

US009347320B2

(12) United States Patent

Gustafson et al.

(54) TURBINE BUCKET PROFILE YIELDING IMPROVED THROAT

- (71) Applicant: General Electric Company, Schenectady, NY (US)
- Inventors: Ross James Gustafson, Greenville, SC (US); Srinivasa Govardhan Jayana, Bangalore (IN); Spencer Aaron Kareff, Simpsonville, SC (US); Dipesh Dinesh Nanda, Bangalore (IN)
- (73) Assignee: General Electric Company, Schenectady, NY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 462 days.
- (21) Appl. No.: 14/061,146
- (22) Filed: Oct. 23, 2013

(65) **Prior Publication Data**

US 2015/0107266 A1 Apr. 23, 2015

- (51) Int. Cl. *F01D 5/02* (2006.01) *F01D 5/14* (2006.01)
- (52) U.S. Cl. CPC *F01D* 5/02 (2013.01); *F01D* 5/141 (2013.01); *F05D* 2250/74 (2013.01); *Y02E* 20/16 (2013.01); *Y02T* 50/671 (2013.01); *Y02T* 50/673 (2013.01)
- (58) Field of Classification Search
 CPC F01D 5/02; F01D 5/141; F05D 2250/74; Y02E 20/16; Y02T 50/671; Y02T 50/673
 See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,844,679 A 10/1974 Grondahl et al. 4,208,167 A 6/1980 Yasugahira et al.

(10) Patent No.: US 9,347,320 B2

(45) **Date of Patent:** May 24, 2016

4,627,480	A A	12/1986	Lee et al. Kildea
5 286 168	л	* 2/1004	Smith E01D 5/16
5,280,108	A	2/1994	311111
5 400 205		* 1/1000	410/193 A
5,480,285	A ·	* I/1996	Patel F01D 5/141
			416/223 A
5,738,489	Α	4/1998	Lee
5,848,876	Α	12/1998	Tomita
5,980,209	Α	11/1999	Barry et al.
6,017,189	Α	1/2000	Judet et al.
6.072.829	Α	6/2000	Dirr
6.086.328	А	7/2000	Lee
6.142.739	Ā	11/2000	Harvey
6,190,130	B1	2/2001	Fukue et al.
6,241,467	B1	6/2001	Zelesky et al.
6,419,446	B1	7/2002	Kvasnak et al.
6,422,817	B1	7/2002	Jacala
6,491,496	B2	12/2002	Starkweather
6,579,066	B1 *	* 6/2003	Saito F01D 5/141
			416/243

(Continued)

FOREIGN PATENT DOCUMENTS

2479381 A1 7/2012

EP

OTHER PUBLICATIONS

U.S. Appl. No. 14/060,996, Final Office Action 1 dated Mar. 4, 2016, 15 pages.

(Continued)

Primary Examiner — Igor Kershteyn (74) Attorney, Agent, or Firm — Hoffman Warnick LLC; Ernest G. Cusick

(57) **ABSTRACT**

Turbine frequency tuning, fluid dynamic efficiency, and performance can be improved using a particular airfoil profile, which can be used to determine a throat between adjacent airfoils. By shaping the throat according to the particular profile, the total pressure at an endwall can be energized, improving performance of the turbine.

20 Claims, 9 Drawing Sheets

(56) **References** Cited

U.S. PATENT DOCUMENTS

6,722,851	B1	4/2004	Brittingham et al.
6,761,535	B1	7/2004	McGrath et al.
6,790,005	B2	9/2004	Lee et al.
6,799,948	B2 *	10/2004	Ito F01D 5/141
			416/223 A
6,957,949	B2	10/2005	Hyde et al.
6,966,756	B2	11/2005	McGrath et al.
6,969,232	B2	11/2005	Zess et al.
7,048,509	B2 *	5/2006	Tominaga F01D 5/14
			416/223 A
7,118,329	B2	10/2006	Goodman
7,134,842	B2	11/2006	Tam et al.
7,220,100	B2	5/2007	Lee et al.
7,255,536	B2	8/2007	Cunha et al.
7,281,894	B2	10/2007	Lee et al.
7,377,746	B2	5/2008	Brassfield et al.
7,416,391	B2	8/2008	Veltre et al.
7,476,086	B2 *	1/2009	Wadia F01D 5/141
			416/223 R
7,544,043	B2	6/2009	Eastman et al.
7,597,539	B1	10/2009	Liang
7,632,062	B2	12/2009	Harvey et al.
7,674,093	B2	3/2010	Lee et al.
7,731,483	B2	6/2010	DeLong et al.
7,766,606	B2	8/2010	Liang
7,931,444	B2	4/2011	Godsk et al.
7,985,053	B2	7/2011	Schott et al.
7,997,875	B2	8/2011	Nanukuttan et al.
8,052,395	B2	11/2011	Tragesser
8,092,178	B2	1/2012	Marini et al.
8,105,031	B2	1/2012	Trindade et al.
8,105,037	B2	1/2012	Grover et al.
8,133,030	B2	3/2012	Grafitti et al.
8,133,032	B2	3/2012	Tibbott et al.
8,147,188	B2	4/2012	Reeves et al.
8,172,533	B2	5/2012	Pinero et al.
8,347,947	B2	1/2013	Dube et al.
8,371,815	B2	2/2013	Farrell
8,449,249	B2 *	5/2013	Suchezky 29/889.22
8,568,097	B1	10/2013	Liang
8,591,189	B2	11/2013	Correia et al.
8,602,740	B2 *	12/2013	O'Hearn F01D 5/141
			416/191
8.647.066	B2	2/2014	Guimbard et al.
8 647 067	B2	2/2014	Pandev et al
5,517,007	112	2/2017	rance, et a.

8,684,684	B2	4/2014	Clements et al.
8,720,207	B2	5/2014	Gersbach et al.
8,721,291	B2	5/2014	Lee et al.
8,821,111	B2	9/2014	Gear et al.
8,870,524	B1	10/2014	Liang
8,870,585	B2	10/2014	Lee et al.
8,967,959	B2 *	3/2015	Stein F01D 5/141
· · ·			415/192
9,103,213	B2	8/2015	Barr et al.
9,188,017	B2 *	11/2015	Xu F01D 8/041
2004/0081548	A1	4/2004	Zess et al.
2007/0059173	A1	3/2007	Lee et al.
2007/0059182	A1	3/2007	Stegemiller et al.
2007/0128033	A1	6/2007	Lee et al.
2007/0258810	A1	11/2007	Aotsuka et al.
2007/0258819	A1	11/2007	Allen-Bradley et al.
2008/0232968	A1	9/2008	Nguyen
2009/0003987	A1	1/2009	Zausner et al.
2010/0143139	A1	6/2010	Pandey et al.
2010/0158696	A1	6/2010	Pandey et al.
2010/0189023	A1	7/2010	Lindgren et al.
2010/0196154	A1	8/2010	Sakamoto et al.
2010/0278644	Al	11/2010	Gersbach et al.
2011/0044818	A1	2/2011	Kuhne et al.
2012/0163993	A1	6/2012	Levine et al.
2012/0201688	Al	8/2012	Mahle et al.
2012/0328451	A1	12/2012	Lomas et al.
2013/0017095	A1	1/2013	Lee et al.
2013/0108424	A1	5/2013	Stein et al.
2014/0271225	A1	9/2014	Herzlinger et al.
2015/0110639	Al	4/2015	Herzlinger et al.
2015/0110640	A1	4/2015	Herzlinger et al.
2015/0110641	A1	4/2015	Herzlinger et al.
	OT		
	OII	HER PUI	BLICATIONS
IS Appl No. 1	4/061	221 066	a Action 1 dated Mar 14 2016 15
7.5. ADDI: NO. I	-7/UUI.	221.010	C ACUUM I UAICU Mai. 14, 2010, 15

U. 5 U.S. Appl. No. 14/061,221, Office Action 1 dated Mar. 14, 2016, 15 pages. U.S. Appl. No. 14/061,193, Office Action 1 dated Mar. 16, 2016, 17

pages. U.S. Appl. No. 14/061,363, Office Action 1 dated Mar. 28, 2016, 23

pages.

Booth et al., "Rotor-Tip Leakage: Part 1—Basic Methodology", Journal of Engineering for Power, Transactions of the ASME, vol. 104, Jan. 1982, pp. 154-161.

U.S. Appl. No. 14/061,107, Office Action dated Apr. 5, 2016, 15 pages.

* cited by examiner

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

TURBINE BUCKET PROFILE YIELDING **IMPROVED THROAT**

BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates to turbine components for aircraft and power generation applications, and, more specifically, to turbine buckets including a base, an airfoil portion having a profile configured to yield a throat between adjacent airfoils that can increase total pressure at 10 sidewalls of the airfoils.

Some aircraft and/or power plant systems, for example certain jet aircraft, nuclear, simple cycle and combined cycle power plant systems, employ turbines in their design and operation. Some of these turbines include one or more stages 15 of buckets which during operation are exposed to fluid flows. Each bucket can include a base supporting a respective airfoil (e.g., turbine blade, blade, etc.) configured to aerodynamically interact with and extract work from fluid flow (e.g., creating thrust, driving machinery, converting thermal energy 20 to mechanical energy, etc.) as part of, for example, power generation. As a result of this interaction and conversion, the aerodynamic characteristics and losses of these airfoils have an impact on system and turbine operation, performance, thrust, efficiency, and power at each stage.

BRIEF DESCRIPTION OF THE INVENTION

A first embodiment of the invention disclosed herein can include a turbomachine including a row of substantially iden- 30 tical buckets circumferentially mounted on a rotor, each bucket including a respective airfoil with opposed pressure and suction sidewalls extending chordwise between opposed leading and trailing edges and spanwise between a root and a tip. A flow passage between each pair of airfoils can include 35 a pressure sidewall of a first airfoil and a suction sidewall of a second airfoil substantially facing the pressure sidewall of the first airfoil. A throat can include an area defined at least in part by a minimum gap between the pressure sidewall of the first airfoil and the suction sidewall of the second airfoil for 40 each corresponding chord along spans of the first and second airfoils, an absolute value of a rate of change of the width of the throat versus span increasing with decreasing distance to at least one of the tips or the roots of the first and second airfoils within a first distance from the at least one of the tips 45 or the roots.

In addition, a second embodiment of the invention disclosed herein can be implemented as a turbine with a plurality of airfoils mounted on a rotor of a turbine about an axis of rotation of the turbine in a substantially circumferential, 50 embodiment of the invention; spaced-apart fashion, each airfoil including respective opposed pressure and suction sidewalls extending chordwise between respective opposed leading and trailing edges and spanwise between opposed inner and outer endwalls, a respective root of each airfoil connected to one of the inner 55 and outer endwalls, and at least one of the suction sidewall or the pressure sidewall including a nominal profile substantially in accordance with non-dimensional Cartesian coordinate values of X, Y, and Z set forth in TABLE I, wherein the coordinate values are non-dimensionalized and convertible to 60 distances by multiplying the coordinate values by a desired span in units of distance, and wherein X and Y values connected by smooth continuing arcs define profile sections of the at least one of the suction sidewall or the pressure sidewall at each distance Z along the airfoil, the profile sections at the 65 Z distances being joined smoothly with one another to form the profile of the at least one of the suction sidewall or the

2

pressure sidewall. A total throat can include a component throat between adjacent airfoils of the plurality of airfoils, each component throat including a minimum gap between a pressure sidewall of a first airfoil and a suction sidewall of a second airfoil adjacent to the first airfoil for all corresponding points along spans of the first and second airfoils, a width of the component throat increasing with decreasing distance to at least one of the tips of the roots within a first distance away from the at least one of the tips or the roots.

Further, a third embodiment of the invention disclosed herein can take the form of a turbine system having a compressor section, a combustion section, and a turbine section, wherein a stage of the turbine section includes a plurality of substantially identical airfoils substantially circumferentially spaced apart about an axis of rotation of the turbine section, each airfoil including opposed pressure and suction sidewalls extending chordwise between opposed leading and trailing edges and spanwise between opposed respective roots and tips. At least one of the suction sidewall or the pressure sidewall of each airfoil can include a nominal profile substantially in accordance with non-dimensional Cartesian coordinate values of X, Y, and Z set forth in TABLE I, wherein the coordinate values are non-dimensionalized and convertible to distances by multiplying the coordinate values by a desired span in units of distance, and wherein X and Y values connected by smooth continuing arcs define profile sections of the at least one of the suction sidewall or the pressure sidewall at each distance Z along the airfoil, the profile sections at the Z distances being joined smoothly with one another to form the profile of the at least one of the suction sidewall or the pressure sidewall. A total throat can include a component throat between each pair of adjacent airfoils, each component throat including an area defined at least in part by a minimum gap between a pressure sidewall of a first airfoil and a suction sidewall of an adjacent second airfoil for all points along spans of the first and second airfoils, a width of the component throat increasing with decreasing distance to the roots of the first and second airfoils within a first distance from the roots and within a second distance from the tips.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:

FIG. 1 shows a three-dimensional partial cut-away perspective view of a portion of a turbine according to an

FIG. 2 shows a portion of a set of buckets according to embodiments of the invention disclosed herein.

FIG. 3 shows a cross sectional view of a pair of the buckets according to embodiments of the invention disclosed herein and shown in FIG. 2 taken along corresponding sections 271.

FIG. 4 shows a perspective view of a turbine bucket according to embodiments of the invention disclosed herein.

FIG. 5 shows a representation of a throat between a pair of adjacent buckets employing an airfoil profile according to embodiments of the invention disclosed herein viewed from tips of the buckets toward roots of the buckets.

FIG. 6 shows a graphical representation of an imaginary surface of a throat according to embodiments of the invention disclosed herein.

FIG. 7 shows a schematic graph of span versus throat width of a pair of buckets employing the airfoil profile according to embodiments of the invention disclosed herein.

FIG. 8 shows a schematic block diagram illustrating portions of a combined cycle power plant system in which embodiments of the invention disclosed herein can be used.

FIG. **9** shows a schematic block diagram illustrating portions of a single-shaft combined cycle power plant system in ⁵ which embodiments of the invention disclosed herein can be used.

It is noted that the drawings of the invention are not necessarily to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be ¹⁰ considered as limiting the scope of the invention. It is understood that elements similarly numbered between the FIG-URES may be substantially similar as described with reference to one another. Further, in embodiments shown and described with reference to FIGS. **1-9**, like numbering may ¹⁵ represent like elements. Redundant explanation of these elements has been omitted for clarity. Finally, it is understood that the components of FIGS. **1-9** and their accompanying descriptions may be applied to any embodiment described herein. ²⁰

DETAILED DESCRIPTION OF THE INVENTION

Aspects of the invention provide for a turbine bucket including improved features, such as an airfoil including a 25 particular profile and/or a fillet on an end of the airfoil that can yield a performance-enhancing throat of a turbine stage. In addition, thermal and mechanical operating requirements for a given stage can be met, component lifetime can be improved, cost can be lowered, and/or any other suitable 30 system requirement and/or design goal can be improved.

In addition, aspects of the invention include a turbine bucket including a base supporting an airfoil at a first end of the airfoil. A top portion of the base at the first end of the airfoil can be construed as a platform or as an endwall. The 35 airfoil can have a profile that can enhance fluid flow over the airfoil and/or over the endwall. The profile of the airfoil can be defined using multiple sets of two-dimensional coordinates, each set being provided for a respective section of the respective profile along the span of the airfoil. The profile can be used to determine and/or design a throat of a stage including the bucket and/or profile to enhance fluid flow from the stage to a next stage or other portion of a turbine in which the bucket is employed.

As used herein, the terms "axial" and/or "axially" refer to 45 the relative position/direction of objects along axis A, which is substantially parallel to the axis of rotation of the turbomachine (in particular, the rotor section). As further used herein, the terms "radial" and/or "radially" refer to the relative position/direction of objects along any radius r extending substantially perpendicular to a rotational or longitudinal axis A, also called an axis of rotation. Additionally, the terms "circumferential" and/or "circumferentially" refer to the relative position/direction of objects along a circumference which surrounds axis A but does not intersect axis A at any location.

Referring to the drawings, FIG. 1 shows a perspective partial cut-away illustration of a turbine 10, such as a gas or steam turbine. Turbine 10 can include a rotor 12 that with a rotating shaft 14 and a plurality of axially spaced rotor wheels 18. A plurality of dynamic blades or buckets 20 can be 60 mechanically coupled to each rotor wheel 18, and can be arranged in a row that can extend circumferentially around a respective rotor wheel 18. So arranged, when a rotor wheel 18 rotates, its respective dynamic blades or buckets 20 can revolve about an axis of rotation of the respective rotor wheel. 65 A nozzle 21 can support a plurality of stationary blades or nozzles 22 circumferentially around shaft 14 between adja4

cent rotor wheels 18 and/or rows of dynamic buckets 20. Blades or nozzles 22 can cooperate with dynamic blades or buckets 20 to form a stage of turbine 10 and to define a portion of a flow path through turbine 10. As shown, nozzle 21 can at least partially surround rotor 12 (shown in this cut-away view) and in embodiments can completely surround rotor 12.

While turbine **10** is shown in FIG. **1** as a dual-flow turbine **10** with an axially centered inlet mouth feeding two sets of turbine stages, various teachings disclosed herein can be applied to any suitable turbine, such as an axial turbine with a single primary direction of flow. For example, various teachings herein can be applied to an axial inlet gas turbine in which a combustion gas passes through an inlet at a first axial end, any stages of the turbine, and an outlet at a second axial end of the turbine, which enables the gas to perform mechanical work on the turbine.

In operation of the example turbine 10 shown in FIG. 1, gas 24 can enter an inlet 26 of turbine 10 and can flow and/or be directed through stationary blades or nozzles 22. Stationary 20 blades or nozzles 22 can direct gas 24 against dynamic blades or buckets 20 so that gas 24 can pass around and/or over dynamic blades or buckets 20. As a result of aerodynamic interaction between dynamic blades or buckets 20 and gas 24, dynamic blades or buckets 20 can impart rotation to rotor wheel 18. In embodiments of the invention disclosed herein, turbine 10 can include multiple stages, which can each include a respective row of stationary blades or nozzles 22 in nozzle 21 and a respective row of dynamic blades or buckets 20 on a respective rotor wheel 18. It should be understood that, while there may be a plurality of rotor wheels 18, they can all be affixed to shaft 14 so as to rotate in unison, all dynamic blades or buckets 20 thus imparting rotation on shaft 14 in concert.

In the example shown in FIG. 1, turbine 10 can include five stages identified as a first stage L4, a second stage L3, a third stage L2, a fourth stage L1, and a fifth stage L0, which is also the last stage. Each stage has a respective radius, with first stage L4 having the smallest radius of the five stages and each subsequent stage having a larger radius, with fifth stage L0 having a largest radius of the five stages. While five stages are shown in FIG. 1, this simply a non-limiting example, and the teachings herein can be applied to turbines having more or fewer stages, including a turbine with a single stage. In addition, while the example shown in FIG. 1 is stationary, the teachings herein can be applied to any suitable turbine, including turbines used in aircraft engines, and may also be applied to compressors.

Each set of blades 20, 22 has a number of factors that can affect performance of turbine 10. For example, FIGS. 2 and 3 illustrate part of a set of circumferentially spaced-apart blades 200, which will be described as dynamic blades or buckets 20 of a rotor wheel 18, though aspects of the description can apply to sets of stationary blades or nozzles 22 depending on a particular implementation. Additional reference can be made to FIG. 4, which shows a single bucket 200 of embodiments in perspective. It is understood that bucket 200 can be configured to couple (mechanically couple via fasteners, welds, slot/grooves, contact, etc.) with a plurality of similar and/or distinct buckets (e.g., buckets 200 or other buckets) to form a set of buckets in a stage of the turbine. In addition, bucket 200 can be attached to a rotor wheel to form a set of buckets, which rotor wheel can be mounted on a shaft with fasteners, slots and grooves, welds, and/or other devices and/ or techniques, and/or a hub of the rotor wheel can be integral with the shaft, and/or the hub can include a portion of the shaft that can be attached to other portions of the shaft via any suitable coupling.

Each bucket 200 can include an airfoil 202 with a pressure sidewall 204 and an opposed suction sidewall 206, as well as a leading edge 208 and a trailing edge 210. Each airfoil 202 can include a chord C between leading edge 208 and trailing edge 210 such that pressure and suction sidewalls 204, 206 5 can be said to extend in chord or chordwise between leading edge 208 and trailing edge 210. Airfoil 202 can be supported by a base 212, and a fillet 214 can connect a first end 215 of airfoil 202 to a first endwall 216, such as a radially inner endwall. Fillet **214** can include a weld or braze fillet, which can be formed via conventional MIG welding, TIG welding, brazing, etc., and can include a profile that can reduce fluid dynamic losses as a result of the presence of fillet 214. In embodiments, base 212, airfoil 202, and fillet 214 can be formed as a single component, such as by casting and/or 15 machining and/or 3D printing and/or any other suitable technique now known or later developed and/or discovered.

As is known in the art, base 212 can be designed to fit into a mating slot in a hub of a rotor wheel and/or a turbine rotor shaft, such as shaft 14 of FIG. 1, and can engage and/or mate 20 with adjacent base components of other buckets 200 if desired and/or suitable. In the case of a stationary blade or nozzle, base 212 can be designed to fit into a slot or other mounting feature in a nozzle of a turbine, such as nozzle 21 of FIG. 1. In embodiments, because base 212 of dynamic blade or bucket 25 200 can have a relatively large mass, base 212 can be designed to be located radially inboard of airfoil 202 to reduce forces and stresses arising from revolution of bucket 200 about an axis of rotation during rotation of a respective rotor wheel and/or turbine shaft. Should appropriate materials and/or 30 techniques be developed, base 212 and/or endwall 216 could instead be designed to be radially outward of airfoil 202. In addition, in embodiments in the case of a stationary blade or nozzle, the corresponding base can be radially outward of the corresponding airfoil.

Airfoil 202 of dynamic blade or bucket 200 can extend radially from endwall 216 and can further have a span S between first end 215 and a second end 217 of airfoil 202. Pressure and suction sidewalls 204, 206 can be said to extend in span or spanwise between first and second ends 215, 217 of 40 airfoil 202. That is, each bucket 200 can include an airfoil 202 having opposed pressure and suction sidewalls 204, 206 extending in chord or chordwise between opposed leading and trailing edges 208, 210 and extending in span or spanwise between opposed first and second ends 215, 217 of airfoil 45 202.

First endwall **216** can include a first contour **218** in embodiments that can be described relative to a nominal surface N of endwall **216**. Nominal surface N need not be an actual, physical surface, and instead can simply be a frame of reference. ⁵⁰ While any surface can be employed, in embodiments, referential or nominal surface N can be substantially cylindrical and located at any suitable known location. For example, nominal surface N can be located at a known radius of curvature, such as a radial distance from an axis of rotation of ⁵⁵ turbine **10** and/or where a surface of an uncontoured endwall ordinarily would be.

With particular reference to FIG. **3**, each passage **219** between each pair of airfoils **202** can be regarded as bounded by pressure sidewall **204** of a first airfoil **202**, suction sidewall **60 206** of a second airfoil **202**, and portions of first endwall **216** of each of the first and second buckets **200**. In embodiments, second end **217** of each airfoil **202** can end in proximity to a second endwall **221**, such as a radially outer endwall or shroud, and portions of adjacent second endwalls **221** can act 65 as an additional boundary of passage **219**. In additional embodiments, particularly where airfoils **202** are part of sta-

tionary blades or nozzles, second end **217** of each airfoil **202** can be connected to endwall **221**.

Passage 219 can have at least one minimum gap 225 between airfoils 202 along corresponding chord lines C at a point along spans S of airfoils 202. The combined minimum gaps 225 of all corresponding chord lines along spans S can define a throat of the pair of airfoils 202, which is an area that can be visualized as a virtual surface. In embodiments, every throat between a respective pair of airfoils of a stage of buckets can be substantially identical, in part to avoid vibration that can be introduced by different flow rates in respective throats, which can damage a given stage of buckets or even an entire turbine. Thus, the sum of the throats of a stage of buckets 200 can be used to determine a total minimum area of the stage, which can be important to performance of and/or used to analyze and/or design a rotor wheel 18 and/or turbine 10.

Where surfaces and edges of a pair of airfoils extend substantially along respective radii of a respective rotor wheel, the throat can be determined by measuring minimum gap at a few points, such as near the inner endwall, midspan, and near the outer endwall, averaging the values measured, and multiplying the average by the span of the airfoils. The resulting minimum area between the airfoils can be visualized as a virtual surface of substantially a quadrilateral shape and substantially planar. However, airfoil 202 can be a high-performance airfoil as seen, for example, in FIG. 4, with a more complex shape and/or profile that can include curvature, twists, and other variations. As a result, a throat between two such more variable airfoils can be complex, as illustrated and/or visualized in FIGS. 5 and 6. In FIG. 5, two adjacent buckets 200 employing twisted or otherwise variable airfoils are shown, viewed from tips 217 toward roots 215. As can be seen, the orientation and length of minimum gap 225 can 35 vary, illustrated by minimum gap 225' at tips 217, minimum gap 225" at midspan, and minimum gap 225" at roots 215. Thus, minimum gap 225 can define a throat as a complex area or virtual surface 227 shown in FIG. 6. Applying techniques used for simpler airfoils can therefore introduce error, such as up to 20%, which can be significant in design and analysis of a stage of buckets 200 and turbine 10 as a whole. In addition, while typical inner and/or outer endwalls can be substantially uniform, inner and outer endwalls 216, 221 can include contours, which can further complicate determination of the throat. Such more complex profiles and/or contours can produce more efficient flow in passage 219, as well provide additional space for cooling passages and/or support structures within parts of a bucket.

Determination of throat 227 between pairs of high-performance airfoils 202 can be aided using a set of coordinates describing and/or defining the three-dimensional profile of each airfoil. For example, a unique set or loci of points in space can be provided, such as those listed in TABLE I, below, and can meet stage requirements for manufacture and performance. The loci of points can be arrived at by iteration between aerodynamic, thermal, and mechanical loadings enabling operation in an efficient, safe, and smooth manner. The loci, as embodied by the invention, can define the bucket airfoil profile for airfoil 202 and can comprise a set of points relative to any suitable frame of reference and/or origin, such as the axis of rotation of turbine 10, a coordinate system of turbine 10, and/or an origin located at a desired and/or suitable point of the airfoil and/or base and/or any other suitable component.

For example, a Cartesian coordinate system of X, Y, and Z values can be used to define a profile of airfoil **202**, such as the values listed in TABLE I, below. With the origin at leading

edge **208** in nominal surface N, the X and Y axes can be rotated such that the X axis extends along a chord of airfoil **202** at the nominal surface N, and such that the Y axis lies orthogonal to the X axis in the nominal surface N. The Z axis can then extend radially away from nominal surface N. Any other suitable orientation of the axes relative to airfoil **202** can be used so long as such orientation is taken into account in the resulting coordinate values. In embodiments, the coordinate system that defines the profile can be based on its own geometry and thus can be used to produce an airfoil with the described profile regardless of its location.

With reference to FIG. 2, a plurality of points 270-278 along span S, including root 215 and tip 217, can correspond to Z coordinate values of chord lines, and a cross section of airfoil 202 at each point can be described by a respective set of X and Y coordinates. For example, 100 points can be listed for each of pressure side 204 and suction side 206 for each cross section 270-278, though it should be apparent that more or fewer points can be used for each cross section, and more 20 or fewer cross sections can be used, as may be desired and/or appropriate. The X, Y, and Z coordinate values in TABLE I have been expressed in non-dimensionalized form representing normalized distances in values that can range from -1 to 1, but it should be apparent that any or all of the coordinate 25 values could instead be expressed in distance units so long as the proportions are maintained. TABLE I includes the heading, "Non-Dimensionalized (X Y Z/Span)," and in embodiments a desired span can be used to convert a coordinate value of TABLE I to a respective coordinate value in units of distance, such as inches or meters. In other words, the nondimensional values given in TABLE I can be multiplied by a desired span of airfoil 202, such as, for example, a desired span of between about 3 inches and about 10 inches, such as between about 5 inches and about 8 inches, to obtain coordi- 35 nate values in units of distance. By connecting the X and Y values with smooth continuing arcs, each profile cross section at each distance Z can be fixed, and the airfoil profiles of the various surface locations between the distances Z can be determined by smoothly connecting adjacent profile sections 40 to one another, thus forming the airfoil profile.

The 2,200 points for the coordinate values shown in TABLE I are generated and shown to three decimal places for determining the profile of a nominal airfoil 202 at ambient, non-operating, or non-hot conditions, and do not take any 45 coatings or fillets into account, though embodiments could account for other conditions, coatings, and/or fillets. To allow for typical manufacturing tolerances and/or coating thicknesses, ±values can be added to the values listed in TABLE I, particularly to the X and Y values therein. For example, a 50 tolerance of about 10-20 percent of a thickness of the trailing edge in a direction normal to any surface location along the airfoil profile can define an airfoil profile envelope for a bucket airfoil design at cold or room temperature. In other words, a distance of about $\pm 10\%$ to about $\pm 20\%$ (± 0.010 to 55 ± 0.020 non-dimensionally) of the thickness of the trailing edge in a direction normal to any surface location along the airfoil profile can define a range of variation between measured points on an actual airfoil surface and ideal positions of those points, particularly at a cold or room temperature, as 60 embodied by the invention. The bucket airfoil design, as embodied by the invention, is robust to this range of variation without impairment of mechanical and aerodynamic functions. Likewise, the profile and/or design can be scaled up or down, such as geometrically, without impairment of opera- 65 tion, and such scaling can be facilitated by use of normalized coordinate values, i.e. multiplying the normalized values by a

8

scaling factor, or a larger or smaller span in distance units than might have otherwise been used.

By employing coordinates defining a profile of airfoil 202, a throat between adjacent airfoils 202 can be determined to at least ends of airfoils 202. For example, FIG. 6 shows a virtual surface representing a particular throat 227 that can be found between adjacent airfoils 202 using the profile shown in TABLE I. As can be seen in FIG. 6, the surface can be quite complex. In embodiments, a width of throat 227 along a span of airfoils 202 can vary as shown by example in FIG. 7, which shows that throat width can be increased near root 215. In addition, embodiments can increase the width of throat 227 near tip 217. More particularly, in embodiments, a width of throat 227 can be increased within a first distance from first end 215 of the airfoil(s) 202 and/or a first endwall of flow passage 219, such as endwall 216, and can also be increased within a second distance from second end 217 of airfoil(s) 202 and/or a second endwall of flow passage 219, such as endwall 221, if present and/or used. For example, the first and/or second distance can be no more than about 25% of the span(s) of airfoil(s) 202, and can in embodiments be no more than about 20% of the span(s).

The width of throat 227 can increase in embodiments by no more than about 15% of its value at the first and/or second distance mark, such as no more than about 10%, though in embodiments, other increases can be employed, and there need not be symmetry in the manner in which throat width may change as between first end 215 and second end 217. For example, the throat width at first end 215 can be about 110% of the throat width at about 20% span and/or the throat width at second end 217 can be about 110% of the throat width at about 80% span (about 20% span away from second end 217). Throat 227 in embodiments can flare open more toward first end 215 within about 20% span from first end 215 than throat 227 flares open toward second end 217 within about 20% span from second end 217, and/or throat 227 can flare open more toward second end 217 within about 20% span from second end 217 than throat 227 flares open toward first end 215 within about 20% span from first end 215. Also, throat 227 can flare open to at least about 10% of its width at about 20% span from at least one of first and second ends 215, 217. In addition to increasing the width of the throat, a rate of change of the width can be varied within the first distance from the first endwall and/or the second distance from the second endwall, if present and/or used. For example, an absolute value of the rate of change of the width with respect to span can increase within the first distance from the first endwall and/or within the second distance from the second endwall.

Returning to the example of a plot of span vs. throat width is shown in FIG. 7, the widening of the throat at the root and/or tip of an airfoil can be seen as compared to a throat between airfoils employing a typical profile. In addition, the absolute value of a rate of change of the width of the throat vs. span of the airfoil(s), as represented by absolute value of the inverse of the slope of the curve shown in FIG. 7, can also be seen to increase. By introducing such an increase of throat width, as well as such an increase in a rate of change of throat width, as dell a pressure at the respective pressure and suction sidewalls **204**, **206** of adjacent airfoils **202** can be increased. The increased total pressure can energize the flow over the airfoil sidewalls, which can reduce pressure separation of the flow, thus improving stage and/or diffuser and/or turbine efficiency.

Turning to FIG. **8**, a schematic view of portions of a multishaft combined cycle power plant **900** is shown. Combined cycle power plant **900** may include, for example, a gas turbine 980 operably connected to a generator 970. Generator 970 and gas turbine 980 may be mechanically coupled by a shaft 915, which may transfer energy between a drive shaft (not shown) of gas turbine 980 and generator 970. Also shown in FIG. 10 is a heat exchanger 986 operably connected to gas 5 turbine 980 and a steam turbine 992. Heat exchanger 986 may be fluidly connected to both gas turbine 980 and a steam turbine 992 via conventional conduits (numbering omitted). Gas turbine 980 and/or steam turbine 992 may include one or more buckets 200 as shown and described with reference to 10 FIGS. 2-4 and/or other embodiments described herein. Heat exchanger 986 may be a conventional heat recovery steam generator (HRSG), such as those used in conventional combined cycle power systems. As is known in the art of power generation, HRSG 986 may use hot exhaust from gas turbine 15 980, combined with a water supply, to create steam which is fed to steam turbine 992. Steam turbine 992 may optionally be coupled to a second generator system 970 (via a second shaft 915). It is understood that generators 970 and shafts 915 may be of any size or type known in the art and may differ 20 depending upon their application or the system to which they are connected. Common numbering of the generators and shafts is for clarity and does not necessarily suggest these generators or shafts are identical. In another embodiment, shown in FIG. 9, a single shaft combined cycle power plant 25 990 may include a single generator 970 coupled to both gas turbine 980 and steam turbine 992 via a single shaft 915. Steam turbine 992 and/or gas turbine 980 may include one or more buckets 200 shown and described with reference to FIGS. 2-4 and/or other embodiments described herein. 30

The apparatus and devices of the present disclosure are not limited to any one particular engine, turbine, jet engine, generator, power generation system or other system, and may be used with other aircraft systems, power generation systems and/or systems (e.g., combined cycle, simple cycle, nuclear 35 reactor, etc.). Additionally, the apparatus of the present invention may be used with other systems not described herein that may benefit from the increased reduced tip leakage and increased efficiency of the apparatus and devices described herein. 40

TABLE I

Non-Din	nensionalized (X Y	(Z/Span)	
N Location	х	Y	Z
1 suction-side	0.000	0.000	0.000
2 suction-side	0.000	0.000	0.000
3 suction-side	0.000	0.006	0.000
4 suction-side	0.002	0.009	0.000
5 suction-side	0.004	0.012	0.000
6 suction-side	0.006	0.014	0.000
7 suction-side	0.008	0.017	0.000
8 suction-side	0.010	0.019	0.000
9 suction-side	0.013	0.022	0.000
10 suction-side	0.015	0.024	0.000
11 suction-side	0.017	0.026	0.000
12 suction-side	0.020	0.028	0.000
13 suction-side	0.023	0.030	0.000
14 suction-side	0.025	0.033	0.000
15 suction-side	0.028	0.035	0.000
16 suction-side	0.030	0.037	0.000
17 suction-side	0.033	0.039	0.000
18 suction-side	0.036	0.041	0.000
19 suction-side	0.038	0.043	0.000
20 suction-side	0.041	0.044	0.000
21 suction-side	0.044	0.046	0.000
22 suction-side	0.046	0.048	0.000
23 suction-side	0.049	0.050	0.000
24 suction-side	0.052	0.052	0.000
25 suction-side	0.055	0.053	0.000

I	U	
_		

TABLE I-continued

	Non-Dime	ensionalized (X Y	Z/Span)	
Ν	Location	Х	Y	Z
26	suction-side	0.058	0.055	0.000
27	suction-side	0.060	0.057	0.000
28	suction-side	0.063	0.059	0.000
29	suction-side	0.066	0.060	0.000
31	suction-side	0.072	0.063	0.000
32	suction-side	0.075	0.065	0.000
33	suction-side	0.078	0.066	0.000
34	suction-side	0.081	0.068	0.000
35	suction-side	0.084	0.069	0.000
37	suction-side	0.090	0.072	0.000
38	suction-side	0.093	0.073	0.000
39	suction-side	0.096	0.074	0.000
40	suction-side	0.099	0.075	0.000
41	suction-side	0.102	0.078	0.000
43	suction-side	0.108	0.078	0.000
44	suction-side	0.112	0.079	0.000
45	suction-side	0.115	0.080	0.000
46	suction-side	0.118	0.081	0.000
47	suction-side	0.121	0.082	0.000
49	suction-side	0.128	0.083	0.000
50	suction-side	0.131	0.083	0.000
51	suction-side	0.134	0.084	0.000
52	suction-side	0.138	0.084	0.000
53 54	suction-side	0.141	0.084	0.000
55	suction-side	0.148	0.084	0.000
56	suction-side	0.151	0.084	0.000
57	suction-side	0.154	0.084	0.000
58	suction-side	0.158	0.083	0.000
59 60	suction-side	0.161	0.083	0.000
61	suction-side	0.167	0.082	0.000
62	suction-side	0.170	0.080	0.000
63	suction-side	0.174	0.079	0.000
64	suction-side	0.177	0.078	0.000
66	suction-side	0.180	0.077	0.000
67	suction-side	0.186	0.074	0.000
68	suction-side	0.188	0.072	0.000
69	suction-side	0.191	0.070	0.000
70	suction-side	0.194	0.068	0.000
72	suction-side	0.197	0.064	0.000
73	suction-side	0.202	0.062	0.000
74	suction-side	0.204	0.060	0.000
75	suction-side	0.207	0.058	0.000
76	suction-side	0.209	0.055	0.000
78	suction-side	0.211	0.050	0.000
79	suction-side	0.216	0.048	0.000
80	suction-side	0.218	0.045	0.000
81	suction-side	0.220	0.043	0.000
82 83	suction-side	0.222	0.040	0.000
84	suction-side	0.224	0.035	0.000
85	suction-side	0.228	0.032	0.000
86	suction-side	0.230	0.030	0.000
87	suction-side	0.232	0.027	0.000
88 89	suction-side	0.234	0.024	0.000
90	suction-side	0.238	0.019	0.000
91	suction-side	0.240	0.017	0.000
92	suction-side	0.243	0.014	0.000
93 04	suction-side	0.245	0.011	0.000
94 95	suction-side	0.247	0.003	0.000
96	suction-side	0.248	0.003	0.000
97	suction-side	0.248	0.004	0.000
98	suction-side	0.248	0.006	0.000
99 100	suction side	0.249	0.005	0.000
101	succion-side	0.249	0.005	0.000

TABLE I-continued						TABLE I-continued					
	Non-Dime	ensionalized (X Y	Y Z/Span)								
Ν	Location	х	Y	Z	5	Ν	Location	х	Y	Z	
102	pressure-side	0.003	0.000	0.000		178	pressure-side	0.207	0.030	0.000	
103	pressure-side	0.005	0.000	0.000		179	pressure-side	0.209	0.029	0.000	
104	pressure-side	0.008	0.001	0.000		180	pressure-side	0.212	0.028	0.000	
105	pressure-side	0.011	0.003	0.000		181	pressure-side	0.214	0.027	0.000	
106	pressure-side	0.013	0.004	0.000		182	pressure-side	0.217	0.025	0.000	
107	pressure-side	0.016	0.005	0.000	10	183	pressure-side	0.219	0.024	0.000	
108	pressure-side	0.018	0.006	0.000		184	pressure-side	0.222	0.023	0.000	
109	pressure-side	0.021	0.008	0.000		185	pressure-side	0.224	0.021	0.000	
110	pressure-side	0.025	0.009	0.000		180	pressure-side	0.220	0.019	0.000	
112	pressure-side	0.020	0.011	0.000		188	pressure-side	0.228	0.016	0.000	
113	pressure-side	0.031	0.013	0.000	1.5	189	pressure-side	0.233	0.014	0.000	
114	pressure-side	0.033	0.014	0.000	15	190	pressure-side	0.235	0.012	0.000	
115	pressure-side	0.036	0.015	0.000		191	pressure-side	0.237	0.010	0.000	
116	pressure-side	0.038	0.016	0.000		192	pressure-side	0.239	0.008	0.000	
117	pressure-side	0.041	0.017	0.000		193	pressure-side	0.241	0.006	0.000	
118	pressure-side	0.044	0.019	0.000		194	pressure-side	0.243	0.004	0.000	
119	pressure-side	0.046	0.020	0.000	20	195	pressure-side	0.245	0.002	0.000	
120	pressure-side	0.049	0.021	0.000		190	pressure-side	0.245	0.002	0.000	
122	pressure-side	0.054	0.022	0.000		198	pressure-side	0.240	0.002	0.000	
123	pressure-side	0.056	0.024	0.000		199	pressure-side	0.248	0.003	0.000	
124	pressure-side	0.059	0.025	0.000		200	pressure-side	0.248	0.003	0.000	
125	pressure-side	0.062	0.026	0.000		1	suction-side	0.009	0.018	0.100	
126	pressure-side	0.064	0.027	0.000	25	2	suction-side	0.009	0.015	0.100	
127	pressure-side	0.067	0.028	0.000		3	suction-side	0.010	0.021	0.100	
128	pressure-side	0.070	0.029	0.000		4	suction-side	0.012	0.023	0.100	
129	pressure-side	0.072	0.030	0.000		5	suction-side	0.014	0.026	0.100	
130	pressure-side	0.075	0.031	0.000		7	suction-side	0.017	0.028	0.100	
132	pressure-side	0.080	0.032	0.000	30	8	suction-side	0.021	0.033	0.100	
133	pressure-side	0.083	0.034	0.000	50	9	suction-side	0.023	0.035	0.100	
134	pressure-side	0.086	0.034	0.000		10	suction-side	0.026	0.037	0.100	
135	pressure-side	0.088	0.035	0.000		11	suction-side	0.028	0.039	0.100	
136	pressure-side	0.091	0.036	0.000		12	suction-side	0.031	0.041	0.100	
137	pressure-side	0.094	0.037	0.000		13	suction-side	0.033	0.043	0.100	
138	pressure-side	0.090	0.037	0.000	35	14	suction-side	0.035	0.045	0.100	
140	pressure-side	0.099	0.039	0.000		16	suction-side	0.038	0.048	0.100	
141	pressure-side	0.105	0.039	0.000		17	suction-side	0.043	0.050	0.100	
142	pressure-side	0.107	0.040	0.000		18	suction-side	0.046	0.052	0.100	
143	pressure-side	0.110	0.040	0.000		19	suction-side	0.048	0.054	0.100	
144	pressure-side	0.113	0.041	0.000	40	20	suction-side	0.051	0.055	0.100	
145	pressure-side	0.116	0.041	0.000	-10	21	suction-side	0.053	0.057	0.100	
140	pressure-side	0.119	0.041	0.000		22	suction-side	0.050	0.059	0.100	
148	pressure-side	0.121	0.042	0.000		23	suction-side	0.059	0.062	0.100	
149	pressure-side	0.127	0.042	0.000		25	suction-side	0.064	0.063	0.100	
150	pressure-side	0.130	0.043	0.000		26	suction-side	0.067	0.065	0.100	
151	pressure-side	0.133	0.043	0.000	45	27	suction-side	0.070	0.066	0.100	
152	pressure-side	0.135	0.043	0.000		28	suction-side	0.073	0.067	0.100	
153	pressure-side	0.138	0.043	0.000		29	suction-side	0.076	0.069	0.100	
154	pressure-side	0.141	0.043	0.000		30	suction-side	0.078	0.070	0.100	
155	pressure-side	0.144	0.043	0.000		31	suction-side	0.081	0.071	0.100	
150	pressure-side	0.147	0.043	0.000	50	33	suction-side	0.087	0.072	0.100	
158	pressure-side	0.152	0.043	0.000	50	34	suction-side	0.090	0.074	0.100	
159	pressure-side	0.155	0.042	0.000		35	suction-side	0.093	0.075	0.100	
160	pressure-side	0.158	0.042	0.000		36	suction-side	0.096	0.076	0.100	
161	pressure-side	0.161	0.042	0.000		37	suction-side	0.099	0.077	0.100	
162	pressure-side	0.163	0.042	0.000		38	suction-side	0.102	0.078	0.100	
163	pressure-side	0.166	0.041	0.000	55	39	suction-side	0.105	0.078	0.100	
104	pressure-side	0.109	0.041	0.000		40 //1	suction-side	0.108	0.079	0.100	
166	pressure-side	0.174	0.040	0.000		42	suction-side	0.115	0.080	0.100	
167	pressure-side	0.177	0.039	0.000		43	suction-side	0.118	0.081	0.100	
168	pressure-side	0.180	0.039	0.000		44	suction-side	0.121	0.081	0.100	
169	pressure-side	0.183	0.038	0.000	60	45	suction-side	0.124	0.081	0.100	
170	pressure-side	0.185	0.037	0.000	00	46	suction-side	0.127	0.081	0.100	
171	pressure-side	0.188	0.037	0.000		47	suction-side	0.130	0.082	0.100	
172	pressure-side	0.191	0.036	0.000		48	suction-side	0.133	0.082	0.100	
174	pressure-side	0.195	0.035	0.000		49 50	suction-side	0.137	0.082	0.100	
175	pressure-side	0.199	0.033	0.000		51	suction-side	0.143	0.081	0.100	
176	pressure-side	0.201	0.032	0.000	65	52	suction-side	0.146	0.081	0.100	
177	pressure-side	0.204	0.031	0.000		53	suction-side	0.149	0.080	0.100	

Non-Dimensionalized (X Y ZSmail) Non-Dimensionalized (X Y ZSmail) N Lossifier X Y Z Si macianside 0.135 0.009 0.100 Si macianside 0.135 0.009 0.100 Si macianside 0.131 penarcenide 0.006 0.000 0.000 Si macianside 0.111 0.072 0.100 133 penarcenide 0.001 0.024 0.001 Si macianside 0.117 0.075 0.100 135 penarcenide 0.009 0.043 0.100 Gi macianside 0.117 0.077 0.100 135 penarcenide 0.101 0.044 0.100 Gi macianside 0.117 0.042 0.100 143 penarcenide 0.112 0.046 0.100 Gi macianside 0.117 0.042 0.100 154 penarcenide 0.112 0.046 0.100 Gi macianside <t< th=""><th></th><th>TAH</th><th>BLE I-contin</th><th>ued</th><th></th><th></th><th></th><th>TAB</th><th>BLE I-contin</th><th>ued</th><th></th></t<>		TAH	BLE I-contin	ued				TAB	BLE I-contin	ued	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Non-Dime	ensionalized (X	Y Z/Span)			Non-Dimensionalized (X Y Z/Span)				
34 anziersidz 0.153 0.009 0.100 130 presume-ide 0.008 0.000 131 presume-ide 0.008 0.000 132 presume-ide 0.004 0.000 0.000 0.000 132 presume-ide 0.048 0.0441 0.100 57 anzien sidz 0.164 0.077 0.100 133 presume-ide 0.0481 0.0421 0.100 60 anzien sidz 0.177 0.010 10 133 presume-ide 0.0431 0.100 61 anzien sidz 0.179 0.017 0.100 138 presume-ide 0.104 0.0443 0.100 65 anzien sidz 0.179 0.010 15 141 presume-ide 0.112 0.0443 0.100 65 anzien sidz 0.179 0.016 0.010 15 141 presume-ide 0.112 0.0443 0.100 65 anzien sidz 0.179 0.0164 0.100 1447 presume-ide <th>N</th> <th>Location</th> <th>х</th> <th>Y</th> <th>Z</th> <th></th> <th>Ν</th> <th>Location</th> <th>х</th> <th>Y</th> <th>Z</th>	N	Location	х	Y	Z		Ν	Location	х	Y	Z
55 mucico side 0.153 0.079 0.100 131 presure-side 0.088 0.041 0.100 51 mucico side 0.181 0.077 0.100 133 presure-side 0.081 0.041 0.100 53 mucico side 0.171 0.077 0.100 133 presure-side 0.091 0.041 0.100 64 mucico side 0.173 0.077 0.100 133 presure-side 0.099 0.0441 0.100 64 mucico side 0.172 0.174 0.100 133 presure-side 0.114 0.0443 0.100 64 mucico side 0.132 0.0458 0.100 141 presure-side 0.112 0.0444 0.100 64 mucico side 0.132 0.0458 0.100 142 presure-side 0.112 0.0444 0.100 64 mucico side 0.132 0.0445 0.100 144 presure-side 0.131 0.0446 0	54	suction-side	0.152	0.080	0.100		130	pressure-side	0.083	0.040	0.100
55 suzion side 0.158 0.079 0.100 132 presure-side 0.088 0.042 0.100 55 suzion-side 0.167 0.007 0.100 134 presure-side 0.096 0.042 0.101 00 suzion-side 0.170 0.007 0.000 134 presure-side 0.096 0.043 0.101 01 suzion-side 0.172 0.007 0.000 134 presure-side 0.102 0.0443 0.100 01 suzion-side 0.125 0.072 0.000 134 presure-side 0.102 0.0443 0.1048 0.0468 0.100 134 presure-side 0.117 0.0455 0.100 0.0454 0.100 0.0454 0.100 0.0454 0.100 0.0454 0.100 0.0456 0.100 0.0456 0.100 0.0466 0.100 0.0466 0.100 0.0466 0.100 0.0466 0.100 0.0466 0.100 0.0466 0.100 0.0466 <t< td=""><td>55</td><td>suction-side</td><td>0.155</td><td>0.079</td><td>0.100</td><td></td><td>131</td><td>pressure-side</td><td>0.086</td><td>0.041</td><td>0.100</td></t<>	55	suction-side	0.155	0.079	0.100		131	pressure-side	0.086	0.041	0.100
57 succionelide 0.161 0.078 0.010 133 pressure-side 0.049 0.041 0.100 69 succionelide 0.177 0.100 10 135 pressure-side 0.049 0.041 0.100 60 succionelide 0.177 0.072 0.100 138 pressure-side 0.104 0.0444 0.100 61 succionelide 0.175 0.071 0.010 138 pressure-side 0.114 0.0444 0.100 63 succionelide 0.128 0.0464 0.100 144 pressure-side 0.113 0.0444 0.100 64 succionelide 0.138 0.0464 0.100 144 pressure-side 0.118 0.0446 0.100 66 succionelide 0.138 0.0464 0.100 144 pressure-side 0.138 0.0446 0.100 71 succionelide 0.138 0.0464 0.100 144 pressure-side 0.138 0.0444 <td>56</td> <td>suction-side</td> <td>0.158</td> <td>0.079</td> <td>0.100</td> <td></td> <td>132</td> <td>pressure-side</td> <td>0.088</td> <td>0.041</td> <td>0.100</td>	56	suction-side	0.158	0.079	0.100		132	pressure-side	0.088	0.041	0.100
35 Bitter and Construction 1-13 pressure-state 0.034 0.043 0.043 0.043 0.043 0.0443 0.0443 0.0443 0.0443 0.0443 0.0444 0.010 01 matters side 0.173 0.074 0.100 137 pressure-side 0.141 0.0443 0.0144 <	57	suction-side	0.161	0.078	0.100		133	pressure-side	0.091	0.042	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58	suction-side	0.164	0.077	0.100	10	134	pressure-side	0.094	0.042	0.100
i autica-side 0.173 0.074 0.100 137 pressue-side 0.102 0.044 0.045 02 sucio-side 0.179 0.071 0.100 139 pressue-side 0.101 0.045 0.100 04 sucio-side 0.122 0.064 0.100 149 pressue-side 0.110 0.045 0.100 05 sucio-side 0.137 0.064 0.100 141 pressue-side 0.118 0.046 0.100 06 sucio-side 0.192 0.062 0.100 144 pressue-side 0.123 0.046 0.100 07 sucio-side 0.192 0.062 0.100 144 pressue-side 0.124 0.046 0.100 12 sucio-side 0.204 0.052 0.100 144 pressue-side 0.134 0.047 0.100 12 sucio-side 0.217 0.048 0.100 151 pressue-side 0.142 0.046 0.100 <	59 60	suction-side	0.170	0.075	0.100	10	135	pressure-side	0.090	0.043	0.100
62 suction side 0.178 0.072 0.100 138 pessure-side 0.104 0.044 0.100 64 mation-side 0.182 0.069 0.101 140 pessure-side 0.110 0.045 0.100 66 mation-side 0.130 0.064 0.100 15 12 pessure-side 0.112 0.044 0.100 66 mation-side 0.130 0.064 0.100 144 pessure-side 0.121 0.046 0.100 67 mation-side 0.137 0.058 0.100 146 pessure-side 0.126 0.046 0.100 71 mation-side 0.266 0.100 151 pessure-side 0.144 0.047 0.100 72 mation-side 0.211 0.043 0.100 151 pessure-side 0.144 0.046 0.100 73 mation-side 0.211 0.043 0.100 152 pessure-side 0.144 0.046 0.100	61	suction-side	0.173	0.074	0.100		137	pressure-side	0.102	0.044	0.100
63 auction-side 0.179 0.071 0.100 130 pressure-side 0.107 0.045 0.100 64 ascim-side 0.187 0.068 0.100 140 pressure-side 0.110 0.045 0.100 67 ascim-side 0.187 0.066 0.160 144 pressure-side 0.118 0.044 0.100 68 ascim-side 0.197 0.063 0.100 144 pressure-side 0.123 0.046 0.100 7 ascim-side 0.197 0.0658 0.100 144 pressure-side 0.129 0.047 0.101 7 ascim-side 0.102 0.048 0.100 150 pressure-side 0.137 0.047 0.101 74 ascim-side 0.216 0.048 0.100 151 pressure-side 0.131 0.046 0.100 75 ascim-side 0.217 0.043 0.100 153 pressure-side 0.131 0.044 0.100 </td <td>62</td> <td>suction-side</td> <td>0.176</td> <td>0.072</td> <td>0.100</td> <td></td> <td>138</td> <td>pressure-side</td> <td>0.104</td> <td>0.044</td> <td>0.100</td>	62	suction-side	0.176	0.072	0.100		138	pressure-side	0.104	0.044	0.100
action-ace 0.152 0.064 0.100 141 pressure-side 0.115 0.045 0.106 66 saction-side 0.137 0.064 0.100 143 pressure-side 0.115 0.046 0.106 67 mation-side 0.139 0.064 0.100 143 pressure-side 0.121 0.046 0.100 68 mation-side 0.139 0.068 0.100 144 pressure-side 0.123 0.046 0.100 71 saction-side 0.139 0.068 0.100 144 pressure-side 0.131 0.046 0.100 73 saction-side 0.224 0.053 0.100 151 pressure-side 0.134 0.047 0.106 74 saction-side 0.211 0.043 0.100 153 pressure-side 0.144 0.046 0.100 75 saction-side 0.217 0.033 0.100 153 pressure-side 0.144 0.044 0.100 </td <td>63</td> <td>suction-side</td> <td>0.179</td> <td>0.071</td> <td>0.100</td> <td></td> <td>139</td> <td>pressure-side</td> <td>0.107</td> <td>0.045</td> <td>0.100</td>	63	suction-side	0.179	0.071	0.100		139	pressure-side	0.107	0.045	0.100
of of matrix matrix 0.187 0.066 0.100 15 122 pressure-side 0.115 0.046 0.106 077 matrix matrix 0.199 0.064 0.100 144 pressure-side 0.123 0.046 0.100 08 matrix matrix 0.197 0.088 0.100 144 pressure-side 0.123 0.046 0.100 71 matrix matrix 0.019 0.088 0.100 145 pressure-side 0.123 0.046 0.100 73 matrix matrix 0.039 0.059 0.100 150 pressure-side 0.137 0.047 0.100 74 matrix matrix 0.030 0.048 0.100 153 pressure-side 0.144 0.046 0.100 78 matrix matrix 0.131 0.044 0.100 153 pressure-side 0.144 0.046 0.100 78 matrix matrix 0.233 0.044 0.106 153 pressure-side 0.144	64 65	suction-side	0.182	0.069	0.100		140	pressure-side	0.110	0.045	0.100
67 sucion-side 0.19 0.004 0.100 143 pressure-side 0.121 0.046 0.100 68 sucion-side 0.195 0.060 0.100 144 pressure-side 0.123 0.046 0.100 71 sucion-side 0.197 0.056 0.100 20 146 pressure-side 0.123 0.046 0.100 73 sucion-side 0.206 0.048 0.100 151 pressure-side 0.131 0.047 0.100 75 sucion-side 0.206 0.048 0.100 151 pressure-side 0.142 0.046 0.100 78 sucion-side 0.211 0.045 0.100 153 pressure-side 0.143 0.046 0.100 78 sucion-side 0.212 0.028 0.100 157 pressure-side 0.143 0.046 0.100 78 sucion-side 0.227 0.026 0.100 157 pressure-side 0.151 0.04	66	suction-side	0.187	0.066	0.100	15	142	pressure-side	0.112	0.045	0.100
668 suction-side 0.192 0.002 0.100 144 pressure-side 0.123 0.046 0.100 70 suction-side 0.139 0.005 0.100 145 pressure-side 0.123 0.046 0.100 71 suction-side 0.139 0.055 0.100 20 147 pressure-side 0.123 0.046 0.100 74 suction-side 0.206 0.053 0.100 150 pressure-side 0.137 0.046 0.100 75 suction-side 0.213 0.048 0.100 152 pressure-side 0.142 0.046 0.100 78 suction-side 0.217 0.038 0.100 155 pressure-side 0.145 0.046 0.100 81 suction-side 0.217 0.038 0.100 157 pressure-side 0.156 0.044 0.100 81 suction-side 0.227 0.025 0.160 157 pressure-side 0.157	67	suction-side	0.190	0.064	0.100		143	pressure-side	0.118	0.046	0.100
69 saction-side 0.139 0.080 0.100 145 pressure-side 0.129 0.046 0.100 71 saction-side 0.139 0.084 0.100 20 146 pressure-side 0.129 0.047 0.100 73 saction-side 0.302 0.064 0.100 150 pressure-side 0.131 0.047 0.100 74 saction-side 0.308 0.048 0.100 151 pressure-side 0.140 0.046 0.100 75 saction-side 0.211 0.043 0.100 153 pressure-side 0.146 0.046 0.100 78 saction-side 0.211 0.034 0.100 155 pressure-side 0.151 0.0466 0.100 88 saction-side 0.223 0.031 0.100 155 pressure-side 0.151 0.045 0.100 83 saction-side 0.223 0.031 0.100 159 pressure-side 0.151	68	suction-side	0.192	0.062	0.100		144	pressure-side	0.121	0.046	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69 70	suction-side	0.195	0.060	0.100		145	pressure-side	0.123	0.046	0.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	suction-side	0.197	0.058	0.100		140	pressure-side	0.120	0.046	0.100
73 suction-side 0.204 0.052 0.100 149 pressure-side 0.137 0.047 0.100 75 suction-side 0.208 0.048 0.100 151 pressure-side 0.142 0.046 0.100 76 suction-side 0.211 0.045 0.100 153 pressure-side 0.142 0.046 0.100 78 suction-side 0.217 0.038 0.100 155 pressure-side 0.133 0.046 0.100 80 suction-side 0.221 0.034 0.100 157 pressure-side 0.156 0.045 0.100 81 suction-side 0.223 0.031 0.100 159 pressure-side 0.144 0.0445 0.100 83 suction-side 0.223 0.032 0.100 159 pressure-side 0.177 0.043 0.100 84 suction-side 0.224 0.026 0.100 161 pressure-side 0.177 0.043	72	suction-side	0.202	0.054	0.100	20	148	pressure-side	0.131	0.047	0.100
74 suction-side 0.206 0.050 150 pressure-side 0.140 0.046 0.100 75 suction-side 0.211 0.048 0.100 152 pressure-side 0.142 0.046 0.100 78 suction-side 0.213 0.041 0.100 152 pressure-side 0.143 0.046 0.100 78 suction-side 0.217 0.038 0.100 155 pressure-side 0.153 0.045 0.100 80 suction-side 0.223 0.031 0.100 155 pressure-side 0.161 0.045 0.100 83 suction-side 0.227 0.026 0.100 159 pressure-side 0.164 0.043 0.100 84 suction-side 0.323 0.010 161 pressure-side 0.177 0.042 0.100 85 suction-side 0.324 0.100 163 pressure-side 0.177 0.041 0.100 155 pressure-side <td>73</td> <td>suction-side</td> <td>0.204</td> <td>0.052</td> <td>0.100</td> <td></td> <td>149</td> <td>pressure-side</td> <td>0.134</td> <td>0.047</td> <td>0.100</td>	73	suction-side	0.204	0.052	0.100		149	pressure-side	0.134	0.047	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74	suction-side	0.206	0.050	0.100		150	pressure-side	0.137	0.047	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75	suction-side	0.208	0.048	0.100		151	pressure-side	0.140	0.046	0.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	suction-side	0.211	0.043	0.100		152	pressure-side	0.142	0.046	0.100
	78	suction-side	0.215	0.041	0.100	25	154	pressure-side	0.148	0.046	0.100
80 suction-side 0.21 0.034 0.100 157 pressure-side 0.153 0.045 0.100 81 suction-side 0.221 0.031 0.100 157 pressure-side 0.159 0.045 0.100 83 suction-side 0.227 0.026 0.100 159 pressure-side 0.164 0.044 0.100 84 suction-side 0.228 0.024 0.100 161 pressure-side 0.170 0.043 0.100 85 suction-side 0.320 0.021 0.100 162 pressure-side 0.177 0.041 0.100 88 suction-side 0.236 0.014 0.100 165 pressure-side 0.183 0.049 0.100 91 suction-side 0.242 0.006 0.100 167 pressure-side 0.183 0.033 0.100 92 suction-side 0.247 -0.004 0.100 170 pressure-side 0.188 0.035	79	suction-side	0.217	0.038	0.100		155	pressure-side	0.151	0.046	0.100
skutton-side 0.221 0.041 0.100 157 pressure-side 0.156 0.045 0.100 82 skutton-side 0.225 0.026 0.100 159 pressure-side 0.161 0.0044 0.100 84 skutton-side 0.227 0.026 0.100 161 pressure-side 0.167 0.043 0.100 86 skutton-side 0.230 0.010 163 pressure-side 0.177 0.044 0.100 87 skutton-side 0.234 0.010 164 pressure-side 0.177 0.044 0.100 98 skutton-side 0.238 0.0110 165 pressure-side 0.188 0.039 0.100 91 skutton-side 0.242 0.004 0.100 167 pressure-side 0.188 0.033 0.100 92 skutton-side 0.247 -0.004 0.100 171 pressure-side 0.183 <th< td=""><td>80</td><td>suction-side</td><td>0.219</td><td>0.036</td><td>0.100</td><td></td><td>156</td><td>pressure-side</td><td>0.153</td><td>0.045</td><td>0.100</td></th<>	80	suction-side	0.219	0.036	0.100		156	pressure-side	0.153	0.045	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	81 82	suction-side	0.221	0.034	0.100		157	pressure-side	0.156	0.045	0.100
84 aution-side 0.227 0.026 0.100 30 160 pressure-side 0.164 0.043 0.100 85 saction-side 0.230 0.021 0.100 161 pressure-side 0.170 0.043 0.100 86 saction-side 0.232 0.016 0.100 163 pressure-side 0.177 0.041 0.100 88 saction-side 0.238 0.011 0.100 165 pressure-side 0.183 0.049 0.100 91 saction-side 0.242 0.006 0.100 168 pressure-side 0.183 0.039 0.100 92 saction-side 0.247 -0.004 0.100 170 pressure-side 0.188 0.037 0.100 94 saction-side 0.247 -0.004 0.100 171 pressure-side 0.195 0.034 0.100 95 saction-side 0.247 -0.003 0.100 174 pressure-side 0.205	83	suction-side	0.225	0.031	0.100		159	pressure-side	0.161	0.045	0.100
85 suction-side 0.228 0.024 0.100 161 pressure-side 0.167 0.043 0.100 86 suction-side 0.232 0.019 0.100 163 pressure-side 0.170 0.042 0.100 88 suction-side 0.234 0.016 0.100 163 pressure-side 0.175 0.041 0.100 90 suction-side 0.236 0.014 0.100 165 pressure-side 0.180 0.040 0.100 91 suction-side 0.242 0.006 0.100 166 pressure-side 0.185 0.038 0.100 93 suction-side 0.247 -0.004 0.100 170 pressure-side 0.193 0.035 0.100 94 suction-side 0.247 -0.001 0.100 174 pressure-side 0.198 0.033 0.100 95 suction-side 0.247 -0.001 0.100 174 pressure-side 0.208 0.023	84	suction-side	0.227	0.026	0.100	30	160	pressure-side	0.164	0.044	0.100
86 suction-side 0.230 0.021 0.100 162 pressure-side 0.172 0.042 0.100 87 suction-side 0.234 0.016 0.100 163 pressure-side 0.172 0.042 0.100 89 suction-side 0.238 0.011 0.100 165 pressure-side 0.183 0.039 0.010 91 suction-side 0.242 0.006 0.100 167 pressure-side 0.183 0.038 0.100 92 suction-side 0.244 0.004 0.100 167 pressure-side 0.188 0.038 0.100 94 suction-side 0.247 -0.004 0.100 171 pressure-side 0.193 0.035 0.100 95 suction-side 0.247 -0.004 0.100 174 pressure-side 0.193 0.033 0.100 96 suction-side 0.247 -0.001 0.100 174 pressure-side 0.205 0.039	85	suction-side	0.228	0.024	0.100		161	pressure-side	0.167	0.043	0.100
abchlumshie 0.232 0.019 0.100 164 pressure-side 0.175 0.041 0.100 88 suction-side 0.236 0.014 0.100 164 pressure-side 0.175 0.041 0.100 90 suction-side 0.236 0.014 0.100 167 pressure-side 0.183 0.039 0.100 91 suction-side 0.242 0.006 0.100 167 pressure-side 0.185 0.038 0.010 92 suction-side 0.244 0.004 0.100 169 pressure-side 0.188 0.037 0.100 94 suction-side 0.247 -0.004 0.100 171 pressure-side 0.190 0.035 0.100 95 suction-side 0.247 -0.003 0.100 173 pressure-side 0.190 0.032 0.100 97 suction-side 0.247 -0.002 0.100 175 pressure-side 0.203 0.031 0.100	86 87	suction-side	0.230	0.021	0.100		162	pressure-side	0.170	0.043	0.100
	88	suction-side	0.232	0.019	0.100		163	pressure-side	0.172	0.042	0.100
$ 90 suction-side \\ 0.248 \\ 0.011 \\ 0.100 \\ $	89	suction-side	0.236	0.014	0.100		165	pressure-side	0.177	0.041	0.100
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	90	suction-side	0.238	0.011	0.100	35	166	pressure-side	0.180	0.040	0.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	suction-side	0.240	0.009	0.100		167	pressure-side	0.183	0.039	0.100
94suction-side 0.245 0.001 0.100 170 pressure-side 0.193 0.036 0.100 95suction-side 0.247 -0.004 0.100 171 pressure-side 0.193 0.035 0.100 96suction-side 0.247 -0.003 0.100 40 172 pressure-side 0.195 0.034 0.100 97suction-side 0.247 -0.003 0.100 174 pressure-side 0.200 0.032 0.031 98suction-side 0.247 -0.003 0.100 175 pressure-side 0.200 0.032 0.010 100suction-side 0.247 -0.003 0.100 176 pressure-side 0.205 0.029 0.100 101pressure-side 0.012 0.014 0.100 177 pressure-side 0.205 0.028 0.100 102pressure-side 0.012 0.014 0.100 178 pressure-side 0.214 0.027 0.100 103pressure-side 0.012 0.015 0.100 180 pressure-side 0.217 0.022 0.100 104pressure-side 0.022 0.016 0.100 183 pressure-side 0.217 0.022 0.100 106pressure-side 0.027 0.018 0.100 184 pressure-side 0.227 0.100 106pressure-side 0.027 0.018 0.100 184 pressure-side <td>92</td> <td>suction-side</td> <td>0.242</td> <td>0.000</td> <td>0.100</td> <td></td> <td>168</td> <td>pressure-side</td> <td>0.185</td> <td>0.038</td> <td>0.100</td>	92	suction-side	0.242	0.000	0.100		168	pressure-side	0.185	0.038	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94	suction-side	0.245	0.001	0.100		170	pressure-side	0.190	0.036	0.100
96suction-side 0.247 -0.004 0.100 172 pressure-side 0.198 0.034 0.100 97suction-side 0.247 -0.001 0.100 173 pressure-side 0.200 0.032 0.100 98suction-side 0.247 -0.002 0.100 174 pressure-side 0.203 0.031 0.100 100suction-side 0.247 -0.002 0.100 176 pressure-side 0.208 0.028 0.100 101pressure-side 0.009 0.015 0.100 177 pressure-side 0.208 0.028 0.100 102pressure-side 0.014 0.100 177 pressure-side 0.212 0.025 0.100 103pressure-side 0.014 0.100 178 pressure-side 0.212 0.025 0.100 104pressure-side 0.017 0.015 0.100 180 pressure-side 0.214 0.024 0.100 105pressure-side 0.022 0.016 0.100 182 pressure-side 0.217 0.022 0.100 106pressure-side 0.027 0.018 0.100 182 pressure-side 0.225 0.017 0.100 108pressure-side 0.225 0.017 0.100 185 pressure-side 0.225 0.015 0.100 110pressure-side 0.035 0.022 0.100 186 pressure-side 0.235 0.00	95	suction-side	0.247	-0.004	0.100		171	pressure-side	0.193	0.035	0.100
98statution-side 0.247 -0.003 0.100 173 pressure-side 0.200 0.003 0.100 99suction-side 0.247 -0.003 0.100 175 pressure-side 0.203 0.031 0.100 100suction-side 0.247 -0.002 0.100 175 pressure-side 0.205 0.029 0.002 101pressure-side 0.009 0.015 0.100 177 pressure-side 0.206 0.028 0.028 0.100 102pressure-side 0.012 0.014 0.100 178 pressure-side 0.210 0.027 0.100 103pressure-side 0.017 0.015 0.100 180 pressure-side 0.212 0.022 0.100 104pressure-side 0.022 0.016 0.100 181 pressure-side 0.217 0.022 0.100 105pressure-side 0.027 0.016 0.100 183 pressure-side 0.221 0.019 0.100 106pressure-side 0.225 0.017 0.100 183 pressure-side 0.225 0.015 0.100 107pressure-side 0.032 0.020 0.100 184 pressure-side 0.225 0.015 0.100 109pressure-side 0.032 0.020 0.100 186 pressure-side 0.227 0.013 0.100 110pressure-side 0.035 0.022 0.100 186 <	96	suction-side	0.247	-0.004	0.100	40	172	pressure-side	0.195	0.034	0.100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	97	suction-side	0.247	-0.003	0.100		173	pressure-side	0.200	0.033	0.100
	99	suction-side	0.247	-0.003	0.100		175	pressure-side	0.203	0.031	0.100
	100	suction-side	0.247	-0.002	0.100		176	pressure-side	0.205	0.029	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101	pressure-side	0.009	0.015	0.100		177	pressure-side	0.208	0.028	0.100
104pressure-side0.0170.0150.100180pressure-side0.2140.0240.100105pressure-side0.0200.0150.100181pressure-side0.2170.0220.100106pressure-side0.0220.0160.100182pressure-side0.2190.0200.100107pressure-side0.0270.0180.100183pressure-side0.2230.0170.100108pressure-side0.0300.0190.10050185pressure-side0.2250.0130.100110pressure-side0.0320.0200.100186pressure-side0.2270.0130.100111pressure-side0.0370.0230.100187pressure-side0.2310.0100.100112pressure-side0.0470.0260.100189pressure-side0.2330.0080.100112pressure-side0.0450.0260.100189pressure-side0.2330.0060.100114pressure-side0.0450.0260.10055191pressure-side0.2370.0040.100115pressure-side0.0550.0290.100193pressure-side0.244-0.0050.100116pressure-side0.0570.0310.100195pressure-side0.244-0.0050.100116pressure-side0.0570.0310.100<	102	pressure-side	0.012	0.014	0.100	45	178	pressure-side	0.210	0.027	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	pressure-side	0.017	0.015	0.100		180	pressure-side	0.214	0.024	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	pressure-side	0.020	0.015	0.100		181	pressure-side	0.217	0.022	0.100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	106	pressure-side	0.022	0.016	0.100		182	pressure-side	0.219	0.020	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	107	pressure-side	0.023	0.017	0.100		185	pressure-side	0.221	0.019	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	109	pressure-side	0.030	0.019	0.100	50	185	pressure-side	0.225	0.015	0.100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	pressure-side	0.032	0.020	0.100		186	pressure-side	0.227	0.013	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111	pressure-side	0.035	0.022	0.100		187	pressure-side	0.229	0.011	0.100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112	pressure-side	0.037	0.023	0.100		188	pressure-side	0.231	0.010	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	pressure-side	0.040	0.025	0.100		190	pressure-side	0.235	0.006	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	115	pressure-side	0.045	0.026	0.100	55	191	pressure-side	0.237	0.004	0.100
117pressure-side 0.050 0.028 0.100 193 pressure-side 0.240 -0.001 0.100 118pressure-side 0.052 0.029 0.100 194 pressure-side 0.242 -0.003 0.100 119pressure-side 0.055 0.030 0.100 195 pressure-side 0.244 -0.005 0.100 120pressure-side 0.057 0.031 0.100 196 pressure-side 0.244 -0.005 0.100 121pressure-side 0.060 0.032 0.100 197 pressure-side 0.245 -0.005 0.100 122pressure-side 0.062 0.033 0.100 198 pressure-side 0.247 -0.004 0.100 123pressure-side 0.065 0.034 0.100 199 pressure-side 0.247 -0.004 0.100 124pressure-side 0.068 0.035 0.100 200 pressure-side 0.247 -0.004 0.100 125pressure-side 0.070 0.036 0.100 1 suction-side 0.018 0.031 0.200 126pressure-side 0.075 0.038 0.100 3 suction-side 0.022 0.036 0.200 127pressure-side 0.075 0.038 0.100 3 suction-side 0.018 0.034 0.200 128pressure-side 0.075 0.038 0.100 5 suction-sid	116	pressure-side	0.047	0.027	0.100	00	192	pressure-side	0.238	0.001	0.100
110pressure-side 0.052 0.052 0.052 0.100 194 pressure-side 0.142 0.005 0.100 120pressure-side 0.055 0.030 0.100 195pressure-side 0.244 -0.005 0.100 121pressure-side 0.060 0.032 0.100 196pressure-side 0.244 -0.005 0.100 121pressure-side 0.062 0.033 0.100 197pressure-side 0.245 -0.005 0.100 122pressure-side 0.062 0.033 0.100 198pressure-side 0.246 -0.005 0.100 123pressure-side 0.068 0.035 0.100 199pressure-side 0.247 -0.004 0.100 124pressure-side 0.068 0.035 0.100 200pressure-side 0.247 -0.004 0.100 125pressure-side 0.070 0.036 0.100 1suction-side 0.018 0.031 0.200 126pressure-side 0.075 0.038 0.100 3suction-side 0.018 0.034 0.200 127pressure-side 0.075 0.038 0.100 3suction-side 0.022 0.036 0.200 128pressure-side 0.078 0.038 0.100 654suction-side 0.024 0.041 0.200 129pressure-side 0.081 0.039 0.100 5suction-sid	117	pressure-side	0.050	0.028	0.100		193	pressure-side	0.240	-0.001	0.100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	119	pressure-side	0.055	0.030	0.100		195	pressure-side	0.244	-0.005	0.100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	pressure-side	0.057	0.031	0.100		196	pressure-side	0.244	-0.005	0.100
122 pressure-side 0.062 0.033 0.100 65 198 pressure-side 0.246 -0.005 0.100 123 pressure-side 0.065 0.034 0.100 199 pressure-side 0.247 -0.004 0.100 124 pressure-side 0.068 0.035 0.100 199 pressure-side 0.247 -0.004 0.100 125 pressure-side 0.070 0.036 0.100 1 suction-side 0.018 0.031 0.200 126 pressure-side 0.073 0.037 0.100 2 suction-side 0.018 0.034 0.200 127 pressure-side 0.075 0.038 0.100 3 suction-side 0.020 0.036 0.200 128 pressure-side 0.081 0.039 0.100 5 suction-side 0.024 0.041 0.200 129 pressure-side 0.081 0.039 0.100 5 suction-side 0.024 0.041 0.200	121	pressure-side	0.060	0.032	0.100	60	197	pressure-side	0.245	-0.005	0.100
125pressure-side0.0050.0070.100125pressure-side0.247 -0.004 0.100125pressure-side0.0700.0350.1001suction-side0.0180.0310.200125pressure-side0.0730.0370.1001suction-side0.0180.0310.200126pressure-side0.0730.0370.1002suction-side0.0180.0340.200127pressure-side0.0750.0380.1003suction-side0.0200.0360.200128pressure-side0.0780.0380.100654suction-side0.0220.0390.200129pressure-side0.0810.0390.1005suction-side0.0240.0410.200	122	pressure-side	0.062	0.033	0.100		198 199	pressure-side	0.246	-0.005	0.100
125pressure-side0.0700.0360.1001suction-side0.0180.0310.200126pressure-side0.0730.0370.1002suction-side0.0180.0340.200127pressure-side0.0750.0380.1003suction-side0.0200.0360.200128pressure-side0.0780.0380.100654suction-side0.0220.0390.200129pressure-side0.0810.0390.1005suction-side0.0240.0410.200	123	pressure-side	0.068	0.035	0.100		200	pressure-side	0.247	-0.004	0.100
126 pressure-side 0.073 0.037 0.100 2 suction-side 0.018 0.034 0.200 127 pressure-side 0.075 0.038 0.100 3 suction-side 0.020 0.036 0.200 128 pressure-side 0.078 0.038 0.100 65 4 suction-side 0.022 0.039 0.200 129 pressure-side 0.081 0.039 0.100 5 suction-side 0.024 0.041 0.200	125	pressure-side	0.070	0.036	0.100		1	suction-side	0.018	0.031	0.200
127 pressure-side 0.075 0.056 0.100 5 suction-side 0.020 0.036 0.200 128 pressure-side 0.078 0.038 0.100 65 4 suction-side 0.022 0.039 0.200 129 pressure-side 0.081 0.039 0.100 5 suction-side 0.024 0.041 0.200	126	pressure-side	0.073	0.037	0.100		2	suction-side	0.018	0.034	0.200
129 pressure-side 0.081 0.039 0.100 5 suction-side 0.022 0.039 0.200	127	pressure-side	0.075	0.038	0.100	65	3 4	suction-side	0.020	0.030	0.200
	129	pressure-side	0.081	0.039	0.100		5	suction-side	0.024	0.041	0.200

Non-Dimensionalized (X Y Z/Span)						Non-Dimensionalized (X Y Z/Span)					
Ν	Location	х	Y	Z	5	Ν	Location	х	Y	Z	
6	suction-side	0.026	0.043	0.200		82	suction-side	0.218	0.023	0.200	
7	suction-side	0.028	0.045	0.200		83	suction-side	0.220	0.021	0.200	
8	suction-side	0.030	0.047	0.200		84 85	suction-side	0.222	0.019	0.200	
10	suction-side	0.035	0.050	0.200		86	suction-side	0.224	0.010	0.200	
11	suction-side	0.037	0.052	0.200	10	87	suction-side	0.227	0.012	0.200	
12	suction-side	0.039	0.054	0.200		88	suction-side	0.229	0.009	0.200	
13	suction-side	0.042	0.056	0.200		89	suction-side	0.231	0.007	0.200	
14	suction-side	0.044	0.057	0.200		90	suction-side	0.232	0.005	0.200	
15	suction-side	0.049	0.060	0.200		92	suction-side	0.234	0.002	0.200	
17	suction-side	0.052	0.062	0.200	15	93	suction-side	0.238	-0.002	0.200	
18	suction-side	0.054	0.063	0.200	10	94	suction-side	0.239	-0.005	0.200	
19	suction-side	0.057	0.065	0.200		95	suction-side	0.240	-0.010	0.200	
20	suction-side	0.062	0.068	0.200		90 97	suction-side	0.241	-0.009	0.200	
22	suction-side	0.065	0.069	0.200		98	suction-side	0.241	-0.007	0.200	
23	suction-side	0.067	0.070	0.200	20	99	suction-side	0.241	-0.008	0.200	
24	suction-side	0.070	0.071	0.200	20	100	suction-side	0.241	-0.008	0.200	
25 26	suction-side	0.073	0.072	0.200		101	pressure-side	0.018	0.031	0.200	
20	suction-side	0.078	0.073	0.200		102	pressure-side	0.020	0.030	0.200	
28	suction-side	0.081	0.075	0.200		104	pressure-side	0.025	0.029	0.200	
29	suction-side	0.084	0.076	0.200		105	pressure-side	0.028	0.030	0.200	
30	suction-side	0.087	0.077	0.200	25	106	pressure-side	0.030	0.031	0.200	
31	suction-side	0.089	0.078	0.200		107	pressure-side	0.033	0.031	0.200	
33	suction-side	0.092	0.079	0.200		100	pressure-side	0.038	0.032	0.200	
34	suction-side	0.098	0.080	0.200		110	pressure-side	0.040	0.034	0.200	
35	suction-side	0.101	0.080	0.200		111	pressure-side	0.042	0.034	0.200	
36	suction-side	0.104	0.081	0.200	30	112	pressure-side	0.045	0.035	0.200	
38	suction-side	0.107	0.081	0.200		113	pressure-side	0.047	0.036	0.200	
39	suction-side	0.113	0.081	0.200		115	pressure-side	0.052	0.038	0.200	
40	suction-side	0.116	0.082	0.200		116	pressure-side	0.055	0.039	0.200	
41	suction-side	0.119	0.082	0.200		117	pressure-side	0.057	0.039	0.200	
42	suction-side	0.121	0.082	0.200	35	118	pressure-side	0.060	0.040	0.200	
44	suction-side	0.124	0.082	0.200		120	pressure-side	0.065	0.041	0.200	
45	suction-side	0.130	0.081	0.200		121	pressure-side	0.067	0.042	0.200	
46	suction-side	0.133	0.081	0.200		122	pressure-side	0.070	0.043	0.200	
47	suction-side	0.136	0.080	0.200		123	pressure-side	0.072	0.044	0.200	
40	suction-side	0.139	0.080	0.200	40	124	pressure-side	0.073	0.044	0.200	
50	suction-side	0.145	0.079	0.200		126	pressure-side	0.080	0.045	0.200	
51	suction-side	0.148	0.078	0.200		127	pressure-side	0.082	0.046	0.200	
52	suction-side	0.150	0.077	0.200		128	pressure-side	0.085	0.046	0.200	
53 54	suction-side	0.155	0.076	0.200		129	pressure-side	0.087	0.047	0.200	
55	suction-side	0.159	0.074	0.200	45	130	pressure-side	0.092	0.047	0.200	
56	suction-side	0.162	0.073	0.200		132	pressure-side	0.095	0.048	0.200	
57	suction-side	0.164	0.072	0.200		133	pressure-side	0.098	0.048	0.200	
58	suction-side	0.167	0.070	0.200		134	pressure-side	0.100	0.048	0.200	
60	suction-side	0.172	0.069	0.200		135	pressure-side	0.105	0.049	0.200	
61	suction-side	0.174	0.066	0.200	50	137	pressure-side	0.108	0.049	0.200	
62	suction-side	0.177	0.065	0.200		138	pressure-side	0.110	0.049	0.200	
63	suction-side	0.179	0.063	0.200		139	pressure-side	0.113	0.049	0.200	
64 65	suction-side	0.182	0.059	0.200		140	pressure-side	0.118	0.049	0.200	
66	suction-side	0.186	0.057	0.200		142	pressure-side	0.121	0.049	0.200	
67	suction-side	0.189	0.056	0.200	55	143	pressure-side	0.123	0.049	0.200	
68	suction-side	0.191	0.054	0.200		144	pressure-side	0.126	0.049	0.200	
69 70	suction-side	0.193	0.052	0.200		145 146	pressure-side	0.129	0.049	0.200	
71	suction-side	0.197	0.048	0.200		147	pressure-side	0.134	0.048	0.200	
72	suction-side	0.199	0.046	0.200		148	pressure-side	0.136	0.048	0.200	
73	suction-side	0.201	0.043	0.200	60	149	pressure-side	0.139	0.048	0.200	
74	suction-side	0.203	0.041	0.200	00	150	pressure-side	0.141	0.047	0.200	
76	suction-side	0.205	0.039	0.200		151	pressure-side	0.144	0.047	0.200	
77	suction-side	0.209	0.035	0.200		153	pressure-side	0.149	0.046	0.200	
78	suction-side	0.211	0.032	0.200		154	pressure-side	0.152	0.046	0.200	
79	suction-side	0.213	0.030	0.200	65	155	pressure-side	0.154	0.045	0.200	
80	suction-side	0.215	0.028	0.200	03	156	pressure-side	0.157	0.045	0.200	
01	succion-side	0.210	0.020	0.200		101	Pressure-side	0.100	0.044	0.200	

TABLE I-continued						TABLE I-continued					
	Non-Dime	ensionalized (X	Y Z/Span)			Non-Dimensionalized (X Y Z/Span)					
N	Location	X	Y	Z		Ν	Location	X	Y	Z	
158	pressure-side	0.162	0.043	0.200	_	34	suction-side	0.104	0.084	0.300	
159	pressure-side	0.164	0.043	0.200		35	suction-side	0.107	0.084	0.300	
160	pressure-side	0.166	0.042	0.200		36	suction-side	0.110	0.084	0.300	
161	pressure-side	0.169	0.041	0.200		37	suction-side	0.112	0.084	0.300	
162	pressure-side	0.171	0.040	0.200		38	suction-side	0.115	0.084	0.300	
163	pressure-side	0.174	0.039	0.200	10	39	suction-side	0.118	0.083	0.300	
164	pressure-side	0.176	0.039	0.200		40	suction-side	0.120	0.083	0.300	
165	pressure-side	0.179	0.038	0.200		41	suction-side	0.123	0.083	0.300	
160	pressure-side	0.181	0.037	0.200		42	suction-side	0.126	0.082	0.300	
168	pressure-side	0.185	0.036	0.200		45 44	suction-side	0.128	0.081	0.300	
169	pressure-side	0.188	0.033	0.200		45	suction-side	0.134	0.081	0.300	
170	pressure-side	0.190	0.032	0.200	15	46	suction-side	0.136	0.079	0.300	
171	pressure-side	0.193	0.031	0.200		47	suction-side	0.139	0.078	0.300	
172	pressure-side	0.195	0.030	0.200		48	suction-side	0.141	0.077	0.300	
173	pressure-side	0.197	0.028	0.200		49	suction-side	0.144	0.076	0.300	
174	pressure-side	0.199	0.027	0.200		50	suction-side	0.146	0.075	0.300	
175	pressure-side	0.201	0.026	0.200	20	51	suction-side	0.149	0.074	0.300	
176	pressure-side	0.203	0.024	0.200	20	52	suction-side	0.151	0.073	0.300	
170	pressure-side	0.206	0.023	0.200		55	suction-side	0.134	0.072	0.300	
170	pressure-side	0.208	0.021	0.200		55	suction-side	0.150	0.070	0.300	
180	pressure-side	0.210	0.020	0.200		56	suction-side	0.158	0.007	0.300	
181	pressure-side	0.213	0.016	0.200		57	suction-side	0.163	0.066	0.300	
182	pressure-side	0.215	0.015	0.200	25	58	suction-side	0.165	0.064	0.300	
183	pressure-side	0.217	0.013	0.200		59	suction-side	0.167	0.063	0.300	
184	pressure-side	0.219	0.011	0.200		60	suction-side	0.169	0.061	0.300	
185	pressure-side	0.221	0.009	0.200		61	suction-side	0.171	0.059	0.300	
186	pressure-side	0.223	0.007	0.200		62	suction-side	0.173	0.057	0.300	
187	pressure-side	0.224	0.005	0.200		63	suction-side	0.175	0.055	0.300	
188	pressure-side	0.226	0.004	0.200	30	64	suction-side	0.177	0.054	0.300	
189	pressure-side	0.228	0.002	0.200		03 66	suction-side	0.179	0.052	0.300	
190	pressure-side	0.229	-0.002	0.200		67	suction-side	0.181	0.030	0.300	
192	pressure-side	0.233	-0.002	0.200		68	suction-side	0.185	0.046	0.300	
193	pressure-side	0.234	-0.006	0.200		69	suction-side	0.187	0.044	0.300	
194	pressure-side	0.236	-0.008	0.200	35	70	suction-side	0.189	0.042	0.300	
195	pressure-side	0.238	-0.010	0.200	33	71	suction-side	0.191	0.040	0.300	
196	pressure-side	0.238	-0.010	0.200		72	suction-side	0.192	0.038	0.300	
197	pressure-side	0.239	-0.010	0.200		73	suction-side	0.194	0.036	0.300	
198	pressure-side	0.240	-0.010	0.200		74	suction-side	0.196	0.034	0.300	
199	pressure-side	0.240	-0.010	0.200		75	suction-side	0.198	0.032	0.300	
200	guetion-side	0.240	-0.010	0.200	40	70	suction-side	0.199	0.029	0.300	
2	suction-side	0.027	0.050	0.300		78	suction-side	0.201	0.027	0.300	
3	suction-side	0.028	0.053	0.300		79	suction-side	0.205	0.023	0.300	
4	suction-side	0.030	0.055	0.300		80	suction-side	0.206	0.021	0.300	
5	suction-side	0.032	0.056	0.300		81	suction-side	0.208	0.019	0.300	
6	suction-side	0.034	0.058	0.300		82	suction-side	0.210	0.017	0.300	
7	suction-side	0.036	0.060	0.300	45	83	suction-side	0.211	0.015	0.300	
8	suction-side	0.038	0.062	0.300		84	suction-side	0.213	0.012	0.300	
10	suction-side	0.040	0.065	0.300		85 86	suction-side	0.215	0.010	0.300	
10	suction-side	0.045	0.005	0.300		80	suction-side	0.218	0.008	0.300	
12	suction-side	0.047	0.068	0.300		88	suction-side	0.220	0.004	0.300	
13	suction-side	0.050	0.069	0.300	50	89	suction-side	0.221	0.001	0.300	
14	suction-side	0.052	0.070	0.300		90	suction-side	0.223	-0.001	0.300	
15	suction-side	0.054	0.072	0.300		91	suction-side	0.225	-0.003	0.300	
16	suction-side	0.057	0.073	0.300		92	suction-side	0.226	-0.005	0.300	
17	suction-side	0.059	0.074	0.300		93	suction-side	0.228	-0.007	0.300	
18	suction-side	0.062	0.075	0.300		94	suction-side	0.229	-0.010	0.300	
20	suction-side	0.064	0.076	0.300	55	95	suction-side	0.230	-0.014	0.300	
20	suction-side	0.069	0.078	0.300		97	suction-side	0.231	-0.013	0.300	
22	suction-side	0.072	0.079	0.300		98	suction-side	0.231	-0.012	0.300	
23	suction-side	0.075	0.079	0.300		99	suction-side	0.231	-0.013	0.300	
24	suction-side	0.077	0.080	0.300		100	suction-side	0.231	-0.012	0.300	
25	suction-side	0.080	0.081	0.300	60	101	pressure-side	0.026	0.048	0.300	
26	suction-side	0.083	0.081	0.300	00	102	pressure-side	0.028	0.046	0.300	
27	suction-side	0.085	0.082	0.300		103	pressure-side	0.031	0.046	0.300	
28	suction-side	0.088	0.082	0.300		104	pressure-side	0.033	0.046	0.300	
29	suction-side	0.091	0.083	0.300		105	pressure-side	0.032	0.040	0.300	
31	suction-side	0.096	0.083	0.300		107	pressure-side	0.040	0.047	0.300	
32	suction-side	0.099	0.084	0.300	65	108	pressure-side	0.042	0.048	0.300	
33	suction-side	0.101	0.084	0.300		109	pressure-side	0.045	0.048	0.300	

Noc-Dimensionalized XY Z8boni Noc-Dimensionalized XY Z8boni N Location X Y Location X Y Location 10 pressure side 0.649 0.049 0.030 187 pressure side 0.215 0.000 0.300 111 pressure side 0.221 0.000 0.300 188 pressure side 0.218 0.000 0.300 115 pressure side 0.221 0.000 0.300 109 pressure side 0.223 -0.001 0.300 116 pressure side 0.224 0.031 0.300 199 pressure side 0.223 -0.010 0.300 117 pressure side 0.234 0.035 0.300 199 pressure side 0.239 -0.015 0.300 129 pressure side 0.239 0.035 0.300 199 pressure side 0.239 -0.015 0.300 129 pressure side 0.239 0.031 0.300 0.300 15 <th></th> <th colspan="5">TABLE I-continued</th> <th colspan="6">TABLE I-continued</th>		TABLE I-continued					TABLE I-continued					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Non-Dime	ensionalized (X Y	Z/Span)			Non-Dimensionalized (X Y Z/Span)					
10 pressu-side 0.047 0.048 0.301 187 pressu-side 0.214 0.001 0.300 112 pressu-side 0.052 0.049 0.300 188 pressu-side 0.11 -0.042 0.300 113 pressu-side 0.037 0.899 0.301 188 pressu-side 0.012 0.302 114 pressu-side 0.039 0.999 0.301 191 pressu-side 0.022 -0.042 0.300 116 pressu-side 0.046 0.611 0.300 192 pressu-side 0.225 -0.011 0.300 119 pressu-side 0.075 0.622 0.300 197 pressu-side 0.232 -0.013 0.300 121 pressu-side 0.075 0.622 0.300 197 pressu-side 0.232 -0.014 0.300 121 pressu-side 0.075 0.622 0.001 130 198 pressu-side 0.014 0.300 130	N	Location	х	Y	Z	_ 5 _	Ν	Location	х	Y	Z	
111 pressure-side 0.0469 0.0469 0.0300 187 pressure-side 0.215 0.0400 0.300 131 pressure-side 0.047 0.057 0.300 188 pressure-side 0.237 0.062 0.300 135 pressure-side 0.046 0.057 0.050 188 pressure-side 0.223 0.007 0.030 136 pressure-side 0.046 0.051 0.030 193 pressure-side 0.223 0.017 0.030 136 pressure-side 0.223 0.015 0.030 193 pressure-side 0.228 0.015 0.030 1319 pressure-side 0.027 0.052 0.300 193 pressure-side 0.228 0.015 0.300 121 pressure-side 0.047 0.053 0.300 10 pressure-side 0.032 0.064 0.032 0.016 0.300 10 10 0.015 0.030 10 naction-side 0.033	110	pressure-side	0.047	0.048	0.300		186	pressure-side	0.214	0.001	0.300	
112 pressum-side 0.049 0.030 188 pressum-side 0.217 -0.018 0.030 114 pressum-side 0.059 0.059 0.049 10 191 pressum-side 0.022 -0.018 0.030 116 pressum-side 0.046 0.051 0.030 192 pressum-side 0.022 -0.019 0.030 117 pressum-side 0.046 0.051 0.030 192 pressum-side 0.022 -0.0118 0.030 118 pressum-side 0.046 0.051 0.030 194 pressum-side 0.228 -0.0118 0.030 121 pressum-side 0.073 0.052 0.030 194 pressum-side 0.238 -0.015 0.030 122 pressum-side 0.075 0.052 0.030 194 pressum-side 0.032 -0.015 0.030 124 pressum-side 0.037 0.042 0.047 0.046 0.041 0.049 0.041 0.049 0.041 0.049 0.041 0.044 0.044 0.047	111	pressure-side	0.049	0.049	0.300		187	pressure-side	0.215	0.000	0.300	
111 pressure-ade 0.034 0.039 0.039 180 pressure-ade 0.218 0.057 0.030 115 pressure-ade 0.061 0.031 0.030 10 191 pressure-ade 0.046 0.031 0.030 10 191 pressure-ade 0.046 0.031 0.030 194 pressure-ade 0.022 0.041 0.030 115 pressure-ade 0.036 0.031 0.030 194 pressure-ade 0.022 0.013 0.030 115 pressure-ade 0.037 0.032 0.030 197 pressure-ade 0.033 0.030 121 pressure-ade 0.037 0.032 0.030 199 pressure-ade 0.033 0.030 199 pressure-ade 0.033 0.030 199 pressure-ade 0.034 0.036 0.037 0.030 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 103	112	pressure-side	0.052	0.049	0.300		188	pressure-side	0.217	-0.002	0.300	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	113	pressure-side	0.054	0.050	0.300		189	pressure-side	0.218	-0.004	0.300	
116 possare-side 0.061 0.051 0.051 0.050 0.050 0.050 117 possare-side 0.064 0.051 0.300 193 possare-side 0.023 0.013 0.300 120 possare-side 0.048 0.052 0.301 195 possare-side 0.023 0.013 0.300 121 possare-side 0.073 0.052 0.301 197 possare-side 0.230 0.013 0.300 122 possare-side 0.077 0.052 0.300 197 possare-side 0.230 0.014 0.300 122 possare-side 0.038 0.033 0.300 1 sattion-side 0.034 0.044 0.049 0.035 127 possare-side 0.047 0.033 0.300 5 sattion-side 0.034 0.044 0.071 0.060 128 possare-side 0.035 0.300 5 sattion-side 0.034 0.036 0.301	114	pressure-side	0.037	0.050	0.300	10	190	pressure-side	0.220	-0.008	0.300	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	116	pressure-side	0.061	0.051	0.300	10	192	pressure-side	0.223	-0.009	0.300	
118 pressure-side 0.068 0.051 0.300 139 pressure-side 0.238 0.013 0.300 121 pressure-side 0.071 0.032 0.300 139 pressure-side 0.238 0.013 0.300 121 pressure-side 0.078 0.032 0.300 159 pressure-side 0.230 0.014 0.300 124 pressure-side 0.078 0.052 0.300 1 naction-side 0.032 0.014 0.300 125 pressure-side 0.084 0.053 0.300 2 mation-side 0.032 0.040 1 naction-side 0.038 0.077 0.400 125 pressure-side 0.057 0.033 0.300 7 saction-side 0.042 0.077 0.400 129 pressure-side 0.057 0.030 2 0 saction-side 0.042 0.077 0.400 130 pressure-side 0.042 0.077 0.400	117	pressure-side	0.064	0.051	0.300		193	pressure-side	0.225	-0.011	0.300	
119 pressure-ida 0.028 0.032 0.030 195 pressure-ida 0.238 -0.013 0.300 121 pressure-ida 0.075 0.032 0.300 15 195 pressure-ida 0.230 -0.013 0.300 121 pressure-ida 0.075 0.075 0.030 105 195 pressure-ida 0.230 -0.014 0.300 124 pressure-ida 0.033 0.030 10 saction-ida 0.032 0.044 0.300 125 pressure-ida 0.035 0.030 20 4 saction-ida 0.032 0.047 0.400 125 pressure-ida 0.047 0.053 0.300 20 4 saction-ida 0.032 0.400 0.074 0.400 125 pressure-ida 0.049 0.053 0.300 4 saction-ida 0.044 0.077 0.400 125 pressure-ida 0.040 0.077 0.403 0.077 0.400	118	pressure-side	0.066	0.051	0.300		194	pressure-side	0.226	-0.013	0.300	
121 pressure-side 0.073 0.052 0.500 15 19 pressure-side 0.230 -0.014 0.300 122 pressure-side 0.078 0.052 0.300 198 pressure-side 0.034 0.300 124 pressure-side 0.083 0.030 10 sure-side 0.032 0.004 0.403 125 pressure-side 0.033 0.300 20 3 sure-side 0.044 0.420 129 pressure-side 0.030 0.033 0.300 20 4 surcino-side 0.042 0.074 0.460 129 pressure-side 0.049 0.033 0.300 7 surcino-side 0.042 0.074 0.460 131 pressure-side 0.049 0.073 0.300 7 surcino-side 0.042 0.074 0.460 132 pressure-side 0.041 0.032 0.300 12 surcino-side 0.041 0.034 0.040	119	pressure-side	0.068	0.052	0.300		195	pressure-side	0.228	-0.015	0.300	
122 pressure-side 0.275 0.075 0.052 0.300 198 pressure-side 0.230 0.015 0.300 124 pressure-side 0.083 0.303 0.300 10 pressure-side 0.230 0.04 0.306 125 pressure-side 0.083 0.303 0.300 1 staction-side 0.032 0.0071 0.460 128 pressure-side 0.092 0.053 0.300 2 staction-side 0.036 0.0071 0.460 129 pressure-side 0.092 0.053 0.300 6 staction-side 0.040 0.077 0.460 130 pressure-side 0.097 0.053 0.300 7 staction-side 0.044 0.077 0.460 133 pressure-side 0.109 0.052 0.300 25 staction-side 0.044 0.077 0.460 133 pressure-side 0.114 0.052 0.300 12 staction-side 0.046<	120	pressure-side	0.073	0.052	0.300		190	pressure-side	0.228	-0.015	0.300	
12.3 pressure-side 0.078 0.078 0.300 200 pressure-side 0.300 -0.014 0.300 12.5 pressure-side 0.048 0.053 0.300 20 pressure-side 0.040 0.300 0.400 12.5 pressure-side 0.047 0.043 0.300 2 3 suction-side 0.013 0.040 0.400 12.5 pressure-side 0.047 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.400	122	pressure-side	0.075	0.052	0.300	15	198	pressure-side	0.230	-0.015	0.300	
124 pressure-side 0.080 0.033 0.300 1 section-side 0.032 0.044 0.401 125 pressure-side 0.083 0.300 2 section-side 0.032 0.0407 0.400 126 pressure-side 0.087 0.433 0.300 2 section-side 0.034 0.067 0.400 128 pressure-side 0.092 0.0133 0.300 5 section-side 0.040 0.077 0.400 130 pressure-side 0.097 0.0633 0.300 6 section-side 0.044 0.077 0.400 131 pressure-side 0.102 0.052 0.300 2 section-side 0.049 0.077 0.400 135 pressure-side 0.102 0.030 12 section-side 0.044 0.400 136 pressure-side 0.116 0.030 12 section-side 0.044 0.400 137 pressure-side 0.116	123	pressure-side	0.078	0.052	0.300		199	pressure-side	0.230	-0.014	0.300	
L25 pressure-side 0.083 0.033 0.300 1 sucton-side 0.032 0.084 0.400 125 pressure-side 0.095 0.0153 0.300 20 4 sucton-side 0.032 0.0071 0.400 129 pressure-side 0.095 0.0153 0.300 5 sucton-side 0.042 0.076 0.400 130 pressure-side 0.097 0.653 0.300 7 sucton-side 0.042 0.076 0.400 131 pressure-side 0.097 0.653 0.300 7 sucton-side 0.042 0.077 0.400 134 pressure-side 0.112 0.350 25 0.300 12 sucton-side 0.042 0.077 0.400 135 pressure-side 0.114 0.052 0.300 13 sucton-side 0.063 0.040 0.077 0.400 0.300 13 sucton-side 0.063 0.0400 0.400 0.400 0.400	124	pressure-side	0.080	0.053	0.300		200	pressure-side	0.230	-0.014	0.300	
127 presume-side 0.097 0.053 0.300 20 4. suction-side 0.014 0.040 129 presume-side 0.090 0.053 0.300 5 suction-side 0.048 0.071 0.400 130 presume-side 0.095 0.053 0.300 7 suction-side 0.044 0.074 0.400 131 presume-side 0.097 0.053 0.300 7 suction-side 0.044 0.077 0.400 133 presume-side 0.104 0.052 0.300 9 suction-side 0.044 0.078 0.400 133 presume-side 0.114 0.052 0.300 11 suction-side 0.043 0.083 0.440 134 presume-side 0.114 0.051 0.300 14 suction-side 0.043 0.084 0.400 134 presume-side 0.116 0.051 0.300 17 suction-side 0.061 0.086 0.400 <td>125</td> <td>pressure-side</td> <td>0.083</td> <td>0.053</td> <td>0.300</td> <td></td> <td>1</td> <td>suction-side</td> <td>0.032</td> <td>0.064</td> <td>0.400</td>	125	pressure-side	0.083	0.053	0.300		1	suction-side	0.032	0.064	0.400	
128 pressure-side 0.092 0.033 0.300 5 station-side 0.036 0.071 0.460 130 pressure-side 0.092 0.035 0.300 6 suction-side 0.040 0.074 0.440 131 pressure-side 0.097 0.045 0.300 7 suction-side 0.042 0.077 0.440 131 pressure-side 0.040 0.078 0.440 0.077 0.460 132 pressure-side 0.101 0.052 0.300 25 10 suction-side 0.047 0.078 0.440 134 pressure-side 0.107 0.352 0.300 12 suction-side 0.048 0.460 135 pressure-side 0.116 0.051 0.300 13 suction-side 0.063 0.084 0.460 134 pressure-side 0.118 0.051 0.300 15 suction-side 0.063 0.086 0.460 144 pressure-	120	pressure-side	0.087	0.053	0.300		3	suction-side	0.032	0.069	0.400	
129 pressure-side 0.095 0.053 0.300 5 suction-side 0.043 0.074 0.400 131 pressure-side 0.097 0.053 0.300 7 suction-side 0.042 0.076 0.400 131 pressure-side 0.049 0.052 0.300 9 suction-side 0.044 0.077 0.400 133 pressure-side 0.104 0.052 0.300 11 suction-side 0.049 0.078 0.400 135 pressure-side 0.107 0.052 0.300 13 suction-side 0.034 0.082 0.400 137 pressure-side 0.111 0.051 0.300 13 suction-side 0.064 0.400 139 pressure-side 0.121 0.050 0.300 17 suction-side 0.064 0.400 144 pressure-side 0.123 0.049 0.300 18 suction-side 0.071 0.068 0.400	128	pressure-side	0.090	0.053	0.300	20	4	suction-side	0.036	0.071	0.400	
130 pressure-side 0.097 0.053 0.300 6 suction-side 0.042 0.076 0.400 131 pressure-side 0.102 0.053 0.300 8 suction-side 0.042 0.078 0.400 133 pressure-side 0.102 0.052 0.300 25 10 suction-side 0.042 0.078 0.400 134 pressure-side 0.104 0.052 0.300 13 suction-side 0.044 0.079 0.400 135 pressure-side 0.114 0.051 0.300 13 suction-side 0.064 0.400 139 pressure-side 0.116 0.051 0.300 15 suction-side 0.063 0.086 0.400 140 pressure-side 0.112 0.050 0.300 17 suction-side 0.066 0.866 0.400 141 pressure-side 0.122 0.049 0.300 21 suction-side 0.0776 0.488 <	129	pressure-side	0.092	0.053	0.300		5	suction-side	0.038	0.073	0.400	
	130	pressure-side	0.095	0.053	0.300		6	suction-side	0.040	0.074	0.400	
	131	pressure-side	0.097	0.053	0.300		7	suction-side	0.042	0.076	0.400	
	132	pressure-side	0.102	0.053	0.300		9	suction-side	0.047	0.077	0.400	
135 pressure-side 0.017 0.052 0.300 11 suction-side 0.041 0.081 0.400 137 pressure-side 0.0114 0.052 0.300 13 suction-side 0.056 0.083 0.400 138 pressure-side 0.014 0.051 0.300 15 suction-side 0.061 0.084 0.400 140 pressure-side 0.113 0.050 0.300 17 suction-side 0.066 0.086 0.400 141 pressure-side 0.123 0.050 0.300 19 suction-side 0.066 0.086 0.400 144 pressure-side 0.123 0.049 0.300 21 suction-side 0.071 0.087 0.400 144 pressure-side 0.132 0.044 0.300 22 suction-side 0.076 0.088 0.400 147 pressure-side 0.132 0.044 0.300 25 suction-side 0.088 0.400	134	pressure-side	0.104	0.052	0.300	25	10	suction-side	0.049	0.079	0.400	
156 pressure-side 0.109 0.052 0.300 12 suction-side 0.054 0.082 0.400 137 pressure-side 0.114 0.051 0.300 14 suction-side 0.058 0.0484 0.440 139 pressure-side 0.116 0.051 0.300 15 suction-side 0.063 0.088 0.440 141 pressure-side 0.121 0.050 0.300 17 suction-side 0.068 0.460 142 pressure-side 0.122 0.490 0.300 19 suction-side 0.073 0.088 0.400 144 pressure-side 0.130 0.48 0.300 21 suction-side 0.073 0.088 0.400 144 pressure-side 0.132 0.448 0.300 22 suction-side 0.088 0.400 144 pressure-side 0.137 0.47 0.300 24 suction-side 0.089 0.400 150	135	pressure-side	0.107	0.052	0.300		11	suction-side	0.051	0.081	0.400	
138 pressure-side 0.114 0.052 0.300 1.3 sucton-side 0.055 0.0083 0.400 139 pressure-side 0.116 0.051 0.300 15 sucton-side 0.051 0.004 0.400 140 pressure-side 0.112 0.050 0.300 15 sucton-side 0.066 0.086 0.400 141 pressure-side 0.123 0.050 0.300 18 sucton-side 0.066 0.086 0.400 143 pressure-side 0.128 0.049 0.300 19 sucton-side 0.076 0.087 0.400 144 pressure-side 0.132 0.048 0.300 21 sucton-side 0.076 0.088 0.400 147 pressure-side 0.137 0.047 0.300 25 sucton-side 0.084 0.089 0.400 150 pressure-side 0.144 0.044 0.300 27 sucton-side 0.089 0.400	136	pressure-side	0.109	0.052	0.300		12	suction-side	0.054	0.082	0.400	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	137	pressure-side	0.111	0.052	0.300		13	suction-side	0.056	0.083	0.400	
	138	pressure-side	0.114	0.051	0.300		15	suction-side	0.058	0.084	0.400	
	140	pressure-side	0.118	0.051	0.300	30	16	suction-side	0.063	0.085	0.400	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	141	pressure-side	0.121	0.050	0.300		17	suction-side	0.066	0.086	0.400	
144 pressure-side 0.125 0.049 0.300 19 subtion-side 0.071 0.087 0.400 144 pressure-side 0.130 0.048 0.300 21 subtion-side 0.073 0.087 0.400 146 pressure-side 0.135 0.047 0.300 23 subtion-side 0.088 0.400 147 pressure-side 0.135 0.047 0.300 24 subtion-side 0.084 0.088 0.400 149 pressure-side 0.132 0.0446 0.300 25 subtion-side 0.086 0.089 0.400 151 pressure-side 0.144 0.0445 0.300 27 subtion-side 0.094 0.089 0.400 152 pressure-side 0.151 0.041 0.300 30 subtion-side 0.097 0.089 0.400 154 pressure-side 0.155 0.041 0.300 31 subtion-side 0.090 0.88 0.400 155 pressure-side 0.157 0.0401 0.300 32	142	pressure-side	0.123	0.050	0.300		18	suction-side	0.068	0.086	0.400	
	143	pressure-side	0.123	0.049	0.300		20	suction-side	0.071	0.087	0.400	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	145	pressure-side	0.130	0.048	0.300		20	suction-side	0.076	0.088	0.400	
	146	pressure-side	0.132	0.048	0.300	35	22	suction-side	0.078	0.088	0.400	
	147	pressure-side	0.135	0.047	0.300	55	23	suction-side	0.081	0.088	0.400	
	148	pressure-side	0.137	0.047	0.300		24	suction-side	0.084	0.089	0.400	
	149	pressure-side	0.142	0.046	0.300		25	suction-side	0.080	0.089	0.400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	151	pressure-side	0.144	0.045	0.300		27	suction-side	0.091	0.089	0.400	
153 pressure-side 0.149 0.043 0.300 15 29 suction-side 0.099 0.089 0.400 154 pressure-side 0.153 0.042 0.300 31 suction-side 0.102 0.088 0.400 155 pressure-side 0.157 0.040 0.300 32 suction-side 0.104 0.088 0.400 157 pressure-side 0.162 0.039 0.300 34 suction-side 0.107 0.088 0.400 159 pressure-side 0.164 0.037 0.300 35 suction-side 0.112 0.087 0.400 161 pressure-side 0.164 0.037 0.300 36 suction-side 0.117 0.086 0.400 163 pressure-side 0.173 0.033 0.300 39 suction-side 0.124 0.083 0.400 164 pressure-side 0.177 0.031 0.300 41 suction-side 0.127	152	pressure-side	0.146	0.044	0.300	40	28	suction-side	0.094	0.089	0.400	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153	pressure-side	0.149	0.043	0.300		29	suction-side	0.097	0.089	0.400	
156pressure-side 0.155 0.041 0.300 32 suction-side 0.104 0.088 0.400 157pressure-side 0.157 0.040 0.300 34 suction-side 0.107 0.088 0.400 158pressure-side 0.162 0.038 0.300 34 suction-side 0.112 0.087 0.400 160pressure-side 0.164 0.037 0.300 36 suction-side 0.114 0.086 0.400 161pressure-side 0.166 0.036 0.300 37 suction-side 0.117 0.086 0.400 162pressure-side 0.168 0.035 0.300 38 suction-side 0.117 0.086 0.400 163pressure-side 0.173 0.033 0.300 49 suction-side 0.122 0.084 0.400 164pressure-side 0.175 0.032 0.300 40 suction-side 0.127 0.083 0.400 165pressure-side 0.177 0.031 0.300 42 suction-side 0.129 0.082 0.400 166pressure-side 0.177 0.031 0.300 44 suction-side 0.134 0.079 0.400 168pressure-side 0.181 0.027 0.300 44 suction-side 0.134 0.078 0.400 170pressure-side 0.185 0.026 0.300 44 suction-side 0.134 <td>154</td> <td>pressure-side</td> <td>0.151</td> <td>0.043</td> <td>0.300</td> <td></td> <td>31</td> <td>suction-side</td> <td>0.102</td> <td>0.089</td> <td>0.400</td>	154	pressure-side	0.151	0.043	0.300		31	suction-side	0.102	0.089	0.400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156	pressure-side	0.155	0.041	0.300		32	suction-side	0.104	0.088	0.400	
158pressure-side0.1600.0390.30034suction-side0.1090.0870.400159pressure-side0.1620.0380.3004535suction-side0.1120.0870.400160pressure-side0.1640.0370.30036suction-side0.1140.0860.400161pressure-side0.1680.0350.30038suction-side0.1190.0850.400162pressure-side0.1700.0340.30039suction-side0.1120.0830.400163pressure-side0.1750.0320.30040suction-side0.1270.0830.400164pressure-side0.1770.0310.30040suction-side0.1270.0830.400166pressure-side0.1770.0300.30042suction-side0.1310.0810.400167pressure-side0.1810.0290.30044suction-side0.1340.0790.400168pressure-side0.1870.0250.30045suction-side0.1380.0770.400170pressure-side0.1870.0220.3005547suction-side0.1430.0740.400171pressure-side0.1930.0210.30050suction-side0.1430.0740.400171pressure-side0.1930.0210.30051suction-side	157	pressure-side	0.157	0.040	0.300		33	suction-side	0.107	0.088	0.400	
159 pressure-side 0.162 0.038 0.300 4.3 suction-side 0.112 0.087 0.400 160 pressure-side 0.166 0.036 0.300 37 suction-side 0.117 0.086 0.400 161 pressure-side 0.166 0.035 0.300 38 suction-side 0.119 0.085 0.400 163 pressure-side 0.173 0.033 0.300 39 suction-side 0.122 0.084 0.400 164 pressure-side 0.175 0.032 0.300 40 suction-side 0.122 0.083 0.400 165 pressure-side 0.177 0.031 0.300 42 suction-side 0.127 0.082 0.400 167 pressure-side 0.177 0.031 0.300 43 suction-side 0.131 0.081 0.400 168 pressure-side 0.183 0.027 0.300 44 suction-side 0.138 0.077 0.400 170 pressure-side 0.185 0.025 0.300	158	pressure-side	0.160	0.039	0.300	45	34	suction-side	0.109	0.087	0.400	
161 pressure-side 0.166 0.037 0.030 37 suction-side 0.111 0.086 0.400 162 pressure-side 0.168 0.035 0.300 38 suction-side 0.119 0.085 0.400 163 pressure-side 0.170 0.034 0.300 39 suction-side 0.122 0.084 0.400 164 pressure-side 0.175 0.032 0.300 40 suction-side 0.127 0.083 0.400 165 pressure-side 0.177 0.031 0.300 42 suction-side 0.129 0.082 0.400 166 pressure-side 0.177 0.031 0.300 43 suction-side 0.134 0.079 0.400 168 pressure-side 0.181 0.027 0.300 44 suction-side 0.136 0.078 0.400 170 pressure-side 0.185 0.025 0.300 45 suction-side 0.141 0.076	159	pressure-side	0.162	0.038	0.300	45	35 36	suction-side	0.112	0.087	0.400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	161	pressure-side	0.166	0.036	0.300		37	suction-side	0.117	0.086	0.400	
	162	pressure-side	0.168	0.035	0.300		38	suction-side	0.119	0.085	0.400	
164pressure-side 0.173 0.033 0.300 40suction-side 0.124 0.083 0.400 165pressure-side 0.177 0.032 0.300 41suction-side 0.127 0.083 0.400 166pressure-side 0.177 0.031 0.300 42suction-side 0.129 0.082 0.400 167pressure-side 0.179 0.030 0.300 43suction-side 0.131 0.081 0.400 168pressure-side 0.181 0.029 0.300 44suction-side 0.134 0.079 0.400 169pressure-side 0.183 0.027 0.300 45suction-side 0.138 0.077 0.400 170pressure-side 0.187 0.025 0.300 46suction-side 0.141 0.076 0.400 171pressure-side 0.189 0.023 0.300 48suction-side 0.143 0.074 0.400 173pressure-side 0.191 0.022 0.300 49suction-side 0.143 0.074 0.400 174pressure-side 0.195 0.019 0.300 50suction-side 0.147 0.071 0.400 175pressure-side 0.196 0.018 0.300 51suction-side 0.147 0.071 0.400 175pressure-side 0.196 0.018 0.300 52suction-side 0.151 0.068 0	163	pressure-side	0.170	0.034	0.300		39	suction-side	0.122	0.084	0.400	
165pressure-side 0.173 0.032 0.300 50 41 suction-side 0.127 0.082 0.400 166pressure-side 0.179 0.030 0.300 43 suction-side 0.121 0.082 0.400 167pressure-side 0.181 0.029 0.300 43 suction-side 0.131 0.081 0.400 168pressure-side 0.181 0.029 0.300 44 suction-side 0.134 0.079 0.400 169pressure-side 0.183 0.027 0.300 45 suction-side 0.136 0.078 0.400 170pressure-side 0.187 0.025 0.300 46 suction-side 0.138 0.077 0.400 171pressure-side 0.189 0.023 0.300 55 47 suction-side 0.141 0.076 0.400 172pressure-side 0.189 0.023 0.300 55 47 suction-side 0.143 0.074 0.400 173pressure-side 0.193 0.021 0.300 50 suction-side 0.147 0.071 0.400 174pressure-side 0.196 0.018 0.300 51 suction-side 0.147 0.071 0.400 175pressure-side 0.196 0.018 0.300 52 suction-side 0.147 0.071 0.400 175pressure-side 0.202 0.015 0.300 53 <	164	pressure-side	0.173	0.033	0.300	50	40	suction-side	0.124	0.083	0.400	
167 pressure-side 0.179 0.030 0.300 43 suction-side 0.131 0.081 0.400 168 pressure-side 0.181 0.029 0.300 44 suction-side 0.134 0.079 0.400 169 pressure-side 0.183 0.027 0.300 45 suction-side 0.136 0.078 0.400 170 pressure-side 0.185 0.026 0.300 46 suction-side 0.138 0.077 0.400 171 pressure-side 0.187 0.025 0.300 55 47 suction-side 0.141 0.076 0.400 172 pressure-side 0.191 0.022 0.300 50 suction-side 0.141 0.071 0.400 173 pressure-side 0.193 0.021 0.300 50 suction-side 0.147 0.071 0.400 174 pressure-side 0.196 0.018 0.300 52 suction-side 0.151	165	pressure-side	0.175	0.032	0.300	50	42	suction-side	0.127	0.085	0.400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	167	pressure-side	0.179	0.030	0.300		43	suction-side	0.131	0.081	0.400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	168	pressure-side	0.181	0.029	0.300		44	suction-side	0.134	0.079	0.400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	169	pressure-side	0.183	0.027	0.300		45	suction-side	0.136	0.078	0.400	
171pressure-side0.1870.0230.30055170.0160.1110.0050.400173pressure-side0.1910.0220.30048suction-side0.1430.0740.400174pressure-side0.1930.0210.30050suction-side0.1450.0710.400174pressure-side0.1930.0210.30050suction-side0.1470.0710.400175pressure-side0.1950.0190.30051suction-side0.1490.0700.400176pressure-side0.1960.0180.30052suction-side0.1510.0680.400176pressure-side0.1980.0160.30053suction-side0.1530.0670.400177pressure-side0.2020.0130.30054suction-side0.1550.0650.400179pressure-side0.2040.0120.30055suction-side0.1570.0630.400180pressure-side0.2070.0080.30057suction-side0.1610.0600.400181pressure-side0.2070.0080.30059suction-side0.1650.0560.400183pressure-side0.2100.0050.30059suction-side0.1650.0560.400184pressure-side0.2100.0050.3006560suction-side <t< td=""><td>170</td><td>pressure-side</td><td>0.185</td><td>0.026</td><td>0.300</td><td></td><td>40 47</td><td>suction-side</td><td>0.138</td><td>0.077</td><td>0.400</td></t<>	170	pressure-side	0.185	0.026	0.300		40 47	suction-side	0.138	0.077	0.400	
173pressure-side0.1910.0220.30049suction-side0.1450.0730.400174pressure-side0.1930.0210.30050suction-side0.1470.0710.400175pressure-side0.1950.0190.30051suction-side0.1490.0700.400176pressure-side0.1960.0180.30052suction-side0.1510.0680.400176pressure-side0.1980.0160.30053suction-side0.1530.0670.400177pressure-side0.2000.0150.3006054suction-side0.1550.0650.400179pressure-side0.2020.0130.30055suction-side0.1570.0630.400180pressure-side0.2040.0120.30056suction-side0.1610.0600.400181pressure-side0.2070.0080.30057suction-side0.1630.0580.400182pressure-side0.2090.0070.30059suction-side0.1630.0560.400183pressure-side0.2100.0050.3006560suction-side0.1650.0560.400184pressure-side0.2120.0030.30061suction-side0.1660.0540.400185pressure-side0.2120.0030.30061suction-side<	172	pressure-side	0.189	0.023	0.300	55	48	suction-side	0.143	0.074	0.400	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	173	pressure-side	0.191	0.022	0.300		49	suction-side	0.145	0.073	0.400	
175 pressure-side 0.195 0.019 0.300 51 suction-side 0.149 0.070 0.400 176 pressure-side 0.196 0.018 0.300 52 suction-side 0.149 0.068 0.400 177 pressure-side 0.198 0.016 0.300 53 suction-side 0.153 0.067 0.400 178 pressure-side 0.200 0.015 0.300 60 54 suction-side 0.155 0.065 0.400 179 pressure-side 0.202 0.013 0.300 55 suction-side 0.157 0.063 0.400 180 pressure-side 0.205 0.010 0.300 56 suction-side 0.161 0.060 0.400 181 pressure-side 0.207 0.008 0.300 57 suction-side 0.163 0.058 0.400 183 pressure-side 0.207 0.008 0.300 59 suction-side 0.165 0.056 0.400 184 pressure-side 0.210 0.005	174	pressure-side	0.193	0.021	0.300		50	suction-side	0.147	0.071	0.400	
170pressure-side0.1900.0160.30052station-side0.1110.0080.400177pressure-side0.1980.0160.30053suction-side0.1530.0670.400178pressure-side0.2000.0150.3006054suction-side0.1550.0650.400179pressure-side0.2020.0130.30055suction-side0.1570.0630.400180pressure-side0.2040.0120.30056suction-side0.1590.0620.400181pressure-side0.2070.0080.30057suction-side0.1630.0580.400182pressure-side0.2090.0070.30059suction-side0.1650.0560.400183pressure-side0.2090.0070.30059suction-side0.1650.0560.400184pressure-side0.2120.0030.30061suction-side0.1660.0540.400185pressure-side0.2120.0030.30061suction-side0.1680.0530.400	175	pressure-side	0.195	0.019	0.300		51	suction-side	0.149	0.070	0.400	
178 pressure-side 0.200 0.015 0.300 60 54 suction-side 0.155 0.065 0.400 179 pressure-side 0.202 0.013 0.300 55 suction-side 0.155 0.065 0.400 180 pressure-side 0.204 0.012 0.300 56 suction-side 0.159 0.062 0.400 180 pressure-side 0.205 0.010 0.300 56 suction-side 0.159 0.062 0.400 181 pressure-side 0.207 0.008 0.300 57 suction-side 0.163 0.058 0.400 182 pressure-side 0.207 0.008 0.300 59 suction-side 0.163 0.058 0.400 183 pressure-side 0.209 0.007 0.300 59 suction-side 0.165 0.056 0.400 184 pressure-side 0.212 0.003 0.300 61 suction-side 0.166	170	pressure-side	0.198	0.018	0.300		52	suction-side	0.151	0.067	0.400	
179pressure-side0.2020.0130.30055suction-side0.1570.0630.400180pressure-side0.2040.0120.30056suction-side0.1590.0620.400181pressure-side0.2050.0100.30057suction-side0.1610.0600.400182pressure-side0.2070.0080.30058suction-side0.1630.0580.400183pressure-side0.2090.0070.30059suction-side0.1650.0560.400184pressure-side0.2120.0030.30061suction-side0.1660.0540.400185pressure-side0.2120.0030.30061suction-side0.1680.0530.400	178	pressure-side	0.200	0.015	0.300	60	54	suction-side	0.155	0.065	0.400	
180 pressure-side 0.204 0.012 0.300 56 suction-side 0.159 0.062 0.400 181 pressure-side 0.205 0.010 0.300 57 suction-side 0.161 0.060 0.400 182 pressure-side 0.207 0.008 0.300 58 suction-side 0.163 0.058 0.400 183 pressure-side 0.209 0.007 0.300 59 suction-side 0.165 0.056 0.400 184 pressure-side 0.212 0.003 0.300 65 60 suction-side 0.166 0.054 0.400 185 pressure-side 0.212 0.003 0.300 61 suction-side 0.168 0.053 0.400	179	pressure-side	0.202	0.013	0.300		55	suction-side	0.157	0.063	0.400	
181pressure-side0.2050.0100.30057suction-side0.1610.0600.400182pressure-side0.2070.0080.30058suction-side0.1630.0580.400183pressure-side0.2090.0070.30059suction-side0.1650.0560.400184pressure-side0.2100.0050.3006560suction-side0.1660.0540.400185pressure-side0.2120.0030.30061suction-side0.1680.0530.400	180	pressure-side	0.204	0.012	0.300		56	suction-side	0.159	0.062	0.400	
162 pressure side 0.207 0.006 0.500 56 stationistic 0.105 0.038 0.400 183 pressure-side 0.209 0.007 0.300 59 suction-side 0.165 0.056 0.400 184 pressure-side 0.210 0.005 0.300 65 60 suction-side 0.166 0.054 0.400 185 pressure-side 0.212 0.003 0.300 61 suction-side 0.168 0.053 0.400	181	pressure-side	0.205	0.010	0.300		57	suction-side	0.161	0.060	0.400	
184 pressure-side 0.210 0.005 0.300 65 60 suction-side 0.166 0.054 0.400 185 pressure-side 0.212 0.003 0.300 61 suction-side 0.168 0.053 0.400	182	pressure-side	0.209	0.007	0.300		59	suction-side	0.165	0.056	0.400	
185 pressure-side 0.212 0.003 0.300 61 suction-side 0.168 0.053 0.400	184	pressure-side	0.210	0.005	0.300	65	60	suction-side	0.166	0.054	0.400	
	185	pressure-side	0.212	0.003	0.300		61	suction-side	0.168	0.053	0.400	

	TAI	BLE I-contin	ued				TAH	BLE I-contin	ued	
	Non-Dime	ensionalized (X	Y Z/Span)				Y Z/Span)			
Ν	Location	х	Y	Z	5	Ν	Location	х	Y	Z
62	suction-side	0.170	0.051	0 400		138	pressure-side	0.115	0.056	0 400
63	suction-side	0.172	0.049	0.400		139	pressure-side	0.118	0.055	0.400
64	suction-side	0.173	0.047	0.400		140	pressure-side	0.120	0.055	0.400
65	suction-side	0.175	0.045	0.400		141	pressure-side	0.122	0.054	0.400
66	suction-side	0.177	0.043	0.400		142	pressure-side	0.124	0.053	0.400
67	suction-side	0.178	0.041	0.400	10	143	pressure-side	0.126	0.052	0.400
68	suction-side	0.180	0.039	0.400		144	pressure-side	0.128	0.051	0.400
69	suction-side	0.182	0.037	0.400		145	pressure-side	0.130	0.051	0.400
70	suction-side	0.183	0.035	0.400		146	pressure-side	0.133	0.050	0.400
71	suction-side	0.185	0.033	0.400		147	pressure-side	0.135	0.049	0.400
72	suction-side	0.186	0.031	0.400		148	pressure-side	0.137	0.048	0.400
73	suction-side	0.188	0.029	0.400	15	149	pressure-side	0.139	0.047	0.400
74	suction-side	0.190	0.027	0.400		150	pressure-side	0.141	0.046	0.400
75	suction-side	0.191	0.025	0.400		151	pressure-side	0.143	0.045	0.400
/0	suction-side	0.193	0.023	0.400		152	pressure-side	0.145	0.044	0.400
//	suction-side	0.195	0.021	0.400		153	pressure-side	0.147	0.043	0.400
70	suction side	0.196	0.019	0.400		154	pressure-side	0.149	0.042	0.400
80	suction-side	0.198	0.017	0.400	20	155	pressure-side	0.151	0.040	0.400
81	suction-side	0.199	0.013	0.400		150	pressure-side	0.155	0.039	0.400
82	suction-side	0.201	0.015	0.400		158	pressure-side	0.157	0.037	0.400
83	suction-side	0.202	0.009	0.400		159	pressure-side	0.159	0.036	0.400
84	suction-side	0.206	0.006	0.400		160	pressure-side	0.161	0.035	0.400
85	suction-side	0.207	0.004	0.400		161	pressure-side	0.163	0.033	0.400
86	suction-side	0.209	0.002	0.400	25	162	pressure-side	0.165	0.032	0.400
87	suction-side	0.210	0.000	0.400		163	pressure-side	0.166	0.031	0.400
88	suction-side	0.212	-0.002	0.400		164	pressure-side	0.168	0.029	0.400
89	suction-side	0.213	-0.004	0.400		165	pressure-side	0.170	0.028	0.400
90	suction-side	0.215	-0.006	0.400		166	pressure-side	0.172	0.027	0.400
91	suction-side	0.216	-0.008	0.400		167	pressure-side	0.174	0.025	0.400
92	suction-side	0.218	-0.010	0.400	30	168	pressure-side	0.176	0.024	0.400
93	suction-side	0.220	-0.012	0.400		169	pressure-side	0.177	0.023	0.400
94	suction-side	0.221	-0.014	0.400		170	pressure-side	0.179	0.021	0.400
95	suction-side	0.222	-0.019	0.400		171	pressure-side	0.181	0.020	0.400
96	suction-side	0.222	-0.018	0.400		172	pressure-side	0.183	0.018	0.400
97	suction-side	0.222	-0.018	0.400		173	pressure-side	0.185	0.017	0.400
98	suction-side	0.222	-0.016	0.400	35	174	pressure-side	0.186	0.015	0.400
100	suction-side	0.223	-0.018	0.400		175	pressure-side	0.188	0.014	0.400
100	suction-side	0.225	-0.017	0.400		170	pressure-side	0.190	0.012	0.400
101	pressure-side	0.032	0.004	0.400		178	pressure-side	0.191	0.011	0.400
102	pressure-side	0.034	0.003	0.400		170	pressure-side	0.195	0.009	0.400
104	pressure-side	0.038	0.063	0.400		180	pressure-side	0.196	0.006	0.400
105	pressure-side	0.041	0.063	0.400	40	181	pressure-side	0.198	0.004	0.400
106	pressure-side	0.043	0.063	0.400		182	pressure-side	0.200	0.003	0.400
107	pressure-side	0.045	0.063	0.400		183	pressure-side	0.201	0.001	0.400
108	pressure-side	0.048	0.064	0.400		184	pressure-side	0.203	0.000	0.400
109	pressure-side	0.050	0.064	0.400		185	pressure-side	0.204	-0.002	0.400
110	pressure-side	0.052	0.064	0.400		186	pressure-side	0.206	-0.004	0.400
111	pressure-side	0.054	0.064	0.400	45	187	pressure-side	0.207	-0.006	0.400
112	pressure-side	0.057	0.064	0.400		188	pressure-side	0.209	-0.007	0.400
113	pressure-side	0.059	0.064	0.400		189	pressure-side	0.210	-0.009	0.400
114	pressure-side	0.061	0.064	0.400		190	pressure-side	0.212	-0.011	0.400
115	pressure-side	0.064	0.064	0.400		191	pressure-side	0.214	-0.012	0.400
116	pressure-side	0.066	0.064	0.400		192	pressure-side	0.215	-0.014	0.400
117	pressure-side	0.068	0.064	0.400	50	193	pressure-side	0.216	-0.016	0.400
118	pressure-side	0.070	0.064	0.400		194	pressure-side	0.218	-0.018	0.400
119	pressure-side	0.075	0.064	0.400		195	pressure-side	0.220	-0.019	0.400
120	pressure-side	0.073	0.064	0.400		190	pressure-side	0.220	-0.019	0.400
121	pressure-side	0.080	0.004	0.400		197	pressure-side	0.221	-0.019	0.400
123	pressure-side	0.082	0.063	0.400		199	pressure-side	0.222	-0.019	0.400
124	pressure-side	0.084	0.063	0.400	55	200	pressure-side	0.222	-0.019	0.400
125	pressure-side	0.086	0.063	0.400		1	suction-side	0.035	0.082	0.500
126	pressure-side	0.089	0.062	0.400		2	suction-side	0.035	0.084	0.500
127	pressure-side	0.091	0.062	0.400		3	suction-side	0.037	0.086	0.500
128	pressure-side	0.093	0.062	0.400		4	suction-side	0.039	0.088	0.500
129	pressure-side	0.095	0.061	0.400		5	suction-side	0.041	0.089	0.500
130	pressure-side	0.098	0.061	0.400	60	6	suction-side	0.043	0.090	0.500
131	pressure-side	0.100	0.060	0.400		7	suction-side	0.045	0.092	0.500
132	pressure-side	0.102	0.060	0.400		8	suction-side	0.048	0.093	0.500
133	pressure-side	0.104	0.059	0.400		9	suction-side	0.050	0.094	0.500
134	pressure-side	0.107	0.059	0.400		10	suction-side	0.053	0.094	0.500
135	pressure-side	0.109	0.058	0.400		11	suction-side	0.055	0.095	0.500
136	pressure-side	0.111	0.057	0.400	65	12	suction-side	0.057	0.096	0.500
137	pressure-side	0.113	0.057	0.400		13	suction-side	0.060	0.096	0.500

	Non-Dimensionalized (X V Z/Span)						Non Dimonoionalizad (X X 7/Span)				
		ICHSIOHAHZCU (X 1	Z/Span)	_					1 Z/Spail)	-	
N	Location	X	Ŷ	Z	_ 5 _	N	Location	X	Y	Z	
14	suction-side	0.062	0.097	0.500		90 01	suction-side	0.209	-0.011	0.500	
15	suction-side	0.063	0.097	0.500		91	suction-side	0.211	-0.015	0.500	
17	suction-side	0.070	0.098	0.500		93	suction-side	0.214	-0.017	0.500	
18	suction-side	0.073	0.098	0.500		94	suction-side	0.215	-0.020	0.500	
19	suction-side	0.075	0.098	0.500	10	95	suction-side	0.216	-0.024	0.500	
20	suction-side	0.078	0.098	0.500		96	suction-side	0.216	-0.024	0.500	
21	suction-side	0.080	0.098	0.500		97	suction-side	0.210	-0.023	0.500	
23	suction-side	0.085	0.098	0.500		99	suction-side	0.217	-0.023	0.500	
24	suction-side	0.088	0.097	0.500		100	suction-side	0.217	-0.022	0.500	
25	suction-side	0.090	0.097	0.500	15	101	pressure-side	0.035	0.082	0.500	
26	suction-side	0.093	0.097	0.500		102	pressure-side	0.036	0.080	0.500	
27	suction-side	0.095	0.096	0.500		103	pressure-side	0.039	0.080	0.500	
29	suction-side	0.100	0.095	0.500		105	pressure-side	0.043	0.080	0.500	
30	suction-side	0.103	0.094	0.500		106	pressure-side	0.046	0.080	0.500	
31	suction-side	0.105	0.093	0.500	20	107	pressure-side	0.048	0.080	0.500	
32	suction-side	0.108	0.093	0.500	20	108	pressure-side	0.050	0.080	0.500	
33	suction-side	0.110	0.092	0.500		110	pressure-side	0.053	0.080	0.500	
35	suction-side	0.112	0.091	0.500		111	pressure-side	0.055	0.080	0.500	
36	suction-side	0.117	0.089	0.500		112	pressure-side	0.060	0.080	0.500	
37	suction-side	0.119	0.087	0.500		113	pressure-side	0.062	0.080	0.500	
38	suction-side	0.121	0.086	0.500	25	114	pressure-side	0.064	0.080	0.500	
39	suction-side	0.124	0.085	0.500		115	pressure-side	0.067	0.080	0.500	
40	suction-side	0.126	0.084	0.500		116	pressure-side	0.069	0.079	0.500	
41	suction-side	0.128	0.082	0.500		118	pressure-side	0.071	0.079	0.500	
43	suction-side	0.130	0.079	0.500		119	pressure-side	0.076	0.079	0.500	
44	suction-side	0.134	0.078	0.500	30	120	pressure-side	0.078	0.078	0.500	
45	suction-side	0.136	0.076	0.500		121	pressure-side	0.081	0.078	0.500	
46	suction-side	0.138	0.075	0.500		122	pressure-side	0.083	0.077	0.500	
47	suction-side	0.140	0.073	0.500		123	pressure-side	0.085	0.077	0.500	
48 49	suction-side	0.142	0.071	0.500		124	pressure-side	0.087	0.076	0.500	
50	suction-side	0.146	0.068	0.500	25	125	pressure-side	0.092	0.075	0.500	
51	suction-side	0.147	0.066	0.500	33	127	pressure-side	0.094	0.075	0.500	
52	suction-side	0.149	0.064	0.500		128	pressure-side	0.096	0.074	0.500	
53	suction-side	0.151	0.063	0.500		129	pressure-side	0.098	0.073	0.500	
54	suction-side	0.153	0.061	0.500		130	pressure-side	0.100	0.072	0.500	
56	suction-side	0.156	0.057	0.500		132	pressure-side	0.105	0.072	0.500	
57	suction-side	0.158	0.055	0.500	40	133	pressure-side	0.107	0.070	0.500	
58	suction-side	0.160	0.053	0.500		134	pressure-side	0.109	0.069	0.500	
59	suction-side	0.161	0.051	0.500		135	pressure-side	0.111	0.068	0.500	
60	suction-side	0.163	0.049	0.500		136	pressure-side	0.113	0.067	0.500	
62	suction-side	0.164	0.047	0.500		138	pressure-side	0.115	0.065	0.500	
63	suction-side	0.168	0.043	0.500	45	139	pressure-side	0.119	0.064	0.500	
64	suction-side	0.169	0.041	0.500		140	pressure-side	0.121	0.062	0.500	
65	suction-side	0.171	0.039	0.500		141	pressure-side	0.123	0.061	0.500	
66	suction-side	0.172	0.037	0.500		142	pressure-side	0.125	0.060	0.500	
67	suction-side	0.174	0.035	0.500		143	pressure-side	0.127	0.059	0.500	
69	suction-side	0.177	0.035	0.500	50	144	pressure-side	0.129	0.057	0.500	
70	suction-side	0.179	0.029	0.500	50	146	pressure-side	0.133	0.055	0.500	
71	suction-side	0.180	0.027	0.500		147	pressure-side	0.135	0.053	0.500	
72	suction-side	0.182	0.025	0.500		148	pressure-side	0.137	0.052	0.500	
73	suction-side	0.183	0.023	0.500		149	pressure-side	0.138	0.051	0.500	
74 75	suction-side	0.185	0.021	0.500		150	pressure-side	0.140	0.049	0.500	
76	suction-side	0.188	0.017	0.500	55	152	pressure-side	0.144	0.046	0.500	
77	suction-side	0.189	0.015	0.500		153	pressure-side	0.146	0.045	0.500	
78	suction-side	0.191	0.013	0.500		154	pressure-side	0.147	0.043	0.500	
79	suction-side	0.193	0.011	0.500		155	pressure-side	0.149	0.042	0.500	
80	suction-side	0.194	0.009	0.500		156	pressure-side	0.151	0.040	0.500	
81 87	suction-side	0.196	0.007	0.300	60	157	pressure-side	0.153	0.039	0.500	
83	suction-side	0.199	0.003	0.500		159	pressure-side	0.156	0.036	0.500	
84	suction-side	0.200	0.001	0.500		160	pressure-side	0.158	0.034	0.500	
85	suction-side	0.202	-0.001	0.500		161	pressure-side	0.159	0.032	0.500	
86	suction-side	0.203	-0.003	0.500		162	pressure-side	0.161	0.031	0.500	
87	suction-side	0.205	-0.005	0.500	65	163	pressure-side	0.163	0.029	0.500	
88 80	suction side	0.206	-0.007	0.500	00	104	pressure-side	0.164	0.028	0.500	
09	succion-side	0.208	-0.009	0.500		100	pressure-side	0.100	0.020	0.500	

	Non-Dimensionalized (X Y Z/Span)						Non-Dimensionalized (X Y Z/Span)					
Ν	Location	Х	Y	Z	- 5 -	Ν	Location	Х	Y	Z		
166	pressure-side	0.168	0.024	0.500	_ / _	42	suction-side	0.130	0.079	0.600		
167	pressure-side	0.169	0.023	0.500		43	suction-side	0.132	0.078	0.600		
168	pressure-side	0.171	0.021	0.500		44	suction-side	0.133	0.076	0.600		
169	pressure-side	0.173	0.020	0.500		45	suction-side	0.135	0.074	0.600		
170	pressure-side	0.176	0.018	0.500	10	47	suction-side	0.139	0.072	0.600		
172	pressure-side	0.177	0.015	0.500	10	48	suction-side	0.140	0.069	0.600		
173	pressure-side	0.179	0.013	0.500		49	suction-side	0.142	0.067	0.600		
174	pressure-side	0.181	0.011	0.500		50	suction-side	0.144	0.065	0.600		
175	pressure-side	0.182	0.010	0.500		51	suction-side	0.145	0.063	0.600		
170	pressure-side	0.186	0.008	0.500		53	suction-side	0.148	0.059	0.600		
178	pressure-side	0.187	0.005	0.500	15	54	suction-side	0.150	0.057	0.600		
179	pressure-side	0.189	0.003	0.500		55	suction-side	0.152	0.055	0.600		
180	pressure-side	0.190	0.001	0.500		56	suction-side	0.153	0.053	0.600		
181	pressure-side	0.192	0.000	0.500		57	suction-side	0.155	0.051	0.600		
182	pressure-side	0.194	-0.002	0.500		58 59	suction-side	0.158	0.049	0.600		
185	pressure-side	0.195	-0.005	0.500	20	60	suction-side	0.159	0.045	0.600		
185	pressure-side	0.198	-0.007	0.500		61	suction-side	0.161	0.043	0.600		
186	pressure-side	0.200	-0.009	0.500		62	suction-side	0.163	0.041	0.600		
187	pressure-side	0.201	-0.010	0.500		63	suction-side	0.164	0.039	0.600		
188	pressure-side	0.203	-0.012	0.500		64	suction-side	0.166	0.037	0.600		
190	pressure-side	0.204	-0.014	0.500	25	66	suction-side	0.169	0.033	0.600		
191	pressure-side	0.207	-0.017	0.500		67	suction-side	0.170	0.031	0.600		
192	pressure-side	0.209	-0.019	0.500		68	suction-side	0.172	0.029	0.600		
193	pressure-side	0.210	-0.021	0.500		69	suction-side	0.173	0.027	0.600		
194	pressure-side	0.212	-0.023	0.500		70	suction-side	0.175	0.025	0.600		
195	pressure-side	0.214	-0.024	0.500	20	71	suction-side	0.178	0.025	0.600		
197	pressure-side	0.214	-0.024	0.500	30	73	suction-side	0.179	0.019	0.600		
198	pressure-side	0.215	-0.024	0.500		74	suction-side	0.181	0.017	0.600		
199	pressure-side	0.216	-0.024	0.500		75	suction-side	0.182	0.015	0.600		
200	pressure-side	0.216	-0.024	0.500		76	suction-side	0.184	0.013	0.600		
1	suction-side	0.037	0.100	0.600		77	suction-side	0.185	0.011	0.600		
2	suction-side	0.039	0.102	0.600	35	78	suction-side	0.187	0.009	0.600		
4	suction-side	0.043	0.105	0.600		80	suction-side	0.190	0.005	0.600		
5	suction-side	0.045	0.106	0.600		81	suction-side	0.191	0.003	0.600		
6	suction-side	0.047	0.107	0.600		82	suction-side	0.193	0.001	0.600		
7	suction-side	0.050	0.108	0.600		83	suction-side	0.194	-0.001	0.600		
0	suction-side	0.032	0.108	0.600	40	84 85	suction-side	0.196	-0.003	0.600		
10	suction-side	0.055	0.109	0.600		86	suction-side	0.198	-0.007	0.600		
11	suction-side	0.060	0.109	0.600		87	suction-side	0.200	-0.009	0.600		
12	suction-side	0.062	0.109	0.600		88	suction-side	0.201	-0.011	0.600		
13	suction-side	0.065	0.109	0.600		89	suction-side	0.203	-0.013	0.600		
14	suction-side	0.068	0.109	0.600	45	90	suction-side	0.204	-0.015	0.600		
15	suction-side	0.073	0.109	0.000	7.5	92	suction-side	0.200	-0.018	0.600		
17	suction-side	0.075	0.109	0.600		93	suction-side	0.209	-0.022	0.600		
18	suction-side	0.078	0.108	0.600		94	suction-side	0.210	-0.024	0.600		
19	suction-side	0.080	0.108	0.600		95	suction-side	0.211	-0.028	0.600		
20	suction-side	0.083	0.107	0.600		96	suction-side	0.211	-0.028	0.600		
21	suction-side	0.085	0.107	0.600	50	97	suction-side	0.211	-0.027	0.600		
22	suction-side	0.090	0.105	0.600		99	suction-side	0.211	-0.027	0.600		
24	suction-side	0.092	0.104	0.600		100	suction-side	0.211	-0.026	0.600		
25	suction-side	0.095	0.104	0.600		101	pressure-side	0.037	0.100	0.600		
26	suction-side	0.097	0.103	0.600		102	pressure-side	0.039	0.098	0.600		
27	suction-side	0.099	0.101	0.600	55	103	pressure-side	0.041	0.098	0.600		
20 29	suction-side	0.102	0.100	0.600		104	pressure-side	0.044	0.097	0.600		
30	suction-side	0.106	0.098	0.600		106	pressure-side	0.049	0.097	0.600		
31	suction-side	0.108	0.097	0.600		107	pressure-side	0.051	0.097	0.600		
32	suction-side	0.110	0.095	0.600		108	pressure-side	0.054	0.097	0.600		
33	suction-side	0.112	0.094	0.600	60	109	pressure-side	0.056	0.096	0.600		
34	suction-side	0.115	0.092	0.600	00	110	pressure-side	0.058	0.096	0.600		
35	suction-side	0.119	0.089	0.600		117	pressure-side	0.063	0.096	0.600		
37	suction-side	0.121	0.088	0.600		112	pressure-side	0.066	0.095	0.600		
38	suction-side	0.122	0.086	0.600		114	pressure-side	0.068	0.095	0.600		
39	suction-side	0.124	0.085	0.600	<i>(</i> -	115	pressure-side	0.070	0.095	0.600		
40	suction-side	0.126	0.083	0.600	65	116	pressure-side	0.073	0.094	0.600		
41	suction-side	0.128	0.081	0.600		117	pressure-side	0.075	0.094	0.600		

27 TABLE I-continued

	Non-Dimensionalized (X Y Z/Span)						Y Z/Span)			
N	Location	х	Y	Z	_ 5 _	Ν	Location	х	Y	Z
118	pressure-side	0.077	0.093	0.600		194	pressure-side	0.207	-0.027	0.600
119	pressure-side	0.080	0.092	0.600		195	pressure-side	0.208	-0.028	0.600
120	pressure-side	0.082	0.092	0.600		196	pressure-side	0.209	-0.029	0.600
121	pressure-side	0.087	0.091	0.600		198	pressure-side	0.209	-0.029	0.600
123	pressure-side	0.089	0.089	0.600	10	199	pressure-side	0.211	-0.028	0.600
124	pressure-side	0.091	0.088	0.600		200	pressure-side	0.211	-0.028	0.600
125	pressure-side	0.093	0.087	0.600		1	suction-side	0.043	0.119	0.700
126	pressure-side	0.095	0.087	0.600		2	suction-side	0.045	0.121	0.700
127	pressure-side	0.100	0.085	0.600		4	suction-side	0.049	0.122	0.700
129	pressure-side	0.102	0.083	0.600	15	5	suction-side	0.052	0.123	0.700
130	pressure-side	0.104	0.082	0.600	15	6	suction-side	0.054	0.123	0.700
131	pressure-side	0.106	0.081	0.600		7	suction-side	0.057	0.123	0.700
132	pressure-side	0.108	0.080	0.600		8	suction-side	0.059	0.123	0.700
133	pressure-side	0.110	0.078	0.000		10	suction-side	0.064	0.123	0.700
135	pressure-side	0.112	0.076	0.600		11	suction-side	0.067	0.122	0.700
136	pressure-side	0.116	0.074	0.600	20	12	suction-side	0.069	0.121	0.700
137	pressure-side	0.118	0.073	0.600		13	suction-side	0.072	0.121	0.700
138	pressure-side	0.120	0.071	0.600		14	suction-side	0.074	0.120	0.700
139	pressure-side	0.121	0.070	0.600		15	suction-side	0.078	0.119	0.700
141	pressure-side	0.125	0.067	0.600		17	suction-side	0.081	0.117	0.700
142	pressure-side	0.127	0.065	0.600	25	18	suction-side	0.083	0.116	0.700
143	pressure-side	0.129	0.064	0.600		19	suction-side	0.086	0.115	0.700
144	pressure-side	0.130	0.062	0.600		20	suction-side	0.088	0.114	0.700
145	pressure-side	0.132	0.060	0.600		21	suction-side	0.090	0.113	0.700
140	pressure-side	0.135	0.059	0.600		22	suction-side	0.092	0.112	0.700
148	pressure-side	0.137	0.055	0.600	30	24	suction-side	0.096	0.109	0.700
149	pressure-side	0.138	0.054	0.600		25	suction-side	0.098	0.108	0.700
150	pressure-side	0.140	0.052	0.600		26	suction-side	0.100	0.106	0.700
151	pressure-side	0.142	0.050	0.600		27	suction-side	0.102	0.105	0.700
152	pressure-side	0.145	0.049	0.600		28	suction-side	0.104	0.103	0.700
155	pressure-side	0.146	0.045	0.600	25	30	suction-side	0.108	0.102	0.700
155	pressure-side	0.148	0.043	0.600	35	31	suction-side	0.110	0.098	0.700
156	pressure-side	0.149	0.041	0.600		32	suction-side	0.112	0.097	0.700
157	pressure-side	0.151	0.040	0.600		33	suction-side	0.114	0.095	0.700
158	pressure-side	0.132	0.038	0.600		34	suction-side	0.113	0.093	0.700
160	pressure-side	0.155	0.034	0.600		36	suction-side	0.119	0.090	0.700
161	pressure-side	0.157	0.032	0.600	40	37	suction-side	0.121	0.088	0.700
162	pressure-side	0.158	0.031	0.600		38	suction-side	0.122	0.086	0.700
163	pressure-side	0.160	0.029	0.600		39	suction-side	0.124	0.084	0.700
165	pressure-side	0.163	0.027	0.000		40	suction-side	0.120	0.085	0.700
166	pressure-side	0.164	0.023	0.600		42	suction-side	0.129	0.079	0.700
167	pressure-side	0.166	0.021	0.600	45	43	suction-side	0.131	0.077	0.700
168	pressure-side	0.167	0.020	0.600		44	suction-side	0.132	0.075	0.700
169	pressure-side	0.169	0.018	0.600		45	suction-side	0.134	0.073	0.700
170	pressure-side	0.172	0.010	0.000		40	suction-side	0.133	0.071	0.700
172	pressure-side	0.172	0.014	0.600		48	suction-side	0.139	0.068	0.700
173	pressure-side	0.175	0.011	0.600	50	49	suction-side	0.140	0.066	0.700
174	pressure-side	0.176	0.009	0.600		50	suction-side	0.142	0.064	0.700
175	pressure-side	0.178	0.007	0.600		51	suction-side	0.143	0.062	0.700
170	pressure-side	0.179	0.005	0.600		52	suction-side	0.145	0.060	0.700
178	pressure-side	0.182	0.002	0.600		54	suction-side	0.148	0.056	0.700
179	pressure-side	0.184	0.000	0.600	55	55	suction-side	0.149	0.054	0.700
180	pressure-side	0.185	-0.002	0.600	55	56	suction-side	0.151	0.052	0.700
181	pressure-side	0.187	-0.004	0.600		57	suction-side	0.152	0.050	0.700
182	pressure-side	0.188	-0.005	0.600		58 50	suction-side	0.154	0.048	0.700
184	pressure-side	0.192	-0.009	0.600		60	suction-side	0.157	0.044	0.700
185	pressure-side	0.193	-0.011	0.600	<i>c</i> ~	61	suction-side	0.158	0.042	0.700
186	pressure-side	0.195	-0.012	0.600	60	62	suction-side	0.160	0.040	0.700
187	pressure-side	0.196	-0.014	0.600		63	suction-side	0.161	0.038	0.700
188	pressure-side	0.198	-0.016	0.600		64	suction-side	0.163	0.036	0.700
190	pressure-side	0.201	-0.018	0.600		66	suction-side	0.166	0.032	0.700
191	pressure-side	0.202	-0.021	0.600		67	suction-side	0.167	0.030	0.700
192	pressure-side	0.204	-0.023	0.600	65	68	suction-side	0.169	0.028	0.700
193	pressure-side	0.205	-0.025	0.600		69	suction-side	0.170	0.026	0.700

	TABLE I-continued						TABLE I-continued					
	Non-Dime	ensionalized (X	Y Z/Span)			Non-Dimensionalized (X Y Z/Span)						
N	Location	х	Y	Z		Ν	Location	х	Y	Z		
70	suction-side	0.171	0.024	0.700		146	pressure-side	0.132	0.062	0.700		
71	suction-side	0.173	0.022	0.700		147	pressure-side	0.133	0.060	0.700		
72	suction-side	0.174	0.020	0.700		148	pressure-side	0.135	0.059	0.700		
73	suction-side	0.176	0.018	0.700		149	pressure-side	0.136	0.057	0.700		
74	suction-side	0.177	0.016	0.700		150	pressure-side	0.138	0.055	0.700		
75	suction-side	0.179	0.014	0.700	10	151	pressure-side	0.139	0.053	0.700		
70	suction-side	0.180	0.012	0.700		152	pressure-side	0.142	0.051	0.700		
78	suction-side	0.183	0.008	0.700		154	pressure-side	0.144	0.048	0.700		
79	suction-side	0.184	0.006	0.700		155	pressure-side	0.145	0.046	0.700		
80	suction-side	0.186	0.004	0.700		156	pressure-side	0.147	0.044	0.700		
81	suction-side	0.187	0.002	0.700	15	157	pressure-side	0.148	0.042	0.700		
82	suction-side	0.189	0.000	0.700		158	pressure-side	0.150	0.040	0.700		
83 84	suction-side	0.190	-0.002	0.700		160	pressure-side	0.153	0.039	0.700		
85	suction-side	0.193	-0.006	0.700		161	pressure-side	0.154	0.035	0.700		
86	suction-side	0.194	-0.009	0.700		162	pressure-side	0.156	0.033	0.700		
87	suction-side	0.196	-0.011	0.700	20	163	pressure-side	0.157	0.031	0.700		
88	suction-side	0.197	-0.013	0.700	20	164	pressure-side	0.159	0.029	0.700		
89	suction-side	0.198	-0.015	0.700		165	pressure-side	0.160	0.027	0.700		
90	suction-side	0.200	-0.017	0.700		167	pressure-side	0.163	0.023	0.700		
92	suction-side	0.203	-0.021	0.700		168	pressure-side	0.164	0.022	0.700		
93	suction-side	0.204	-0.023	0.700		169	pressure-side	0.166	0.020	0.700		
94	suction-side	0.205	-0.025	0.700	25	170	pressure-side	0.167	0.018	0.700		
95	suction-side	0.206	-0.029	0.700		171	pressure-side	0.169	0.016	0.700		
96	suction-side	0.206	-0.029	0.700		172	pressure-side	0.170	0.014	0.700		
98	suction-side	0.200	-0.029	0.700		173	pressure-side	0.172	0.012	0.700		
99	suction-side	0.207	-0.028	0.700		175	pressure-side	0.175	0.008	0.700		
100	suction-side	0.207	-0.028	0.700	30	176	pressure-side	0.176	0.006	0.700		
101	pressure-side	0.043	0.119	0.700		177	pressure-side	0.177	0.004	0.700		
102	pressure-side	0.044	0.117	0.700		178	pressure-side	0.179	0.003	0.700		
103	pressure-side	0.047	0.116	0.700		179	pressure-side	0.180	-0.001	0.700		
104	pressure-side	0.051	0.115	0.700		180	pressure-side	0.182	-0.001	0.700		
106	pressure-side	0.054	0.114	0.700	35	182	pressure-side	0.185	-0.005	0.700		
107	pressure-side	0.056	0.114	0.700	55	183	pressure-side	0.186	-0.007	0.700		
108	pressure-side	0.058	0.113	0.700		184	pressure-side	0.187	-0.009	0.700		
109	pressure-side	0.061	0.113	0.700		185	pressure-side	0.189	-0.011	0.700		
110	pressure-side	0.065	0.112	0.700		180	pressure-side	0.190	-0.015	0.700		
112	pressure-side	0.067	0.111	0.700		188	pressure-side	0.192	-0.016	0.700		
113	pressure-side	0.070	0.110	0.700	40	189	pressure-side	0.195	-0.018	0.700		
114	pressure-side	0.072	0.109	0.700		190	pressure-side	0.196	-0.020	0.700		
115	pressure-side	0.074	0.108	0.700		191	pressure-side	0.198	-0.022	0.700		
116	pressure-side	0.078	0.107	0.700		192	pressure-side	0.199	-0.024	0.700		
117	pressure-side	0.081	0.100	0.700		193	pressure-side	0.200	-0.028	0.700		
119	pressure-side	0.083	0.103	0.700	45	195	pressure-side	0.203	-0.030	0.700		
120	pressure-side	0.085	0.102	0.700		196	pressure-side	0.204	-0.030	0.700		
121	pressure-side	0.087	0.101	0.700		197	pressure-side	0.205	-0.030	0.700		
122	pressure-side	0.089	0.100	0.700		198	pressure-side	0.205	-0.030	0.700		
123	pressure-side	0.091	0.098	0.700		200	pressure-side	0.206	-0.029	0.700		
124	pressure-side	0.095	0.096	0.700	50	200	suction-side	0.051	0.134	0.800		
126	pressure-side	0.097	0.094	0.700	50	2	suction-side	0.053	0.135	0.800		
127	pressure-side	0.099	0.093	0.700		3	suction-side	0.055	0.136	0.800		
128	pressure-side	0.100	0.092	0.700		4	suction-side	0.058	0.136	0.800		
129	pressure-side	0.102	0.090	0.700		5	suction-side	0.060	0.136	0.800		
130	pressure-side	0.104	0.089	0.700		7	suction-side	0.065	0.135	0.800		
131	pressure-side	0.108	0.086	0.700	55	8	suction-side	0.067	0.135	0.800		
133	pressure-side	0.110	0.084	0.700		9	suction-side	0.069	0.134	0.800		
134	pressure-side	0.111	0.082	0.700		10	suction-side	0.072	0.133	0.800		
135	pressure-side	0.113	0.081	0.700		11	suction-side	0.074	0.132	0.800		
136	pressure-side	0.115	0.079	0.700		12	suction-side	0.078	0.131	0.800		
137	pressure-side	0.117	0.078	0.700	60	13	suction-side	0.078	0.130	0.800		
139	pressure-side	0.120	0.074	0.700		15	suction-side	0.083	0.128	0.800		
140	pressure-side	0.122	0.073	0.700		16	suction-side	0.085	0.127	0.800		
141	pressure-side	0.123	0.071	0.700		17	suction-side	0.087	0.126	0.800		
142	pressure-side	0.125	0.069	0.700		18	suction-side	0.089	0.124	0.800		
145	pressure-side	0.127	0.067	0.700	65	19	suction side	0.091	0.123	0.800		
144 145	pressure-side	0.128	0.000	0.700	55	20	suction-side	0.093	0.121	0.800		
170	Pressure-side	0.130	0.007	0.700		<u> 1</u>	Succon-Side	0.024	0.120	0.000		

	TABLE I-continued						TABLE I-continued					
	Non-Dime	ensionalized (X	Y Z/Span)			Non-Dimensionalized (X Y Z/Span)						
Ν	Location	х	Y	Z	_ 5 _	Ν	Location	х	Y	Z		
22	suction-side	0.096	0.118	0.800		98	suction-side	0.200	-0.023	0.800		
23	suction-side	0.098	0.117	0.800		99	suction-side	0.200	-0.022	0.800		
24	suction-side	0.100	0.115	0.800		100	suction-side	0.200	-0.022	0.800		
25	suction-side	0.102	0.114	0.800		101	pressure-side	0.051	0.134	0.800		
20	suction-side	0.103	0.112	0.800	10	102	pressure-side	0.052	0.132	0.800		
28	suction-side	0.107	0.109	0.800	10	104	pressure-side	0.056	0.130	0.800		
29	suction-side	0.108	0.107	0.800		105	pressure-side	0.059	0.130	0.800		
30	suction-side	0.110	0.105	0.800		106	pressure-side	0.061	0.129	0.800		
31	suction-side	0.111	0.103	0.800		107	pressure-side	0.063	0.128	0.800		
32	suction-side	0.113	0.101	0.800		108	pressure-side	0.065	0.127	0.800		
34	suction-side	0.116	0.098	0.800	15	110	pressure-side	0.070	0.126	0.800		
35	suction-side	0.118	0.096	0.800		111	pressure-side	0.072	0.125	0.800		
36	suction-side	0.119	0.094	0.800		112	pressure-side	0.074	0.124	0.800		
37	suction-side	0.121	0.092	0.800		113	pressure-side	0.076	0.122	0.800		
38 39	suction-side	0.122	0.090	0.800		114	pressure-side	0.078	0.121	0.800		
40	suction-side	0.125	0.086	0.800	20	116	pressure-side	0.082	0.119	0.800		
41	suction-side	0.126	0.085	0.800		117	pressure-side	0.084	0.117	0.800		
42	suction-side	0.128	0.083	0.800		118	pressure-side	0.086	0.116	0.800		
43	suction-side	0.129	0.081	0.800		119	pressure-side	0.087	0.114	0.800		
45	suction-side	0.132	0.079	0.800		120	pressure-side	0.089	0.115	0.800		
46	suction-side	0.134	0.075	0.800	25	122	pressure-side	0.093	0.110	0.800		
47	suction-side	0.135	0.073	0.800		123	pressure-side	0.094	0.108	0.800		
48	suction-side	0.136	0.071	0.800		124	pressure-side	0.096	0.107	0.800		
49 50	suction-side	0.138	0.069	0.800		125	pressure-side	0.098	0.103	0.800		
51	suction-side	0.141	0.065	0.800		120	pressure-side	0.101	0.102	0.800		
52	suction-side	0.142	0.063	0.800	30	128	pressure-side	0.103	0.100	0.800		
53	suction-side	0.143	0.061	0.800		129	pressure-side	0.104	0.098	0.800		
54 55	suction-side	0.145	0.059	0.800		130	pressure-side	0.106	0.097	0.800		
56	suction-side	0.148	0.056	0.800		132	pressure-side	0.109	0.093	0.800		
57	suction-side	0.149	0.054	0.800		133	pressure-side	0.111	0.092	0.800		
58	suction-side	0.150	0.052	0.800	35	134	pressure-side	0.112	0.090	0.800		
59 60	suction-side	0.152	0.050	0.800		135	pressure-side	0.114	0.088	0.800		
61	suction-side	0.155	0.046	0.800		137	pressure-side	0.117	0.085	0.800		
62	suction-side	0.156	0.044	0.800		138	pressure-side	0.118	0.083	0.800		
63	suction-side	0.157	0.042	0.800		139	pressure-side	0.120	0.081	0.800		
64 65	suction-side	0.159	0.040	0.800	40	140	pressure-side	0.121	0.079	0.800		
66	suction-side	0.161	0.036	0.800		142	pressure-side	0.124	0.076	0.800		
67	suction-side	0.163	0.034	0.800		143	pressure-side	0.126	0.074	0.800		
68	suction-side	0.164	0.032	0.800		144	pressure-side	0.127	0.072	0.800		
69 70	suction-side	0.166	0.030	0.800		145	pressure-side	0.129	0.070	0.800		
71	suction-side	0.168	0.026	0.800	45	147	pressure-side	0.131	0.067	0.800		
72	suction-side	0.170	0.024	0.800		148	pressure-side	0.133	0.065	0.800		
73	suction-side	0.171	0.022	0.800		149	pressure-side	0.134	0.063	0.800		
74 75	suction-side	0.172	0.020	0.800		150	pressure-side	0.130	0.059	0.800		
76	suction-side	0.175	0.016	0.800		151	pressure-side	0.139	0.057	0.800		
77	suction-side	0.176	0.014	0.800	50	153	pressure-side	0.140	0.056	0.800		
78 70	suction-side	0.178	0.012	0.800		154	pressure-side	0.142	0.054	0.800		
79 80	suction-side	0.179	0.010	0.800		155	pressure-side	0.143	0.052	0.800		
81	suction-side	0.180	0.006	0.800		157	pressure-side	0.146	0.048	0.800		
82	suction-side	0.183	0.004	0.800		158	pressure-side	0.147	0.046	0.800		
83	suction-side	0.184	0.002	0.800	55	159	pressure-side	0.149	0.044	0.800		
84 85	suction-side	0.186	-0.002	0.800		160	pressure-side	0.150	0.043	0.800		
86	suction-side	0.188	-0.004	0.800		162	pressure-side	0.153	0.039	0.800		
87	suction-side	0.190	-0.006	0.800		163	pressure-side	0.154	0.037	0.800		
88	suction-side	0.191	-0.008	0.800		164	pressure-side	0.155	0.035	0.800		
89 90	suction-side	0.192	-0.010	0.800	60	165	pressure-side	0.157	0.033	0.800		
91	suction-side	0.195	-0.012	0.800		167	pressure-side	0.159	0.029	0.800		
92	suction-side	0.196	-0.016	0.800		168	pressure-side	0.161	0.027	0.800		
93	suction-side	0.197	-0.018	0.800		169	pressure-side	0.162	0.025	0.800		
94 95	suction-side	0.199	-0.020	0.800		170	pressure-side	0.165	0.024	0.800		
96	suction-side	0.199	-0.024	0.800	65	172	pressure-side	0.166	0.020	0.800		
97	suction-side	0.200	-0.023	0.800		173	pressure-side	0.167	0.018	0.800		

	Non-Dimensionalized (X Y Z/Span)						Y Z/Span)			
N	Location	х	Y	Z		Ν	Location	х	Y	Z
174	pressure-side	0.169	0.016	0.800		50	suction-side	0.137	0.076	0.900
175	pressure-side	0.170	0.014	0.800		51	suction-side	0.138	0.075	0.900
176	pressure-side	0.171	0.012	0.800		52	suction-side	0.139	0.073	0.900
178	pressure-side	0.173	0.010	0.800		53 54	suction-side	0.140	0.071	0.900
178	pressure-side	0.175	0.008	0.800	10	55	suction-side	0.141	0.067	0.900
180	pressure-side	0.177	0.004	0.800	10	56	suction-side	0.144	0.065	0.900
181	pressure-side	0.178	0.002	0.800		57	suction-side	0.145	0.064	0.900
182	pressure-side	0.179	0.000	0.800		58	suction-side	0.146	0.062	0.900
183	pressure-side	0.180	-0.001	0.800		59	suction-side	0.147	0.060	0.900
184	pressure-side	0.182	-0.005	0.800		60	suction-side	0.148	0.038	0.900
186	pressure-side	0.184	-0.007	0.800	15	62	suction-side	0.151	0.054	0.900
187	pressure-side	0.186	-0.009	0.800		63	suction-side	0.152	0.053	0.900
188	pressure-side	0.187	-0.011	0.800		64	suction-side	0.153	0.051	0.900
189	pressure-side	0.188	-0.013	0.800		65	suction-side	0.154	0.049	0.900
190	pressure-side	0.190	-0.013	0.800		67	suction-side	0.155	0.047	0.900
192	pressure-side	0.192	-0.019	0.800	20	68	suction-side	0.158	0.043	0.900
193	pressure-side	0.194	-0.021	0.800		69	suction-side	0.159	0.042	0.900
194	pressure-side	0.195	-0.023	0.800		70	suction-side	0.160	0.040	0.900
195	pressure-side	0.197	-0.024	0.800		71	suction-side	0.161	0.038	0.900
190	pressure-side	0.197	-0.024	0.800		72	suction-side	0.162	0.036	0.900
198	pressure-side	0.198	-0.024	0.800	25	74	suction-side	0.165	0.032	0.900
199	pressure-side	0.199	-0.024	0.800		75	suction-side	0.166	0.031	0.900
200	pressure-side	0.199	-0.024	0.800		76	suction-side	0.167	0.029	0.900
1	suction-side	0.062	0.144	0.900		77	suction-side	0.168	0.027	0.900
2	suction-side	0.064	0.145	0.900		78 70	suction-side	0.169	0.025	0.900
4	suction-side	0.068	0.146	0.900	30	80	suction-side	0.172	0.023	0.900
5	suction-side	0.070	0.145	0.900	50	81	suction-side	0.173	0.020	0.900
6	suction-side	0.073	0.145	0.900		82	suction-side	0.174	0.018	0.900
7	suction-side	0.075	0.144	0.900		83	suction-side	0.175	0.016	0.900
8	suction-side	0.077	0.143	0.900		84	suction-side	0.176	0.014	0.900
10	suction-side	0.081	0.142	0.900	2.5	85	suction-side	0.179	0.012	0.900
11	suction-side	0.082	0.140	0.900	35	87	suction-side	0.180	0.009	0.900
12	suction-side	0.084	0.139	0.900		88	suction-side	0.181	0.007	0.900
13	suction-side	0.086	0.138	0.900		89	suction-side	0.182	0.005	0.900
14	suction-side	0.088	0.137	0.900		90	suction-side	0.183	0.003	0.900
15	suction-side	0.090	0.130	0.900		92	suction-side	0.185	-0.001	0.900
17	suction-side	0.093	0.133	0.900	40	93	suction-side	0.187	-0.002	0.900
18	suction-side	0.095	0.132	0.900		94	suction-side	0.188	-0.008	0.900
19	suction-side	0.096	0.130	0.900		95	suction-side	0.188	-0.004	0.900
20	suction-side	0.098	0.129	0.900		96	suction-side	0.189	-0.008	0.900
21	suction-side	0.100	0.127	0.900		97	suction-side	0.189	-0.007	0.900
23	suction-side	0.103	0.120	0.900	45	99	suction-side	0.189	-0.006	0.900
24	suction-side	0.104	0.122	0.900		100	suction-side	0.189	-0.006	0.900
25	suction-side	0.105	0.121	0.900		101	pressure-side	0.062	0.144	0.900
26	suction-side	0.107	0.119	0.900		102	pressure-side	0.063	0.142	0.900
27	suction-side	0.108	0.117	0.900		103	pressure-side	0.003	0.141	0.900
20	suction-side	0.110	0.114	0.900	50	105	pressure-side	0.069	0.140	0.900
30	suction-side	0.112	0.112	0.900	20	106	pressure-side	0.071	0.139	0.900
31	suction-side	0.114	0.111	0.900		107	pressure-side	0.073	0.139	0.900
32	suction-side	0.115	0.109	0.900		108	pressure-side	0.075	0.138	0.900
33 34	suction-side	0.116	0.107	0.900		109	pressure-side	0.077	0.137	0.900
35	suction-side	0.118	0.105	0.900		110	pressure-side	0.081	0.135	0.900
36	suction-side	0.120	0.102	0.900	22	112	pressure-side	0.083	0.134	0.900
37	suction-side	0.121	0.100	0.900		113	pressure-side	0.084	0.133	0.900
38	suction-side	0.122	0.098	0.900		114	pressure-side	0.086	0.131	0.900
39 10	suction-side	0.124	0.096	0.900		115	pressure-side	0.088	0.130	0.900
40	suction-side	0.125	0.093	0.900		117	pressure-side	0.091	0.129	0.900
42	suction-side	0.127	0.091	0.900	60	118	pressure-side	0.093	0.126	0.900
43	suction-side	0.128	0.089	0.900		119	pressure-side	0.094	0.124	0.900
44	suction-side	0.130	0.087	0.900		120	pressure-side	0.096	0.123	0.900
45	suction-side	0.131	0.086	0.900		121	pressure-side	0.097	0.121	0.900
40 47	suction-side	0.132	0.082	0.900		122	pressure-side	0.100	0.120	0.900
48	suction-side	0.134	0.080	0.900	65	124	pressure-side	0.101	0.116	0.900
49	suction-side	0.136	0.078	0.900		125	pressure-side	0.103	0.115	0.900

	TABLE I-continued						TABLE I-continued					
	Non-Dime	ensionalized (X	Y Z/Span)			Non-Dimensionalized (X Y Z/Span)						
N	Location	х	Y	Z		Ν	Location	Х	Y	Z		
126	pressure-side	0.104	0.113	0.900	_ 3 _	2	suction-side	0.083	0.146	1.000		
127	pressure-side	0.105	0.112	0.900		3	suction-side	0.085	0.146	1.000		
128	pressure-side	0.107	0.110	0.900		4	suction-side	0.087	0.146	1.000		
129	pressure-side	0.108	0.108	0.900		5	suction-side	0.089	0.146	1.000		
130	pressure-side	0.109	0.107	0.900		6	suction-side	0.090	0.145	1.000		
131	pressure-side	0.111	0.105	0.900	10	7	suction-side	0.092	0.144	1.000		
132	pressure-side	0.112	0.103	0.900		8	suction-side	0.094	0.143	1.000		
133	pressure-side	0.115	0.101	0.900		10	suction-side	0.093	0.142	1.000		
135	pressure-side	0.114	0.100	0.900		11	suction-side	0.099	0.140	1.000		
136	pressure-side	0.117	0.096	0.900		12	suction-side	0.100	0.139	1.000		
137	pressure-side	0.118	0.095	0.900	15	13	suction-side	0.102	0.137	1.000		
138	pressure-side	0.119	0.093	0.900	15	14	suction-side	0.103	0.136	1.000		
139	pressure-side	0.121	0.091	0.900		15	suction-side	0.104	0.135	1.000		
140	pressure-side	0.122	0.089	0.900		16	suction-side	0.106	0.133	1.000		
141	pressure-side	0.123	0.088	0.900		1/	suction-side	0.107	0.132	1.000		
142	pressure-side	0.124	0.080	0.900		10	suction-side	0.108	0.130	1.000		
143	pressure-side	0.125	0.082	0.900	20	20	suction-side	0.110	0.129	1.000		
145	pressure-side	0.128	0.081	0.900		21	suction-side	0.112	0.126	1.000		
146	pressure-side	0.129	0.079	0.900		22	suction-side	0.113	0.124	1.000		
147	pressure-side	0.130	0.077	0.900		23	suction-side	0.114	0.123	1.000		
148	pressure-side	0.131	0.075	0.900		24	suction-side	0.116	0.121	1.000		
149	pressure-side	0.133	0.074	0.900	25	25	suction-side	0.117	0.120	1.000		
150	pressure-side	0.134	0.072	0.900	23	26	suction-side	0.118	0.118	1.000		
151	pressure-side	0.135	0.070	0.900		27	suction-side	0.119	0.117	1.000		
152	pressure-side	0.137	0.066	0.900		29	suction-side	0.120	0.113	1.000		
154	pressure-side	0.138	0.065	0.900		30	suction-side	0.122	0.112	1.000		
155	pressure-side	0.139	0.063	0.900		31	suction-side	0.123	0.110	1.000		
156	pressure-side	0.141	0.061	0.900	30	32	suction-side	0.124	0.109	1.000		
157	pressure-side	0.142	0.059	0.900		33	suction-side	0.125	0.107	1.000		
158	pressure-side	0.143	0.057	0.900		34	suction-side	0.126	0.105	1.000		
159	pressure-side	0.144	0.056	0.900		35	suction-side	0.127	0.104	1.000		
161	pressure-side	0.145	0.054	0.900		30	suction-side	0.128	0.102	1.000		
161	pressure-side	0.147	0.052	0.900	25	38	suction-side	0.129	0.099	1.000		
163	pressure-side	0.149	0.048	0.900	35	39	suction-side	0.131	0.097	1.000		
164	pressure-side	0.150	0.047	0.900		40	suction-side	0.132	0.095	1.000		
165	pressure-side	0.151	0.045	0.900		41	suction-side	0.133	0.094	1.000		
166	pressure-side	0.152	0.043	0.900		42	suction-side	0.134	0.092	1.000		
167	pressure-side	0.153	0.041	0.900		43	suction-side	0.135	0.091	1.000		
160	pressure-side	0.154	0.040	0.900	40	44 45	suction-side	0.130	0.089	1.000		
170	pressure-side	0.157	0.036	0.900		46	suction-side	0.138	0.086	1.000		
171	pressure-side	0.158	0.034	0.900		47	suction-side	0.139	0.084	1.000		
172	pressure-side	0.159	0.032	0.900		48	suction-side	0.140	0.082	1.000		
173	pressure-side	0.160	0.031	0.900		49	suction-side	0.142	0.081	1.000		
174	pressure-side	0.161	0.029	0.900		50	suction-side	0.143	0.079	1.000		
175	pressure-side	0.162	0.027	0.900	45	51	suction-side	0.144	0.077	1.000		
176	pressure-side	0.163	0.025	0.900		52	suction-side	0.145	0.076	1.000		
178	pressure-side	0.166	0.023	0.900		55	suction-side	0.140	0.073	1.000		
179	pressure-side	0.167	0.022	0.900		55	suction-side	0.148	0.071	1.000		
180	pressure-side	0.168	0.018	0.900		56	suction-side	0.149	0.069	1.000		
181	pressure-side	0.169	0.016	0.900	50	57	suction-side	0.150	0.068	1.000		
182	pressure-side	0.170	0.014	0.900		58	suction-side	0.151	0.066	1.000		
183	pressure-side	0.171	0.013	0.900		59	suction-side	0.152	0.064	1.000		
184	pressure-side	0.173	0.011	0.900		60	suction-side	0.153	0.063	1.000		
185	pressure-side	0.174	0.009	0.900		62	suction-side	0.154	0.061	1.000		
187	pressure-side	0.176	0.007	0.900		63	suction-side	0.156	0.058	1.000		
188	pressure-side	0.177	0.004	0.900	55	64	suction-side	0.157	0.056	1.000		
189	pressure-side	0.178	0.002	0.900		65	suction-side	0.158	0.055	1.000		
190	pressure-side	0.180	0.000	0.900		66	suction-side	0.159	0.053	1.000		
191	pressure-side	0.181	-0.001	0.900		67	suction-side	0.160	0.051	1.000		
192	pressure-side	0.182	-0.003	0.900		68	suction-side	0.161	0.050	1.000		
193	pressure-side	0.183	-0.005	0.900	60	69 70	suction-side	0.162	0.048	1.000		
194	pressure-side	0.185	-0.007	0.900		70	suction-side	0.164	0.045	1.000		
196	pressure-side	0.186	-0.008	0.900		72	suction-side	0.165	0.043	1.000		
197	pressure-side	0.187	-0.008	0.900		73	suction-side	0.166	0.042	1.000		
198	pressure-side	0.188	-0.008	0.900		74	suction-side	0.167	0.040	1.000		
199	pressure-side	0.188	-0.008	0.900	<i>.</i> -	75	suction-side	0.168	0.038	1.000		
200	pressure-side	0.188	-0.008	0.900	65	76	suction-side	0.169	0.037	1.000		
1	suction-side	0.081	0.145	1.000		77	suction-side	0.170	0.035	1.000		

	TAI	BLE I-contin	ued			TABLE I-continued						
	Non-Dim	ensionalized (X Y	Z/Span)		_	Non-Dimensionalized (X Y Z/Span)						
N	Location	х	Y	Z	- 5	N	Location	x	Y	Z		
78	suction-side	0.171	0.033	1.000		154	pressure-side	0.143	0.069	1.000		
79	suction-side	0.172	0.032	1.000		155	pressure-side	0.144	0.067	1.000		
80	suction-side	0.173	0.030	1.000		156	pressure-side	0.146	0.066	1.000		
81	suction-side	0.174	0.029	1.000		157	pressure-side	0.147	0.064	1.000		
82	suction-side	0.175	0.027	1.000		158	pressure-side	0.148	0.062	1.000		
83	suction-side	0.176	0.025	1.000	10	159	pressure-side	0.149	0.061	1.000		
84	suction-side	0.177	0.024	1.000		160	pressure-side	0.150	0.059	1.000		
83 86	suction-side	0.178	0.022	1.000		161	pressure-side	0.151	0.056	1.000		
80 87	suction-side	0.179	0.020	1.000		162	pressure-side	0.152	0.056	1.000		
88	suction-side	0.180	0.017	1.000		164	pressure-side	0.154	0.053	1.000		
89	suction-side	0.182	0.016	1.000		165	pressure-side	0.155	0.051	1.000		
90	suction-side	0.184	0.014	1.000	15	166	pressure-side	0.156	0.050	1.000		
91	suction-side	0.185	0.012	1.000		167	pressure-side	0.157	0.048	1.000		
92	suction-side	0.186	0.011	1.000		168	pressure-side	0.158	0.046	1.000		
93	suction-side	0.187	0.009	1.000		169	pressure-side	0.159	0.045	1.000		
94	suction-side	0.187	0.004	1.000		170	pressure-side	0.160	0.043	1.000		
95	suction-side	0.188	0.007	1.000	20	171	pressure-side	0.161	0.042	1.000		
96	suction-side	0.188	0.004	1.000	20	172	pressure-side	0.162	0.040	1.000		
97	suction-side	0.188	0.005	1.000		173	pressure-side	0.163	0.038	1.000		
98	suction-side	0.188	0.005	1.000		175	pressure-side	0.164	0.037	1.000		
99 100	suction-side	0.188	0.006	1.000		175	pressure-side	0.165	0.035	1.000		
100	pressure-side	0.188	0.000	1.000		170	pressure-side	0.167	0.034	1.000		
101	pressure-side	0.081	0.145	1.000	25	178	pressure-side	0.168	0.030	1.000		
102	pressure-side	0.082	0.142	1.000		179	pressure-side	0.169	0.029	1.000		
104	pressure-side	0.084	0.140	1.000		180	pressure-side	0.170	0.027	1.000		
105	pressure-side	0.085	0.139	1.000		181	pressure-side	0.171	0.026	1.000		
106	pressure-side	0.087	0.138	1.000		182	, pressure-side	0.172	0.024	1.000		
107	pressure-side	0.089	0.137	1.000		183	pressure-side	0.173	0.022	1.000		
108	pressure-side	0.090	0.136	1.000	30	184	pressure-side	0.174	0.021	1.000		
109	pressure-side	0.092	0.135	1.000		185	pressure-side	0.175	0.019	1.000		
110	pressure-side	0.094	0.134	1.000		186	pressure-side	0.176	0.018	1.000		
111	pressure-side	0.095	0.133	1.000		187	pressure-side	0.177	0.016	1.000		
112	pressure-side	0.097	0.132	1.000		188	pressure-side	0.178	0.014	1.000		
113	pressure-side	0.098	0.131	1.000		189	pressure-side	0.179	0.013	1.000		
114	pressure-side	0.100	0.130	1.000	35	101	pressure-side	0.180	0.011	1.000		
115	pressure-side	0.103	0.129	1.000		191	pressure-side	0.182	0.008	1.000		
117	pressure-side	0.105	0.126	1.000		193	pressure-side	0.183	0.007	1.000		
118	pressure-side	0.105	0.125	1.000		194	pressure-side	0.184	0.005	1.000		
119	pressure-side	0.106	0.124	1.000		195	pressure-side	0.186	0.004	1.000		
120	pressure-side	0.108	0.122	1.000	40	196	pressure-side	0.186	0.004	1.000		
121	pressure-side	0.109	0.121	1.000	40	197	pressure-side	0.186	0.004	1.000		
122	pressure-side	0.110	0.119	1.000		198	pressure-side	0.187	0.004	1.000		
123	pressure-side	0.111	0.118	1.000		199	pressure-side	0.187	0.004	1.000		
124	pressure-side	0.112	0.116	1.000		200	pressure-side	0.187	0.004	1.000		
125	pressure-side	0.114	0.115	1.000								
126	pressure-side	0.115	0.113	1.000	45	The t	arminology used	I harain is for	the nurnose	ofdescrib		
127	pressure-side	0.110	0.112	1.000	40	in a newt	i antan ambadim	anta an ¹ ri an	d is not into	of describ-		
120	pressure-side	0.118	0.110	1.000		ing part	icular embodim	ents only an	d is not inte			
130	pressure-side	0.119	0.107	1.000		limiting	of the disclosur	e. As used he	rein, the sing	gular forms		
130	pressure-side	0.120	0.105	1.000		"a", "an	" and "the" are in	ntended to inc	clude the plui	ral forms as		
132	pressure-side	0.121	0.104	1.000		well, un	less the context	clearly indica	tes otherwis	e. It will be		
133	pressure-side	0.122	0.102	1.000	50	further u	inderstood that	the terms "co	omprises" an	d/or "com-		
134	pressure-side	0.123	0.101	1.000		nrising'	when used in th	is specificati	on specify th	ie nresence		
135	pressure-side	0.124	0.099	1.000		of states	footuros intog	ns speemean	on, speeny u	nopte and/		
136	pressure-side	0.125	0.097	1.000		of stated	i leatures, intege	r_1 , steps, op				
137	pressure-side	0.126	0.096	1.000		or comp	onents, but do n	ot preclude t	he presence	or addition		
138	pressure-side	0.127	0.094	1.000		of one	or more other f	eatures, inte	gers, steps,	operations,		
139	pressure-side	0.128	0.093	1.000	55	element	s, components, a	and/or groups	s thereof.			
140	pressure-side	0.129	0.091	1.000		This	written descript	tion uses ex	amples to d	isclose the		
141	pressure-side	0.130	0.089	1.000		inventio	n including the	e best mode	and also to	enable anv		
143	pressure-side	0.132	0.086	1.000		norcon	killed in the art	to practice t	he invention	including		
143	pressure-side	0.132	0.085	1.000						, including		
145	pressure-side	0.134	0.083	1.000		making	and using any de	evices or syste	ems and perio	orming any		
146	pressure-side	0.135	0.082	1.000	60	incorpor	rated methods. T	he patentabl	e scope of th	e invention		
147	pressure-side	0.136	0.080	1.000		is define	d by the claims,	and may incl	ude other exa	amples that		
148	pressure-side	0.137	0.078	1.000		occur to	those skilled i	n the art. Su	ich other ex	amples are		
149	pressure-side	0.138	0.077	1.000		intended	to be within the	he scone of	the claims if	f they have		
150	pressure-side	0.139	0.075	1.000		etmotio	al alamanta that	do not differ f	rom the liter	al language		
151	pressure-side	0.140	0.074	1.000	<i></i>	of 41. 1	ai cicinents tildt (ao not uniter l	lont -t	al al guage		
152	pressure-side	0.141	0.072	1.000	65	of the cl	anns, or 11 they 11	iciude equiva	ient structur	ai elements		
153	pressure-side	0.142	0.070	1.000		with ins	substantial differ	rences from	the literal la	nguages of		
						the clair	ns.					

What is claimed is:

1. In a turbomachine including a row of substantially identical buckets circumferentially mounted on a rotor, each bucket including a respective airfoil with opposed pressure and suction sidewalls extending chordwise between opposed 5 leading and trailing edges and spanwise between a root and a tip, a flow passage between each pair of airfoils, each flow passage comprising:

39

a pressure sidewall of a first airfoil;

- a suction sidewall of a second airfoil substantially facing 10 the pressure sidewall of the first airfoil; and
- a throat including an area defined at least in part by a minimum gap between the pressure sidewall of the first airfoil and the suction sidewall of the second airfoil for each corresponding chord along spans of the first and 15 second airfoils, a width of the throat at at least one of the tips or the roots of the airfoils being no more than about 15% more than a width of the throat at a respective first or second distance from the at least one of the tips or the roots. 20

2. The flow passage of claim 1, wherein the first distance is no more than about 25% of the span of one of the first airfoil or the second airfoil.

3. The flow passage of claim 2, wherein the first distance is no more than about 20% of the span of the one of the first 25 airfoil or the second airfoil.

4. The flow passage of claim 1, wherein the width of the throat increases by no more than about 10% of a width of the throat at the at least one of the first or second distance.

of a rate of change of the width of the throat versus span increases with decreasing distance to at least one of the tips or the roots of the first and second airfoils within the first distance from the at least one of the tips or the roots.

6. The flow passage of claim 1, wherein the first distance 35 and the second distance are no more than about 20% of a span of the first airfoil, a width of the throat at the tips is no more than about 10% wider than the width of the throat at the first distance, and a width of the throat at the roots is no more than about 10% wider than the width of the throat at the second 40 component throat at the tips is no more than about 115% of distance.

7. The flow passage of claim 1, wherein at least one of the suction sidewall or the pressure sidewall of at least one airfoil includes a nominal profile substantially in accordance with non-dimensional Cartesian coordinate values of X, Y, and Z 45 set forth in TABLE I, wherein the coordinate values are nondimensionalized and convertible to distances by multiplying the coordinate values by a desired span in units of distance, and wherein X and Y values connected by smooth continuing arcs define profile sections of the at least one of the suction 50 sidewall or the pressure sidewall at each distance Z along the airfoil, the profile sections at the Z distances being joined smoothly with one another to form the profile of the at least one of the suction sidewall or the pressure sidewall.

8. The flow passage of claim 1, further comprising a first 55 end bounded at least in part by a first endwall extending between one of the roots or the tips of the first and second airfoils.

9. The flow passage of claim 8, wherein the row of substantially identical buckets is part of a diffuser of an axial 60 turbine

10. The flow passage of claim 1, wherein the row of substantially identical buckets is in a last stage of an axial turbine. 11. A stage of a turbine comprising:

a plurality of airfoils mounted on a rotor of a turbine about 65

an axis of rotation of the turbine in a substantially circumferential, spaced-apart fashion, each airfoil includ40

ing respective opposed pressure and suction sidewalls extending chordwise between respective opposed leading and trailing edges and spanwise between opposed inner and outer endwalls, a respective root of each airfoil connected to one of the inner and outer endwalls, and at least one of the suction sidewall or the pressure sidewall including a nominal profile substantially in accordance with non-dimensional Cartesian coordinate values of X, Y, and Z set forth in TABLE I, wherein the coordinate values are non-dimensionalized and convertible to distances by multiplying the coordinate values by a desired span in units of distance, and wherein X and Y values connected by smooth continuing arcs define profile sections of the at least one of the suction sidewall or the pressure sidewall at each distance Z along the airfoil, the profile sections at the Z distances being joined smoothly with one another to form the profile of the at least one of the suction sidewall or the pressure sidewall; and

a total throat including a component throat between adjacent airfoils of the plurality of airfoils, each component throat including a minimum gap between a pressure sidewall of a first airfoil and a suction sidewall of a second airfoil adjacent to the first airfoil for all corresponding points along spans of the first and second airfoils, a width of the component throat increasing with decreasing distance to at least one of the tips of the roots within a first distance away from the at least one of the tips or the roots.

12. The turbine nozzle of claim 11, wherein an absolute 5. The flow passage of claim 1, wherein an absolute value 30 value of a rate of change of the width of the component throat with respect to span also increases with decreasing distance to the at least one of the tips of the roots within the first distance away from the at least one of the tips or the roots.

> 13. The turbine nozzle of claim 11, wherein the width of the component throat at at least one of the tips or the roots is no more than about 15% wider than a respective width of the component throat at the first distance away from the respective at least one of the tips or the roots.

> 14. The turbine nozzle of claim 13, wherein the width of the the width of the component throat at about 75% span.

> 15. The turbine nozzle of claim 13, wherein width of the component throat at the roots is no more than about 115% of the width of the component throat at about 25% span.

> 16. The turbine nozzle of claim 11, wherein the stage is a last stage of an axial turbine.

> 17. The turbine nozzle of claim 11, wherein both the pressure sidewall and the suction sidewall of each airfoil includes a nominal profile substantially in accordance with non-dimensional Cartesian coordinate values of X, Y, and Z set forth in TABLE I, wherein the coordinate values are convertible to distances by multiplying the values by a desired span expressed in units of distance, and wherein X and Y values connected by smooth continuing arcs define airfoil profile sections at each distance Z along the airfoil, the profile sections at the Z distances being joined smoothly with one another to form the airfoil profile.

18. A turbine system comprising:

- a compressor section;
- a combustion section; and
- a turbine section, wherein a stage of the turbine section includes a plurality of substantially identical airfoils substantially circumferentially spaced apart about an axis of rotation of the turbine section, each airfoil including opposed pressure and suction sidewalls extending chordwise between opposed leading and trailing edges and spanwise between opposed respective roots and tips,

and at least one of the suction sidewall or the pressure sidewall of each airfoil including a nominal profile substantially in accordance with non-dimensional Cartesian coordinate values of X, Y, and Z set forth in TABLE I, wherein the coordinate values are non-dimensionalized 5 and convertible to distances by multiplying the coordinate values by a desired span in units of distance, and wherein X and Y values connected by smooth continuing arcs define profile sections of the at least one of the suction sidewall or the pressure sidewall at each distance 10 Z along the airfoil, the profile sections at the Z distances being joined smoothly with one another to form the profile of the at least one of the suction sidewall or the pressure sidewall; and

a total throat including a component throat between each 15 pair of adjacent airfoils, each component throat including an area defined at least in part by a minimum gap between a pressure sidewall of a first airfoil and a suction sidewall of an adjacent second airfoil for all points along spans of the first and second airfoils. 20

19. The turbine system of claim **18**, wherein a width of the component throat increases with decreasing distance to the roots of the first and second airfoils within a first distance from the roots and within a second distance from the tips, and at least one of the first distance or the second distance is no 25 more than 25% of the spans of the first and second airfoils.

20. The turbine system of claim **18**, wherein a width of the component throat at at least one of the roots or the tips is no more than about 110% of the width of the component throat at about 20% span away from the respective at least one of the 30 roots or the tips.

* * * *