) Inventor: Rodney AIGLSTORFER, Mill Valley, (52) US.CL
CA (US) CPC .. GOGF 8/65 (2013.01); GO6F 8/71 (2013.01);
GOG6F 8/41 (2013.01)
(21) Appl. No.: 14/273,893 USPC et 717/171
22) Filed: May 9, 2014 S ABSTRACT
(22) Filed: A The invention provides a method and system to execute appli-
s cations on amobile device. The applications may be compiled
Related U.S. Application Data on a remote server and sent to the mobile device before
(63) Continuation of application No. 11/943,963, filed on execution. The applications may be updated by the remote
Nov. 21, 2007, now Pat. No. 8,811,968. server without interaction by the mobile device user.
100 104
- ,/
————————————— S
: 3rd Party 1 vl Devicals) i
© Web Server | | Remote Server/ P !
i Lo Gateway Py !
H b i £ i
; * mja P b Runtime Engine ;
» » 106 B wiey ||
A B ’ 1 N
. . o : { Runtime Engine ™
T A comptter |]) | bytecod r“)‘> UGN NN
T mpiler ytecode A
18 .\ : \/ I—v_;_'> 2 P 1 1 0
ST \ P ;o Runtime Engine | 4+ /
NPT s L {BREW) W
vl B
N Pl iy Runtime Engine | /"
§ . U b (Windows |7 |
: oss E Mobile) ;
§ o P t
¢ [i § 2
: » L ;

Jan. 8,2015 Sheet1 of 5 US 2015/0012916 A1

Patent Application Publication

e

s e e Sy e e s v e e e v
'i\.

\

A

Z
o fon e e

..m,."m.“wmmmw:f_..

A

~

{ef190py
SMOPUIM)
suibug swjuny

{MTug)
auibug swuny

Bwzr)
auifuz swiuny

(idim)
auibuy swmuny

{s}a0180Q

AU ap0osIAg AU

Epdwon

¥
i
i
§
§
i
i
§
i
i
i
{
1
i
i

e

s

{
901

femoes
JIRAISS BI0WSY

Xw, |7 7
e
!
(]
1&'}\‘\\\1\/\\“
elur, M
H
H
H
ARG GBM !
| _Medpe
_.,..\~
001

US 2015/0012916 A1

Jan. 8,2015 Sheet2 of 5
N

r

Patent Application Publication

(eqop
SMODUIAL)
L sulBug sununy
/ xefop

\u

Bedl, |-

PO U R
=

{m3ug)
- tanBug suinuny

x2fop Y

{s}sepoosuLy] AU] B
~ EY AMIII_ ONd Awuuu sbe] W,

auibug swguny

Mo

¢

[S

i
i1
e P
xefo G ! bl
ﬁ// O [i - . ;;X\\\\;/,\\@
., H
o (dm) s0¢ 90¢ L Bud, | |
" auiBuz ewpuny w ! i |
“ xefopy L N :
b §
! ! m Remareg) Pl IBRIBS QM W
" vamogma M ” tm?ﬁmm JoUWIsY “ W %‘twﬁw pig lw
Mo o o o o o e o oo 0t o0 s s OIS g o o e e o e o J R A e o e e
M\\ -
702 007

Jan. 8,2015 Sheet 3 of 5 US 2015/0012916 A1

Patent Application Publication

CHM e
y SMOPLIAL)
/L euiBug swpuny

™

I e o ot o o

.

\
.‘_.‘H..‘

\

- {mv3ud)
sutbug awnumy

AN

\

Ewzr

e
/
i
=
><
o0
=

suibug awnuny 7
80¢

-

e

{1dim)
su1Buy sunjuny

______._,_.___.__':7,-:":

——_—— e, ———————

{(slspooug

}

s

e

306

Re mejesy

JABARS B

e e e e e e e e

10WoNH

i e)
AU wosl, 7

dv0Ss

/
/

S N0 WU S

5

i

IBAIBS g
Aed pig

Jan. 8,2015 Sheet 4 of 5 US 2015/0012916 A1

Patent Application Publication

o] awer)

EIEET
p SMOPUIM)
S 1 suibuz swipuny

. (m3usg)
autbugz swnumy

sulbug swguny

{idIm}
auibug swnuny

{s}e01a8g

T
TAXEM Bposug
1BpOsSIRIL
ONd ﬁ abewy M
8p08IAG Bpdwied W
H
P el ;
a8 90 W
80¥ ! femeEs) ;
! m 11BAIRS BlOWSY W
\ £
|||||||||||||||||| M\.ﬂll'lllll.lllw
{
144174

Apied pig

Patent Application Publication Jan. 8,2015 Sheet 5 of 5 US 2015/0012916 A1

502 VN /510
PROCESSOR VIDEO
| P
424 DISPLAY
‘ INSTRUCTIONS |- 508
MAIN MEMORY ALPHA-NUMERIC
2o T b — INPUT
524 DEVICE
INSTRUCTIONS |~
[805 514
STATIC MEMORY [t |yl CURSOR CONTROL
o DEVICE
e
o0
520 516
NETWORK
mgg\;j&ce |t DRIVE UNIT 22
) MACHINE-READABLE| |~/
MEDIUM 524
INSTRUCTIONS |-~
528 518
SIGNAL
el GENERATION
DEVICE

FIG. 5

US 2015/0012916 Al

SYSTEMS AND METHODS FOR EXECUTING
AN APPLICATION ON A MOBILE DEVICE

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention refers to systems and methods for
executing an application on a mobile device.

[0003] 2. Discussion of Related Art

[0004] Mobile devices including mobile phones (Cellular,
Voice over Internet Protocol), personal digital assistants, and
mobile email devices, smart phones, and mobile internet
devices are commonly used throughout the throughout the
world as communication devices. Mobile device users are
more frequently using mobile devices for more complex
applications, such as internet banking and social networking.
[0005] There are currently a myriad of mobile device plat-
forms or operating systems, some of which include Java 2
Micro Edition (J2ME), Binary Runtime Environment for
Wireless (BREW), Windows Mobile, Palm Operating Sys-
tem r Symbian Operating System, Wireless Internet Platform
for Interoperability (WIPI), and the BlackBerry Operating
System. Each operating system has different requirements for
application software, therefore application developers are
forced to write several different iterations of one application
in order to satisfy the market place. Additionally the process-
ing power and memory of most mobile devices is compara-
tively weak in terms of the requirements for compiling
advanced mobile applications. Currently if an application
needs to be installed on a mobile device, the processing power
of the mobile device must be consumed in order to compile
the application, resulting in a slow loading and slow perfor-
mance. Furthermore, if an application needs updating, the
entire application will need to be reinstalled and compiled,
adding more time and complexity to the application.

SUMMARY OF THE INVENTION

[0006] The invention provides a computer implemented
method to execute a bytecode by a mobile runtime environ-
ment, the method including receiving an uploaded source
code at a remote server, compiling the source code into a
bytecode on the remote server, sending a first runtime engine
to a mobile device, wherein the first runtime engine commu-
nicates with an operating system of the mobile device, and
sending the bytecode to the mobile device, wherein the byte-
code is executable by the first runtime engine on the mobile
device.

[0007] The computer implemented method may addition-
ally include updating the bytecode.

[0008] The bytecode may not require user intervention for
updating.
[0009] The computer implemented method may addition-

ally include sending a second runtime engine to the second
mobile device, wherein the second runtime engine commu-
nicates with a second operating system of the second mobile
device, and wherein the operating system and second operat-
ing system have different application requirements for each
respective runtime engine, and sending the bytecode to the
second mobile device, wherein the bytecode is executable by
the second runtime engine on the mobile device.

[0010] The source code may be at least partially con-
structed of machine executable code.

[0011] The machine executable code may be ECMAscript.

Jan. 8, 2015

[0012] The method may additionally include receiving an
uploaded image on the remote server, converting and down
scaling the image file on the remote server, and sending the
converted and down scaled image file to the mobile device.
The method may additionally include receiving an uploaded
data file on the remote server, converting the data file into a
binary format on the remote server, sending the binary format
of the date file to the mobile device.

[0013] The method may additionally include receiving an
uploaded data file on the remote server, converting the data
file into a binary format on the remote server, sending the
binary format of the date file to the mobile device.

[0014] The invention also provides a computer imple-
mented method to execute a bytecode by a mobile runtime
environment, the method including receiving an uploaded
source code at a remote server, compiling the source code into
a bytecode on the remote server, sending a plurality of runt-
ime engines to a plurality of mobile devices, wherein each
runtime engine communicates with a specific operating sys-
tem of a mobile device, and wherein each specific operating
system has different application requirements, and sending
the bytecode to the plurality of mobile devices, wherein the
bytecode is executable by each respective runtime engine on
each respective mobile device.

[0015] The computer implemented method may addition-
ally include updating each respective bytecode located on
each respective mobile device.

[0016] No user intervention may be required for updating
each respective bytecode.

[0017] The source code may be at least partially con-
structed of machine executable code.

[0018] The machine executable code may be ECM Ascript.
[0019] The computer implemented method may addition-
ally include receiving an uploaded image at the remote server,
converting and down scaling the image file on the remote
server, and sending the converted and down scaled image file
to the plurality of mobile devices.

[0020] The computer implemented method may addition-
ally include receiving an uploaded data file at the remote
server, converting the data file into a binary format on the
remote server, and sending the binary format of the date file to
the plurality of mobile devices.

[0021] The invention also provides a computer imple-
mented method to execute a bytecode by a mobile runtime
environment, the method including storing a bytecode on a
remote server, the bytecode previously compiled from a
source code, receiving a request for the bytecode from a
runtime engine on a mobile device, and sending the bytecode
to the mobile device, wherein the bytecode is executable by
the runtime engine on the mobile device.

[0022] The computer implemented method may addition-
ally include receiving a second request for updated bytecode
from the mobile device, and sending updated bytecode to the
mobile device.

[0023] The invention also provides a computer imple-
mented method to execute a bytecode by a mobile device
runtime environment, the method including receiving a runt-
ime engine at a mobile device from a remote server, wherein
the runtime engine communicates with an operating system
of the mobile device, and receiving a bytecode at the mobile
device from the remote server, wherein the bytecode was
compiled from source code on the remote server, and execut-
ing the bytecode by the runtime engine on the mobile device.

US 2015/0012916 Al

[0024] The computer implemented method may addition-
ally include receiving updated bytecode.

[0025] Receiving updated bytecode may not require user
intervention.

[0026] The mobile device may be a mobile telephone.
[0027] The computer implemented method may addition-
ally include .requesting the remote server for an updated
bytecode.

[0028] Requesting the remote server for an updated byte-

code may not require user intervention.

[0029] The invention also provides a system for executing a
bytecode by a runtime environment, the system including a
remote server for uploading a source code and compiling the
source code into a bytecode, a mobile device for receiving the
bytecode, and a runtime engine on the mobile device for
executing the bytecode.

[0030] The system, may additionally include a remote
computer system for uploading and hosting the bytecode.

BRIEF DESCRIPTION OF THE DRAWINGS

[0031] The invention is further described by way of
example(s) with reference to the accompanying drawings,
wherein:

[0032] FIG. 1 is system level flow chart for executing an
application on a mobile device.

[0033] FIG. 2 is system level flow chart for transcoding
images for an application on. a mobile device.

[0034] FIG. 3 is system level flow chart for encoding a data
file for an application on a mobile device.

[0035] FIG. 4 is a system level flow chart for executing an
application on a mobile device, transcoding images for an
application on a mobile device, and encoding a data file for an
application on a mobile device.

[0036] FIG.5isablock diagram of an exemplary computer
system.

DETAILED DESCRIPTION OF THE INVENTION

[0037] FIG. 1 of the accompanying drawings shows a flow
chart, according to an embodiment of the invention. FIG. 1
illustrates a source file being compiled into bytecode which is
sent to a mobile device. A third party computer or third party
sever 100 hosts a source code 102. The source code 102 is
written using an integrated developer environment (IDE),
such as the open development platform Eclipse Integrated
Development Environment, partially including both machine
executable code and markup language, such as Extensible
Markup Language (XML), Cascading Style Sheets (CSS),
and European Computer Manufacturers Association Script
(ECMAScript).

[0038] The source file is a set of instructions intended as an
application that operates on a virtual machine, i.e. a runtime
engine, on a mobile device. A runtime engine is software that
creates a virtual environment, or runtime environment, on an
operating system. The advantage to using software intended
for a runtime engine, as opposed to writing instructions
directly for the operating system, is that one set of software
instructions may be implemented on a variety of operating
systems.

[0039] There are currently a myriad of operating systems in
the mobile world, e.g. BREW, WIPI, J2ME, Windows
Mobile, etc., which all have very different software require-
ments for source code. Thus implementing a runtime engine
that can operate on a myriad of operating systems allows

Jan. 8, 2015

software designers to write only one set of source code, rather
than a separate source code for each operating system. A
separate runtime engine is required for each operating sys-
tem, however implementation of a separate runtime engine is
less costly and time consuming than writing separate source
code, because a runtime engine is often created by a different
entity and preexists prior to the source code.

[0040] The source file is uploaded to a remote server 104.
At the remote server 104 the source code 102 is compiled
once and stored on the server. The source code 102 is com-
piled into bytecode 108 by a compiler 106 residing on the
remote server 104. Bytecode is a binary representation of
executable software designed to be executed by a runtime
engine. The runtime engine cannot execute the source code
directly, because source code is a representation of instruc-
tions that are readable by a human, i.e. one skilled in the art of
software programming, and not readable by a runtime engine.
[0041] The source code 102 may be compiled at the request
of a runtime on a mobile device. Alternatively, the source
code 102 may have teen previously compiled and stored on
the server. The remote server 104 may also store different
runtime engines which are intended for use on different
mobile operating systems. The remote server 104 also oper-
ates as a communications gateway because it can send the
bytecode and runtime engines over a cellular communica-
tions network or alternatively to a data network (a private
network or the Internet), or combination thereof.

[0042] The bytecode 108 is sent to a mobile device 110,
typically in response to a request from the runtime engine on
the mobile device 110. A runtime engine may first be sent to
amobile device 110, if the mobile device 100 does not already
have the runtime engine residing on it. The bytecode 108 may
be stored on the mobile device 110 and used for final execu-
tion by the runtime engine on the mobile device 110.

[0043] The runtime engine has relatively little work to per-
form executing the bytecode as the compiler 106 on the server
has done the majority of the work of parsing and optimizing
the source code. This method is particularly advantageous for
mobile devices. Mobile device are constrained technologi-
cally, because of size and cost considerations, to have rela-
tively weak processing power. Therefore, if the compilation
of the source code occurred on the mobile device, the final
execution of the source code would require more time and
processing power.

[0044] The same bytecode 108 may be sent to a plurality of
mobile devices 110 (e.g. a first mobile device, a second
mobile device, a third mobile device, etc.) without any alter-
ation to the bytecode, where each mobile device has a differ-
ent operating system. The ability to upload the same bytecode
108 to a plurality of devices 110 allows for a single uploaded,
source code 102 and subsequently compiled bytecode 108 to
be used on a myriad of operating systems.

[0045] It is important to note that the methods described
herein offer a great advantage in terms of resourcing process-
ing power and compilation time. The source code 102 for an
application on a mobile device 110 does not require a great
deal of processing power or time on a server, because a mobile
device application is rather simplistic compared to a server
processing system as opposed to being very demanding to a
mobile device 110 processing system. The processing power
of'the remote server 104 is on several magnitudes greater than
the mobile device 110, thus compiling the source code 102 (of
a mobile device application) on a remote server 104 occurs
several times more rapidly than compiling on a mobile device

US 2015/0012916 Al

110. Thus, even considering the downloading and receiving
of'a bytecode over a network to a mobile device 110 and the
demands of the remote server 104 to perhaps compile a plu-
rality of application simultaneously, compiling source code
102 into bytecode 108 on a remote server 104 is still much
faster than compiling source code 102 on a mobile device
110.

[0046] The remote server 104 also allows updating the
bytecode 108 as needed. Updating may be performed without
any user interaction on the mobile device 110, and thus updat-
ing is performed seamlessly and unknowingly to the user.
Updating bytecode 108 is particularly advantageous for
application which requires frequent updates, because source
code compilation is performed on the remote server 104
saving processing time on the mobile device. Updating an
application may thus be invisible to the user because the
runtime engine would already be installed on a mobile device
110 requiring no new installation time, and the updated byte-
code 108 may be downloaded when the application is not in
use. For example, when a mobile device 110 logs on to a data
network or is alternatively dormant, the runtime engine or
application may automatically and periodically check for
updates and download updated bytecode 108 as necessary.

File Conversion

[0047] FIG. 2 shows a flow chart which illustrates an image
file being converted and down scaled, and sent to a mobile
device. In addition to compiling source code into byte code,
the server may also convert image files. A third party com-
puter or third party server 200 or hosts image files, such as
Joint Photographic Experts Group (JPEG) files and Graphics
Interchange Format (GIF) image files 202. The image files
202 are uploaded to the remote server 204 and converted and
scaled as necessary by art image transcoder 206 residing on
the remote server 204. The image transcoder 206 converts
large image files into a format compatible with a mobile
device. The image transcoder 206 simultaneously coverts the
image file 202 as the source code 102 is being compiled. The
converted image 208 is sent a mobile device 210 on the same
date stream as the bytecode 108 for use in the same applica-
tion.

[0048] FIG. 3 shows a flow chart which illustrates a data
file, for example an XML file, being converted a binary data
file, for example WAP Binary XML (WBXML) file, and sent
to a mobile device. Data files written in markup languages are
commonly used for Internet applications. XML is a language
which has the purpose of presenting data in a structured
manner such that if may be useable between different sys-
tems, especially over the Internet. XML files should be under-
stood to be structured data files, and not instructions or
machine executable code. Data files 302 are hosted by a third
party server or third party computer 300. A remote server 304
includes an encoder 306 which converts the data file 302 into
a binary data file 308, such as WBXML file. WBXML files
are binary representations of XML files and are therefore
smaller and more easily transmittable over a mobile network.
The encoder 306 residing on the remote server 304 converts
the data file 302 while the source code 102 is being compiled.
The data file 302 is sent to a mobile device 310 on the same
data stream as the bytecode 108 for use in the same applica-
tion.

[0049] FIG. 4 shows a chart illustrating the integration of
the methods shown in FIGS. 1-3. Typically a third party
server 400 will host a tile 402 which will have a combination

Jan. 8, 2015

of source code, image files, and data files, depending on the
properties of the final application. For example some appli-
cations will not require the file 400 to include images. The file
400 is uploaded to a remote server 404 that will in a parallel
or operation compile source code, transcode image files, and
encode data files. Alternatively the remote server 404 may
perform operations in series. The output file 408 containing
the bytecode, transcoded image files, and encoded data files
will then be sent to a mobile device 410. The output file 408
is then executed on the mobile device 410 as a useful appli-
cation.

Exemplary Data Processing System

[0050] FIG. 5 of the accompanying drawings illustrates an
exemplary computer system 500, also known as a data pro-
cessing system that can for example form the remote server of
FIG. 1,2, or 3. The operations, processes, modules, methods,
and systems described and shown in the accompanying fig-
ures of this disclosure are intended to operate on one or more
exemplary computer systems 500 as sets of instructions (e.g.
software), also known as computer implemented methods.
The exemplary computer system 500 is generally represen-
tative of personal or client computers, mobile devices (e.g.
mobile cellular device, PDA, satellite phone, mobile VoIP
device), and servers. A mobile device will also have an
antenna and a microchip, for running a protocol for the radio
frequency reception and transmission of communications
signals. The exemplary computer system 500 includes at least
one processor 502 (e.g., a Central Processing Unit (CPU), a
Graphics Processing Unit (GPU) or both), a main memory
504 (e.g., Read Only Memory (ROM), flash memory,
Dynamic Random Access Memory (DRAM) such as Syn-
chronous DRAM (SDRAM) or Rambus DRAM (RDRAM),
etc.), and a static memory 506 (e.g., flash memory, Static
Random Access Memory (SRAM), etc.), which communi-
cate with each other via a bus 508.

[0051] The computer system 500 may further include a
video display 510 (e.g. Liquid Crystal Display (LCD) or a
Cathode Ray Tube (CRT) or a touch screen). The computer
system 500 also includes an alphanumeric input device 512
(e.g., a keyboard, phone pad, touch screen), a cursor control
device 514 (e.g., a mouse), a disk drive unit 516, a signal
generation device 518 (e.g. a speaker), and a network inter-
face device 520. The network interface device will at least be
wireless in case of a mobile device, for communicating to a
wireless network (e.g. cellular, VoIP). If the computer system
500 functions as a server, the video display 510, input device
512, signal generation device 518, and cursor control device
514 may not be needed. A mobile device will include one or
more signal input devices (e.g. a microphone, camera, finger-
print scanner) which is not shown.

[0052] The disk drive unit 516 includes a machine-readable
medium 522 on which is stored one or more sets of instruc-
tions 524 (e.g. software) embodying any one or more meth-
odologies or functions. The software may also reside, com-
pletely or at least partially, within the main memory 504
and/or within the processor 502 during execution thereof by
the computer system 500, the main memory 504, and the
processor 502 also constituting machine-readable media.
[0053] The software may further be transmitted or received
over a network 528 via the network interface device 520.
[0054] While the machine-readable medium 524 is shown
in an exemplary embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a

US 2015/0012916 Al

single medium or multiple media (e.g., a centralized or dis-
tributed database, and/or associated caches and servers) that
store the one or more sets of instructions. The term “machine-
readable medium” shall also be taken to include any medium
that is capable of storing, encoding or carrying a set of instruc-
tions for execution by the machine and that cause the machine
to perform one or more methodologies. It should be known
that the processes, methods, and modules disclosed herein are
intended to be contained as instructions on a machine read
able medium.

[0055] While certain exemplary embodiments have teen
described and shown in the accompanying drawings, it is to
be understood that such embodiments are merely illustrative
and not restrictive of the current invention, and that this inven-
tion is not restricted to the specific constructions and arrange-
ments shown and described since modifications may occur to
those ordinarily skilled in the art.

1.-25. (canceled)

26. A computer implemented method for updating mobile
device applications comprising:

providing, by a server computer system, a first application

compatible with a first operating system in operation on
some of a plurality of mobile devices and a second
application compatible with a second operating system
in operation on others of the plurality of mobile devices,
wherein the first operating system and the second oper-
ating system are different; and

providing, by the server computer system to at least one of

the mobile devices compatible with the first operating
system, an update to the first application while the first
application is not in operation, wherein the update com-
prises a configuration for use with the first application
and the second application.

27. The computer implemented method of claim 26 further
comprising providing, by the server computer system, the
update to the second application while the second application
is not in operation.

28. The computer implemented method of claim 26
wherein the update comprises operating system independent
byte code.

29. The computer implemented method of claim 28 further
comprising compiling source code to generate the operating
system independent byte code.

30. The computer implemented method of claim 26
wherein the update comprises data configured for use by the
first application or the second application.

31. The computer implemented method of claim 26
wherein the update is provided without user interaction.

32. The computer implemented method of claim 26
wherein the first application is configured to periodically
check for the update.

33. The computer implemented method of claim 26
wherein the first application is configured to check for the
update when the mobile device to which it was provided logs
on to a data network.

34. A system for updating an application to a mobile
device, the system comprising:

one or more memory devices storing software instructions;

and

one or more processors configured to execute the software

instructions to:

Jan. 8, 2015

provide a first application compatible with a first oper-
ating system in operation on some of a plurality of
mobile devices and a second application compatible
with a second operating system in operation on others
of the plurality of mobile devices, wherein the first
operating system and the second operating system are
different; and

provide, to at least one of the mobile devices compatible
with the first operating system, an update to the first
application while the first application is not in opera-
tion, wherein the update comprises a configuration for
use with the first application and the second applica-
tion

35. The system of claim 34, wherein the one or more
processors are further configured to execute the software
instructions to provide the update to the second application
while the second application is not in operation.

36. The system of claim 34, wherein the update comprises
operating system independent byte code.

37. The system of claim 36, wherein the one or more
processors are further configured to execute the software
instructions to compile source code to generate the operating
system independent byte code.

38. The system of claim 34, wherein the update comprises
data configured for use by the first application or the second
application.

39. The system of claim 34, wherein the update is provided
without user interaction.

39. The system of claim 34, wherein the first application is
configured to periodically check for the update.

40. The system of claim 34, wherein the first application is
configured to check for the update when the mobile device to
which it was provided logs on to a data network.

41. A non-transitory computer readable medium storing
instructions that, when executed by one or more processors,
causes the one or more processors to perform operations
comprising:

providing a first application compatible with a first oper-

ating system in operation on some of a plurality of
mobile devices and a second application compatible
with a second operating system in operation on others of
the plurality of mobile devices, wherein the first operat-
ing system and the second operating system are differ-
ent; and

providing, to at least one of the mobile devices compatible

with the first operating system, an update to the first
application while the first application is not in operation,
wherein the update comprises a configuration for use
with the first application and the second application.

42. The non-transitory computer readable medium of claim
41 wherein the update comprises operating system indepen-
dent byte code.

43. The non-transitory computer readable medium of claim
41 wherein the update is provided without user interaction.

44. The non-transitory computer readable medium of claim
41 wherein the first application is configured to periodically
check for the update.

45. The non-transitory computer readable medium of claim
41 wherein the first application is configured to check for the
update when the mobile device to which it was provided logs
on to a data network.

