
United States Patent (19)
Schettler et al.

FLTERING SYSTEMAND METHOD FOR
HGH PERFORMANCE NETWORK
MANAGEMENT MAP

54)

(75) Inventors: Robert Dwight Schettler; Eric A.
Pulsipher; Brian J. Atkins, all of Fort
Collins, Colo.

73) Assignee: Hewlett-Packard Company. Palo Alto,
Calif.

21

22)

51
(52)

Appl. No.: 551,499
Filed: Nov. 1, 1995
int. Cl. ... G06F 15/177
U.S. Cl. 395/200.54; 345/335; 395/284;

395/830: 395/200.1: 395/828; 711/170
Field of Search 395/497.01. 284.

395/200.1, 653, 828, 830, 832, 834, 200.54;
345/.333,334, 335

58

(56) References Cited

U.S. PATENT DOCUMENTS

4,107,784 8/1978 Van Bemmelen 345/337
5,021,976 6/1991 Wexelblat et al. 345/356

USOO5787252A

11) Patent Number: 5,787,252
(45) Date of Patent: Jul. 28, 1998

5,185,860 2/1993 Wu 395/200.54
5,438,659 8/1995 Notess et al. 345/335
5,603.034 2/1997 Swanson 395/701
5,627,979 5/1997 Chang et al. 345/335

Primary Examiner Tod R. Swann
Assistant Examiner-J. Peikari

57 ABSTRACT

Discovery/layout software configures a general purpose
computer system to act as a management station using an
industry standard SNMP protocol. The discovery/layout
software has a discovery mechanism and a layout mecha
nism which, in combination, permit the discovery/layout
software to provide various submaps to a display for illus
trating network topology, which includes devices and device
interconnections of a network. The submaps correspond to
various hierarchical views of a network. Significantly, one or
more filtering systems are provided in the discovery/layout
software for filtering objects to be displayed within the
submaps. The filtering systems reduce clutter in the
submaps. reduce memory usage and associated expense, and
reduce interprocess communication (context switching) to
achieve higher performance.

31 Claims, 25 Drawing Sheets

MPUT DEVICE 106 foe DISPLA

GRAPHICAL USER MAP DATABASE
NTERFACE (GU) - 326

a 324bs
wrforating torology to map LAYOUT MECHANISM
APPLICATIOW TRANSLATOR 318 .

332 I 320i,
- -) - --

goa FILTERING FILTERING LIBRARY
02 SYSTEM f(03 521
- - - - t - - - - - -a- - - - - - - - - - - - -

C C
TOPOLOGY 316

MANAGER 310 DA TA:ASE
512b is 3. NE whi. For 06 DISCOVERY MECHANISM

306a 5065- - - - - a m re- - - - - - - - "

18 NETWORK) 118 NETWORK

31 2d

.

5,787,252 Sheet 1 of 25 Jul. 28, 1998 U.S. Patent

5,787,252 Sheet 3 of 25 Jul. 28, 1998 U.S. Patent

€ 5)|-||

(XIOMIEN JII)
ÕI? JEDWWW Á0070d01 @J WEISASZOÉ |

5,787,252 Sheet 5 of 25 Jul. 28, 1998 U.S. Patent

| A&EMOJSIJ

XÀJOM I EN ŒII

WTEGRATING
APPLICATION

?IJ XHOM I EN ??? WEIS?S

5,787,252 U.S. Patent

- N.

S

S

5,787,252 Sheet 7 of 25

NOVI VZ/77/1/W| 772/EWE|0 }}}}/10

70

Jul. 28, 1998

ZOZ

U.S. Patent

(15 JN||

5,787,252

849

Sheet 8 of 25 Jul. 28, 1998

909

U.S. Patent

N

U.S. Patent Jul. 28, 1998 Sheet 9 of 25 5,787,252

EWTER FROM FIG 7)

ETWORKNETCTR)
PASS Fil TERS

GET LAST OF OBJECTS (W
NETWORK (NETCTR)

OBECIOB ICTR
PASS FILTERS2

909

|NOR METOTR
RETURN
(TO FIG 7)

ADD OBJ TO MAP
F.G. f6

ETOR
>

it NETWORK

OBJECT, YES

5,787,252 Sheet 10 of 25 Jul. 28, 1998 U.S. Patent

90/

SJÁ 900!
900! 700||

5,787,252 Sheet 11 of 25 Jul. 28, 1998 U.S. Patent

SEÁ
900! 900!

5,787,252 Sheet 12 of 25 Jul. 28, 1998 U.S. Patent

5,787,252 Sheet 13 of 25 Jul. 28, 1998 U.S. Patent

SE]

90€/

SEA

5,787,252 Sheet 14 of 25

[80 SH 1 S/ D?C ?SS7d 1/

Jul. 28, 1998

SEA

U.S. Patent

U.S. Patent Jul. 28, 1998 Sheet 15 of 25 5,787,252

EWTER (FROM FIG 14.) 1502 1402

FILTER EXPR-LIST OF FELDS/VALUES

|WT FIELDCTR 1504

EXPR- 1506
FITEREXPRFIELDCTR)

EXPRVAL = EXPR VALUE 1508

1510
OBJWAL=OBJECTS VALUE 1514
FOR THIS EXPRFIELD

E. Moobect Does not eff
FILTER SPECIFICATION

OBJWA1 = NO
EXPRVA12

1516 YES
WOR FIELDCTR

1518
NO IELDOTR

>itXPR2
YES

OBJECT DOES MEET FILTER SPECIFICATION

FIG 15

U.S. Patent Jul. 28, 1998 Sheet 16 of 25 5,787,252

1006
EWTER FROM FIG 10)

|NIT OBJCTR-1601

DETERMINE WHICH
SUBMAP IS AFFECTED

1604

1602

DOES SUBMAP
EXIST 2

CREATE SUBMAP

POPULATE SUBMAP

COMPUTE SUBMAP CHARGES
AS PER OURRENT TRAP 1610

FiG 17

WOR OB ICTR
YES

OBJCTR
>tOBJECTS2

YES
RETURN (TO FIG 10)

FIG 16

5,787,252 Jul. 28, 1998 Sheet 17 of 25 U.S. Patent

J0WWHL)SHA = EdA 1/80

5,787,252

X}{0/M13/W 007

Sheet 18 of 25

SEA

Jul. 28, 1998 U.S. Patent

U.S. Patent Jul. 28, 1998 Sheet 21 of 25 5,787,252

1.2102 1720,

IFOBJ-OB HD OF OB INFO

IS NETGa? NET-N-(RETURN (To FG 7
DOES 2ng NO IS NODOBJ W INET2

dres IS FO51 WNET2 ES 2118
2116-1N10 ADD (FOBJ

ADD CONNECTION BETWEEW NODEOBJ TO
SYMCHANGELIST

2120

2122

SUBMAP

FIG 21A

U.S. Patent Jul. 28, 1998 Sheet 22 of 25 5,787,252

2124NO
IS SEGOBJ W NET2 --(RETURN (TO FIG 17)

1720E d765-226
N IS NODEOBJ W NET?

S2128
1S (FOBJ W NET2

NO

YES

ADD CONNECTION BETWEEN
NODEOBU AND SEGOBf TO

NEWSYMAST
ADD FOB I TO
SYMCHANGELIST

2134
SEG-COWIENTS
OF SEGOBJ's SUBMAP

IS NETOBJ W SEG2

IS FOBJ W SEG2 2142

ADD foB / TO ADD (FOB) TO
NEWSYMLIST SYMCHANGELIST

2144

FIG 21B

U.S. Patent Jul. 28, 1998 Sheet 23 of 25 5,787,252

FROM FIG.

ADD (FOBJ TO
NEWSYMLIST ADD FOBJ TO

SYMCHANGELIST

RETURN (TO FIG 17)

FIG 21C

U.S. Patent Jul. 28, 1998 Sheet 24 of 25 5,787,252

1008

ENTER (FROM FIG 10)

22O2

PASS NEWSYMLIST
TO GUI

PASS SYMCHANGELIST
TO GUI

2204

FIG 22

U.S. Patent Jul. 28, 1998 Sheet 25 of 25 5,787,252

2500

2302

USER EXPLODES" AN OBJECT

2304

IS CHILD SUBMAB N MAPP

CREATE AND POPULATE
SUBMAP

2308

OPEN CHILD SUBMAP

FIG 23

5,787.252
1

FILTERING SYSTEMAND METHOD FOR
HIGH PERFORMANCE NETWORK

MANAGEMENT MAP

FIELD OF THE INVENTION

The present invention generally relates to data commu
nication networks and more particularly, to a filtering
system and method for permitting high performance gen
eration of a network management map of a data communi
cation network in a management station.

BACKGROUND OF THE INVENTION

A data communications network generally includes a
group of devices. for instance, computers, repeaters, bridges,
routers, etc., situated at network nodes and a collection of
communication channels for interconnecting the various
nodes. Hardware and software associated with the network
and particularly the devices permit the devices to exchange
data electronically via the communication channels.
The size of networks varies. A local area network (LAN)

is a network of devices in close proximity, typically less than
one mile, and usually connected by a single cable, for
instance, a coaxial cable. A wide area network (WAN) is a
network of devices which are separated by longer distances,
often connected by, for example, telephone lines or satellite
links. In fact, some WANs span the U.S. as well as the world.
Furthermore, many of these networks are widely available
for use by the public, including commonly universities and
commercial industries.
A very popular industry standard protocol for data com

munication along the networks is the Internet Protocol (IP).
This protocol was originally developed by the U.S. govern
ment's Department of Defense, and has been dedicated for
public use by the U.S. government. In time, the Transmis
sion Control Protocol (TCP) and the Unreliable Datagram
Protocol (UDP) were developed for use with the IP. The
former protocol (TCP/IP) is a protocol which guarantees
transfer of data without errors, as it implements certain
check functionality, and the latter protocol (UDP/IP) is a
protocol which does not guarantee transfer of data, but
requires much less overhead than the TCP/IP platform.
Furthermore, in order to keep track of and manage the
various devices situated on a network, the Simple Network
Management Protocol (SNMP) was eventually developed
for use with a UDP/IP platform. The use of the foregoing
protocols has become extensive in the industry, and numer
ous vendors now manufacture many types of network
devices which can employ these protocols.
Some management stations have on-demand submap

capabilities. One such example is Hewlett-Packard's
"OPENVIEW"TM. In on-demand submap systems, a submap
corresponds with each view of the network to be displayed
The network management map is the collection of all
submaps. In these on-demand submap systems, and particu
larly the "OPENVIEW"TM system, the user specifies which
submaps the user wishes to have available, and hence,
specifies the submaps which are resident within the map.
Moreover, the user can also open, or "explode," a submap
during operation even though it is not specified as resident
in the map. In this case, the submap is generated immedi
ately from the topology data when the user prompts the
manager station to open the submap, hence the name
on-demand.

Although the presently available SNMP management
stations are meritorious to an extent, the art of SNMP
management stations is still in the state of infancy, and the

10

15

25

30

35

5

SO

55

65

2
performance of these management stations can still be
enhanced and optimized. A specific area where optimization
is envisioned involves customizing the network manage
ment map. Currently, a network topology is discovered, and
all this topology information is displayed in the network
management map. This predicament results in clutter of
objects in the submaps and in dilution of the functionality
pertaining to each submap. Furthermore, this situation
results in unnecessary usage of memory space with resultant
undesirable expense and excessive interprocess
communication, or context switching. which degrades per
formance.

Thus, a need exists in the industry for a system and
method for better customizing the contents of the network
management map for a management station for the purpose
of reducing object clutter, minimizing memory
requirements, and minimizing expense, and optimizing per
formance (including speed).

SUMMARY OF THE INVENTION

Briefly described, the present invention is a filtering
system and method for a management station for custom
izing the contents of a network management map. The
system comprises a processor which executes the instruc
tions provided by the various software elements of the
system, a memory for storing the various software elements,
a display for showing the devices and interconnections of
the network, an interface that interconnects the foregoing
elements and the network, a discovery mechanism for deter
mining the network topology data, a layout mechanism for
converting the network topology data to map data and for
driving the display with the map data, and a filtering system,
which is a significant feature of the present invention as will
be further described immediately hereafter.
The filtering system can be situated in one or more of

three possible locations in the management station. First, the
filtering system can be situated between the discovery
mechanism and the layout mechanism so that the filtering
system filters objects within the topology data that pass from
the discovery mechanism to the layout mechanism. Second,
the filtering system can also be situated between the layout
mechanism and the network so that the filtering system
filters objects within the topology data that pass from the
network to the discovery mechanism. Third, the filtering
system can also be situated between discovery mechanisms
so that the filtering system filters objects within the topology
data that passes between the discovery mechanisms.

In an implementation where more than one filtering
system is employed, it is desirable that the filtering systems
utilize a common filtering library, which contains the filter
ing specification pertaining to the objects. The filtering
specification associated with each filtering system can
include a list of one or more objects to be allowed or
disallowed, a boolean expression (or equation) defining
which objects are to be allowed or disallowed, or any other
mechanism for specifying a filtering condition.
The filtering system and method of the present invention

has numerous other advantages, a few of which are delin
eated hereafter, as examples.

Another advantage of the filtering system and method is
that they customize the contents of a network management
map generated by a management station so as to reduce
clutter of objects in submaps.

Another advantage of the filtering system and method is
that they minimize memory requirements as well as resultant
expense for generating a network management map in a
management station.

5,787.252
3

Another advantage of the filtering system and method is
that they enhance the performance of a process for gener
ating a network management map in a management station.
Another advantage of the filtering system and method is

that they minimize requisite processing time for producing
a network management map in a management station.
Another advantage of the filtering system and method is

that they minimize requisite interprocess communication in
a management station for generating a network management
map of a data communications network.
Another advantage of the filtering system and method is

that they are simple in design and easy to implement.
Another advantage of the filtering system and method is

that they are efficient as well as reliable in operation.
Other features and advantages of the present invention

will become apparent to one with skill in the art upon
examination of the following drawings and detailed descrip
tion. All such additional objects, features, and advantages
are intended to be included herein within the scope of the
present invention, as is defined in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be better understood with
reference to the following drawings taken in the context of
the text. The drawing elements are not necessarily to scale
relative to each other, emphasis instead being placed upon
clearly illustrating principles of the present invention.
Further, like reference numerals designate corresponding
parts throughout the several views.

FIG. 1 is a block diagram of a management station having
discovery/layout software which employs the filtering sys
tem and method of the present invention;

FIG. 2 is a schematic diagram illustrating a network
management map, which comprises a collection of submaps,
any of which can be displayed on the display of the
management station by the discovery layout software of
FIG. 1:

FIG. 3 is a block diagram of a first embodiment of the
management station of FIG. 1 wherein the novel filtering
system is situated between a layout mechanism and a
discovery mechanism;

FIG. 4 is a second embodiment of the management station
of FIG. 1 wherein the novel filtering system is situated
between the discovery mechanism and the network;

FIG. 5 is a third embodiment of the management station
of FIG. 1 wherein the novel filtering system is situated
between parallel discovery mechanisms;

FIG. 6 is a fourth embodiment of the management station
of FIG. 1 wherein a plurality of filtering systems utilize a
common filtering library;

FIG. 7 is a flow chart illustrating the architecture and
functionality of the topology-to-map translator of FIG. 3;

FIG. 8 is a flow chart illustrating the architecture and
functionality of an initialize filters block of FIG. 7;

FIG. 9 is a flow chart illustrating the architecture and
functionality of an update map block of FIG. 7;

FIG. 10 is a flow chart illustrating the architecture and
functionality of an asynchronous events block of FIG. 7;

FIG. 11 is a flow chart illustrating the architecture and
functionality of a read events block of FIG. 10;

FIG. 12 is a flow chart illustrating the architecture and
functionality of a retrieve object information block of FIG.
10;

FIG. 13 is a flow chart illustrating the architecture and
functionality of a filter object list block of FIG. 12;

10

15

25

30

35

45

55

65

4
FIG. 14 is a flow chart illustrating the architecture and

functionality of a check object (against filter) block of FIG.
13;

FIG. 15 is a flow chart illustrating the architecture and
functionality of a check object (against all filter expressions)
block of FIG. 14;

FIG. 16 is a flow chart illustrating the architecture and
functionality of a compute map changes block of FIG. 10;

FIG. 17 is a flow chart illustrating the architecture and
functionality of a compute submap changes block of FIG.
16;

FIG. 18 is a flow chart illustrating the architecture and
functionality of a handle network change block of FIG. 17;

FIG. 19 is a flow chart illustrating the architecture and
functionality of a handle segment change block of FIG. 17;

FIG. 20 is a flow chart illustrating the architecture and
functionality of a handle node change block of FIG. 17;

F.G. 21A, FIG. 21B and FIG. 21C show a flow chart
illustrating the architecture and functionality of a handle
interface change block of FIG. 17;

FIG. 22 is a flow chart illustrating the architecture and
functionality of an update map block of FIG. 10; and

FIG. 23 is a flow chart illustrating the architecture and
functionality of an on-demand submap block within the
graphical user interface (GUI) of FIGS. 3-5.

DETALED OF THE PREFERRED
EMBODIMENTS

The filtering system of the present invention can be stored
on any computer-readable medium for use by or in connec
tion with a computer-related system or method. In the
context of this document, a computer-readable medium is an
electronic, magnetic, optical, or other physical device or
means that can contain or store a computer program for use
by or in connection with a computer-related system or
method. Thus, for example, the novel filtering system can be
stored and transported on a portable diskette, or as another
example, the filtering system could be stored in the memory
of a computer for the purpose of driving the computer when
called upon.

FIG. 1 shows a block diagram of an object-oriented
management station 100 which is implemented with a
general purpose computer system containing discovery/
layout software 101, which employs the filtering system and
associated methodology of the present invention. The novel
filtering system is designated by reference numeral 103 in
FIG. 1. With further reference to FIG. 1, the management
station 100 contains a conventional processor 102. The
processor 102 communicates to other elements within the
management station 100 over an interface 104, such as a bus
or bus network. An input device 106, for example, a key
board or mouse, is used to input data from a user of the
management station 100, and a display 108 is used to output
data to the user. A network interface 112 is used to interface
the management station 100 to a network 118 in order to
allow the management station 100 to act as a node on a
network 118. A memory 110 within the management station
100 contains discovery/layout software 101. The discovery/
layout software 101 communicates with a conventional
operating system 122 and conventional network software
124 to discover the nodes on the network 118. The network
software 124 serves as the intelligence, including validation,
for the data communication protocols. As shown in FIG. 1,
in the preferred embodiment, the network software imple
ments the P, the TCP and UDP over the IP and the SNMP
over the UDP. All of the foregoing protocols are well known
in the art.

5,787.252
5

The discovery/layout software 101 implements object
oriented functionality. In the context of SNMP managers and
this document, object-oriented means that most of the man
agement system actions and processes that the user can
invoke are oriented toward a class of devices rather than
individually managed network nodes.

Generally, the discovery/layout software 101 of FIG. 1 is
configured to discover the network topology, that is, network
nodes and node interconnections existing on the network
118, and to construct a network management map compris
ing various submaps, any of which can be used for display
ing the network topology on the display 108. FIG. 2 shows
a network management map 200 which is generated by the
discovery/layout software 101 from topology data discov
ered from the network 118. The discovery/layout software
101 can drive any of the various submaps to the display 108
(FIG. 1) for viewing by the user.
The submaps in the map 200 of FIG. 2 are arranged in a

hierarchy. A root submap 202 is defined at a root level. The
root submap 202 represents the highest logical level submap
in the hierarchy and shows objects 203 acting as anchor
points for different submap hierarchies. Each hierarchy is a
separate management domain. This could be, for instance, a
network, logical grouping of nodes, or some other domain.
An internet submap 204 is defined at an internet level and is
generated by "exploding" an object 203 within the root
submap 202. "Exploding" in the context of this document
means that the user prompts the management station 100
with the input device 106 to break down and provide more
data pertaining to the object 203 at issue. Further, the
internet submap 204 illustrates objects 203 in the form of
networks and routers. Any one of a number of network
submaps 206 can be exploded from the internet submap 204.
Each network submap 206 shows objects 203 in the form of
segments and connectors. Any one of a number of segment
submaps 208 can be exploded from an object 203 within a
network submap 206. Each segment submap 208 shows
objects in the form of network nodes. Finally, any one of a
number of node submaps 210 can be exploded from an
object 203 within a segment submap 208. Each node submap
210 shows objects 203 in the form of interfaces within that
node.

In the preferred embodiment, although not necessary to
practice the present invention, the discovery/layout software
101 implements on-demand submaps in order to save
memory and processing time. The concept of on-demand
submaps is to only place those submaps in the map 200 of
FIG.2 which the user wants to see. The net resultis that only
a portion of the submap hierarchy is in the network man
agement map 200 at a given time. In FIG. 2, submaps
(nonresident) which are not present, but would be created
upon prompting by the user, are indicated by hatching. The
resident submap subset of the hierarchy will change over
time as the user traverses the submap hierarchy and causes
nonresident submaps to be created.
A. First Embodiment Of The Discovery/Layout Software
A high level block diagram of a first embodiment of the

discovery layout software 101 (FIG. 1) is set forth in FIG.3.
With the exception of the filtering system 103, the architec
ture of the discovery/layout software 101 in FIG. 3 is
essentially the same as or similar to the architecture of
Hewlett-Packard Company's well known and commercially
available management software package called "OPEN
VIEW, "TM
As shown in FIG. 3. at a general architecture level, the

discovery/layout software 101 comprises a discovery
mechanism 302 for discovering nodes and interconnections

O

15

25

30

35

45

55

65

6
of the network 118 and a layout mechanism 304 for receiv
ing topology data from the discovery mechanism 302 and
for generating the map 200 (FIG. 2) for driving the display
108. Moreover, one or more integrating applications 332
may communicate display and map information with the
layout mechanism 304.
The discovery mechanism 302 has a network monitor 306

connected to the network 118 as indicated by connections
308a, 308b, a topology manager 310 connected to the
network monitor 306 as indicated by arrows 312a, 312b, and
a topology data base 314 in communication with the topol
ogy manager 310 as indicated by arrow 316.
The network monitor 306 transmits and receives data

packets to and from the network 118. The network monitor
306 discovers and monitors network topology, as indicated
by arrows 308a, 308b. When network topology changes on
the network, the network monitor 306 generates events, or
traps (SNMP vernacular), which include an object identifier
and object change information. The network monitor 306
can also receive events from other devices, such as a router,
in the network 118. The network monitor 306 interacts with
the network 118 by way of the network software 124 (FIG.
1), which essentially comprises protocol stacks, correspond
ing to IP, TCP, UDP, and SNMP in the preferred
embodiment, and which generally implements these proto
cols and performs validation functions. Furthermore, the
network monitor 306 populates the topology data base 314
by way of the topology manager 310 and notifies the
topology manager 310 of events (topology changes). Finally,
it should be noted that U.S. Pat. No. 5,185.860 to Wu, which
is incorporated herein by reference, describes a node dis
covery system which could be employed to implement the
network monitor 306 herein.
The topology manager 310 manages the topology data

base 314, as indicated by bidirectional arrow 316. The
topology manager 310 prompts the network monitor 306 to
update topology data related to particular events, as indi
cated by arrow 312a, and receives topology updates. as
indicated by arrow 312b.
The topology data base 314 stores topology data based

upon objects, which are used to partition the network for
logical reasons. Objects include. for example but not limited
to, a network, a segment, a computer, a router, a repeater, a
bridge, etc. Moreover, the topology data stored with respect
to the objects includes, for example but not limited to, an
interface or device address, an interface or device type, an
interface or device manufacturer, and whether an interface
or device supports the SNMP
The filtering system 103 receives topology data from the

topology manager 310 as indicated by arrow 320b, filters
the topology data, and passes the processed data to the
layout mechanism 304, as shown by arrow 320b". The
filtering system 103 maintains a filtering library 321, which
specifies which objects within the topology data are to be
communicated from the discovery mechanism 302 to the
layout mechanism 304. In essence, the library determines
whether objects are allowable objects or nonallowable
objects. Moreover, allowable objects are ultimately con
verted into map data and displayed, whereas nonallowable
objects are not converted into map data and are not dis
played.
Although not required for practicing the present

invention, in the preferred embodiment, the filtering library
contains a listing of filter names that are organized in three
groups, namely, sets, filters, and filter expressions, which are
described briefly hereafter.
A set is simply a list of strings. The only operation

available on sets is the test for membership (which can be

5,787,252
7

prefaced with the boolean NOT operator). Set members may
be enumerated in the filter file itself, or may be listed in a
separate file. Any set member beginning with a slash (/) is
assumed to be the name of a file where set members are
listed, one per line. Files in number strings can be mixed in
the same set definition.

Filters are boolean expressions of database fields and
values. Any suitable set of boolean expressions can be
utilized within the filters. In the preferred embodiment, the
boolean operators include the following: "=" for "equal";
“=" for “not equal"; "<" for "less than”; “<="for "less than
or equal"; ">" for "greater than"; ">=" for greater than or
equal"; "-" for "approximately equal"; and "" for "not
approximately equal." Moreover, the operands that are com
bined by the aforementioned boolean operators are either a
field name or a literal value to which database field values
are compared.
A filter expression allows multiple filters to be applied to

a set of objects without requiring a new filter which is just
the logical combination of others. The only valid operands
in a filter expression are filters previously defined in the
same filter file. Further, any suitable set of boolean expres
sions can be utilized within the filter expressions. In the
preferred embodiment, the boolean operators that are used in
the filter expressions are different than those that are used in
the filters. Specifically, the following boolean expressions
are utilized in the filter expressions: "II" for "or"; "&&" for
a "and"; "" for "not"; and “(“and")" which are utilized to
help define the order for operand processing.

Essentially, these groups represent three different ways
for a user to specify the filtering specification, the way
depending upon the type of object to be filtered. The
language for the filtering library 321 in the preferred
embodiment is set forth hereafter in Table A. The listing in
Table A is referred to herein as the filter definition file
grammar, and it is maintained in the memory 110 (FIG. 1).

O

15

20

25

35

8

TABLE A-continued

Memberlist

Member Stint

Filters

Filter Stints

Filter Stamt
Expression

BooBxpr

SetBxpr
FilterExprs

FilterExpr Stimts

FilterExpr Stimt
Filtexpr

FieldName
Exproperator
PatternOperator
FilterExprName
FilterName
SetName
StringOrdentifier
Description

::= Member. Stimt
Memberlist", Member Stint
:= String0rdentifier
<file specification>
:= "Filters" "" Filter Strmis “"

Filters' "{" '}"
::= Filter Stunt
Filter Stunts Filter. Stint

:=FilterName Description "" Expression “”
::= Expression "&&." Expression
| Expression "I" Expression
“” Expression
"C" Expression")"
Bool Expr

| Setexpr
::= Field Name
I FieldName ExprOperator <string>
I FieldName ExprOperator <integer
| FieldName PatternOperator <ip address>
| FieldName PatternOperator <smp oidb
::= FieldName 'N' SetName
::= "FilterExpressions" "{" FilterExpr Stmts "}"

FilterExpressions” “"“”
::= FilterExprStunt
FilterExpr Stimts Filter Expr Stmt

::= FiltedExprName Description “{" Filtexpr “}"
::= Filtexpr “&s." Filtexpr
| FitExpr "FiltExpr
t"" FiltExpr
"c" FiltExpr "y"
FilterName
:= Stringordentifier
:- - - a -">''

An example of a filter file that is used by the filtering
library 321 is set forth hereafter:

TABLE B

Sets {
Critical Nodes “Any critical nodes" { owl, variopenview/critical nodes }
BackboneNodes "Backbone routers" variopenview?backbone-nodes }

Filters {
Router" isRouter = TRUE
Level2Conn “Any level 2 connector" is Bridge = TRUE && ishtub = TRUE
MultiF “Multiple Interfaced nodes" numinterfaces > 1 }
Critical " ipHostname in Critical Nodes }
Backbone "{ipHostname in BackbonesNodes }
AdminNode " ipAddress ~ 15.2.111.

Filter Expressions
Connectors "All network connectors" {Router && Level2Conn
MultiSegmentHosts "Nodes an several segments' Level2Conn && Multihomed)
BackboneNodes "All nodes on the backbone" Router || Backbone

TABLE A

Filter File ::= Sets Filters FilterExprs
Sets ::= SETS "{" Set Stimts “”

SETs "{" '}"
Set Stunts ::= Set Stimt

Set Stints Set Stimt
Set Stumt := SetName Description “” Memberlist “”

As shown in Table B, the filters are divided into three
groups, namely, sets, filters, and filter expressions.

6O In the example of Table B, the following are filter names:
Critical Nodes, BackboneNodes, Router, Level2Conn,
MultiF. Critical, Backbone, AdminNode, Connectors,
MultiSegmentHosts, and BackboneNodes. In this example,
Critical Nodes, for instance, are specified as the node "ov1.”

65 and a file "?war/openview/critical nodes," and therefore, the
foregoing nodes are allowable and will be communicated by
the filtering system 103. Further, in this example, the filter

5,787.252

expression "Connectors."for instance, is allowable when the
filter expression "Router && Level2Conn" is true, i.e., when
both Router and Level2Conn are true, or allowable.
The layout mechanism 304 has a topology-to-map trans

lator 318 in communication with the filtering system 103 as
indicated by unidirectional arrow 320b" and the topology
manager 310 as indicated by unidirectional arrow 320a, a
graphical user interface (GUI) 322 in communication with
the topology-to-map translator 318 as indicated by arrows
324a. 324b, and a map database 326 in communication with
the GUI 322 as indicated by bidirectional arrow 328. The
integrating application 332 communicates information with
the GUI 322, as indicated by arrows 333a, 333b.

It should be noted that the network monitor 306, the
topology manager 310, the translator 318, and the GUI 322
take turns utilizing the combination of the operating system
122 (FIG. 1) and the processor 102 (FIG. 1) in order to
accomplish their respective functions. A "context switch" as
used herein refers to a change in control of the system 122
and/or processor 102 by the foregoing software elements.
The translator 318 converts topology data from the topol

ogy data base 314 to map data and constructs the various
submaps 202-210 in the network management map 200 of
FIG. 2. The translator 318 can forward a request to the
topology manager 310, as indicated by arrow 320a, in order
to obtain topology data regarding particular objects.
Moreover, in addition to forwarding topology data to the
translator 318 upon request, the topology manager 310
advises the translator 318, by way of filtering system 103 as
indicated by the arrows 320b', 320b", when topology data
has changed based upon an event so that the translator 318
can make any appropriate changes in the Submaps.
The GUI322 manages the map database 326, as indicated

by the bidirectional arrow 328, and manages the display 108
and input device 106, as indicated by the arrows 330a,330b.
The GUI 322 receives map updates from the translator 318,
as indicated by arrow 324b, and submits user-triggered
events to the translator 318, as indicated by arrow 324a. A
user-triggered event includes a prompt 330a from a user to
explode an object, as described relative to FIG. 2. Finally, it
should be noted that U.S. Pat. No. 5.276,789 to Besaw et al.,
which is incorporated herein by reference, describes a
graphical user interface which could be employed to imple
ment the GUI 322 herein.
B. Second Embodiment Of The Discovery/Layout Software
Ahigh level block diagram of a second embodiment of the

discovery/layout software 101 (FIG. 1) is set forth in FIG. 4.
As shown in FIG. 4, the second embodiment is constructed
similar to the first embodiment (FIG. 3), and the previous
discussion of similarly identified elements is incorporated
herein by reference. In fact, both the discovery mechanism
302 and the layout mechanism 304 of the first and second
embodiments of the discovery/layout software 101 are gen
erally identical. However, the filtering system 103 in the
second embodiment is situated between the discovery
mechanism 302 and the network 118 so that the filtering
system 103 filters objects that pass from the network 118 to
the discovery mechanism 302. With this configuration, the
filtering system 103 prevents nonallowable objects from
even being stored in the topology data base 314.
C. Third Embodiment Of The Discovery/Layout Software
A high level block diagram of a third embodiment of the

discovery/layout software 101 (FIG. 1) is shown in FIG. 5.
The third embodiment of FIG. 5 is constructed similar to the
first and second embodiments (FIGS. 3 and 4), and the
previous discussion of similarly identified elements is incor
porated herein by reference. In fact, the layout mechanism

10

15

25

35

45

50

55

65

10
304 of the third embodiment is identical to that of the first
and second embodiments. However, a significant difference
between the third embodiment and the first and second
embodiments is the fact that the third embodiment utilizes a
plurality of discovery mechanisms 302 (only two are shown
in FIG. 6 for simplicity, but more are possible).
The discovery mechanisms 302 generally function in

parallel to discover devices and interconnections on the
network 118. In the preferred embodiment, the topology
from each discovery mechanism 302 is merged to a single
particular topology manager 310 where it is then commu
nicated to the topology-to-map translator 318, as indicated
by reference arrow 320b in FIG. 5. Moreover, requests for
topology data are passed from the translator 318 to the
particular topology manager 310, which then retrieves the
information.
The discovery mechanisms 302 can transfer topology data

between their respective topology managers 310 by way of
a filtering system 103, as indicated by arrows 501a, 501b,
502a, 502b. The filtering system 103 as used in this context
prevents transfer of nonallowable objects from one of the
discovery mechanisms 302 to the other, while permitting
transfer of allowable objects. Further, whether an object is
allowable or nonallowable is defined by the filtering library
321, as previously discussed.
D. Fourth Embodiment Of The Discovery/Layout Software
A high level block diagram of a fourth embodiment of the

discovery/layout software 101 (FIG. 1) is set forth in FIG. 6.
As shown in FIG. 6, the fourth embodiment comprises a
hybrid of the features associated with the first, second, and
third embodiments. The fourth embodiment includes at least
two discovery mechanisms 302 (only two are shown in FIG.
6 for simplicity, but more are possible). Moreover, the fourth
embodiment includes a plurality of filtering systems 103, all
utilizing a common filtering library 321, as indicated by
reference arrow 602.
More specifically, a first filtering system 103 is situated

between the discovery mechanisms 302 and the layout
mechanism 304, as indicated by arrows 320b', 320b". For
simplicity, only the filter data flow is illustrated in FIG. 6.
The aforementioned placement of the filtering system 103 is
similar to that which was described relative to the first
embodiment.
A second filtering system 103 is situated between each of

the discovery mechanisms 302 and the network 118, as
indicated by arrows 308b', 308b" in order to filter objects
within topology data received from the network 118. This
filtering system configuration is similar to that which was
described previously relative to the second embodiment of
the discovery/layout software 101.
A third filtering system 103 is situated between the

discovery mechanisms 302, as indicated by arrows 501, 502
in order to filter objects within topology data that is trans
ferred from one discovery mechanism 302 to another dis
covery mechanism 302. This filtering system configuration
is similar to that which was described in the third embodi
ment of the discovery/layout software 101.

Hence, as is apparent from FIG. 6, any combination of the
filtering system placements described previously in the first,
second, and third embodiments can be utilized and
significantly, the filtering systems 103 can share the same
filtering library 321. Because a common filtering library 321
is utilized, the individual components are freed from under
standing the implementation and configuration of the filter
ing architecture. Moreover, the common filtering library 321
offers a consistent filtering system to the user. If each
component were left to implement its own mechanism, each
component would likely look different from each other to the
St.

5,787.252
11

E. Filtering System
The filtering system 103 with library 321 employs the

same methodology and architecture for the first through
fourth embodiments of the discovery/layout software 101
(FIG. 1). Accordingly, for purposes of simplicity, the filter
ing system 103 will be described in connection with the first
embodiment of the discovery/layout software 101, as is
illustrated in FG, 3.

Preferably, although not required, the filtering system 103
is implemented as a part of the topology-to-map translator
318 (FIG. 3). FIG. 7 shows a flow chart 700 indicating the
architecture and functionality of the preferred embodiment
of the topology-to-map translator 318.

With reference to FIG. 7, first, the filtering system 103 is
initialized, i.e. the filters within the library 321 are
initialized, as will be further described with reference to
FIG. 8. Next, other general initialization procedures are
performed, as indicated in block 704. The general initial
ization procedures include establishing contact with the
topology manager 310, establishing contact with the GUI
322, and reading map configuration data. Block 704 trans
fers to block 706. As indicated in block 706, the map is
updated with the changes that have occurred in the topology
data. This procedure is further delineated in FIG. 9 and will
be described hereinafter in detail. Next, block 706 transfers
to block 708. At block 708, asynchronous events are
handled, which are further delineated in FIG. 10.

FIG. 8 shows a flow chart which illustrates the architec
ture and functionality of the initialize filters block 702 (FIG.
7). In this software module, the filters that the user has
configured for the network management map 200 that is
presently open are identified, and a determination is made as
to whether the filters reside in the filtering library 321.
As indicated at block 802 of FIG. 8, the filter definition

file grammar of Table A is read from the memory 110 (FIG.
1). Next, as indicated in the block 804, the syntax of the filter
definition file grammar is checked for errors. The contents of
this file should follow the grammar outlined in Table A. Any
suitable parsing mechanism can be utilized for parsing the
filter definition file grammar during the syntax checking
procedure. In the preferred embodiment, the LEX and
YACC tools of the "UNIX"TM operating system are utilized
for parsing the fields of the filter definition file grammar. The
LEX and YACC tools, the "UNDX"TM operating system, and
the concept behind operation of these programs are all well
known in the art and, further, these programs are commer
cially available. If the syntax is incorrect, then an error
message is displayed over the display 108 (FIG. 1), as is
indicated in the block 806 and the operation of the translator
318 is terminated. When the syntax of the filter definition file
grammar is correct, the block 804 transfers to the block 808.
As delineated at the block 808, the list of filter names is

read from the map data base 326. Block 808 transfers to a
loop, which determines which filter names should be asso
ciated with the map at issue. The loop commences with
block 810, where a counter CTR for filter names is initial
ized.

After the counter CTR has been initialized, a filter name
is selected from the list and processed by the loop. As
indicated at flow chart block 812, it is determined whether
the filter name from the list, denoted FILTERNAMELIST
CTR where CTR=number, is in the filter definition file
grammar. If the filter name FILTERNAMELISTICTR is
not in the filter definition file grammar, then an error
message is displayed over the display 108, as indicated in
the block 806 and the translator 318 terminates operation. If
the filter name FILTERNAMELISTICTR) is in the filter

O

15

25

30

35

45

SO

55

65

12
definition file grammar, then the filter name
FILTERNAMELISTICTR) is saved for future processing,
as indicated in block 814. Block 814 transfers to block 816,
where the counter CTR is incremented. Next, at block 818,
a determination is made as to whether the counter CTR is
greater than the total number of filter names. If not, then the
block 818 transfers back to block 812 and the loop contin
ues. If so, then the block 818 transfers to block 704 (FIG.7).

Thus, after the procedure set forth in FIG.8, the filters that
the user has configured for the network management map
200 that is presently open have been identified, and a
determination has been made as to whether the filters reside
in the filtering library 321.

FIG. 9 illustrates a flow chart that describes the architec
ture and functionality of the update map block 706 (FIG. 7).
wherein the map data residing within the map data base 326
is updated based upon the filtered topology data. As indi
cated at block 902, a list of the one or more networks is
retrieved by the translator 318 from the topology manager
310, which in turn obtains the list from the topology data
base 314. Block902 transfers to a loop that commences with
block 904 and that processes and filters the objects in each
network.
At block 904, a counter NETCTR is initialized. Next, at

block 906, a determination is made as to whether the
particular network NETWORKINETCTR), where
NETCTR=number, passes the filters (prescribed by the filter
names) pertaining to the map 200 that is open. This proce
dure will be further described later with reference to FIG. 13.
If it is determined that the current network NETWORK
NETCTR) does not pass through the filters, then the counter
NETCTR is incremented, as indicated in the block 908.
Further, a determination is made as to whether the counter
NETCTR has surpassed the total number of networks in the
open map 200, as indicated in the block 910. If it is
determined that the counter NETCTR has not exceeded the
total number of networks, then the block 910 transfers back
to the block 906 and the loop continues. To the contrary, if
the counter NETCTR has exceeded the total number of
networks, then the block 910 transfers back to the block 708
(FIG. 7).

If it is determined that the current network NETWORK
NETCTR) is allowable based upon the filters in block906,
then block 906 transfers to block 909. At block 909, the
translator 318 obtains a list of objects within NETWORK
NETCTR) from the topology manager 310 (and ultimately
from the topology database 314). The block 909 transfers to
a loop, which processes each object in the list to determine
which objects pass the filters. In this regard, block 909
transfers to block 911, where a counter OBJCTR is initial
ized.

Next, a determination is made as to whether the current
object. OBJOBJCTR) where OBJCTR=number, passes the
filters, as indicated in the block 912. This determination will
be further described with reference to FIG. 13 hereinafter. If
it is determined that the current object OBJOBJCTR) does
not pass the filters, then the counter OBJCTR is
incremented as indicated in the flow chart block 914.
Moreover, a determination is made as to whether the counter
OBJCTR has exceeded the total number of objects. If not,
then the block 916 transfers back to block 912 and the loop
continues and processes the next object. If so, then the block
916 transfers to the block 908 (which causes selection of
another network, if any are available).

If it is determined at block 912 that the current object
OBJOBJCTR) passes the filters within the library 321, then
the block 912 transfers to the block 918. At the block 918,

5,787.252
13

the translator 318 adds the current object to the map 200.
This procedure is further delineated in FIG. 16, which will
be described later in this document. After the object has been
added to the map, the counter OBJCTR is incremented, and
another object is processed, if available, as indicated in flow
chart blocks 914, 916.

FIG. 10 shows a flow chart pertaining to the handling of
asynchronous events, as indicated in the block 708 of FIG.
7. When network topology changes on the network the
network monitor 306 generates events, or traps (SNMP
vernacular), which include an object identifier and object
change information. The network monitor 306 can also
receive events from other devices, such as a router, in the
network 118.
With reference to FIG. 10, initially, events are queued and

accumulated in a queue (not shown) or accumulator, asso
ciated with a topology manager 310, and await retrieval by
the translator 318. The translator 318 reads a batch of events
from the topology manager 310 during each access.

Next, as indicated in block 1004, the translator 318 calls
the topology manager 310 for a list of topology data regard
ing all objects which were identified in the events. After
receiving the topology data, block 1004 transfers to block
1006.
At block 1006, the translator 318 computes the changes to

be made to the map data, particularly the network manage
ment map 200 (FIG. 2), based upon the topology data
changes indicated in the events. Block 1006 transfers to
block 1008. At block 1008, the translator 318 updates the
map 200 (FIG. 2) by calling the GUI 322 and advising the
GUI 322 of all submap changes (SYMCHANGELIST and
NEWSYMLIST described hereinafter) pertaining to all
object changes. This transaction is preferably, although not
necessarily, a batch transfer. During this batch transfer
transaction, the translator 318 identifies each submap to be
changed, each object to be changed within a submap, and the
particular change to be effectuated to the object. An object
change may include, for example, but not limited to, a color,
position, or connection change. Block 1008 transfers to
block 1010.
At block 1010, the translator 318 determines whether

there is another batch of events to be read from the topology
manager 310. If so, then block 1010 transfers to block 1002
and the previously described process is repeated. If not, then
the software waits at block 1010 for another batch of events.

FIG. 11 sets forth a flow chart indicating the architecture
and functionality of the read events block 1002 (FIG. 10).
This flow chart illustrates how the translator 318 reads a
batch of events from the topology manager 310. As indicated
in a block 1102, initially, events from the topology manager
310 are accumulated (queued). A counter TRAPCTR at
block 1104 is used in connection with a loop in order to route
each event from the topology manager 310 to the translator
318. At block 1106, an event is read by the translator 318
from the topology manager 310. Block 1106 transfers to
block 1108, which decodes the event. The event is decoded
to identify the type of event and associated data. There are
numerous types of events, and different types of events will
have different types of associated data. More specifically, an
event can involve. for example, but not limited to, a new
node or a node status change (e.g., connected/accessible or
connected/unaccessible). An event has an event identifier,
usually at the header, for identifying the type of event.
Moreover, in the case of a new node, the event will contain
an object identifier and an address. In the case of a node
status change, the event will contain an object identifier, the
old status, and the new status.

O

5

25

35

45

50

55

65

14
Block 1108 transfers to block 1110. At block 1110, the

decoded event data (i.e. a record) is added to a TLIST. At
block 1112, the counter TRAPCTR is incremented so that
another event is serviced. Block 1112 transfers to block
1114, which determines whether there are any more events
to be serviced. If so, then block 1114 transfers back to block
1106 and the aforementioned process is repeated. If not, then
block 1114 returns to block 1002 (FIG. 10).

F.G. 12 shows a flow chart of the architecture and
functionality of a preferred embodiment for implementing
the retrieve object information block 1004 (FIG. 10). With
reference to FIG. 12, at blocks 1202, the list of events.
TLIST. is read, Block 1202 transfers to block 1204, which
commences a loop that causes all of the events within the
TLIST to be serviced.
At block 1204, a counter TLISTCTR is initialized. Block

1204 transfers to block 1206. At block 1206, a single record
is read fromTLIST. From the record, an object identifier and
an object change are determined. The foregoing data is
placed in an object list, OBJLIST. Next, as indicated in block
1208, the counter TLISTCTR is incremented so that another
record of TLIST is serviced, if any remain. Block 1208
transfers to block 1210. At block 1210. it is determined
whether there are any events left to be serviced by compar
ing the record count of the record counter CTR to the total
number of records already processed. If so, then block 1210
transfers back to block 1206, which begins to service
another record. If not, then the block 1210 transfers to block
1212, which sends a request to the topology manager 310 for
a batch transfer of object information pertaining to all of the
objects within the batch. The object information for each
object includes an object name, address, status, connectivity
information, etc.

Next, as indicated in block 1214, the object list OBLIST
is filtered to remove objects that do not pass the filters within
the library 321. This process is further delineated in FIG. 13,
as is immediately described hereafter.
As indicated in FIG. 13, the object list OBJLIST is

processed by first initializing an object counter FILTCTR, as
is indicated in the block 1302. Block 1302 transfers to block
1304, where it is determined whether the particular object
OBJLISTFILTCTR) passes the filters. If it is determined
that the particular object OBJLISTFILTCTR) does comply
with the filter specification, then the particular object is
permitted to remain in the object list OBJLIST. If it is
determined that the particular object does not pass the filters,
then the particular object OBJLISTFILTCTR is removed
from the object list OBJLIST, as is indicated in the block
1306.

Next, the object counter is incremented, as delineated in
flow chart block 1308, and a determination is made as to
whether the object counter has exceeded the total number of
objects, as is indicated in the flow chart block 1310. If all of
the objects have not been serviced as indicated by the object
counter, then the block 1310 transfers back to the block 1304
and another object is serviced. Otherwise, when the object
counter CTR has exceeded the total number of objects, then
the block 1310 transfers back to block 1004 (FIG. 12).

FIG. 14 is a flow chart illustrating the methodology for
determining whether an object passes the filter specification,
as was indicated in block 1304 (FIG. 13). The methodology
of FIG. 14 implements special processing to handle nodes,
which contain interfaces. A node might not pass the filter
specification, but an interface within a nonallowable node
may pass the filter specification. Thus, the methodology is
designed so that a node will pass the filter specification if its
fields pass the filter specification or if any interfaces within
the node pass the filter specification.

5,787.252
15

Initially, as indicated in block 1402, the particular object
OBJLISTICTR) is checked against all filter expressions to
determine if the object should be removed from the object
list OBJLIST or left to remain in the list OBJLIST. This
procedure is more fully delineated in FIG. and will be
described hereafter.

Block 1402 transfers to block 1404. At block 1404, a
determination is made as to whether the particular object
OBJLISTICTR) has passed the filter specification. If so.
then the block 1404 transfers to the block 1408, which tags
the particular object as having passed (i.e., is allowable), and
the process transfers back to block 1306 (FIG. 13). If not,
then the block 1404 transfers to the block 1406 which makes
an inquiry as to whether the particular object is a node.

If the object is not a node, then the object is deleted as it
does not pass the filter specification, as is delineated in the
flow chart block 1410. To the contrary, if the object is a node
as determined at the block 1406, then the block 1406
transfers to the block 1412, which filters the list of interfaces
within the node. This procedure has been described relative
to FIG. 13 hereinbefore.

Block 1412 transfers to the block 1414, which makes a
determination as to whether the interface list is empty. If
empty, then all of the interfaces were deemed to be nonal
lowable. If it is empty, then the block 1414 transfers to the
block 1410 and the object is removed from the object list
OBLIST. If it is determined at block 1414 that the interface
list is not empty, then the block 1414 transfers to the block
1408 and the object will ultimately be added to the object list
OBJLIST as it passes the filter specification.

FIG. 15 shows a flow chart for determining whether an
object should be classified as either allowable or nonallow
able pursuant to the filter specification defined by the sets,
filters, and filter expressions in the filter definition files used
by the filtering library 321. The functionality set forth in the
flow chart of FIG. 15 is embodied in block 1402 (FIG. 14).
FIG. 15 implements a portion of the grammar set forth in
Table A. It demonstrates how filters can be implemented for
a simple grammar. The complete grammar is an extension of
this concept and is implemented using LEX and YACC tools
in the preferred embodiment.

Referring to FIG. 15, a block 1502 sets a variable FIL
TEREXPR to assume a list of fields and values. Each field
is a filter name and its corresponding value can be true, false.
an integer, or a character string.

Block 1502 transfers to block 1504, which initiates an
object counter FIELDCTR for the purpose of considering all
of the pairings of fields and values with respect to the object
at issue. Block 1504 transfers into the loop which begins
with block 1506.
At block 1506, a variable EXPR is set to assume a field

and a value. Block 1506 transfers to block 1508, which sets
a variable EXPRVAL to assume the value portion within the
variable EXPR. Block 1508 transfers to block 1510.

At block 1510, a variable OBJVAL is set to assume the
value of the field EXPRFIELD pertaining to the object at
issue. This field value is retrieved from the topology data
base 314. Block 1510 transfers to block 1512.
At block 1512, OBVAL is compared to EXPRVAL, i.e.,

the object value is compared to the value specified in the
filter specification. If the object value does not match the
filter specification value, then the object does not meet the
filter specification, as indicated at block 1514 and the flow
chart terminates. However, if the object value matches all of
the filter specification values, then the object is ultimately
permitted to reside in the object list OBJLIST, as is indicated
in the flow chart block 1520. Before reaching block 1520,

10

15

20

25

30

35

40

45

50

55

65

16
block 1512 transfers to block 1516, which increments the
field counter FELDCTR initiated in block 1504. Moreover,
block 1516 transfers to block 1518, which determines
whether all EXPRs have been considered. If some remain,
then block 1518 transfers back to block 1506 and the
foregoing process continues. If no more EXPRs remain. then
the flow chart transfers to block 1520, which specifies the
object is meeting the filter specification and then the flow
chart terminates.

FIG. 16 shows a flow chart of the architecture and
functionality of a preferred embodiment of the compute map
changes block 1006 (FIG. 10). In this flow chart, the
translator 318 determines which submaps (FIG. 2) are
changed and the change to be effectuated, based upon the
object identifiers and the object changes, which were pre
viously determined based upon the events. With reference to
FIG. 16, block 1601 initiates an object change counter
OBJCTR so that all object changes are considered. Block
1601 transfers to block 1602. Block 1602 determines a
submap identifier based upon which of the submaps (FIG.2)
are affected by the object change which is presently at issue.
Block 1602 transfers to block 1604, which determines
whether the affected submap exists. If the submap does exist,
then the block 1604 transfers to block 1610. If the submap
does not exist, then the block 1604 transfers to block 1606.
Block 1606 creates the affected submap in the map 200
(FIG. 2). Block 1606 transfers to the block 1608.
At block 1608, the translator 318 populates the newly

created submap with data from the topology manager 310.
Next, at block 1610, submap changes based upon the current
event, particularly the object identifier and the object
change, are computed. The computations of block 1610 will
be described hereinafter relative to FIG. 17. Block 1610
transfers to block 1616.
At block 1616, the object change counter OBJCTR is

incremented so that another object change is considered with
respect to the submaps. Block 1616 transfers to block 1618,
which makes a determination as to whether any object
changes remain to be serviced. If so, then the block 1618
transfers back to the block 1602. If not, then the flow chart
terminates after block 1618.

Hence, at the conclusion of the operation of the steps in
FIG. 16, a batch of submap identifiers with associated
submap changes has been generated from the batch of object
identifiers with associated object changes.
With reference to FIG. 17, relative to the submap change

computations of block 1610 (FIG. 16), block 1704 retrieves
data concerning a single object from the object list
OBJLIST. Block 1704 transfers to block 1706, which deter
mines whether the object type is a network. If so, then block
1706 transfers to block 1708 (flow chart in FIG. 18), which
computes the submap changes, and then block 1708 trans
fers to block 1722. If not, then the block 1706 transfers to the
block 1710.
At block 1710, a determination is made as to whether the

object type is a segment. If so, then the block 1710 transfers
to the block 1712 (flow chart of FIG. 19), which computes
the segment changes to the submaps, and then block 1712
transfers to block 1722. If not, then the block 1710 transfers
to the block 1714.
At block 1714, a determination is made as to whether the

object type is a node. If so, then the block 1714 transfers to
the block 1716 (flow chart of FIG. 20), which computes the
node changes for the submaps, and then block 1716 transfers
to block 1722. If not, then the block 1714 transfers to the
block 1718.
At block 1718, a determination is made as to whether the

object type is an interface. If so, then the block 1718

5,787,252
17

transfers to the block 1720 (flow chart of FIG. 21), which
computes the interface changes to the submap, and then
block 1720 transfers to block 1722. If not, then the flow
chart terminates.

FIG. 18 shows a flow chart of the architecture and
functionality of a preferred embodiment for implementing
the network change block 1708 (FIG. 17). This flow chart
computes changes to the internet submap 204 (FIG. 2),
which displays the networks. Moreover, there is only a
single submap (multiple submaps are possible) at the inter
net level in the preferred embodiment. With reference to
FIG. 18, at block 1802, a variable NET is set to assume the
contents of the internet submap 204 (FIG. 2). The contents
include a list of network objects and router objects and a list
of connections between the network and router objects.
Block 1802 transfers to block 1804. At block 1804, a
variable NETOBJ is set to assume the value of the object
identifier OBJID. The OBJID is retrieved from the
OBJINFO. Block 1804 transfers to block 1806. At block
1806, a determination is made as to whether NETOBJ is in
INET, i.e., whether the object to be changed resides within
the internet submap 1804 (FIG. 2). If so, then the block 1806
transfers to the block 1808, which adds the network per
taining to the NETOBJ to a list SYMCHANGELIST. If not,
then the block 1806 transfers to the block 1810, which adds
the network pertaining to the NETOBJ to a list NEWSYM
LIST. The list SYMCHANGELIST and NEWSYMLIST are
ultimately forwarded by the translator 318 to the GUI 322
during the batch transfer therebetween.

FIG. 19 shows a flow chart of the architecture and
functionality of a preferred embodiment for implementing
the segment change block 1712 (FIG. 17). In this flow chart,
segment changes are determined and computed. With ref
erence to FIG. 19, block 1902 sets a variable INET to
assume the contents of the internet submap 204 (FIG. 2).
The contents include a list of network and router objects and
alist of connections between the network and router objects.
Block 1902 transfers to block 1904. At block 1904, a
variable SEGOBJ is set to assume the current object iden
tifier OBJD, which is retrieved from the object information
OBINFO. Block 1904 transfers to block 1906. At block
1906, a variable NETOBJ is set to the network identifier
NETD, which is determined from the OBJNFO. Block
1906 transfers to block 1908. At block 1908, a determination
is made as to whether NETOBJ is in the NET, i.e., whether
the current network is within the current internet submap
204 (FIG. 2). If not, then the flow chart of FIG. 19 termi
nates. If so, then the block 1902 transfers to 1910. At block
1910, a variable NET is set to assume the contents of the
network submap 206 (FIG. 2) pertaining to NETOB.J. The
contents include, for example but not limited to, a list of
segment and connector objects and connections between
segments and connectors. Block 1910 transfers to block
1912. At block 1912, a determination is made as to whether
SEGOBJ is in the NET (i.e., is the segment in the network
submap?). If so, then the block 1912 transfers to the block
1914, which adds the segment pertaining to SEGOBJ to the
SYMCHANGELIST. Otherwise, if not, block 1912 transfers
to block 1916, which adds the segment pertaining to SEG
OBJ to NEWSYMLIST. Finally, after blocks 1914, 1916,
the flow chart of FIG. 19 terminates and operation transfers
back to FIG. 17.

FIG. 20 shows the flow chart of the architecture and
functionality of a preferred embodiment for implementing
the node change block 1716 (FIG. 17). In the flow chart of
FIG. 20, node changes are determined and computed by the
translator 318. As shown in FIG. 20, block 2002 sets a

5

O

15

20

25

35

45

55

65

18
variable INET to assume the contents of the internet submap
204 (FIG. 2). The contents include a list of network and
router objects and a list of connections between the network
and router objects. Block 2002 transfers to block 2004. At
block 2004, a variable NODEOBJ is set to assume the object
identifier OBJID contained in the object information
OBJINFO. Block 2004 transfers to block 2006. At block
2006, a variable SEGOBJ is set to assume the segment
identifier SEGD contained within the OBJINFO. Block
2006 transfers to block 2008. At block 2008, a variable
NETOBJ is set to assume the network identifier NETD
contained within the OBJNFO. Block 2006 transfers to
block 2010. At block 2010, a determination is made as to
whether the NETOBJ is in the INET (i.e., is the network in
the internet submap?). If not, then the flow chart terminates.
If so, then the block 2010 transfers to the block 2012. At
block 2012, the variable NET is set to assume the contents
of the network submap 206 (FIG. 2) pertaining to NETOBJ.
The contents include, for example but not limited to... a list
of segments, connectors, and connections between segments
and connectors. Block 2012 transfers to block 2014. At
block 2014, an inquiry is made as to whether SEGOBJ is in
the NET. If not, then the flow chart terminates. If so, then the
block 2014 transfers to the block 2016. At block 2016, the
variable SEG is set to assume the contents of the segment
submap 208 (FIG. 2) pertaining to SEGOB.J. The contents
include, for example but not limited to, a list of nodes and
connections between the nodes and the network. Block 2016
transfers to block 2018. At block 2018, an inquiry is made
as to whether NODEOBJ is in SEG, i.e., whether the node
object is in the present segmentatissue. If so, then the block
2018 transfers to block 2020, which adds the node pertaining
to NODEOBJ to SYMCHANGELIST and then the flow
chart terminates. Otherwise, if not, the block 2018 transfers
to the block 2022 which adds the node pertaining to NODE
OBJ to NEWSYMLIST and then the flow chart terminates.

FIGS. 21A through 21C collectively show a flow chart of
the architecture and functionality of the preferred embodi
ment for implementing the interface change block 1720
(FIG. 17). In this flow chart, interface changes in the
submaps are determined and computed by the translator 318
(FIG. 3). With reference to FIG. 21A, a block 2102 sets a
variable INET to assume the contents of the internet submap
204 (FIG. 2) which is currently at issue. The contents
include a list of networks, routers, and connections. Block
2102 transfers to block 2104. At block 2104, a variable
IFOBJ is set to assume the OBJD contained within the
OBJINFO. The block 2104 transfers to the block 2106. At
block 2106, the variable NODEOBJ is set to assume the
NODEID contained within the OBJINFO. Block 2106 trans
fers to block 2108. At block 2108, the variable SEGOBJ is
set to assume the SEGD contained within the OBJINFO.
Block 2108 transfers to block 2110. At block 2110, a
variable NETOBJ is set to assume the NETD contained
within the OBJNFO. After block 210, the initialization
process has been completed and the block 2110 transfers to
the block 2112.
At block 2112, a determination is made as to whether the

NETOBJ is in INET, i.e., whether the network object is in
the current internet submap 204 (FIG. 2). If not, the flow
chart terminates, as shown in FIG. 21A. If so, then the block
2112 transfers to block 2114. At block2114, a determination
is made as to whether NODEOB is in the INET, i.e.,
whether the node object is in the internet submap 204 (FIG.
2). If not, then the block 2114 transfers to the block 2122. If
so, then the block 2114 transfers to the block 2116.
At block 2116, an inquiry is made as to whether IFOBJ is

in INET. If so, then the block 2116 transfers to the block

5,787.252
19

2118, which adds the interface pertaining to IFOBJ to the
SYMCHANGELIST. If not, then the block 2116 transfers to
the block 2120, which adds the interface pertaining to IFOBJ
(between node object and network object) to NEWSYM
LIST.
At block 2122, the variable NET is set to assume the

contents of the network submap 206 (FIG. 2). The contents
include. for example but not limited to segments,
connections, etc. Block 2122 transfers to block 2124 of FIG.
21B.
With reference to FIG. 21.B. at block 2124, a determina

tion is made as to whether SEGOBJ is in NET, i.e., whether
the segment object is within the network submap 206 (FIG.
2). If not, then the flow chart terminates. If so, then the block
2124 transfers to the block 2126.
At block 2126, a determination is made as to whether

NODEOJ is in NET, i.e., whether the node object is within
the network submap 206 (FIG. 2). If not, then the flow chart
transfers to block 2134. If so, then the block 2126 transfers
to the block 2128.
At block 2128, an inquiry is made as to whether IFOBJ is

within NET, i.e., whether the interface object is within the
network submap 206 (FIG. 2). If so, then the block 2128
transfers to block 2130, which adds the interface pertaining
to IFOBJ to SYMCHANGELIST. If not, then the block 2128
transfers to the block 2132, which adds the interface per
taining to IFOBJ (which is between a node object and a
segment object) to NEWSYMLIST. The blocks 2130, 2132
transfer to the block 2134, as is shown in FIG. 21B.

At block 2134, the variable SEG is set to assume the
contents of the segment submap 208 (FIG. 2). The contents
include, for example but not limited to, nodes and connec
tions. Block 2134 transfers to block 2136.
At block 2136, a determination is made as to whether

NODEOBJ is in SEG, i.e., whether the node object is within
the segment submap 208 (FIG. 2). If not, then the flow chart
transfers to block 2146 of FIG. 21B. If so, then the block
2136 transfers to block 2138.
At block 2138, a determination is made as to whether

IFOBJ is within SEG, i.e. whether the interface object is
within the segment submap 208 (FIG. 2). If so, then the
block 2138 transfers to the block 2142, which adds the
interface pertaining to IFOBJ to SYMCHANGELIST. If not,
then the block 2138 transfers to the block 2144, which adds
the interface pertaining to IFOBJ to NEWSYMLIST. The
blocks 2142. 2144 are transferred to the block 2146 of FIG.
21C.

With reference to FIG. 21C, at block 2146, the variable
NODE is set to assume the contents of the node submap 210
(FIG. 2). The contents include interface objects. Block 2146
transfers to the block 248.
At block 2148, a determination is made as to whether

IFOBJ is within NODE, i.e. whether the interface object is
within the node submap 210 (FIG. 2). If so, then the
interface pertaining to IFOBJ is added to
SYMCHANGELIST, as indicated at block 2150. If not, then
the block 2148 transfers to the block 2152, which adds the
interface pertaining to IFOBJ to NEWSYMLIST. Finally,
after blocks 2150, 2152, the flow chart contained collec
tively in FIGS. 21A through 21C terminates.

FIG. 22 shows a flow chart of the architecture and
functionality of a preferred embodiment for implementing
the update map block 1008 (FIG. 10). In this flow chart, a
batch transfer of change is sent by the translator 318 to the
GUT 322. With reference to FIG. 22, at block 22.02, the
translator 318 transfers the NEWSYMLIST to the GUI 322,
and in block 2204, the translator 318 transfers the SYM
CHANGELIST to the GUI 322. After block 2204, the flow
chart of FIG. 22 terminates and the operation passes back to
block 1010 (FIG. 10).

FIG. 23 illustrates an on-demand submap module con
tained within the GUI 322 (FIG. 3). This flow chart imple

O

15

2

25

35

45

55

65

20
ments the user interface to the various submaps of the map
200 (FIG. 2). With reference to FIG. 23, at a block 2302, the
GUI 322 monitors the input devices connected to the man
agement station 100 (FIG. 1), for instance, the input device
106. When the user of the management station 100 prompts
the management station 100 via the input device 106 or
some other input device to explode an object on the display
108, the block 2302 of FIG. 23 transfers to the block 2304
in order to process the user request. At block 2304, a
determination is made as to whether the child submap is
contained within the map 200 (FIG. 2). If so, then the block
2304 transfers to the block 2308. If not, then the block 2304
transfers to the block 2306, which creates and populates the
submap. The GUI 322 populates the submap by requesting
the translator 318 to create and populate a submap based on
topology data retrieved from the topology manager 310.
Moreover, block 2306 transfers to the block 2308 which
opens the child submap and displays the child submap on the
display 108 for the user.

In concluding the detailed description, it should be noted
that it will be obvious to those skilled in the art that many
variations and modifications may be made to the preferred
embodiments without substantially departing from the prin
ciples of the present invention. All such variations and
modifications are intended to be included herein within the
scope of the present invention, as set forth in the following
claims. Further, in the claims hereafter, the structures,
materials. acts, and equivalents of all means-plus-function
elements or all step-plus-function elements are intended to
include any and all structures, materials, or acts for per
forming the specified functions in combination with the
other claimed elements.

Wherefore, the following is claimed:
1. A management system for efficiently discovering and

displaying devices and interconnections of a network, com
prising:

a processor;
a memory;
a display;
an interface interconnecting said processor, said memory,

and said display and capable of connecting to said
network;

a discovery mechanism stored in said memory for driving
said processor, said discovery mechanism configured to
discover and store topology data indicative of said
devices and said interconnections of said network;

a layout mechanism stored in said memory for driving
said processor, said layout mechanism configured to
receive said topology data from said discovery
mechanism, said layout mechanism configured to drive
said display based upon said topology data; and

a filtering system stored in said memory for driving said
processor, said filtering system configured to filter
objects within said topology data that pass from said
discovery mechanism to said layout mechanism.

2. The system of claim 1, further comprising a library
associated with said filtering system, said library configured
to specify which of said objects are communicated from said
discovery mechanism to said layout mechanism.

3. The system of claim 1, further comprising a second
filtering system stored in said memory for driving said
processor, said second filtering system configured to filter
objects within said topology data that pass from said net
work to said discovery mechanism.

4. The system of claim 1, further comprising:
a second discovery mechanism stored in said memory for

driving said processor, said second discovery mecha
nism configured to discover and store topology data

5,787.252
21

indicative of said devices and said interconnections of
said network; and

a second filtering system stored in said memory for
driving said processor, said second filtering system
configured to filter objects within said topology data
that pass between said first and second discovery
mechanisms.

5. The system of claim 4, further comprising a third
filtering system stored in said memory for driving said
processor, said third filtering system configured to filter
objects within said topology data that pass from said net
work to said discovery mechanism.

6. The system of claim 5, further comprising a library in
communication with said first, second, and third filtering
systems, said library configured to specify which of said
objects are communicated through said filtering systems.

7. The system of claim 1, wherein said layout mechanism
comprises:
a translator configured to convert said topology data to

said map data; and
a graphical user interface configured to receive said map

data from said translator and to drive said display based
upon said map data.

8. The system of claim 5, wherein said translator is
configured to generate a plurality of hierarchically arranged
submaps from said topology data.

9. The system of claim 8, wherein said hierarchically
arranged submaps include an internet submap having at least
one network object, at least one network submap associated
with said at least one network object and having at least one
segment object, at least one segment submap associated with
said at least one segment object and having at least one node
object, and at least one node submap associated with said at
least one node object and having at least one interface
object.

10. The system of claim 1, wherein said filtering system
includes a boolean expression for determining which of said
objects within said topology data pass from said discovery
mechanism to said layout mechanism.

11. A management system for efficiently discovering and
displaying devices and interconnections of a network, com
prising:

a processor;
a memory;
a display;
an interface interconnecting said processor, said memory,
and said display and capable of connecting to said
network;

a discovery mechanism stored in said memory for driving
said processor, said discovery mechanism configured to
discover and store topology data indicative of said
devices and said interconnections of said network;

a layout mechanism stored in said memory for driving
said processor, said layout mechanism configured to
receive said topology data from said discovery
mechanism, said layout mechanism configured to drive
said display based upon said topology data; and

a filtering system stored in said memory for driving said
processor, said filtering system configured to filter
objects within said topology data that pass from said
network to said discovery mechanism.

12. The system of claim 11, further comprising a library
associated with said filtering system, said library configured
to specify which of said objects are communicated from said
network to said discovery mechanism.

13. The system of claim 11, wherein said layout mecha
nism comprises:

10

15

20

25

30

35

45

SO

55

65

22
a translator configured to convert said topology data to

said map data; and
a graphical user interface configured to receive said map

data from said translator and to drive said display based
upon said map data.

14. The system of claim 13. wherein said translator is
configured to generate a plurality of hierarchically arranged
submaps from said topology data.

15. The system of claim 14, wherein said hierarchically
arranged submaps include an internet submap having at least
one network object, at least one network submap associated
with said at least one network object and having at least one
segment object, at least one segment submap associated with
said at least one segment object and having at least one node
object, and at least one node submap associated with said at
least one node object and having at least one interface
object.

16. The system of claim 11, wherein said filtering system
includes a boolean expression for determining which of said
objects within said topology data pass from said network to
said discovery mechanism.

17. A management system for efficiently discovering and
displaying devices and interconnections of a network, com
prising:

a processor;
a memory;
a display;
an interface interconnecting said processor, said memory.
and said display and capable of connecting to said
network;

first and second discovery mechanisms stored in said
memory for driving said processor, said first and sec
ond discovery mechanisms configured to discover and
store topology data indicative of said devices and said
interconnections of said network;

a layout mechanism stored in said memory for driving
said processor, said layout mechanism configured to
receive said topology data from said discovery
mechanism, said layout mechanism configured to drive
said display based upon said topology data; and

a filtering system stored in said memory for driving said
processor, said filtering system configured to filter
objects within said topology data that pass between said
first and second discovery mechanisms.

18. The system of claim 17, further comprising a library
associated with said filtering system, said library configured
to specify which of said objects are communicated between
said first and second discovery mechanisms.

19. The system of claim 17, wherein said layout mecha
nism comprises:

a translator configured to convert said topology data to
said map data; and

a graphical user interface configured to receive said map
data from said translator and to drive said display based
upon said map data.

20. The system of claim 19, wherein said translator is
configured to generate a plurality of hierarchically arranged
submaps from said topology data.

21. The system of claim 20, wherein said hierarchically
arranged submaps include an internet submap having at least
one network object, at least one network submap associated
with said at least one network object and having at least one
segment object, at least one segment submap associated with
said at least one segment object and having at least one node
object, and at least one node submap associated with said at
least one node object and having at least one interface
object.

5,787,252
23

22. The system of claim 17, wherein said filtering system
includes a boolean expression for determining which of said
objects within said topology data pass between said first and
second discovery mechanisms.

23. A filtering system for discovering and displaying
devices and interconnections of a network, comprising:
means for generating topology data indicative of said

devices and said interconnections of said network;
means for comparing objects within said topology data

with a predefined library to determine allowable objects
and nonallowable objects;

means for converting said allowable objects into map data
and displaying said map data; and

means for refraining from converting said nonallowable
objects into map data and from displaying said map
data.

24. A filtering system for discovering and displaying
devices and interconnections of a network, comprising:
means for generating topology data indicative of said

devices and said interconnections of said network;
means for comparing objects within said topology data

with a predefined library to determine allowable objects
and nonallowable objects;

means for converting said allowable objects into map data
and displaying said map data; and

means for eliminating said nonallowable objects from
said topology data.

25. A filtering system for discovering and displaying
devices and interconnections of a network comprising:

first and second discovery means for generating topology
data indicative of said devices and said interconnec
tions of said network;

means for communicating objects within said topology
data between said first and second discovery means;

means for comparing said objects that are communicated
between said first and second discovery means with a
predefined library to determine allowable objects and
nonallowable objects; and

means for preventing transfer of said nonallowable
objects between said first and second discovery means,
while permitting transfer of said allowable objects
therebetween.

26. A computer-readable medium in a management sta
tion comprising a program for discovering and displaying
devices and interconnections of a network, said program
comprising:

a discovery mechanism configured to discover and store
topology data indicative of said devices and said inter
connections of said network;

a layout mechanism configured to receive said topology
data from said discovery mechanism, said layout
mechanism configured to drive said display based upon
said topology data; and

a filtering system configured to filter objects within :said
topology data that pass from said discovery mechanism
to said layout mechanism.

27. A computer-readable medium in a management sta
tion comprising a program for discovering and displaying
devices and interconnections of a network, said program
comprising:

a discovery mechanism configured to discover and store
topology data indicative of said devices and said inter
connections of said network;

O

15

25

30

35

45

50

55

24
a layout mechanism configured to receive said topology

data from said discovery mechanism, said layout
mechanism configured to drive said display based upon
said topology data; and

a filtering system configured to filter objects within said
topology data that pass from said network to said
discovery mechanism.

28. A computer-readable medium in a management sta
tion comprising a program for discovering and displaying
devices and interconnections of a network, said program
comprising:

first and second discovery mechanisms configured to
discover and store topology data indicative of said
devices and said interconnections of said network;

a layout mechanism configured to receive said topology
data from said first and second discovery mechanisms,
said layout mechanism configured to drive said display
based upon said topology data; and

a filtering system configured to filter objects within said
topology data that pass between said first and second
discovery mechanisms.

29. A filtering method for discovering and displaying
devices and interconnections of a network comprising the
steps of:

generating topology data indicative of said devices and
said interconnections of said network;

comparing objects within said topology data with a pre
defined library to determine allowable objects and
nonallowable objects:

converting said allowable objects into map data and
displaying said map data; and

refraining from converting said nonallowable objects into
map data and from displaying said map data.

30. A filtering method for discovering and displaying
devices and interconnections of a network, comprising the
steps of:

generating topology data indicative of said devices and
said interconnections of said network;

comparing objects within said topology data with a pre
defined library to determine allowable objects and
nonallowable objects;

converting said allowable objects into map data and
displaying said map data; and

eliminating said nonallowable objects from said topology
data.

31. A filtering method for discovering and displaying
devices and interconnections of a network comprising the
steps of:

generating topology data indicative of said devices and
said interconnections of said network with first and
second discovery mechanisms that are interfaced to
said network;

communicating objects within said topology data between
said first and second discovery mechanisms;

comparing said objects that are communicated between
said first and second discovery mechanisms with a
predefined library to determine allowable objects and
nonallowable objects; and

preventing transfer of said nonallowable objects between
said first and second discovery mechanisms, while
permitting transfer of said allowable objects therebe
tWeen.

