
USOO5842038A

United States Patent (19) 11 Patent Number: 5,842,038
Williams et al. (45) Date of Patent: Nov. 24, 1998

54) OPTIMIZED INPUT/OUTPUT MEMORY Primary Examiner Parshotam S. Lall
ACCESS REQUEST SYSTEM AND METHOD ASSistant Examiner David M. Ovedoritz

Attorney, Agent, or Firm-Charles A. Johnson; Mark T.
75 Inventors: David Paul Williams, Mounds View; Starr; Merchant, Gould, Smith, Edell, Welter & Schmidt

Stephen Sutter, Maple Grove; Robert
Norman Anderson, Columbia Heights, 57 ABSTRACT
all of Minn. A System and method for transmitting commands from one

or more input/output devices to a memory is provided. An
identification tag is appended to each command to define the
command as either a read or write command. The read

73 Assignee: Unisys Corporation, Blue Bell, Pa.

21 Appl. No.: 728,332 commands are separated from the write commands based on
22 Filed: Oct. 10, 1996 the State of the identification tag, and the read and write

commands are separately queued. The read commands are
(51) Int. Cl. .. G06F 12/06 stored in a first command queue, and the Write commands
52) ... 395/825; 395/827; 395/840 are Stored in a Second, Separate, command queue. The read
58 Field of Search 395/825,827 commands in the first command queue are Successively

395s90 transferred to the memory upon completion of the current
memory read function, and the write commands in the
Second command queue are Successively transferred to the

56) References Cited memory upon completion of the current memory write
U.S. PATENT DOCUMENTS function. The transfer of the read and write commands is

independent.
4,415,971 11/1983 Guillemet et al. 395/309
5,317,726 5/1994 Horst 395/182.1 20 Claims, 8 Drawing Sheets

READ/WRITE t 202 MESSAGE t 212
REQUEST REQUEST

CONTROL
LOGIC

READ
BUFFER PACKET PACKET BUFFER

COUNTER COUNTER

El
COMMAND
DECODER

COMMAND

U.S. Patent Nov. 24, 1998 Sheet 1 of 8 5,842,038

22 24

12

18

IP 16
TO

: STORAGE OTHER
O CONTROLLER SCS

(SC) 28
IP-n

14 20

26
I/O

SUBSYSTEM 10

FIG. 1

U.S. Patent Nov. 24, 1998 Sheet 2 of 8 5,842,038

50

56 FLC 58

68

I/O O O O I/O 72

DEVICE DEVICE n

U.S. Patent Nov. 24, 1998 Sheet 3 of 8 5,842,038

92

PRIOR ART

U.S. Patent Nov. 24, 1998 Sheet 4 of 8

READ
ACK

104
102 READ

REQUEST
UPLINK

READ
BUFFER

WRITE
COMMAND COMMAND

COMMAND
DECODER

10 8

106 WRITE
BUFFER

116
114

COMMAND
112

FIG. 4

WRITE

5,842,038

WRITE

REQUEST

ACK

5,842,038 Sheet 5 of 8 Nov. 24, 1998 U.S. Patent

CINVIWIWNOO
NIGHGIOOGHCI CINVIWIWNOO

HOLLAAS
ZI I

S "OIH

OIOOTI ŒTRIV?IWNOO JLI8H

HOJLLAAS|

U.S. Patent Nov. 24, 1998 Sheet 6 of 8 5,842,038

150

BITS BITS BITS BITS 1
0-27 28-31 32-35 36-71

RSVD CMD TRANS MEMORY ADDRESS
LENGTH

152

FIG. 6

160

-1
BITS BITS BIT BITS BITS
O-35 36-71 72 73-76 77-79

MODULE MODULE EVEN WORD ODD WORD e TRANS # ADRS

162 164 166 168 170

FIG. 7

5,842,038 Sheet 7 of 8 Nov. 24, 1998 U.S. Patent

`{{CIO O'HCI CINVIWNWOO

U.S. Patent Nov. 24, 1998 Sheet 8 of 8 5,842,038

READ/WRITE 202 MESSAGE 22
REQUEST REQUEST

MUX
CONTROL
LOGIC

READ
BUFFER PACKET PACKET BUFFER

COUNTER COUNTER

COMMAND
DECODER

COMMAND

FIG. 9

5,842,038
1

OPTIMIZED INPUT/OUTPUT MEMORY
ACCESS REQUEST SYSTEM AND METHOD

FIELD OF THE INVENTION

This invention relates generally to memory access for
input/output (I/O) read and write requests, and more par
ticularly to a System and method for Separately providing
I/O read and write requests to a memory device in order to
minimize command completion delayS.

BACKGROUND OF THE INVENTION

The input/output (I/O) Subsystem of a computer System
provides the mode of communication between the System
and the outside environment. The I/O interface, which
provides a method for transferring binary information
between System Storage and external I/O devices, are typi
cally Special communication links that are necessary to
resolve differences that exist between the computer and the
I/O devices. However, a central processor is an extremely
fast device capable of performing operations at very high
Speed, and the data transfer rates of peripheral devices are
much slower than the transfer rate of the System computer.
It is therefore desirable to increase the data transfer rate
acroSS the I/O interface as much as possible, to increase the
overall Speed of the computer System.

Read and write requests from the I/O of the system are
often Sequentially transmitted to the memory through
uplinking circuitry. The read and write requests, or
commands, are typically in the form of data packets. These
packets originate at peripheral devices which are all coupled
to the input/output bus, and the read and write requests are
therefore intermingled, thereby presenting the uplinking
circuitry with a mixture of read and write commands in the
Stream of packets it receives.

Prior art systems have utilized a temporary memory buffer
to hold these memory access commands, while the memory
acts on one memory access command at a time. The tem
porary memory buffer therefore allows the I/O to continually
make memory requests whether the memory is currently
available or not. Such a System has drawbacks, however.
One drawback is that the buffer is typically a first-in-first-out
(FIFO) buffer, requiring the most recently issued commands
to wait until all previously issued commands have been
executed to completion. For example, a Series of write
commands could be issued, and a read command from
another I/O device could follow. The write commands,
which take additional time to write the appended data into
the memory, must all be completed prior to execution of the
read command. The net result is that read and write memory
access is potentially impacted by the order in which read and
write packets were received in the buffer.

It is therefore desirable to alleviate these I/O interface
delay problems, and ultimately increase the Speed of the
computer System. The present invention utilizes parallel
buffers to Separate read and write requests, thereby provid
ing a Solution to these and other problems, and offers other
advantages over the prior art.

OBJECTS

It is a primary object of this invention to provide a System
and method for reducing memory access times for input/
output data read and write requests.

It is another object of the invention to increase the overall
rate at which input/output memory acceSS requests are
presented to the memory.

15

25

35

40

45

50

55

60

65

2
It is still another object to minimize the delays associated

with having an imbalance between memory acceSS com
mand types.

It is yet another object to minimize the time in which
execution of a read request would be stayed during proceSS
ing of write requests, and to minimize the time in which
execution of a write request would be stayed during pro
cessing of read requests.

Another object of the invention is to process read and
write commands in a parallel manner to eliminate
completion-order dependencies between the read and write
commands.

Other more detailed objectives will become apparent from
a consideration of the Drawings and the Detailed Descrip
tion of the Preferred Embodiment.

SUMMARY OF THE INVENTION

The present invention relates to a System and method for
Separately providing input/output (I/O) read and write
requests to a memory device in order to minimize command
completion delayS.

In accordance with one embodiment of the invention, an
input/output (I/O) interface architecture for use in a data
processing System having an I/O bus and a memory is
provided. The interface architecture includes an I/O bridge
to output commands received from the I/O bus. An uplink
module is coupled to the I/O bridge to receive the com
mands. The uplink module includes a read buffer that has
multiple data registers to Store read request commands,
which are ultimately outputted to the memory. The uplink
module also includes a write buffer. The write buffer
includes multiple data registers where write request com
mands are Stored, which are also ultimately outputted to the
memory. The uplink module also includes a command
decoder, that accepts the commands from the I/O bridge, and
decodes identification bits within the command. The iden
tification bits are decoded to distinguish the read request
commands from the write request commands. The read
request commands can then be routed to the read buffer, and
the write request commands can be routed to the write
buffer. Execution of the read and write commands is there
fore independent of each other, which reduces input/output
memory access cycle times.

In accordance with another embodiment of the invention,
a method for transmitting commands from one or more
input/output devices to a memory is provided. An identifi
cation tag is appended to each command to define the
command to be either a read command or a write command.
The read commands are any of those where the input/output
devices read data from the memory, and the write commands
are any of those where the input/output devices write data to
the memory. The read commands are then Separated from
the write commands based on the identification tag, and the
read and write commands are separately queued. The read
commands are Stored in a first command queue, and the
write commands are Stored in a Second, Separate, command
queue. The read commands in the first command queue are
Successively transferred to the memory upon completion of
the current memory read function. The write commands in
the Second command queue are Successively transferred to
the memory upon completion of the current memory write
function. The transfer of the read and write commands is
independent.

Still other objects and advantages of the present invention
will become readily apparent to those skilled in this art from
the following detailed description, where the preferred

5,842,038
3

embodiment of the invention is shown by way of illustration
of the best mode contemplated of carrying out the invention.
As will be realized, the invention is capable of other and
different embodiments, and its details are capable of modi
fication without departing from the invention. Accordingly,
the drawing and description are to be regarded as illustrative
in nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a multi-processor data
processing System in which the present invention is embod
ied.

FIG. 2 is a block diagram of a portion of data processing
System.

FIG. 3 is a block diagram of a prior art uplink module.
FIG. 4 is a block diagram of the uplink module.
FIG. 5 is a block diagram of the command decoder.
FIG. 6 illustrates a typical two-word command structure

as implemented in the preferred embodiment of the inven
tion.

FIG. 7 illustrates a typical data structure for the transfer
of commands and data to be written to the Second level
cache memory.

FIG. 8 is a block diagram of the interface between the I/O
bridge and the uplink module.

FIG. 9 is a block diagram of the preferred embodiment of
the uplink module.

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENTS

FIG. 1 is a block diagram of a multi-processor data
processing System 10 in which the present invention is
embodied. The System includes one or more instruction
processors (IP), labeled IP 12 through IP-n 14. The instruc
tion processors 12 through 14 provides the processing
capabilities for the data processing system 10. IPS 12
through 14 are coupled to a storage controller (SC) 16 via
lines 18 through 20 respectively, which represent the col
lection of control, data, and address lines between the IPs
and the SC 16. The SC 16 is the central interconnect for the
instruction processors, input/output, and main memory Stor
age. There are no direct connections between any of these
components, as the SC 16 contains all of the logic that ties
the instruction processors and the input/output together in a
tightly coupled System.

The main memory Storage in the data processing System
10 includes the main storage unit (MSU) 22 through MSU-n
24. MSUS 22 through 24 represent the main memory in the
data processing system 10. The SC 16 routes read and write
requests from IPS 12 through 14 to and from MSUs 22
through 24.

Also coupled to the SC 16 is the I/O subsystem 26. The
I/O Subsystem 26 represents a collection of input/output
devices and input/output bussing mechanisms. Memory
requests can originate from components within the I/O
Subsystem 26, and the SC 16 provides the interface between
the I/O subsystem 26 and the memory components within
the data processing System 10. Other Storage controllers can
be coupled to the SC 16 to allow data processing system 10
to be coupled to other data processing Systems, which
increases the overall processing power and memory capa
bilities. Additional data processing Systems are coupled
between Storage controllers, as indicated by line 28.

Referring now to FIG. 2, a more detailed block diagram
of a portion of data processing System 10 is shown. Instruc

15

25

35

40

45

50

55

60

65

4
tion processor (IP) 50 represents any of the instruction
processors 12 through 14 as shown in FIG.1. The instruction
processor 50 includes a first level cache, labeled FLC 52.
FLC 52 is a cache memory that is typically dedicated to a
particular processor, and is used to provide fast memory
accesses for instructions and operands associated with that
particular processor. Coupled to the FLC 52 is the second
level cache (SLC) 54 that resides in the storage controller
(SC) 56. Operands and instructions that are not stored in the
FLC 52 may be stored in the SLC 54 as a second level in the
memory hierarchy. The second level cache 54 is a cache
memory that can be shared between multiple processors in
the multi-processor data processing System. Therefore, data
stored in the second level cache 54 can be accessed by
multiple instruction processors, where instructions and oper
ands residing in a first level cache 52 are accessible only by
its associated instruction processor 50. Failed attempts to
access the FLC 52 and the SLC 54 result in data accesses to
the main storage unit (MSU) 58, which is representative of
any of the main Storage units 22 through 24 in the data
processing system 10 of FIG.1. Within the SC 56 is the I/O
control 60, which interfaces the SC 56 with an external I/O
Subsystem. The I/O control 60 includes the downlink mod
ule 62, and the uplink module 64. The uplink module 64
provides an asynchronous interface for read and write
requests, and temporarily holds data packets while waiting
for current memory transactions to be completed. Similarly,
the downlink module 62 provides an asynchronous interface
for returning read data between the I/O control 60 and the
external I/O devices. The downlink module 62 and the
uplink module 64 interface to the I/O devices through an I/O
bridge 66, which is in turn coupled to the I/O bus 68. A
plurality of I/O devices, labeled I/O device 70 through I/O
device in 72, are coupled to the I/O bus 68. The I/O devices
can initiate memory read and write commands from the I/O
bus 68, to the I/O bridge 66, to the I/O control 60, and
ultimately to the SLC 54.
Some I/O devices, such as I/O devices 70 through 72,

execute a large number of memory read and write com
mands. Furthermore, a large number of I/O devices may be
present in the System, further increasing the number of
memory read and write commands to the SLC 54. Memory
write commands require that at least Some data be sent along
with the command, and typically a block of data words are
sent with the command. Where read and write commands
are queued together in the uplink module 64, memory read
or memory write through-put of the System can Sometimes
be unacceptably slow. For example, where multiple write
commands are queued in the uplink module 64, a Subsequent
read command would be delayed until the preceding write
commands have completed their memory cycles. The
present invention allowS I/O read and write command
through-put to increase.

FIG. 3 is a block diagram of a prior art uplink module 80.
As described in connection with FIG. 2, the uplink module
80 of the prior art includes a first-in-first-out (FIFO) 82,
which is comprised of a plurality of data registers labeled
REG184, REG286, REG388, through REGn 90. Read and
write requests, and any associated data, enter the FIFO 82 as
represented by arrow 91, and are transmitted by the uplink
module 80 to the SLC 54 as represented by arrow 92 in a
first-in-first-out fashion. Therefore, read data commands and
write data commands are both queued together in FIFO 82,
and executed in the order in which they were entered into the
FIFO 82.

FIG. 4 is a block diagram of one embodiment of the
uplink module 100. While the signal on arrow 92 of FIG. 3

5,842,038
S

provides both read commands and write commands to the
SLC 54, the uplink module 100 in FIG. 4 provides separate
Signal paths for the read commands and write commands, as
can be seen from the read request line 102 and the write
request line 104. Lines 102 and 104 provide separate paths
for the read commands and write commands to reach the
SLC 54. Separate memory buffers store the read commands
and write commands in order to avoid additional delayS.
Read buffer 106 is a first-in-first-out (FIFO) memory buffer
for queuing all of the read commands Separately from the
write commands. Similarly, write buffer 108 is an FIFO
memory buffer for Storing the write commands Separately
from the read commands. By Separating the read commands
from the write commands, read commands do not have to
wait until the completion of preceding write commands.
This requires the SLC 54 to be able to handle a read request
in parallel with a write request.

Also in the uplink module 100 is a command decoder 110
that routes the incoming command on line 112 to the
appropriate memory buffer in the uplink module 100. The
command decoder 110 determines whether the command is
a read command or a write command, and routes read
commands on line 114 to the read buffer 106, and write
commands on line 116 to the write buffer 108.
As the read and write buffers 106 and 108 independently

Store read and write commands, read and write requests are
successively sent from lines 102 and 104 upon the comple
tion of currently-executing read and write cycles. For
example, another read request will be issued on line 102 to
the SLC 54 upon completion of the current read memory
cycle. The read buffer 106 will be informed of the comple
tion of the current read memory cycle when it receives a read
acknowledge signal on line 117. Similarly, the write buffer
108 will be informed of the completion of the current write
memory cycle when it receives a write acknowledge Signal
on line 118. The acknowledge Signals can be generated by
external circuitry, or by the SLC 54. The generation of
acknowledge Signals is known in the art.

FIG. 5 is a block diagram of one embodiment of the
command decoder 110. The command enters the command
decoder 110 on line 112. The command of the preferred
embodiment is a multiple-bit binary word having various
fields, one of which is a command field. The command field
in the preferred embodiment is four bits wide, and these four
command bits are routed to the bit compare logic 120 via the
four-bit bus 122. The bit compare logic 120 compares the
incoming command bits on buS 122 to known bit values to
determine whether the command on bus 112 is a read
command or a write command. Where the bit compare logic
120 determines that the command on bus 112 is a read
command, the bit compare logic 120 outputs a signal on line
124 that enables Switch 126 to pass the command online 112
to the output of Switch 126 on line 114. This command on
line 114 is therefore the read command, which becomes the
input into the read buffer 106 as shown in FIG. 4. Where the
bit compare logic 120 determines that the command on bus
112 is a write command, the bit compare logic 120 outputs
a signal on line 124 that enables switch 128 to pass the
command online 112 to the output of Switch 128 on line 116.
This command on line 116 is the write command, which
becomes the input into the write buffer 108.

FIG. 6 illustrates a typical two-word command structure
150 as implemented in the present invention. Bits 0 through
27 represent reserved field 152, bits 32-35 represent the
transaction length field 154 of the command packet, and bits
36–71 represent the memory address field 156. Bits 28–31
represent the command field 158 which, in the preferred

15

25

35

40

45

50

55

60

65

6
embodiment, is the four-bit command field. As previously
described, the four-bit command field indicates what type of
command is entering the uplink module 100 and the com
mand decoder 110 on line 112. It should be recognized that
any number of bits could be used in the command field,
depending on the number of commands desired. The com
mands used in the System of the preferred embodiment
include message commands and various read and write
commands, Such as memory block read, memory block
write, and memory Single word write. Any of the commands
that involve a memory read or memory write will ultimately
generate a read request Signal or write request Signal on lines
114 or 116 respectively (see FIGS. 4 and 5), as a result of the
output of the bit compare logic 120 on line 124 of FIG. 5.
Bits 28 through 31 of the command field 158 therefore
represent the four-bit bus 122 as shown in FIG. 5.

FIG. 7 illustrates a typical data structure 160 for the
transfer of commands and data to be written to the SLC 54.
The even word field 162 is comprised of bits 0 through 35,
while bits 36 through 71 represent the odd word field 164.
Bit 72, which is the start of packet flag field 166, indicates
whether a data packet is beginning, or continuing. Bits 73
through 76 represent the module transaction number field
168, and bits 77 through 79 represent the module address
field 170.

FIG. 8 is a block diagram of the interface between the I/O
bridge 66 and the uplink module 100. The I/O bridge 66 of
the preferred embodiment includes six words of transfer
registers labeled register WO 180, W1182, W2184, W3 186,
W4 188, and W5 190. Bits 0 through 79 of the first data
block 160 are transferred from words WO 180 and W1182.
Similarly, additional read commands having bits 0 through
79 can be transmitted from registers W2 through W5, or can
contain write data associated with a write command in word
W0 and W1. These registers transmit the commands and
associated data to the command decoder 110 of the uplink
module 100 via lines 112a, 112b, and 112c, which are
represented together as line 112 in FIGS. 4 and 5. Because
of the transaction link field 152 as shown in FIG. 6, the
command decoder will know which words will contain the
command field 156 to be decoded, and which words will
contain data which do not require command decoding. This
allows the command decoder to route the appropriate bits on
bus 122 to the bit compare logic 120 as shown in FIG. 5.

Referring now to FIG. 9, a block diagram of a preferred
embodiment of the uplink module 100 is shown. The uplink
module 100 of FIG. 9 includes a multiplexer labeled MUX
200. MUX 200 receives the read request and write request
signals from lines 102 and 104 respectively, and outputs a
read/write request online 202. The read/write request Signal
on line 202 represents either the read request from line 102,
or the write request from line 104, depending on the state of
a control signal on line 204.
The control signal on line 204 is generated by the mux

control logic 206, which receives inputs from the packet
counters 208 and 210. In the preferred embodiment, the mux
control logic 206 controls the mux 200 by way of a priority
Scheme. Various priority Schemes can be used to provide
balanced or unbalanced fixed priorities, round-robin
priorities, and So forth. In the preferred embodiment, the
priority Scheme Selected was an alternating priority Scheme
which balances the number of read and write requests being
sent from the uplink module 100. The packet counters 208
and 210 are used to monitor when a packet has been Sent
from the read buffer 106 or the write buffer 108 respectively,
So that the other buffer is then granted priority for providing
the next memory request on line 202. For example, the

5,842,038
7

packet counter 208 will determine that a read request has
been issued from the read buffer to the mux 200 via line 102,
so that the mux control logic will switch to allow the input
from the write buffer 108 to be passed next through the mux
200.

The use of the MUX 200 allows one interface to be used
instead of two to the SLC 54. In other words, the SLC 54
needs only one set of input pins to receive read and write
requests from the uplink module 100. The SLC 54 can
receive a read request on line 202 when the control Signal on
204 routes the read request on line 102 to line 202, and while
the SLC 54 is completing this read request, the write request
signal on line 104 can be transferred through the MUX 200
to line 202 to initiate a data write to the SLC 54.

In another embodiment of the invention, the buffers 106
and 108 can also queue different types of information. For
example, message packets can be queued along with write
requests in the write buffer 108. Generally, message packets
are packets of information that are communicated between
units, such as between I/O units, between an I/O unit and a
processing unit, or between processing units. These message
packets therefore do not comprise Storage data destined for
the SLC 54, but rather bypass the SLC 54 and proceed
directly to the target unit, as illustrated by the message
request Signal on line 212. It may be desirable to include
Such memory requests in a common queue, in order to
ensure a particular Sequence of events. For example, a data
write may be required before a message can be sent to
another unit, as the data write may be a prerequisite for the
message to be correct, or even to occur at all. By queuing the
messages behind Such write requests, the desired Sequence
can be maintained.

The invention has been described in its presently contem
plated best mode, and it is clear that it is Susceptible to
Various modifications, modes of operation and
embodiments, all within the ability and skill of those skilled
in the art and without the exercise of further inventive
activity. Accordingly, what is intended to be protected by
Letters Patents is Set forth in the appended claims.
What is claimed is:
1. An input/output (I/O) interface architecture for use in a

data processing System, the data processing System includ
ing an I/O bus and a memory, the interface architecture
comprising:

(a) an I/O bridge, coupled to the I/O bus, having bridge
outputs to output commands received from the I/O bus,

(b) an uplink module, coupled to receive the commands
from the I/O bridge, the uplink module comprising:
(i) a read buffer having a first plurality of data registers

to Store read request commands, and having a read
buffer output terminal to output the read request
commands to the memory;

(ii) a write buffer having a second plurality of data
registers to Store write request commands, and hav
ing a write buffer output terminal to output the write
request commands to the memory; and

(iii) command decode means, coupled to the I/O bridge,
for receiving the commands and decoding command
identification bits to distinguish the read request
commands from the write request commands, and
for routing the read request commands to the read
buffer and the write request commands to the write
buffer.

2. The interface architecture as in claim 1, wherein the
read buffer comprises a first-in-first-out (FIFO) read queue.

3. The interface architecture as in claim 2, wherein the
read buffer output terminal comprises read request enable

15

25

35

40

45

50

55

60

65

8
means for outputting a Successive one of the read request
commands in the FIFO read queue upon receipt of a read
acknowledge Signal.

4. The interface architecture as in claim 1, wherein the
write buffer comprises a first-in-first-out (FIFO) write
Gueue.

5. The interface architecture as in claim 4, wherein the
write buffer output terminal comprises write request enable
means for outputting a Successive one of the write request
commands in the FIFO write queue upon receipt of a write
acknowledge Signal.

6. The interface architecture as in claim 1, wherein:
(a) the read buffer output terminal comprises read request

enable means for outputting a Successive one of the
read request commands in the FIFO read queue upon
receipt of a read acknowledge Signal;

(b) the write buffer output terminal comprises write
request enable means for outputting a Successive one of
the write request commands in the FIFO write queue
upon receipt of a write acknowledge Signal; and

(c) the read request enable means and the write enable
means operate independently of each other.

7. The interface architecture as in claim 1, wherein the
command decode means comprises bit compare means for
comparing the command identification bits to predetermined
bit patterns to distinguish the read request commands from
the write request commands.

8. The interface architecture as in claim 7, wherein the bit
compare means comprises a comparator for each of the
command identification bits.

9. The interface architecture as in claim 7, wherein the bit
compare means comprises Software compare means for
comparing the command identification bits to the predeter
mined bit patterns by way of program code.

10. The interface architecture as in claim 7, wherein the
command decode means further comprises Switching means
coupled to the bit compare means, for enabling the read
request commands to be routed to the read buffer when the
bit compare means determines that the command is a read
request command, and for enabling the write request com
mands to be routed to the write buffer when the bit compare
means determines that the command is a write request
command.

11. The interface architecture as in claim 1, further
comprising multiplexing means, coupled to the read and
write buffers to receive the read and write request commands
respectively, for Outputting either the read or write request
command to the memory in response to a control Signal.

12. The interface architecture as in claim 1, wherein the
command decode means comprises means for receiving the
command identification bits in parallel from a command
field within the commands.

13. A method for transmitting commands from one or
more input/output devices to a memory, the method com
prising the Steps of

(a) appending an identification tag to each command to
define the command to be a read command to read data
from the memory, or to define the command to be a
write command to write data to the memory;

(b) separating the read commands from the write com
mands based on the identification tag,

(c) queuing the read commands in a first command queue
and the write commands in a Second command queue;
and

(d) transferring a Successive read command to the
memory upon completion of a current memory read

5,842,038
9

function, and transferring a Successive write command
to the memory upon completion of a current memory
write function, wherein the transfer of read and write
commands is independent of each other.

14. The method as in claim 13, wherein the step of
appending an identification tag comprises the Step of includ
ing a command identification bit field into each command
issued from the one or more input/output devices.

15. The method as in claim 13, wherein:
(i) the step of queuing the read commands in a first
command queue comprises the Step of entering the read
commands into a first-in-first-out (FIFO) memory
buffer; and

(ii) the step of queuing the write commands in a Second
command queue comprises the Step of entering the
write commands into a different first-in-first-out (FIFO)
memory buffer.

16. The method as in claim 13, wherein the step of
Separating the read commands from the write commands
comprises the Step of comparing the identification tag to
predetermined identification tags to distinguish the read
commands from the write commands.

17. The method of claim 16, wherein the step of com
paring the identification tag to predetermined identification
tags comprises the Step of comparing at least one bit of the
identification tag to a like number of predetermined bit
values.

5

15

25

10
18. The method of claim 16, further comprising the steps

of:
(i) providing the read commands on a first signal line
when the identification tag matches a first predeter
mined identification tag, and

(ii) providing the write commands on a Second Signal line
when the identification tag matches a Second predeter
mined identification tag.

19. The method of claim 18, further comprising the steps
of:

(i) providing the read and write commands from the first
and Second Signal lines to the memory on common
inputs of the memory; and

(ii) Switching between the first and Second Signal lines to
provide only one of the read and write commands to the
common inputs at a time.

20. The method of claim 13, wherein:
(i) the Step of transferring a Successive read command

comprises the Step of generating a read acknowledge
Signal to indicate the completion of the current memory
read function; and

(ii) the step of transferring a Successive write command
comprises the Step of generating a write acknowledge
Signal to indicate the completion of the current memory
write function.

