a9 United States

US 20150012962A1

a2y Patent Application Publication o) Pub. No.: US 2015/0012962 A1l

(54)

(71)
(72)
@

(22)

(1)

P e

Browser 16

1
Client 1 160

!
!

Walsh et al. 43) Pub. Date: Jan. 8, 2015
SECURE NETWORK LABELING TO (52) US.CL
CONTROL INTER-PROCESS CPC e HO4L 63/20 (2013.01)
COMMUNICATIONS IN A MULTI-TENANT USPC e 726/1; 726/3
PLATFORM-AS-A-SERVICE (PAAS) SYSTEM (57) ABSTRACT
Applicant: Red Hat, Inc., Raleigh, NC (US) Implementations for secure network labeling to control inter-
process communications in a multi-tenant Platform-as-a-Ser-
Inventors: Daniel Walsh, Marlborough, MA (US); vice (PaaS) system are disclosed. A method of the disclosure
Paul Moore, Manchester, NH (US) includes initializing, by a processing device of a node, a gear
of an application on the node, wherein the node hosts a
Appl. No.: 13/934.907 plurality of gears for a plurality of applications of a multi-
pp2. o ’ tenant Platform-as-a-Service (PaaS) system, and wherein the
_ plurality of applications comprising multi-tenant applica-
Filed: Jul. 3, 2013 tions having different owners. The method further includes
determining a user identifier (UID) of the gear, generating a
Publication Classification custom network security label (NSL) of the gear, assigning
the custom NSL to the gear, and applying the custom NSL to
Int. Cl. an outgoing network packet sent from the gear to another gear
HO4L 29/06 (2006.01) within the PaaS system.
100
- VM1 VMn VM1 VMn
A m 12 121 122
N/W N/W
Security Security
Module 117 Module 127
Host 1 0S 115 HostN os125 | | = Jje
110 120
CLOUD 130
A/ < ’/ .~ \
. a
Image Repository 106 Cloud Pro;/(l)ddrer System
—_ Cloud Controller 108
A

PaaS Provider Controller
— -

140
o T
Browser 171 Browser 181
Client 2 170 Client N 180

Jan. 8,2015 Sheet1o0f 6 US 2015/0012962 A1

Patent Application Publication

081 N walD
181

Jasmoug

Ja||01uoy) JapiAold Seed

(2%

301

19j0JU0D PROjD 4

\3

L aunbiy4

0Z1 w910

7] Josmolg 7

4

091 L w10

[OT Jasmoug

907 Alousoday abew

70T -
WBISAS Japinoid pnojD
£ 4
0l ano12
p— oct — orr
G¢l SO N 1SOH Gl SO | 1SOH
21 3INpon Z11 aInpoy
Aunoag Alnoag
M/N M/N
el e 41 T
UAIA FAA UAIA LNA

o
| i

(=
(=
-

Jan. 8,2015 Sheet2 of 6 US 2015/0012962 A1

Patent Application Publication

9g€T qs€T LET ATRIqI]
¢ ddy zddy 08puae)
I8¢T SINPON
oc€T KInoag
sodoy ddy FIOMPN
LT SO
dTET 9PON
96ET ®ET L£T ARIqr
¢ ddy [ddvy a8pae)
q8¢T AMMpON
q5€z A1noasg
sodoy ddy SHOMPN
areT SO
qTET2PON
LET ATRIqQIT
23 prnae
qeeT PRI
¢ ddy ®GET
[ddy BYLT 2IMPON
Anoeg
BEET PHOMION
sodoy ddy eHET SO
BCET 2PON

0£7 AeT opoN

/

Z a4nbiy
¥TC Q7T
OJIAIRE aseqerR(
UOHEIUIYINY 1015 BIR(] 71T WoIsAS
JuawaFruRIA

~ |

2po)) 321N0g

ric
SO0, PUBWIIO.)

92
UISAS 7T
UOIRISAYII) Ioyorg
I0AIRS
07T AT 1o501g
M
00¢

01T 14rT IuaT)

A

S0¢
sorepdn
apo) uoneorddy

-
<
~ ¢ aunbig
o
=)
o
—
% _|||||||III||III|_ e —
7 |
= | |
z |
wn _ 05T oour)su[_ 0€¢ 2ouegsup 0EE aoueISU| _
= aSpLne) _ oSpLue) oBpre)) _

_ 0<¢ doupsuy _ _ TTT 1800
N _ 0€¢ douejsu] P8pLIeD) _ _
cm a8pae) _
o - ¢ douesur __ __ _
- _ 0ET 2ouBsy| aSpue’) _ _ 0¢€ 2oueisu] || DEE aoueIsup
g — sBprue) Sy || oFpuaey |
7)) _ a8pLIe) TZ¢ 1ean) _ _
v — TZE 100 STE 1800 _
— _ Gee 1Bah — _ _
m L SO ¢ uoneorddy L L 250¢ [uoneorddy
& _——_—————_———_—— — — _— —— _————
= STE SO SIE SO
= PrE Lotjod LLnoeg TPE SulpqeT m/N F¥E Loyod Lunoog TPE SueqeT M/N

0FC JMMPON AININOIS JTOMIIN OFE MMPON £11TN3S JIOMIIN

=
2 Fvad 0TC U0y woisk qT¢ — —
= Ar omwm sw%m“ﬁ%% hw ﬁmm SQ%MM&J% 0zt OTE M3y sle
S RIQUT A3PLIMB) Do ‘ ' AIeIqIT 95pInIe) waIsAg uonensayaI) WAIRS | | sodoy ddy
_w qzoc (NA) TePON %Z0< (INA) 1 9PON
[~
=
=]
ﬁ
x®
=
m v 97 (1ay01g) WISAS UOBISAYDI() JOAIS
<
- —_—
m 0o¢
~N—
]
[~

Patent Application Publication Jan. 8,2015 Sheet4 of 6 US 2015/0012962 A1

400
A\
A
Receive request to initialize gear of a multi-tenant application on a node of a
PaaS system
410
/
Determine user ID (UID) of the application associated with the gear
420
Generate custom network security label (NSL) for the gear based on the
determined UID
430
/
Map generated custom NSL to the associated UID
440

When gear sends any network packet to another node, assign a security label
matching the custom NSL to the network packet

~
(@]
o

Figure 4

Patent Application Publication

1)
o

Jan. 8,2015 SheetSof 6

A

N

Receive, at a node of a PaaS system, incoming network packet directed to gear
of a multi-tenant application running on the node

1

o

) J

Parse received incoming network packet to determine first custom NSL for the
network packet

O
o

2

Determine second custom NSL of the gear to which the network packet is

US 2015/0012962 A1

addressed on the node
3

o

YES

~

" Security policy .
(\/ receive network packets labeled with \/\;\/%

-
~ ~

allow 2™ custom NSL to \\\NO

-

1% custom NSL?

Allow communication of the
network packet to the
destination gear
50

Block and/or deny sending of
the packet to the destination
gear
60

Figure 5

Patent Application Publication Jan. 8,2015 Sheet 6 of 6 US 2015/0012962 A1

600
,,,/\\\ A// -
/602 — ,— 610
PROCESSOR
> > |- » VIDEO DISPLAY
PROCESSING LOGIC 626
Network Security
Module 317 ~—608 L 612
— 604 | ALPHA-NUMERIC
MAIN MEMORY INPUT DEVICE
INSTRUGTIONS
Network Security e 614
Module 317 ™~ 626 £
CURSOR
D CONTROL
T 606 DEVICE
D
2 618
STATIC MEMORY (¢——— /
DATA STORAGE DEVICE
822 MACHINE-READABLE | | .,
MEDIUM N
NETWORK D e a
INTERFACE |—p SOFTWARE 626
DEVICE . //
Network Security | -]
Module 317
|
\\
\Vj/\\ 620
|
\ 664 SIGNAL
4——————— | GENERATION
DEVICE

FIGURE 6

US 2015/0012962 Al

SECURE NETWORK LABELING TO
CONTROL INTER-PROCESS
COMMUNICATIONS IN A MULTI-TENANT
PLATFORM-AS-A-SERVICE (PAAS) SYSTEM

TECHNICAL FIELD

[0001] The implementations of the disclosure relate gener-
ally to platform-as-a-service (PaaS) environments and, more
specifically, relate to secure network labeling to control inter-
process communications in a multi-tenant PaaS system.

BACKGROUND

[0002] Currently, a variety of Platform-as-a-Service (PaaS)
offerings exist that include software and/or hardware facili-
ties for facilitating the execution of web applications in a
cloud computing environment (the “cloud”). Cloud comput-
ing is a computing paradigm in which a customer pays a
“cloud provider” to execute a program on computer hardware
owned and/or controlled by the cloud provider. It is common
for cloud providers to make virtual machines hosted on its
computer hardware available to customers for this purpose.
[0003] The cloud provider typically provides an interface
that a customer can use to requisition virtual machines and
associated resources such as processors, storage, and network
services, etc., as well as an interface a customer can use to
install and execute the customer’s program on the virtual
machines that the customer requisitions, together with addi-
tional software on which the customer’s program depends.
For some such programs, this additional software can include
software components, such as a kernel and an operating sys-
tem, and/or middleware and a framework. Customers that
have installed and are executing their programs “in the cloud”
typically communicate with the executing program from
remote geographic locations using Internet protocols.
[0004] PaaS offerings typically facilitate deployment of
web applications without the cost and complexity of buying
and managing the underlying hardware, software, and provi-
sioning hosting capabilities, providing the facilities to sup-
port the complete life cycle of building, delivering, and ser-
vicing web applications are entirely available from the
Internet. Typically, these facilities operate as one or more
virtual machines (VMs) running on top of a hypervisor in a
host server. One of the goals of a PaaS offering is to provide
the user as close to the same level of security that the user
would get when running applications on machines that the
user controlled.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The disclosure will be understood more fully from
the detailed description given below and from the accompa-
nying drawings of various implementations of the disclosure.
The drawings, however, should not be taken to limit the
disclosure to the specific implementations, but are for expla-
nation and understanding only.

[0006] FIG. 11is ablock diagram of a network architecture
in which implementations of the disclosure may operate.
[0007] FIG. 2 is a block diagram of a PaaS system archi-
tecture according to an implementation of the disclosure.
[0008] FIG. 3 is a block diagram of depicting a communi-
cation infrastructure between a server orchestration system
and a plurality of nodes according to implementations of the
disclosure.

Jan. 8, 2015

[0009] FIG. 4 illustrating a method for applying custom
network security labels (NSLs) to applications running on
nodes of a multi-tenant PaaS system according to an imple-
mentation of the disclosure.

[0010] FIG.5illustrating a method for control inter-process
communication of applications running on nodes of a multi-
tenant using custom NSLs, according to an implementation of
the disclosure.

[0011] FIG. 6 illustrates a block diagram of one implemen-
tation of a computer system.

DETAILED DESCRIPTION

[0012] Implementations of the disclosure provide for
secure network labeling to control inter-process communica-
tions in a multi-tenant Platform-as-a-Service (PaaS) system.
Deployment of multiple applications of multiple users on a
single node (virtual machine (VM)) is a cost-efficient solution
for PaaS providers. However, deploying a multi-tenant PaaS
solution also raises a variety of concerns, one of which
includes security. Specifically, security concerns exist in
terms of separating multi-tenant applications from accessing
each other within a node, as well as between nodes.

[0013] Some security solutions for PaaS systems provide
that PaaS application instances, called gears, are separated
using label-based Mandatory Access Control (MAC) and
uniquely assigned security labels within a node. As a result,
any gear is blocked from communicating with any other gear
on the local node by the MAC security policy. A semi-ran-
dom, yet unique, security label may be selected for each one
of'the gears and its content, with a security policy defined in
such a way that blocks information flow between different
gears on the system based on tenant agreements. If any gear
tries to communicate with another gear with a different secu-
rity label on the same node, the MAC prevents the commu-
nication.

[0014] However, such security solutions do not protect
from inter-process (e.g., gear) communication between nodes
of the PaaS system. Furthermore, standard procedures, such
as traditional firewalls are not ideal, or capable of providing
separation between processes. For instance, firewalls typi-
cally do not have access to security label information to
enforce the MAC security policy. In addition, relying on each
of the individual multi-tenant applications to implement and
enforce such inter-process protection can be problematic and
does not provide the same level of protection (e.g., unifor-
mity) to the applications.

[0015] Implementations of the disclosure provide for an
additional level of security for PaaS multi-tenant applications
by using network security labels (NSLs) to control inter-
process communication between nodes in a PaaS system. In
particular, MAC-based security labeling can be extended over
a network by assigning NSLs to network packets sent
between nodes. Implementations may then enforce security
policies on network traffic such that gears ofa first application
from a first node are able to communicate with gears of the
first application on a second node, while all other application
gears from the first node would be blocked from communi-
cating with the gears of the first application on the second
node.

[0016] FIG. 11is a block diagram of a network architecture
100 in which implementations of the disclosure may operate.
The network architecture 100 includes a cloud 130 managed
by a cloud provider system 104. The cloud provider system
104 provides nodes to execute software and/or other pro-

US 2015/0012962 Al

cesses. In some implementations, these nodes are virtual
machines (VMs), suchas VMs 111,112, 121, and 122 hosted
in cloud 130. Each VM 111, 112, 121, 122 is hosted on a
physical machine, such as host 1 110 through host N 120,
configured as part of the cloud 130. In some implementations,
the host machines 110, 120 are often located in a data center.
For example, VMs 111 and 112 are hosted on physical
machine 110 in cloud 130 provided by cloud provider 104.
Users can interact with applications executing on the cloud-
basedVMs 111, 112,121, 122 using client computer systems,
such as clients 160, 170 and 180, via corresponding web
browser applications 161, 171 and 181.

[0017] Clients 160,170 and 180 are connected to hosts 110,
120 on cloud 130 and the cloud provider system 104 via a
network 102, which may be a private network (e.g., a local
areanetwork (LAN), a wide area network (WAN)), intranet, or
other similar private networks) or a public network (e.g., the
Internet). Each client 160, 170, 180 may be a mobile device,
a PDA, a laptop, a desktop computer, a tablet computing
device, a server device, or any other computing device. Each
host 110, 120 may be a server computer system, a desktop
computer or any other computing device. The cloud provider
system 104 may include one or more machines such as server
computers, desktop computers, etc.

[0018] In one implementation, the cloud provider system
104 is coupled to a cloud controller 108 via the network 102.
The cloud controller 108 may reside on one or more machines
(e.g., server computers, desktop computers, etc.) and may
manage the execution of applications in the cloud 130. In
some implementations, cloud controller 108 receives com-
mands from PaaS provider controller 140. Based on these
commands, the cloud controller 108 provides data (e.g., such
as pre-generated images) associated with different applica-
tions to the cloud provider system 104. In some implementa-
tions, the data may be provided to the cloud provider 104 and
stored in an image repository 106, in an image repository (not
shown) located on each host 110, 120, or in an image reposi-
tory (not shown) located oneach VM 111,112, 121, 122. This
data provides applications for a multi-tenant PaaS system
managed by the PaaS provider controller 140.

[0019] Inoneimplementation, each host machine 110, 120
providing VMs 111, 112, 121, 122 running applications for
the PaaS provider controller 140 includes an operating system
(0S) 115, 125. Each OS may include a network security
module 117, 127 to apply network labeling to network pack-
ets communicated between VMs 111, 112, 121, 122. The
network labeling provided by network security modules 117,
127 isused as part of a security policy applied to multi-tenant
applications running on the VMs 111, 112, 121, 122 provid-
ing the multi-tenant PaaS system. In particular, the security
policy applied to the network labels on packets sent between
VMs 111, 112, 121, 122 maintains a separation between
applications on the VMs 111, 112, 121, 122 for security
purposes, such that a portion of a first application running on
a first node (e.g., VM) may only communicate with another
portion of that first application running on a second node
(e.g., VM), and not portions of other applications running on
the second node (e.g., VM). Further details of the networking
labeling for security in a PaaS systems are described below
with respect to FIGS. 2 and 3.

[0020] While various implementations are described in
terms of the environment described above, those skilled in the
art will appreciate that the facility may be implemented in a
variety of other environments including a single, monolithic

Jan. 8, 2015

computer system, as well as various other combinations of
computer systems or similar devices connected in various
ways. For example, the data from the image repository 106
may run directly on a physical host 110, 120 instead of being
instantiated on a VM 111, 112, 121, 122.

[0021] FIG. 2 is a block diagram of a PaaS system archi-
tecture 200 according to an implementation of the disclosure.
The PaaS architecture 200 allows users to launch software
applications in a cloud computing environment, such as cloud
computing environment provided in network architecture 100
described with respect to FIG. 1. The PaaS system architec-
ture 200, in one implementation, includes a client layer 210,
a broker layer 220, and a node layer 230.

[0022] In one implementation, the client layer 210 resides
on a client machine, such as a workstation of a software
developer, and provides an interface to a user of the client
machine to a broker layer 220 of the PaaS system 200. For
example, the broker layer 220 may facilitate the creation and
deployment on the cloud (via node layer 230) of software
applications being developed by an end user at client layer
210.

[0023] Inoneimplementation, the client layer 210 includes
asource code management system 212, sometimes referred to
as “SCM?” or revision control system. One example of such an
SCM or revision control system is Git, available as open
source software. Git, and other such distributed SCM sys-
tems, usually include a working directory for making
changes, and a local software repository for storing the
changes for each application associated with the end user of
the PaaS system 200. The packaged software application can
then be “pushed” from the local SCM repository to a remote
SCM repository, such as app repost 233a, 233B, 233c¢, at the
node(s) 232a, 2325, 232¢ running the associated application.
From the remote SCM repository 233a, 2335, 233¢, the code
may be edited by others with access, or the application may be
executed by a machine. Other SCM systems work in a similar
manner.

[0024] The client layer 210, in one implementation, also
includes a set of command tools 214 that a user can utilize to
create, launch, and manage applications. In one implementa-
tion, the command tools 214 can be downloaded and installed
on the user’s client machine, and can be accessed via a com-
mand line interface or a graphical user interface, or some
other type of interface. In one implementation, the command
tools 214 expose an application programming interface
(“APT”) of the broker layer 220 and perform other applica-
tions management tasks in an automated fashion using other
interfaces, as will be described in more detail further below in
accordance with some implementations.

[0025] Inone implementation, the broker layer 220 acts as
middleware between the client layer 210 and the node layer
230. The node layer 230 includes the nodes 232a-c on which
software applications 235a-c are provisioned and executed.
In one implementation, each node 232a-c¢ is a VM provi-
sioned by an Infrastructure as a Service (IaaS) provider. In
other implementations, the nodes 232a-¢ may be physical
machines (e.g., bare metal) or VMs residing on a single physi-
cal machine and running gears (discussed below) that provide
functionality of applications of a multi-tenant PaaS system. In
one implementation, the broker layer 220 is implemented on
one or more machines, such as server computers, desktop
computers, etc. In some implementations, the broker layer
220 may be implemented on one or more machines separate
from machines implementing each of the client layer 210 and

US 2015/0012962 Al

the node layer 230, or may implemented together with the
client layer 210 and/or the node layer 230 on one or more
machines, or some combination of the above.

[0026] In one implementation, the broker layer 220
includes a broker 222 that coordinates requests from the client
layer 210 with actions to be performed at the node layer 230.
One such request is new application creation. In one imple-
mentation, when a user, using the command tools 214 at client
layer 210, requests the creation of a new application 235a-c,
or some other action to manage the application 235a-c, the
broker 222 first authenticates the user using an authentication
service 224. In one implementation, the authentication ser-
vice may comprise custom authentication methods, or stan-
dard protocols such as SAML, OAuth, etc. Once the user has
been authenticated and allowed access to the system by
authentication service 224, the broker 222 uses a server
orchestration system 226 to collect information and configu-
ration information about the nodes 232a-c.

[0027] In one implementation, the broker 222 uses the
Marionette Collective™ (“MCollective™”) framework
available from Puppet Labs™ as the server orchestration
system 226, but other server orchestration systems may also
be used. The server orchestration system 226, in one imple-
mentation, functions to coordinate server-client interaction
between multiple (sometimes a large number of) servers. In
one implementation, the servers being orchestrated are nodes
232a-c, which are acting as application servers and web serv-
ers.

[0028] Inone implementation, the broker 222 manages the
business logic and model representing the nodes 232a-c and
the applications 235a-c residing on the nodes, and acts as a
controller that generates the actions requested by users via an
API of the client tools 214. The server orchestration system
226 then takes the actions generated by the broker 222 and
orchestrates their execution on the many nodes 232a-¢ man-
aged by the system.

[0029] In one implementation, the information collected
about the nodes 232a-c can be stored in a data store 228. In
one implementation, the data store 228 can be a locally-
hosted database or file store, or it can be a cloud based storage
service provided by a Storage-as-a-Service (SaaS) provider,
such as Amazon™ S3™ (Simple Storage Service). The bro-
ker 222 uses the information about the nodes 232a-c and their
applications 235a-c to model the application hosting service
and to maintain records about the nodes. In one implementa-
tion, data of'a node 232a-c is stored in the form of a JavaScript
Object Notation (JSON) blob or string that maintains key-
value pairs to associate a unique identifier, a hostname, a list
of applications, and other such attributes with the node.

[0030] Inimplementations of the disclosure, the PaaS sys-
tem architecture 200 of FIG. 2 is a multi-tenant PaaS envi-
ronment. In a multi-tenant PaaS environment, each node
232a-c runs multiple applications 235a-c¢ that may be owned
or managed by different users and/or organizations. As such,
a first customer’s deployed applications 235a-¢ may co-exist
with any other customer’s deployed applications on the same
node 232 (VM) that is hosting the first customer’s deployed
applications 235a-c. In some implementations, portions of an
application are run on multiple different nodes 232a-c. For
example, as shown in FIG. 2, components of application 1
235q are run in both node 232¢ and node 2325. Similarly,
application 2 23556 is run in node 2324 and node 232¢, while
application 3 235c¢ is run in node 2325 and node 232c.

Jan. 8, 2015

[0031] In addition, each node also maintains a cartridge
library 237. The cartridge library 237 maintains multiple
software components (referred to herein as cartridges) that
may be utilized by applications 235a-c¢ deployed on node
232a-c. A cartridge can represent a form of support software
(or middleware) providing the functionality, such as configu-
ration templates, scripts, dependencies, to run an application
235a-c and/or add a feature to an application, 235a-c. In one
implementation, the cartridges support languages such as, but
not limited to, JBoss™, PHP, Ruby, Python, Perl, and so on.
In addition, cartridges may be provided that support data-
bases, such as MySQL™, PostgreSQL™, Mongo™, and oth-
ers. Cartridges may also be available that support the build
and continuous integration environments, such as a Jenkins
cartridge. Lastly, cartridges may be provided to support man-
agement capabilities, such as PHPmyadmin, RockMongo™,
10gen-mms-agent, cron scheduler, and HAProxy, for
example. Adding an instance of a cartridge from cartridge
library 237 to an application 235a-c provides a capability for
the application 235a-c, without the customer who owns the
application having to administer or update the included capa-
bility.

[0032] Implementations of the disclosure provide for secu-
rity between multi-tenant applications 235a-c¢ hosted on
nodes 232a-232¢ by assigning a custom network security
label (NSL) to network packets sent between nodes 232a-
232c¢. This custom NSL is unique to each application 235a-¢
instance of the PaaS system 200, and allows each node 232a-¢
to prevent communications between different applications
235a-c on different nodes 232a-c. Each node 232a-¢ may
include an OS 234a-c that implements a secure network label-
ing feature to apply to applications 235a-c¢ running on the
node 232a-c. The OS 234a-c may include a network security
module 238a-c that provides custom NSLs for each applica-
tion 2354a-c on the node 232a-c, and applies a security policy
using the custom NSLs in order to protect applications 235a-c
from unauthorized communications. One embodiment of the
interaction between nodes 232a-c to implement secure net-
working labeling to control inter-process communications in
a multi-tenant PaaS system is now described in more detail
with reference to FIG. 3.

[0033] FIG. 3 is a block diagram depicting a communica-
tion infrastructure 300 between a server orchestration system
226 and a plurality of nodes 302a-b according to implemen-
tations of the disclosure. In one implementation, server
orchestration system 226 and nodes 3024-b are the same as
their counterparts described with respect to FIG. 2. In one
implementation, each node 302a-b is implemented as a VM
and has an operating system 315 that can execute applications
305a-b using the app repos 318 and cartridge library 320 that
are resident on the nodes 302a-b. In one implementation,
applications 305a-b are the same as applications 235a-c
described with respect to FIG. 2.

[0034] Each node 302a-5 also includes a server orchestra-
tion system agent 310 configured to track and collect infor-
mation about the node 232 and to perform management
actions on the node 232. Thus, in one implementation, using
MCollective™ as the server orchestration system 226, the
server orchestration system agent 310 can act as a MCollec-
tive™ server. The server orchestration system 226 would then
act as the MCollective™ client that can send requests, que-
ries, and commands to the MCollective™ server on node
302a-b.

US 2015/0012962 Al

[0035] As previously mentioned, cartridges provide the
underlying support software that implements the functional-
ity of applications 305a-b. In one implementation, an appli-
cation 305a-b may utilize one or more cartridge instances 330
that are run in one or more resource-constrained gears 325 on
nodes 302a-b. Cartridge library 320 provides an OS 315-
based location, outside of all application gears 325, that acts
as a source for cartridge instantiations 330 that provide func-
tionality for an application 305a-b. An application 305a-b
may use more than one cartridge instance 330 as part of
providing functionality for the application 305a-b. One
example of this is a JavaEE application that uses a JBoss™
AS7 cartridge with a supporting MySQL™ database pro-
vided by a MySQL™ cartridge. Each cartridge instance may
include a software repository that provides the particular
functionality of the cartridge instance 330.

[0036] A gear 325 is a resource-constrained process space
on the node 3024-5 to execute functionality of an application.
In some implementations, a gear 325 is established by the
node 302q-b with resource boundaries, including a limit and/
or designation of the amount of memory, amount of storage,
and security types and/or labels to be applied to any functions
executed by the gear 325. In one implementation, gears 325
may be established using the Linux Containers (LLXC) virtu-
alization method. In further implementations, gears 325 may
also be established using cgroups, SELinux™, and kernel
namespaces, to name a few examples.

[0037] In some implementations, cartridges instances 330
for an application 3054-b may execute in gears 325 dispersed
over more than one node 302a-b, as shown with application 2
3055 illustrated in FIG. 3. In other implementations, cartridge
instances 330 for an application 3054-6 may run in one or
more gears 325 on the same node 302a-b, as shown with
application 1 3054 on node 1 3024 in FIG. 3.

[0038] In one implementation, OS 315 includes a network
security module 340 that applies secure network labeling and
policy enforcement to multi-tenant applications 305a-5 that
run on the node 302a-b. Network security module 340
includes a network labeling component 342 and a security
policy component 344. The network labeling component 342
generates custom NSLs for each application 305a-b running
on the node 302a-b. The security policy component 344
applies network labeling security policies associated with the
custom NSLs to the applications 305a-b and their associated
network traffic. Generally speaking, the custom NSL is a
security enhancement to an OS, such as OS 315, that allows
administrators to label network packets with the security
labels. These NSLs may then be used to constrain communi-
cation of the packet and processes (i.e., applications 305a-b)
trying to access the packet.

[0039] The network labeling component 342 may generate
custom (e.g., unique) NSLs to associate with each application
instance running on the node 302a-6. The custom NSL may
be implemented using a Multi-Category Security (MCS) fea-
ture of SELinux™ SELinux™ is an OS-based feature that
provides a flexible Mandatory Access Control (MAC) sys-
tem.

[0040] The NSL may be a customization of the SELinux™
security context type. A security context in SELinux™ is a
state given to a resource that uniquely identifies the permis-
sions that are applicable to the resource. When a resource has
no security context assigned to it, SELinux™ gives the
resource a default security context, which generally has little
permissions to perform any actions. The security context may

Jan. 8, 2015

be displayed using three to four definitions, depending on the
type of policy being run by SELinux™. The definitions may
include a user, a role, a type, and a range of sensitivity levels
and categories. In some implementations, other security cat-
egory labeling features from other OS vendors may be uti-
lized.

[0041] Networklabeling component 342 may generate cus-
tom NSLs based on, at least partially, a unique user ID (UID)
of the application 305a-b. OS 315 maintains a set of unique
UIDs that are assigned to applications 305a-b as they are
installed on the node 3024-5. In particular, each gear 325 ofan
application 305q is assigned the UID of the application 305a-
b. In one implementation, network labeling component 342
generates the custom NSL for an application 305a-b (i.e., the
gears 325 of the application 3054-5) by applying a transform
to the unique local UID of the application. In some imple-
mentations, a SELinux™ label that is already associated with
the application 3054-5b is used to generate the custom NSL for
the application 305a-b.

[0042] Because each application’s 305a-b UID is the same
across nodes 302a-b, the custom NSL of an application
305a-b is also the same across nodes 302a-b. Thus, the gears
325 of application 2 30556 running on node 1 3024 have the
same UID as the gears of application 2 30556 running on node
2 3025b. Accordingly, all gears 325 of application 2 3055 have
the same UID, and therefore the same custom NSL, no matter
which node 3024-b they are running on. The mapping of UID
to NSL may be stored by the network labeling component
342, for example, in a data store (not shown) of the node
302a-b. In other implementations, the mapping of UID to
NSL may be performed on-demand without storing the map-
ping. In some embodiments, when the NSL is based on the
SELinux™ security label, the mapping of UID to NSL is not
performed for purposes of generating the NSL.

[0043] Afterthe custom NSLs are generated and mapped to
their associated UIDs, the networking labeling component
342 applies the custom NSL to any network traffic (i.e.,
network data packet) sent from gear 325 of an application
305a-b to another node 302a-b. In one embodiment, the net-
work labeling component 342 applies the custom NSL as part
of a header of an outgoing packet from a gear 325. In one
implementation, the custom NSL is part of a Commercial
Internet Protocol Security Option (CIPSO) label of the out-
going packet. The CIPSO label is based on a labeling standard
that defines an Internet Protocol (IP) security option that can
be used to pass security information within and between
computer systems. The CIPSO protocol supports a large
number of security domains. Implementation of the disclo-
sure may also support and implement security labeling pro-
tocols other than CIPSO, as well. For example, the Calipso
labeling protocol or the IPsec labeling protocol may be uti-
lized.

[0044] When a node 302a-b receives network traffic, the
packet, including the header information, is parsed to deter-
mine the custom NSL associated with the packet. The secu-
rity policy component 344 may then use this custom NSL to
apply security policies to the communication of the packet
with respect to the destination gear 325 of the receiving node
302a-b. More specifically, the security policy component 344
determines whether the custom NSL associated with the des-
tination gear 325 of the packet is allowed to accept incoming
network traffic having a a custom NSL of the received packet.
If the security policy does not allow the interaction, then the
security policy component 344 blocks/denies communica-

US 2015/0012962 Al

tion of the packet to the destination. If the security policy does
allow the interaction, then the security policy component 344
allows the communication of the packet to its destination gear
325.

[0045] As a result, gears 325 of the same application that
are spread among multiple nodes 302a-6 can communicate
with each other without being exposed to unwanted commu-
nications. For example, gears 325 of application 2 3055 run-
ning on node 2 3025 can receive communications from gears
325 of application 2 3055 running on node 1 302a, but cannot
receive communications from gears 325 of application 1 3054
running on node 1 302a.

[0046] FIG. 4 is a flow diagram illustrating a method 400
for applying custom NSLs to applications running on nodes
of' a multi-tenant PaaS system according to an implementa-
tion of the disclosure. Method 400 may be performed by
processing logic that may comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), soft-
ware (such as instructions run on a processing device), firm-
ware, or a combination thereof. In one implementation,
method 400 is performed by security network module 340
described with respect to FIG. 3.

[0047] Method 400 begins at block 410, where a request to
initialize a gear of a multi-tenant application on a node of a
PaaS system is received. In one embodiment, the request is
received at a server orchestration system agent of the node
and includes a UID of the multi-tenant application. At block
420, a UID of the application associated with the gear is
determined. As previously mentioned, this UID may be part
of the request to initialize the gear. In another implementa-
tion, the node may request this information from a server
orchestration system of the PaaS system.

[0048] At block 430, a custom NSL for the gear is gener-
ated based on the determined UID. In one implementation, a
transform is applied to the UID to generate the custom NSL..
The transform may be a transform that is universally applied
to UID across the PaaS system to generate custom NSLs for
gears. In other implementations, the custom NSL is based on
a SELinux™ security label that is already associated with the
application. In this case, the SELinux™ security label is
determined based on the UID and utilized to generate (e.g,
copy, or apply some other function to the SELinux™ security
label) the custom NSL. Then, at block 440, the generated
custom NSL is mapped to the UID of the gear. In one imple-
mentation, the mapping is maintained in the data store of the
node. In other implementations, the mapping is not stored and
block 440 may be skipped.

[0049] Lastly, at block 450, when the gear sends any net-
work packets to another node of the PaaS system, the outgo-
ing network packet is assigned a security label using the
custom NSL. In one implementation, the custom NSL is part
of'a security label in a header of the packet. For example, the
security label may be a CIPSO label. The custom NSL is
added to any packets sent from the gear.

[0050] FIG. 5 is a flow diagram illustrating a method 500
for control inter-process communication of applications run-
ning on nodes of a multi-tenant using custom NSLs, accord-
ing to an implementation of the disclosure. Method 500 may
be performed by processing logic that may comprise hard-
ware (e.g., circuitry, dedicated logic, programmable logic,
microcode, etc.), software (such as instructions run on a pro-
cessing device), firmware, or a combination thereof. In one
implementation, method 500 is performed by security net-
work module 340 described with respect to FIG. 3.

Jan. 8, 2015

[0051] Method 500 begins at block 510, where an incoming
network packet is received at a node of the PaaS system. The
network packet may be directed to a gear of a multi-tenant
application running on the node. At block 520, the packet is
parsed to determine a first custom NSL. In one implementa-
tion, the first custom NSL is part of a security label of the
header, such as a CIPSO label.

[0052] At block 530, a second custom NSL that is associ-
ated with the destination gear of the node is determined. The
second custom NSL may be determined by accessing a map-
ping of UIDs to custom NSLs maintained by the node. In one
implementation, the UID of the destination gear may be part
of the header information of the received packet. In another
implementation, the SELinux™ security label of the receiv-
ing application is determined (e.g., looked up) and used as the
second custom NSL.

[0053] At decision block 540, it is determined whether a
security policy of the OS of the node allows applications
associated with the second custom NSL to received network
packets labeled with the first custom NSL. In some imple-
mentations, this first and second custom NSLs should match
to satisfy the security policy. If so, the method 500 proceeds
to block 550, where the communication of the network packet
is allowed to continue on to the destination gear. On the other
hand, if the first custom NSL and the second custom NSL do
not match, then method 500 proceeds to block 560 where the
sending of the packet to the destination gear is block and/or
denied.

[0054] FIG. 6 illustrates a diagrammatic representation of a
machine in the example form of a computer system 600
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative implementations, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver or aclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while a single
machine is illustrated, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.
[0055] The computer system 600 includes a processing
device 602 (e.g., processor, CPU, etc.), a main memory 604
(e.g., read-only memory (ROM), flash memory, dynamic ran-
dom access memory (DRAM) (such as synchronous DRAM
(SDRAM) or DRAM (RDRAM), etc.), a static memory 606
(e.g., flash memory, static random access memory (SRAM),
etc.), and a data storage device 618, which communicate with
each other via a bus 608.

[0056] Processing device 602 represents one or more gen-
eral-purpose processing devices such as a microprocessor,
central processing unit, or the like. More particularly, the
processing device may be complex instruction set computing
(CISC) microprocessor, reduced instruction set computer
(RISC) microprocessor, very long instruction word (VLIW)
microprocessor, or processor implementing other instruction
sets, or processors implementing a combination of instruction

US 2015/0012962 Al

sets. Processing device 602 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. The processing device 602 is configured to execute
the processing logic 626 for performing the operations and
steps discussed herein.

[0057] The computer system 600 may further include a
network interface device 622 communicably coupled to a
network 664. The computer system 600 also may include a
video display unit 610 (e.g., a liquid crystal display (LCD) or
a cathode ray tube (CRT)), an alphanumeric input device 612
(e.g., akeyboard), a cursor control device 614 (e.g., a mouse),
and a signal generation device 620 (e.g., a speaker).

[0058] The data storage device 618 may include a machine-
accessible storage medium 624 on which is stored software
626 embodying any one or more of the methodologies of
functions described herein. The software 626 may also reside,
completely or at least partially, within the main memory 604
asinstructions 626 and/or within the processing device 602 as
processing logic 626 during execution thereof by the com-
puter system 600; the main memory 604 and the processing
device 602 also constituting machine-accessible storage
media.

[0059] The machine-readable storage medium 624 may
also be used to store instructions 626 to implement a network
security module to provide secure network labeling to control
inter-process communication in a multi-tenant PaaS system,
such as the network security module 340 described with
respect to FIG. 3, and/or a software library containing meth-
ods that call the above applications. While the machine-ac-
cessible storage medium 624 is shown in an example imple-
mentation to be a single medium, the term “machine-
accessible storage medium” should be taken to include a
single medium or multiple media (e.g., a centralized or dis-
tributed database, and/or associated caches and servers) that
store the one or more sets of instructions. The term “machine-
accessible storage medium” shall also be taken to include any
medium that is capable of storing, encoding or carrying a set
of instruction for execution by the machine and that cause the
machine to perform any one or more of the methodologies of
the disclosure. The term “machine-accessible storage
medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

[0060] In the foregoing description, numerous details are
set forth. It will be apparent, however, that the disclosure may
be practiced without these specific details. In some instances,
well-known structures and devices are shown in block dia-
gram form, rather than in detail, in order to avoid obscuring
the disclosure.

[0061] Some portions of the detailed descriptions which
follow are presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading to
a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com-
bined, compared, and otherwise manipulated. It has proven

Jan. 8, 2015

convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, sym-
bols, characters, terms, numbers, or the like.

[0062] Itshould be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “sending”, “receiving”, “attaching”, “forwarding”, “cach-
ing”, “referencing”, “determining”, “providing”, “imple-
menting”, or the like, refer to the action and processes of a
computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and memories into other data similarly represented as physi-
cal quantities within the computer system memories or reg-
isters or other such information storage, transmission or dis-
play devices.

[0063] The disclosure also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the purposes, or it may comprise a
general purpose computer selectively activated or reconfig-
ured by a computer program stored in the computer. Such a
computer program may be stored in a machine readable stor-
age medium, such as, but not limited to, any type of disk
including floppy disks, optical disks, CD-ROMs, and mag-
netic-optical disks, read-only memories (ROMs), random
access memories (RAMs), EPROMs, EEPROMs, magnetic
or optical cards, or any type of media suitable for storing
electronic instructions, each coupled to a computer system
bus.

[0064] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the method steps. The structure for a variety of these
systems will appear as set forth in the description below. In
addition, the disclosure is not described with reference to any
particular programming language. It will be appreciated that
a variety of programming languages may be used to imple-
ment the teachings of the disclosure as described herein.

[0065] The disclosure may be provided as a computer pro-
gram product, or software, that may include a machine-read-
able medium having stored thereon instructions, which may
be used to program a computer system (or other electronic
devices) to perform a process according to the disclosure. A
machine-readable medium includes any mechanism for stor-
ing or transmitting information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
(e.g., computer-readable) medium includes a machine (e.g., a
computer) readable storage medium (e.g., read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory devices,
etc.), etc.

[0066] Whereas many alterations and modifications of the
disclosure will no doubt become apparent to a person of
ordinary skill in the art after having read the foregoing
description, it is to be understood that any particular imple-
mentation shown and described by way of illustration is in no
way intended to be considered limiting. Therefore, references
to details of various implementations are not intended to limit

US 2015/0012962 Al

the scope of the claims, which in themselves recite only those
features regarded as the disclosure.
What is claimed is:
1. A method, comprising:
initializing, by a processing device of a node, a gear of an
application on the node, wherein the node hosts a plu-
rality of gears for a plurality of applications of a multi-
tenant Platform-as-a-Service (PaaS) system, and
wherein the plurality of applications comprising multi-
tenant applications having different owners;

determining a user identifier (UID) of the gear;

generating a custom network security label (NSL) of the
gear;

assigning the custom NSL to the gear; and

applying the custom NSL to an outgoing network packet

sent from the gear to another gear within the PaaS sys-
tem.

2. The method of claim 1, wherein the generating the
custom NSL further comprising applying a transform to the
UID, wherein the transform is universally applied by each
node of the PaaS system.

3. The method of claim 1, further comprising:

receiving, from a different node of the PaaS system, an

incoming network packet addressed to the gear;
parsing the incoming network packet to determine a cus-
tom NSL associated with the incoming network packet;
determining the custom NSL of the gear that the incoming
network packet is addressed to;

when a security policy of the VM allows interactions

between the determined custom NSL of the incoming
network packet and the custom NSL of the gear, allow-
ing communication of the incoming network packet to
proceed to the gear; and

when the security policy does not allow interactions

between the determined custom NSL of the incoming
network packet and the custom NSL of the gear, denying
the communication of the incoming network packet to
the gear.

4. The method of claim 1, wherein the security policy
allows interaction between the determined custom NSL of the
incoming network packet and the custom NSL of the gear
when the NSLs match.

5. The method of claim 1, wherein gear comprises a
resource-constrained process space of the node.

6. The method of claim 1, wherein the custom NSL is a
security label of an operating system (OS) of the node that
utilizes SELinux™ to provide Mandatory Access Control
(MAC).

7. The method of claim 1, wherein the assigning the custom
NSL to the gear further comprises mapping the custom NSL
to the UID of the gear in a data store maintained by the PaaS
system.

8. The method of claim 1, wherein applying the custom
NSL to the outgoing network packet further comprises incor-
porating the custom NSL as part of a Commercial Internet
Protocol Security Option (CIPSO) label of a header of the
outgoing network packet.

9. A system, comprising:

a memory; and

aprocessing device communicably coupled to the memory,

the processing device to:

initialize a gear of an application, wherein the system
hosts a plurality of gears for a plurality of applications
of a multi-tenant Platform-as-a-Service (PaaS) sys-

Jan. 8, 2015

tem, and wherein the plurality of applications com-
prising multi-tenant applications having different
owners;

determine a user identifier (UID) of the gear;

generate a custom network security label (NSL) of the
gear;

assign the custom NSL to the gear; and

apply the custom NSL to an outgoing network packet
sent from the gear to a node of the PaaS system.

10. The system of claim 9, wherein the processing device to
generate the custom NSL further comprises the processing
device to apply a transform to the UID, wherein the transform
is universally applied by each node of the PaaS system.

11. The system of claim 9, wherein the processing device
further to:

receive, from a different node of the PaaS system, an

incoming network packet addressed to the gear;

parse the incoming network packet to determine a custom

NSL associated with the incoming network packet;
determine the custom NSL of the gear that the incoming
network packet is addressed to;

when a security policy of the system allows interactions

between the determined custom NSL of the incoming
network packet and the custom NSL of the gear, allow-
ing communication of the incoming network packet to
proceed to the gear; and

when the security policy does not allow interactions

between the determined custom NSL of the incoming
network packet and the custom NSL of the gear, denying
the communication of the incoming network packet to
the gear.

12. The system of claim 9, wherein the security policy
allows interaction between the determined custom NSL of the
incoming network packet and the custom NSL of the gear
when the NSLs match.

13. The system of claim 9, wherein the custom NSL is a
security label of an operating system (OS) of the system that
utilizes SELinux™ to provide Mandatory Access Control
(MAO).

14. The system of claim 9, wherein the processing device to
assign the custom NSL to the gear further comprises the
processing device to map the custom NSL to the UID of the
gear in a data store maintained by the PaaS system.

15. The system of claim 9, wherein the processing device to
apply the custom NSL to the outgoing network packet further
comprises the processing device to incorporate the custom
NSL as part of a Commercial Internet Protocol Security
Option (CIPSO) label of a header of the outgoing network
packet.

16. A non-transitory machine-readable storage medium
including data that, when accessed by a processing device,
cause the processing device to perform operations compris-
ing:

receiving, by the processing device of a node, an incoming

network packet directed to a gear executed by the node,
wherein the node hosts a plurality of gears for a plurality
of applications of a multi-tenant Platform-as-a-Service
(PaaS) system, and wherein the plurality of applications
comprising multi-tenant applications having different
owners;

parsing the incoming network packet to determine a first

custom network security label (NSL) associated with the
incoming network packet;

US 2015/0012962 Al

determining a second custom NSL associated with the gear
to which the incoming network packet is directed;

when a security policy of the node allows interactions
between the first custom NSL of the incoming network
packet and the second custom NSL of the gear, allowing
communication of the incoming network packet to pro-
ceed to the gear; and

when the security policy does not allow interactions

between the first custom NSL of the incoming network
packet and the second custom NSL of the gear, denying
the communication of the incoming network packet to
the gear.

17. The non-transitory machine-readable storage medium
of claim 16, wherein the security policy allows interaction
between the determined custom NSL of the incoming net-
work packet and the custom NSL of the gear when the NSLs
match.

18. The non-transitory machine-readable storage medium
of claim 17, wherein the first and second NSLs are based on
security labels applied to the associated applications, wherein
the security labels are based on a user identifier (UID) of the
applications.

19. The non-transitory machine-readable storage medium
of claim 16, wherein the security labels are part of a security
protocol of an operating system (OS) of the node that utilizes
SELinux™ to provide Mandatory Access Control (MAC).

20. The non-transitory machine-readable storage medium
of claim 16, wherein the first custom NSL is applied to a
security label of a header of the incoming network packet
when sent from another node of the PaaS system that is
running a gear associated with the first custom NSL.

#* #* #* #* #*

Jan. 8, 2015

