2012/027478 A1 | 00 0010 0 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oo AT
1 1d Intellectual P t t) e
(19) World Intellcctual Property Organization i 1IN NP A0 AL 000100 DN
International Bureau S,/ 0
3\) 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
1 March 2012 (01.03.2012) PCT WO 2012/027478 Al
(51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
GO6F 9/46 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. L. HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(21) International Application Number: KR. KZ. LA. LC. LK. LR. LS. LT. LU. LY. MA. MD
PCT/US2011/048977 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL
(22) International Filing Date: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
24 August 2011 (24.08.2011) SC, SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(25) Filing Language: English ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
61/376,296 24 August 2010 (24.08.2010) Us GM, KE, LR, LS, MW, MZ, NA, 8D, SL, 82, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(72) Inventors; and TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(71) Applicants : MOORTHI, Jay [US/US]; 403 Main EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Street, #703, San Francisco, CA 94105 (US). THORPE, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Christopher, A. [US/US]; 134 Bedford Road, Lincoln, SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
MA 01773 (US). JOSEPHSON, William [US/US]; 130 GW, ML, MR, NE, SN, TD, TG).

Clapboard Ridge Road, Greenwich, CT 06830 (US).

(74) Agent: GRADY, Matthew, H.; Lando & Anastasi LLP,
Riverfront Office Park, One Main Street; Suite 1100,

Published:
— with international search report (Art. 21(3))

Cambridge, MA 02142 (US). — before the expiration of the time limit for amending the
. o claims and to be republished in the event of receipt of
(81) Designated States (unless otherwise indicated, for every amendments (Rule 48.2(h))

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

(54) Title: METHOD AND APPARATUS FOR CLEARING CLOUD COMPUTE DEMAND

RN

Provider

1010
Client

1012

Compute Job
& Attributes

1020 =7 1006 1002
Clearing
Provider System

RaNE=——ny
1014

Provider

o FIG. 10 e

(57) Abstract: Provided are systems and methods for simplifying cloud compute markets. A compute marketplace can be config-
ured to determine, automatically, attributes and/or constraints associated with a job without requiring the consumer to provide
them. The compute marketplace provides a clearing house for excess compute resources which can be offered privately or publi-
cally. The compute environment can be further configured to optimize job completion across multiple providers with different ex-
ecution formats, and can also factor operating expense of the compute environment into the optimization. The compute market-
place can also be contigured to monitor jobs and/or individual job partitions while their execution is in progress. The compute
marketplace can be configured to dynamically redistribute jobs/job partitions across providers when, for example, cycle pricing
changes during execution, providers fail to meet defined constraints, excess capacity becomes available, compute capacity be-
comes unavailable, among other options.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

METHOD AND APPARATUS FOR CLEARING CLOUD COMPUTE DEMAND

RELATED APPLICATIONS
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional
Application Serial No. 61/376,296 entitled “METHOD AND APPARATUS FOR
PRICING CLOUD COMPUTE CYCLES,” filed on August 24, 2010, which is

incorporated herein by reference in its entirety.

BACKGROUND

Cloud computing developed from the need of private companies to recover their
investment in compute grids by renting out spare cycles in off-peak times. Typical
implementations in compute grids infrastructure often resulted in over-provisioned
compute grids and spare cycles of compute power that were not being utilized. As the
market for cloud compute resources has been established, more dedicated providers have
emerged in commercial settings, such as Amazon EC2, Softlayer, and Rackspace to
provide excess compute capacity to consumers. Others have specifically developed
compute grids to offer such processing power to consumers both on an as needed basis
and on a subscriptions based model. The development of compute marketplaces and the
increase in the number of compute provides has limited some of the waste associated
with excess compute capacity. However, even these dedicated providers also suffer from
the need to over-provision physical resources to insure sufficient compute capacity for a
given job at any given time.

As the market for cloud services has grown, providers have pushed to
differentiate themselves based on price, reliability, manageability, platform and other
factors and features. Typiéally consumers of cloud compute services, however, are not
interested in these complexities. Consumers are often most concerned with getting their
compute work done "as soon as possible," "as cheaply as possible,"” or within some time
or price constraint. Thus, the identification of underlying capacities of given cloud

compute systems overwhelms the typical consumer.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

SUMMARY

In broad overview, various aspects of the invention address some of the
inefficiencies in the cloud compute market, both for cloud compute consumers and
providers. Various inefficiencies can be observed in traditional cloud compute systems,
for example, a provider inefficiency may include excess capacity. Inefficiencies exist on
the consumer end of the transaction as well. For example, conventional cloud compute
systems rely on the consumer to identify the constraints for a submitted job. Typical
consumers are not suited to the task of identifying the constraints and/or attributes of a
given job. In some embodiments, a cloud compute clearing system identifies constraints
for a submitted job automatically. In other examples, the clearing system balances
available compute cycles and costs associated with different compute provider platforms
with any translation costs required to separate a compute job into partitions handled by
different compute providers. In such a setting insuring a job is completed on time and on
budget can require accounting for translation costs before allocation of a job or a
partitioned portion of a job to a given compute provider.

According to one aspect, the present invention simplifies the cloud compute
market for consumers by eliminating the information gathering work needed to get their
compute task completed according to their needs. In one embodiment, the compute
environment can be configured to determine, automatically, attributes associated with a
given job without requiring the compute consumer to provide the attributes necessary to
allocate a specific compute job between various compute providers. According to another
aspect, the present invention simplifies the cloud compute market for providers by
offering a clearing house where a plurality of providers can offer excess capacity for use.
The compute environment can be further configured to optimize job completion based
not on welfare of the consumer and/or provider but also factor the needs and operating
expense of the compute environment that manages job distribution. In another
environment, the compute environment can be configured to monitor jobs and/or
individual job partitions while their execution is in progress. The computer environment
can be configured to dynamically redistribute jobs/job partitions across providers when,

for example, cycle pricing changes during execution, providers fail to meet provided

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

constraints, excess capacity becomes available, compute capacity becomes unavailable,
etc.

According to one aspect provided is a computer implemented method for
distributing cloud compute jobs. The method comprises receiving, by a central computer
system, over a communication network a request to execute a computer based task,
identifying, by the central computer system, any condition constraining the completion of
the computer based task, partitioning, by the central computer system, the computer
based task into one or more sub-tasks, determining, by the central computer system,
assignment of the one or more sub-tasks to one or more of a plurality of compute
providers, wherein the act of determining the assignment of the one or more sub-tasks
includes analyzing the plurality of compute providers for at least resource availability and
any translation cost, wherein at least one of the plurality of compute providers provides a
different execution format associated with execution of a compute task, transmitting, over
the communication network, a request to execute each sub-task to a respective provider,
and providing access, over the communication network, to any executed portion of the
executed task, wherein the computer based task is scheduled to be executed according to
the any condition.

According to one embodiment, the act of identifying the any condition
constraining the completion of the computer based task, includes an act of identifying,
automatically by the central computer system, the any condition based on the computer
based task. According to one embodiment, the act of identifying the any condition
includes acts of analyzing the computer based task; and determining, automatically by the
central computer system, at least a minimal set of conditions required to execute the
computer based task. According to one embodiment, an act of identifying, automatically
by the central computer system, the at least a minimal set of conditions includes
identifying constraints for the computer based task based on a training set of constraints
for computer based tasks having identified attributes. According to one embodiment, the
act of identifying, automatically by the central computer system, the at least the minimal
set of conditions includes acts of accessing a set of stored rules having computer based
task attributes, evaluating the computer based task against the set of rules, and assigning

constraints to the computer based task based on matching attributes. According to one

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

embodiment, the method further comprises an act of weighting the set of rules to favor at
least one constraint. According to one embodiment, the act identifying, automatically by
the central computer system, the any condition based on the computer based task includes
an act of assigning at least one response-function family of constraints for the computer
based task.

According to one embodiment, the method further comprises acts of evaluating
the at least the minimal set of conditions required to execute the computer based task, and
updating at least one of a training procedure and a set of rules having computer based
task attributes and constraints in response to the act of evaluating. According to one
embodiment, the method further comprises an act of monitoring, by the central computer
system, at least a portion of an execution of the computer based task in an input
environment; and generating a virtualized environment corresponding to the input
environment. According to one embodiment, the act of monitoring includes an act of
intercepting API traffic generated by the execution of the portion of the computer based
task, and the method further comprises generating a translation of the API traffic into
another virtual environment. According to one embodiment, the act of identifying the any
condition constraining the completion of the computer based task includes an act of
executing a subset job on the plurality of compute providers, capturing execution errors,
and receiving user based selection of translation mechanisms.

According to one embodiment, the method further comprises an act of storing the
any condition constraining the completion of the computer based task and attributes of
the computer based task. According to one embodiment, the one or more of a plurality of
compute providers include at least a first compute provider having a first compute
execution format and a at least a second compute provider having a second compute
execution format, and the act of determining the assignment of the one or more sub-tasks
to the one or more of a plurality of compute providers includes estimating a translation
cost in terms of compute resource of any of the one or more sub-tasks to permit execution
in at least one of the first compute execution format and the second compute execution
format. According to one embodiment, the method further comprises an act of querying
the one or more providers for job execution format and processing capability. According

to one embodiment, the act of querying the one or more providers includes an act of

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

requesting execution of a benchmark task. According to one embodiment, the method
further comprises an act of recalculating the assignment of the one or more sub-tasks to
the one or more of the plurality of compute providers based on execution parameters.
According to one embodiment, the execution parameters includes at least one of new
compute resource availability, updated pricing information for available compute
resources, sub-task performance information, and update computer based task
preferences. According to one embodiment, the method further comprises an act of
estimating a compute cost of moving at least one assigned sub-task.

According to one embodiment, the act of estimating a compute cost of moving the
at least one assigned sub-task includes estimating a translation cost in terms of compute
resource. According to one embodiment, the act of estimating a compute cost of moving
the at least one assigned sub-task includes estimating a translation cost in terms of
compute resource; and estimating bandwidth consumption required to move the at least
one assigned sub-task. According to one embodiment, the act of partitioning the
computer based task into one or more sub-tasks includes partitioning the computer based
task into fixed length intervals. According to one embodiment, the act of partitioning the
computer based task into one or more sub-tasks includes partitioning the computer based
task dynamically in response to at least one of predicted load, historical load, service
level guarantee, and customer identified required compute providers. According to one
embodiment, the method further comprises an act of generating at least one of an
estimated cost and estimated completion time for the computer based task.

According to one embodiment, the act of generating the at least one of an
estimated cost and estimated completion time for the computer based task includes an act
of determining an operating expense associated with managing the assignment and
execution of the computer based task. According to one embodiment, the method further
comprises an act of improving the act of
determining, by the central computer system, assignment of the one or more sub-tasks to
one or more of a plurality of compute providers based on historical execution of
computer based tasks.

According to one aspect provided is a system for executing cloud compute jobs.

The system comprises at least one processor operatively connected to a memory for

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

executing system components, a communication component configured to receive a
request to execute a computer based task, a constraint component configured to identify
any condition constraining the completion of the computer based task, a partition
component configured to partition the computer based task into one or more sub-tasks, an
allocation component configured to assign the one or more sub-tasks to one or more of a
plurality of compute providers, wherein the allocation component is further configured to
determine the assignment of the one or more sub-tasks based on at least resource
availability and any translation cost associated with each compute provider, wherein at
least one of the plurality of compute providers provides a different execution format
associated with execution of a compute task, a distribution component configured to
distribute each sub-task to a respective compute provider for execution, and wherein the
communication component is further configured to provide access to any executed
portion of the executed task, wherein the computer based task is executed within the any
defined condition.

According to one embodiment, the constraint component is further configured to
identify, automatically, the any condition based on the computer based task. According
to one embodiment, the constraint component is further configured to: analyze the
computer based task; and determine, automatically, at least a minimal set of conditions
required to execute the computer based task. According to one embodiment, the
constraint component is further configured to identify constraints for the computer based
task based on a training set of constraints for computer based tasks having identified
attributes. According to one embodiment, the constraint component is further configured
to access a set of stored rules having computer based task attributes; evaluate the
computer based task against the set of rules; and assign constraints to the computer based
task based on matching attributes.

According to one embodiment, the constraint component is further configured to
weight the set of rules to favor at least one constraint. According to one embodiment, the
constraint component is further configured to assign at least one response-function family
of constraints for the computer based task. According to one embodiment, the system
further comprises a training component configured to: evaluate the at least the minimal

set of conditions required to execute the computer based task, and update at least one of a

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

training procedure and a set of rules having computer based task attributes and
constraints in response to evaluating of the at least the minimal set of conditions required
to execute the computer based task. According to one embodiment, the system further
comprises a translation component configured to monitor at least a portion of an
execution of the computer based task in an input environment; and generate a virtualized
environment corresponding to the input environment.

According to one embodiment, the translation component is further configured to
intercept API traffic generated by the execution of the portion of the computer based task;
and generate a translation of the API traffic into another virtual environment. According
to one embodiment, the constraint component is further configured to execute a subset
job on the plurality of compute providers, capture execution etrors, and receive user
based selection of translation mechanisms. According to one embodiment, the system
further comprises a storage component configured to store the any condition constraining
the completion of the computer based task and attributes of the computer based task.
According to one embodiment, one or more of a plurality of compute providers include at
least a first compute provider having a first compute execution format and a at least a
second compute provider having a second compute execution format, and allocation
component is further configured to estimate a translation cost in terms of compute
resource of any of the one or more sub-tasks to permit execution in at least one of the first
compute execution format and the second compute execution format. According to one
embodiment, the translation component is further configured to query the one or more
providers for job execution format.

According to one embodiment, the translation component is further configured to
request execution of a benchmark task. According to one embodiment, the system
further comprises an optimization component configured to recalculate the assignment of
the one or more sub-tasks to the one or more of the plurality of compute providers based
on execution parameters. According to one embodiment, the execution parameters
includes at least one of new compute resource availability, updated pricing information
for available compute resources, sub-task performance information, and update computer
based task preferences. According to one embodiment, the optimization component is

further configured to estimate a compute cost of moving at least one assigned sub-task.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

According to one embodiment, the optimization component is further configured to
estimate a translation cost in terms of compute resource. According to one embodiment,
the optimization component is further configured to: estimate a translation cost in terms
of compute resource; and estimate bandwidth consumption required to move the at least
one assigned sub-task.

According to one embodiment, the partition component is further configured to
partition the computer based task into fixed length intervals. According to one
embodiment, the partition component is further configured to partition the computer
based task dynamically in response to at least one of predicted load, historical load,
service level guarantee, and customer identified required compute providers. According
to one embodiment, the system further comprises an estimation component configured to
generate at least one of an estimated cost and estimated completion time for the computer
based task. According to one embodiment, estimation component is further configured to
determine an operating expense associated with managing the assignment and execution
of the computer based task.

According to one aspect a non-transitory computer-readable medium having
computer-readable signals stored thereon that define instructions that, as a result of being
executed by a computer, instruct the computer to perform method for distributing cloud
compute jobs. The method comprises receiving over a communication network a request
to execute a computer based task, identifying any condition constraining the completion
of the computer based task, partitioning the computer based task into one or more sub-
tasks, determining assignment of the one or more sub-tasks to one or more of a plurality
of compute providers, wherein the act of determining the assignment of the one or more
sub-tasks includes analyzing the plurality of compute providers for at least resource
availability and any translation cost, wherein at least one of the plurality of compute
providers provides a different execution format associated with execution of a compute
task, transmitting a request to execute each sub-task to a respective provider, and
providing access to any executed portion of the executed task, wherein the computer
based task is scheduled to be executed according to the any condition.

According to one embodiment, the act of identifying the any condition

constraining the completion of the computer based task, includes an act of identifying,

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

automatically by the central computer system, the any condition based on the computer
based task. According to one embodiment, the act of identifying the any condition
includes acts of> analyzing the computer based task; and determining, automatically by
the central computer system, at least a minimal set of conditions required to execute the
computer based task. According to one embodiment, an act of identifying, automatically,
the at least a minimal set of conditions includes identifying constraints for the computer
based task based on a training set of constraints for computer based tasks having
identified attributes. According to one embodiment, an act of identifying, automatically,
the at least the minimal set of conditions includes acts of: accessing a set of stored rules
having computer based task attributes; evaluating the computer based task against the set
of rules; and assigning constraints to the computer based task based on matching
attributes. According to one embodiment, the method further comprises an act of
weighting the set of rules to favor at least one constraint.

According to one embodiment, the act identifying, automatically, the any
condition based on the computer based task includes an act of assigning at least one
response-function family of constraints for the computer based task. According to one
embodiment, the method further comprises acts of: evaluating the at least the minimal set
of conditions required to execute the computer based task, and updating at least one of a
training procedure and a set of rules having computer based task attributes and
constraints in response to the act of evaluating. According to one embodiment, the
method further comprises an act of monitoring at least a portion of an execution of the
computer based task in an input environment; and generating a virtualized environment
corresponding to the input environment.

According to one embodiment, the act of monitoring includes an act of
intercepting API traffic generated by the execution of the portion of the computer based
task, and the method further comprises generating a translation of the API traffic into
another virtual environment. According to one embodiment, the act of identifying the
any condition constraining the completion of the computer based task includes an act of:
executing a subset job on the plurality of compute providers; capturing execution errors;

and receiving user based selection of translation mechanisms. According to one

‘embodiment, the method further comprises an act of storing the any condition

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
10

constraining the completion of the computer based task and attributes of the computer
based task.

According to one embodiment, one or more of a plurality of compute providers
include at least a first compute provider having a first compute execution format and a at
least a second compute provider having a second compute execution format, and the act
of determining the assignment of the one or more sub-tasks to the one or more of a
plurality of compute providers includes estimating a translation cost in terms of compute
resource of any of the one or more sub-tasks to permit execution in at least one of the first
compute execution format and the second compute execution format. According to one
embodiment, the method further comprises an act of querying the one or more pfoviders
for job execution format and processing capability.

According to one embodiment, the act of querying the one or more providers
includes an act of requesting execution of a benchmark task. According to one
embodiment, the method further comprises an act of recalculating the assignment of the
one or more sub-tasks to the one or more of the plurality of compute providers based on
execution parameters. According to one embodiment, the execution parameters includes
at least one of new compute resource availability, updated pricing information for
available compute resources, sub-task performance information, and update computer
based task preferences. According to one embodiment, the method further comprises an
act of estimating a compute cost of moving at least one assigned sub-task. According to
one embodiment, the act of estimating a compute cost of moving the at least one assigned
sub-task includes: estimating a translation cost in terms of compute resource; and
estimating bandwidth consumption required to move the at least one assigned sub-task.

According to one embodiment, the act of partitioning the computer based task
into one or more sub-tasks includes partitioning the computer based task into fixed length
intervals. According to one embodiment, the act of partitioning the computer based task
into one or more sub-tasks includes partitioning the computer based task dynamically in
response to at least one of predicted load, historical load, service level guarantee, and
customer identified required compute providers. According to one embodiment, the
method further comprises an act of generating at least one of an estimated cost and

estimated completion time for the computer based task. According to one embodiment,

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
11

the act of generating the at least one of an estimated cost and estimated completion time
for the computer based task includes an act of determining an operating expense
associated with managing the assignment and execution of the computer based task.
According to one embodiment, the method further comprises an act of improving the act
of determining, by the central computer system, assignment of the one or more sub-tasks
to one or more of a plurality of compute providers based on historical execution of

computer based tasks.

BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of at least one embodiment are discussed below with reference to
the accompanying figures, which are not intended to be drawn to scale. The figures are
included to provide illustration and a further understanding of the various aspects and
embodiments, and are incorporated in and constitute a part of this specification, but are
not intended as a definition of the limits of the invention. Where technical features in the
figures, detailed description or any claim are followed by references signs, the reference
signs have been included for the sole purpose of increasing the intelligibility of the
figures, detailed description, and/or claims. Accordingly, neither the reference signs nor
their absence are intended to have any limiting effect on the scope of any claim elements.
In the figures, each identical or nearly identical component that is illustrated in various
figures is represented by a like numeral. For purposes of clarity, not every component
may be labeled in every figure. In the figures:

Fig. 1 illustrates an example process for providing consumer interaction with a
cloud compute marketplace, according to aspects of the invention;

Fig. 2 illustrates an example process for managing resource provider interaction
with a cloud compute marketplace, according to aspects of the invention;

Fig. 3 illustrates an example process for maintaining an exchange, according to
aspects of the invention;

Fig. 4 illustrates an example process for translating jobs between provider
formats, according to aspects of the invention;

Fig. 5 illustrates an example process for analyzing switching costs associated with

moving a sub-task between compute providers, according to aspects of the invention;

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
12

Fig. 6 illustrates an example process for analyzing a job to produce a job
specification, according to aspects of the invention;

Fig. 7 illustrates an example process for re-allocating resources, according to
aspects of the invention;

Fig. 8 illustrates an example process for automatically scaling a long-running job,
according to aspects of the invention;

Fig. 9 illustrates an example process for normalizing exchange pricing, according
to aspects of the invention;

Fig. 10 is a block diagram of an example system architecture for a cloud compute
marketplace, according to aspects of the invention;

Fig. 11illustrates an example process for allocating a cloud compute task between
a plurality of compute providers, according to aspects of the invention;

Fig. 12 illustrates an example supply curve graph, according to aspects of the
invention;

Fig. 13 is block diagram of example component architecture and communication
flow, according to aspects of the invention;

Fig. 14 illustrates an example flow between displayed views, according to aspects
of the invention;

Fig. 15 illustrates an example user interface, according to aspects of the invention;

Fig. 16 illustrates an example user interface, according to aspects of the invention;

Fig. 17 illustrates an example user interface, according to aspects of the invention;

Fig. 18 illustrates an example user interface, according to aspects of the invention,

Fig. 19 illustrates an example database model, according to aspects of the
invention;

Fig. 20 is a block diagram of an example general-purpose computer system upon
which various embodiments of the invention may be implemented;

Fig. 21 is a block diagram of an example computer system with which various
embodiments of the invention may be practiced;

Fig. 22 illustrates an example user interface, according to aspects of the invention;

Fig. 23 illustrates an example process for submitting a job request and receiving

an estimate for executing the job, according to aspects of the invention,

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
13

Fig. 24 illustrates an example process for monitoring and/or altering an execution
of a job, according to aspects of the invention; and
Fig. 25 illustrates an example process for processing an estimate and executing a

job, according to aspects of the invention.
DETAILED DESCRIPTION

According to one embodiment, the requirements for efficient cloud compute
systems rest on some observations on cloud computing. Cycles are cycles. Apart from
proprietary software systems, there's nothing special about the CPUs hosting any
commercial system. In fact, the success of cloud computing depends on the fact that it
can be done on cheap commodity hardware. Results trump all else. As long as a compute
task (or subtask) is completed on time and at cost, it doesn't matter to the task submitter
whether it restarted, on what host it ran, etc. Many compute tasks are highly partitionable.
The rapid growth in cloud hosting providers, and the popularity of MapReduce-style
models like Hadoop (and support from Cloudera) along with providers such as Amazon
EC2 indicate that there is demand for large-scale bulk compute processing.

According to another embodiment, assuming a set of cloud compute providers
that meet a minimum reliability bar, it's possible to treat cloud compute cycles as an
interchangeable commodity, tiered by price, performance and other features. A cloud
compute system and/or method can then seamlessly parcel out compute work among
multiple providers to generate optimal cloud compute execution. In some embodiments,
the cloud compute marketplace can factor in the cost in terms of cycles and/or time in
translating a given compute job for execution by disparate providers.

Various embodiments solve some of the issues with conventional cloud compute
systems. One embodiment develops an intelligent cloud compute pricing model based on
real-time price and availability information furnished by a plurality of cloud compute
providers. Another embodiment hosts a cloud compute marketplace, where compute
providers can register their resources and consumers can submit work and any known
constraints of time, cost, and features, such that the work is automatically distributed

among the plurality of providers to meet the constraints. In one setting, an environment is

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
14

provided where cloud resources -- whether they be compute, storage, or other

interchangeable services -- are seamlessly allocated in an efficient market.

Implementation Examples

Shown in Fig. 10 is a block diagram of an example cloud compute marketplace
1000. The cloud compute marketplace 1000 includes a central computer system, e.g.,
clearing system 1002, which houses the cloud compute exchange. The clearing system
1002 is configured to receive compute job requests from a plurality of cloud compute
consumers, e.g., clients 1008-1012. Clients 1008-1012 can provide any known
constraints for their cloud compute task, inputting for example, pricing, timing, desired
provider, maximum costs, or other preferences establishing parameters for an optimal
distribution of the cloud compute task. A client 1012 may create a compute job and
specify its attributes on a host computer system. The terms job, task, sub-tasks, and job
instance are used interchangeably herein to connote a cloud compute job and/or cloud
compute job partitions that a client wishes to have executed by a cloud compute provider,
except where the context dictates a more specific meaning. The compute job and its
attributes 1016 can be communicated over communication network 1004 to the clearing
system 1002 from any storage location on the host computer, e.g., database 1014.
Network 1004 can include private communication networks, public communication
networks, LAN, WAN, virtual network, among other example, including, the Internet.

Clearing system 1002 can be configured to automatically analyze any received
cloud compute task and determine attributes and/or constraints for the received job. In
some examples, the clearing system 1002 can also be configured to display graphical user
interfaces to the client requesting information necessary to establish the attributes and/or
constraints for a received cloud compute task. In some embodiments, the clearing system
can be configured to partition the received cloud compute task and determine an optimal -
allocation for the partitioned sub-tasks as discussed in greater detail below. In other
embodiments, the determination of the optimal distribution can be done in conjunction
with the partitioning of the cloud compute task. In some examples, the partitioning of the
task can be dependent on a calculation of an optimal distribution of the cloud compute

task.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
15

The optimal distribution determination can be computed using real-time
information obtained or received from a plurality of compute providers, e.g., 1018-1022
over a communication network 1006. The compute providers typically provide
information on, for example, available compute resources, cost, and availability. The
provided information can be used by the clearing system 1002 to optimally allocate
partitioned cloud compute tasks and/or partitioned sub-tasks to the compute resources
hosted by the compute providers 1018-1022. In addition to cost and availability
information, providers typically specify an execution format for compute jobs. In some
examples, the compute provider specifies submission of jobs in a virtual machine format
that can be executed on the provider’s compute resources. Oftentimes, compute provider
formats vary, requiring translation to occur on given sub-tasks prior to delivery and
execution by a specific provider. Clearing system 1002 can be configured to execute a
translation process to convert a compute task and/or partitioned sub-tasks into a format
suitable for any provider determined to be part of an optimal distribution, described in
greater detail below. Translation costs can be determined based on compute resources
and/or cycles required to complete, time required, and any other parameter on which a
compute task can be analyzed. The cost of translation can be factored into the optimal
distribution of any cloud compute task. In some embodiments, the determination of
optimal allocation and/or translation costs can be made using estimated and/or
approximate values.

Once sub-tasks assignments have been determined by the clearing system 1002,
the partitioned sub-tasks can be communicated to any assigned provider, e.g., 1018-1012
over communication network 1006. Network 1006 can include private communication
networks, public communication networks, LANs, WANSs, virtual networks, among other
examples, including, the Internet. Communication bandwidth between clearing system
1002 and providers 1018-1022 can also be factored into the determination of optimal
distribution. Further, various cloud compute tasks can require access to external data, and
bandwidth constraints to external sources can also be factored into the allocation
determination. The central computer system for a cloud compute marketplace is also

referred to herein as the exchange system or exchange. The term exchange can also be

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
16

used herein to denote the marketplace as a whole or a central system that providers and/or
customers access to exchange cloud compute services.

There are a number of settings in which efficient cloud compute markets, cloud
task distribution, and pricing strategies can be implemented. An example compute pricing
system implemented as part of a cloud compute marketplace produces combinatorial
pricing for large compute tasks in a cloud compute market.

For example, developing budget pricing models for cloud compute projects would
be well suited to matching compute supply against consumer demand and budgetary
constraints. One implementation can address creating a clearing house for existing cloud
providers to wholesale their excess capacity. Various “white box resale” models can be
priced and provisioned to users of cloud compute cycles. Another implementation can
extend a "white-box" resale model to include organizations that would normally not sell
their compute resources.

Providing access for registering provider services to an existing compute
marketplace can result in private grid/HPC operators have minimal overhead for selling
their idle cycles. In some examples, little overhead can results in greater participation.
Greater participation can in some examples increase performance, reliability, and reduce
costs of executed compute tasks on a consumer.

For example, academic or scientific supercomputer installations often have low or
variable utilization, but fixed operational expense for support staff and maintenance. The
academic administrator has little time to find potential tenants for excess capacity, but
likely controls enough budget to justify integrating with a system that provides for
reducing total cost of ownership through the pricing and distribution of unused cloud
compute cycles.

According to one embodiment, the system provides a "trusted" sandbox platform
into which generic work can be delivered. In some settings, bandwidth limits and
network security can become issues when arbitrary public code can be delivered into a
private organization's infrastructure. Ensuring a trusted platform can address some of the
concerns. By limiting the execution space of a cloud compute resource the execution
environment can be isolated and secured, i.e. “sandboxed.” By assuring providers that

their compute resources can be shielded from malicious execution using sandboxed

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
17

implementations, providers can be confident that registering resources for cloud compute

tasks should not have an impact on their compute resources.

License Rental Example

Some compute providers are entering the license rental market, for example
timesharing an Intel Cluster Compiler installation. The budget pricing, resale, and co-
generation discussed herein, as well as other, implementations can all be applied to both
generic compute resources and specific license rental needs. License rental can add
significant complexity to the market model, making it advantageous to integrate into a

cloud compute market place, once the fundamental market model has been established.

Design Examples of An Interaction Model

According to one embodiment, a customer can interact with the system by
submitting a job with metadata. The job can be submitted in a variety of formats. In one
implementation, a customer generates a virtual machine (VM) image associated with
some metadata, e.g., size of the job (e.g., in cycles). The customer can specify in a user
interface constraints associated with the completion of that job, which can include budget
(dollars), and/or deadline (date). In some embodiments, this information can all be
associated and/or embedded in the VM image.

According to some embodiments, the submitted job is assumed to be naturally
partitionable. In some examples, this means that the job is “horizontally scalable” —
starting additional copies of the job will make it perform incrementally faster. For
example, if the job is supplied as a VM image, it should be configured to execute in a set
of instances, and to manually or automatically discover new instances as they are started.
In some embodiments, the entire job may not be partitionable, but some parts of it may
be. For example, if the job is to build an executable software image from source code, the
compilation phase of the build may be partitionable since each file can be compiled
independently and in parallel, but the link phase may not be partitionable. In some
examples, a compute clearing system can be configured to automatically determine if a

job is partitionable or if a job is partially partitionable.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
18

Job size and whether a job size is known can impact operation of the system. For
example, jobs with a known fixed size can be priced and distributed differently from jobs
that can't be size-estimated. When size is fixed (e.g., render 50 million video frames), the
system can produce concrete estimates of whether the projected price meets the budget
and projected completion time meets the deadline.

Described are some examples of jobs and system responses to a customer:

o budget specified: system estimates soonest deadline

o deadline specified: system estimates lowest cost

» both specified: system estimates feasibility

« neither specified: system estimates cheapest and/or soonest

o fixed-size bills based on fully completed task (if the user cancels after some
grace-period, he bears financial responsibility for any resources consumed, even
though results may not be returned)

In setting where size is unknown or unlimited (e.g., live video stream processing),
the system does not provide an absolute cost or completion time. Instead, the system 1s
configured to operate in terms of relative quantities. For example the system can be
configured to generate a price/cycle. Further the system can provide information on
cycles/sec to assist a customer in determining projected costs.

Some example jobs and system operation follow:

« price/cycle specified: work is allocated as cycles are available at price

o cycles/sec specified: work is allocated to the lowest-price resource that meets the
rate

o absolute deadline and budget can be specified, but work may not be completed
once the time/budget are exhausted

« unlimited-size processing bills based on incremental consumption

In one embodiment, the system can be configured to distribute work across all of
the compute providers that it has registered, such that it meets the agreed upon
constraints. Distribution across all providers can be configured to reward existing
registrants by insuring that jobs are distributed, providing compute cycle request to all

providers as long as specified constraints are met.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
19

Shown in Fig. 11 is an example process for allocating a cloud compute task
between a plurality. of compute providers. In some embodiments, process 1100 can be
executed by a cloud compute marketplace, e.g., in system 1000, Fig. 10. Process 1100
can be implemented on a clearing system 1002 and in other examples can be executed
with or instead of other processes. Process 1100 begins at 1102, with receiving a request
for a compute task by a cloud compute marketplace system. At 1104, conditions for the
execution of the task are identified at 1104. Some conditions can be specified by the
submitter with the request for the compute task. In some examples, conditions can be
specified interactively, and in other examples, a process can be executed to automatically
identified constraints and/or attributes for a received task. Step 1104 can be implemented
as another process called during step 1104. For example, process 600, Fig. 6, discussed in
greater detail below can be executed in whole or in part as part of step 1104. Once any
conditions constraining execution have been identified, the compute task can be
partitioned at 1106 into a plurality of sub-tasks. Various partition processes can be
executed as part of step 1106 as discussed in greater detail below. In some embodiments,
fixed length and/or size partitions can be generated. In other embodiments, partitions can
be generated dynamically. At 1108, an optimal distribution of sub-tasks is determined
based on the identified constraints for execution. Optimal in a cloud compute
marketplace can include at a minimum, any execution that meets any consumer specified
parameters (e.g., price, timing, confidence level, etc.) any compute provider requirements
(size, availability, execution format, etc.) while providing for operational costs of the
cloud compute marketplace. Optimal distribution as used herein describes a solution and
not necessarily the best solution to a given job allocation that meet at least the specified
minimum requirements.

Once the plurality of sub-tasks has been assigned to the compute providers, the
sub-tasks are transmitted at 1110 for execution. In some embodiments, process 1100 can
include an optional step of monitoring the execution of the plurality of sub-tasks.
Monitoring can invoke other processes for re-distributing sub-tasks to further optimize
the execution of compute tasks (e.g., decrease cost, increase confidence level, etc.)
Optional monitoring can include for example execution of process 800, Fig. 8, in whole

or in part. In some other examples, re-distribution determinations can incorporate process

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
20

500 for analyzing switching costs associated with moving a sub-task between compute
providers. Once the sub-tasks have been executed, access to the completed compute task

is provided at 1112.

Example Pricing Model

According to one embodiment, a cloud compute market place can be configured
to execute a pricing engine confi gured to generate pricing for compute resources that can
be provided to consumers in advance, upon submission of a request, and/or on demand.
In some embodiments, a pricing engine is comprised of software executed on hardware
components. In one example, the pricing engine is configured to generate a price for
compute resources based on a reverse-auction model. Further the pricing engine can be
configured to provide for an efficient distribution of work. In one example, the pricing
engine computes, based on the size of the input job and the knowledge it has about
available resources and their individual pricing, a partition of the input job that satisfies
consumer constraints while maximizing provider revenue.

According to one embodiment, the basic idea of the pricing engine model can be
represented with a chart. Shown in Fig. 12 is an example supply curve graph 1200
illustrating available providers 1202 at a given job size. As shown, for a given job size, a
point (x,y) represents a job being completed for cost=x 1210 and duration=y 1212.
Consumer deadline 1204 and budget requirements 1206 appear as horizontal and vertical
lines. Provider combinations appear in the chart as a "supply curve" 1208:

As illustrated in Fig. 12:

o The area below the curve represents cost/time pairings no provider will
supply1214.
o The area above the curve represents cost/time pairings that some combination of

providers will supply 1216.

» The shaded area represents suppliers that meet customer demand 1218.

One should appreciate in light of the present disclosure that this simplified view
applies to an abstract slice of the market, at a fixed job size. In some examples, other

models can be configured to partition and price jobs based on at least one more

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
21

dimension for job size. Additional variables can be implemented to more accurately map
supply and demand: including for example, security, management services, and/or
available applications, among other options. When job size is unknown, the money and
time axes shown in Fig. 12 become rate dimensions relative to cycles (cycles/$,
cycles/time).

The system can provide value by mapping specific consumer job demand to
available provider supply. In some embodiments, the system can be configured to extract
revenue from consumer and provider commissions and from a variety of bulk pricing
deals where resources are acquired up front from providers at a fixed cost and resold for a
higher price. Dashed line 1220 illustrates an example costs incurred by operation and
management of the clearing system. Further line 1220 can be calculated to cover

operational cost and a profit margin for the clearing system.

Example Provider Requirements

According to one embodiment, the system is configured to access cloud compute
providers to obtain real-time pricing information. One example of provider rates and
pricing strategy includes Amazon's spot instance pricing service. Integrating with cloud.
providers may require that they support some programmatic access to price and available
capacity information. In one setting, pricing APIs (Application Protocol Interfaces) are
integrated into common cloud infrastructure software packages to incorporate job
fulfillment into large chunks of the cloud computing market. In some examples, pricing
APIs can be integrated into common cloud infrastructure software packages by building
standardized APIs for the common cloud platform packages according to the present
disclosure. In other examples, the clearing system can be configured to query cloud
compute providers prior to job completion, in conjunction with receiving a job request,
and/or prior to determining an optimal distribution of job partitions that meet user
constraints as some examples.

Fig. 13 illustrates an example component architecture and communication flow.
There are four high-level components in the illustrated example system. A customer 1320
interacts with a cloud compute market places. The customer can access a user interface

over the web made available by a pricing system 1324. The pricing system generates and

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
22

provides a consumer view 1326 to the customer through the user interface 1322. The user
interface is configured to permit the customer to supply a compute job and any known or
desired constraints 1301 for job completion. A pricing engine 1328 is configured to
compute real-time pricing and sub-task breakdown at 1302. The pricing engine makes the
determination of pricing and availability based on real-time data received from compute
providers connected to the pricing system 1324. A provider manager 1330 can be
configured to interact with compute providers, controlling registration of providers,
maintaining real-time pricing and availability information, as well as tracking other
information, including execution format, confidence level for task completion, etc.
Pricing engine 1328 can access provider pricing and availability at 1302A. A request for
pricing and availability can trigger provider manager to query 1302B individual providers
to determine price/availability. Provider manager 1330 can include provider API
translation 1331 configured to manage communication channels with compute providers,
e.g., 1332 and 1334. Each provider can be associated with its own API, e.g., 1335 and
1337 having its own execution format and/or communication protocols.

At 1303 an estimate of price and/or deadline for a submitted task is provider to
the customer in the customer view 1326. If the customer wishes the compute task to be
executed the customer can agree to the price and/or deadline and the job is committed for
execution at 1305. A job manager is configured to manage job information, distributing
sub-tasks, and starting sub-tasks 1306 at the assigned compute providers through
interaction with the provider manager 1330. The provider API translation plugin can
manage individual sub-tasks 1306A, and can provide translation for any sub-task so that
the compute providers 1332 and 1334 receive each sub-task in a compatible execution
format.

One or more of the following high level components are present in various
embodiments of the system. The high level components can be configured to provide one
or more of the elements described:

e Provider Backends:
o interfaces with cloud provider APIs, provides "normalized" pricing and

demand information

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
23

o converts between consumer's work format (e.g., a Hadoop MapReduce
code/data bundle) and cloud providers required format (e.g., xen VM
image running Hadoop).

o modular configuration can allow for new formats and cloud provider
APIs.

o configured to permit third-parties to provide their own (open) translation
logic.

e job Backend:
o configured to manage job information
e Pricing Engine:

o configured to aggregate and manage demand and availability information

for each cloud provider
= Optionally performs operations in real and/or near real time

o given job constraints, configured to calculate satisfactory task breakdown

across providers
e WebUL

o configured to present a web-based user interface

o allows consumers to submit, monitor, and control their work

o allows system support personnel to perform maintenance tasks

o allows providers to monitor and manage their participation in the

marketplace

According to some aspects, job pricing models can be configured to assume that
the compute jobs submitted to it are partitionable, or parallelizable. For example, a job
submitted as a VM image is intended to have multiple instances running in parallel and

the system can be configured to coordinate those instances.

Web Ul View Examples

Illustrated below are 7 example views including: Front Page; Login; Register and
Setup Billing; Submit New job; Review job Estimate; Track jobs; and job

Detail/Management view. Fig. 14 illustrates an example flow between the 7 examples

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
24

views. At 1401 a new customer visits a front page for a cloud compute marketplace. At
1402A existing customers can log in. Alternatively, new customers can register for the
cloud compute marketplace at 1402B. Previously submitted jobs can be tracked at 1407.
If no previously submitted jobs exist, or if a new job is desired a new job can be
submitted at 1403. The cloud compute marketplace can be configured to return an
estimate in time and cost for the submitted job for customer review at 1404. If the
customer accepts the estimate payment can be process and/or authorized at 1405 and the
new job’s execution can be viewed like any other previously submitted job at 1407. Each
job can be viewed in greater detail at 1406, including for example, status of individual
sub-tasks, estimated completion time, confidence level, etc.

These example views and the logic to produce them are configured to be served
by a "UI Controller" component implemented using a popular web-ui framework.
Example frameworks include Ruby on Rails or Django. According to one embodiment,
the job Backend and Provider Backend serve an external data model.

Fig. 15 illustrates an example view provided by the user interface, title submit
new job at 1502. As illustrated there are two ways to submit a new job -- with a fixed size
1504, or with an unlimited size 1506. If the job is a fixed size job, the customer can
specify a size 1508 in terms of virtual machine hours to complete 1510. In some settings,
the system can determine the size of the job automatically based on analysis of the
submitted task. A compute job can be uploaded from a given location specified in the
user interface 1516 by executing an upload operation triggered by display 1518. The
customer can also specify a name for the given job. A deadline 1512 for completing the
job and/or a budget 1514 can also be specified. For unlimited size jobs, a minimum rate
for processing can be specified 1522 and a maximum rent in cost per hour can be
established at 1524.

Based on these inputs, the UI Controller will generate a job request object and
query the pricing engine with it to retrieve a job estimate object in response to selection
of get estimate at 1526. It will then display the review estimate view. The user can review
the estimate before the job will start. In some setting, the user must review the estimate
before a job will start. If the user has not set up billing, or billing information is invalid

(incomplete or expired billing information), an error can be displayed and/or a redirect to

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
25

a billing setup screen can occur. Fig. 22 illustrates an example user interface displayed in
response to an estimate that does not meet specified requirements.

Fig. 16 illustrates an example view of a review estimate 1602 screen. According
to one embodiment, before the job can start, the user must approve an estimate, in the
form of a job estimate object. The job estimate object can be specified by job name 1604,
size 1608, and indicate a source of the job 1606. If the job estimate indicates that
constraints will not be met, the view can be configured to highlight a warning message.
The view can also indicate if the job constraints have been met, e.g., 1607, 1609, 1611,
and 1613. The review estimate view can be configured to reflect start time 1612,
completion time 1614, cost 1616, aggregate rate 1618, average cost 1620, and when the
estimate expires 1622. A job estimate can be configured as a persistent object. Further the
job estimate can be accessed from multiple user interfaces, for example from the Submit
New job view and from the Track jobs view.

If the user approves of the estimate before it expires, the UI Controller will invoke
the job backend to start the job based on the job estimate. An estimate may or may not
meet the constraints set by the user. According to one embodiment, the user can approve
of an unsatisfactory estimate. In some embodiments, approving an estimate and starting a
job authorizes the system to charge the user's account for any work that is completed.

Fig. 17 illustrates an example view of a track jobs screen with heading track jobs
1702. The Track jobs view permits a returning user to see pending estimates 1704 by job
1706, in-progress jobs 1708, and finished jobs 1710. In some embodiments, the user
interface is configured to query the job backend to retrieve job record objects for the
current user and provide any information on existing estimates, current execution, and
completed jobs.

According to one example, the Track jobs view is configured to:
o display unexpired estimates including any one or more of:

o jobname 1706

o jobsize 1712

o budget/rent satisfied 1714

o deadline/rate satisfied 1716

o review link

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

26

» display in-progress job status, as a table with any one or more of the following

columns:

o

o]

o

o

job name 1720

status (running, errors, failed, paused, stopped)

job size 1722

start time 1724

elapsed time

active instances

units of work completed (instance-time, percentage)
amount of budget consumed (absolute), indicating over/under
current estimated completion time

current processing rate (Hz) 1726

current average cost/rent ($/hr) 1728

detail/manage link

» display completed job status, as a table with any one or more of the following

columns:

@)

e}

O

O

job name 1730

status 1732

job size 1734
duration

cost 1740

start time 1736
completion time 1738

detail link

Fig. 18 illustrates an example view of a job detail screen. The job Detail view

includes header 1802 and displays information in a job record, and can include current

status, estimates, and errors interesting to the user (e.g., VM rebooted, VM ran out of disk

space, etc.). According to one embodiment, an in-progress job can be canceled outright at

1804. Already-consumed resources (e.g., instance-time) will be debited from the user's

account. Resource consumption will be rounded to the greatest-common-denominator

unit across all backend providers. This rounding unit can be static. According to one

10

15

WO 2012/027478 PCT/US2011/048977
27

embodiment, compute providers allocate by the hour. Confirmation display 1806 is
triggered upon selection of 1804. Confirmation display can be configured to include
information on incurred expenses 1808 and require confirmation at 1810 to complete
cancellation. According to one embodiment, the system can be configured to maintain a
database of user accounts and billing information. The database can include information

on pending jobs, existing estimates, cancellations, execution history, speed, price etc.

Pricing Engine

According to one embodiment, the pricing engine is responsible for producing a
price and time estimate for an input job, by performing an example process for generating
a job estimate. The example process can include the acts of computing a partition of the
job into multiple subtasks, assigning each subtask to a backend provider (or set of
providers), such that the total time to complete the job and the associated cost are
computed to be within customer constraints.

Pricing Model Example

Given a fixed-size F(size, budget, deadline) pricing model, an example pricing
algorithm can be presented according to two sets of definitions. First, customer-facing
terms, which virtualize provider resources:
processor Capacity (unit: Hz): A physical CPU is measured in terms of the number of
cycles it can complete in a second. A better measure of computation speed is "floating
point operation rate" (FLOPS), but outside of the high performance computing (HPC)

space, the software industry thinks in terms of cycles.

Virtual processor (VP): To allow for consistent measurement across the wide variety of
CPUs made available by compute providers, the system can be expressed using a
canonical virtual CPU, the VP. One VP is equivalent to a 1 GHz single-threaded x86
core.

Virtual Capacity: The processor capacity in Hz of a single VP — for example 1GHz.

job Size (unit: cycles or NVP-hrs): The canonical size of a job is measured by the number

of virtual processor cycles it takes to complete. One way to arrive at the job size in cycles

10

WO 2012/027478 PCT/US2011/048977
28

is to specify the time needed to finish the job on a single network virtual processor (NVP)
(e.g., an NVP-hr).
Next, Provider Facing terms:

Availability (Instances): Providers sell compute resources in terms of machine

instances. These may be virtual or physical, but they are usually virtual.

Instance Multiplier (VPs): Each provider instance performs computation in some
multiple of VPs. For example, a "small" Amazon EC2 single-core instance may be

equivalent of 1 VP, while a 4-core Rackspace instance may be equivalent of 3 VPs.
Slice Term (seconds):

Most providers sell usage of machine instances by the hour. Some providers are

considering billing in 10-minute increments.
Instance Time (seconds):

The amount of time spent running on an actual machine instance. Can be defined in

increments of Slice Term.
Provider Price ($/instance-term):

All major providers currently report prices in $/instance-hr. For example, 1 "Small"
Amazon EC2 single-CPU instance costs $0.085/hr. The smallest Rackspace instance is
$0.015/hr. To normalize across potentially differing lease-terms, internally provider

price will be tracked in terms of the cost of 1 lease term period of 1 instance.

According to one embodiment the system is configured to directly measure CPU
speed with a test job, if the provider doesn't report CPU speed. Additionally, test jobs can
be employed to test reported information. In another embodiment, the pricing model
generates pricing and calculated compliance on the basis that once a CPU is acquired at

given rate for a specified time/rate, it can be used until it is released.

Example Algorithm

According to one example, provided are a single provider and 1 instance
available: raw-time (seconds) = job-size / (instance-multiplier * VP-capacity) job-time

(seconds) = roundup(raw-time, slice) job-cost ($) = job-time * provider-price

10

15

20

WO 2012/027478 PCT/US2011/048977
29

As discussed adding more instances of the same capacity and price decreases the duration
(wall-clock time), and will leave the cost unchanged: raw-time (seconds) = job-size /
(instance-multiplier * VP-capacity) job-time (seconds) = roundup(raw-time, slice-term)
job-duration (seconds) = roundup(job-time / num-instances, slice-term) job-cost (§) =
job-time * provider-price

Introducing more than one provider-price (either by having more than one
provider available, or more than one price offered by a given provider), the job needs to
be split into subtasks. For N providers utilized, there must be at least N subtasks. Each
subtask is processed as in the multiple-CPU case above:

job-duration (hrs) = max(subtask-duration for each subtask) job-cost (§) =
sum(subtask-time * provider-price for each subtask)
The pricing engine produces a subtask-partition P[subtask] = {cycles, provider,
num-instances, provider-price}, such that job-cost(P) < customer-budget and now +
job-duration(P) < deadline.

With few constraints and a small number of partition elements (e.g., 2 compute
providers each with 2 tiers of CPU) there are few enough combinations that a brute-force
search of the partition space will generate a pricing estimate in good time. Different
pricing mechanism can be employed depending on the constraints being analyzed.

According to one embodiment, the pricing engine's main function is configured to
return a job estimate based on a job request produced through the user interface. In one
example, a UI Controller accepts and process input information to generate a job request

object.
One example function employed includes a compute_estimate(jobrequest):

The function is configured to returns -> jobestimate
In one example, the job request structure contains the job size and constraints on
deadline, budget, hourly-cost and minimum speed. Based on this information, the
Pricing Engine can be configured to:
o query each provider for price and availability, including unexpired pending
estimates to prevent conflicts

o compute breakdown of subtasks across providers

10

15

WO 2012/027478 PCT/US2011/048977
30

e build, save, and return a job estimate object, which optionally can include a list

of sub task records (reflecting the portioning of the job into discreet tasks).
Another example function can include forget estimate(jobestimate):

This function permits an end user to cancel a pending estimate. In one example, the

function does nothing if the estimate has expired.

Example job Backend

According to one embodiment, the job Backend tracks in-progress and completed
jobs. The job backend can be configured to manage information needed to interact with
running instances, and can track historical information for support and maintenance.

Example job format

According to one embodiment, jobs are submitted in the form of a packaged linux
virtual machine image. VMWare and Xen are the most common virtualization platforms
in use by compute providers. Both of these platforms accept VMs as, for example,
bootable disk images, and do so either directly or with minimal packaging. VM instances
are configured to have internet access, routed through the system using a software VPN
and/or HTTP proxy. According to one example, the system provides users the ability to
log in to VM instances.

In some settings, machine images are configured to contain the data needed to
perform computation. In one alternative, the machine image includes instruction on
where/how to download the data needed to perform the requested computation.

Other Example Functions

start_job(jobestimate):

Returns -> job record
Starts a job based on an estimate.
e Queue the jobEstimate to Submittedjobs.

o Wait for jobEstimate to be processed and return on success or failure.
cancel _job(job record):

Cancel a running job.

10

15

20

25

WO 2012/027478 PCT/US2011/048977
31

list_ running jobs(User):
Returns -> List of job record objects for in-progress jobs owned by User.
list_finished_jobs(User):

Returns -> List of job record objects for finished jobs owned by User.

According to one aspect, the actual starting a job is not a simple operation. It
depends on:
» whether compute providers can still match the approved estimate
» successfully starting subtasks on each provider specified in the estimate
In order to make this job start consistent, in one embodiment, job-starting is configured to
be serialized on a submitted jobs queue. A job processor task is configured to read from
the submitted jobs queue and do the following for each jobEstimate:
o validate the SubTask partition in the jobEstimate against current pricing
availability. Return an error if the estimate cannot be satisfied.
e create a job record object
o for each sub task record in job estimate:
e translate input job to per-provider job format
o communicate with the provider to create an instance record for this SubTask

e record start_time in job record if all (or enough) subtasks started.

Example Provider Backend

The Provider Backend can be configured to offer the pricing engine a consistent
interface to query provider pricing and availability, and can be further configured to
manage translation interfaces to convert between different job formats and control APIs.
As far as possible, pricing, availability and job status will be realtime through the
provider backend. Caching can be employed, and typically occurs outside of the provider
backend as necessary. The provider backend can be configured to maintain a database of
currently registered providers and their VM and API translation implementations.

Example functions include:

query_availability(provider):

10

15

20

WO 2012/027478 PCT/US2011/048977
32

Returns -> (ttl, meta, price, availability)
translate_vm(provider, in_vm):

Returns -> provider vm

Converts from input VM format to provider VM format.
new_instance(provider, provider_vm):

Returns -> instance record
configured to make a new instance from a VM image. Setup management connections

but do not start the instance.
cancel instance(Instance Record):
configured to tear-down and stop an active instance, regardless of its status.

Fig. 19 illustrates an example object model database diagram.

In some settings, the system is further configured to permit the user to "pause” a
job if the job has unallocated work (i.e., subtasks that have not been pushed to compute
providers). This causes unallocated subtasks to be held until the job is "unpaused". Note
that when a job is unpaused, the remaining work needs to be re-estimated and costs can
change.

In another implementation, the system can be configured to provide per-VM
management granularity. Where the job format allows detailed progress tracking, the
system can combine progress of subtasks into a single progress reading. In one example,
the system can accept bulk data transfer by delivery of physical media, including for
example, HDDs or other mass storage media.

According to one aspect, a computer implemented method for cloud compute
pricing is provided. The method comprises acts of receiving over a communication
network a user request to complete a computer based task, determining any user defined
condition éonstraining the completion of the task, partitioning, on a computer system, the
task into one or more sub-tasks, calculating, on the computer system, assignment of the
one or more sub-tasks to one or more compute providers, transmitting, over the
communication network, a request to complete each sub-task to a respective provider,

and providing access, over the communication network, to the user to the completed task

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
33

within any user defined condition. According to one embodiment, the method further
comprises an act of accepting a completed sub-task from the respective provider.

According to one embodiment, the method further comprises an act of providing
access, over the communication network, to the user to a running task. According to one
embodiment, the method further comprises an act of translating as necessary the
computer based task requested by the user into a format supported by the respective
provider. According to one embodiment, the computer based task can be automatically
partitioned into one or more sub-tasks. According to one embodiment, the act of
calculating includes an act of determining based on published provider compute
availability a distribution of the sub-tasks that meets any user defined condition.

According to one embodiment, the act of calculating includes an act of
determining based on published provider compute availability a distribution of the sub-
tasks that meets at least one of any user defined condition, other desired characteristics of
the provider, and any combination thereof. According to one embodiment, the act of
determining the distribution includes an act of maximizing a number of providers
assigned. According to one embodiment, the act of determining the distribution includes .
an act of minimizing a number of providers assigned. According to one embodiment, the
act of determining the distribution includes an act of minimizing a time to complete the
computer based task. According to one embodiment, the act of determining the
distribution includes an act of minimizing a cost to complete the computer based task.
According to one embodiment, the act of determining the distribution includes an act of
matching a plurality of desired characteristics of the provider to desired characteristics of
the computer based task.

According to one aspect, a computer implemented method for including private
compute resources in a public cloud compute market is provided. The method comprises
acts of creating, on a host computer system, a computing environment for performing one
or more computer based tasks, limiting the parts of the computer system the environment
is configured to use to perform at least one task, registering with a task broker, over a
communication network, the availability of the environment to perform tasks, receiving,
over the communication network, a request to complete a computer based task,

determining whether the task can be performed within the limits of the environment,

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
34

completing, in the environment, the requested task, providing access, over the
communication network, to the requestor to the completed task. According to one
embodiment, the method further comprises the use of a virtual machine to create the
computing environment. According to one embodiment, the method further comprises an
act of deregistering an environment that is no longer available for use. According to one
embodiment, the method further comprises an act of destroying an environment.

According to one embodiment, the act of creating an environment includes an act
of creating a new network name. According to one embodiment, the act of limiting use of
the computer system by the created environment includes an act of limiting storage
consumption. According to one embodiment, the act of limiting use includes an act of
limiting CPU (processor) consumption. According to one embodiment, the act of limiting
use includes an act of limiting memory consumption. According to one embodiment, the
act of limiting use includes an act of limiting bandwidth consumption on a
communication network. According to one embodiment, the act of limiting use includes
an act of keeping data private between environment and host. According to one
embodiment, the act of keeping data private includes an act of preventing tasks in the
environment from accessing host data. According to one embodiment, the act of keeping
data private includes an act of preventing the host from accessing data in the
environment. According to one embodiment, the act of registering availability includes
an act of describing characteristics of the environment. According to one embodiment,
the act of registering availability includes establishing a private communications channel
with the task broker.

According to one aspect, a system for providing cloud compute resources is
provided. The system comprises a communication component configured to receive a
user request to complete a computer based task, a management component configured to
determine any user defined condition constraining the completion of the task, a execution
component configured to partition the task into one or more sub-tasks, a distribution
component configured to assign the one or more sub-tasks to one or more compute
providers, wherein the communication component is further configured to transmit a
request to complete each sub-task to a respective provider, and provide access to the user

to the completed task within any user defined condition.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
35

According to various aspects cloud compute marketplaces can incorporate a
number of real-world components and involves a number of actors accessing the various
components. In some embodiments, the teachings discussed herein are intended to
encompass at least some of the following components and/or actors: an exchange, also
referred to as a clearing system, to facilitate purchase, assignment, clearing, transfer and
tracking of resources made available in a public or private cloud among a plurality of
resource consumers and resource providers; a resource consumer, also referred to as a
consumer, whether the consumer is human or a computer system, that submits jobs to the
exchange — a typical consumer uses resources offered through the exchange or otherwise
to execute jobs; a resource provider (also referred to as a provider) can be an agent that
offers resources for use by and sale to consumers - the resources available from a
provider may be offered for sale by a human or automatically by a computer system(s)
and can be sold directly to consumer, via the exchange, or through another connection;
and resource (also referred to as a compute resource) which can be any physical or virtual
system, service, or process offered for use, individually or in bulk on the public Internet
or in a private computing environment. Resource providers may authorize the exchange
to advertise their identities or brands with resources, or may require the exchange to offer
their resources with no brand (also referred to as white-label).

In some embodiments, resources include, but are not limited to, usage of a virtual
machine for a specified period of time (e.g., one hour), or a specified amount of storage
(e.g., a 10GB volume). A resource can also include a CPU from a particular architecture
family such as an Intel x86 compatible CPU, a 64-bit Intel x86 compatible CPU, an ARM
compatible CPU, a graphics processing unit (GPU), or a vector processor, or another type
of special-purpose processing unit. Other examples of resources include a physical or
virtual network subject to a variety of constraints including but not limited to bandwidth
and latency constraints. A concrete example might include virtual network supplying 10
Gbps bandwidth at 10ms latency. Still other examples of resources include firewalls,
routers, network address translators, virtual private network endpoints, or an e-mail
scanner capable of processing 100 emails and scanning for viruses, or 10 Gbps of load
balancer bandwidth. Resources can also be aggregates -- that is, a bundle of other

resources.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
36

In one embodiment, a consumer can interact with the exchange in terms of a job.
In one embodiment, a job can be a networked collection of Agents, Tasks, resources and
data which comprises a specification of constraints on attributes of resources and data to
be deployed to those resources. In several aspects, constraints are expressed over one or
more attributes and encompass hard limits, optimization and improvement targets, and
scaling factors. In one example, a job comprises a specification for minimums each of 5
2GHz compute nodes, 2 3GHz compute nodes, 100TB of block storage with 1Gbps
connectivity to each compute node, 2 load balancer sets, 2 firewall rules and 100GB of
Internet bandwidth that must be provisioned for at most $1000/month; and data of 2
virtual machine images and a configuration file.

In another embodiment, the exchange responds to the consumer’s request to start
a job with an estimate for an instance of the job including the actual cost, the completion
time if calculable, excess or shortfall capacity, and attributes of the resources that will be
allocated to the job instance. An attribute of a resource can be an advertised, measured or
manually-assigned Characteristic. In some examples, an attribute could be CPU speed,
geographic location, security certification, allowed input format, API protocol,
interoperabilty standards adherence, source of randomness, or service redundancy among
other options. In one example, an attribute of a resource can be the format of data that is
configured to contain, process, or otherwise interact with a given job request.

In one embodiment, the exchange constructs a schedule that records the allocation
of resources to a job instance. The allocation can specify a plurality of providers that each
execute a portion of the job instance. A job or job instance can be partitioned into a
plurality of sub-tasks so that each sub-task can be match to one or more providers. The
exchange can be configured to deploy executable components of a job instance or job
sub-tasks using a job runner. In one embodiment, the exchange translates a job as
supplied by a consumer into the format supported by the scheduled resources. The
translated job or job instance is then delivered to the provider for execution. A job
instance can produce results and instrumentation information that it reports back to the
exchange. In one example, the results can be returned from a plurality of providers to the

job runner which deployed the executable components of the job instance.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
37

Figs. 1-3 show example processes that can be used separately or together in an
overall flow for a cloud compute marketplace or exchange. The exchange is configured to
facilitate purchase, assignment, clearing, transfer, and tracking of resources made
available as public or private cloud resources. Resources represent the hardware and/or
software, real or virtual, for executing compute tasks submitted by consumers to the
exchange and can be hosted among a plurality of resource providers connected to the
exchange.

Shown in Fig. 1 is an example of a process 100 for providing consumer
interaction with a cloud compute marketplace. The consumer presents a job request with
constraints to the Exchange and the Exchange responds with an estimate (steps 102-104).
The Exchange then allocates Resources to the job, and starts it (steps 106-108). As the
job runs, it is monitored against the supplied constraints, and it may be altered by an
authorized actor (steps 110-112). The exchange can be configured to partition jobs into a
plurality of job instances. In some embodiments, job instances are each allocated
resources across available providers. When the job instance completes or it is stopped,
the Exchange releases Resources allocated to the job (114-116).

Shown in Fig. 2 is an example process 200 for managing resource provider
interaction with a cloud compute marketplace, and specifically an exchange. As shown
process 200, a resource provider can offer a public or private cloud resource to an
exchange (202-204), can negotiate terms (206-212), and the exchange can discover the
resource’s attributes (214-218). Shown in Fig. 3, is an example process for maintaining
the cloud compute marketplace. As shown in process 300, the exchange can conduct
maintenance operations including establishing/refreshing its provider information (302-
308) and improving its allocation and analysis processes.

Returning to Fig. 1, process 100 illustrates consumer interaction with a cloud
compute marketplace. In some embodiments, the cloud compute marketplace includes a
central exchange system or exchange. As shown, at step 102, the consumer submits a job
request to the exchange. At 104, the exchange analyzes the job request to determine
constraints and objectives for running the job, computes an estimate for executing the job
and presents the estimate to the consumer. At 106, the consumer chooses to accept the

estimate, optionally if a consumer rejects an estimate process 100 can be re-executed or

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
38

terminated. At 108, the exchange provisions resources for the job and the job starts. At
110, the exchange, consumer, or other party monitors the job for performance,
correctness, or any other measure. At 112, either as a result of monitoring in 110, or
otherwise, the job can be altered. In one example, monitoring processes can be running
during job execution that identify execution improvements resulting from re-allocation
provider resources to the job. In another example, a consumer can access a user interface
to alter the running job, change job constraints, or modify any characteristic of the
executing job. In one example, process 100 can terminate at 114 if the consumer or
another party stops the job before it completes on its own at 116 (yes). Alternatively if
the job completes on its own 116(yes) process 100 can also terminate at 114,

Shown in Fig. 23 is an exemplary process 2300 for a consumer submitting a job
request and receiving an estimate for executing the job. In some embodiments, process
2300 can be executed as part of a larger process, for example, process 2300 can be
invoked in steps 102-104 of process 100. As shown, at step 2302, a consumer submits a
new job request, the job request include the compute task the clients wishes to be
executed as a job. At 2304, the exchange analyzes the job submitted as part of the job
request to produce job specification constraints. The job specification constraints can
identify whatever condition(s) the consumer wishes to impose on the execution of the
job. For example, the consumer may identify a maximum cost that must be met (i.e. not
exceed) before execution can begin. In addition or in some examples instead of customer
identification of constraints, the job specification constraints can be extrapolated by the
exchange from the consumer-provided job request and/or from performance data
associated with the job. Job analysis at 2304 can be configured to invoke other processes

for analyzing a given job. In one example, process 600 can be executed, in whole or in

part, as part of 2304. At 2306, the exchange determines a candidate set R ={Ry,.R,}
of provider resources capable of executing the job based on iﬁformation associated with
resource providers. At 2308, the exchange estimates any translation cost of the job. The
translation costs for the job can be determined based on an execution format of the
submitted job and an execution format required by the resources that are allocated to
execute the job. Translation can be required in response to job submission, if the job as

submitted does not meet an execution format dictated by the resources that are allocated

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
39

to execute the job. The exchange is configured to translate the job and/or any job

partitions into the formats supported by R, as necessary. Step 2308 can be configured to
execute other processes for estimating translation costs prior and/or as part of any
translation. In some examples, process 400, Fig. 4, for translating jobs between provider
formats and/or process 500, Fig. 5, for analyzing switching costs associated with moving
a sub-task between compute providers can be executed in whole or in part as part of step
2308. At 2310, the exchange calculates an allocation schedule of provider resources .
The allocation schedule matches the submitted job and/or partitions of the submitted job
to resources that execute the submitted job. Step 2310 can also include an act of issuing
provider reservations to insure that any resource on the allocation schedule is reserved for
the execution of the submitted job. In some embodiments, a resource provider can be
configured to require reservation of resources in order to guarantee execution at a given
price or any other known constraint. At 2312, the estimate is offered to the consumer. In
some examples, the consumer can view the estimate in a user interface display on a host
computer system. In other examples, a customer can receive notifications through other
electronic communication channels containing the details of the estimate.

Shown in Fig. 24, is an exemplary process 2400 for monitoring and/or altering an
execution of a job allocated through an exchange. According to some embodiments,
process 2400 can be invoked as part of other processed executed on an exchange. In one
example, process 2400 can be executed, in whole or in part, as part of process 100. In
another example, process 2400 can be executed in whole or in part, as part of any of steps
104, 110, and 112 of process 100. Returning to Fig. 24, at step 2402, a running job is
altered, for example, by the consumer who submitted it, by the exchange, or by an
authorized third party. At 2404, the exchange checks whether the alteration in step 2402
includes new specific constraints sufficient to carry out an allocation. In some examples,
constraints are sufficiently defined if the exchange can solve, at least approximately, an
optimization function for allocating resources to the job’s execution. In some examples,
constraints can be identified as sufficiently defined if a minimum set of available
constraints are specified. In other examples, constraints can be interpreted from the job
itself, as discussed below. If the constraints are not sufficiently defined 2404 (no), at

2406, the exchange records monitoring data about the running job instance. Monitoring

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
40

data may be collected by the exchange in the course of its operation, by the consumer, by
the provider(s) hosting the job instance, or by a third party. At 2408, the exchange
accesses any monitoring and/or any information obtained from analyzing the job and
computes job constraints that are sufficiently defined to perform a job allocation. At
2410, the exchange determines candidate providers based on the determination of the job
allocation. In some examples, step 2410 can be executed as discussed in step 2306, Fig.
23. Returning to Fig. 24, if at 2404, any new constraints provided are sufficient to
complete a job allocation, process 2400 can continue at 2410.

Steps 2402-2410 can be repetitively executed based on monitoring of an
execution of a job that automatically triggers alteration in the running job. For example,
Fig. 6 illustrates an example process 600 for analyzing a job to produce a job
specification that can be used in conjunction with steps 2402-2410. Additionally, the
operations discussed in greater detail with respect to process 600 can be used as part of
the execution of steps 2402-2410. Further, shown in Fig. 7 is an example process 700 for
re-allocating resources assigned to a job that can trigger step 2402 of process 2400. In
some examples, the functions and operation discussed with respect to process 700 can be
employed as part of process 2400.

At 2412, the exchange estimates any translation cost. In some examples, 2412 can
be executed as described in step 2308 of process 2300. Further step 2412 can be
configured to invoke other processes for estimating translation costs. In some examples,
process 400, Fig. 4, and process 500, Fig. 5 can be executed in whole or in part as part of
step 2412,

At 2414, the exchange estimates the switching cost associated with moving the
job, if the job is already running and/or allocated. Step 2414 can be configured to invoke
other processes for estimating a switching cost associated with moving a job from one
provider to another provider. In some embodiments, step 2414 can executed, in whole or
in part, process 500, for determining switching and/or translation costs. At 2415, the
exchange calculates an allocation schedule for the job where the job and/or any job sub-
task is assigned to a resource. The allocation schedule can be determined from any
constraints identified in 2408 or 2404. Further allocation schedule is configured to

optimize the allocation based on costs determined from 2410-2414. The allocation can

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
41

include and/or be used to produces an estimate for execution of the altered job. At 2416,
the exchange determines whether the estimate can be automatically applied. The
exchange can employ and one or more of the following automatic application conditions:
1. The consumer specified constraints in the original job submission or any altered
constraints identified at 2404 or 2408, and the new estimate (2415) continues to
meet those constraints.
2. The condition from the previous example is true, and the consumer has supplied a

sufficient funding source, for example, where the cost of execution has increased.

In one embodiment, at 2418, the exchange offers the estimate to the consumer if the
estimate is not automatically acceptable 2416 (no). At 2420, the exchange automatically
accepts the estimate if allowed 2416 (yes).

Shown in Fig. 25 is an exemplary process 2500 for processing an estimate and
executing a job. At 2502, the exchange determines whether it can automatically accept an
estimate that has been constructed (e.g., as in 2416 of process 2400). At 2504, the
exchange offers the estimate to the consumer if the estimate is not automatically
acceptable 2502 (no). At 2506, the consumer chooses whether to accept the estimate. At
2508, the exchange discards the job réquest if the consumer rejects the estimate 2506
(no). At 2510, the exchange starts committing execution of the estimate by provisioning
resources if the estimate is approved 2506 (yes) or 2502 (yes) automatically accepted. In
one embodiment, provisioning resources involves firmly assigning, leasing, subleasing,
or otherwise acquiring a provider-offered resource for use by any job instance. At 2512,
the exchange continues by translating the job into the provisioned resource formats.
Additional operations and functions that can be employed as part of or in conjunction
with step 2512 are described in greater detail with respect to process 400. At 2514, the
exchange starts the job instance on the provisioned resources. At 2516, the running job
instance submits its own performance data to the exchange.

In some examples, an allocated resource provider can be configured to monitor
job execution and report back to the exchange. In other examples, an allocated job can be
delivered for execution with executable monitoring procedures. In one example,

executable instrumentation is bundled with a job configured monitor an executing job.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
42

The instrumentation is executed in conjunction with the job and performance metrics can
be communicated to the exchange by the instrumentation. In some embodiments, the
exchange can request information from the instrumentation. Further exemplary detail on
submitting job performance data via instrumentation and the actions the exchange or
consumer may take is described with respect to process 700. At 2518, the consumer may
stop or pause the job instance before it completes on its own. At 2520, if the job instance
was not artificially stopped 2518 (no), the job instance completes, either in success or
failure, and returns results to the exchange at 2520. At 2522, the exchange optionally
converts the results from 2520 into the consumer’s requested format. At 2524, after the
job stops on its own or it is stopped by the consumer, the exchange releases the resources
allocated to the job instance. At 2526, after a job instance completes (2524) or is
discarded (2508), the exchange may perform the optional step of archiving information
about the job instance.

In one embodiment, the consumer can pause the job instance, e.g., at 2518 (yes).
When the consumer resumes the job instance (not shown), the exchange must re-calculate
an allocation schedule to restart the job instance, repeating process 2500. If a job instance
is paused for too long a period, the exchange can treat the job instance as completed and

follow steps 2524-2526.

Safely and Securely Providing Resources to the Exchange

According to various aspects, an operator of a private collection of cloud
computers resells excess capacity using a cloud compute marketplace. Resellers of
compute capacity may require an adequately trusted, sandboxed environment in order to
protect their compute resources. “Sandboxing” means ensuring that a task running on a
particular hardware unit cannot interfere with or read information belonging to another
unrelated task. Sandboxing promotes trust between the private cloud operator and
consﬁmers of the excess capacity. This encourages the cloud operator to monetize excess
capacity, and alleviate consumers’ worries about the theft of code or other data. The
sandboxed environment protects consumers from one another and further protects the

private cloud operator's infrastructure, including compute nodes, networks, and storage,

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
43

from malicious public cloud users who have bought excess capacity and launched jobs
into a portion of the private cloud.

In one embodiment, the cloud compute marketplace or exchange includes an
implementation of a trusted sandbox for resellers of cloud capacity. Various
embodiments may include one of several primitives that enhance the trustworthiness of
the system implementing the sandbox, including without limitation security restrictions,
monitoring, logging or auditing, non-repudiation, or prioritization based on ownership or
importance. One aspect of the sandboxed environment is a subsystem that mediates
access to physical hardware. This subsystem may do so using one or more known
existing techniques such as virtual machines, virtualized storage, or virtualized
networking. Virtualized networking technologies that can be used with a trusted sandbox
platform include virtual LAN (VLAN) tagging, virtual private networks (VPNs) to
implement network privacy, firewalls, load balancers, and/or ARP spoof protection,
among other examples.

In one implementation of a trusted sandbox, a consumer of private cloud capacity
is allocated a private set of virtual machines, storage, or virtual network segments.
Consumers’ jobs are partitioned based on the attributes and/or constraints for the
respective job. The partitioned jobs can be made inaccessible to any other consumer
regarding of the provider or resource on which the job is executed. A private cloud
operator's own jobs can also be subject to the same constraints. In one example, the
private cloud operator’s own jobs are run in the same manner as those of any other
consumer. In embodiments where auditing is employed, the private cloud operator also
audits the actions of consumers’ jobs. Such an audit trail may be used for computing
billing information to be used internally by the private cloud provider. In some settings,
the audit trail can be sent to the customer and/or exchange for payment processing. An
audit trail also allows the provider to enforce security policies and determine if any
violation of the security policy has occurred. The audit trail can be used to assign blame
for anomalous or malicious behavior by any jobs. Various embodiments are configured to
include an audit trail that records all activity on any system external to the resource

performing the computations defined by the jobs.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
44

In some cases, efficient use of cloud resources can include multi-tenancy:
allowing jobs from different consumers to execute on the same Resources. An
embodiment including multi-tenancy includes partitions of a submitted job, wherein the
data and configuration for the job is partitioned into sub-tasks, and each sub-task can be
executed as its own job instance. Multi-tenancy may be implemented not only at the
hardware level, but also at the software or virtual machine level, which would also be
incorporated into an embodiment of the invention. Multi-tenancy need not involve
executing jobs from different consumers on the same resource simultaneously. Tearing
down and allocating a new virtual machine at the provider level may result in significant
expense due to the pricing regime of a cloud provider; the time, storage, network
bandwidth, or CPU required; or because individual tasks to be run are small relative to
the setup and teardown times of the top-level virtualized environment. In other words, a
trusted sandbox might allocate a set of top-level virtual machines from a cloud provider,
and then optimize or otherwise improve utilization of any sandbox jobs allocated to those
resources by allocating and controlling one or more nested virtual machines within those
top-level virtual machines. In one example, a virtual machine resource V is léased from a
provider for 1 month, and the exchange has started a 2 week long job A onit. If V were
released after A completes, there would be 2 weeks of unused (but paid for) time on V.

A more efficient implementation allows a 2 week partition of a second job B to securely
run on V for the remaining 2 weeks of lease after job A 1s done.

In one embodiment, the exchange is configured to secure tasks with existing
operating system (OS) security functionality. In some embodiments, allocating tasks on a
particular virtual machine is configured to ensure that any task requiring isolation be run
by a separate user registered with the OS kernel. Requiring separate users registered with
the OS kernel permits mediating access to physical and virtual resources on any hardware
being used to execute a job and/or sub-tasks. In another embodiment, an agent can be
configured to move sensitive data onto a host from a secure repository. Sensitive data can
be stored in files with access granted only to the particular user intended to run the task.
The original data or results can be removed to a secure repository and/or destroyed after a

task completes.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
45

Another embodiment of the invention secures tasks using nested virtual machines.
A host providing compute resources can be configured to execute virtual machine
technology, encapsulating each task within its own private virtual machine, to provide
security and isolation. In one embodiment, the host itself may run virtual machines for
each consumer or for each task. A nested virtual machine can be configured to take
advantage of specific features of a host virtual machine in which it is nested. Further,
nested virtual machines can be configured to utilize hardware acceleration to improve
performance or may rely solely on the emulated hardware.

In another embodiment, a managed runtime system enforces security and isolates
tasks. In this embodiment, a host may run user jobs or individual tasks in a managed
runtime environment such as a Java Virtual Machine (JVM), Perl, Python, Ruby, or other
scripted language interpreter. The managed runtime environment can be configured to
provide various aspects of sandboxing as described above.

Another embodiment is configured to provide software fault isolation. Software
fault isolation can be configured to enforce security and sandboxing between mutually
distrustful user tasks. In one implementation, software fault isolation techniques are
executed to rewrite client code before execution. Thus, the system can insure that the
client code is safe to execute on any hardware. An example of a known process for
software fault isolation is discussed in “Evaluating SFI for a CISC Architecture,” by
Stephen McCamant and Greg Morrisett, published in15th USENIX Security Symposium,
(Vancouver, BC, Canada), August 2-4, 2006, incorporated herein by reference.

Various embodiments enable private cloud operators to advertise excess capacity
via the exchange to consumers of cloud resources using the exchange to satisfy job
request, without concern that consumers will compromise the information or tasks of
other consumers or the private cloud operator.

Shown in Fig. 2, is an exemplary process 200 for managing provider interaction
with an exchange. At step 202, a provider installs sandboxing software provided by the
exchange. The sandboxing software partitions the operator’s cloud environment into a
private partition and a public partition. At 204, the provider publishes the resources to the
exchange, choosing to do so with his brand or without a brand (i.e. “white-box™).

Identification of a brand includes identifying the source of the compute resource being

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
46

offered, whereas providing resources without branding permits the supplied resource to
be anonymous. Publication of the resource can optionally include definition of any
restrictions on execution. Further, the provider may provide information on capacity,
availability, and reliability, among other options. At 206, the exchange optionally
discovers attributes (e.g., capacity, availability, and reliability) of the offered resources
automatically. The exchange can be configured to discover attributes of the offered
resources beyond the information supplied by the provider at 204. In some examples, the
exchange can be configured to execute benchmarking jobs on the provider’s resources to
determine any attributes. In some embodiments, the exchange can employ the sandboxing
software itself, benchmark programs, monitoring processes, or other techniques to assess
the capacity and performance of the resources offered. In some other examples, the
exchange can be configured to query publically accessible information about the provider
to determine a provider’s attributes. At 208, on the basis of these metrics, the exchange
and provider agree on a pricing scheme.

In some embodiments, the exchange suggests a pricing scheme to the provider
which the provider can accept or not. In some examples, the provider can choose to
advertise the pricing scheme through the exchange or not. For instance, the provider may
instead choose to shut down a portion of its public partition rather than run it at a loss or
low marginal value. In other embodiments, the provider can advertise the capacity to
consumer accessing the exchange and allow the market to determine a price. In some
examples, a provider can set a reserve price. In yet other embodiments, the provider can
advertise the capacity in the exchange at a price set directly by the provider. At step 210,
the provider and exchange agree on a commission to compensate the exchange, which
may be fixed, tiered, a percentage of gross, or computed according to a specialized
formula as agreed by the parties, for any combination of one or more of the following
activities:

¢ Providing the sandboxing software to safely partition the providers
‘resources for resale

e Determining a pricing scheme on the basis of performance, capacity, and
market prices seen in the exchange for similar resources

o Advertising capacity in the exchange

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
47

e Allowing the provider to set a specific price for its resources

e For any actual transactions between consumers and the provider whether
via the exchange or otherwise

e For any other benefit the provider or exchange realizes from the other

In one embodiment, at step 212, both exchange and provider decide whether to
agree on the terms established in 206-210. If agreement is not reached 212 (no), the
provider may return to step 204. At 214, the exchange records the resource as Available
if an agreement is reached 212 (yes), along with its pricing scheme and attributes as
evaluated in steps 206-210.

At 216, when the provider wishes to reclaim its public or private resources for its
own use or otherwise remove the resources from the exchange, the provider deregisters
some or all of its advertised resources with the exchange. The provider can then return
any sandboxed private resources it had advertised through the exchange to the common
pool of private resources in a private partition.

In some embodiments, a provider may alter resources attributes, pricing, or other
terms agreed upon joining the exchange at 218. Process 200 continues from 218 at 206
and the provider and exchange can again reach agreement or not be repeating steps 206-

212.

White-Label Reselling of Excess Capacity

In one aspect, the seller of cloud computing resources is permitted to sell excess
computing capacity at prices lower than published on a provider site. The provider may
wish to do this for many reasons, for example, maintaining a higher published price point
associated with a premium product, which could discourage existing clients from
obtaining the lower prices, limit revelation of information about provider capacity or
usage, or diluting the value of the provider’s brand.

In one embodiment, a party with excess cloud computing resources transmits
information to the cloud compute market place system describing the available resources
of the provider (e.g., CPU, Memory, Bandwidth, capacity, availability, min. price, etc.).
This transmission can include information about at least one important characteristic of

the resources, for example, origin, price, CPU speed, storage, bandwidth, or system

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
48

architecture. The system then considers these resources as available when optimally
allocating consumers’ jobs to resources, including any applicable translation or relocation
costs. In some embodiments, the system can withhold information about the at least one
important characteristic of the resources from any public disclosure of available
resources. The system can also withhold such information from any disclosure to the
consumer if the consumer does not require that information to start, run, and receive the
completed job.

In another embodiment, providers selling excess capacity who wish to keep their
identities secret may request that the system limit allocations of jobs to it to include only
jobs with certain characteristics that cannot reveal information about the provider. The
cloud compute marketplace system and/or the providers’ infrastructure can be configured
to enforce software and/or hardware based constraints on running jobs to prevent jobs
from communicating information back to the consumer. For example, these jobs might be
run in an environment that prohibits outbound network access. In one example, the
provider can keep its identity secret. In some examples, the provider information
submitted to the exchange indicates it only permits the running of virtual machines with
embedded storage and no jobs that require outbound network access.

In one example, the system can offer these resources as “CPU Only” resources to
consumers, who would be required to design their jobs such that each job is a virtual
machine with one or more of the following characteristics:

e The job’s preliminary state includes all data required for the computation

e The job is permitted to use data available from a limited set of data
libraries assumed to be accessible to it without general network access

e The job is given access to a source of trustworthy random data

e The job performs any long-term storage or records any intermediate states
only on storage embedded in the job’s virtual machine definition

e The job is designed to terminate and record any output or errors to the
virtual machine definition

e The job is programmed to signal to the system or the provider if and when
it terminates, so that its output may be collected and returned to the

consumer quickly

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
49

¢ The job is programmed to accept a request to suspend processing early, in
which case the job records its intermediate state in its virtual machine
definition

e The job is programmed to resume processing from a recorded intermediate
state

In some implementations, an additional advantage of supporting such jobs, which
may be useful in applications such as cryptographic computations or cryptanalysis, data
combing, or scientific computing, is that they are more trustworthy to run on providers’
infrastructure and require significantly less overhead to support in a trusted sandbox
setting, as described in herein.

Shown in Fig. 3, is an exemplary process 300 for maintaining the exchange.

At step 302, the exchange queries a known set of providers to determine availability of
resources. In some implementations, the exchange is configured to establish real-time
resource availability. The set of providers can be established through past or present
participation in the exchange or otherwise. In one embodiment, the exchange queries a
provider that has not ever offered resources to the exchange in order to include that
provider’s resources. In one example, the exchange is configured to indentify providers
through internet searching. The exchange can direct queries to any identified provider. In
other examples, non-participating providers can be recommended to the exchange.

In some embodiments, publicly offered resources can be resold without the
express consent of a provider. At 304, the exchange identifies the formats supported by
the provider’s available resources and determines the available translation strategies that
can convert incoming jobs to those formats. At 306, the exchange discovers any other
attributes of the provider resource in order to characterize the provider resource. For
example, the exchange may have obtained attributes for a given resource during a
registraﬁon process, or as part of execution of process for managing provider interaction
with the exchange. In one example, attributes for a given provider can be obtain during
execution of process 200 at 206-210. Returning to Fig. 3, at 308 the exchange stores any
attributes for the provider and the provider’s resources. The attributes can include pricing
information, availability, execution format, reliability, among other options. In one

embodiment, the exchange can be configured to analyze the stored data to improve job

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
50

analysis. The exchange can be configured to execute various functions to analyze
submitted jobs. In one example, process 600 described in greater detail below, may
access the stored data to augment job analysis (e.g., at step 622). Data stored on providers
and provider resource can also be used in re-evaluation of executing jobs. In one
example, exemplary process 700, Fig. 7 can access attribute information stored in a
provider database as part of a process for re-evaluating executing jobs, discussed in
greater detail below.

The exchange can also be configured to use the data stored in the provider
database to improve job and/or sub-task allocation. In one example, data stored at 308
can be augmented with information derived from other sources. The exchange can be
configured to query external sources, external providers, and store additional information
used to improve job allocation functions. Job allocation can be improved by continually
selecting better allocation algorithms. The exchange can be configured to simulate
individual algorithms’ results on historic resource and job data which can be stored in a
provider database. In one embodiment, the exchange is configured to maintain an
inventory of resources purchased or reserved from providers asynchronously from

consumer demand in order to hedge against future limited supply.

Optimal Allocation of Cloud resources

According to one aspect, the cloud marketplace or exchange is configured to
allocate cloud resources optimally according to predefined objectives and constraints.
Optimal allocation in a cloud compute marketplace can include at a minimum, any
execution that meets any consumer specified parameters (e.g., price, timing, confidence
level, etc.), any compute provider requirements (size, availability, execution format, etc.)
while providing for operational costs of the cloud compute marketplace. Optimal
allocation/distribution as used herein describes a solution and not necessarily the best
solution to a given job allocation that meets at least the specified minimum requirements.
Indeed, various functions and processes discussed herein allow the exchange to improve
upon given allocation algorithms, using, for example, historic allocations to train existing
algorithms, and to identify algorithms with greater utility. There are known processes for

allocations of cloud resources in single cloud platform environments. Single cloud

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
51

environments operate within a known execution format, allowing optimizations to be
performed across all provider resources without concern for an execution format. Indeed
conventional works assume a cloud compute platform that can execute any job,
regardless of how it is received, as discussed in Garg, S. K. (2010), “Meta scheduling for
market-oriented grid and utility computing,” published PhD thesis in Engineering -
Computer Science and Software Engineering, The University of Melbourne. Another
One existing work, by MofBmann, Stéf3er, et al, titled “A Combinatorial Exchange for
Complex Grid Services”, published in Economic Models and Algorithms for Distributed
Systems by Birkhé&user Basel 2010, describes various methods to perform cloud resource
allocation in a single cloud platform, and these known single platform optimizations can
be employed in conjunction with the cloud compute marketplace as discussed herein.

According to various embodiments, multi-platform optimization of resource
allocation to cloud resources is discussed. In some embodiments, a centralized system is
configured to calculate the value of managing the allocation and is further configured to
compensate the operator of the system by incorporating that value into the determination
of an optimal distribution. In some embodiments, the centralized system can be the
exchange configured to receive requests from compute consumers and to allocate the
requests to connected providers. Further embodiments are configured to explicitly
calculate and consider the costs of translation or relocation of jobs during the
optimization. Some other embodiments include resource utilization improvement
processing that incorporates translation costs, and/or relocation costs of jobs/tasks into
allocation determinations. Various embodiments can combine translation cost analysis,
relocation costs analysis, and management costs analysis in order to determine job
allocation. In some examples, dynamic monitoring and optimization disclosed can be
used improver single platform cloud compute systems.

According to one embodiment, a cloud compute marketplace can be configured to
execute a process in which a central system accepts a set of constraints about one or more
compute jobs and determines a set of available resources and one or more characteristics
for the resources, and then computes an allocation of jobs across the resources according
to a predefined objective function. This allocation may be optimal according to the

selected (usually user-defined) objective function, or it may be merely an approximation

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
52

that the consumer may or may not accept. Optimal again refers to a solution meeting
minimum requirements, and not necessarily the best solution to the requirements.
Discovering the most optimally efficient allocation in many cases is computationally
infeasible, thus the system can be configured to approximate a solution for given
problem.

In one embodiment of the invention, the central system can be configured to
represent the optimization problem as a linear program (LP) or mixed-integer program
(MIP). In this setting, the system translates the constraints about the one or more compute
jobs and the information about available resources into numerical values, and then
defines an objective function over these values. The optimization of this objective
function yields a solution to the problem and thereby a (possibly approximately) optimal
allocation of resources to the compute jobs that satisfies the constraints. In this setting,
the system can then send this definition of the problem to existing solvers such as ILOG
CPLEX, Gurobi, Analytica, or others, and translate the results from the optimizer into an

efficient allocation of jobs across resources.

Optimized Autoscaling for Long-Running/Variable-Size jobs

According to another aspect, when an input job has a fixed size -- which can
include including readily computable input and output sizes and intermediate resource
requirements -- various embodiments are configured to compute an allocation of
resources that minimizes cost, completion time, or an arbitrary objective function defined
on any one or more of cost, completion time, reliability, and availability.

However, when an input job has no readily, a priori computable criteria for job
termination, or is explicitly intended to be always running, simple objective functions like
min(total cost) or min{completion time) can not be computed once and for all before the
job starts. Various embodiments are configured to provide adaptive improvement of
cloud resources for jobs whose characteristics are not known before the job is started.
Systems can be configured to monitor a job’s characteristics while the job is running and
improve the allocation of present or future resources to that job and/or sub-tasks

according to any desired objective function. In some examples, the objective functions

10

15

20

25

WO 2012/027478 PCT/US2011/048977
53

provided determine lowest cost, fastest completion, or a fastest completion given a
maximum cost per unit of computation.

Shown in Fig. 8 is an exemplary process 800 for automatically scaling a long-
running job. Long running jobs are intended to include jobs that have no stated
conclusion, and/or jobs intended to run for an indefinite period. At step 802, a consumer
submits a description of a long-running job to the exchange or a provider. Often, the
amount of computation in the job will be impossible or difficult to predict: for example,
the job might include a farm of web servers, a cluster processing a stream of video clips
and photos, or a search operation to recover a lost cryptographic key, as some examples.

In one embodiment, at 804, some combination of the consumer, exchange, and
provider agree on a rescheduling interval. In one embodiment, the process for
automatically improving resources allocated may be practiced by breaking the long-
running job into shorter intervals and the carrying out the improvement for each interval,
instead of optimizing for or otherwise improving the solution to a fixed objective
function over the entire run at the beginning of the run. In some examples, each interval
can also used as a completion point for the long-running job. Each interval can be viewed
as a completed task for delivering any computed results to a consumer. The interval can
be based on time, and in other examples, the interval can be based on any other portion of
the execution of the long-running job. At 805, a system embodying the invention
optionally partitions a job into parts according to a partition rule governing how and
when a job is managed for reallocation of resources. Example partition rules that can be
executed alone or in combination include:

1. Statically partition a job into fixed-length intervals specified by one or more of
the consumer, the exchange, or the provider.

2. Dynamically partition by the job each time its computation sends a message to the
exchange or provider requesting it to re-analyze or improve its resource usage.

3. Dynamically partition the job by the consumer on the basis of measured load in
the application, anticipated or predicted load, or business driven requirements

(e.g., customer contracts, historical load, service level agreements, etc.)

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
54

4. Dynamically partition by the exchange on the basis of measured or predicted load
in the application or observed or predicted price and/or performance of the
different providers used to run the job.

5. Dynamically partition by the provider on the basis of measured or predicted load
in the application or on the basis of measured or predicted load in the provider’s
cloud as a whole.

6. Dynamically partition by a combination of consumer, exchange, and provider. For
instance, the job interval may be taken to be the shortest proposed by any of the

participants.

In some embodiments, competing sets of proposed job re-scheduling intervals
(e.g., from each of the consumer, exchange, and provider, the parties to the scheduling
process) are resolved by executing an algorithm to compute an agreed-upon re-
scheduling interval or in some embodiments a leader is designated whose schedule takes
precedence. One example approach includes requiring each party to propose a minimum
acceptable and maximum (possibly infinite) acceptable re-scheduling interval and the
exchange determines the shortest re-scheduling interval that satisfies these constraints (if

any solution exists).

According to one embodiment, a job so partitioned may be reallocated for
improved resource usage at the beginning of each interval. The system implementing the
exchange protocol may use a hysteresis rule or an analysis of the movement cost (in time,
money, etc.) to avoid repeated movement of jobs from one cloud or data center to
another.

Shown in process 800 the system(s) running the exchange computes a schedule
and a placement for the job at 806, which can be subject to the consumer’s objective
function. For long-running jobs, an example list of suitable objective functions includes,
without limitation:

1. aggregate cost per unit time ($/hr)
2. aggregate throughput (operations/hr)
3. aggregate processing speed (GHz/hr)

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
55

work latency (turnaround time for a single operation, queue depth)
network latency or bandwidth available
availability (uptime for the service as a whole)

reliability (uptime of individual components or resources in the system)

e A

security (reputation or rating of the system)

In some embodiments, measures for determining compliance with the objective
function can be computed for at least some resources using provider-advertised
characteristics (e.g., $/hr for CPU). Others measures may be computed using provider-
advertised characteristics and assumptions or models of the job (e.g., $/hr for storage
given the number of I/Os/hr issued by the job). Monitoring processes can be executed to
determine the number of I/O requests issues by a given job over a time period. Still others
measures can be determined empirically either by benchmarking each provider, or by
comparing instances of a job running in different providers. An embodiment of the
invention can be configured to define and employ any appropriate objective function
depending on the circumstances of the job’s execution. The appropriate objective
function can be selected by the consumer, selected by the exchange based on consumer
constraints, selected by the exchange based on provider constraints, selected by the
exchange based on consumer and/or provider constraints, determined based on rule based
analysis, among other options.

According to one aspect price optimization includes minimizing/maximizing one
or more (or a combination) of these measures in the objective function. One or more
measures can also be used among a set of optimization constraints (e.g., minimize
aggregate cost, with at least X throughput and a queue depth of at most Q). The
optimization algorithm can improve the price rather than find a mathematically
optimal/satisfactory solution. That is, an approximation or indeed any improvement may
be sufficient in practice in determining an optimal solution.

Process flow 800 continues at step 808 and the system running the exchange
transforms the job into a suitable format, if necessary. Transformation of the job is
intended to include transformation of any partitions of the job and may include multiple

translations of the partitions into a plurality of execution formats. At 810, the system

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
56

launches the job on the allocated resources after any employed optimization or
improvement functions are complete.

According to some embodiments, an intelligent autoscaling system discussed
herein is configured to provide better outcomes than some conventional approaches by
triggering autoscaling based on real performance indicators (e.g., throughput, database
replication lag, historical traffic, transaction latency). Intelligent autoscaling systems can
be configure to consider the resources and prices across providers and make more radical
changes than some conventional approaches, such as running a job on provider A’s small
VMs at night and provider B’s large VMs during the day, leading to greater efficiency
than some existing approaches.

According to another embodiment, an autoscaling system can be configured to
permit a consumer to achieve a balanced time/price computation. For example, a system
executing process 800 can effect a balanced time/price computation. In one embodiment,
the consumer submits a job request (802) to the exchange describing a job that reduires at
least X hours of CPU time per day but can use up to Y hours per day if the total price is
less than a budget B. In this setting, the consumer, exchange, and provider agree on a
rescheduling rule (804), for instance every hour, at the request of the job, or some
examples, never. Then, the exchange analyzes the request and allocates resources for the
job (806). The exchange allocates at least enough resources to guarantee the consumer at
least X hours of CPU time over the current day. If the exchange finds additional capacity
under the budget B for the day, it automatically allocates those resources to the job, up to
a total of Y so long as the addition does not exceed budget B. The job is then transformed
into a format suitable for execution on the chosen resources (808) and started on those
resources (810). At 812, the exchange checks whether the time to reallocate is reached.
At 814, if the re-allocation interval is not reached 812 (no), the exchange waits and
returns to 812. At 816, if the re-allocation interval is reached 812 (yes), the consumer or
the exchange updates the job request and returns to step 806 to reallocates resources as
necessary according to the rules. This analysis permits the exchange system to
dynamically re-compute a placement/allocation, and further guarantees at least X hours
of CPU time, adding additional resources up to Y hours if the budget B allows for it,

continuously meeting the goals of the job’s creator.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
57

Feedback-Driven job Characterization and Specification

A hidden factor in stating an objective function like “min(cost)” is the constraint
that the job has to complete, and a requirement that the job execution has to deliver some
utility. Efficient resource provisioning is difficult because it often requires
experimentation or knowledge to determine or estimate what resources are sufficient to
provide utility, and then how changes in resource allocation impact utility. Utility can
include a combination of functional objectives: correctness, throughput, latency,
completion, security, uptime, etc.

Optimization algorithms, cost or resource-aware scheduling, and placement
improvement algorithms, including those discussed herein for calculating resource
allocation, typically need a set (or sets) of objectives and a set (or sets) of constraints.
Example objectives and constraints can include limits set by a consumer, an exchange,
and/or a provider on aggregate cost per unit time ($/hr), aggregate throughput
(operations/hr), aggregate processing speed (GHz/hr), work latency (turnaround time for
a single operation, queue depth), network latency or bandwidth available, availability
(uptime for the service as a whole), reliability (uptime of individual components or
resources in the system), security (reputation or rating of the system), total cost, total cost
rate, total time, preferred providers, preferred execution format, among other options.

Some conventional job resource optimization and improvement algorithms have
limited the job submitter to a fixed objective and have required manual specification of
job constraints prior to job execution. One aspect of the invention includes functions to
continually improve resource allocation by periodically re-evaluating job constraints for a
variety of user-selectable job objectives, is some embodiments, even during job
execution. In one example, a job analyzer is configured to re-evaluate job constraints for
any specified job objectives during job execution.

According to one example, a job analyzer is executed on the exchange. The job
analyzer accepts a job and produces a job specification by applying manual and/or
automatic classification mechanisms to job characteristics (shown in Fig. 6 is an example
process, 600, for analyzing a job to produce a job specification). In some embodiments, a

job analyzer is configured to execute process 600 to obtain classification information. In

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
58

other embodiments, a job analyzer can be configured to execute process 600 in whole or
in part, and in other embodiments invoke other processes disclosed herein. In some other
embodiments, the job analyzer can be configured to execute on various or multiple
systems connected to a cloud compute marketplace.

In another embodiment, when job constraints or objectives change, the exchange
or the consumer may trigger a re-allocation of resources (shown in Fig. 7 is an example
process 700 for re-allocating resources assigned to a job). Referring again to Fig. 6,
discussed is an execution of example process 600 on an exchange system. Although one
should appreciate that process 600 can be executed on any one or more of the computer
systems connecting to the exchange and/or participating in the exchange of cloud
compute services. As shown, at step 602, the exchange receives a job request. At 604, the
exchange executing process 600 determines if the job request already contains enough
information to calculate an allocation schedule. If the job request includes a specification
of attributes, objectives, and/or constraints sufficient to generate an allocation schedule
604 (yes), at 606, the exchange records the provided constraints, for example, in a job
database. Other processes may use information obtained on a given job, for example, to
calculate an allocation schedule (e.g., as part of process 100). Step 604 may invoke other
processes or portions of other processes to determine if the job constraints specified are
sufficient. In one example, 604 can include an operation for calculating a resource
allocation using any supplied information. In other embodiments, step 604, can include
comparisons against complete job specifications stored on the exchange. Any missing
information can be identified and the exchange can be configured to request the
information from a consumer, determined it automatically from job analysis, and/or
extrapolate the information from prior job execution and any associated specifications.

In one embodiment, the exchange is configured to require a job specification in
order to submit a job request. In other embodiments, the exchange can be configured to
automatically generate a job specification based on characteristics of the submitted
request. In some examples, the exchange can determine a job specification and request
approval from the customer for the determined job specification. An example job
specification scherhatically includes a set of g objectives O={Q\,...,0q} and a set of

objective-attribute response functions RF, which define the sensitivity of a job objective

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
59

to a given attribute. A simple response function RF may be denoted as in the following
example equations:
The following example constant response function implies the job’s performance
towards objective Q; is independent of the attribute’s availability:
RFqi(xanr)=k
The following example means the job scales linearly with attr’s availability:
RF qi(Xamr)=kx
The following example means the job always fails:

RFQi(xattr):O

In the following example, an image processing job that needs to load a 100MB
file in one go may have a unit-step response function:

RFcompletion(xRAM)zH[1 Oomb]

The response function may be multi-variate (e.g., jointly dependent on RAM and
Storage), dependent on absolute or relative time, or piecewise. Various embodiments can
incorporate a plurality of response functions, including linear, multi-variate, logarithmic,
exponential, etc. The particular, function employed can be fit or approximated to the

supplied objectives and constraints.

Expressing the full space of response functions for each objective is not necessary. One
example approximation represents a job specification for a set with and assuming »
attributes with 2 vectors for each objective: a limit vector L and a scale vector S:
Loi={lit,....lin]
Soi=[Si1,---»Sin]
Continuing the above example, the limit vector specifies minimum attribute values for
the job to deliver utility. Each element is a hard constraint on one of many attributes of an
available resource, including without limitation minimum processor cores, minimum
RAM, maximum ping latency to an Internet backbone, or minimum bandwidth.
According to one embodiment, the scale vector specifies “bottlenecks”: a scaling factor

for how much each attribute increases the utility delivered by the job.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
60

If any information provided is not sufficient to generate a job specification 604 (no), at
608, the exchange gathers information about job attributes and constraints from whatever
information the consumer has provided. At 610, the exchange checks to see whether the
job is currently running. At 612, if the job is running 610 (yes), the exchange measures
the job according to a list of pre-defined Measures, provided by the exchange, the
consumer, the provider, or a third party. The pre-defined measures can include any of the
attributes tracked in the provider resource database, objectives defined by the consumer,
or other measures, for example, the number of processes running in a Unix virtual
machine, the number of storage operations per second, the percentage of SSL-secured
transactions vs. total transactions, the number of exceptions generated per minute, or the
total database transactions.

Process 600 continues at 614, whether the job was running 610 (yes) and the
running job was measured at 612 or if the job was not running 610 (no). In one
embodiment, at 614, job a representation of the job’s response functions is computed. In
some examples, step 614 can call other processes for computing a representation of the
job’s response function. In some embodiments, a classifier is configured to execute a
process for computing a representation of a job’s response function. Specific response
functions and examples of classifiers that produce them are discussed in greater detail
below. The classifier can be executed by the exchange or another system as part of step
614.

Existing classification and scaling techniques use after-the-fact measurement
approaches to add resources to a deployed application when it triggers simple rules. For
example: (1) when the average CPU load of a group of servers increases past 75%, add
another server to the group; (2) when the average CPU load decreases below 45%,
remove a server from the group. Such techniques are extended in an embodiment of the
invention that uses rule-evaluation, described below.

In one embodiment of the invention, the form of the job analyzer uses a manual
process to determine a representation of a job’s response function. In this setting, the
system operating the exchange asks the consumer a series of questions about minimum

requirements, limits, and scaling in order to create objective-attribute response functions.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
61

In this setting, measurement processing discuss in step 612 may not be necessary, or
measured information may not be used, even if obtained at 612.

In another embodiment of the invention, a job analyzer is configured to track
completion and throughput objectives for a given job and/or subtasks. The job analyzer
can be configured to automatically compute limit and scale vectors for up to M resource
attributes for each objective by evaluating an n-element measurement vector v, of a
running job instance and applying linear regressors, one for limit and another for scale.
Each regressor is expressed as an NxM “design matrix” of real numbers:

DM =[mj,...,my]
DMpis=ty,...,tn]

LQ,:VDMQ,'L
SQ,:VDMQ,'S

Continuing the above example, the values of the design matrix are learned using a
training procedure that iterates to find best-fit of measured variables against a “training
set” of jobs. Typically, a training set will comprise a set of “correct” limit and scale
vectors constructed by hand when implementing the invention. Various embodiments
can include a stochastic classifier component configured to automatically compute limit
and scale vectors for a plurality of resources and their attributes for any defined objective.
Some embodiments can be configured to evaluate an n-element measurement vector v, of
a running job instance and apply linear regressors as discussed above. In other
embodiments, the form of the regressors can vary. In some examples, a job analyzer is
configured to execute a classifier component to obtain classifications for a job, in others
the job analyzer can incorporate the classifier component directly. Other examples, of
classifier components can be configured to operate according to rules based analysis of a
job and/or include system initiated user classifications. According to various
embodiments, a job analyzer can include any one or more of the classification
components.

In another embodiment of the invention, a job analyzer is configured to construct

limit and scale vectors using a Rule evaluator to populate vector elements. In this

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
62

embodiment, a set of Rules are kept, where rules match one or more attributes of a job
and result in an assignment of one or more constraints to the job. The Rule set may
requirement multiple measurement iterations to reach a conclusion. Rules can be
combined with weights, and the combination function coefficients are trained using a
similar approach to the design matrix described above. In one example, a Rule set
contains 3 conditions to evaluate on a running Unix virtual machine: (1) is an Apache
Web Server process running?; (2) is a MySQL database process running?; (3) is the
memory used vs. total available RAM greater than P percent?; and a directive to apply
the following response functions, expressed as limit and scale vectors:

Lcompletionz[M I

S, throughput— [Ca -eesS, n]

representing a minimum of MGB of RAM for the job to complete and that throughput
scales by a factor of C with the number of available cores. In this embodiment, rules may
comprise more than simple conditions and directives: conditions may capture values they
measure for use in directives, multiple directives may be triggered, and conditions may
be combined using Boolean, linear or nonlinear weighting functions in order to trigger
directives. Rule weightings may be altered subject to machine learning techniques, as
described below in step 622.

According to some embodiments, limit and scale vectors are coarse
approximations of the full response-function space. In another embodiment of the
invention a job analyzer configured to execute a k-class linear classification function to
choose one of k implemented response-function families for a given functional objective.
The job analyzer can be configured to execute a classifier component that is configured
with the k-class linear classification function. In some embodiments, a classifier
component can be configured with a plurality of classification functions that identify
response-function families. The classifier component can be configured to be called by an
executing process for classifying job, various system(s), and/or system components.
According to some embodiments, each response-function family is then trained, as

discussed above, and applied to an input job.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
63

In one embodiment, at 616, the exchange determines whether, step 614 produced
a valid representation of the job’s response function. The representation of the response
function can also be evaluated to determine if the result has a sufficient confidence level.
Various thresholds can be set to determine if confidence level is met. The confidence
level associated with particular classification or representation of the job’s response
function can be determined as part step 614 based on known statistical analysis models.
In some examples a classification component can be configured to determine
classification information for a job and further be configured to determine a confidence
level associated with the classification.

Some classification techniques, especially those that rely on statistical methods
are imprecise, and can report an estimated error. In one example, where statistical
regression is used, a correlation coefficient indicates a measure of confidence or
confidence level for the particular result. In cases where error can be estimated, the
exchange maintains error thresholds. At 618, if the result can be used 616 (yes), i.e. the
confidence level meets the error threshold, the result is accepted. In some examples, the
result is passed on to a resource allocator. A resource allocator can be configured to be
executed as a component on a system, and in one example, a component on an exchange.
The resource allocator can be configured to generate an allocation schedule which
matches a given job and/or sub-tasks making up the job to resources available on the
exchange. Further the resource allocator can execute allocation operations as discussed
herein using the result that meets the defined error threshold.

At 620, if the result could not be used 616 (no), i.e. the result of 614 does not
meet the error threshold, the consumer can be prompted to supply a manual classification.
In one embodiment, the exchange may maintain a database or cache of measurements,
attributes, and response functions in order to speed up evaluation. The database or cache
of measurements, attributes, and response functions can be accessed as part of step 614,
and the accessed information can be compared to any information available on the job to
be classified. Matching information against known jobs with known classifications can
permit the use of the known classifications, rather than determining them. Further, the
degree of match between known classification and job information can also be evaluated

based on a degree of confidence in the match. In some embodiments, the confidence level

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
64

in the match is used to determine by the system if known classification information will
be used. If the confidence level is too low, the representation of the job’s response
functions can then be computed as discussed above.

In one embodiment, at 622, the exchange executes machine learning techniques to
evaluate representations of any job response function, classification operations, and/or the
execution of classification components. The exchange can be configured to improve
tunable classifiers, classification algorithms, and stored information linking job and their
characteristics to any job response function. Any classification method, system, and/or
component, as discussed herein, can be evaluated for accuracy and improved using a
database of jobs annotated with measured values and classification results. Some subset
of zero or more jobs may have manually defined “true” objective-attribute response
functions -- provided either by the consumer, the system(s) operating the exchange, or a
third party. This subset can be used as a “training set” for improving analyzing any
classification for potential improvement. A classification method can be evaluated by
running it on the training set, and comparing its outputs to the (assumed) “true” results.
An automatic classification method may also be improved by applying a Machine
Learning approach. In order to increase the number of “true” annotations, the exchange
system can be configured to prompt the consumer to evaluate the performance of a job
with respect to one or more objectives. The exchange system may also read objective
measures from the consumer, the provider, a running job instance, or a third party.
Various embodiments can incorporate the preceding classification methods or any
combination thereof.

Shown in Fig. 7 is an exemplary process 700 for improving job allocation using
feedback. At 702, a job is sent to a provider with instrumentation that provides
measurement against some set of allocation objectives or other metrics of the satisfactory
running and/or completion of the job. For example, consider a job that performs
statistical analysis on a data set of stock prices using the Hadoop distributed framework.
Instrumentation for the job could include functions to monitor the Hadoop slave (worker)
latency in processing parts of the distributed work. In another example, of a job that is a
web application can be monitored using a cloud-hosted application performance

monitoring service that collects throughput and error statistics at a deep level with the

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
65

application, instrumentation is entirely separate from the job or job data. According to
some embodiments, instrumentation includes the executable code and/or functions that
are configured to monitor various run-time attributes of a given job. Instrumentation
functions can include monitoring functions and communication functions for returning
the results of the monitoring. In some examples, reporting can occur in real-time, near
real-time, and/or as part of periodic processing.

In one embodiment, at 704, the instrumentation of the job reports performance
data back to the exchange. In another embodiment, at 704, the exchange polls the
instrumentation for performance data. At 708, the exchange stores performance data,
regardless of the manner it is acquired. The stored performance data can be provided to
any of the consumer, exchange, or third party. In some embodiments, the performance
data can be used by various processes and/or functions discussed herein to classify the
job instance’s performance. In some examples, the exchange can be configured to
maintain records of job performance associated with each provider. The job performance
can be categories as satisfactory as part of a function to validate an existing job
specification. Step 708 may include any manner of functions configured to provide
classification, manual or automatic, including for example, the functions discussed with
respect to process 600. At 710, performance data retrieve is used to evaluate current
resource allocation. In example, an exchange executing process 700 can be configured to
construct a new allocation schedule for the job based on results retrieved from 708 at 710.
In some embodiments, step 710 evaluation of resource allocation can include operations
for re-allocation which can result in construction of a new allocation schedule. In some
examples, construction of a new allocation schedule requires a determination of any
switching costs.

In one example, switching costs can be determined as discussed with respect to
process 500, below. At 712, exchange checks the current allocation, which can be a new
allocation produced in 710, fits within constraints approved by the consumer. At 714, a
consumer is presented with a new estimate if the estimate is not within pre-approved
constraints 712 (no). At 716, the exchange automatically commits the new estimate if it

meets pre-approved constraints 712 (yes).

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
66

Optionally, process 700 can be executed continuously by returning to step 702
from either steps 714 or 716. In one example, the process loops back to 702 as the job
continues to run or starts to run again under any new allocation and/or constraints.

Embodiments of the invention may continually or periodically re-evaluate the
feedback loop described in process 700. In some embodiments, monitoring components
can be configured to execute process 700. The monitoring components can be further
configured to wait defined periods of time before looping execution of process 700. In
other embodiments, a monitoring process can be configured to perform some subset of
the steps discussed with respect to process 700 and re-execute those steps on a pre-
defined schedule.

In one embodiment, the feedback provided in step 708 may be used as an input to
a machine learning training process. In some examples, the machine learning process
described with respect to process 600 can be configured to access data generated from
process 700 in 708. In various examples, process 600 may include an operation
configured to retrieve information generated at 708 in step 622. In another embodiment,
the feedback provided in step 708 may be used as an input into an evaluation and

improvement process for job Allocation algorithms, as described herein.

Job Translation

According to one aspect, the cloud compute marketplace is configured to accept a
wide variety of input job formats and then translate those jobs and/or partitioned sub-
tasks into formats operable by the various suppliers of compute resources. To yield more
accurate price estimates, various embodiments are configured to include translation costs
into the resource allocation model for determining which provider(s) are best suited for
executing a particular job.

Translation can be done at various levels of a job on any one or more of:
Virtual Machine Image (e.g., EC2 -> Rackspace, or VMDK -> EC2)
Provider Service API (e.g., Amazon -> Rackspace, or OpenStack -> vCloud)

Middleware API (e.g., Hadoop -> GridEngine, Rails -> EC2)

> b=

PaaS (e.g., Google App Engine -> Amazon Elastic Beanstalk)

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
67

Some examples of possible translation approaches include without limitation:

1. Physical (e.g., convert from one native format into another: e.g., translate virtual
machine images and security policies from Amazon’s format into Rackspace’s).
[The QEMU software package offers one implementation of this operation.]

2. Virtual (e.g., use Eucalyptus to create an EC2-compatible platform within a
cluster of Rackspace VMs)

3. Proxy (intercept API traffic through transparent proxies that translate compatible
API calls and warn on incompatibilities.) This could be implemented as a network

proxy or daemons/kernel modules injected into a VM

When translation is successful the job and/or partitioned sub-tasks will typically
run without errors related to environment integration. In some examples, the application
may still encounter transient errors because of resource outage, or internal errors because
of faulty logic, and some embodiments are configured to resolve any translating error
conditions as well as handle normal program flow.

In some embodiments, translation is executed by the exchange automatically. In
various embodiments, the exchange can be configured to accept user input as part of the
translation. Translation models of interaction that can be configured alone or in various
combination on any exchange discussed herein include without limitation:

1. Fully automatic: well-specified input formats can be automatically matched and
translated into output formats by a central computer system. For example, if the
input job is specified as a set of OVF VMs, translation of manifest and machine
image to EC2, VMDXK, etc. are straightforward. If the application has no further
requirements, the translation is complete.

a. Moreover, a large amount of input detail can be captured by examining an
application running in its existing environment, for example, by accessing
the VMs, security groups, and volumes of a cluster running in Amazon
EC2, and then by examining the API network traffic of the running
application.

2. Virtual Assisted (Automatic) which can be execute using any one or more of the

following attributes:

10

15

20

25

30

WO 2012/027478

a.

PCT/US2011/048977
68

A job to be translated is started in a virtualized environment that exactly
matches the input environment

Useful when the input environment can be enumerated, e.g., by
monitoring a running working application, or an application in a test
environment

The virtualization environment can detect what proprietary services are in
use, and use that information to drive an automatic physical or proxy

translation

3. Proxy Assisted (Manual) which can be execute using any one or more of the

following attributes:

a.

Request the user provide a sample (subset) job that the platform can start
on the available resource providers after minimal automatic physical
translation.

For each provider, start the job on a minimal set of resources

Inject transparent proxies that are configured to catalog and record API
interactions for review

Automatically suggest API translations

Provide the user with an interface to choose suggested translations
Provide the user with an interface to define translations for unrecognized
API calls

Record which providers this job can be translated to, and by what

mechanism

4. Sandbox Assisted (Manual) which can be execute using any one or more of the

following attributes:

a.

Request the user provide a sample (subset) job that the platform can start
on the available resource providers after minimal automatic physical
translation.

Perform as much automatic physical translation as possible, based on the
specified input job.

For each provider, start the job on a minimal set of resources

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
69

d. Capture failures, applying knowledge of the image where possible (e.g.,
capture network traces, common logs, other tracking information)
e. Provide the user with an interface to analyze failures and choose or rule
out translation mechanisms
5. Manual: in an embodiment using manual translation, the user is responsible for

furnishing copies of the job that can run in the required format(s).

Different types of translation have different costs associated with them.
Automatic or assisted translation can be preferred because it requires no user input, but
may lead to more jobs that need to be restarted because of environment integration
failures. According to some embodiments, automatic or assisted translation can require
more speculative execution, and therefore increased raw resource cost.

One aspect of the invention includes defining a taxonomy to generally

29 <L

characterize providers’ resources into Layers (such as “infrastructure”, “platform”,
“service”, “application”, and “environment”) and Types (such as “storage”, “compute”,
“web application”, “database”). In one embodiment, the taxonomy is represented in a
provider database. One example of storing the taxonomy is as a list of known formats for
each provider, Layer, and Type, a list of supported Translation Strategies (drawing from
the levels, approaches, and user-interaction models described above) and a mapping from
format A to format B that specifies a Translation Strategy to use to convert a job defined
in format A to be runnable in format B.

Shown in Fig. 4 is an exemplary process 400 for translating jobs between provider
formats. Various embodiments access a provider database that holds attributes of the
provider and the resources it offers to determine information associated with translation.

In one embodiment, at step 402, the provider publishes a requirement for job in
format A. Receiving information from a provider regarding execution format of a job
may occur as part another process, for example, step 204 of process 200. The provider
database can also be manually populated by the exchange and/or an exchange
administration entity; further the provider database can be automatically populated by the

exchange, for example by running benchmark applications in each provider’s

environment. An exchange can be configured to execute various processes to

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
70

automatically and/or manually obtain translation information. In one example, process
200, can obtain translation information at 206.

According to one embodiment, at step 404, the exchange receives a job in format
B from the consumer. Format description can include a description of the necessary
resources, including specific layers and types required to execute any job on a given
resource. At 405, the exchange filters the provider database to determine if any
Translation Strategy exists to run a job in format B on the available providers. In one
example, assuming providers and resources that only support running Virtual Machines,
there is a set of supported input VM formats that the exchange can automatically translate
from to obtain executable versions of the job for the allocated resources 405 (yes). If
there does not exist a translation strategy for the job format 405 (no) the providers
requiring that particular format can be ignored for determining resource allocation for the
job at 418.

At 406, the exchange determines the cost of translating from format B into format
A. The determined cost of translation can be an estimate of the cost of translation
rendered as any one or more of a time necessary to translate, number of cycles, machine
hours, etc. The determined cost can also be used in other processes, for example, a
determined costs of translation can be used a factor in re-allocating job distribution.

At 407, the exchange determines the cost of running a format B job in format A.
In a non-limiting example, given an AB translator that uses a format A virtual machine
running natively in a format B host, there is minimal translation cost (since the original
job need not be altered) and a run cost function that accounts for virtualization overhead
defined by:

CrmB(jobrmta) = Overhead(jobrmea)

Embodiments of the invention employing translation can be configured to use a
translation system that operates in a way analogous to a database query planner, where
the exchange can execute a variety of different strategies for different components of a
job. For example, the exchange can execute some strategies that are suitable for the

compute resources of a job and other strategies suitable to storage resources.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
71

In one embodiment, at 408, the exchange produces a job runner configured to
execute in the format selected in 405-407. At 410, once the exchange has transformed the
job from format B to format A, it delivers the resulting job runner in format A to the
corresponding provider. At 412, the exchange causes the provider to run the job runner.
In one embodiment, the output of the job runner is the result of the computation in the
format A used by the provider that was selected to run the job. At 414, the exchange
retrieves these results and transforms them back into the format B using the translation
function stored in the provider database. In some examples, a result can be generated that
is format independent, thus step 414 may be omitted in some examples. At 416, the
exchange returns the transformed results in format B to the consumer as the final output

of the job.

Pricing Model: Normalized Pricing

Some conventional cloud compute distribution system have addressed some of the
problems associated with brokering and providing a clearinghouse in the case where
providers are either assumed (or engineered) to all offer the same pricing model.
However, even in these systems, for example, where pricing is engineered to be
consistent (by requiring providers to implement the same pricing API), the underlying
good that is being sold is variable. According to one aspect, it is realized that eliminating
these dependencies yields a more efficient cloud compute marketplace.

Different providers offer similar resources for sale, typically with product and
pricing models differentiated on a number of factors, including without limitation:

o product types (compute, storage, services, etc.)

e product granularity (are “bundles” offered for sets of resource attributes, or can
custom configurations be created?)

e location-dependent pricing

e time-dependent pricing

o demand-dependent pricing (e.g., Amazon’s “spot” pricing)

o lease-term (e.g., hourly, monthly, yearly)

e up-front cost (e.g., Amazon’s reserved instances)

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
72

Some providers offer “packaged” resources where a set of characteristics are
rolled up into a single product code (e.g., Amazon’s EC2 instance types, or Rackspace’s
flavors). Other providers offer variable configurations, where the consumer selects a
number of virtual cores, total RAM, total local storage, and available bandwidth,
location, etc.

Various embodiments eliminate these dependencies and are configured to offer a
coherent, unified pricing model for exchanging resources that accounts for differences in
the pricing models offered by the sellers of the underlying resources.

Show in Fig. 9 is an exemplary process 900 for normalizing exchange pricing
across heterogeneous providers. At 902, the exchange obtains information about provider
resources and their prices and attributes either when the provider offers the resource to
the exchange (e.g., as in process 200 at 214), when the publisher publishes resource
availability, and/or the exchange automatically obtains information on the provider. In
some embodiments, the exchange can also be configured to obtain information about
provider resources when the exchange queries the provider (e.g., as in process 300 during
step 302) among other options.

At 903, the exchange characterizes an offered resource using a taxonomy of
resource types and layers. An example taxonomy includes layers such as such as

2% 4¢ < 23 4

“infrastructure”, “platform”, “service”, “application”, and “environment”) and types

2% & 2% ¢

(such as “storage”, “compute”, “web application”, “database”) by which to characterize a
given provider. At 904, the exchange defines a “standard” pricing term (such as fractional
hour). The exchange then computes prices normalized against a variety of attributes, or a
combination of attributes at 905. Normalized prices capture the quantity of each attribute
acquired per unit currency when a given provider resource is purchased. In one
embodiment, the list of attributes can include any one or more of:

 single virtual-core speed (rate of processing a single-threaded computation)

» instance multiplier (effective number of threads that be run in parallel)

« total memory available to a virtual machine

« memory bandwidth (aggregate memory data rate)

e memory latency

o local storage bandwidth

WO 2012/027478 PCT/US2011/048977
73

o local storage latency

e network storage bandwidth

« network storage latency

o network interface bandwidth
« . network interface latency

¢ public network bandwidth

e public network latency

o included local storage

e included network storage

¢ included network bandwidth

In one embodiment, providers furnish specifications of attribute quantities
included with each resource at a given price. In another embodiment, the exchange can be
configured to query a provider to determine specifications of attribute quantities included
with each resource at a given price.

At step 905, the exchange computes advertised-quantity/unit-money for each
attribute for use in the optimized or improved allocation algorithms. In one example,
provider A offers three Compute resource types, Small, Medium, and Large, with the
following prices and attributes as follows:

Provider AType CPU RAM Price '

- Small ' 1x 1GHz Core 1GB $0.05/hr

Medium 2x 1GHz Core 2GB $0.10/hr

“The exchange can be configured to use a 1GHz CPU core as the normalized unit of
Compute, 1GB as the normalized unit of RAM. It computes the following normalized

attribute prices at 905:

Provider A Type CPU-hr/$ - RAM GB-hr/$

10

15

20

WO 2012/027478 PCT/US2011/048977

74
Small 20 20
Medium 20 20
Large 1 26.7 21

In some examples, process 900 concludes at 905 having obtained normalized
attribute prices. According to another embodiment, process 900 can instead at step 906,
measure attribute quantities offered in each provider resource empirically using a set of
synthetic and application benchmarks (such as SPEC CPU, TPC, iozone, Imbench, etc.)
and obtain measurements of real jobs submitted to the system. These measurements are
used to produce real-quantity/unit-money for each attribute for use by the resource

optimization or improvement algorithms discussed herein.

At 906, using the SPEC CPU synthetic benchmark, the exchange can be configured to
detect a different practical characterization of provider A’s resources from the advertised

characterization.

Provider AType = SPEC CPUMeasured Price Spec-CPU-hr/$
Small 10 18005/ 200
Medium 21 $0.10/hr 210

Large 32 - $0.30/hr 106.7

In one embodiment, at step 907, the exchange computes a normalized price in
terms of the measured attributes.

In one embodiment, the exchange is configured to re-measure real attribute
quantities regularly, manually or automatically, and store a database of the time-series of
real attribute measures to produce a more accurate analysis of real quantities. The

exchange can also be configured to analyze attribute quantities that accounts for time-

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
75

variance in any resource attributes. In some examples, process 900 is executed
periodically, on a given schedule, on demand, and/or as requested.

In another embodiment, the exchange can “time-shift” lease-terms by selling
resources at different terms than they were offered by providers, for example by buying
resources for a year and time-sharing them hourly. In this embodiment, the exchange
incorporates multi-tenancy functionality to ensure that subsequent users of a resource are
isolated from past users.

An aspect of the invention is an allocator that computes a schedule of resources.
Embodiments of the allocator, and of the process used to improve the allocator, may use
either or both of the advertised price, the measured price, and/or normalized values of

either in computing an allocation schedule or improving the schedule.

Estimating Cost of Movement

According to one aspect, a cloud compute marketplace or an exchange system
operating as part of the cloud compute marketplace is configured to compute the
switching costs associated with moving all or part of a job from one provider to another.
According to some embodiments, the movement of a job and/or sub-task may be from
one part of a single provider's data center to another, between data centers operated by a
single provider, or from the data center operated by one provider to a different data center

operated by another provider.

In one embodiment, the exchange is configured to estimate a movement cost based on at
least one of the following:
1. Auvailability and reliability cost, that is the downtime incurred or the degree of
vulnerability to downtime.
2. The time cost. The cost in time has two components:
a. The movement cost, that is the time incurred to shutdown, move, and
restart the computation.
b. The cost or improvement due to differing performance between the current

location of the computation and the new location

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
76

3. The economic cost of resources consumed. The system must compute a deadline
or an approximately cost-optimized allocation of resources in the target cloud and
compute an estimate of the cost of running the computation there.

4. Total cost to business of switching. This cost includes:

1. (1) through (3) above
2. The business's needs such as: availability, durability of data, deadline for
the computation, and budget available

In some examples, the exchange is configured to execute a process for calculating a

cost of movement, and in others the exchange is configured to execute an estimation
component configured to perform a process for calculating a cost of movement. In some
embodiments, an estimate of the moving cost of a job and/or sub-tasks includes at least
one of the following:

1. The amount of data, code, size of VM images, etc., that must be moved.

2. An estimate of the cost to transfer any data, code, VM images, etc., over a
communication network connecting the current executing provider with the re-
allocated provider

a. The network bandwidth consumption is determined for both the source
and destination
b. The cost of bandwidth at both source and destination can depends upon:
i. The source location
il. The destination location
iii. Any bulk discounts negotiated by the provider and user
3. An estimate of the time to transfer any data, code, VM images, etc., over the
communication network
1. The cost model can be configured to account for the cost to the business of
being unavailable or available but with less performance
2. The cost model can be configured to account for a deadline for the entire
job
3. The cost model can be configured to account for historical measurements

of data transfer rates and predictions for the future

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
77

4. The cost model can be configured to account for the time to restart the
computation in a new physical location
2. An estimate of the unused but contracted-for usage at the origin that must be paid
for even if the job is moved elsewhere
1. Estimate can be configured to include existing contracts between user and
provider which affect the rate paid for computation
3. An estimate of the unused but contracted-for usage at the destination that must be
paid for even if the job completes before that usage period expires
1. Estimate can be configured to include existing contracts between user and
provider which affect the rate paid for computation
4. An estimate of the cost for starting a new job at the destination
1. Estimate can be configured to include the cost, time, I/Os or other
resources necessary to quiesce (gracefully terminate) the application at its
current location
2. Estimate can be configured to include the start-up or fixed fees from the
provider
3. Estimate can be configured to include the include the cost, time, I/Os or
other resources necessary to restart the computation in its new location
5. An estimate of the performance, cost, time, resources, etc. that best fits the
application at its new location
1. Changing the number or type of VMs may require additional computation
to repartition data and the computation and can be configured to invoke
various functions configured to re-partition the job and/or data.
2. Changing the assignment of tasks to VMs -- e.g., putting multiple tasks in
the old location on the same VM in the new location or vice versa
3. The estimate can be configured to include the price, performance, or
deadline achievable at each provider given the size of the user's job and

the job's workload profile

Shown in Fig. 5 is an exemplary process 500 for analyzing switching costs

associated with moving a sub-task between compute providers. At step 501, the exchange

5

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
78

collects characteristics of the job as it runs on one or more providers. The characteristics
collected can include the memory used, storage used, number of /O transactions per-
second used, and network bandwidth used for each of the one or more providers, and/or
for any task associated with the job. In addition other features may also be collected as
they are available and/or specified. In one embodiment, an exchange is configured to
execute process 500, and further to maintain a provider characteristics database which
stores, for each provider, various characteristics. The characteristics can include any one
or more of the provider’s capacity for /O (which can be a normalized measure), network
bandwidth, CPU, and memory performance, the characteristics can also include
information on availability. Given constraints for a job, for example, a number of virtual
machines, total time permitted, and total monetary budget to spend, the exchange can be
configured to compute the time and money required to complete the job at, for example,
providers A and B.

In one embodiment, at 502 the characteristics for the running job collected at 501
are compared to the estimated availability for resources stored in a provider
characteristics database. In some examples, it is sufficient to compute the relative
performance of the job execution at provider A and at provider B to estimate the speedup
offered by moving the job from provider A to provider B. Given the published costs of
resources at both providers, which can be accessed through the provider database, or in
some instances queried directly from the providers, and an estimated speedup determined
based on the published costs, the difference in monetary expense can be estimated by
dividing the expense by the speedup. For instance if CPU costs $0.15/hr at A and
$0.25/hr at B and the speedup in execution is 1.5, then the cost at A is $0.15/hr and the
cost for the execution at B is $0.25/1.5=30.167 at B.

If no execution improvement is determined at 503 (no), process 500 can
optionally terminate at 520. In some examples process 500 can be configured to re-
execute periodically, and in some other examples, can be triggered to execute in response
to a change in provider characteristic information in the provider characteristic database.
If a potential improvement exists 503 (yes) then at 504, the cost to transform the job at
provider A into a job format suitable for provider B is estimated. According to some

embodiments, a potential improvement can include reduced cost of execution, reduced

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
79

time to complete, etc. The estimate for translation costs can, in some examples, be
derived from observing the size of the inputs and scaling the costs of other recent
translation jobs from format A to format B appropriately.

In one embodiment, at 505, the cost for transmitting the job from provider A to
provider B is estimated. In some embodiments, the transmission costs can be calculated
in terms of bandwidth consumption. At 506, the time to carry out the movement is
estimated. In some examples, the job characterizations from (501) are accessed to
determine the time to transmit a given job. In some examples, the characteristics can
includes the time, CPU, memory, storage transactions, network bandwidth, and other
resources necessary to start and stop the job execution on a gi'ven provider. In some
embodiments, steps 504, 505, and 506 can be executed together and need not be executed
in the sequence illustrated.

In one embodiment, a moving average of the resources used is calculated from
historic execution information. In some examples, the moving average of the resources
used is calculated from the last three times the job execution was started or stopped. In
one example, the exchange can estimate the amount of data to transfer from A to B by
executing process 500. As discussed, the estimate can be based either on a moving
average of the volume transferred during recent reassignments of allocated jobs or in
other examples, users can be permitted to submit estimations of movement costs and/or
time. Given these estimates, the exchange can be configured to compute the charge
incurred to provider A to retrieve the job’s data from any storage system by multiplying a
number of I/O transactions required, by the cost per /O transaction. The charge incurred
by provider A for transmitting the data can also be computed by multiplying the per-byte
bandwidth charge by the volume of data to be moved. The cost charged by provider B for
inbound data and storage transactions can also be added to generate a total cost for
movement.

In one embodiment, the job may have been executing at provider A for some
time. At 510, a determination is made as to whether any of the allocated resources for
executing the job have been used. If provider A has begun execution 510 (yes), the costs
of the execution performed is determined at 507. Any processing that has already been

performed can be viewed as a sunk cost. In some examples, a provider can specify that

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
80

early termination of a job incurred a termination cost. Any termination costs can also be
included as part of determining incurred or “sunk™ costs at 507. If no resources have been
consumed 510 (no) and no termination costs apply process 500 continues from both paths
at 511, | |

At 511, the exchange determines if the executing job has a definite deadline. If a
deadline is specified 511 (yes), then at 508 the capacity for provider B is analyzed to
determine if the specified deadline can be met. According to one embodiment, the
determination of whether the specified deadline can be met includes any calculation of
movement costs (translation costs and time) determined in the previous steps. If the
deadline cannot be met by the resources available at B, a total cost of movement can still
be determined at 509. The total cost of movement determined at 509 can be provided to a
consumer, detailing the potential improvement in job execution, while at the same time
providing the information on the un-satisfied deadline. The consumer can be given the
option by the exchange to accept the missed deadline to achieve the detailed
improvements in execution. In some embodiments, the resources available at B can meet
the stated demand, and in some embodiments, the improved execution achieved through
movement of the job can be automatically committed. In other embodiments, a consumer
can be notified of the potential to improve execution based on the cost of movement
determined at 509, and the system configured to require acceptance from the consumer
prior to committing the movement operation.

In one embodiment, at step 509, the exchange computes the economic and time
costs of movement which can include any one or more of the following:

1. The economic cost of movement is determined to be the sum of the shutdown cost
at A, the startup cost at B, the sunk cost at A, the sunk cost at B, the cost of
storage transactions at A, the cost of storage transactions at B, and the cost of
bandwidth used at A to transmit the job and the cost of bandwidth at B to receive
it. '

2. The time cost of moving the application from A to B is the sum of the following
estimated times: the estimated time to shutdown the application at A, the
estimated time for the transmission, and the estimated startup time at B. The

estimation of the transmission time can be computed by maximum likelihood

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977

81

estimation over a Gaussian mixture model of the point-to-point bandwidth

observed from A to B as a function of the transmission size, time of day, day of

week, and month. The same method can be used to estimate the startup and

shutdown time of the application at A and at B, respectively. The time cost of

moving the application is the sum of these three estimates plus the estimated

change in run time, i.e. the difference between the time for the job to complete at

B and the time for it to complete at A.

According to one aspect, the operator of the exchange or the owner of the system

implementing the exchange can compute and charge a commission to both buyers and

sellers. A commission based exchange recognizes that there is a cost to performing the

calculations necessary to efficiently allocate resources, and compensates the exchange for

that function. There are any number of approaches to structuring the commission paid to

the exchange. These approaches can include any one or more of the following examples:

1. Pure auctioneer

a.
b.
c.
d.

The auction house charges a flat fee per-transaction

The auction house charges a flat percentage of $-value per-transaction
The auction house charges a tiered rate based on volume as in (a) or (b)
The auction house charges a different rate for each resource crossed in a
transaction, either (tiered) flat fee or percentage

The auction house may charge a (tiered) fee to participate in the auction

plus any combination of (a)-(d)

2. A "broker-dealer"

a.

The exchange may act as a "broker-dealer":
i.As a broker it may charge as in (1)

ii.As a dealer it may buy or sell capacity for its own account

3. A broker/agent arrangement

a.

b.

A broker may charge buyer or seller a commission as in (1) above
A broker may share the commission with an agent represent either the

buyer or the seller

10

15

20

25

WO 2012/027478 PCT/US2011/048977
82

c. Anagent may pay a fee as in (1) above to have access to the broker's
exchange

d. An agent may share the commission from any transaction with broker

In one embodiment of the invention, the exchange advertises capacity from one or more
providers to one or more potential consumers. A consumer submits a job request (e.g., as
in process 100) to the exchange, which calculates an efficient assignment of resources
and a set of n providers, Py through P, ; that can be used to satisfy the request. The
resources are provisioned at each provider and the fee F; at each provider P; plus a

commission C; is charged to the consumer. The consumer’s total cost is:

n—1
Fi+C;
1=0

The method for computing the commission, C; may be agreed upon in advance or stated
by the exchange at the time of the transaction. One standard method for computing the
commission is to set Ci to be some fixed percentage of F i, for example 5%. The specific
method is at the discretion of the system embodying the invention.

In another embodiment, which can be used in conjunction with the commission

based model, the exchange may buy current capacity or contract for future capacity from
some subset of providers Py through P} and advertise that capacity as a separate set of
providers P lG through P ’k where the reported cost of the providers £ "is chosen by the
exchange. The exchange may additionally charge a commission on the sale of capacity
advertised by the virtual providers P ' The exchange may choose the price advertised by
the providers P "in one of several ways, including but not limited to, the basis of
contracts with the corresponding providers Py through P k, which might, for instance, set
a maximum spread between Piand P li , on the basis of the current market price or might
not charge a markup at all, simply collecting the commission instead.

In another embodiment, the exchange may charge a fee to providers to list their

capacity on the exchange in addition to one or more of the schemes described above. This

fee may be calculated in one of a number of ways, including, but not limited to, charging

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
83

a fixed fee or a percentage of the gross transaction size. This fee may be paid entirely by
the listing provider, entirely by the consumer using the capacity sold through the
exchange, or split between the provider and the consumer.

According to another aspect, the exchange may analyze time series data
pertaining to one or more providers’ resources and develop models of providers’
variations in pricing and capacity over time, including without limitation by time of day,
day of week, time of year, association with special events, or general business cycle.
These data may be assembled into aggregate statistics about computing resource capacity
and pricing over time. According to a related aspect, these time series may be analyzed
by well-known algorithms in order to predict future prices or capacity at various times
and dates. Automated prediction models may be programmed into a computer system
implementing this aspect of the invention: in one example, the computer system could be
asked to estimate the cost of operating web site services on Monday, November 28, 2011
(“Cyber Monday™) at 12pm Eastern Time. In one embodiment, an algorithm
implementing the invention can include any of or more of the following steps:

1. Obtain historical costs for comparable dates and times and average them. For
example, calculate the average cost of similar computation resources for web site
services from each provider on Mondays at 12 noon over the past year.

2. Correlate with seasonal effects. For example, calculate the average cost of similar
computation resources for the 2 weeks before and after the target date for
preceding years, and compute an expected “seasonal” factor adjusting the
expected price for time of year.

3. Correlate with any anomalies. For example, retail web sites typically experience a
significant spike in demand on the Monday following the fourth Thursday of
November. The system might observe, or be programmed to take into account,
any patterns that occur on particular days and adjust its expected price by the
magnitude of similar historical spikes vis-a-vis an ordinary day.

4. Combine the expected historical costs with the magnitude of any expected
anomaly in order to yield an expected price for that date. For example, the

expected price might be the average price of computing cycles on Mondays over

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
84

the past year, adjusted for the implied growth rate through the target date, and
then adjusted again for the expected spike due to Cyber Monday effects.
In other embodiments, the system might use a different analytical technique for
prediction based on time series, or present the historical data to a skilled human worker

who-examines the data and issues a price quotation through other methods of analysis.

According to another related aspect, a system implementing an exchange for
computing resources may offer future resources for sale, for example, to a project
manager who wishes to “lock in” a certain amount of computation capacity for analysis
three months from now after a data collection process is complete. The system may offer
these resources based on actual quotations from resource providers who wish to sell their
resources in advance, and/or using expected costs for other providers who do not sell
their resources in advance but whose time series have been analyzed by the system
according to the foregoing aspect of the invention, or a combination thereof. A system
implementing this aspect of the invention is configured to conduct the exchange as
described in the foregoing, except that a job description also include one or more
constraints on the future date(s) and time(s) the described computation is to be run. One
method of supplying these constraints is to include a representation of the earliest date the
job would start and the latest date the job could start; the already described deadlines
already form constraints on when the job must end. The exchange would then optimize
the allocation of available future resources according to providers’ future prices (where
available) or its own estimates of providers’ future prices. |

These agreements to provide computing resources in the future form the basis of
forward or futures contracts for computing resources, where the exchange facilitates the
determination of the expected price of the resource in the future and guarantees that the
buyer will receive compute cycles and, when acting as an intermediary instead of a seller,
that the seller be paid for those cycles. In another aspect of the invention, the system
operating the exchange calculates appropriate prices for futures or forward contracts for
resources using established formulae for financial derivatives, given the expected prices
of resources, a widely accepted risk-free interest rate, historical time series, and any risk

premium inherent in the provider of any resources. Moreover, the exchange could

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
85

facilitate continuously traded futures contracts for standardized resources such as “2 GHz
Xeon CPU Days”, “1TB of online disk storage with 99.999% durability and 99.9%
availability”, and “1 TB of Internet bandwidth at SMB/sec”, permitting large-scale
producers or consumers of computing resources to hedge against changes in the price of
those resources. An example from existing futures exchanges is wheat futures traded on
the Minneapolis Grain Exch‘ange, which are for “hard red winter wheat”; agriculture
producers and consumers of durum wheat hedge variations in wheat prices by buying and
selling these futures. |

Various embodiments are configured to predict future prices for resources,
compute prices for futures or forward contracts for computing resources, implement an
exchange for futures contracts or computing resources, or any combination thereof.

Embodiments can be configured to offer future resources for sale as “baskets” so
that consumers may purchase a basket of resources in the future from the exchange. In
this aspect, the consumer gives the exchange a purchase order including one or more
resources to purchase on a future date. The exchange guarantees the provision of the
purchased resources to the purchaser on the future date, and the exchange seeks
agreements with the providers of the resources to provide the required resources. In a
further aspect, the exchange would seek to monitor the capability of the contracted
provider to provide the resources. The exchange would either be obligated to find suitable
substitutes in the event the original provider was no longer able or willing to provide the
resources at the appointed time, or reach an understanding of terms of default with the
consumer in the event the resources are not available at the appointed time. An excellent
comparison model for this business structure is commodities futures exchanges, which
monitor exchange participants and charge fees that enable it to aggregate risk and
guarantee delivery of commodities to purchasers of commodities futures.

Various embodiments according to the present invention may be implemented on
one or more specially programmed computer systems, including for example Fig. 10
clearing system 1002. These computer systems may be, for example, general-purpose
computers such as those based on Intel PENTIUM-type processor, Motorola PowerPC,
AMD Athlon or Turion, Sun UltraSPARC, Hewlett-Packard PA-RISC processors, or any

other type of processor, including multi-core processors. It should be appreciated that one

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
86

or more of any type computer system may be used to facilitate optimization and/or
distribution of a cloud compute task according to various embodiments of the invention.
Further, the system may be located on a single computer or may be distributed among a
plurality of computers attached by a communications network.

A general-purpose computer system according to one embodiment of the
invention is specially configured to perform any of the described functions, including but
not limited to, creating, storing, partitioning, optimizing, allocating, and analyzing cloud
compute tasks. It should be appreciated that the system may perform other functions,
including dynamically monitoring executing tasks, determining optimal allocations of
compute sub-tasks across a plurality of cloud compute providers, registering compute
providers, providing sandboxed compute environments, generating benchmark tasks,
monitoring execution of benchmark tasks at the plurality of compute providers,
estimating compute costs, estimating compute time, re-allocating compute jobs, job
instances, and job sub-tasks, calculating translation costs for a cloud compute provider,
estimating translation costs, estimating movement costs associated with moving an
executing task from an assigned provider, estimating movement costs for allocated jobs,
analyzing a received compute task to automatically determine constraints, interactively
defining constraints for a received job through a user interface displayed on a host
computer, estimating total cost for completing a compute task, estimating a total time for
completing a compute task, paying users, receiving payments from information
consumers, providing indications to users and consumers, etc., and the invention is not
limited to having any particular function or set of functions.

Fig. 20 shows a block diagram of a general purpose computer and network system
2000 in which various aspects of the present invention may be practiced. For example,
various aspects of the invention may be implemented as specialized software executing in
one or more computer systems including general-purpose computer system 2001 shown
in Fig. 20. Computer system 2001 may include a processor 2004 connected to one or
more memory devices 2005, such as a disk drive, memory, or other device for storing
data. Memory 2005 is typically used for storing programs and data during operation of
the computer system 2001. Components of computer system 2001 may be coupled by an

interconnection mechanism such as network 2010, which may include one or more

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
87

busses (e.g., between components that are integrated within a same machine) and/or a
network (e.g., between components that reside on separate discrete machines). The
interconnection mechanism enables communications (e.g., data, instructions) to be
exchanged between system components of system 2001.

Computer system 2001 also includes one or more input/output (I/O) devices 2006,
for example, a keyboard, mouse, trackball, microphone, touch screen, a printing device,
display screen, speaker, etc. In addition, computer system 2001 may contain one or more
interfaces (e.g., network communication device 2008) that connect computer system
2001 to a communication network 1202 (in addition or as an alternative to the network
2010.

The storage system 2009, typically includes a computer readable and writeable
nonvolatile recording medium in which signals are stored that define a program to be
executed by the processor or information stored on or in the medium to be processed by
the program. The medium may, for example, be a disk or flash memory. Typically, in
operation, the processor causes data to be read from the nonvolatile recording medium
into another memory that allows for faster access to the information by the processor than
does the medium. This memory is typically a volatile, random access memory such as a
dynamic random access memory (DRAM) or static memory (SRAM). The memory may
be located in storage system 2009, as shown, or in memory system 2005. The processor
2004 generally manipulates the data within the memory 2005, and then copies the data to
the medium associated with storage 2009 after processing is completed. A variety of
mechanisms are known for managing data movement between the medium and integrated
circuit memory element and the invention is not limited thereto. The invention is not
limited to a particular memory system or storage system.

The computer system may include specially-programmed, special-purpose
hardware, for example, an application-specific integrated circuit (ASIC). Aspects of the
invention may be implemented in software, hardware or firmware, or any combination
thereof. Further, such methods, acts, systems, system elements and components thereof
may be implemented as part of the computer system described above or as an

independent component.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
88

Although computer system 2001 is shown by way of example as one type of
computer system upon which various aspects of the invention may be practiced, it should
be appreciated that aspects of the invention are not limited to being implemented on the

computer system as shown in Fig. 20. Various aspects of the invention may be practiced

on one or more computers having a different architectures or components that that shown

in Fig. 20.

Computer system 2001 may be a general-purpose computer system that is
programmable using a high-level computer programming language. Computer system
2001 may be also implemented using specially programmed, special purpose hardware.
In computer system 2001, processor 2004 is typically a commercially available processor
such as the well-known Pentium class processor available from the Intel Corporation.
Many other processors are available includiﬁg multi-core processors and
microprocessors. Such a processor usually executes an operating system which may be,
for example, the Windows-based operating systems (e.g., Windows NT, Windows 2000
(Windows ME), Windows XP, Windows VISTA, Windows 7 operating systems)
available from the Microsoft Corporation, MAC OS System X operating system available
from Apple Computer, one or more of the Linux-based operating system distributions
(e.g., the Enterprise Linux operating system available from Red Hat Inc.), the Solaris
operating system available from Sun Microsystems, or UNIX operating systems available
from various sources. Many other operating systems may be used, and the invention is
not limited to any particular operating system.

The processor and operating system together define a computer platform for
which application programs in high-level programming languages are written. It should
be understood that the invention is not limited to a particular computer system platform,
processor, operating system, or network. Also, it should be apparent to those skilled in
the art that the present invention is not limited to a specific programming language or
computer system. Further, it should be appreciated that other appropriate programming
languages and other appropriate computer systems could also be used.

One or more portions of the computer system may be distributed across one or
more computer systems coupled to a communications network. These computer systems

also may be general-purpose computer systems. For example, various aspects of the

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
89

invention may be distributed among one or more computer systems (e.g., servers)
configured to provide a service to one or more client computers, or to perform an overall
task as part of a distributed system. For example, various aspects of the invention may be
performed on a client-server or multi-tier system that includes components distributed
among one or more server systems that perform various functions according to various
embodiments of the invention including receiving, analyzing, partitioning, distributing,
executing, re-allocating, and accessing cloud compute tasks. Other components can be
configured to determine automatically job constraints and monitor executing jobs for
dynamic optimization in a plurality of provider formats environment as well as a single
provider format environment. These components may be executable, intermediate (e.g.,
IL) or interpreted (e.g., Java) code which communicate over a communication network
(e.g., the Internet) using a communication protocol (e.g., TCP/IP).

It should be appreciated that the invention is not limited to executing on any
particular system or group of syStems. Also, it should be appreciated that the invention is
not limited to any particular distributed architecture, network, or communication
protocol.

Various embodiments of the present invention may be programmed using an
object-oriented programming language, such as Java, C++, Ada, or C# (C-Sharp). Other
object-oriented programming languages may also be used. Alternatively, functional,
scripting, and/or logical programming languages may be used. Various aspects of the
invention may be implemented in a non-programmed environment (e.g., documents
created in HTML, XML or other format that, when viewed in a window of a browser
program, render aspects of a graphical-user interface (GUI) or perform other functions).
Various aspects of the invention may be implemented as programmed or non-
programmed elements, or any combination thereof.

Various aspects of this system can be implemented by one or more systems within
system 2000. For instance, the system may be a distributed system (e.g., client server,
multi-tier system). In one example, the system includes software processes executing on a
system associated with a user (e.g., a client system). These systems may permit the user
to create, submit, view, track, and alter compute tasks submitted to a cloud compute

marketplace. Further, client systems can be associated with compute providers who

WO 2012/027478 PCT/US2011/048977
90

access, for example, a central clearing system of the cloud compute marketplace to

register their service, identify available compute resources, pricing, limitations on job

execution, execution format, among other parameters associated with compute resources.
Fig. 21 shows an architecture diagram of an example system according to one

embodiment of the invention. It should be appreciated that Fig. 21 is used for illustration

10

15

20

25

30

purposes only, and that other architectures may be used to facilitate one or more aspects
of the present invention.

As shown in Fig. 21, a distributed system 2100 may be used to conduct functions
of the cloud compute system, including, but limited to, job distribution, optimization of
sub-task allocation, monitoring of executing sub-tasks, re-allocation of sub-tasks,
translation of sub-tasks, automatic identification of job attributes and/or constraints,
definition of rule based job analysis, execution of job analysis rules, among other
examples. System 2100 may include one or more computer systems (e.g., systems 2101,
2107A-D, 2118A-B) coupled by a communication network 2104. Such computer systems
may be, for example, general-purpose computer systems as discussed above with
reference to Fig. 20. »

In one embodiment of the present invention, system 2101 stores attributes
associated with executed cloud compute tasks, stores rules associated with assigning
attributes and/or constraints to received cloud compute tasks, stores real-time pricing
information for each compute provider (e.g., 2118A-B), stores real-time resource
availability for each compute provider on one or more databases (e.g., database 2102).
Each provider can be associated with an entry in the database 2106, although other
database models can be used. In some examples, a relational database model is
implemented, and in others non-relational database models can be employed.

Further, system 2101 performs associated functions with the distribution,
estimation, translation, monitoring, re-allocation, partitioning, and assignment of
constraints to cloud compute tasks. System 2101 can also be configured to provide access
to information associated with new compute tasks, completed compute task, and
executing compute task through a user interface accessible over a communication

network, for example, the Internet.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
91

System 2101 may include a server process (e.g., process 2105) that responds to
requests from one or more client programs. Process 2105 may include, for example, an
HTTP server or other server-based process (e.g., a database server process, XML server,
peer-to-peer process) that interfaces to one or more client programs distributed among
one or more client systems (e.g., systems 2107A-2107D), for example, to provide access
to information on cloud compute tasks, permit submission of cloud compute tasks, define
constraints, monitor execution, and retrieve completed cloud compute tasks.

According to one embodiment, client programs may be capable of permitting a
user to create, submit, alter, monitor, request estimates, approve estimates, reject
estimates for cloud compute tasks within an online user interface. Such client programs
may include, for example, any type of operating system and/or application program
capable of communicating with system 2101 through network 2104. In one particular
instance, a client may include a browser program (e.g., browser program 2109) that
communicates with server process 2105 using one or more communication protocols
(e.g., HTTP over a TCP/IP-based network, XML requests using HTTP through an Ajax
client process, distributed objects, https, or other secure or non-secure communication
protocol).

Although it is shown by way of example that a browser program may be used to
access the marketplace by users to perform functions for requesting cloud compute tasks,
it should be appreciated that other program types may be used to interface a user to server
process 2105 or a cloud compute marketplace. For instance, an application program that
is specially-developed to manage cloud compute task submission may be provided to
permit a user to perform cloud compute requests and/or functions according to various
embodiments of the present invention. The client program may be, for example, a thin
client including an interface for submitting and monitoring cloud compute requests.
Alternatively, the client may be a scripted program, or any other type of program having
the capability of transferring data for a compute task. According to one embodiment,
such client programs may, for example, be downloaded and installed over the network.
Further, these client programs may be stored and distributed by system 2101 in the form
of one or more software programs 2103, including for example, browser plug-ins, active

X objects, applets, and java code.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
92

In one specific example, the client program may include an application program
2110 that permits submission and monitoring of cloud compute tasks. Another example
of a client programs permits a compute provider (e.g., 2114A-B) to register cloud
compute resources (e.g., systems 2118A-B) with the marketplace. The provider may
designate their resources as public or private or both. The provider may establish limits
on the type of compute task that may be execute on the provider’s resources. This
program 2110, in one embodiment, may be integrated with browser program 2109
executing on, for example, system 2107D. For instance, the application program 2110
may include one or more controls that, when selected by the user, perform functions for
manipulating submitted compute jobs. These controls may be written in a variety of
programming languages, and the invention is not limited to any particular language. In
one specific example, the control may be a link that, when selected, performs one or more
programmed functions. Such functions may permit the user to create, submit, view,
monitor, and alter cloud compute tasks within the cloud compute marketplace.

Information stored in the database 2102 may include, for example, real-time
provider information including, but not limited to, compute resource pricing, resource
availability, resource guarantees, job execution format, translation requirements,
historical compute performance, benchmark performance information, public resource
designation, private resource designation, execution limitations, and other information
that can be used to facilitate the operation of cloud compute marketplace.

This information may be collected from the user in an interface (e.g., as presented
by program 2110) and stored in the database (e.g., database 2102). Additionally, client
systems may store a local copy of a user’s information and any job execution information
within a local database associated with the client system (e.g., database 2111 located on
client system 2107D). However, it should be appreciated that the invention is not limited
to storing information in any particular location. A client system (e.g., clients 2107A-
2107D) may include one or more interfaces through which job information may be
presented to the user. In one example, job information and status may be presented in an
interface of a browser program (e.g., browser program 2109) executing on a client

computer system (e.g., system 2107D).

WO 2012/027478 PCT/US2011/048977
93

Having thus described several aspects of at least one embodiment, it is to be
appreciated various alterations, modifications, and improvements will readily occur to
those skilled in the art. Such alterations, modifications, and improvements are intended to
be part of this disclosure and are intended to be within the scope of the invention.
Accordingly, the foregoing description and drawings are by way of example only, and the
scope of the invention should be determined from proper construction of the appended
claims, and their equivalents.

What is claimed is:

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
94

CLAIMS
1. A computer implemented method for distributing cloud compute jobs, the method
comprising acts of:

receiving, by a central computer system, over a communication network a request

_to complete a computer based task;

identifying, by the central computer system, any condition constraining the
completion of the computer based task;

partitioning, by the central computer system, the computer based task into one or
more sub-tasks;

determining, by the central computer system, assignment of the one or more sub-
tasks to one or more of a plurality of compute providers, wherein the act of determining
the assignment of the one or more sub-tasks includes analyzing the plurality of compute
providers for at least resource availability and any translation cost, wherein at least one of
the plurality of compute providers provides a different execution format associated with
execution of a compute task;

transmitting, over the communication network, a request to execute each sub-task
to a respective provider; and

providing access, over the communication network, to any portion of the executed
task, wherein the computer based task is scheduled to be executed according to the any

condition.

2. The method according to claim 1, wherein the act of identifying the any condition
constraining the completion of the computer based task, includes an act of identifying,
automatically by the central computer system, the any condition based on the computer

based task.

3. The method according to claim 2, wherein the act of identifying the any condition
includes acts of:

analyzing the computer based task; and

determining, automatically by the central computer system, at least a minimal set

of conditions required to execute the computer based task.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
95

4. The method according to claim 3, wherein an act of identifying, automatically by
the central computer system, the at least a minimal set of conditions includes identifying
constraints for the computer based task based on a training set of constraints for computer

based tasks having identified attributes.

5. The method according to claim 3, wherein an act of identifying, automatically by
the central computer system, the at least the minimal set of conditions includes acts of:
accessing a set of stored rules having computer based task attributes;
evaluating the computer based task against the set of rules; and

assigning constraints to the computer based task based on matching attributes.

6. The method according to claim 1, wherein the method further comprises an act of
determining at least a minimal set of conditions required to execute the computer based
task in response to an act of classifying the computer based task according to at least one

of system prompted user-responses, a stochastic classifier, and a rules based classifier.

7. The method according to claim 2, wherein the act identifying, automatically by
the central computer system, the any condition based on the computer based task includes
an act of assigning at least one response-function family of constraints for the computer

based task.

8. The method according to claim 3, wherein the method further comprises acts of:
evaluating the at least the minimal set of conditions required to execute the
computer based task, and
updating at least one of a training procedure and a set of rules having computer

based task attributes and constraints in response to the act of evaluating.

9. The method according to claim 2, wherein the method further comprises an act of
monitoring, by the central computer system, at least a portion of an execution of the

computer based task in an input environment; and

10

15

20

25

30

computer based task.

WO 2012/027478 PCT/US2011/048977
96

generating a virtualized environment corresponding to the input environment.

10. The method according to claim 1, further comprising an act of storing the any

condition consfraining the completion of the computer based task and attributes of the

11. The method according to claim 1, wherein one or more of a plurality of compute
providers include at least a first compute provider having a first compute execution
format and a at least a second compute provider having a second compute execution
format, and the act of determining the assignment of the one or more sub-tasks to the one
or more of a plurality of compute providers includes estimating a translation cost in terms
of compute resource of any of the one or more sub-tasks to permit execution in at least

one of the first compute execution format and the second compute execution format.

12. The method according to claim 1, further comprising an act of querying the one or

more providers for job execution format and processing capability.

13. The method according to claim 12, wherein the act of querying the one or more

providers includes an act of requesting execution of a benchmark task.

14. The method according to claim 1, further comprising an act of recalculating the
assignment of the one or more sub-tasks to the one or more of the plurality of compute

providers based on execution parameters.

15. The method according to claim 14, wherein the execution parameters includes at
least one of new compute resource availability, updated pricing information for available
compute resources, sub-task performance information, and update computer based task

preferences.

16. The method according to claim 1, further comprising an act of estimating a

compute cost of moving at least one assigned sub-task.

WO 2012/027478 PCT/US2011/048977
97

17. The method according to claim 16, wherein the act of estimating a compute cost
of moving the at least one assigned sub-task includes estimating a translation cost in

terms of compute resource.

10

15

20

25

30

18. A system for executing cloud compute jobs, the system comprising:

at least one processor operatively connected to a memory for executing system
components;

a communication component configured to receive a request to complete a
computer based task;

a constraint component configured to identify any condition constraining the
completion of the computer based task;

a partition component configured to partition the computer based task into one or
more sub-tasks;

an allocation component configured to assign the one or more sub-tasks to one or
more of a plurality of compute providers, wherein the allocation component is further
configured to determine the assignment of the one or more sub-tasks based on at least
resource availability and any translation cost associated with each compute provider,
wherein at least one of the plurality of compute providers provides a different execution
format associated with execution of a compute task;

a distribution component configured to distribute each sub-task to a respective
compute provider for execution; and

wherein the communication component is further configured to provide access to
the completed computer based task, wherein the computer based task is completed within

the any defined condition.

19. The system according to claim 18, wherein the constraint component is further
configured to identify, automatically, the any condition based on the computer based

task.

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
98

20. The system according to claim 19, wherein the constraint component is further
configured to:

analyze the computer based task; and

determine, automatically, at least a minimal set of conditions required to complete

the computer based task.

21. The system according to claim 20, wherein the constraint component is further
configured to identify constraints for the computer based task based on a training set of

constraints for computer based tasks having identified attributes.

22. The system according to claim 20, wherein the constraint component is further
configured to:

access a set of stored rules having computer based task attributes;

evaluate the computer based task against the set of rules; and

assign constraints to the computer based task based on matching attributes.

23. The system according to claim 22, further comprising a classification component
configured to determine at least a minimal set of conditions required to execute the
computer based task in response to an act of classifying the computer based task
according to at least one of system prompted user-responses, a stochastic classifier, and a

rules based classifier.

24. The system according to claim 19, wherein the constraint component is further
configured to assign at least one response-function family of constraints for the computer

based task.

25. The system according to claim 20, wherein the system further comprises a
training component configured to:
evaluate the at least the minimal set of conditions required to complete the

computer based task, and

10

15

20

25

30

WO 2012/027478 PCT/US2011/048977
99

update at least one of a training procedure and a set of rules having computer
based task attributes and constraints in response to evaluating of the at least the minimal

set of conditions required to complete the computer based task.

26. . The system according to claim 18, wherein the system further comprises a
translation component configured to:

monitor at least a portion of an execution of the computer based task in an input
environment; and

generate a virtualized environment corresponding to the input environment.

27. The system according to claim 18, whetein the system further comprises a storage
component configured to store the any condition constraining the completion of the

computer based task and attributes of the computer based task.

28. The system according to claim 18, wherein one or more of a plurality of compute
providers include at least a first compute provider having a first compute execution
format and a at least a second compute provider having a second compute execution
format, and allocation component is further configured to estimate a translation cost in
terms of compute resource of any of the one or more sub-tasks to permit execution in at

least one of the first compute execution format and the second compute execution format.

29. The system according to claim 26, wherein the translation component is further

configured to query the one or more providers for job execution format.

30. The system according to claim 29, wherein the translation component is further

configured to request execution of a benchmark task.

31. The system according to claim 18, wherein the system further comprises an
optimization component configured to recalculate the assignment of the one or more sub-
tasks to the one or more of the plurality of compute providers based on execution

parameters.

10

WO 2012/027478 PCT/US2011/048977
100

32. The system according to claim 31, wherein the execution parameters includes at
least one of new compute resource availability, updated pricing information for available

compute resources, sub-task performance information, and update computer based task

_preferences.

33. The system according to claim 18, wherein the optimization component is further

configured to estimate a compute cost of moving at least one assigned sub-task.

34. The system according to claim 33, wherein the optimization component is further

configured to estimate a translation cost in terms of compute resource.

WO 2012/027478 PCT/US2011/048977

1/25

100
\

102
Consumer
Submits Job

Exchange Computes

Allocation and Estimate
106 /"2
Consumer
Accepts Alter Job
Estimate?
108 10
N %
Exchange :
Starts Job Monitor Job
116
Job
Stopped or No
Completes?

114
(e ¥

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

2/25
/200

202

Provider Hosts Sandbox

and Exchange Connector
204 218

Provider Offers Provider Updates
Resources to Exchange Resources Availability

Exchange and Provider
Negotiate Resource
Attributes

Exchange and Provider | —208
Negotiate Resource
Pricing

Exchange and Provider

Negotiate Revenue
212
No m

Sharing
Reached?

Yes

Exchange Records | —214
Available Resources and
Attributes in Provider
Database

216
Provider
De—registers Resources

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

3/25

300
/

302
Determine
Resource Availability

/304
Identify Translation
Strategies
306
Characterize —
Provider Resource
/310

Store Resource
Availability and Attributes
in Provider DB

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478

PCT/US2011/048977

4/25

400
e

402
Provider
Publishes Required
Format A

Exchange

404
TReceives Job in>
Format B

405

Can Translate?

406
N 418
Calculates the Cost of Reject this
Translating the Job to Provider for
Format A this Job
408
Calculates Cost of Defines Job Runner L
Running Job in to Run Job in
Format A Format A
407/ 412
410 .
] Delivers Job Provider Runs
Runner to Job Runner
Provider
44— Exchange Converts
Job Runner Results
into Format B
416

Exchange Returns
Final Results
to Consumer

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

5/25

500
e

502
501 \ \

Exchange Collects Estimates Provider B
Characteristics of Job Resource Cost from
Running in Provider A Characteristics

503

Improvement?

520
504
T End) Y Estimates
Translation
Cost
506—_| Estimates Time for 505— Estimates
Translation and Transmission
Transmission Cost
510 507
Unyse Yes I Estimates
Provider A Sunk Cost in
esource Provider A

511

508 509
N Estimates 7" Estimates

Provider B Costs of
Excess Movement

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478

Exchange Receives
Job Request

604

6/25

602

Constraints

Included in Job

Request
?

606 Yes

PCT/US2011/048977

600
e

608
/

AN
Store and

Use Provided
Constraints

Collect Job
Characteristics

&

Yes
612

N

Measure
Running
Job

Yes

610

Run Classifier | — 614

to Determine
Constraints

616

Classification

Confidence High

Enough
?

618 620
Use Calculated
Constraints in
Allocation

Prompt
Consumer for
Constraints

)

Use Machine

Learning Techniques
to Improve Classifier

FIG.

622

6

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977
7/25

700
o

702
? Job is Sent to

Provider with J

Instrumentation

| 704
Instrumentation Reports

Back to Exchange

Exchange or Consumer | — 7068

Use Inst. Data to
Classify Job Constraints

Exchange Evaluates | 710
Resource Allocation
from Constraints

712

Re—allocation
Within Pre—approved
Job Constraints

Exchange Prompts Exchange
Consumer to Approve Automatically Triggers
New Allocation Re—allocation

714 \716

Yes

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

8/25
/800
802 Consumer Submits
Long—Running
Job
| 804
Determine
Re—Scheduling Interval
| 805
Partition Job
| 806
Exchange Computes
808\ Schedule and Placement
Job Transformed
into Provider Format(s)
Jobs Started on | — 810
Allocated Provider
Resources
812
Rescheduling Yes
Interval Expired
?
Exchange or Consumeﬂ
Wait May Update
Job Request J
814/ 816

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

9/25
/ 900
902
Exchange Obtains
Resource Availability
| __—903
Exchange
Updates Taxonomy
| 904

Choose
Resource Term

906
905 N /

Compute Normalized Measure
Price vs..Advertlsed Resource Attributes
Attributes

907

Compute Normalized
Price vs. Measured
Attributes

FIG. 9

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/048977

WO 2012/027478

9101
A

ss1nquUlly %
qopr a3ndwo)

10/25

viol

T
Z101—1

LTI
/EE

YT
g00s

000! \

ol 9l

¥00!

wa}sAs
Bups|)

NQS\

900!

Japiaoud

L,

Japinoud

Japinoid

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

11/25

1100
e

Receive Request |—1102

for Compute Task
Identify Conditions | —1104

Constraining Execution
Partition | —1106
Compute Task
Optimize | —1108
Distribution
|_—1110
Transmit Sub—Tasks

|_—1112

Provide Access to
Completed Compute Task

FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/048977

WO 2012/027478

12/25

¢l 9Ol

\:NN

80ci

aullppaq

0zz1— "

Jaunsuo)
wowwxyt

002 N\

9lcl—

}ebpng
lawnsuo)

90¢ s\

NQNN\

A|ddng
9|IqD|IbAY

Sz

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

13/25
1320
C Customer)/
Supply Job and Estimate . — 1303 1504
1301 upply a !
™ Constraints Price/Deadline Start Job / 1524

| Pricing | | 1 |

: System :

: Web Ul 4—1322
| |

| Consumer View //:'7325
| |

| |

| 1302 1308 |

| |

I Compute Realtime / I

| Pricing and Commit Job |

| Sub—task Breakdown |

| 1328 |

: \ ‘ /1.340 :

: Pricing Engine Job Manager :

| |

| |

I Check Provider / I

I Pricing and Start Sub—Tasks :

: Availability :

| ‘ |

| |

| | 1330
| Provider Manager |

: Provider APl Translation Plugins /{"7337
| |

| |
N~ e il

13028 —_ Query Individual

Manage Individual
Price /Availability —1306A

Sub—Tasks

1335— APl A APl B —1337

Provider A Provider B

1332 S \ 1334

FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/048977

WO 2012/027478

14/25

vl Ol

9)DWIIST MalASY qop MaN jwgng

0 q! e AN covl

buig dnyeg
Jaysibay
pazioyny/paygeq
S| Junoddy 8)}bwi}s]
s}deooy Jawolsn)

%oD4] 0}

\ sqor ou 3l sJ9)sibay
So¥i ._oEBm@mz
sqop
Sqopr >oDd| pa)wgng uibo gcori
K|snoiraud
uibo
£0%1 stawolsny bunsix3 obbg JuO.4
IIb}e@ qor
veor—

90¥1 e -

obDg jUOJ{ SHSIA Jowolsn) MSIN

S~10%1

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

15/25
1502
New Job Track Account /
Submit New Job 1520
Job Name test job /7575 /7573

WM Image |http: //a.b.c.d.com/x.img| | Upload

@ Success! Uploaded x.img (750MB in 7m 36s)

1504
1508 Mode © Fixéd Size O Unlimited Size— 1906
\
Size 1200 VM hours v|—1510
_Constraints __ __________________________ ,
1514 | 1512 —peqdiine [11/15/2010 s |
\i\Budget ($) [50 1522 |
F————————————————————————7%{i: ——————— -
:Min Rate (overall) GHz v :
:Max Rent (overall) $/hr :
o 74 __________________]
$ 1524 Get Estimate| or Cancel $
N\
1526

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

16 /25

1602
New Job Track Account /
Review Estimate 1604

Job Name test job

1607
ye

WM Image http: //a.b.c.d.com/x.img ©

1608 —_size 200 VM hours

Estimate
rr—-—-r——H—™—"™"F—™—"H™"™—"H™ >""F~—"H—F—"F«/—FF/FY—H"7—F7DYHFY—/Y—/—/Y —¥Y¥F—/ Y~/ (— (— Y —— —/ —/ —/— A
|
|

|’5’2 — Start Time 11/09/2010 13:45 1609
1614
[Completion Time 11/09/2010 00:52 ©

|
! 1616 —_
: Cost $45.25 O 1611

16184~~~ T T oo oo o oo .
\{\Aggregote Rate 5.0 GHz |
| |
7620“}\Average Cost $0.22 /hr :

Lo |
1622 14— Fstimate Expires 11/09/2010 13:25 |
- _I
Success! We can finish your job early and under budget.
@ Click “Start Job” to accept this estimate.
/
1613 Start Job or Cancel

FIG. 16

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/048977

WO 2012/027478

17/25

Zl 9l

\NQNN

S|ID}oq MSIA

pajjoupd (G+)sss GL/11/o10z L0/LL/0L0Z
(sioue Z) eyoidwod (10°0$-) o1/sz'0$4 zZL/LL/0l0Z LO/1L/0L0OZ
939|dwoo (¥S-) ov6l$ 60/11L/010¢ 60/11/0102
sN1D3}S }s0) paysiui 4 pa1J0}S

zesl e o¥L1 e gc/l e 9c/l 7
(%06) S4—WA 000'8L oL$+ Jy/86°'c$ sAopg zHie'L 1o/1L/0102
SIY—NA 0€C - 1y/62°0$ - zZH90Z LO/LL/0L02
(%01) sdY—WA 0% L$- y/0c'0$ Ssiyg ZH9 G0 60/11/0102
uone|dwo) jabpng }s0) Mo swil paadg po}JD}S

mwt\ mwt\ wwt\

N
S

oL oo @ DIpY|
—paywgun— O |930H
oL ooo'sz @ o9 | &
oz op | ™
P ® ogs1— " | u
V4! s 2
qop paysiul4 | &
oL — =
siy-wA 00002 (D josxo4 I | E
(7]
ssoupisul £ O oyoz O w
siy-wa 00s @ pwea O 5
azIS Qr | E
gzLi— 02l 2
=
(7]

sqop buluuny
gos1—

M- O 06/$—© s4y—WNA 00002 ® ® s1uDYY
siyg— © 4/Z1'0$- O —papwiun— X @ onapig
a)pwilsy o8l

PRSI WO smz+ 1 0SS+ | siy—NA 006 ® @ pydy
LTS ET RETITT ETY ozig qop

}D}S) oyoEA_uwm_ biLL— ¥ ciLL— 90L1—
\dsaoy \ \\\mouoE_umm_ Buipuayg

9IL1 Y0/ <

qop %opJ|

1UNod2Yy 3oD4| qopr MeN

WO 2012/027478

1802

PCT/US2011/048977

\1804
$

18/25
New Job Track Account
Job Detail
Job Name Juliet
WM Image http: //a.b.c.d.com/x.img
Size 200 VM—hours

Status Running

Start Time 11/09/2010 13:45

|
|
: Estimated Done
|
|
|

: Aggregate Rate

I Average Cost
I p—
|

: Progress

[Cancel Job]

11/10/2010 00:52 (1 min early)
$45.25 (4.75 under)

What happened?

11/09/2010 17:32 WM Rebooted [log]

Careful! This job is in progress.
Cancelling it will cause unfinished work to be abandoned.

The page at http: //n says:
Are you sure you want to cancel this job?
Once a job is cancelled, it cannot be restarted.

Completed computation has already been billed to
your account ($40.23).

[Cancel][OK]

1808

1806 /

\1810 \1810

FIG. 18

SUBSTITUTE SHEET (RULE 26)

<

WO 2012/027478

19/25

JobRequest
user
name
vmurl
size

1

1 |budget

Estimate

totalcost
time

rate
unitcost
expires
request
subtasks[]

PCT/US2011/048977

deadline
minrate
maxcost
instances

-—

1

JobRecord

request
subtasks[

cancel()

* *

SubTaskRecord

provider

1|consumer—price

Provider

name
apihost
vmformat

new_instance()

query_availability()

provider—price
instances
cycles

instancesE]
start_time
done_time

cancel()

FIG. 19

SUBSTITUTE SHEET (RULE 26)

1 *

InstanceRecord

vm_img
vm_mgmt_conn
subtask

price
start_time
done_time
errors

start()
cancel()

PCT/US2011/048977

WO 2012/027478

20/25

0c

Il

wo}sAs
000c
woysks /mn%w
_ c00c \ _
3JOM}ON
wa}sAs
uo|3DJIUNWIWO)
abpuols SIOMIBN Ao|dsiq //
veooc
//onN //QQQN /NQQN
_ QSN\ 900¢ §002 (014 _
1I0M)d
HOMEN [[I
(s)ed1neq
woyshs o/l Kiowas J1ossa20.d
Jayndwo) .
100c

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/048977

WO 2012/027478

21/25

ic 9Ol

J9s
asoic
// oLz
7
WD.60.4 J8012 880l // veoiz // Vel ariiz
iz /
/ uo}po)|ddy Jasn Jas Jas Japinoisd Jspiaold
2spqp}o(Q
6
weyshs P woyshs | eee [worshs | [worshs | [wershs | | wersss
N
AN o401 \ a/0ie \ vZoiz \ velic \ aslic \
| 60ic |
| yoiz" |
%IOM)}ON
$s920.d weysfs
|| eiomyos N~ 1012
sole e
woJbouy osbqoipq ~—o0012
9JDM}}0 s q A
g0l HoS NI~ g9,z wie}sAs

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

22 /25

New Job Track Account
Review Estimate [Unsatisfied]

Job Name test job
WM Image http: //a.b.c.d.com/x.img ©
Size 200 VM hours

Estimate

Start Time 11/09/2010 13:45
Completion Time 11/17/2010 12:32 (O

Cost $45.25 ©

Aggregate Rate 0.29 GHz
Average Cost $0.22 /hr

Sorry. We cannot complete your job within the dealine.
@ Click “Start Job” to accept this estimate anyways.

or Start Job

FIG. 22

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

23/25

2300
/

2302
Consumer Submits
New Job Request

/2304
Compute Initial
Constraints
2306
Exchange Determines T
Candidate Providers
/2.3'08
Estimate
Translation Cost
/2370

Calculate
Resource Allocation

2312
Offer Estimate
to Consumer

FIG. 23

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

24 /25
2402
Running Job /2400
Is Altered
2404 /2406
Constraint Monitor and
onstraints Record Job
PrO\‘/;ded Performance
Yes /2408
Compute
(New) Constraints
Exchange | — 2410
Determines Candidate
Providers
Estimate | — 2412
Translation Cost
Estimate | — 2414
Switching Cost
/2415
Calculate Allocation
2416
Changes Yes

Automatically
Acceptable
?

2418 2420
AN /

Offer Estimate Automatically
to Consumer Accept Estimate

FIG. 24

SUBSTITUTE SHEET (RULE 26)

WO 2012/027478 PCT/US2011/048977

25 /25

2500
e

2504

Offer Estimate
to Consumer

2502

Automatically
Accept Estimate

2510 — —
Provision
Provider Resources
/2508
2512
) Translate Job to .
Candidate Providers Discard Job
2514
) Start Job
on Resources
2516 —_

Job Submits
Performance Information

2518
No Consumer
Stops or Pauses
Job?
/2520
2522
Job Exchange —
Completes Converts Results

e 2526

2524 Release Archive Job
Resources Instance Data

FIG. 25

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT PCT/US20 ’,’,l!?n% ﬁgZpiicagot;g.l 2012

PCT/US 11/48977

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 9/46 (2011.01)
USPC - 718/102

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC: 718/102
IPC(8): GOBF 9/46 (2011.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC: 718/102, 104, 106 (Keyword limited; terms below)
IPC(8): GO6F 9/46 (2011.01) (Keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST (PGPB, USPT, EPAB, JPAB); Google (Scholar, Patents, Web)

Terms used: cloud computing task job process operation sub child identify constraint divide segment partition determine assign resource
available idle communicate network automatic benchmark translation cost minimum requirement environment training rules set

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X ° US 2002/0019844 A1 (KUROWSKI et al.), 14 February 2002 (14.02.2002), entire document, 1-2, 8-10, 12-15, 18-19,
- especially Abstract, para [0010], [0059], (0068], (0092], [0111]-{0119), [0154}, {0241], [0290], 26-27, 29-32
Y {0334)
3-8, 11, 16-17, 20-25, 28,
33-34
Y
US 2007/0283351 A1 (DEGENARO et al.), 06 December 2007 (06.12.2007), entire document, | 3-8, 20-25
especially Abstract, para [0013], [0028]-[0029], [0047]
Y

Abstract, para [0092]

US 2010/0125473 A1 (TUNG et al.), 20 May 2010 (20.05.2010), entire document, especially

11, 16-17, 28, 33-34

D Further documents are listed in the continuation of Box C.

[]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or afier the international
filing date

“L” document which may throw doubts on priority ctaim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other

means

“P” document published prior to the international filing date but later than
the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive

step when the document is taken alone

document of particular relevance; the claimed invention cannot be

oy
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

28 December 2011 (28.12.2011)

Date of mailing of the international search report

11 JAN 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - claims
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - wo-search-report

