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F.G. 1 
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F(o,t) = | 1-1 + 2-5 + 3-4 + 4-3 + 5-2 = 0 + 3 + 1 + 1 + 3 = 8 

TO NORMALIZE, DIVIDED BY 0.5 i2= 12.5 

NORMALIZED VALUE = 8 / 12.5 = 0.64 
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FIG. 2 

KENDALL TAU DSTANCE 
- FOR TWO FULL LISTS O AND 
WHERE i = # OF ELEMENTS IN SET 

for (i=1) (F2) no disagreement 
for (i-1) (F3) no disagreement 
for (i=1) (j=4) no disagreement 
for (i-1) (F5) no disagreement 
for (2) (j=3) disagreement 
for (i=2) (j=4) disagreement 
for (i-2) (j=5) disagreement 
for (i-3) (j=4) disagreement 
for (i=3) (j=5) disagreement 
for (i-4) (=5) disagreement 
total disagreements = 6 

TO NORMALIZE, DIVIDED BY 0.5 i(-1) = 10 

NORMALIZED VALUE E 6 ? 10 E 0.6 
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FIG. 3 

NORMALIZED FOOTRULE DISTANCE 
FOR A COLLECTION OF LISTS 
WHERE i = # OF ELEMENTS IN SET 
AND k - it OF LISTS BEING COMPARED TO O. 
F(o,t...,t) = (1/k) X F(O,t) 

F(O,t...,t) = (F, + F + F + F + F) 15 
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FIG. 4 

SCALED FOOTRULE DISTANCE 
- FOR ONE FULL LIST O AND ONE PARTIAL LIST 
WHERE i - # OF ELEMENTS INSET 

SF(o,t) = x O(i)/lo -t?i)/It 

a 

SF(o,t) = (1/5) - (114) + (5/5) - (2/4) + (415) - (3/4) + (3/5) - (4/4) = 1 

TO NORMALIZE, DIVIDE BY 0.5 t = 2 

NORMALIZED VALUE = 1 / 2 = 0.5 
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SYSTEMAND METHOD FOR AGGREGATING 
RANKING RESULTS FROM VARIOUS SOURCES 

TO IMPROVE THE RESULTS OF WEB 
SEARCHING 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. This application claims priority benefit of and 
hereby incorporates by reference the entirety of U.S. Pro 
visional Patent Application No. 60/288,201, filed on May 1, 
2001. 

FIELD OF THE INVENTION 

0002 This invention relates to aggregating rankings from 
various Sources, and more Specifically to methods of 
improving the results of Web Searching. In particular, the 
invention is intended to combat “spam' or deliberate 
manipulations by web page authors to mislead Web Search 
engines into giving an undeservedly high rank to their web 
pageS. 

DESCRIPTION OF RELATED ART 

0003. The rank aggregation problem is to combine many 
different rank orderings on the same Set of candidates, or 
alternatives, in order to obtain a “better” ordering. There are 
many situations in which the task of ranking a list of Several 
alternatives based on one or more criteria is necessary. When 
there is a single criterion (or “judge') for ranking, the task 
is relatively easy and is simply a reflection of the judge's 
opinions and biases. In contrast, computing a “consensus’ 
ranking of the alternatives, given the individual ranking 
preferences of Several judges, is not So easy. A specific and 
important example of Such a rank aggregation problem 
arises in the context of the World Wide Web (referred to in 
this application interchangeably as the internet or the web). 
0004. As the volume of data accessible via computer 
continues to increase, the need for automated tools for 
efficient retrieval of relevant information from that data also 
increases. Many people use the web to access a wide variety 
of information. Queries to Search engines are routinely 
employed to find relevant information on the many web 
pages available. Search engines are remotely accessible 
programs that perform keyword Searches for information, 
often on web data. 

0005 Search engines typically return dozens or hundreds 
of URLS (universal resource locators, which are essentially 
web site addresses) that the Search engines have determined 
are related to user-specified keywords or Search phrases. 
Many Search engines also provide a relevance ranking, 
which is a relative numerical estimate of the Statistical 
likelihood that the material at a given URL will be of interest 
in comparison to other documents. Relevance rankings are 
often based on the number of times a keyword or Search 
phrase appears in a document, its placement in the document 
(for example, a keyword in the title is often deemed more 
relevant than one at the end of the page), and the size of the 
document. Link analysis has also come to be known as a 
very powerful technique in ranking web pages and other 
hyperlinked documents. Anchor-text analysis, page Structure 
analysis, the use of keyword listings and the URL text itself 
are other well-motivated heuristics intended to exploit a 
wealth of available information. 
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0006 There are at least two dozen general purpose search 
engines available for use, as well as many special purpose 
Search engines. The very fact that there are So many choices 
is an indication that no Single Search engine has proven to be 
Satisfactory for all web users. There are Several reasons why 
this is the case. First, no one ranking method can be 
considered broadly acceptable; that is, no single ranking 
function can be trusted to perform well for all queries. 
Second, no one Search engine is Sufficiently comprehensive 
in its coverage of the Web. Further, Some data are not easily 
handled by Simple ranking functions. For example, Search 
engines have more difficulty with queries about multimedia 
documents than with queries about text documents. U.S. Pat. 
No. 5,873,080 to Coden et al., hereby incorporated by 
reference, describes the use of multiple Search engines to 
search multimedia data. U.S. Pat. No. 6,014,664 to Fagin et 
al., hereby incorporated by reference, describes the use of 
incorporating weights into combinational rules to produce a 
combined Scoring function for a database. 
0007 Creators of web pages also complicate the problem 
of information retrieval and ranking through deliberate 
efforts to ensure that their pages are presented to a user. 
Some Search engines are currently pursuing paid placement 
and paid inclusion busineSS models, wherein web page 
creators effectively pay for the Search engine to generate a 
higher rank for their web pages. Users of Such Search 
engines may not have any form of protection against Such 
deliberate ranking biases. Some web page creators are 
resorting to more nefarious means to induce Search engines 
to generate higher rank figures for their web pages. Delib 
erate manipulation of web pages by their authors in an 
attempt to achieve an undeservedly high rank from Search 
engines is referred to as "spamming” or creating "spam'. 
Such manipulation can include putting hundreds of copies of 
keywords in a web page to confuse a Search engine into 
overestimating the relevance of the web page. The end result 
is that the user who ran the Search engine query is given 
highly ranked web pages that may not be truly relevant. 
0008. A computationally efficient method for providing a 
degree of robustness of Search results from a number of 
Search engines in View of the various shortcomings and 
biases of individual Search engines described above is 
therefore needed. 

0009 Improvements in aggregate ranking methods may 
also be important in applications other than meta-Searching 
with improved spam elimination. These applications include 
Situations where user preferences span a variety of criteria, 
and the logic of classifying a document as acceptable or 
unacceptable is difficult to encode into any simple query 
form. Typical examples include multi-criteria Selection and 
word association queries. 

0010 Multi-criteria selection scenarios arise when users 
try to choose a product from a database of products. 
Although an airline reservation System is flexible enough to 
let the user specify various preference criteria (travel dates/ 
times, window/aisle Seating, number of Stops, frequent-flier 
preferences, refundable/non-refundable tickets, and of 
course, price), it may not allow the user to specify a clear 
order of importance among the criteria. Similarly, in choos 
ing restaurants from a restaurant database, users might rank 
restaurants based on Several different criteria (cuisine, driv 
ing distance, ambiance, Star-rating, dollar-rating, etc.). In 
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both these examples, users might be willing to compromise 
one or more of the criteria, provided there is a clear benefit 
with respect to the others. Ranking a database with respect 
to Several individual criteria, then applying a good aggre 
gation function, may prove to be an effective method for 
handling multi-criteria Selection situations. 
0.011 Word association queries are employed when a user 
wants to Search for a good document on a topic; the user 
typically knows a list of keywords that collectively describe 
the topic, but isn't Sure that the best document on the topic 
necessarily contains all of them. This is a very familiar 
dilemma for Web Searchers: when keywords are Supplied to 
a Search engine, do users ask for documents that contain all 
the keywords, or just for documents that contain any of the 
keywords? The former may produce no useful documents, or 
too few of them, while the latter may produce an enormous 
list of documents where it is not clear which one to choose 
as the best. These concerns may be addressed by improve 
ments in associations ranking, wherein the database is 
ranked with respect to Several Small Subsets of the queries, 
and these rankings are then aggregated. Typically, the aggre 
gation function is given no information about how the input 
lists were generated. In the web environment, input lists are 
usually generated by Search engines that may be modified at 
any time, without notice. In this Setting, there may be no 
opportunity for training an aggregation System before aggre 
gation is required. 

0012 Users may also wish to compare the performance 
of various Search engines via an improved rank aggregation 
method. A good Search engine is one that produces results 
that are close to the aggregated ranking. However, any 
method for rank aggregation for web applications must be 
capable of dealing with the fact that only the top few 
hundred entries of each ranking are made available by each 
Search engine. This limitation is imposed in the interest of 
efficiency and to ensure the confidentiality of the engines 
particular ranking algorithms. 

SUMMARY OF THE INVENTION 

0013. It is accordingly an object of this invention to 
devise a System and method for aggregating rankings from 
a plurality of ranking Sources to generate a maximally 
consistent ranking by minimizing a distance measure. 
0.014. It is a related object of this invention to aggregate 
rankings from the Situation wherein the ranking Sources are 
Search engines executing queries on web pages that may 
have been deliberately modified to cause an incorrect esti 
mate of their relevance. 

0.015. It is a related object of this invention to aggregate 
rankings when a number of ranking Sources may produce 
only a partial list. In the case where partial lists are to be 
aggregated, a union of partial lists is computed, and an 
induced distance measure between each partial list and the 
projection of a full list with respect to the union of partial 
listS is computed. 

0016. Different distance measures for comparing lists to 
each other and for comparing a single list to a collection of 
lists are described. The Spearman footrule distance for two 
full lists is the Sum of the absolute values of the difference 
between the rank of element i in one list versus the rank of 
element i in the other list. The Kendall tau distance for two 
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full lists is a count of the number of pairwise ranking 
disagreements between the two lists. 
0017. The aggregation obtained by optimizing total Ken 
dall tau distance is called a Kemeny optimal aggregation; 
unfortunately, finding a Kemeny optimal aggregation is 
NP-hard. A far less computationally expensive yet natural 
relaxation, termed a local Kemeny optimal aggregation, is 
computed by optimizing the total Spearman footrule dis 
tance. It is a related object that the invention utilizes a crucial 
property of Such Solutions, termed the “extended Condorcet 
criterion', to combat deliberate web site modifications and 
resulting incorrect estimates of their relevance. The inven 
tion minimally modifies any initial aggregation via local 
Kemenization to have this crucial property. The initial 
aggregation may be obtained by using Markov chains. 
0018. It is a related object of the invention to minimize 
the total distance between lists by computing a minimum 
cost perfect matching in a bipartite graph. 
0019. It is a related object of the invention to use heu 
ristics defining Markov chain State transition probabilities to 
combine partial comparison information, derived from indi 
vidual rankings, into a total ordering. The States of the 
Markov chains correspond to candidate web pages to be 
ranked, and the Markov chain ordering is the output aggre 
gated ordering. 
0020. The foregoing objects are believed to be satisfied 
by the embodiments of the present invention as described 
below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0021 FIG. 1 is a diagram of the computation of Spear 
man footrule distance. 

0022 FIG. 2 is a diagram of the computation of Kendall 
tau distance. 

0023 FIG. 3 is a diagram of the computation normalized 
footrule distance for a collection of lists. 

0024 FIG. 4 is a diagram of the computation of scaled 
footrule distance given a full list and a partial list. 
0025 FIG. 5 is a flowchart of the computation of a 
locally Kemeny optimal aggregation. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

Types of Lists 

0026 Given a universe U, an ordered list (or simply, a 
list) t with respect to U is an ordering (aka ranking) of a 
Subset S of U, i.e., t=X>X->. . . X., with each X; in S, and 
> is Some ordering relation on S. Also, if i in U is present in 
T, let T(i) denote the position or rank of i (a highly ranked or 
preferred element has a low-numbered position in the list). 
For a list t, lett denote the number of elements. By 
assigning a unique identifier to each element in U, one may 
assume without loss of generality that U= {1, 2, ... U}. 
0027 Depending on the kind of information present in t, 
three Situations arise: 

0028 (1) If t contains all the elements in U, then it 
is said to be a full list. Full lists are, in fact, total 
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orderings (permutations) of U. For instance, if U is 
the Set of all pages indexed by a Search engine, it is 
easy to see that a full list emerges when one ranks 
pages (Say, with respect to a query) according to a 
fixed algorithm. 

0029 (2) There are situations where full lists are not 
convenient or even possible. For instance, let U 
denote the set of all web pages in the world. Lett 
denote the results of a Search engine in response to 
Some fixed query. Even though the query might 
induce a total ordering of the pages indexed by the 
Search engine, Since the index Set of the Search 
engine is almost Surely only a Subset of U, there is a 
strict inequality t<U. In other words, there are 
pages in the World which are unranked by this Search 
engine with respect to the query. Such lists that rank 
only Some of the elements in U are called partial 
lists. 

0030 (3) A special case of partial lists is the fol 
lowing. If S is the Set of all the pages indexed by a 
particular Search engine and if t corresponds to the 
top 100 results of the Search engine with respect to 
a query, clearly the pages that are not present in list 
t can be assumed to be ranked below 100 by the 
Search engine. Such lists that rank only a Subset of S 
and where it is implicit that each ranked element is 
above all unranked elements, are called top d lists, 
where d is the Size of the list. A natural operation of 
projection will be useful. Given a list T and a subset 
T of the universe U, the projection of t with respect 
to T (denoted t, will be a new list that contains only 
elements from T. Notice that if t happens to contain 
all the elements in T, thent, is a full list with respect 
to T. 

Concepts From Graph Theory 

0031) A graph G=(V, E) consists of a set of nodes V and 
a set of edges E. Each element e in E is an unordered pair 
(u, v) of incident nodes, representing a connection between 
nodes u and V. A graph is connected if the node Set cannot 
be partitioned into components Such that there are no edges 
whose incident nodes occur in different components. 
0032. A bipartite graph G=(U, V, E) consists of two 
disjoint Sets of nodes U, V Such that each edge e in E has one 
node from U and the other node from V. A bipartite graph is 
complete if each node in U is connected to every node in V. 
A matching is a Subset of edges Such that for each edge in 
the matching, there is no other edge that shares a node with 
it. A maximum matching is a matching of largest cardinality. 
A weighted graph is a graph with a (non-negative) weight for 
every edge e. Given a weighted graph, the minimum weight 
maximum matching is the maximum matching with mini 
mum weight. The minimum weight maximum matching 
problem for bipartite graphs can be solved in time O(n), 
where n is the number of nodes. 

0033. A directed graph consists of nodes and edges, but 
this time an edge is an ordered pair of nodes (u, v), 
representing a connection from u to V. A directed path is said 
to exist from u to V if there is a Sequence of nodes u=wo, . 
.., W=V Such that (Wii, Wii is an edge, for all i=0,..., k-1. 
A directed cycle is a non-trivial directed path from a node to 
itself. A Strongly connected component of a graph is a Set of 
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nodes Such that for every pair of nodes in the component, 
there is a directed path from one to the other. A directed 
acyclic graph (DAG) is a directed graph with no directed 
cycles. In a DAG, a sink node is one with no directed path 
to any other node. 
0034 A (homogeneous) Markov chain for a system is 
specified by a set of States S={1, 2, ..., n} and an n by n 
non-negative, stochastic (i.e., the Sum of each row is 1) 
matrix M. The System begins in Some start State in S and at 
each Step moves from one State to another State. This 
transition is guided by M: at each Step, if the System is in 
state i, it moves to state j with probability Mit. If the current 
State is given as a probability distribution, the probability 
distribution of the next state is given by the product of the 
vector representing the current State distribution and M. In 
general, the Start State of the System is chosen according to 
some distribution X (usually, the uniform distribution) on S. 
After t Steps, the State of the System is distributed according 
to XM'. Under some niceness conditions on the Markov 
chain, irrespective of the Start distribution X, the System 
eventually reaches a unique fixed point where the State 
distribution does not change. This distribution is called the 
Stationary distribution. It can be shown that the Stationary 
distribution is given by the principal left eigenvectory of M, 
i.e., yM=2 y. In practice, a simple power-iteration algorithm 
can quickly obtain a reasonable approximation to y. 
0035. The entries in y define a natural ordering on S. 
Such an ordering is termed the Markov chain ordering of M. 
A technical point to note while using Markov chains for 
ranking is the following. A Markov chain M defines a 
weighted graph with n nodes Such that the weight on edge 
(u, v) is given by M., The Strongly connected components 
of this graph form a DAG. If this DAG has a sink node, then 
the stationary distribution of the chain will be entirely 
concentrated in the Strongly connected component corre 
sponding to the Sink node. In this case, only an ordering of 
the alternatives present in this component is obtained; if this 
happens, the natural extended procedure is to remove these 
States from the chain and repeat the process to rank the 
remaining nodes. Of course, if this component has Suffi 
ciently many alternatives, one may stop the aggregation 
process and output a partial list containing Some of the best 
alternatives. If the DAG of connected components is 
(weakly) connected and has more than one sink node, then 
one will obtain two or more clusters of alternatives, which 
one could sort by the total probability mass of the compo 
nents. If the DAG has Several weakly connected compo 
nents, one will obtain incomparable clusters of alternatives. 
Thus, when one refers to a Markov chain ordering, one 
refers to the ordering obtained by this extended procedure. 

Distance Measures 

0036) How does one measure distance between two full 
lists with respect to a Set S. Two popular distance measures 

C. 

0037 (1) The Spearman footrule distance is the 
Sum, over all elements i in S, of the absolute differ 
ence between the rank of i according to the two lists. 
Formally, given two full lists O and t, their Spearman 
footrule distance is given by 

0038. This distance measures the displacement of each 
element between the two rankings O and T. After dividing 
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this number by the maximum value (%)SIf, one can obtain 
a normalized value of the footrule distance, which is always 
between 0 and 1. The footrule distance between two lists can 
be computed in linear time. 
0.039 Referring now to FIG. 1, a diagram of the com 
putation of Spearman footrule distance is shown. Two full 
lists (with i=5) are given: 

0040. O={APPLE, ORANGE, BANANA, PEACH, 
CHERRY} and 

0041) t={APPLE, CHERRY, PEACH, BANANA, 
ORANGE}. 

0.042 Each item in the lists could represent a URL 
returned by a Search engine, for example. The displacement 
of each element is computed, Summed, and normalized as 
described above. 

0043 (2) The Kendall distance counts the number of 
pairwise disagreements between two lists; that is, the 
distance between two lists O and T is 

K(o,t)={(i,j):i-i, o(i)<o(i)but t(i)>t(i). 
0044) Note that if it is not the case that both i and appear 
in both lists O and t, then the pair (i,j) contributes nothing 
to the Kendall distance between the two lists. Dividing this 
number by the maximum possible value (%)S(S-1) pro 
duces a normalized version of the Kendall distance. 

0.045 Referring now to FIG. 2, a diagram of the com 
putation of Kendall tau distance is shown. Two full lists are 
given as in FIG. 1, and the number of pairwise disagree 
ments is Summed as described above, and the result is 
normalized. 

0046 For any two partial lists where K(O,t)=K(t, O) and 
ifa and X are full lists, then K is a metric (this is not true 
in general, e.g., consider three lists one of which is empty 
the distance to an empty list is always Zero). In this case, K 
is known as the Kendall tau distance between the lists and 
it corresponds to the number of pairwise adjacent transpo 
sitions bubble sort requires to turn O into t. By definition it 
is possible to compute K(O,t) in O(n) time, although with 
Simple data structures it can be computed in O(n log n) time, 
and with Sophisticated data Structures one can improve the 
time to O(n log n/log log n). 
0047 The above measures extend in a natural way to 
encompass several lists. Given several full lists O, T, ... t, 
for instance, the normalized footrule distance of O to t, . . 
. , t is given by: 

0.048 Referring now to FIG. 3, a diagram of the com 
putation normalized footrule distance for a collection of lists 
is shown. In this case, k=5. Individual distances are com 
puted, Summed, and normalized by dividing the result by k. 
0049. One can also define generalizations of these dis 
tance measures to partial lists. If t, . . . , t are partial lists, 
let U denote the union of elements in t, ..., T., and let O 
be a full list with respect to U. Now, given O, the idea is to 
consider the distance between T and the projection of O, 
with respect to T. Then, for instance, one has the induced 
footrule distance: 
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0050. In a similar manner, induced Kendall tau distance 
can be defined. Finally, a third notion of distance is defined 
that measures the distance between a full list and a partial list 
on the same universe: 

0051 (3) Given one full list and a partial list, the 
Scaled footrule distance weights contributions of 
elements based on the length of the lists they are 
present in. More formally, if a is a full list and t is 
a partial list, then: 

SF(o, t)=X; i (o(i)/t)-((i)/t). 
0.052 SF is normalized by dividing by t(2. 
0053 Referring now to FIG. 4, a diagram of the com 
putation of Scaled footrule distance given a full list and a 
partial list is shown. The lists are as described above, but in 
this instance t has only four elements. Note that these 
distances are not necessarily metrics. To a large extent, 
experimental results will be interpreted in terms of these 
distance measures. 

Optimal Rank Aggregation 

0054) In the generic context of rank aggregation, the 
notion of “better” depends on what distance measure to be 
optimized. Suppose Kendall distance is to be optimized; the 
problem then is: given (full or partial) lists T, . . . , t, find 
a O Such that O is a full list with respect to the union of the 
elements of t, . . . , ts, and O minimizes K(O, t1, . . . , t). 
In other words, for a collection of partial lists T, ..., T and 
a full list O, denote SK(O, T, . . . , t) by the Sum: 

k 

SK(O, 21, ... t) = XK(or, t;). 
i=1 

0055 The aggregation obtained by minimizing SK(O.T., 
. . . , t) over all permutations O (that is, optimizing Kendall 
distance), is called a Kemeny optimal aggregation and in a 
precise Sense, corresponds to the geometric median of the 
inputs. In general, the Kemeny optimal Solution is not 
unique. 

0056 Computing the Kemeny optimal aggregation is 
NP-hard even when k=4. Note that in contrast to the Social 
choice Scenario where there are many Voters and relatively 
few candidates, in the web aggregation Scenario there are 
many candidates (pages) and relatively few voters (the 
Search engines). 
0057 Kemeny optimal aggregations have a maximum 
likelihood interpretation. Suppose there is an underlying 
“correct' ordering O of S, and each order., T., . . . , t is 
obtained from O by Swapping two elements with Some 
probability less than %. Thus, the t’s are “noisy” versions of 
O. A Kemeny optimal aggregation of t, . . . , t, is one that 
is maximally likely to have produced the t’s (it need not be 
unique). Viewed differently, Kemeny optimal aggregation 
has the property of eliminating noise from various different 
ranking Schemes. 
0058 Given that a Kemeny optimal aggregation is useful, 
but computationally hard, how can its properties be capital 
ized upon in a tractable manner? The following relation 
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shows that Kendall distance can be approximated very well 
via the Spearman footrule distance. 
0059) Proposition 1: For any two full lists O and T, K(o, 
t)s F(O,t)s2K(O,t). 
0060. This leads to the problem of footrule optimal 
aggregation. This is the same problem as before, except that 
the optimizing criterion is now the footrule distance. A 
polynomial time algorithm to compute optimal footrule 
aggregation is exhibited below (Scaled footrule aggregation 
for partial lists). Therefore: 
0061 Proposition 2: If O is the Kemeny optimal aggre 
gation of full lists t, . . . T, and O' optimizes the footrule 
aggregation, then 

0.062. In other words, any algorithm that computes a 
footrule optimal aggregation is automatically a 2-approxi 
mation algorithm for finding Kemeny optimal aggregations. 

Spam Resistance and Condorcet Criteria 
0.063. In 1770, Borda proposed a particular voting 
method: for each voters announced (linear) preference 
order on the alternatives, a Score of Zero is assigned to the 
least preferred alternative, one to the next-least-preferred, 
and So forth; then the total Score of each alternative is 
computed and the one with the highest Score is declared the 
winner. Borda's method is a “positional' method, in that it 
assigns a Score corresponding to the positions in which a 
candidate appears within each voters ranked list of prefer 
ences, and the candidates are Sorted by their total Score. 
0064. In 1785, Marie J. A. N. Caritat, Marquis de Con 
dorcet, proposed a voting method, now known as the Con 
dorcet alternative. Under this method, if there is some 
alternative that defeats every other in pairwise Simple major 
ity voting, then that alternative should be ranked first. A 
natural extension, due to Truchon, mandates that if there is 
a partition (C, D) of S such that for any x in C and y in D 
the majority preferS X to y, then X must be ranked above y. 
This is called the extended Condorcet criterion. 

0065. A primary advantage of positional methods (e.g. 
Borda's method) is that they are computationally very easy: 
they can be implemented in linear time. They also enjoy the 
properties called anonymity, neutrality, and consistency in 
the Social choice literature. However, they cannot satisfy the 
Condorcet criterion. In fact, it is possible to show that no 
method that assigns a weights to each position and then Sorts 
the results by applying a function to the weights associated 
with each candidate satisfies the Condorcet criterion. How 
ever, the extended Condorcet criterion can be achieved 
efficiently in rank aggregations. 

0.066 A strong connection is now established between 
Satisfaction of the extended Condorcet criterion and fighting 
Search engine "spam.” Kemeny optimal aggregations are 
essentially the only ones that Simultaneously Satisfy natural 
and important properties of rank aggregation functions, 
called neutrality and consistency in the Social choice litera 
ture, and the Condorcet criterion. Indeed, Kemeny optimal 
aggregations even Satsify the extended Condorcet criterion, 
which, described in terms of meta-Searching States that if the 
Set of returned Search results can be partitioned Such that all 
members of a subset of one partition (X*="non-spam”) 
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defeat all alternatives in the complement (X="spam"), then 
in the aggregated Search results, all the non-spam elements 
outrank all the Spam elements. 
0067 Intuitively, a search engine has been spammed by 
a page in its index, on a given query, if it ranks the page "too 
highly with respect to other pages in the index, in the view 
of a “typical’ user. Indeed, in accord with this intuition, 
Search engines are both rated and trained by human evalu 
ators. This approach to defining Spam: 

0068 (1) permits an author to raise the rank of her 
page by improving the content; 

0069 (2) puts ground truth about the relative value 
of pages into the purview of the users-in other 
words, the definition does not assume the existence 
of an absolute ordering that yields the “true' relative 
Value of a pair of pages on a query; 

0070 (3) does not assume unanimity of users’ opin 
ions or consistency among the opinions of a Single 
user; and 

0071 (4) suggests some natural ways to automate 
training of engines to incorporate useful biases, Such 
as geographic bias. 

0072 Reliance on evaluators in defining spam is prob 
ably unavoidable. If the evaluators are human, the typical 
Scenario during the design and training of Search engines, 
then the eventual product will incorporate the biases of the 
training evaluators. The evaluators are modeled by the 
Search engine ranking functions. That is, one makes the 
Simplifying assumption that for any pair of pages, the 
relative ordering by the majority of the Search engines 
comparing them is the same as the relative ordering by the 
majority of the evaluators. The intuition is that if a page 
Spams all or even most Search engines for a particular query, 
then no combination of these Search engines can defeat the 
spam. This is reasonable: Fix a query; if for Some pair of 
pages a majority of the engines is spammed, then the 
aggregation function is working with overly bad data 
garbage in, garbage out. On the other hand, if a page Spams 
Strictly fewer than half the Search engines, then a majority of 
the Search engines will prefer a "good' page to a Spam page. 
In other words, under this definition of Spam, the Spam pages 
are the Condorcet losers, and will occupy the bottom par 
tition of any aggregated ranking that Satisfies the extended 
Condorcet criterion. Similarly, assuming that good pages are 
preferred by the majority to mediocre ones, these will be the 
Condorcet winners, and will therefore be ranked highly. 
0073 Many of the existing aggregation methods do not 
ensure the election of the Condorcet winner, should one 
exist. The aim here is to obtain a simple method of modi 
fying any initial aggregation of input lists So that the 
Condorcet losers (spam) will be pushed to the bottom of the 
ranking during this process. This procedure is called local 
Kemenization. 

Local Kemenization 

0074 The notion of a locally Kemeny optimal aggrega 
tion is introduced; it is a relaxation of Kemeny optimality 
that ensures Satisfaction of the extended Condorcet principle 
and yet remains computationally tractable. AS the name 
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implies, local Kemeny optimal is a “local notion that 
possesses. Some of the properties of a Kemeny optimal 
aggregation. 
0075 A full list It is a locally Kemeny optimal aggrega 
tion of partial lists t, T., . . . , t, if there is no full list It 
that can be obtained from It by performing a Single trans 
position of an adjacent pair of elements and for which K(t, 
T1, T2, . . . , t)<K(TL, t, T2, . . . , t). In other Words, it is 
impossible to reduce the total distance to the It's by flipping 
an adjacent pair. 
0.076 Every Kemeny optimal aggregation is also locally 
Kemeny optimal, but the converse is false. Nevertheless, a 
locally Kemeny optimal aggregation Satisfies the extended 
Condorcet property and can be computed in time O(kn log 
n), where k is the number of lists and n is the number of 
alternatives. 

0077. The value of the extended Condorcet criterion in 
increasing resistance to Search engine Spam and in ensuring 
that elements in the top partitions remain highly ranked has 
been discussed. However, Specific aggregation techniques 
may add considerable value beyond Simple Satisfaction of 
this criterion; in particular, they may produce good rankings 
of alternatives within a given partition (as noted above, the 
extended Condorcet criterion gives no guidance within a 
partition). 
0078. It is now shown that, using any initial aggregation 

tl of partial lists t, t, ..., T-one that is not necessarily 
Condorcet-one can efficiently construct a locally Kemeny 
optimal aggregation of the t’s that is in a well-defined sense 
maximally consistent with u. For example, if the t’s are full 
lists then it could be the Borda ordering on the alternatives. 
Even if a Condorcet winner exists, the Borda ordering may 
not rank it first. However, by applying the “local Kemeni 
zation' procedure (described below), a ranking is obtained 
that is maximally consistent with the Borda ordering but in 
which the Condorcet winners are at the top of the list. 
0079 A local Kemenization (LK) of a full list p with 
respect to T, ..., T is a procedure that computes a locally 
Kemeny optimal aggregation of t, . . . , t that is maximally 
consistent with u. Intuitively, this approach also preserves 
the Strengths of the initial aggregation u. Thus: 

0080 (1) the Condorcet losers receive low rank, 
while the Condorcet winners receive high rank (this 
follows from local Kemeny optimality) 

0081) (2) the result disagrees with u on the order of 
any given pair (i,j) of elements only if a majority of 
those t's expressing opinions disagrees with it on 

0082 (3) for every d between 1 and ul, the length d 
prefix of the output is a local Kemenization of the top 
d elements in u. 

0.083 Thus, if u is an initial meta-search result, and the 
top, Say, 100 elements of u contain enough good pages, then 
one can build a locally Kemeny optimal aggregation of the 
projections of the t’s onto the top 100 elements in u. 
0084) Referring now to FIG. 5, a flowchart of the com 
putation of a locally Kemeny optimal aggregation is shown. 
The local Kemenization procedure is a simple inductive 
construction that runs in time proportional to the Kendall 
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distance between u and the locally Kemenized Solution. 
Without loss of generality, let u=(1, 2, . . . , 1). ASSume 
inductively for that one has constructed TL, a local Kemeni 
Zation of the projection of the tS onto the elements 1, . . . 
, /-1. Insert element/into the lowest-ranked “permissible” 
position in It: just below the lowest-ranked element at in n 
Such that (a) no majority among the (original) t's prefers X 
to y and (b) for all Successors Z of y in It there is a majority 
that preferS X to Z. In other words, one tries to insert X at the 
end (bottom) of the list It, one bubbles it up toward the top 
of the list as long as a majority of the tS insists that one does 
So. A rigorous treatment of local Kemeny optimality and 
local Kemenization is given below, where it is also shown 
that the local Kemenization of an aggregation is unique. 

0085. On the strength of these results the following 
general approach to rank aggregation is Suggested: 

0086) Givent,..., t, use any favorite aggregation 
method to obtain a full list u. 

0087 Output the (unique) local Kemenization of u 
With respect t, . . . , t 

Specific Rank Aggregation Methods 

0088. Different aggregation methods and their adapta 
tions to both full and partial lists are described below. 

0089 Borda's Method 
0090 Full lists: Given full lists T, . . . , t, for each 
candidate c in S and list ti, Borda's method first assigns a 
Score B(c)=the number of candidates ranked below c in ti, 
and the total Borda score B (c) is defined as X, B,(c). The 
candidates are then Sorted in decreasing order of total Borda 
SCOC. 

0091 Borda's method can be thought of as assigning a 
k-element position vector to each candidate (the positions of 
the candidate in the klists), and Sorting the candidates by the 
L norm of these vectors. Of course, there are plenty of other 
possibilities with Such position vectors: Sorting by L, norms 
for p>1, Sorting by the median of the k values, Sorting by the 
geometric mean of the k values, etc. This intuition leads to 
Several Markov chain based approaches. 

0092 Partial lists: It has been proposed that the right way 
to extend Borda to partial lists is by apportioning all the 
exceSS Scores equally among all unranked candidates. This 
idea Stems from the goal of being unbiased, however, it is 
easy to Show that for any method of assigning Scores to 
unranked candidates, there are partial information cases in 
which undesirable outcomes occur. 

Footrule and Scaled Footrule 

0093 Since the footrule optimal aggregation is a good 
approximation of Kemeny optimal aggregation (by Propo 
Sition 2), it merits investigation. 
0094 Full lists: Footrule optimal aggregation is related to 
the median of the values in a position vector: 

0.095 Proposition 3: Given full lists T, . . . , t, if the 
median positions of the candidates in the lists form a 
permutation, then this permutation is a footrule optimal 
aggregation. 
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0.096 An algorithm for footrule optimal aggregation is 
obtained via the following proposition: 
0097 Proposition 4: Footrule optimal aggregation of full 
lists can be computed in polynomial time, Specifically, the 
time to find a minimum cost perfect matching in a bipartite 
graph. 

0.098 Proof (Sketch): 
0099 Let the union of t, . . . , t be S with n elements. 
Now, define a weighted complete bipartite graph (C, P, W) 
as follows. The first set of nodes C={1,..., n} denotes the 
Set of elements to be ranked (pages). The Second set of nodes 
P=1,..., n} denotes the navailable positions. The weight 
W(c, p) is the total footrule distance (from the t's) of a 
ranking that places element c at position p, given by W(c, 
p)=xt,(c)-p. It can be shown that a permutation minimiz 
ing the total footrule distance to the TS is given by a 
minimum cost perfect matching in the bipartite graph. 
0100 Partial lists: The computation of a footrule-optimal 
aggregation for partial lists is more problematic. In fact, it 
can be shown (see Appendix B) to be equivalent to the 
NP-hard problem of computing the minimum number of 
edges to delete to convert a directed graph into a DAG. 
0101 Keeping in mind that footrule optimal aggregation 
for full lists can be recast as a minimum cost bipartite 
matching problem, a method that retains the computational 
advantages of the full list case and is reasonably close to it 
in Spirit is described. The bipartite graph is defined as before, 
except that the weights are defined differently. The weight 
W(c, p) is the scaled footrule distance (from the T's) of a 
ranking that places element c at position p, given by 

W(c, p)=x(t, (c)/t)-(pin). 

0102 AS before, the minimum cost maximum matching 
problem on this bipartite graph is Solved to obtain the 
footrule aggregation algorithm for partial lists. This method 
is called the Scaled footrule aggregation (SFO). 

Markov Chain Methods 

0103) A general method for obtaining an initial aggrega 
tion of partial lists is proposed, using Markov chains. The 
States of each Markov chain correspond to the n candidates 
to be ranked, and the States transition probabilities depend 
in Some particular way on the given (partial) lists. The 
stationary probability distribution of the Markov chain is 
used to Sort the n candidates to produce the final ranking. 
There are Several motivations for using Markov chains: 
0104 Handling partial lists and top d lists: Rather than 
require every pair of pages (candidates) i and j to be 
compared by every search engine (voter), the available 
comparisons between i and j are used to determine the 
transition probability between i and j, and exploit the con 
nectivity of the chain to (transitively) “infer” comparison 
outcomes between pairs that were not explicitly ranked by 
any of the Search engines. The intuition is that Markov 
chains provide a more holistic viewpoint of comparing all n 
candidates against each other-significantly more meaning 
ful than ad hoc and local inferences like “if a majority prefer 
A to B and a majority prefer B to C, then Ashould be better 
than C. 

0105 Handling uneven comparisons: If a web page P 
appears in the bottom half of about 70% of the lists, and is 
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ranked Number 1 by the other 30%, how important is the 
quality of the pages that appear on the latter 30% of the lists? 
If these pages all appear near the bottom on the first Set of 
70% of the lists and the winners in these lists were not 
known to the other 30% of the search engines that ranked P 
Number 1, then perhaps one shouldn't consider P too 
Seriously. In other words, if each list is viewed as a tourna 
ment within a league, one should take into account the 
Strength of the Schedule of matches played by each player. 
The Markov chain Solutions discussed are similar in Spirit to 
the approaches considered in the mathematical community 
for this problem (eigenvectors of linear maps, fixed points of 
nonlinear maps, etc.). 
0106 Enhancements of other heuristics: Heuristics for 
combining rankings are motivated by Some underlying prin 
ciple. For example, Borda's method is based on the idea 
“more wins is better.” This gives some figure of merit for 
each candidate. It is natural to extend this and Say “more 
wins against good playerS is even better,” and So on, and 
iteratively refine the ordering produced by a heuristic. In the 
context of web searching, the HITS algorithm of Kleinberg 
and the PageRank algorithm of Brin and Page are motivated 
by Similar considerations. Some of the chains proposed are 
natural extensions (in a precise Sense) of Borda's method, 
Sorting by geometric mean, and Sorting by majority. 
0107 Computational efficiency: In general, setting up 
one of these Markov chains and determining its Stationary 
probability distribution takes about 0(nk+n) time. How 
ever, in practice, if one explicitly computes the transition 
matrix in O(nk) time, a few iterations of the power method 
will allow one to compute the Stationary distribution. An 
even faster method is Suggested for practical purposes. For 
all of the chains that proposed, with about O(nk) (linear in 
input size) time for S preprocessing, it is usually possible to 
Simulate one step of the chain in O(k) time; thus by 
Simulating the Markov chain for about O(n) steps, one 
should be able to sample from the stationary distribution 
pretty effectively. This is usually sufficient to identify the top 
few candidates in the stationary distribution in O(nk) time, 
perhaps considerably faster in practice. 

0.108 Specific Markov chains are now proposed, denoted 
as MC1, MC2, MC4 and MC4. For each of these chains, the 
transition matrix is specified, and Some intuition is given as 
to why Such a definition is reasonable. In all cases, the State 
Space is the union of the Sets of pages ranked by various 
Search engines. 

0109) MC1: If the current state is page P, then the next 
State is chosen uniformly from the multiset of all pages that 
were ranked higher than (or equal to) P by Some Search 
engine that ranked P, that is, from the multiset of all pages 
Q such that t(Q) at most t,(P). The main idea is that in each 
Step, one moves from the current page to a better page, 
allowing about 1/ probability of Staying in the same page, 
where j is roughly the average rank of the current page. 

0110 MC2: If the current state is page P, then the next 
State is chosen by first picking a ranking T uniformly from 
all the partial lists t, . . . , t containing P, then picking a 
page Q uniformly from the set of all pages Q Such that T(Q) 
is at most T(P). This chain takes into account the fact that 
there are Several lists of rankings, not just a collection of 
pairwise comparisons among the pages. As a consequence, 
MC2 is arguably the most representative of minority view 
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points of Sufficient Statistical Significance; it also protects 
Specialist views. In fact, MC2 generalizes the geometric 
mean analogue of Borda's method. For full lists, if the initial 
State is chosen uniformly at random, after one Step of MC2, 
the distribution induced on its States produces a ranking of 
the pages Such that P is ranked higher than (preferred to) Q 
iff the geometric mean of the ranks of P is lower than the 
geometric mean of the ranks of Q. 

0111 MC3: If the current state is page P, then the next 
State is chosen as follows: first pick a ranking T uniformly 
from all the partial lists T, . . . , t containing P, then 
uniformly pick a page Q that was ranked by T. If t(Q)<t(P) 
then go to Q, else Stay in P. This chain is a generalization of 
Borda method. For full lists, if the initial state is chosen 
uniformly at random, after one step of MC3, the distribution 
induced on its States produces a ranking of the pages Such 
that P is ranked higher than Q iff the Borda score of P is 
higher than the Borda Score of Q. This is natural, considering 
that in any state P, the probability of staying in P is roughly 
the fraction of pairwise contests (with all other pages) that 
P won, which is a very Borda-like measure. 
0112 MC4: If the current state is page P, then the next 
State is chosen as follows: first pick a page Q uniformly from 
the union of all pages ranked by the Search engines. If 
T(Q)<t(P) for a majority of the lists t that ranked both Pand 
Q, then go to Q, else Stay in P. This chain generalizes 
Copeland's Suggestion of Sorting the candidates by the 
number of pairwise majority contests they have won, a 
method that Satisfies the extended Condorcet criterion and is 
fairly easy to compute in O(nk) time. 
0113. One can also show that the Markov ordering 
implied by these chains need not Satisfy the extended 
Condorcet criterion. 

Results of Experimental Testing 

0114. Three types of experiments were conducted to 
determine the effectiveness of the various embodiments of 
the present invention. First, a meta-Search engine was con 
Structed and evaluated using different aggregation methods. 
Next, the aggregation techniques of the invention were 
evaluated for effectiveneSS in combating "spam'. Finally, 
word association for multi-word queries was tested. Seven 
commercial Search engines were employed in the testing, 
and only the top 100 results were considered from each. 
0115 The following table describes the performance of 
various rank aggregation methods for the meta-Search 
experiment, in which 38 general queries were run on the 
commercial Search engines. The performance data in the 
table is calculated in terms of the three distance measures 
described above. Each row corresponds to a specific method 
described above. 

TABLE 1. 

Kendall Kendall Induced Induced Scaled Scaled 
Tau Tau Footrule Footrule Footrule Footrule 

No LK. With LK No LK. With LK No LK. With LK 

Borda O.221 O.214 O.353 O.345 O.440 O.438 
SFO O112 O-111 O.168 O.167 O.137 O.137 
MC1 O.133 O.130 O.216 O.213 O.292 O.291 
MC2 O.131 O.128 O.213 O.210 0.287 O.286 
MC3 O-116 O.114 O.186 O.183 O.239 O.239 
MC4 O-105 O.104 O.151 O.149 O.181 O.181 
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0116. Of all the methods employed in meta-search test 
ing, MC4 outperforms all others evaluated, and is thus the 
preferred embodiment of the invention. The margin by 
which MC4 beats Borda is huge, which is surprising since 
Borda's method is the usual choice of aggregation in the 
prior art, and perhaps the most natural. Scaled footrule and 
MC3 (a generalization of Borda) seem to be on par with each 
other. Recall that the footrule procedure for partial lists was 
only a heuristic modification of the footrule procedure for 
full lists. The experimental evidence Suggests that this 
heuristic is very good. MC1 and MC2 are always worse than 
the other Markov chains, but they are strictly better than 
Borda. 

0117. In general, local Kemenization seems to improve 
the distance measures around 1-3%. It can be shown for 
mally that local Kemenization never does worse in the Sense 
that the Kendall distance never deteriorates after local 
Kemenization. Interestingly, this seems to be true even for 
footrule and Scaled footrule distances (although this may not 
always be true). The local Kemenization procedure is always 
Worth applying: either the improvement is large and if not, 
then the time spent is Small. 

0118 Several queries were run on the commercial search 
engines, and the top web pages (URLS) deemed to be 
"spam' (i.e. pages awarded an undeservedly high rank from 
one or more search engines) were identified. The rows of the 
following table list some URLs that “spammed” at least two 
Search engines. The entries in the table are the ranks of 
particular URLS returned by the Search engines. A blank 
entry indicates that the URL was not returned as one of the 
top 100 by the search engine. The first several columns of 
the table represent the Six Search engines, each of which was 
"spammed' along with one other reference engine. The final 
two columns of the table are the rank results of two 
aggregation methods, SFO and MC4, each with local 
Kemenization. 

TABLE 2 

S1 S2 S3 S4 S5 S6 SFO MC4 

URL1 4 43 41 144 63 
URL2 9 51 5 31 59 
URL3 11 14 26 13 49 36 
URL4 84 19 1. 17 77 93 
URLS 9 63 11 49 121 
URL6 18 6 16 23 66 
URL7 26 16 26 12 16 57 54 
URL8 25 21 78 67 
URL9 34 29 108 101 

0119) Experimental results indicate that SFO and MC4 
are quite effective in combating Spam, i.e. the output rank of 
each URL was usually lower than originally indicated by the 
search engines, often remarkably lower. While the methods 
described herein do not completely eliminate Spam, testing 
shows that they do reduce Spam in general. 

0120 Test results also show that the technique of word 
asSociation combined with rank aggregation methods can 
improve the quality of Search results for multi-word queries. 
The Google (TM) Search engine ran numerous multi-word 
queries during this phase of experimentation. The number or 
quality of web pages returned for many interesting multi 
word queries is not very high (typically only around 10-15 
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pages are returned, and the top 5 results are often very poor), 
a direct consequence of the Google (TM) engine's AND 
Semantics being applied to a list of Several query words. In 
Sharp contrast, the URLS produced by the rank aggregation 
methods usually contained a wealth of information about the 
query topic. 

0121 A general purpose computer is programmed 
according to the inventive Steps herein. The invention can 
also be embodied as an article of manufacture-a machine 
component-that is used by a digital processing apparatus to 
execute the present logic. This invention is realized in a 
critical machine component that causes a digital processing 
apparatus to perform the inventive method Steps herein. The 
invention may be embodied by a computer program that is 
executed by a processor within a computer as a Series of 
computer-executable instructions. These instructions may 
reside, for example, in RAM of a computer or on a hard 
drive or optical drive of the computer, or the instructions 
may be Stored on a DASD array, magnetic tape, electronic 
read-only memory, or other appropriate data Storage device. 
While the particular SYSTEM AND METHOD FOR 
AGGREGATING RANKING RESULTS FROM VARIOUS 
SOURCES TO IMPROVE THE RESULTS OF WEB 
SEARCHING as herein shown and described in detail is 
fully capable of attaining the above-described objects of the 
invention, it is to be understood that it is the presently 
preferred embodiment of the present invention and is thus 
representative of the subject maffer which is broadly con 
templated by the present invention, that the Scope of the 
present invention fully encompasses other embodiments 
which may become obvious to those skilled in the art, and 
that the Scope of the present invention is accordingly to be 
limited by nothing other than the appended claims, in which 
reference to an element in the Singular is not intended to 
mean “one and only one' unless explicitly So Stated, but 
rather "one or more'. All Structural and functional equiva 
lents to the elements of the above-described preferred 
embodiment that are known or later come to be known to 
those of ordinary skill in the art are expressly incorporated 
herein by reference and are intended to be encompassed by 
the present claims. Moreover, it is not necessary for a device 
or method to address each and every problem Sought to be 
Solved by the present invention, for it to be encompassed by 
the present claims. Furthermore, no element, component, or 
method Step in the present disclosure is intended to be 
dedicated to the public regardless of whether the element, 
component, or method step is explicitly recited in the claims. 
No claim element herein is to be construed under the 
provisions of 35 U.S.C. S112, sixth paragraph, unless the 
element is expressly recited using the phrase “means for” or, 
in the case of a method claim, the element is recited as a 
“step” instead of an “act'. 

Appendix A: Local Kemenization 

0.122 Begin with a formal definition: 
0123 Definition 5 
0.124. A permutation. It is a locally Kemeny optimal 
aggregation of partial listst, T., . . . , t, if there is no 
permutation at that can be obtained from at by performing a 
Single transposition of an adjacent pair of elements and for 
which K(t, T1, T2, . . . t.)<K(TL, T1, T2, . . . , t). In other 
words, it is impossible to reduce the total distance to the ts 
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by flipping an adjacent pair. Note that the above definition 
is not equivalent to requiring that no flipping of any (not 
necessarily adjacent) pair will decrease the Sum of the 
distances to the ts. Example 17t=(1,2,3), T=(1,2), T=(2.3), 
Ta=t-ts=(3,1). 
0125 Given that at satisfies Definition 5, K(I, T, T, ... 

, Ts)=3, but transposing 1 and 3 decreases the Sum to 2. 
0.126 Every Kemeny optimal permutation is also locally 
Kemeny optimal, but the converse does not hold (cf. 
Example 1). Furthermore, a locally Kemeny optimal per 
mutation is not necessarily a good approximation for the 
optimal. For example, if the t’s are as in Example 1, the 
number of (3,1) partial lists is very large, and there is only 
one occurrence of each of the partial lists (1,2) and (2.3), 
then (1,2,3) is still locally Kemeny optimal, but the ratio of 
the SK to the optimal may be arbitrarily large. Nevertheless, 
the important observations, proved next, are that a locally 
Kemeny optimal aggregation Satisfies the extended Con 
dorcet property and can be computed efficiently. 

0127 Convention 
0128 Recall the convention that it ranks X above y (i.e., 
prefers X to whenever t(x)<U(y). 

0129. Lemma 6 
0130 Let It, a permutation on alternatives {1,...,n}, be 
a locally Kemeny optimal aggregation for partial lists t, t, 

. . , T Then at Satisfies the extended Condorcet criterion 
With respect to T, T, . . . , T. 
0131 Proof 
0132) If the lemma is false then there exist partial lists t, 
t2, . . . , t, a locally Kemeny optimal aggregation TL, and a 
partition (T, U) of the alternatives where for all a in T and 
b in U the majority among T, T., . . . , t prefers a to b, but 
there are c in T and d in U such that L(d)<T(c). Let (d.c) be 
a closest (in It) Such pair. Consider the immediate Successor 
of d in JU, call it e. If e=c then c is adjacent to d in JL and 
transposing this adjacent pair of alternatives produces a 7t 
Such that K(t, T1, T2, . . . , t)<K(TL, T1, T2, . . . , t), 
contradicting the assumption that It is a locally Kemeny 
optimal aggregation of the T's. If e does not equal c, then 
eithere is in T, in which case the pair (d,e) is a closer pair 
in JL than (d.c) and also violates the extended Condorcet 
condition, or e is in U, in which case (e.c) is a closer pair 
than (d,c) that violates the extended Condorcet condition. 
Both cases contradict the choice of (d,c). The Set T., T., . . 
., T of partial lists defines a directed majority graph G on 
the n alternatives, with an edge (x,y) from X to y if a majority 
of the t’s that contain both X and y rank X above y. 

0133) Lemma 7 
0134) Locally Kemeny optimal aggregations of klists can 
be computed in O(kn log n) time. 
0135) Proof 
0.136. It is not surprising that locally Kemeny optimal 
aggregations can be found in polynomial time because they 
are only local minima. A Straightforward approach requires 
O(n) time; a technique requiring only O(kn log n) time is 
described (generally, one is interested in the case in which 
k is much smaller than n). 
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0.137 Consider the majority graph T for t, t, .. 
with anti-parallel edges in the case of a tie. The problem of 
finding a locally Kemeny optimal aggregation of t, t2, . . . 
T is now equivalent to finding a Hamiltonian path in this 
graph. Due to the density of the edges it is possible to find 
Such a path in Tin O(n log n) probes to the edges of Tusing, 
for instance, a mergesort-like algorithm (the advantage of 
using mergesort is that the issue of inconsistent answers 
never arises, which simplifies the execution of the algo 
rithm). Note that T need not be constructed explicitly. The 
cost of each probe is k accesses to the partial lists (to find out 
whether there is a majority), So the resulting complexity is 
O(kn log n). 
0138 Next, the details of the local Kemenization proce 
dure are described. Recall that the value of local Kemeni 
Zation is that, given an aggregation it of Several rankings, it 
produces a ranking at that achieves the best of both Worlds: 
at Satisfies the extended Condorcet criterion, and It is maxi 
mally consistent with it. The notion of consistency is for 
malized. 

0139) Definition 8 
0140 Given partial lists t, T., . . . , t, and a total order 

ti, It is said to be consistent with uand t, T., . . . , t if 
T(i)<TG) implies that either 

0141 (a) u(i)<u(i) or 
0.142 (b) a majority of T, T., . . . , t prefer i to j 
(more prefer i over than jover i, but not necessarily 
an absolute majority). 

0143. In other words, the order of two elements differs 
between u and at only if a majority of the tS Support the 
change (however, consistency does not mandate a Switch). 
Note that if t is consistent with u and T, T., . . . , t, then 

K(JT, T1, T2, . . . , ti)SK(u, T1, T2, . . . , ti), 

0144) since the only allowed changes decrease the dis 
tance to the ts. The proof of the next lemma is straightfor 
ward from Definition 8. 

0145 Lemma 9 
0146 If t is consistent with u and T, T, ..., T., then for 
any 1Sls n, if S is the Set of 1 alternatives ranked most 
highly by u, the projection of TL onto S is consistent with the 
projections of u and t, t2, . . . , t onto S. 

0147 For any partial lists t, T., . . . T., and order u there 
is a permutation at that is (i) locally Kemeny optimal and (ii) 
consistent with it. Such a TL is not necessarily unique. 
Particular focus is on u-consistent locally Kemeny optimal 
aggregations that, when restricted to Subsets S of the most 
highly ranked elements in u, retain their local Kemeny 
optimality (Definition 10 below). This is desirable whenever 
one is more Sure of the Significance of the top results in it 
than the bottom ones. In this case the Solution is unique 
(Theorem 11). 
0148) Definition 10 
0149 Given partial lists T, T, ..., T and a total order 

At on alternatives {1,2,..., n}, JC is a local Kemenization of 
Al with respect to t, T., . . . , t, if (1) It is consistent with 
At and (2) if attention is restricted to the set S consisting of 
the 1slsin most highly ranked alternatives in u, then the 

Feb. 20, 2003 

projection of TL onto S is a locally Kemeny optimal aggre 
gation of the projections of t, t2, . . . , t onto S. 
0150. Theorem 12 
0151. For any partial lists T, T., . . . , t and order u on 
alternatives {1, . . . , n}, there exists a unique local 
Kemenization of it with respect to t, t2, . . . , t. 
0152) Proof 
0153. The theorem is proven by induction on n, the 
number of alternatives. The base case n=1 is trivial. ASSume 
the statement inductively for n-1. Proof is then given for n. 
Let X be the last (lowest-ranked) element in and let S={1, 
..., n}-x}. Since S is of size n-1, by induction there is a 
unique permutation at on the elements in S Satisfying the 
conditions of the theorem. Now insert the removed element 
X into the lowest-ranked “permissible' position in It: just 
below the lowest-ranked element y Such that Such that (a) no 
majority among the (original) t's preferS X to y and (b) for 
all Successors Z of y (i.e., A, (Y) <r,1(z)) there is a majority 
that preferS X to Z. Clearly no two elements of u were 
Switched unnecessarily and the Solution, IL, is locally 
Kemeny optimal from the local Kemeny optimality of L, 
and the majority properties. Note that the consistency con 
dition requires that X be as low in JL as local Kemeny 
optimality permits, So given at there is only one place in 
which to insert X. 

0154 Suppose now that u and t, T., . . . , t contradict 
uniqueness: there are two different local Kemenizations of it 
with respect to T, ..., T; call them T. and c'. If the last 
element X in u is dropped and let S be as above, then (by 
property (ii) of local Kemenization) the resulting permuta 
tions L, and It must each be local Kemenizations of the 
restrictions of the T's to S and (by property (i) and Lemma 
9) they must be consistent with the restriction of u to S. By 
the induction hypothesis It, =Tt AS argued above, there 
is only one place to insert X into this list. The algorithm 
Suggested by this proof may take O(nk) time in the worst 
case (say a transitive tournament where u is the anti 
transitive order). However, in general it requires time pro 
portional to the Kendall distance between u and the Solution. 
It is not expected that u is uncorrelated with the Solution and 
therefore better performance in practice is anticipated. 

Appendix B: Complexity of Kemeny Optima 

O155 In this section, the complexity of finding a Kemeny 
optimal permutation is Studied. Computing a Kemeny opti 
mal permutation is shown to be NP-hard, even when the 
input consists of four full lists t, T., T., T. For partial lists 
of length 2 finding a Kemeny optimal Solution is exactly the 
Same problem as finding a minimum feedback arc Set, and 
hence is NP-hard. The problem is also known to be NP-hard 
for an unbounded number of complete lists. 
0156 Computing a Kemeny optimal permutation for two 
lists is trivial-simply output one of the input lists. The 
complexity of computing a Kemeny optimal permutation for 
three full lists is open; this problem is later shown to be 
reducible to the problem of finding minimum feedback edge 
Sets on tournament graphs, which, as far as is known, is open 
as well. 

O157 Computing a Kemeny optimal permutation for an 
unbounded number of partial lists is easily Seen to be 
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NP-hard by a straightforward encoding of the feedback edge 
Set problem: for each edge (i,j), create a partial list of two 
elements: i followed by j. 

0158. Theorem 11 
0159. The problem of computing a Kemeny optimal 
permutation for a given collection of k full lists, for even 
integers k>=4, is NP-hard. The corresponding decision prob 
lem is NP-complete. 

0160 Proof 
0.161 The reduction is from the feedback edge set prob 
lem. Given a directed graph G=(V,E), and an integer L>=0, 
the question is whether there exists a subset F of E such that 
Fs Land (V, E-F) is acyclic. Let n=V and m=E. Given G, 
one first produces a graph G'=(V, E) by “splitting” each 
edge of G into two edges; formally, let V" denote the union 
of V and the set {V: e is in E} and E={(i., v.i), (v,i,j): (i,j) 
in E}. The easy fact that is later used is that Ghas a feedback 
edge Set of Size L if and only if G' does. 

0162 Arbitrarily order all the vertices of G" so that the 
vertices in V receive the numbers 1, ...,n (and the vertices 
of the form V receive numbers n+1, . . . , n+m). This 
ordering idenoted by Z For a vertex i in V, let out(i) denote 
a listing of the out-neighbors of i in G' in the order 
prescribed by Z; similarly let in(i) denote the in-neighbors of 
i in G' in the order prescribed by Z. Note that none of the lists 
out.(i) or in(i) contains any vertex from the original graph G. 
Now define four full lists on the set V. For a list L, the 
notation L' denotes the reversal of the list. 

0163) 

0164) 

0165) 

0166) 

t1=1, out(1), 2, out.(2), . . . , n, out(n) 
t=n, out(n)', n-1, out(n-1)", . . . , 1, out.(1) 
t=1, in(1), 2, in(2), . . . , n, inn) 
t=n, inn)", n-1, incm-1)", . . . , 1, inc1)" 

0167 The idea is that in t, each vertex in V precedes all 
its out-neighbors in G', but the ordering of the out-neighbors 
of a vertex, as well as the ordering of the vertex-neighbor 
groups are arbitrary (according to Z). The list t "cancels' 
the effect of this arbitrarineSS in ordering the neighbors of a 
vertex and the vertex-neighbor groups, while “reinforcing 
the ordering of each vertex in V above its out-neighbors in 
G'. Similarly, in T and t, each vertex of the original vertex 
set V is preceded by its in-neighbors in G', with Suitably 
arranged cancellations of the artificial ordering among the 
other pairs. 

0168 The main point is that G has a feedback edge set of 
Size L if and only if there is a permutation at Such that X, 
K(t,T)s L', where 

0169 First suppose that G has a feedback edge set F of 
size L. It is easy to see that the set F"={(i, V): (i,j) in F} is 
a feedback edge set of G', and F=L. The graph (V, E'-F") 
is acyclic, So by topologically Sorting the vertices of this 
graph, an ordering at of the vertices in V is obtained Such 
that for every (i,j) in E-F", i is placed before j in L. It is 
claimed to be an ordering that satisfies K(I, T,)s L'. Note 
that regardless of how It was obtained, the last three terms 
are inevitable: 
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0170 (1) for each pair i,j in V, exactly one of t, and 
T. places i above and the other places above i, So 
there is a contribution of 1 to K(L, t)+K(L, t); 
Similarly, there is a contribution of 1 to K(L, t)+ 
K(TL, t). This accounts for the term 2n(n-1)/2. 

0171 (2) a similar argument holds for pairs V, V, 
and there are m(m-1)/2. Such pairs, accounting for 
the term 2m(m-1)/2. 

(0172 (3) a similar argument holds for pairs V,i,j 
with respect to T, and t2, and for pairs i, V., with 
respect to t and t. The total number of Such pairs 
is 2m. 

0173 The only remaining contribution to the total dis 
tance of t from the t’s comes from the i, V, pairs with 
respect to t, and t (where i precedes V, in both lists), and 
the V.jpairs with respect to ta and t (where V; precedes 
j in both lists). Of these, a pair contributes 2 to the total 
Kemeny distance X. K(t,T) precisely if it occurs as a “back 
edge” with respect to the topological ordering at of the 
vertices of G'; since (V, E-F) is acyclic, the total number of 
Such back edges is at most F=L. 
0.174 Conversely, Suppose that there exists a permutation 

at that achieves a total Kemeny distance of at most L'=2L+ 
2(n(n-1)/2+m(m-1)/2+m). It has already been argued (in 
items (1), (2), and (3) above) that It must incur a distance of 
2(n(n-1)/2+m(m-1)/2+m) with respect to the T's, the so the 
only extra distance between JL and the tS comes from pairs 
of the form i, V; in t, and t2, and of the form vijints and 
T. Once again, each Such pair contributes either 0 or 2 to the 
total distance. Consider the pairs that contribute 2 to the 
distance, and let the corresponding Set of edges in E be 
denoted by F". Now, (V, E-F) is acyclic since every edge 
that remains in E-F", by definition, respects the ordering in 
TL. Thus F" is a feedback edge set of G' of size at most L', and 
the set F={(i,j): (i., v) in FOR (v,i,j) in F} is a feedback 
edge Set of G of Size at most L. 
0.175. This completes the proof that computing a Kemeny 
optimal permutation is NP-hard even when the input con 
sists of four full lists. The proof for the case of even k, k>4, 
is a simple extension: first produce four lists as above, then 
add (k-4)/2 pairs of lists O, O', where a is an arbitrary 
permutation. This addition clearly preserves Kemeny opti 
mal Solutions, the distance parameter is increased by an 
additive (k-4) (n+m)(n+m-1)/4 term. 

We claim: 
1. A method for aggregating rankings comprising the 

Steps of 
computing a distance measure comparing a plurality of 

rankings, and 

altering elements in an aggregate ranking to minimize 
Said distance measure. 

2. The method of claim 1 wherein Said rankings include 
partial rankings. 

3. The method of claim 1 wherein Said rankings are output 
by at least one Search engine. 

4. The method of claim 3 wherein Said rankings are output 
by at least one Search engine that has incorrectly estimated 
the relevance of at least one web age. 
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5. The method of claim 4 wherein said incorrect relevance 
estimate is due to deliberate manipulation of at least one said 
Web page. 

6. The method of claim 1 wherein said distance measure 
describes a level of inconsistency between Said plurality of 
rankings. 

7. The method of claim 1 wherein said distance measure 
is a Kendall distance. 

8. The method of claim 1 wherein said distance measure 
is a Spearman footrule distance. 

9. The method of claim 1 wherein said distance measure 
is a normalized footrule distance. 

10. The method of claim 1 wherein said distance measure 
is a Scaled footrule distance. 

11. The method of claim 1 wherein said distance measure 
is a Scaled Kendall distance measure. 

12. The method of claim 2 wherein said distance measure 
is an induced distance measure between Said aggregate 
ranking and the projection of a full ranking with respect to 
a union of elements in Said partial rankings. 

13. The method of claim 1 wherein an element is inserted 
into Said aggregated ranking only if: 
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(1) there exists a majority among said rankings that 
preferS Said element to a lowest-ranked element in Said 
aggregated ranking, and 

(2) there exists a majority among said rankings that 
preferS Said element to all Successors of Said lowest 
ranked element in Said aggregated ranking. 

14. A System for aggregating rankings comprising: 
means for computing a distance measure comparing a 

plurality of rankings, and 
means for altering elements in an aggregate ranking to 

minimize Said distance measure. 
15. A computer program product comprising a machine 

readable medium including machine-executable instructions 
thereon comprising: 

a first code means for computing a distance measure 
comparing a plurality of rankings, and 

a Second code means for altering elements in an aggregate 
ranking to minimize Said distance measure. 

k k k k k 


