US 20160019149A1

a2y Patent Application Publication o) Pub. No.: US 2016/0019149 A1

a9 United States

Sivaramakrishnan et al.

43) Pub. Date: Jan. 21, 2016

(54) HISTORY BASED MEMORY SPECULATION
FOR PARTITIONED CACHE MEMORIES

(71) Applicant: Oracle International Corporation,

Redwood City, CA (US)

(72) Inventors: Ramaswamy Sivaramakrishnan, San

Jose, CA (US); Serena Leung, South

San Francisco, CA (US); David

Smentek, Cupertino, CA (US)

(21) Appl. No.: 14/584,755

(22) Filed: Dec. 29, 2014

Related U.S. Application Data

Provisional application No. 62/026,372, filed on Jul.
18, 2014.

(60)

Publication Classification

(51) Int.CL
GOGF 12/08 (2006.01)
(52) US.CL
CPC ... GOGF 12/0811 (2013.01); GOGF 2212/604
(2013.01)
(57) ABSTRACT

A cache memory that selectively enables and disables specu-
lative reads from system memory is disclosed. The cache
memory may include a plurality of partitions, and a plurality
of registers. Each register may be configured to stored data
indicative of a source of returned data for previous requests
directed to a corresponding partition. Circuitry may be con-
figured to receive a request for data to a given partition. The
circuitry may be further configured to read contents of a
register corresponding to the given partition, and initiate a
speculative read dependent upon the contents of the register.

data
602

Receive request for

NO

YES

read history
604

Check speculative

Remote

returns

> threshold?
605

read
606

Disable speculative

Perform speculative
read
611

Data
available?
607

YES

memory
608

Read data from main

'

Update history
609

End
610



Patent Application Publication

Jan. 21,2016 Sheet1 of 7

US 2016/0019149 A1

Service Processor
110

DCU 1

|
(@]

130

Y

Processor 120a

y

Processor 120b

Processor 120c

7 . \ T /W A T A
4
. :
‘ l
Y
Peripheral

System Memory Storage Device

130 140

Computer system
160

FIG. 1




US 2016/0019149 A1

Jan. 21,2016 Sheet2 of 7

Patent Application Publication

S9OIAOD
|eJoyduiad
pue ylomjau
WoJyo |

Aowsw
wo)sAs
wo.yo|

A

-
-

¢ Old
$J0$$920.1d JoY10
wouyo|
A
Y
_ yLoc BT0C 110¢ 9L0¢
90¢ $8100 $8100 qe0¢ $810D $8100
ooeUdIU| | suibug
o/ Uc0c 0620¢C 99UIaY0D 1e0e 920C
ayoen ayoen ayoen ayoen
) \ ) \ )
Y Y Y y Y
{ G0¢ omaN diyo-uQ
3 \ ) \ )
Y Y y y y
507 pPc0¢ 2¢0¢ de0e 4014
$0C .
wn ayoe)n ayoe)n €0¢ ayoe)n ayoe)
. -— suibug
|04U0D prog 570¢ 80UBI8U0D) aroe B10C
Aowsy $8100) $8109) $810D $8100)

0c J0Ssad0.d

$J0$$920.1d 1810

\ J

wolyo |




Patent Application Publication  Jan. 21, 2016 Sheet 3 of 7 US 2016/0019149 A1

Core 210 Instruction fetch unit 310
. . Memory
Trap logic unit Instr. cache 314 «»| management |
380 unit 320
=

v

Execution unit(s) 330

:
Y Li

Load store unit 350

Floating point/
graphics unit 340 Data cache 352

|| L

Crypto processing Cache interface
L2 cache 390 unit 360 370

L 1]

\J

To/from cache

FIG. 3



Patent Application Publication  Jan. 21, 2016 Sheet 4 of 7 US 2016/0019149 A1

400

Circuity
402

Memory
404

Register
405

FIG. 4



500

L\

Patent Application Publication

Jan. 21,2016 SheetSof7

Bit
location
501a

Bit
location
501b

Bit
location
501c¢c

FIG. 5

US 2016/0019149 A1

Bit
location
501n




Patent Application Publication

Jan. 21,2016 Sheet 6 of 7

Receive request for
data
602

NO

YES

Check speculative
read history
604

Remote
returns
> threshold?
605

NO

US 2016/0019149 A1

Y

Disable speculative
read
606

Perform speculative
read
611

Data
available?
607

YES

Read data from main
memory
608

!

Update history
609

610

FIG.



Patent Application Publication  Jan. 21, 2016 Sheet 7 of 7 US 2016/0019149 A1

Start
701

/

Check origin of
returned data
702

From memory?
703

NO

y

Write ‘0’ to location in Write “1° to location in
history register history register
704 706

y
End \
705

FIG. 7



US 2016/0019149 Al

HISTORY BASED MEMORY SPECULATION
FOR PARTITIONED CACHE MEMORIES

PRIORITY CLAIM

[0001] The present application claims benefit of priority to
provisional application No. 62/026,372 titled “HISTORY
BASED MEMORY SPECULATION FOR PARTITIONED
LAST LEVEL CACHE MEMORIES” and filed on Jul. 18,
2014 which is incorporated by reference in its entirety as
though fully and completely set forth herein.

BACKGROUND
[0002] 1. Technical Field
[0003] This invention relates to integrated circuits, and

more particularly, to techniques for operating cache memo-
ries within processors and processor cores.

[0004] 2. Description of the Related Art

[0005] Computing systems typically include one or more
processors or processor cores which are configured to execute
program instructions. The program instructions may be
stored in one of various locations within a computing system,
such as, e.g., main memory, a hard drive, a CD-ROM, and the
like. In some cases, a hierarchy of local memories or cache
memories may be employed to store frequently accessed
program instructions and data.

[0006] In particular, most processor cores will have at least
a level one (L1) cache that is proximal to the core. In many
cases, and especially in multi-core designs, a processor will
also have a level two (L.2) cache, and in some cases a level
three (L.3) cache. The [.2 and L3 caches are in many cases
shared among the various processor cores. The multiple
cache hierarchies allow a processing system to keep copies of
data that is accessed frequently in the local faster cache
memory hierarchy, rather than having to access main
memory, which is typically slower.

[0007] When a processor requests data or a program
instruction that is not contained within a cache memory, a
further request may be made to main memory for desired
information. The processor may also request that the infor-
mation be stored in the cache memory so that the information
may subsequently be retrieved from the cache memory as
opposed to main memory. Storing new information in a cache
memory may be dependent upon available space within the
cache memory. In cases where the cache memory is already
storing its maximum number of cache lines, a line may need
to be selected for removal (commonly referred to as “evic-
tion”) from the cache memory. Once a previously stored
cache line has been selected and evicted from the cache
memory, a new cache line may be stored.

SUMMARY

[0008] Various embodiments of an apparatus and method
for operating a cache memory are disclosed. Broadly speak-
ing, a method and an apparatus are contemplated that include
a memory that includes a plurality of partitions and at least
one register. The at least one register may be configured to
store history data, which may include information indicative
of a source of returned data for at least one previous read
request. Circuitry may be configured to receive a read request
for data from a first partition. The history data may be read
responsive to a determination that the data is not stored in the

Jan. 21, 2016

first partition. A speculative read of the data from a second
memory may then be initiated dependent upon the history
data.

[0009] Inanon-limiting embodiment, the circuitry may be
further configured to a number of previous requests whose
source of returned data is a given partition may be deter-
mined. The circuitry may be further configured to the initiate
the speculative read in response to a determination that the
number of previous requests whose source of returned data
source is a given partition is less than a predetermined thresh-
old value.

[0010] In one implementation, the history data includes a
plurality of portions. Each portion of the plurality of portions
may correspond to a respective execution thread of a plurality
of execution threads.

[0011] In another non-limiting embodiment, the circuitry
may be further configured to update the history data. The
update may be in response to a determination that the data is
not stored in the first partition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a block diagram of an embodiment of a
distributed computing unit.

[0013] FIG. 2 is a block diagram of an embodiment of a
processor.

[0014] FIG. 3 is a block diagram of an embodiment of a
processor core.

[0015] FIG. 4 is a block diagram of an embodiment cache
memory partition.

[0016] FIG. 5 illustrates a block diagram of a history reg-
ister.
[0017] FIG. 6 illustrates a flow diagram depicting an

embodiment of method for operating a cache memory.
[0018] FIG. 7 illustrates a flow diagram depicting an
embodiment of a method for updating a history register.
[0019] Specific embodiments are shown by way of example
in the drawings and will herein be described in detail. It
should be understood, however, that the drawings and
detailed description are not intended to limit the claims to the
particular embodiments disclosed, even where only a single
embodiment is described with respect to a particular feature.
On the contrary, the intention is to cover all modifications,
equivalents and alternatives that would be apparent to a per-
son skilled in the art having the benefit of this disclosure.
Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise.

[0020] As used throughout this application, the word
“may” is used in a permissive sense (i.e., meaning having the
potential to), rather than the mandatory sense (i.e., meaning
must). Similarly, the words “include,” “including,” and
“includes” mean including, but not limited to.

[0021] Various units, circuits, or other components may be
described as “configured to” perform a task or tasks. In such
contexts, “configured to” is a broad recitation of structure
generally meaning “having circuitry that” performs the task
ortasks during operation. As such, the unit/circuit/component
can be configured to perform the task even when the unit/
circuit/component is not currently on. In general, the circuitry
that forms the structure corresponding to “configured to” may
include hardware circuits. Similarly, various units/circuits/
components may be described as performing a task or tasks,
for convenience in the description. Such descriptions should
be interpreted as including the phrase “configured to.” Recit-



US 2016/0019149 Al

ing a unit/circuit/component that is configured to perform one
or more tasks is expressly intended not to invoke 35 U.S.C.
§112, paragraph (f), interpretation for that unit/circuit/com-
ponent.

DETAILED DESCRIPTION OF EMBODIMENTS

[0022] To improve computational performance, a system-
on-a-chip (SoC) may include multiple processors or proces-
sor cores. Hach processor may employ a local cache memory
to provide rapid access to local copies of instructions and
operands. In some cases, a hierarchy of cache memories may
be employed, and cache memories in the highest level of the
hierarchy, such as, e.g., an .3 cache, may be shared between
multiple processors or processor cores. To manage the vari-
ous requests to a shared cache memory, the shared cache
memory may be organized into multiple partitions, with each
processor or processor core coupled to a respective partition
of the cache memory.

[0023] Partitioned cache memories, as described above,
may provide low latency when requested data is located
within a given partition (commonly referred to as a “cache
hit”). In general, when a request for data is made, the data may
be located in a partition of the cache memory, or in main
memory. When the requested data is not located within a
given cache partitions (commonly referred to as a “cache
miss”), a speculative read to main memory may be issued in
parallel with a search of the other partitions within the cache.
As used and described herein, a speculative read to main
memory is a read to main memory where the resultant data
may be superseded by data returned from another source,
such as, another cache partition, for example. As main
memory access may have a high latency, speculative reads
may be used to reduce latency, which may increase system
performance. In cases, when no partition of the cache has a
copy of the requested data, the data returned from the specu-
lative read are used. In some cases, however, for certain
shared workloads, the request data is often found in another
partition of the cache, and the data returned from the specu-
lative read is discarded. The repeated discard of speculative
read data may result in high consumption of available
memory bandwidth and excess power consumption. The
embodiments illustrated in the drawings and described herein
may provide techniques for preserving memory bandwidth,
reducing power, while still providing the latency benefit of
employing speculative reads.

Computing System Overview

[0024] A block diagram illustrating one embodiment of a
distributed computing unit (DCU) 100 is shown in FIG. 1. In
the illustrated embodiment, DCU 100 includes a service pro-
cessor 110, coupled to a plurality of processors 120a-c
through scalable system interface (SSI) 130. Processors
120a-¢ are in turn coupled to system memory 130, and
peripheral storage device 140. DCU 100 is coupled to a net-
work 150 which is in turn coupled to a computer system 160.
In various embodiments, DCU 100 may be configured as a
rack-mountable server system, a standalone system, or in any
suitable form factor. In some embodiments, DCU 100 may be
configured as a client system rather than a server system.

[0025] System memory 130 may include any suitable type
of'memory, such as Fully Buffered Dual Inline Memory Mod-
ule (FB-DIMM), Double Data Rate or Double Data Rate 2
Synchronous Dynamic Random Access Memory (DDR/

Jan. 21, 2016

DDR2 SDRAM), or Rambus® DRAM (RDRAM®), for
example. It is noted that although one system memory is
shown, in various embodiments, any suitable number of sys-
tem memories may be employed.

[0026] Peripheral storage device 140 may, in some embodi-
ments, include magnetic, optical, or solid-state storage media
such as hard drives, optical disks, non-volatile random-access
memory devices, etc. In other embodiments, peripheral stor-
age device 140 may include more complex storage devices
such as disk arrays or storage area networks (SANs), which
may be coupled to processors 120a-c via a standard Small
Computer System Interface (SCSI), a Fibre Channel inter-
face, a Firewire® (IEEE 1394) interface, or another suitable
interface. Additionally, it is contemplated that in other
embodiments, any other suitable peripheral devices may be
coupled to processors 120a-c, such as multi-media devices,
graphics/display devices, standard input/output devices, etc.
[0027] In one embodiment, service processor 110 may
include a field programmable gate array (FPGA) or an appli-
cation specific integrated circuit (ASIC) configured to coor-
dinate initialization and boot of processors 120a-c, such as
from a power-on reset state. Additionally, in some embodi-
ments, service processor 110 may include a programmable
read-only memory (PROM) that may store instructions to
perform a power-on self-test (POST). In various embodi-
ments, service processor 110 may be configured to allow
access to administrative functions such as test and debug
modes of processors 120a-c, such as testing cache memories
in processors 120a-c, or providing test code to processors
120a-c¢ such that each of processors 120a-c may test their
respective cache memories, for example.

[0028] Asdescribed in greater detail below, each of proces-
sors 120a-¢ may include one or more processor cores and
cache memories. In some embodiments, each of processors
120a-c may be coupled to a corresponding system memory,
while in other embodiments, processors 120a-c may share a
common system memory. Processors 120a-c may be config-
ured to work concurrently on a single computing task and
may communicate with each other through SSI bus 130 to
coordinate processing on that task. For example, a computing
task may be divided into three parts and each part may be
assigned to one of processors 120a-c. Alternatively, proces-
sors 120a-c may be configured to concurrently perform inde-
pendent tasks that require little or no coordination among
processors 120a-c.

[0029] The embodiment of the distributed computing sys-
tem illustrated in FIG. 1 is one of several examples. In other
embodiments, different numbers and configurations of com-
ponents are possible and contemplated. It is noted that
although FIG. 1 depicts a multi-processor system, the
embodiments described herein may be employed with any
number of processors, including a single processor core.

Processor Overview

[0030] A block diagram illustrating one embodiment of a
processor 200 is shown in FIG. 2. In some embodiments,
processor 200 may correspond to processors 120a-c of DCU
100 in FIG. 1. In the illustrated embodiment, processor 200
includes a plurality of processor core groups 201a-k. each
including one or more processor cores. It is noted that
although 8 core groups are shown, in various embodiments,
any suitable number of processor cores may be employed.
Each of core groups 201-a/ is coupled to a respective one of
cache memory partitions 202a-4. Collectively, cache



US 2016/0019149 Al

memory paritions 202a-/ form a cache memory for the core
groups 201a-%. Each or cache memory partitions 202a-/ is
coupled to on-chip network 205, which is, in turn coupled to
memory control unit 204. In various embodiments, memory
control unit 204 is coupled to one or more banks of system
memory, also referred to herein as main memory (not shown).
Processor 200 further includes coherence engines 203a-b
which are also coupled to on-chip network 205. as well as to
other processors. In some embodiments, the elements
included in processor 200 may be fabricated as part ofa single
integrated circuit (IC), for example on a single semiconductor
die.

[0031] Each or core groups 201a-/ may include one or
more processor cores, and be configured to execute instruc-
tions and to process data according to a particular instruction
set architecture (ISA). In one embodiment, core groups
201a-2 may be configured to implement the SPARC® V9
ISA, although in other embodiments it is contemplated that
any desired ISA may be employed, such as x86, PowerPC®
or MIPS®, for example. In the illustrated embodiment, each
of core groups 201a-/# may be configured to operate indepen-
dently of the others, such that all core groups 201a-# may
execute in parallel. Additionally, in some embodiments each
of core groups 201a-/ may be configured to execute multiple
threads concurrently on a separate processor core, where a
given thread may include a set of instructions that may
execute independently of instructions from another thread.
(For example, an individual software process, such as an
application, may consist of one or more threads that may be
scheduled for execution by an operating system.) In one
embodiment, each of core groups 201a-/ may be configured
to concurrently execute instructions from eight threads, for a
total of 64 threads concurrently executing across processor
200. In other embodiments, however, it is contemplated that
other numbers of core groups 201a-~2 may be provided, and
that core groups 201a-2 may concurrently process different
numbers of threads.

[0032] On-chip network 205 may allow communication
between cache memory paritions 202a-4, core groups 201a-
k. and external resources through memory control unit 204
and I/O interface 206. In some embodiments, multiple com-
munication protocols may be implemented within on-chip
network 205. For example, on-chip network 205 may include
a ring network, a point-to-point network, and a store-and-
forward network. In various embodiments, different types of
communications, such as, e.g., requests, may be transmitted
over different networks. It is noted that although on-chip
network 205 is depicted as coupling processors to memory
controllers, in other embodiments, a similar type of bus may
be employed to couple multiple processing cores to a hierar-
chy of cache memories, or other functional blocks, within a
single processor.

[0033] Cache memory paritions 202¢ may, in various
embodiments, collectively form a level 3 (L3) cache memory
for processor 200. By using separate cache memory paritions,
individual processor core group, such as, e.g., core group
201a may be high-speed access to data stored in its associated
cache memory partition, thereby reducing latency. In such a
system, however, the multiple cache memory partitions need
to maintain coherency with respect to each other. Cache
memory paritions 202g-# may, in various embodiments,
implment one of numerous coherency protocols, suchas, e.g.,
MOESI, MESI, or any suitable cache coherency protocol.

Jan. 21, 2016

[0034] Each of cache memory partitions 202a-2 may be
configured to cache instructions and data for use by core
groups 201a-4. In the illustrated embodiment, each of cache
memory partitions 202a-/ may be separately addressable and
independently accessed, may concurrently return data to a
respective core groups 201a-k. In some embodiments, each
individual cache memory parition may be implemented using
set-associative or direct-mapped techniques. For example, in
one embodiment, each of cache memory paritions 202a-%
may be a 8 megabyte (MB) cache, although other cache sizes
and geometries are possible and contemplated.

[0035] Each of cache memory partitions 202a-2 may be
implemented, in some embodiments, as a writeback cache in
which written (dirty) data may not be written to system
memory until a corresponding cache line is evicted. Cache
memory partitions 202a-/ may each be designed according to
one of various design styles. For example, in some embodi-
ments, a given cache memory parition may include Static
Random Access Memory (SRAM) data storage cells, while,
in other embodiments, such a partition may include dynamic,
latched-based, or any other suitable type of data storage cell.
[0036] Memory control unit 204 may be configured to man-
age the transfer of data between cache memory partitions
202a-/h and system memory, for example in response to fill
requests and data evictions. In some embodiments, multiple
instances of memory control unit 204 may be implemented,
with each instance configured to control a respective bank of
system memory. Memory control unit 204 may be configured
to interface to any suitable type of system memory, such as
described above in reference to FIG. 1 In some embodiments,
memory control unit 204 may be configured to support inter-
facing to multiple different types of system memory.

[0037] In the illustrated embodiment, processor 200 may
also be configured to receive data from sources other than
system memory, such as, another processor, for example.
Such data may be received using 1/O interface 206, or through
one of coherence enginers 203a-b. /O interface 206 may be
configured to provide a central interface for such sources to
exchange data with core groups 201a-%, while coherence
enginers 203a-b may be configured to allow the exchange of
data with other processors, or those processor’s cache or main
memories. In some embodiments, 1/O interface 206 may be
configured to coordinate Direct Memory Access (DMA)
transfers of data between external peripherals and system
memory via coherence engines 203a-b and memory control
unit 204. In one embodiment, 1/O interface 206 may be con-
figured to couple processor 200 to external boot and/or ser-
vice devices. For example, initialization and startup of pro-
cessor 200 may be controlled by an external device (such as,
e.g., a FPGA) that may be configured to provide an imple-
mentation- or system-specific sequence of boot instructions
and data. Such a boot sequence may, for example, coordinate
reset testing, initialization of peripheral devices and initial
execution of processor 200, before the boot process proceeds
to load data from a disk or network device. Additionally, in
some embodiments such an external device may be config-
ured to place processor 200 in a debug, diagnostic, or other
type of service mode upon request.

[0038] I/O interface 206 may be configured to coordinate
data transfer between processor 200 and one or more periph-
eral devices. Such peripheral devices may include, without
limitation, storage devices (e.g., magnetic or optical media-
based storage devices including hard drives, tape drives, CD
drives, DVD drives, etc.), display devices (e.g., graphics sub-



US 2016/0019149 Al

systems), multimedia devices (e.g., audio processing sub-
systems), or any other suitable type of peripheral device. In
one embodiment, 1/O interface 206 may implement one or
more instances of an interface such as Peripheral Component
Interface Express (PCI Express™), although it is contem-
plated that any suitable interface standard or combination of
standards may be employed. For example, in some embodi-
ments [/O interface 206 may be configured to implement a
version of Universal Serial Bus (USB) protocol or IEEE 1394
(Firewire) protocol in addition to or instead of PCI Express™.
[0039] 1/O interface 206 may also be configured to coordi-
nate data transfer between processor 200 and one or more
devices (e.g., other computer systems) coupled to processor
200 via a network. In one embodiment, I/O interface 206 may
be configured to perform the data processing necessary to
implement an Ethernet (IEEE 802.3) networking standard
such as Gigabit Ethernet or 10-Gigabit Ethernet, for example,
although it is contemplated that any suitable networking stan-
dard may be implemented. In some embodiments, I/O inter-
face 206 may be configured to implement multiple discrete
network interface ports.

Core Overview

[0040] A possible embodiment of a processor core is illus-
trated in FIG. 3. In the illustrated embodiment, core 300
includes an instruction fetch unit (IFU) 310 coupled to a
memory management unit (MMU) 320, a cache interface
370, atrap logic unit (TLU) 380, a .2 cache memory 390, and
one or more of execution units 330. In some embodiments,
core 300 may correspond to a give processor core of core
groups 201a-/ as illustrated in FIG. 2. Execution unit 330 is
coupled to both a floating point/graphics unit (FGU) 340 and
a load store unit (LSU) 350. Each of the latter units is also
coupled to send data back to each of execution units 330. Both
FGU 340 and L.SU 350 are coupled to a crypto processing unit
360. Additionally, L.SU 350, crypto processing unit 360, [.2
cache memory 390 and MMU 320 are coupled to cache
interface 370, which may in turn be coupled to on-chip net-
work 206 shown in FIG. 2.

[0041] Instruction fetch unit 310 may be configured to pro-
vide instructions to the rest of core 300 for execution. In the
illustrated embodiment, IFU 310 may be configured to per-
form various operations relating to the fetching of instruc-
tions from cache or memory, the selection of instructions
from various threads for execution, and the decoding of such
instructions prior to issuing the instructions to various func-
tional units for execution. Instruction fetch unit 310 further
includes an instruction cache 314. In one embodiment, IFU
310 may include logic to maintain fetch addresses (e.g.,
derived from program counters) corresponding to each thread
being executed by core 300, and to coordinate the retrieval of
instructions from instruction cache 314 according to those
fetch addresses.

[0042] If core 300 is configured to execute only a single
processing thread and branch prediction is disabled, fetches
for the thread may be stalled when a branch is reached until
the branch is resolved. Once the branch is evaluated, fetches
may resume. In cases where core 300 is capable of executing
more than one thread and branch prediction is disabled, a
thread that encounters a branch may yield or reallocate its
fetch slots to another execution thread until the branch is
resolved. In such cases, an improvement in processing effi-
ciency may be realized. In both single and multi-threaded
modes of operation, circuitry related to branch prediction

Jan. 21, 2016

may still operate even through the branch prediction mode is
disabled, thereby allowing the continued gathering of data
regarding numbers of branches and the number of mispredic-
tions over a predetermined period. Using data from the
branch circuitry and counters 315, branch control circuitry
316 may re-enable branch prediction dependent upon the
calculated rates of branches and branch mispredictions.
[0043] In one embodiment, IFU 310 may be configured to
maintain a pool of fetched, ready-for-issue instructions drawn
from among each of the threads being executed by core 300.
For example, IFU 310 may implement a respective instruc-
tion buffer corresponding to each thread in which several
recently-fetched instructions from the corresponding thread
may be stored. In some embodiments, IFU 310 may be con-
figured to select multiple ready-to-issue instructions and con-
currently issue the selected instructions to various functional
units without constraining the threads from which the issued
instructions are selected. In other embodiments, thread-based
constraints may be employed to simplify the selection of
instructions. For example, threads may be assigned to thread
groups for which instruction selection is performed indepen-
dently (e.g., by selecting a certain number of instructions per
thread group without regard to other thread groups).

[0044] Insome embodiments, IFU 310 may be configured
to further prepare instructions for execution, for example by
decoding instructions, detecting scheduling hazards, arbitrat-
ing for access to contended resources, or the like. Moreover,
in some embodiments, instructions from a given thread may
be speculatively issued from IFU 310 for execution. For
example, a given instruction from a certain thread may fall in
the shadow of'a conditional branch instruction from that same
thread that was predicted to be taken or not-taken, or a load
instruction from that same thread that was predicted to hit in
data cache 352, but for which the actual outcome has not yet
been determined. In such embodiments, after receiving notice
of'a misspeculation such as a branch misprediction or a load
miss, IFU 310 may be configured to cancel misspeculated
instructions from a given thread as well as issued instructions
from the given thread that are dependent on or subsequent to
the misspeculated instruction, and to redirect instruction
fetch appropriately.

[0045] Execution unit 330 may be configured to execute
and provide results for certain types of instructions issued
from IFU 310. In one embodiment, execution unit 330 may be
configured to execute certain integer-type instructions
defined in the implemented ISA, such as arithmetic, logical,
and shift instructions. It is contemplated that in some embodi-
ments, core 300 may include more than one execution unit
330, and each of the execution units may or may not be
symmetric in functionality. Finally, in the illustrated embodi-
ment instructions destined for FGU 340 or LSU 350 pass
through execution unit 330. However, in alternative embodi-
ments it is contemplated that such instructions may be issued
directly from IFU 310 to their respective units without pass-
ing through execution unit 330.

[0046] Floating point/graphics unit 340 may be configured
to execute and provide results for certain floating-point and
graphics-oriented instructions defined in the implemented
ISA. For example, in one embodiment FGU 340 may imple-
ment single-and double-precision floating-point arithmetic
instructions compliant with a version of the Institute of Elec-
trical and Electronics Engineers (IEEE) 754 Standard for
Binary Floating-Point Arithmetic (more simply referred to as
the IEEE 754 standard), such as add, subtract, multiply,



US 2016/0019149 Al

divide, and certain transcendental functions. Also, in one
embodiment FGU 340 may implement partitioned-arithmetic
and graphics-oriented instructions defined by a version of the
SPARC® Visual Instruction Set (VIS™) architecture, such as
VIS™ 2.0. Additionally, in one embodiment FGU 340 may
implement certain integer instructions such as integer multi-
ply, divide, and population count instructions, and may be
configured to perform multiplication operations on behalf of
stream processing unit 240. Depending on the implementa-
tion of FGU 360, some instructions (e.g., some transcenden-
tal or extended-precision instructions) or instruction operand
or result scenarios (e.g., certain abnormal operands or
expected results) may be trapped and handled or emulated by
software.

[0047] In the illustrated embodiment, FGU 340 may be
configured to store floating-point register state information
for each thread in a floating-point register file. In one embodi-
ment, FGU 340 may implement separate execution pipelines
for floating point add/multiply, divide/square root, and graph-
ics operations, while in other embodiments the instructions
implemented by FGU 340 may be differently partitioned. In
various embodiments, instructions implemented by FGU 340
may be fully pipelined (i.e., FGU 340 may be capable of
starting one new instruction per execution cycle), partially
pipelined, or may block issue until complete, depending on
the instruction type. For example, in one embodiment float-
ing-point add operations may be fully pipelined, while float-
ing-point divide operations may block other divide/square
root operations until completed.

[0048] Load store unit 350 may be configured to process
data memory references, such as integer and floating-point
load and store instructions as well as memory requests that
may originate from stream processing unit 360. In some
embodiments, LSU 350 may also be configured to assist in
the processing of instruction cache 314 misses originating
from IFU 310. LSU 350 may include a data cache 352 as well
as logic configured to detect cache misses and to responsively
request data from L3 cache 230 via cache interface 370. In
one embodiment, data cache 352 may be configured as a
write-through cache in which all stores are written to L3
cache 230 regardless of whether they hit in data cache 352; in
some such embodiments, stores that miss in data cache 352
may cause an entry corresponding to the store data to be
allocated within the cache. In other embodiments, data cache
352 may be implemented as a write-back cache.

[0049] In one embodiment, [.SU 350 may include a miss
queue configured to store records of pending memory
accesses that have missed in data cache 352 such that addi-
tional memory accesses targeting memory addresses for
which amiss is pending may not generate additional .3 cache
request traffic. In the illustrated embodiment, address genera-
tion for a load/store instruction may be performed by one of
EXUs 330. Depending on the addressing mode specified by
the instruction, one of EXUs 330 may perform arithmetic
(such as adding an index value to a base value, for example)
to yield the desired address. Additionally, in some embodi-
ments L.SU 350 may include logic configured to translate
virtual data addresses generated by EXUs 330 to physical
addresses, such as a Data Translation Lookaside Buffer
(DTLB).

[0050] Crypto processing unit 360 may be configured to
implement one or more specific data processing algorithms in
hardware. For example, crypto processing unit 360 may
include logic configured to support encryption/decryption

Jan. 21, 2016

algorithms such as Advanced Encryption Standard (AES),
Data Encryption Standard/Triple Data Encryption Standard
(DES/3DES), or Ron’s Code #4 (RC4). Crypto processing
unit 240 may also include logic to implement hash or check-
sum algorithms such as Secure Hash Algorithm (SHA-1,
SHA-256), Message Digest 5 (MDS5), or Cyclic Redundancy
Checksum (CRC). Crypto processing unit 360 may also be
configured to implement modular arithmetic such as modular
multiplication, reduction and exponentiation. In one embodi-
ment, crypto processing unit 360 may be configured to utilize
the multiply array included in FGU 340 for modular multi-
plication. In various embodiments, crypto processing unit
360 may implement several of the aforementioned algorithms
as well as other algorithms not specifically described.

[0051] Crypto processing unit 360 may be configured to
execute as a coprocessor independent of integer or floating-
point instruction issue or execution. For example, in one
embodiment crypto processing unit 360 may be configured to
receive operations and operands via control registers acces-
sible via software; in the illustrated embodiment crypto pro-
cessing unit 360 may access such control registers via LSU
350. In such embodiments, crypto processing unit 360 may be
indirectly programmed or configured by instructions issued
from IFU 310, such as instructions to read or write control
registers. However, even if indirectly programmed by such
instructions, crypto processing unit 360 may execute inde-
pendently without further interlock or coordination with I[FU
310. In another embodiment crypto processing unit 360 may
receive operations (e.g., instructions) and operands decoded
and issued from the instruction stream by IFU 310, and may
execute in response to such operations. That is, in such an
embodiment crypto processing unit 360 may be configured as
an additional functional unit schedulable from the instruction
stream, rather than as an independent coprocessor.

[0052] In some embodiments, crypto processing unit 360
may be configured to freely schedule operations across its
various algorithmic subunits independent of other functional
unit activity. Additionally, crypto processing unit 360 may be
configured to generate memory load and store activity, for
example to system memory. In the illustrated embodiment,
crypto processing unit 360 may interact directly with cache
interface 370 for such memory activity, while in other
embodiments crypto processing unit 360 may coordinate
memory activity through LSU 350. In one embodiment, soft-
ware may poll crypto processing unit 360 through one or
more control registers to determine result status and to
retrieve ready results, for example by accessing additional
control registers. In other embodiments, FGU 340, L.SU 350
or other logic may be configured to poll crypto processing
unit 360 at intervals to determine whether it has results that
are ready to write back. In still other embodiments, crypto
processing unit 360 may be configured to generate a trap
when a result is ready, to allow software to coordinate result
retrieval and processing.

[0053] L2 cache memory 390 may be configured to cache
instructions and data for use by execution unit 330. In the
illustrated embodiment, [.2 cache memory 390 may be orga-
nized into multiple separately addressable banks that may
each be independently accessed. In some embodiments, each
individual bank may be implemented using set-associative or
direct-mapped techniques. [.2 cache memory 390 may, in
various embodiments, be partitioned into a data cache and an
instruction cache. In such cases, a miss to the L1 instruction



US 2016/0019149 Al

cache may be serviced by the L2 instruction cache, and a miss
to the L1 data cache may be serviced by the 1.2 data cache.
[0054] 1.2 cache memory 390 may be implemented in some
embodiments as a writeback cache in which written (dirty)
data may not be written to system memory until a correspond-
ing cache line is evicted. .2 cache memory 390 may variously
be implemented as single-ported or multiported (i.e., capable
of processing multiple concurrent read and/or write
accesses). In either case, .2 cache memory 390 may imple-
ment arbitration logic to prioritize cache access among vari-
ous cache read and write requestors.

[0055] In some embodiments, [.2 cache memory 390 may
be configured to operate in a diagnostic mode that allows
direct access to the cache memory. For example, in such a
mode, [.2 cache memory 390 may permit the explicit address-
ing of specific cache structures such as individual sets, banks,
ways, etc., in contrast to a conventional mode of cache opera-
tion in which some aspects of the cache may not be directly
selectable (such as, e.g., individual cache ways). The diag-
nostic mode may be implemented as a direct port to .2 cache
memory 390.

[0056] L2 cache memory 390 may be further configured to
implement a BIST. An address generator, a test pattern gen-
erator, and a BIST controller may be included in [.2 cache
memory 390. The address generator, test pattern generator,
and BIST controller may be implemented in hardware, soft-
ware, or a combination thereof. The BIST may perform tests
such as, e.g., checkerboard, walking 1/0, sliding diagonal,
and the like, to determine that data storage cells within [.2
cache memory 390 are capable of storing both a logical 0 and
logical 1. In the case where the BIST determines that not all
data storage cells within 1.2 cache memory 390 are func-
tional, a flag or other signal may be activated indicating that
L2 cache memory 390 is faulty.

[0057] As previously described, instruction and data
memory accesses may involve translating virtual addresses to
physical addresses. In one embodiment, such translation may
occur on a page level of granularity, where a certain number
of address bits comprise an offset into a given page of
addresses, and the remaining address bits comprise a page
number. For example, in an embodiment employing 4 MB
pages, a 64-bit virtual address and a 40-bit physical address,
22 address bits (corresponding to 4 MB of address space, and
typically the least significant address bits) may constitute the
page offset. The remaining 42 bits of the virtual address may
correspond to the virtual page number of that address, and the
remaining 18 bits of the physical address may correspond to
the physical page number of that address. In such an embodi-
ment, virtual to physical address translation may occur by
mapping a virtual page number to a particular physical page
number, leaving the page offset unmodified.

[0058] Such translation mappings may be stored in an
ITLB or a DTLB for rapid translation of virtual addresses
during lookup of instruction cache 314 or data cache 352. In
the event no translation for a given virtual page number is
found in the appropriate TLB, memory management unit 320
may be configured to provide a translation. In one embodi-
ment, MMU 250 may be configured to manage one or more
translation tables stored in system memory and to traverse
such tables (which in some embodiments may be hierarchi-
cally organized) in response to a request for an address trans-
lation, such as from an ITLB or DTLB miss. (Such a traversal
may also be referred to as a page table walk.) In some embodi-
ments, if MMU 320 is unable to derive a valid address trans-

Jan. 21, 2016

lation, for example if one of the memory pages including a
necessary page table is not resident in physical memory (i.e.,
apage miss), MMU 320 may be configured to generate a trap
to allow a memory management software routine to handle
the translation. It is contemplated that in various embodi-
ments, any desirable page size may be employed. Further, in
some embodiments multiple page sizes may be concurrently
supported.

[0059] A number of functional units in the illustrated
embodiment of core 300 may be configured to generate oft-
core memory or I/O requests. For example, IFU 310 or LSU
350 may generate access requests to [.3 cache 230 in response
to their respective cache misses. Crypto processing unit 360
may be configured to generate its own load and store requests
independent of LSU 350, and MMU 320 may be configured
to generate memory requests while executing a page table
walk. Other types of off-core access requests are possible and
contemplated. In the illustrated embodiment, cache interface
370 may be configured to provide a centralized interface to
the port of a corresponding cache memory parition, such as,
cache memory pardons 2024, for example. In one embodi-
ment, cache interface 370 may be configured to maintain
queues of pending cache requests and to arbitrate among
pending requests to determine which request or requests may
be conveyed to the cache memory parition during a given
execution cycle.

[0060] During the course of operation of some embodi-
ments of core 300, exceptional events may occur. For
example, an instruction from a given thread that is picked for
execution by pick unit 316 may be not be a valid instruction
for the ISA implemented by core 300 (e.g., the instruction
may have an illegal opcode), a floating-point instruction may
produce a result that requires further processing in software,
MMU 320 may not be able to complete a page table walk due
to a page miss, a hardware error (such as uncorrectable data
corruption in a cache or register file) may be detected, or any
of numerous other possible architecturally-defined or imple-
mentation-specific exceptional events may occur. In one
embodiment, trap logic unit 380 may be configured to man-
age the handling of such events. For example, TL.U 380 may
be configured to receive notification of an exceptional event
occurring during execution of a particular thread, and to cause
execution control of that thread to vector to a supervisor-
mode software handler (i.e., a trap handler) corresponding to
the detected event. Such handlers may include, for example,
an illegal opcode trap handler configured to return an error
status indication to an application associated with the trap-
ping thread and possibly terminate the application, a floating-
point trap handler configured to fix up an inexact result, etc.

[0061] Inone embodiment, TL.U 380 may be configured to
flush all instructions from the trapping thread from any stage
of processing within core 300, without disrupting the execu-
tion of other, non-trapping threads. In some embodiments,
when a specific instruction from a given thread causes a trap
(as opposed to a trap-causing condition independent of
instruction execution, such as a hardware interrupt request),
TLU 380 may implement such traps as precise traps. That is,
TLU 380 may ensure that all instructions from the given
thread that occur before the trapping instruction (in program
order) complete and update architectural state, while no
instructions from the given thread that occur after the trapping
instruction (in program order) complete or update architec-
tural state.



US 2016/0019149 Al

Cache Memory Partitions and Speculative Memory Reads

[0062] Turning to FIG. 4, an embodiment of a partition of a
cache memory is illustrated. In the illustrated embodiment,
cache memory partition 400 includes circuitry 402, memory
404, and register 405. In some embodiments, cache memory
partition 400 may correspond to any of cache partitions
202a-h as illustrated in FIG. 2.

[0063] Memory 404 may, in various embodiments, include
multiple data storage cells, such as, dynamic storage cells,
static storage cells, non-volatile storage cells, or any suitable
data storage cell. In some embodiments, memory 404 may
include dual-port data storage cells allowing read and write
operations to be performed in parallel. It is noted that
although only a single memory is depicted in cache memory
partition 400, in other embodiments, any suitable number of
memories may be employed.

[0064] As described below in more detail in regard to FIG.
5, register 405 may include multiple bit locations. Each bit
location may include a data storage circuit configured to store
a logic state, either a logic 1 value or a logic O value. In some
embodiments, each register may correspond to a respective
partition, and may track a source of return data (either another
partition or another memory) for requests made to the respec-
tive partition. Additional registers may be used, in other
embodiments, to track sources of return data on a per execu-
tion thread basis for each partition. It is noted that although
two possible sources of return data are described above, in
other embodiments, data from multiple bit locations within
register 405 may be used to allow for the tracking of addi-
tional data sources. Although a single register is depicted in
the embodiment of FIG. 4, in other embodiments, any suit-
able number of registers may be employed.

[0065] Circuitry 402 may include a combination of logic
gates configured to perform specific tasks, such as, e.g.,
receive a request for data from a processor core, such as, core
201a of FIG. 2, for example. In some embodiments, circuitry
402 may include one or more state elements, such as, e.g.,
flip-flops or latches, which may be included in a sequential
logic circuit (commonly referred to as a “state machine”)
configured to perform various tasks relating to the operation
of cache memory 403. Circuitry 402 may, in other embodi-
ments, include a general-purpose processor configured to
execute program instructions. While circuitry 402 is shown,
in the illustrated embodiment, as being included in cache
memory partition 400, in some embodiments, the circuitry
may be located in another functional unit or may be shared
with another cache memory partition.

[0066] During operation, circuitry 402 may receive a
request for data from a processor or processor core directed to
memory 404. Upon determining that the request data is not
currently stored in memory 404, circuitry 402 may read con-
tents of register 405. Circuitry 402 may use the contents of the
read register to determine if a speculative read should be
initiated. For example, circuitry 402 may determine if a num-
ber of logic 1 values stored in the read register is less than or
equal to a predetermined threshold value. In other embodi-
ments, circuitry 402 may use any suitable combination of data
bits stored in register 405 in determining if a speculative read
should be initiated. In response to determining that a specu-
lative read should be initiated, circuitry 402 may send a
request to system memory via acommunication network. For
example, as depicted in FIG. 2, a request may be sent via
on-chip network 205, to memory control unit 204. The

Jan. 21, 2016

memory management unit may then schedule the read along
with other requests for data from system memory.

[0067] In the event of a miss for a memory 404, circuitry
402 generates a request for the data from another cache
memory partition. In some embodiments, circuitry 402 may
send the request via a communication network, such as, on-
chip network 205 as illustrated in FIG. 2, for example. Such a
request may, in some embodiments, be processed by a coher-
ence engine, such as, e.g., coherence engine 203a as depicted
in FIG. 2. The coherence engine may determine if the
requested data is available in another cache memory partition,
and, if so, send a request to a cache memory partition storing
the requested data, to send the requested data to the requesting
entity. In other embodiments, the request sent by circuitry 402
may travel to each cache memory partition, and each cache
memory partition may send an appropriate response upon
determining if the requested data is available. Upon receiving
the requested data from another cache memory partition,
circuitry 402 may update one or more values in register 405.
The updated value may, in various embodiments, include
information indicative of which cache memory partition con-
tained the requested data.

[0068] Itis noted that the embodiment illustrated in FIG. 4
is merely an example. In other embodiments, different num-
bers of partitions, and different numbers of registers, are
possible and contemplated.

[0069] Turning to FIG. 5, a block diagram of an embodi-
ment of a history register is depicted. History register 500
may, in various embodiments, correspond to register 405 as
illustrated in FIG. 4. In the illustrated embodiment, history
register 500 includes multiple bit locations 501a through
5017. Each bit location may be configured to store a single
data bit. In various embodiments, any suitable number of bit
locations may be employed, such as, e.g., eight bit locations.

[0070] Each bit location may include a storage circuit such
as, e.g., a latch or flip-flop. In other embodiments, a data
storage cell, such as, a Static Random Access Memory
(SRAM) data storage cell, may be employed. Such storage
circuits may include multiple data ports and may, in some
embodiments, have a dedicated port for reading the data bit
stored in the cell, and a dedicated port for writing new data
into the storage circuit. Reading data from, and writing datato
the data storage cell may be performed in a synchronous
fashion relative to a clock signal, or may be performed asyn-
chronously to a timing reference. In some embodiments, the
data storage cell of included in each bit location may be
configured to be reset to a predetermined logic level, such as,
a logic 0 value, for example.

[0071] The data stored each the storage cell of each bit
location may be indicative of a location from which previ-
ously returned data returned. For example, in some embodi-
ments, if the a previous cache miss resulted in data being
returned from another partition within the cache memory,
such as, e.g., cache partition 202d of FIG. 2, then a logic 1
value may be written into the corresponding data storage cell.
Alternatively, if the previous cache miss resulted in data being
returned from a higher level cache memory or system
memory, then a logic 0 value may be written into the corre-
sponding data storage cell.

[0072] It is noted that “low” of “logic 0 value” refers to a
voltage at or near ground and that “high” or “logic 1 value”
references to a voltage sufficiently large to turn on a n-channel
Metal Oxide Semiconductor Field Effect Transistor (MOS-



US 2016/0019149 Al

FET) and turn off a p-channel MOSFET. In other embodi-
ments, different technology my result in different voltage
levels for “low” and “high.”

[0073] Itis noted that the embodiment illustrated in FIG. 5
is merely an example. In other embodiments, different num-
bers of bit locations may be employed.

[0074] Turning to FIG. 6, a flow diagram depicting an
embodiment of a method for operating a cache memory is
illustrated. Referring collectively to FIG. 2, and the flow
diagram of FIG. 6, the method begins in block 601. A request
for data may then be received by a given one of cache memory
partitions 202a-% (block 602). The request may originate
from a corresponding a given processor core within a given
one of core groups 201a-%, and may include a request for a
program instruction or data. The method may then depend on
if the requested data is stored within the particular partition of
the cache (block 603).

[0075] Ifthe requested data is stored within the given one of
cache memory partitions 202a-#, then the requested data is
sent to the corresponding processor core, and the method may
then conclude in block 610. If, however, the requested data is
not present within the given cache memory partition, then a
history of speculative reads performed may then be checked
(block 604).

[0076] Insome embodiments, a register, such as, e.g., reg-
ister 405 as illustrated in FIG. 4, may be read. The data
retreived from the register may be analyzed to determine a
number of times that data was returned from one of the other
cache memory partitions 202a-4. For example, in the case
where individual bit locations within the register were
updated with a logic 1 value to denote that data was returned
from a related partition, then additional circuitry may deter-
mine a total number of logic 1 values present in the contents
of the register. It is noted that in some embodiments, addi-
tional registers may be employed to track similar information
on a execution thread basis.

[0077] The method may then depend on a number of times
data was returned from a related partition (block 605). When
the number of the number of times data was returned from a
related partition is less than or equal to a predetermined
threshold value, a speculative read may be performed (block
611). The speculative read may pass through coherence
engines 203a-b and then sent to system memory via memory
control unit 204. In some embodiments, the speculative read
may be sent to memory control unit 204 via a communication
network, such as, e.g., on-chip network 205, for example.
Although in the above description, the speculative read is
performed from system memory, in other embodiments, such
a read may be performed from a higher level cache memory.
[0078] Once results of the speculative read has been
received, the speculative read history may then be updated
(block 609). As described below in more detail in regard to
FIG. 7, a value may be written into a given bit location within
aregister indicating the location where the requested data was
found, i.e., a related partition or another memory. In some
embodiments, when a last entry in the register has been
reached, the value may be written into an initial entry in the
register. The register may, in various embodiments, be reset
after a predetermined number of read requests have been
received. With the update of the history complete, the method
may then conclude in block 610.

[0079] When the number of times data was returned from a
related partition is greater than the predetermined threshold
value, execution of a speculative read may be disabled (block

Jan. 21, 2016

606). In some embodiments, the number of times data was
returned from a related partition may indicate that it is likely
that the requeste data may be found in a related partition. A
read from memory may, in various embodiments, be subse-
quently scheduled ifit is determined that the requested data is
not stored in any partition of the cache memory. By disabling
the execution of speculative read, power may be saved in the
event that the requested data was found in a related parition,
and only performing memory reads in cases where the
requested data is not stored in the cache memory.

[0080] Once the speculative read has been disabled, the
method may depend on if the requested data was available in
another cache memory parition (block 607). If the requested
data was found in another cache memory parition, then the
history may be updated to indicate that the requested data was
found in another cache memory parition (block 609). The
method may then conclude in block 610.

[0081] If, however, the requested data was not found in any
of'the available cache memory paritions, the data will need to
be read from main or system memory (block 608). Since a
speculative read was not performed, when such a situation
occurs, additional latency may result, in various embodi-
ments, as a read request is sent to a memory management unit,
such as, e.g., memory control unit 204 of FIG. 2., and the
memory management unit schedules the read request with
other requests being made to the main or system memory.
Once the requested data has been read from the main or
system memory, the method may conclude in block 610.

[0082] It is noted that the method illustrated in FIG. 6 is
merely an example. In other embodiments, different opera-
tions, and different orders of operation are possible and con-
templated.

[0083] Turning to FIG. 7, an embodiment of a method for
updating a history register is depicted in the illustrated flow-
chart. In some embodiments, the method depicted in the flow
diagram of FIG. 7 may correspond to block 607 of the method
illustrated in FIG. 6. Referring collectively to FIG. 4, FIG. 5,
and the flow diagram of FIG. 7, the method begins in block
701.

[0084] The origin of the data returned from a request may
then be determined (block 702). In some embodiments, the
data may have been returned from another partition within a
cache memory, such as cache memory 400 as illustrated in
FIG. 4, for example. If the requested data is not present within
another partition of the cache memory, the requested data
may be returned from another memory, such as, e.g., system
memory. It is noted, however, that the data may be returned
from a higher-level cache memory in some embodiments.

[0085] The method may then depend on the origin of the
returned data (block 703). If the returned data was the result
of a speculative, or otherwise scheduled, read to memory, or
alternatively a higher-level cache memory, then a logic 0
value may be written to the history register (block 704). In
some embodiments, each bit location within the register may
correspond to a given request for data, and the logic 0 value
may be written into a data storage cell in a bit location corre-
sponding to the current request. The register may include
sufficient bit locations to track any suitable number of data
requests. Each bit location may be filled in a sequential fash-
ion, and when all bit locations have been used, an initial bit
location may be re-used in a “wrap around” fashion. With the
update to register complete, the method may conclude in
block 705.



US 2016/0019149 Al

[0086] If the returned data was from another partition
within the cache memory, such as, e.g., partition 4045, then a
logic 1 value may be written to the history register (block
706). As with the case of writing a logic 0 value, the logic 1
value may be written into a data storage cell in a bit location
corresponding to the current request. With the writing of the
logic 1 value to the register, the method may then conclude in
block 705.

[0087] The operations of the method illustrated in the flow-
chart of FIG. 7 are depicted as being performed in a sequential
fashion. In other embodiments, one or more of the operations
may be performed in parallel.

[0088] Although specific embodiments have been
described above, these embodiments are not intended to limit
the scope of the present disclosure, even where only a single
embodiment is described with respect to a particular feature.
Examples of features provided in the disclosure are intended
to be illustrative rather than restrictive unless stated other-
wise. The above description is intended to cover such alter-
natives, modifications, and equivalents as would be apparent
to a person skilled in the art having the benefit of this disclo-
sure.

[0089] The scope of the present disclosure includes any
feature or combination of features disclosed herein (either
explicitly or implicitly), or any generalization thereof,
whether or not it mitigates any or all of the problems
addressed herein. Accordingly, new claims may be formu-
lated during prosecution of this application (or an application
claiming priority thereto) to any such combination of fea-
tures. In particular, with reference to the appended claims,
features from dependent claims may be combined with those
of the independent claims and features from respective inde-
pendent claims may be combined in any appropriate manner
and not merely in the specific combinations enumerated in the
appended claims.

What is claimed is:

1. An apparatus, comprising:

a first memory including a plurality of partitions;

at least one register configured to store history data,

wherein the history data includes information indicative
of'a source of returned data for at least one previous read
request; and

circuitry configured to:

receive a read request for data from a first partition of the
plurality of partitions;

read the history data from the at least one register
responsive to a determination that the data is not
stored in the first partition of the plurality of parti-
tions; and

initiate a speculative read of the data from a second
memory dependent upon the history data.

2. The apparatus of claim 1, wherein to initiate the specu-
lative read of the data the circuitry is further configured to
determine a number of previous read requests whose source
of returned data is a given partition of the plurality of parti-
tions.

3. The apparatus of claim 2, wherein the circuitry is further
configured to initiate the speculative read responsive to a
determination that the number of previous read requests
whose source of returned data is a given partition of the
plurality of partitions is less than a predetermined threshold
value.

4. The apparatus of claim 1, wherein the history data
includes a plurality of portions, and wherein each portion of

Jan. 21, 2016

the plurality of portions corresponds a respective execution
thread of a plurality of execution threads.

5. The apparatus of claim 1, wherein the circuitry is further
configured to update the history data responsive to the deter-
mination that the data is not stored in the first partition of the
plurality of partitions.

6. The apparatus of claim 5, wherein to update the history
data, the circuitry is further configured to store alogic valuein
a location in the at least one register, wherein the logic value
is indicative of a source of returned data for the read request.

7. A method for operating a memory, the method compris-
ing:

receiving a read request for data from a first partition of a
plurality of partitions of a first memory;

reading history data from at least one register responsive to
determining that the data is not stored in the first parti-
tion of the plurality of partitions, wherein the history
data includes information indicative of a source of
returned data for at least one previous read request; and

initiating a speculative read of the data from a second
memory dependent upon the history data.

8. The method of claim 7, wherein initiating the speculative
read comprises determining a number of previous read
requests whose source of returned data is a given partition of
the plurality of partitions.

9. The method of claim 8, further comprising initiating the
speculative read responsive to determining the number of
previous read requests whose source of returned data is a
given partition of the plurality of partitions is less than a
predetermined threshold value.

10. The method of claim 7, wherein the history data
includes a plurality of portions, and wherein each portion of
the plurality of portions corresponds to a respective execution
thread of a plurality of execution threads.

11. The method of claim 7, further comprising updating the
history data responsive to determining that the data is not
stored in the first partition of the plurality of partitions.

12. The method of claim 11, wherein updating the history
data comprises storing a first logic value in a location of the at
least one register corresponding to the read request respon-
sive to determining that a source of returned data for the read
request is a second partition of the plurality of partitions.

13. The method of claim 12, wherein updating the history
data comprises storing a second logic value in a location of
the register corresponding to the read request responsive to
determining that a source of returned data for the read request
is the second memory, wherein the second logic value is
different than the first logic value.

14. The method of claim 7, wherein the second memory
comprises system memory.

15. A system, comprising:

a first memory including a plurality of partitions, and at
least one register configured to store history data,
wherein the history data includes information indicative
of a source of returned data for at least one previous read
request;

a second memory; and

a plurality of processors, wherein a given processor of the
plurality of processors is configured to send a read
request to the first memory for data from a first partition
of the plurality of partitions;

wherein the first memory is configured to:
receive the read request;



US 2016/0019149 Al

read the history data responsive to a determination that
the data is not stored in the first partition of the plu-
rality of partitions; and

initiate a speculative read of the data from the second
memory dependent upon the history data.

16. The system of claim 15, wherein to initiate the specu-
lative read of the data from the second memory, the first
memory is further configured to determine a number of pre-
vious read requests whose source of returned data is a given
partition of the plurality of partitions.

17. The system of claim 16, wherein the first memory is
further configured to initiate the speculative read responsive
to a determination that the number of previous read requests
whose source of returned data is a given memory partition of
the plurality of partitions is less than a predetermined thresh-
old value.

18. The system of claim 15, wherein the history data
includes a plurality of portions, and wherein each portion of
the plurality of portions corresponds to a respective execution
thread of a plurality of execution threads.

19. The system of claim 15, wherein the first memory is
further configured to update the history responsive to a deter-
mination that the data is not stored in the first partition of the
plurality of partitions.

20. The system of claim 19, wherein to update the history
data, the first memory is further configured to store a logic
value in a location in the at least one register, wherein the
logic value is indicative of a source of returned data for the
read request.

10

Jan. 21, 2016



