
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0020205 A1

US 2015.0020205A1

WANG et al. (43) Pub. Date: Jan. 15, 2015

(54) METHOD AND APPARATUS FOR (30) Foreign Application Priority Data
DETECTING SECURITY VUILNERABILITY
FOR ANIMATION SOURCE FILE Jul. 15, 2013 (CN) 20131 O295820.3

(71) Applicant: Tencent Technology (Shenzhen) Publication Classification
Company Limited. Shenzhen (CN)

(51) Int. Cl.
(72) Inventors: Jinding WANG, Shenzhen (CN); H04L 29/06 (2006.01)

Weiting CHEN, Shenzhen (CN); (52) U.S. Cl.
Xiaoguang TAN. Shenzhen (CN); CPC H04L 63/1433 (2013.01)
Peiwei WANG, Shenzhen (CN); Yue USPC .. 726/25
WANG, Shenzhen (CN)

(57) ABSTRACT

(73) Assignee: Act s gy (Shenzhen) A method for detecting a security Vulnerability for an anima
ompany Limite tion source file is provided. The method may include: decom

piling the animation Source file and acquiring a program
(21) Appl. No.: 14/501,897 structure and a syntactic model of the animation Source file;

1-1. converting the program structure and the syntactic model into
(22) Filed: Sep. 30, 2014 an abstract syntax tree (AST); constructing symbol tables and

O O function Summaries based on the AST, and performing a taint
Related U.S. Application Data backtracking on the symbol tables and the function Summa

(63) Continuation of application No. PCT/CN2014/ ries and detecting whether the animation source file has the
081643, filed on Jul. 4, 2014. security vulnerability according to a vulnerability rule.

memory processor
transmission

module

Patent Application Publication Jan. 15, 2015 Sheet 1 of 5 US 2015/0020205 A1

100

- 04 O2 06

transmission
module memory processor K->

FIG.1

decompiling the animation Source file, and - Sl O acquiring a program structure and a Syntactic
model of the animation Source file

converting the program Structure and the S 120
Syntactic model into an abstract Syntax tree

(AST)

constructing E. tables and function. S30
Summaries for functions based on the AST,
where each function corresponds to one

Symbol and one function Summary

performing a taint backtracking on the Symbol
tables and the function Summaries, and -S 40

detecting whether the animation Source file
has the security vulnerability according to a

pre-registered vulnerability rule

FG.2

Patent Application Publication Jan. 15, 2015 Sheet 2 of 5 US 2015/0020205 A1

acquiring a function calling point based on ... S210
the symbol tables

the function calling point is
a pre-defined dangerous function?

the function has a key parameter?

backtracking the key parameter and
determining whether the key parameter S240

indicates that the animation source file has

-" --------------...-------------, - ----------, -ir-ir-ir-------

O whether it is the last
function calling point?

Patent Application Publication Jan. 15, 2015 Sheet 3 of 5 US 2015/0020205 A1

decompiling the animation Source file, and -Sl 10
acquiring a pigtail Structure and a Syntactic

model of the animation Source file

converting the program Structure and the S 120
Syntactic model into an abstract Syntax tree

(AST)

constructing symbol tables and function
Summaries for R ... S30 nctions based on the AST, /
where each function corresponds to one
symbol table and one function Summary

--

analyzing whether a vulnerability exists in the --S30
imported class

performing a taint backtracking on the symbol
tables and the function Summaries, and ... S. 40

detecting whether the animation Source file
has the Security Vulnerability according to a

pre-registered vulnerability rule

FIG.4

Patent Application Publication Jan. 15, 2015 Sheet 4 of 5 US 2015/0020205 A1

decompiling the animation source file, and - Sl O
acquiring a program structure and a Syntactic

model of the animation Source file

converting the program structure and the
Syntactic model into an abstract syntax tree /

(AST)

--

constructing symbol tables and function
Summaries for each function based on the

AST, where each function corresponds to one
symbol table and one function summary

S30

performing a taint backtracking on the symbol
tables and the function Summaries, and S 40

detecting whether the animation source file
has the Security vulnerability according to a

pre-registered vulnerability rule
-

Storing a vulnerability result found in the taint S4 O
backtracking into a list, and Outputting the
result after the backtracking is finished

FIGS

Patent Application Publication Jan. 15, 2015 Sheet 5 of 5 US 2015/0020205 A1

flash (.swf) 51 -57 -4
decompilation class Summary

analyzing pre-processing
module module

52 / 53
AST symbol table

constructing constructing 58
module module - rule

management
! 60 56 module

AST
management intraprocedure

9. detection module 55
module

MV-am. taint

backtracking
module function Summary

constructing 54

/ 59
vulnerability
management

module

output, Store
w

FIG.6

US 2015/0020205 A1

METHOD AND APPARATUS FOR
DETECTING SECURITY VUILNERABILITY

FOR ANIMATION SOURCE FILE

0001. This application is a continuation of International
application PCT/CN2014/081643, filed on Jul. 4, 2014 which
claims the priority to Chinese Patent Application No.
201310295820.3, entitled “METHOD AND APPARATUS
FOR DETECTING SECURITY VULNERABILITY FOR
ANIMATION SOURCE FILE, filed with the Chinese State
Intellectual Property Office on Jul. 15, 2013, which are incor
porated by reference in their entirety herein.

FIELD

0002. The disclosure relates to the technical filed of com
puter, and particularly to security detection of computer pro
grams.

BACKGROUND

0003. As the development of network technology, various
network applications such as network games, electronic trad
ing and Social applications are indispensable. Currently, ani
mations are widely used in these network applications, and
flash animation (with the file name extension being .swf)
provided by Adobe company is most widely used in these
animations. The flash animation Supports a powerful action
Script (AS) and thus Supports rich functionalities for display
ing web pages. However, Some unsafe factors exist due to the
powerful functionalities and the openness of the AS. Com
mon security Vulnerabilities include cross-site scripting
(XSS) and cross-site flash (XSF).
0004 Currently, common methods for detecting flash
security Vulnerability include a static analysis method and a
dynamic analysis method. The static analysis method can be
implemented in a semi-automatic manner or in an automatic
a.

0005. In the semi-automatic manner, a key function is
positioned by artificially reviewing source codes and whether
parameters of the key function are externally controllable is
checked, which takes a lot of time and human resources.
0006. In the automatic manner, AS source codes are
acquired by decompilation and matching is performed based
on Vulnerability code features to perform security detection.
For example, a decompiled AS code segment is getURL
(root.gourl, blank), the Vulnerability can be found by
searching for a key function getURL in the codes and deter
mining whether a parameter is an external input root.*. This
solution can be realized automatically but has a limited detec
tion capability since only a single line of codes are detected.

SUMMARY

0007. In view of the above, the disclosure provides a
method and an apparatus for detecting a security Vulnerability
for an animation Source file, which increases coverage of the
Vulnerability detection.
0008. A method for detecting a security vulnerability for
an animation source file includes: decompiling the animation
Source file and acquiring a program structure and a syntactic
model of the animation source file; converting the program
structure and the syntactic model into an abstract syntax tree
(AST); constructing symbol tables and function Summaries
for functions of the animation source file based on the AST,
where each function of the animation Source file corresponds

Jan. 15, 2015

to one symbol table and one function symbol; and performing
a taint backtracking on the symbol tables and the function
Summaries and detecting whether the animation Source file
has the security Vulnerability according to a pre-registered
Vulnerability rule.
0009. An apparatus for detecting a security vulnerability
for an animation source file includes: an decompilation ana
lyzing module configured to decompile the animation source
file and acquire a program structure and a syntactic model of
the animation source file; an abstract syntax tree(AST) con
structing module configured to convert the program structure
and the syntactic model into an AST: a symbol table con
structing module configured to construct symbol tables for
functions of the animation source file based on the AST,
where each function of the animation Source file corresponds
to one symbol table; a function Summary constructing mod
ule configured to construct function Summaries for functions
of the animation source file based on the AST, where each
function of the animation source file corresponds to one func
tion symbol; and a taint backtracking module configured to
perform a taint backtracking on the symbol tables and the
function Summaries and detect whether the animation Source
file has the security Vulnerability according to a pre-regis
tered vulnerability rule.
0010. In the method and apparatus for detecting the secu
rity vulnerability for the animation source file described
above, the animation source file may be converted into the
AST automatically, and the symbol table and the function
Summary are constructed based on the AST. In this way,
whether a variable indicates that the animation source file has
the security vulnerability can be backtracked in an infinite
iteration way, and transfer of external malicious data in the
program and generation of the Vulnerability can be back
tracked. Therefore, the detection rate for the Vulnerability is
improved.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 FIG. 1 is a structural diagram of a computer.
0012 FIG. 2 is a flowchart of a method for detecting a
security Vulnerability of an automation source file according
to a first embodiment of the invention.

0013 FIG. 3 is a flowchart of a method for detecting a
security Vulnerability of an automation source file according
to a second embodiment of the invention.

0014 FIG. 4 is a flowchart of a method for detecting a
security Vulnerability of an automation source file according
to a third embodiment of the invention.

(0015 FIG. 5 is a flowchart of a method for detecting a
security Vulnerability of an automation source file according
to a fourth embodiment of the invention.

0016 FIG. 6 is a flowchart of a method for detecting a
security Vulnerability of an automation source file according
to a fifth embodiment of the invention.

DETAILED DESCRIPTION

0017. The technical solutions according to the embodi
ments of the present invention will be described clearly and
completely below in conjunction with the accompany draw
ings of the embodiments of the present invention. It is obvious
that the described embodiments are only part of embodiments
of the present invention. All other embodiments obtained by
those skilled in the art based on the embodiments in the

US 2015/0020205 A1

present invention without any creative work belong to the
protection scope of the present invention.
0018. It is provided a method for detecting a security vul
nerability for an animation source file, which may be per
formed by a computer oran apparatus similar to the computer.
FIG. 1 is a structural diagram of the computer which may
perform the method for detecting a security vulnerability for
an animation Source file. As shown in FIG. 1, the computer
100 includes one or more processors 102 (only one processor
is shown in FIG. 1), a memory 104 and a transmission unit
106. It can be understood by those skilled in the art that the
structure shown in FIG. 1 is just a schematic structure, which
does not limit the structure of the computer. For example, the
computer 100 may further include more or less components
than those shown in FIG. 1, or may have a configuration
different from that shown in FIG. 1.
0019. The memory 104 may be configured to store a soft
ware program and module. Such as a program instruction/
module corresponding to a cross-terminal input method,
apparatus and system in the embodiment of the invention. The
processor 102 performs various function applications and
data processing by running the Software program and module
stored in the memory 104, to implement the cross-terminal
input method, apparatus and system mentioned above. The
memory 104 may include a high-speed random memory and
a non-volatile memory Such as one or more magnetic storage
devices, a flash memory or other non-volatile solid state
memory. In some embodiments, the memory 104 may further
include a memory located remotely from the processor 102.
The remote memory may be connected to the computer 100
over a network. The network includes but not limited to
internet, intranet, a local area network, a mobile communica
tion network and a combination thereof.
0020. The transmission unit 106 is configured to receive or
send data via a network. The network may be a wire network
and/or a wireless network. In an example, the transmission
unit 106 includes a Network Interface Controller (NIC),
which may be connected to other network device and a router
via a network cable, so as to communicate with the internet. In
another example, the transmission unit 106 is a Radio Fre
quency (RF) unit, which is configured to communicate with
the internet in a wireless way.
0021 FIG. 2 is a flowchart of a method for detecting a
security Vulnerability for an animation source file according
to a first embodiment of the invention. As shown in FIG. 2, the
method includes S110 to S140 as follows.
0022. In S110, decompilation is performed on the anima
tion source file and a program structure and a syntactic model
of the animation Source file are acquired.
0023 The animation source file on which the security
Vulnerability detection is to be performed is acquired before
S110. The animation source file may be acquired directly if
the animation source file is stored in a local memory. Alter
natively, the animation Source file may be downloaded from a
network by the transmission unit 106 connected to the net
work if the animation source file is located in the network.
The animation source file may be, for example, a flash file,
with a file name extension being “...swf'.
0024. After the animation source file is acquired, decom
pilation is performed on the animation source file to acquire
the program structure and the syntactic model of the anima
tion source file. The syntactic model refers to information
Such as a tree model and a string name set. The tree model is
a temporary memory structure which includes lexical and

Jan. 15, 2015

Syntactic information of the program Such as key information
of a control structure and an arithmetic operation.
0025. In S120, the program structure and the syntactic
model are converted into an abstract syntax tree (AST).
0026. A program structure of each class or each frame is
constructed firstly, and then a treeItem of the syntactic model
is translated into a node of the AST, to construct the whole
AST, where each treeItem of the syntactic model corresponds
to a node of the AST.
0027. In S130, symbol tables and function summaries for
functions of the animation Source file are constructed based
on the AST, where each function of the animation source file
corresponds to one symbol table and one function Summary.
0028. Each function in a class corresponds to a symbol
table. The symbol table includes a data relationship of the
function Such as an assignment relationship, a function call
relationship, a variable declaration, formal parameter infor
mation, and a return statement. The symbol table includes two
two-dimensional mapping tables, i.e., a variable type table
and a variable value table. The variable type table is a record
for declaring a type of a variable in the function. The variable
value table is data association of the variable in the function.
0029. The symbol table is constructed by acquiring a root
node of a function from the AST, extracting information of a
formal parameter of the function, obtaining a root node of the
body of the function, recursively acquiring each concerned
child node of the root node of the function, and extracting key
information of the child node. The concerned child node may
be, for example, an assignment node, a function call node, a
variable declaration node, and a return node. The key infor
mation includes, for example, a variable name, variable dec
laration information, and correlation information. For
example, for a SetProperty, a variable name a is acquired, a
rvalue object b (an object including information Such as a line
and a function of the object and the AST node) is constructed,
and <a, b > is added into a variable value table of the symbol
table. Variable declaration information is also added into the
variable type table in a recursive analysis.
0030 The function summary mentioned above includes
multiple mapping tables, which include, for example, a rela
tionship between a return value and a formal parameter, a
relationship between a return value and a member variable, a
relationship between a member variable and a formal param
eter or other member variable, a relationship between a for
mal parameter and other parameter or member variable. The
process of establishing the above structure is the process of
constructing the function Summary. Taking an association of
a return value as an example, all return nodes in the function
need to be traversed, and the return expression of the return
node is backtracked to determined whether the return expres
sion is associated with a formal parameter of the function, and
if the return expression is associated with a formal parameter
of the function, the location of the formal parameter with
which the return expression is associated is determined, and
the association result may be stored in a corresponding map
ping table.
0031. In S140, a taint backtracking is performed on the
symbol tables and the function Summaries, and it is detected
whether the animation source file has the security vulnerabil
ity according to a pre-registered Vulnerability rule.
0032 For a given intraprocedural variable, expression and
member variable, backtracking is performed to iteratively
search for an association latest to the current backtracked
variable based on information of the symbol table, until no

US 2015/0020205 A1

association is found or the variable value is stable, and a state
Such as a safe state and a dangerous state is returned. In a case
that the latest association is assignment, a rvalue is back
tracked. In a case that the latest association is a function call,
it is detected whether a function summary is constructed for
the called function, the function Summary is constructed in
real time in a case that the function Summary is not con
structed, an association between a return value and a param
eter of the function is acquired, and the associated parameter
is continued to be backtracked. In a case that the current
backtracked variable is a class member variable, the associa
tion may refer to an implicit pass called by other function in
the class (the function affects a value of the class member
variable), and the latest association of the class member Vari
able needs to be backtracked.

0033) A vulnerability result found in S140 may be stored
into a list, and may be output after the backtracking is fin
ished.

0034. In the method for detecting the security vulnerabil
ity for the animation source file according to the embodiment
of the invention, the animation source file is converted into the
AST automatically, and the symbol table and the function
Summary are constructed based on the AST. In this way,
whether a variable indicates that the animation source file has
the security vulnerability can be backtracked in an infinite
iteration way, and transfer of external malicious data in the
program and generation of the Vulnerability can be back
tracked. Therefore, the detection rate for the Vulnerability is
improved.
0035. A method for detecting a security vulnerability for
an animation source file is provided according to a second
embodiment of the invention. The second embodiment is
similar to the first embodiment and differs from the first
embodiment in that, S140 includes circularly detecting each
function call based on the symbol table to determine whether
the called function is a pre-registered dangerous function, and
in a case that the called function is the pre-registered danger
ous function, detecting a parameter of the dangerous func
tion, and in a case that the parameter is a pre-defined key
parameter, backtracking the key parameter and determining
whether the key parameter indicates that the animation Source
file has the security vulnerability.
0036 Referring to FIG.3, S140 may include S210 to S250
as follows.

0037. In S210, a function call is acquired based on the
symbol table.
0038. In S220, whether the called function is a pre-regis
tered dangerous function is determined; and in a case that the
called function is the pre-registered dangerous function, S230
is performed, and in a case that the called function is not the
pre-registered dangerous function, S250 is performed. The
pre-registered dangerous function refers to a function with
security risk, for example, a getURL function for reading
external resource.

0039. In an implementation, a list of the dangerous func
tion is stored in one or more configuration files. Therefore,
before S220, the method may further include: reading a con
figuration file and acquiring the pre-registered dangerous
function list, a security function list and an external data
Source list from the configuration file. The backtracking ends
when the backtracking is performed to a function in the Secu
rity function list, and a safe state is returned. The backtracking

Jan. 15, 2015

ends when the backtracking is performed to a function or a
variable in the external data Source list, and a dangerous state
is returned.
0040. In S230, whether the function has a key parameter is
determined; in a case that the function has the key parameter,
S240 is performed, and in a case that the function does not
have the key parameter, S250 is performed. The key param
eter refers to a parameter which can affect security. Taking the
getURL function as an example, only a resource locator in the
getURL function is the key parameter.
0041. In S240, the key parameter is backtracked and
whether the key parameterindicates that the animation Source
file has the security vulnerability is determined.
0042. In an example, S240 includes: acquiring an expres
sion of the key parameter, the expression corresponding to at
least one node; and determining a type of each of the at least
one node, wherein the type of each of the at least one node
comprises a variable, a function call, and a constant; in a case
that the node is the variable, backtracking the variable and
determining whether the variable indicates that the animation
source file has the security vulnerability; in a case that the
node is the function call, acquiring a function Summary of a
called function or constructing a function Summary in real
time in a case that the called function has no function Sum
mary, and recursively backtracking an associated value or
associated class member variable of the called function based
on the function Summary and determining whether the asso
ciated value or the associated class member variable of the
called function indicates that the animation source file has the
security Vulnerability; in a case that the node is a constant,
returning an indication indicating that no security Vulnerabil
ity exists; and in a case that the node is in other type, back
tracking an expression of a child node of the node and deter
mining whether the expression of the child node of the node
indicates that the animation source file has the security Vul
nerability.
0043. The process of backtracking the variable and deter
mining whether the variable indicates that the animation
source file has the security vulnerability may include:
0044 in a case that the variable is an external input vari
able, returning an indication indicating that the security Vul
nerability exists; in a case that the variable is a non-string
variable, returning an indication indicating that no security
Vulnerability exists; in a case that no association or definition
is found for the variable, returning an indication indicating
the security vulnerability exists; in a case that the variable has
a latest associated value, recursively backtracking the asso
ciated value and determining whether the associated value
indicates that the animation source file has the security Vul
nerability, and taking a backtracking result of the associated
value as a backtracking result of the variable; in a case that the
variable does not have a latest associated value and the vari
able is a class member variable, recursively backtracking the
class member variable and determining whether the class
member variable indicates that the animation source file has
the security Vulnerability, and taking a backtracking result of
the class member variable as a backtracking result of the
variable.
0045. In an example, the process of recursively backtrack
ing the associated value and determining whether the associ
ated value indicates that the animation source file has the
security vulnerability includes: in a case that the type of the
associated value is assignment, recursively backtracking a
rvalue expression of the assignment and determining whether

US 2015/0020205 A1

the rvalue expression of the assignment indicates that the
animation source file has the security Vulnerability; and in a
case that the type of the associated value is a function call,
acquiring an associated value of the associated value from the
function Summary of the called function, and backtracking
the acquired associated value and determining whether the
associated value indicates that the animation source file has
the security vulnerability.
0046. In an example, the process of recursively backtrack
ing the class member variable and determining whether the
class member variable indicates that the animation source file
has the security Vulnerability includes: acquiring a latest
associated assignment of the class member variable or a func
tion call affecting a value of the member variable; acquiring
an associated value of the class member variable; and recur
sively backtracking the associated value of the class member
variable and determining whether the associated value of the
class member variable indicates that the animation source file
has the security vulnerability.
0047. In S250, whether it is the last function call is deter
mined based on the symbol table; and in a case that it is the last
function call, the process ends; and in a case that it is not the
last function call, the process returns to S210.
0048. In the method for detecting the security vulnerabil

ity for the animation source file according to the embodiment
of the invention, the animation source file is converted into the
AST automatically, and the symbol table and the function
Summary are constructed based on the AST. In this way,
whether a variable indicates that the animation source file has
the security vulnerability can be backtracked in an infinite
iteration way, and the detection rate for the Vulnerability is
improved.
0049. A method for detecting a security vulnerability for
an animation Source file is provided according to a third
embodiment of the invention. The third embodiment is simi
lar to the first embodiment and differs from the first embodi
ment in that, the third embodiment further includes S310
before S140, referring to FIG. 4. S310 includes collecting a
class name of the animation source file, a package name of the
animation source file, a name of an imported class of the
animation source file and class member variable information
of the animation source file based on the AST, analyzing
whether a Vulnerability exists in the imported class, and con
structing a Summary for the imported class.
0050. In may be understood that, in order to make the
program structure clearer, different program modules are
stored in different files in a process of programming. A pro
gram module stored in another file may be imported into a
current program module by an import statement (for example,
import). The imported program module may import other
program module. These program modules are all executed. In
detecting the Vulnerability of the animation source file, if the
imported modules are not detected, missing detection of the
Vulnerability may occur. Therefore, in the method of the
embodiment, taintbacktracking is performed on the imported
modules before the taint backtracking is performed on the
current program module, which reduces probability of miss
ing detection of the security vulnerability.
0051. A method for detecting a security vulnerability for
an animation source file is provided according to a fourth
embodiment of the invention. The fourthembodiment is simi
lar to the first embodiment and differs from the first embodi
ment in that, the fourth embodiment further includes S410
after S140, referring to FIG. 5. S410 includes storing a back

Jan. 15, 2015

tracking result into a list, and outputting the backtracking
result after the backtracking is finished.
0.052 The following information may be recorded for
each Vulnerability: a type of the Vulnerability, a triggering
node at which the backtracking is started and a data stream
track. The function name and line number in the triggering
node and the track are used to locate the triggering node and
the track in the codes, so as to find source codes of the
triggering node and the track.
0053. In the method for detecting the security vulnerabil
ity for the animation source file according to the embodiment
of the invention, each Vulnerability may be output in an intui
tive manner, in this way, it is convenient for a user to view and
acknowledge the backtracking artificially.
0054. It may be understood that, although the method for
detecting the security Vulnerability for the animation Source
file is described above according to the embodiments, the
embodiments are not intent to limit the method described
above. Those skilled in the art can make simple changes on
the embodiments described above, or combine steps in the
embodiments described above to obtain a new embodiment.
These new embodiments also fall within the scope of the
method described above.
0055 An apparatus for detecting a security vulnerability
for an animation Source file is provided according to a fifth
embodiment of the invention. Referring to FIG. 6, the appa
ratus includes a decompilation analyzing module 51, an
Abstract Syntax Tree (AST) constructing module 52, a sym
bol table constructing module 53, a function Summary con
structing module 54 and a taint backtracking module 55.
0056. The decompilation analyzing module 51 is config
ured to decompile the animation source file, and to acquire a
program structure and a syntactic model of the animation
source file.
0057 The AST constructing module 52 is configured to
convert the program structure and the syntactic model into an
AST.
0058. The symbol table constructing module 53 is config
ured to construct symbol tables for functions of the animation
source file based on the AST, where each function of the
animation source file corresponds to one symbol table.
0059. The function summary constructing module 54 is
configured to construct function Summaries for functions of
the animation source file based on the AST, where each func
tion of the animation source file corresponds to one function
Summary.
0060. The taint tracking module 55 is configured to per
form a taint backtracking based on the symbol table and the
function Summary, and output a backtracking result. Specifi
cally, the taint tracking module 55 is configured to: acquire an
expression of a parameter, the expression corresponding to at
least one node; determining a type of each of the at least one
node, wherein the type of each of the at least one node com
prises a variable, a function call, and a constant; in a case that
the node of the expression is the variable, backtrack the vari
able and determine whether the variable indicates that the
animation source file has the security Vulnerability; in a case
that the node of the expression is the function call, acquire a
function Summary of a called function and recursively back
track an associated value or associated class member variable
of the called function based on the function Summary and
determine whether the associated value or the associated class
member variable of the called function indicates that the
animation source file has the security Vulnerability; in a case

US 2015/0020205 A1

that the node of the expression is the constant, determine that
the key parameter indicates that no security Vulnerability is in
the animation source file; and in a case that the node of the
expression is in other type, backtrack an expression of a child
node of the node and determine whether the expression of the
child node of the node indicates that the animation source file
has the security vulnerability.
0061 The taint tracking module 55 backtracking the vari
able and determining whether the variable indicates that the
animation source file has the security vulnerability includes:
in a case that the variable is an external input variable, deter
mining that the variable indicates that the animation Source
file has the security vulnerability; in a case that the variable is
in a non-string variable, determining that the variable indi
cates that no security Vulnerability is in the animation Source
file; in a case that no association or definition is found for the
variable, determining that the variable indicates that the ani
mation Source file has the security Vulnerability; in a case that
the variable has a latest associated value, recursively back
tracking the associated value and determining whether the
associated value indicates that the animation source file has
the security Vulnerability, and taking a backtracking result of
the associated value as a backtracking result of the variable;
and in a case that the variable has no latest associated value
and the variable is a class member variable, recursively back
tracking the class member variable and determining whether
the class member variable indicates that the animation Source
file has the security Vulnerability, and taking a backtracking
result of the class member variable as a backtracking result of
the variable.

0062. The taint tracking module 55 recursively backtrack
ing the associated value and determining whether the associ
ated value indicates that the animation source file has the
security vulnerability includes: in a case that a type of the
associated value is assignment, recursively backtracking a
rvalue expression of the assignment and determining whether
the rvalue expression of the assignment indicates that the
animation source file has the security Vulnerability; and in a
case that a type of the associated value is a function call,
acquiring an associated value of the associated value from a
function Summary of a called function, and backtracking the
acquired associated value and determining whether the
acquired associated value indicates that the animation Source
file has the security vulnerability.
0063. The taint tracking module 55 recursively backtrack
ing the class member variable and determining whether the
class member variable indicates that the animation source file
has the security Vulnerability includes: acquiring a latest
associated assignment of the class member variable or a func
tion call affecting a value of the member variable; in a case
that there is the latest associated assignment or the function
call, acquiring an associated value of the class member vari
able; and recursively backtracking the associated value of the
class member variable and determining whether the associ
ated value of the class member variable indicates that the
animation source file has the security vulnerability.
0064. The apparatus may further include an intraproce
dure detection module 56, which is configured to circularly
traverse a function call of the animation source file based on
the symbol table and determine whether a called function is a
dangerous function pre-registered, and in a case that the
called function is the dangerous function, detect whether a
parameter of the dangerous function is a key parameter pre
defined, and in a case that the parameter is the key parameter,

Jan. 15, 2015

trigger the taint backtracking module to backtrack the key
parameter and determine whether the key parameterindicates
that the animation source file has the security vulnerability.
0065. The apparatus may further include a class summary
pre-processing module 57, which is configured to collect a
class name of the animation source file, a package name of the
animation source file, a name of an imported class of the
animation Source file and class member variable information
of the animation source file based on the AST, and firstly
analyze whether the security vulnerability exists in the
imported class.
0066. The apparatus may further include a rule manage
ment module 58, which is configured to read a configuration
file, acquire a pre-registered dangerous function list, a secu
rity function list and an external data source list from the
configuration file.
0067. The apparatus may further include a vulnerability
management module 59, which is configured to store a back
tracking result into a list, and output the backtracking result
after the backtracking is finished.
0068. The apparatus may further include an AST manage
ment module 60, which is configured to manage the AST
constructed by the AST constructing module 52, and return
information about the AST and information of source codes
of the Vulnerability point AS based on a request from other
module.
0069. Other details of the apparatus according to the
embodiment may refer to the method for detecting the Vul
nerability for the animation source file in the embodiments
described above, and are not described herein.
0070. In the apparatus for detecting the security vulner
ability for the animation source file according to the embodi
ment, the animation Source file may be converted into the
AST automatically, and the symbol table and the function
Summary are constructed based on the AST. In this way,
whether a variable indicates that the animation source file has
the security vulnerability can be backtracked in an infinite
iteration way, and transfer of external malicious data in the
program and generation of the Vulnerability can be back
tracked. Therefore, the detection rate for the Vulnerability is
improved.
0071. A computer-readable medium is further provided
according to a sixth embodiment of the invention. The com
puter readable medium may be stored in the memory 104 of
the computer 100 and executed by the processor 102 of the
computer 100 described above.
0072. In the embodiment, the processor 102 of the com
puter 100 may execute the computer-readable medium stored
in the memory 104 according to the following instructions, to
achieve various functions: decompiling the animation Source
file and acquiring a program structure and a syntactic model
of the animation Source file; converting the program structure
and the syntactic model into an abstract syntax tree (AST):
constructing symbol tables and function Summaries for func
tions of the animation source file based on the AST, where
each function of the animation source file corresponds to one
symbol table and one function Summary; and performing a
taint backtracking on the symbol tables and the function
Summaries and detecting whether the animation Source file
has the security Vulnerability according to a pre-registered
Vulnerability rule.
0073. In an implementation, the performing a taint back
tracking on the symbol tables and the function Summaries
may include: traversing a function call based on the symbol

US 2015/0020205 A1

tables and determining whether a called function is a danger
ous function pre-registered, and in a case that the called
function is the dangerous function, detecting whether a
parameter of the dangerous function is a key parameter pre
defined, and in a case that the parameter is the key parameter,
backtracking the parameter and determining whether the key
parameter indicates that the animation source file has the
security vulnerability.
0074. In an implementation, the backtracking the param
eter and determining whether the parameter indicates that the
animation source file has the security Vulnerability may
include: acquiring an expression of the parameter, the expres
sion corresponding to at least one node; determining a type of
each of the at least one node, where the type of each of the at
least one node comprises a variable, a function call, and a
constant; in a case that the node is the variable, backtracking
the variable and determining whether the variable indicates
that the animation source file has the security vulnerability; in
a case that the node is the function call, acquiring a function
Summary of a called function or constructing a function Sum
mary of the called function in real time upon a condition that
the called function has no function Summary, recursively
backtracking an associated value or associated class member
variable of the called function based on the function sum
mary, and determining whether the associated value or the
associated class member variable of the called function indi
cates that the animation source file has the security Vulner
ability; in a case that the node is the constant, determining that
the parameter indicates that no security vulnerability is in the
animation source file; and in a case that the node is in other
type, backtracking an expression of a child node of the node
and determining whether the expression of the child node
indicates that the animation source file has the security Vul
nerability.
0075. In an implementation, the backtracking the variable
and determining whether the variable indicates that the ani
mation source file has the security vulnerability may include:
in a case that the variable is an external input variable, deter
mining that the variable indicates that the animation Source
file has the security vulnerability; in a case that the variable is
in a non-string variable, determining that the variable indi
cates that no security Vulnerability is in the animation Source
file; in a case that no association or definition is found for the
variable, determining that the variable indicates that the ani
mation Source file has the security Vulnerability; in a case that
the variable has a latest associated value, recursively back
tracking the associated value and determining whether the
associated value indicates that the animation source file has
the security vulnerability; and in a case that the variable has
no latest associated value and the variable is a class member
variable, recursively backtracking the class member variable
and determining whether the class member variable indicates
that the animation source file has the security vulnerability.
0076. The previous description of the disclosed aspects is
provided to enable any person skilled in the art to make or use
the present disclosure. Various modifications to these aspects
will be readily apparent to those skilled in the art, and the
generic principles defined herein may be applied to other
aspects without departing from the spirit or scope of the
disclosure.

1. A method for detecting a security vulnerability for an
animation source file implemented by a computer communi
catively coupled to a network wherein the computer includes

Jan. 15, 2015

one or more processors, a memory and a communication unit,
the computer by a transmission unit, the method comprising:

receiving by the communication unit the animation Source
file;

decompiling by the processor the animation source file,
and acquiring a program structure and a syntactic model
of the animation source file;

converting the program structure and the syntactic model
into an abstract syntax tree (AST):

constructing symbol tables and function Summaries for
functions of the animation source file based on the AST,
wherein each function of the animation source file cor
responds to one symbol table and one function symbol;
and

performing a taint backtracking on the symbol tables and
the function Summaries, and detecting whether the ani
mation source file has the security vulnerability accord
ing to a pre-registered Vulnerability rule.

2. The method of claim 1, wherein performing the taint
backtracking and detecting whether the animation source file
has the security Vulnerability comprises:

traversing a function call of the animation source file based
on the symbol tables;

determining whether a called function is a dangerous func
tion pre-registered;

in a case that the called function is the dangerous function,
detecting whether a parameter of the dangerous function
is a key parameter pre-defined; and

in a case that the parameteris the key parameter, backtrack
ing the parameter and determining whether the param
eter indicates that the animation source file has the Secu
rity vulnerability.

3. The method of claim 2, wherein backtracking the param
eter and determining whether the parameter indicates that the
animation Source file has the security Vulnerability com
prises:

acquiring an expression of the parameter, the expression
corresponding to at least one node; and

determining a type of each of the at least one node, wherein
the type of each of the at least one node comprises a
variable, a function call, or a constant;

in a case where the at least one node is the variable, back
tracking the variable and determining whether the vari
able indicates that the animation source file has the Secu
rity vulnerability;

in a case where the at least one node is the function call,
acquiring a function Summary of a called function or
constructing a function Summary of the called function
in real time upon a condition that the called function has
no function Summary, recursively backtracking an asso
ciated value or associated class member variable of the
called function based on the function Summary, and
determining whether the associated value or the associ
ated class member variable of the called function indi
cates that the animation source file has the security Vul
nerability;

in a case where the at least one node is the constant, deter
mining that the parameter indicates that no security Vul
nerability is in the animation source file; and

in a case where the node is in other type, backtracking an
expression of a child node of the node and determining
whether the expression of the child node indicates that
the animation source file has the security vulnerability.

US 2015/0020205 A1

4. The method of claim 3, wherein backtracking the vari
able and determining whether the variable indicates that the
animation source file has the security Vulnerability com
prises:

in a case where the variable is an external input variable,
determining that the variable indicates that the anima
tion source file has the security vulnerability;

in a case where the variable is in a non-string variable,
determining that the variable indicates that no security
Vulnerability is in the animation source file;

in a case where no association or definition is found for the
variable, determining that the variable indicates that the
animation source file has the security vulnerability;

in a case where the variable has a latest associated value,
recursively backtracking the associated value and deter
mining whether the associated value indicates that the
animation source file has the security Vulnerability; and

in a case where the variable has no latest associated value
and the variable is a class member variable, recursively
backtracking the class member variable and determining
whether the class member variable indicates that the
animation source file has the security vulnerability.

5. The method of claim 3, wherein recursively backtrack
ing the associated value and determining whether the associ
ated value indicates that the animation source file has the
security Vulnerability comprises:

in a case where a type of the associated value is assignment,
recursively backtracking a rvalue expression of the
assignment and determining whether the rvalue expres
sion of the assignment indicates that the animation
source file has the security vulnerability.

6. The method of claim 3, wherein recursively backtrack
ing the associated value and determining whether the associ
ated value indicates that the animation source file has the
security Vulnerability comprises:

in a where a type of the associated value is a function call,
acquiring an associated value of the associated value
from a function Summary of a called function, and back
tracking the acquired associated value and determining
whether the acquired associated value indicates that the
animation source file has the security vulnerability.

7. The method of claim 4, wherein recursively backtrack
ing the class member variable and determining whether the
class member variable indicates that the animation source file
has the security Vulnerability comprises:

acquiring a latest associated assignment of the class mem
ber variable or a function call affecting a value of the
class member variable;

acquiring an associated value of the class member variable;
and

recursively backtracking the associated value of the class
member variable and determining whether the associ
ated value of the class member variable indicates that the
animation source file has the security vulnerability.

8. The method of claim 1, further comprising:
collecting a class name of the animation Source file, a

package name of the animation source file, a name of an
imported class of the animation source file and class
member variable information of the animation source
file based on the AST, analyzing whether the security
Vulnerability exists in the imported class, and construct
ing a Summary for the imported class.

Jan. 15, 2015

9. The method of claim 1, further comprising:
reading a configuration file, and acquiring a pre-registered

dangerous function list, a security function list and an
external data source list from the configuration file;

ending the backtracking when the backtracking is per
formed to a function in the security function list, and
returning an indication indicating that no security Vul
nerability exists; and

ending the backtracking when the backtracking is per
formed to a function or a variable in the external data
Source list, and returning an indication indicating that
the security vulnerability exists.

10. The method of claim 1, wherein constructing the sym
bol table based on the AST comprises:

acquiring a root node of the function from the AST, and
extracting a formal parameter of the function;

recursively acquiring concerned child nodes of the root
node of the function, and extracting key information of
the concerned child nodes, wherein each of the con
cerned child nodes comprises an assignment node, a
function call node, a variable declaration node and a
return node, and the key information comprises a vari
able name, variable declaration information and corre
lation information; and

storing the formal parameter and the key information into
a two-dimensional mapping table.

11. The method of claim 1, wherein constructing the func
tion Summary based on the AST comprises:

traversing all nodes of each function in a class;
acquiring a relationship between a return value and a for

malparameter, a relationship between a return value and
a member variable, a relationship between a member
variable and a formal parameter or other member vari
able, and a relationship between a formal parameter and
other parameter or a member variable; and

storing the relationships into a plurality of mapping tables,
wherein each of the relationships is stored in one map
ping table.

12. An apparatus for detecting a security Vulnerability for
an animation Source file, comprising:

a processor;
a memory;
a transmission unit;
a decompilation analyzing module, configured to decom

pile the animation source file and acquire a program
structure and a syntactic model of the animation Source
file;

an abstract syntax tree (AST) constructing module, config
ured to convert the program structure and the syntactic
model into an AST:

a symbol table constructing module, configured to con
struct symbol tables for functions of the animation
source file based on the AST, wherein each function of
the animation source file corresponds to one symbol
table;

a function Summary constructing module, configured to
construct function Summaries for functions of the ani
mation source file based on the AST, wherein each func
tion of the animation source file corresponds to one
function symbol; and

a taint backtracking module, configured to perform a taint
backtracking on the symbol tables and the function Sum
maries, and detect whether the animation source file has
the security Vulnerability according to a pre-registered
Vulnerability rule.

US 2015/0020205 A1

13. The apparatus of claim 12, further comprising an intra
procedure detection module configured to:

traverse a function call of the animation source file based
on the symbol tables and determine whether a called
function is a dangerous function pre-registered, and in a
case that the called function is the dangerous function,
detect whether a parameter of the dangerous function is
a key parameter pre-defined, and in a case that the
parameter is the key parameter, trigger the taint back
tracking module to backtrack the parameter and deter
mine whether the parameter indicates that the animation
source file has the security vulnerability.

14. The apparatus of claim 13, wherein the taint backtrack
ing module backtracking the parameter and determining
whether the parameter indicates that the animation source file
has the security Vulnerability comprises:

acquiring an expression of the parameter, the expression
corresponding to at least one node; and

determining a type of each of the at least one node, wherein
the type of each of the at least one node comprises a
variable, a function call, and a constant;

in a case that the node is the variable, backtracking the
variable and determining whether the variable indicates
that the animation source file has the security vulnerabil
ity;

in a case that the node is the function call, acquiring a
function Summary of a called function or constructing a
function Summary of the called function in real time
upon a condition that the called function has no function
Summary, and recursively backtracking an associated
value or associated class member variable of the called
function based on the function Summary and determin
ing whether the associated value or the associated class
member variable of the called function indicates that the
animation source file has the security vulnerability;

in a case that the node is a constant, determining that the
parameter indicates that no security Vulnerability is in
the animation source file; and

in a case that the node is in other type, backtracking an
expression of a child node of the node and determining
whether the expression of the child node of the node
indicates that the animation source file has the security
Vulnerability.

15. The apparatus of claim 14, wherein backtracking the
variable and determining whether the variable indicates that
the animation source file has the security vulnerability com
prises:

in a case that the variable is an external input variable,
determining that the variable indicates that the anima
tion source file has the security vulnerability;

in a case that the variable is in a non-string variable, deter
mining that the variable indicates that no security Vul
nerability is in the animation Source file;

in a case that no association or definition is found for the
variable, determining that the variable indicates that the
animation source file has the security vulnerability;

in a case that the variable has a latest associated value,
recursively backtracking the associated value and deter

Jan. 15, 2015

mining whether the associated value indicates that the
animation Source file has the security Vulnerability; and

in a case that the variable has no latest associated value and
the variable is a class member variable, recursively
backtracking the class member variable and determining
whether the class member variable indicates that the
animation source file has the security vulnerability.

16. The apparatus of claim 14, wherein recursively back
tracking the associated value and determining whether the
associated value indicates that the animation source file has
the security vulnerability comprises:

in a case that a type of the associated value is assignment,
recursively backtracking a rvalue expression of the
assignment and determining whether the rvalue expres
sion of the assignment indicates that the animation
source file has the security vulnerability.

17. The apparatus of claim 14, wherein recursively back
tracking the associated value and determining whether the
associated value indicates that the animation source file has
the security vulnerability comprises:

in a case that a type of the associated value is a function call,
acquiring an associated value of the associated value
from a function Summary of a called function, and back
tracking the acquired associated value and determining
whether the acquired associated value indicates that the
animation source file has the security vulnerability.

18. The apparatus of claim 17, wherein the recursively
backtracking the class member variable and determining
whether the class member variable indicates that the anima
tion source file has the security vulnerability comprises:

acquiring a latest associated assignment of the class mem
ber variable or a function call affecting a value of the
member variable;

acquiring an associated value of the class member variable;
and

recursively backtracking the associated value of the class
member variable and determining whether the associ
ated value of the class member variable indicates that the
animation source file has the security vulnerability.

19. The apparatus of claim 12, further comprising a class
Summary pre-processing module, configured to collect a
class name of the animation source file, a package name of the
animation source file, a name of an imported class of the
animation Source file and class member variable information
of the animation source file based on the AST, analyze
whether the security vulnerability exists in the imported class,
and construct a Summary for the imported class.

20. The apparatus of claim 12, further comprising a rule
management module, configured to read a configuration file
and acquire a pre-registered dangerous function list and a
security function list from the configuration file, wherein a
function in the security function list is not backtracked.

k k k k k

