
(12) STANDARD PATENT (11) Application No. AU 2015211224 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Efficient resource utilization in data centers

(51) International Patent Classification(s)
G06F 15/173 (2006.01)

(21) Application No: 2015211224 (22) Date of Filing: 2015.01.23

(87) WIPO No: W015/116490

(30) Priority Data

(31) Number (32) Date (33) Country
14/169,357 2014.01.31 US

(43) Publication Date: 2015.08.06
(44) Accepted Journal Date: 2016.12.22

(71) Applicant(s)
Google Inc.

(72) Inventor(s)
Cypher, Robert;Dahl, Peter;Schirripa, Steven Robert

(74) Agent / Attorney
Spruson & Ferguson, L 35 St Martins Tower 31 Market St, Sydney, NSW, 2000

(56) Related Art
US 2004/0210895 Al
US 2003/0212898 Al
US 2007/0078982 Al
US 2013/0132958 Al
US 2004/0153748 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2015/116490 Al
6 August 2015 (06.08.2015) W I PO I P CT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 15/173 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2015/0 12629 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

23 January 2015 (23.01.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:
14/169,357 31 January 2014 (31.01.2014) US (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: GOOGLE INC. [US/US]; 1600 Amphitheatre GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Parkway, Mountain View, CA 94043 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

(72) Inventors: CYPHER, Robert; 18460 Montpere Way, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

Saratoga, CA 95070 (US). DAHL, Peter; 1032 Lupin' DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Drive, Sunnyvale, CA 94086 (US). SCHIRRIPA, Steven, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

Robert; 19 Meredith Way, Hazlet, NJ 07730 (US) SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

(74) Agents: KRUEGER, Brett, A. et al.; Honigman Miller Published:
Schwartz And Cohn LLP, 350 East Michigan Avenue,
Suite 300, Kalamazoo, MI 49007-3800 (US). - with international search report (Art. 21(3))

(54) Title: EFFICIENT RESOURCE UTILIZATION IN DATA CENTERS

100

120,120a 120 120b I20120n

C jei CIentClient
128 128

Storage...................................12
Logk, t Transaction API 350

122 - eus

Network j30

Data Control 210- umo Job Management ->220 Yo

[)ata o torg Cuatroe

Peo~n 1: vemr Host Miemory Host Memory Host

1' 1a10,110b 110.110r

FIG. 1A

(57) Abstract: A method (600) includes identifying high-availability jobs (122, 122a) and low- availability jobs (122, 122b) that de
mand usage of resources (110, 112, 114, 116, 422, 424, 426, 432, 434, 436) of a distributed system (100). The method includes de
termining a first quota (Ql) of the resources available to low-availability jobs as a quantity of the resources available during normal

f4 operations, and determining a second quota (Q2) of the resources available to high-availability jobs as a quantity of the resources
available during normal operations minus a quantity of the resources lost due to a tolerated event. The method includes executing the
jobs on the distributed system and constraining a total usage of the resources by both the high-availabilityjobs and the low-availabil
ity jobs to the quantify of the resources available during normal operations.

WO 2015/116490 PCT/US2015/012629

Efficient Resource Utilization in Data Centers

TECHNICAL FIELD

[0001] This disclosure relates to efficient resource utilization in data centers upon a

system failure.

5

BACKGROUND

[00021 A distributed system generally includes many loosely coupled computers,

each of which typically includes a computing resource (e.g., one or more processors)

and/or storage resources (e.g., memory, flash memory, and/or disks). A distributed

10 storage system overlays a storage abstraction (e.g., key/value store or file system) on the

storage resources of a distributed system. In the distributed storage system, a server

process running on one computer can export that computer's resources to client processes

running on other computers. Remote procedure calls (RPC) may transfer data from

server processes to client processes. Alternatively, Remote Direct Memory Access

15 (RDMA) primitives may be used to transfer data from server hardware to client

processes.

SUMMARY

[0003] One aspect of the disclosure provides a method for efficiently using resources

20 (e.g., processors and/or memory devices) in data centers. The method includes

identifying high-availability jobs and low-availability jobs that demand usage of

resources of a distributed system and determining a first quota of the resources available

to low-availability jobs as a quantity of the resources available during normal operations.

The method optionally includes determining a second quota of the resources available to

25 high-availability jobs as a quantity of the resources available during normal operations

minus a quantity of the resources lost due to a tolerated event. The method may include

executing the jobs on the resources of the distributed system and constraining a total

usage of the resources by both the high-availability jobs and the low-availability jobs to

the quantity of the resources available during normal operations.

1

WO 2015/116490 PCT/US2015/012629

100041 Implementations of the disclosure may include one or more of the following

optional features. In some implementations, the resources include data processing

devices, networking systems, power systems, or cooling systems. For these types of

resources, the method may include migrating or re-executing jobs assigned to resources

5 lost due to the tolerated event to remaining resources.

[00051 In some implementations, the resources include non-transitory memory

devices (also referred to as storage resources). For this type of resource, the method may

include leaving jobs assigned to the lost resources without reassigning the jobs to

remaining resources and reconstructing any unavailable data associated with the lost

10 resources. Storage resources have two types of usage: a byte usage /storage capacity;

and an access bandwidth (such as the number of input/output operations per second

allowed to hard disk storage or the amount of spindle utilization/access allowed for such

storage). The allocation of jobs to storage resources may depend on its type of usage. In

some examples, up to 100% of the normal byte usage / storage capacity may be assigned

15 to high-availability jobs, whereas a fraction of the normal bandwidth (spindle usage) may

be assigned to high-availability jobs.

[00061 The method may include determining the second quota of the resource

available to high-availability jobs as the quantity of the resources available during normal

operations minus the quantity of the resources lost due to a tolerated event minus an

20 increased quantity of the remaining resources needed due to the tolerated event.

Additionally or alternatively, the method may include limiting a sum of the first quota

and the second quota to a maximum quota.

10007] In some implementations, the method includes monitoring a usage of the

resources by the high-availability jobs. When a high-availability job exceeds a threshold

25 usage, the method includes downgrading the high-availability job to a low-availability

job. The method may include lowering the first quota of the resources available to low

availability jobs for a period of time before the tolerated event and increasing the second

quota of the resources available to high-availability jobs for the period of time before the

tolerated event. Additionally or alternatively, the method may include suspending or

30 ending at least some of the low-availability jobs for the period of time before the

tolerated event.

WO 2015/116490 PCT/US2015/012629

100081 In some examples, the method includes determining the quantity of the

resources lost due to a tolerated event based on an assignment of the jobs to particular

resources and a system hierarchy of the distributed system. The system hierarchy

includes system domains. Each system domain has an active state or an inactive state.

5 The system hierarchy may include system levels, such as first, second, third, and fourth

system levels. The first system level corresponds to host machines of data processing

devices, non-transitory memory devices, or network interface controllers. Each host

machine has a system domain. The second system level corresponds to power deliverers,

communication deliverers, or cooling deliverers of racks housing the host machines.

10 Each power deliverer, communication deliverer, or cooling deliverer of the rack has a

system domain. The third system level corresponds to power deliverers, communication

deliverers, or cooling deliverers of cells having a system domain. Each power deliverer,

communication deliverer, or cooling deliverer of the cell has a system domain. The

fourth system level corresponds to a distribution center module of the cells, each

15 distribution center module having a system domain.

[0009] Another aspect of the disclosure provides a system for efficiently utilizing

resources of a distributed system. The system includes resources of a distributed system

and a computer processor in communication with the resources. The computer processor

identifies high-availability jobs and low-availability jobs that demand usage of the

20 resources and determines a first quota of the resources available to low-availability jobs

as a quantity of the resources available during normal operations. The computer

processor may optionally determine a second quota of the resources available to high

availability jobs as a quantity of the resources available during normal operations minus a

quantity of the resources lost due to a tolerated event. The processor executes the jobs on

25 the distributed system and constrains a total usage of the resources by both the high

availability jobs and the low-availability jobs to the quantity of the resources available

during normal operations.

10010] This aspect may include one or more of the fol lowing optional features. In

some implementations, the system resources include data processing devices, networking

30 systems, power systems or cooling systems. For these types of resources, the computer

3

WO 2015/116490 PCT/US2015/012629

processor may migrate or re-execute jobs assigned to resources lost due to the tolerated

event to rem aining resources.

[00111 In some implementations, the system resources include non-transitory

memory devices. For this type of resource, the computer processor may leave jobs

5 assigned to the lost resources without reassigning the jobs to remaining resources and

reconstructs any unavailable data associated with the lost resources.

[0012] The computer processor may determine the second quota of the resources

available to high-availability jobs as the quantity of the resources available during normal

operations minus the quantity of the resources lost due to a tolerated event minus an

10 increased quantity of the remaining resources needed due to the tolerated event.

Additionally or alternatively, the computer processor may limit a sum of the first quota

and the second quota to a maximum quota.

[0013] In some implementations, the computer processor monitors a usage of the

resources by the high-availability jobs. When a high-availability job exceeds a threshold

15 usage, the computer processor downgrades the high-availability job to a low-availability

job. The computer processor may further lower the first quota of the resources available

to low-availability jobs for a period of time before the tolerated event and increase the

second quota of the resources available to high-availability jobs for the period of time

before the tolerated event. Additionally or alternatively, the computer processor may

20 suspend or end at least some of the low-availability jobs for the period of time before the

tolerated event.

[0014] In some examples, the computer processor determines the quantity of the

resources lost due to a tolerated event based on an assignment of the jobs to particular

resources and a system hierarchy of the distributed system. The system hierarchy

25 includes system domains. Each system domain has an active state or an inactive state.

The system hierarchy may include system levels, such as first, second, third, and fourth

system levels. The first system level corresponds to host machines of data processing

devices, non-transitory memory devices, or network interface controllers. Each host

machine has a system domain. The second system level corresponds to power deliverers,

30 communication deliverers, or cooling deliverers of racks housing the host machines.

Each power deliverer, communication deliverer, or cooling deliverer of the rack has a

4

WO 2015/116490 PCT/US2015/012629

system domain. The third system level corresponds to power deliverers, communication

deliverers, or cooling deliverers of cells having associated racks. Each power deliverer,

communication deliverer, or cooling deliverer of the cell has a system domain. The

fourth system level corresponds to a distribution center module of the cells, each

5 distribution center module having a system domain.

[00151 Another aspect of the disclosure provides, a method that includes identifying

high-availability jobs and low-availability jobs that demand usage of resources of a

distributed system, determining a first quota of the resources available to low-availability

jobs as a quantity of the resources available during normal operations, and determining a

10 second quota of the resources available to high-availability jobs based on a resource type.

For storage capacity resources, the second quota of the resources available to high

avai ability jobs is the quantity of the resources available during normal operations. For

storage bandwidth resources, the second quota of the resources available to high

availability jobs is the quantity of the resources available during normal operations minus

15 a quantity of the resources lost due to a tolerated event and minus an increased quantity

of the remaining resources needed due to the tolerated event. For other (i.e., non-storage)

resources, the second quota of the resources available to high-availability jobs is the

quantity of the resources available during normal operations minus the quantity of the

resources lost due to a tolerated event. The method further includes executing the jobs on

20 the resources of the distributed system and constraining a total usage of the resources by

both the high-availability Jobs and the low-availability jobs to the quantity of the

resources available during normal operations.

1001-6] The details of one or more implementations of the disclosure are set forth in

the accompanying drawings and the description below. Other aspects, features, and

25 advantages will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

1001-7] FIG. IA is a schematic view of an exemplary distributed system.

[00181 FIG. 1B is a schematic view of an exemplary distributed system having a cell

30 of resource hosts managed by a job management system.

[0019] FIG. 2 is a schematic view of an exemplary curator for a distributed system.

WO 2015/116490 PCT/US2015/012629

100201 FIG. 3A is a schematic view of an exemplary file split into replicated stripes.

[0021] FIG. 3B is a schematic view of an exemplary file split into data chunks and

non-data chunks.

[0022] FIGS. 4A-4B are schematic views of exemplary system hierarchies.

5 10023] FIG. 5 is a flow chart of an exemplary arrangement of operations for

efficiently using storage resources and data processors when a maintenance event occurs.

[0024] FIG. 6 is a schematic view of an exemplary arrangement of operations for

efficiently using resources of a system when a maintenance/failure event occurs.

[0025] FIG. 7 is a schematic view of an exemplary arrangement of operations for

10 efficiently using resources of a system when a maintenance/failure event occurs.

[00261 Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

10027] Referring to FIGS. IA- 13, in some implementations, a distributed system 100

15 includes loosely coupled resource hosts 110, 110a-n (e.g., computers or servers), each

having a computing resource 112 (e.g., one or more processors or central processing units

(CPUs)) in communication with storage resources 114 (e.g., memory, flash memory,

dynamic random access memory (DRAM), phase change niemory (PCM), and/or disks)

that may be used for caching data. A storage abstraction (e.g., key/value store or file

20 system) overlain on the storage resources 114 allows scalable use of the storage resources

114 by one or more clients 120, 120a-n. The clients 120 may communicate with the

resource hosts 110 through a network 130 (e.g., via RPC).

10028] The distributed system 100 may include multiple layers of redundancy where

data 312 is replicated and stored in multiple data centers. Data centers (not shown) house

25 computer systems and their associated components, such as telecommunications and

distributed systems 100. Data centers usually include backup power supplies, redundant

communications connections, environmental controls (to maintain a constant

temperature), and security devices. Data centers can be large industrial scale operations

that use a great amount of electricity (e.g., as much as a small town). Data 312 may be

30 located in different geographical locations (e.g., different cities, different countries, and

different continents). In some examples, the data centers, or a portion thereof, requires

6

WO 2015/116490 PCT/US2015/012629

maintenance (e.g., due to a power outage or disconnecting a portion of the system for

replacing parts, or a system failure, or a combination thereof). The data 312 stored in

these data centers, and in particular, the distributed system 100 may be unavailable to

users/clients 120 during the maintenance period resulting in the impairment or halt of a

5 user's operations. Therefore, it is desirable to provide a distributed system 100 capable

of efficiently using the resource hosts 110, the processors 112, storage resources 114, and

the network resources of the system 100 during maintenance and/or failure of the system

100 or portions thereof.

[0029] In some implemerintations, the distributed system 100 is "single-sided,"

10 eliminating the need for any server jobs for responding to remote procedure calls (IRPC)

from clients 120 to store or retrieve data 312 on their corresponding resource hosts 110

and may rely on specialized hardware to process remote requests 122 instead. "Single

sided" refers to the method by which most of the request processing on the resource hosts

110 may be done in hardware rather than by software executed on CPUs 112 of the

15 resource hosts 110. Rather than having a processor 112 of a resource host 110 (e.g., a

server) execute a server process 118 that exports access of the corresponding storage

resource 114 (e.g., non-transitory memory) to client processes 128 executing on the

clients 120, the clients 120 may directly access the storage resource 114 through a

network interface controller (NIC) 116 of the resource host 110. In other words, a client

20 process 128 executing on a client 120 may directly interface with one or more storage

resources 114 without requiring execution of a routine of any server processes 118

executing on the computing resources 112. This single-sided distributed architecture

offers relatively high-throughput and low latency, since clients 120 can access the storage

resources 114 without interfacing with the computing resources 112 of the resource hosts

25 110. This has the effect of decoupling the requirements for storage 114 and CPU cycles

that typical two-sided distributed systems 100 carry. The single-sided distributed system

100 can utilize remote storage resources 114 regardless of whether there are spare CPU

cycles on that resource host 110; furthermore, since single-sided operations do not

contend for server CPU 112 resources, a single-sided system can serve cache requests

30 122 with very predictable, low latency, even when resource hosts 110 are running at high

CPU utilization. Thus, the single-sided distributed system 100 allows higher utilization

7-

WO 2015/116490 PCT/US2015/012629

of both cluster storage 114 and CPU 112 resources than traditional two-sided systems,

while delivering predictable, low latency.

[0030] In some implementations, the distributed system 100 includes a storage logic

portion 102, a data control portion 104, and a data storage portion 106. The storage logic

5 portion 102 may include a transaction application programming interface (API) 350 (e.g,,

a single-sided transactional system client library) that is responsible for accessing the

underlying data, for example, via RPC or single-sided operations. The data control

portion 104 may manage allocation and access to storage resources 114 with tasks, such

as allocating storage resources 114, registering storage resources 114 with the

10 corresponding network interface controller 116, setting up connections between the

client(s) 120 and the resource hosts 110, handling errors in case of machine failures, etc.

The data storage portion 106 may include the loosely coupled resource hosts 110, 11 0a-n.

[0031] The distributed system 100 may store data 312 in dynamic random access

memory (DRAM) 114 and serve the data 312 from the remote hosts 110 via remote direct

15 memory access (RDMA)-capable network interface controllers 116. A network interface

controller 116 (also known as a network interface card, network adapter, or LAN adapter)

may be a computer hardware component that connects a computing resource 112 to the

network 130. Both the resource hosts I 10a-n and the client 120 may each have a network

interface controller 116 for network communications. A host process 118 executing on

20 the computing processor 112 of the resource host 110 registers a set of remote direct

memory accessible regions I Ia-n of the memory 114 with the network interface

controller 116. The host process 118 may register the remote direct memory accessible

regions I15a-n of the memory 114 with a permission of read-only or read/write. The

network interface controller 116 of the resource host 110 creates a client key 302 for each

25 registered memory region I 15a-n.

[00321 The single-sided operations performed by the network interface controllers

116 may be limited to simple reads, writes, and compare-and-swap operations, none of

which may be sophisticated enough to act as a drop-in replacement for the software logic

implemented by a traditional cache server job to cany out cache requests and manage

30 cache policies. The transaction API 350 translates commands, such as look-up or insert

data commands, into sequences of primitive network interface controller operations. The

8

WO 2015/116490 PCT/US2015/012629

transaction API 350 interfaces with the data control and data storage portions 104, 106 of

tie distributed system 100.

[0033] The distributed system 100 may include a co-located software process to

register memory 114 for remote access with the network interface controllers 116 and set

5 up connections with client processes 128. Once the connections are set up, client

processes 128 can access the registered memory 114 via engines in the hardware of the

network interface controllers 11 6 without any involvement from software on the local

CPUs 112 of the corresponding resource hosts 110.

[0034] Referring to FIGS. 113, in some implementations, the distributed system 100

10 includes multiple cells 200, each cell 200 including resource hosts 110, a curator 2 10 in

communication with the resource hosts 110, and a job management system 220 in

communication with the resource hosts 110. The curator 210 (e.g., process) may execute

on a computing processor 202 (e.g., server having a non-transitory memory 204)

connected to the network 130 and manage the data storage (e.g., manage a file system

15 stored on the resource hosts 110), control data placements, and/or initiate data recovery.

Moreover, the curator 210 may track an existence and storage location of data 312 on the

resource hosts 110. Redundant curators 210 are possible. In some implementations, the

curator(s) 210 track the striping of data 312 across multiple resource hosts 110 and the

existence and/or location of multiple copies of a given stripe for redundancy and/or

20 performance. In computer data storage, data striping is the technique of segmenting

logically sequential data 312, such as a file 310 (FIG. 2), in a way that accesses of

sequential segments are made to different physical storage devices 114 (eg., cells 200

and/or resource hosts 110). Striping is useful when a processing device requests access

to data 312 more quickly than a storage device 114 can provide access. By performing

25 segment accesses on multiple devices, multiple segments can be accessed concurrently.

This provides more data access throughput, which avoids causing the processor to idly

wait for data accesses. The job management system 220 schedules jobs (e.g., processing

jobs or memory jobs) across the resource hosts 110.

[00351 In some implementations, the transaction API 350 interfaces between a client

30 120 (e.g., with the client process 128) and the curator 210, In some examples, the client

120 communicates with the curator 210 through one or more remote procedure calls

9

WO 2015/116490 PCT/US2015/012629

(RPO. In response to a client request 122, the transaction API 350 may find the storage

location of certain data 312 on resource host(s) 110 and obtain a key 302 that allows

access to the data 312. The transaction API 350 communicates directly with the

appropriate resource hosts 110 (via the network interface controllers 116) to read or write

5 the data 312 (e.g., using remote direct memory access). In the case that a resource host

110 is non-operational, or the data 312 was moved to a different resource host 110, the

client request 122 fails, prompting the client 120 to re-query the curator 210.

[00361 Referring to FIG. 2, in some implementations, the curator 210 stores and

manages file system metadata 212. The metadata 212 may include a file map 214 that

10 maps files 31 0 h. to file descriptors 3001-. The curator 210 may examine and modify the

representation of its persistent metadata 212. The curator 210 may use three different

access patterns for the metadata 212: read-only; file transactions; and stripe transactions.

[0037] Referring to FIGS. 3A and 3B. data 312 may be one or more files 310, where

each file 310 has a specified replication level 311 and/or error-correcting code 313. The

15 curator 210 may divide each file 310 into a collection of stripes 320a-n, with each stripe

320a-n being replicated or encoded independently from the remaining stripes 320a-n.

For a replicated file 310 (FIG. 3A), each stripe 320a-n is a single logical chunk that the

curator 210 replicates as stripe replicas 330n and stores on multiple storage resources

114. In that scenario, a stripe replica 330n is also referred to as a chunk 330n. For an

20 encoded file 310 (FIG. 3B), each stripe 320a-n consists of multiple data chunks 330nD,

and non-data chunks 330nC (e.g., code chunks) that the curator 210 places on multiple

storage resources 114, where the collection of data chunks 330nD and non-data chunks

330nC forms a single code word. In general, the curator 210 may place each stripe 320a

n on storage resources 114 independently of how the other stripes 320a-n in the file 310

25 are placed on the storage resources 114. The error-correcting code 313 adds redundant

data, or parity data to a file 310, so that the file 310 can later be recovered by a receiver

even when a number of errors (up to the capability of the code being used) were

introduced. The error-correcting code 313 is used to maintain data 312 integrity in

storage devices, to reconstruct data 312 for performance (latency), or to more quickly

30 drain machines.

10

WO 2015/116490 PCT/US2015/012629

100381 Referring back to FIG. 2, in some implementations, file descriptors 3001-1

stored by the curator 210 contain metadata 212, such as the file map 214, which maps the

stripes 320a-n to stripe replicas 330n or to data chunks 330nD and code chunks 330nC, as

appropriate, stored on the resource hosts 110. To open a file 310, a client 120 sends a

5 request 122 to the curator 210, which returns a file descriptor 300. The client 120 uses

the file descriptor 300 to translate file chunk offsets to remote memory locations 115a-n.

The file descriptor 300 may include a client key 302 (e.g., a 32-bit key) that is unique to a

chunk 330n on a resource host 110 and is used to RDMA-read that chunk 330n. After the

client 120 loads the file descriptor 300, the client 120 may access the data 312 of a file

10 310 via RDMA or another data retrieval method.

[00391 The curator 210 may maintain status information for all resource hosts 110

that are part of the cell 200. The status information may include capacity, free space,

load on the resource host 110, latency of the resource host 110 from a client's point of

view, and a current state. The curator 210 may obtain this information by querying the

15 resource hosts 110 in the cell 200 directly and/or by querying a client 120 to gather

latency statistics from a client's point of view. In some examples, the curator 210 uses

the resource host status information to make rebalancing, draining, recovery decisions,

and allocation decisions.

100401 The curator(s) 210 may allocate chunks 330 in order to handle client requests

20 122 for more storage space in a file 310 and for rebalancing and recovery. In some

examples, the processor 202 replicates chunks 330n among the storage devices 114

differently than distributing the data chunks 330nD and the code chunks 330nC among

the storage devices 114. The curator 210 may maintain a load map 216 of resource host

load and liveliness. In some implementations, the curator 210 allocates a chunk 330 by

25 generating a list of candidate resource hosts 1 10 and sends an allocate chunk request to

each of the candidate resource hosts 110. If the resource host 110 is overloaded or has no

available space, the resource host 110 can deny the request. In this case, the curator 210

selects a different resource host 110. Each curator 210 may continuously scan its

designated portion of the file namespace, examining all the metadata 212 every minute or

30 so. The curator 210 may use the file scan to check the integrity of the metadata 212,

determine work that needs to be performed, and/or to generate statistics. The file scan

II

WO 2015/116490 PCT/US2015/012629

may operate concurrently with other operations of the curator 210. The scan itself may

not modify the metadata 212, but schedules work to be done by other components of the

system and computes statistics.

[0041] Referring to FIGS. 4A-4B, the job management system 220 may determine or

5 receives a system hierarchy 400 of the distributed system 100 to identify the levels (e.g.,

levels 1-4) at which maintenance or failure may occur without affecting a user's access to

stored data 312 and/or the processors 112 allowing access to the stored data 312.

Maintenance or failures (strict hierarchy 400a (FIG. 4A), non-strict hierarchy 400b (FIG.

413)) may include power maintenance/failure, cooling system maintenance/failure,

10 networking maintenance/failure, updating or replacing parts, or other maintenance or

power outage affecting the distributed system 100. Maintenance may be scheduled and

in some examples, an unscheduled system failure may occur.

[0042] The system hierarchy 400 includes system levels (e.g., levels 1-5) with

maintenance units/system domains 402 spanning one or more system levels 1-5. Each

15 system domain 402 has an active state or an inactive state. A distribution center module

410 includes one or more cells 420, 420a-n, and each cell 420 includes one or more racks

430 of resource hosts 110. Each cell 420 also includes cell cooling 422, cell power 424

(e.g., bus ducts), and cell level networking 426 (e.g., network switch(es)). Similarly,

each rack 430 includes rack cooling 432, rack power 434 (e.g., bus ducts), and rack level

20 networking 436 (e.g., network switch(es)).

[0043] The system levels may include first, second, third, and fourth system levels 1

4. The first system level I corresponds to resource hosts or host machines 110, 11 0a-n of

data processing devices 112, non-transitory memory devices 114, or network devices 116

(e.g., NICs). Each host machine/ resource host 110 has a system domain 402. The

25 second system level 2 corresponds to racks 430, 430a-n and cooling deliverers 432,

power deliverers 434 (e.g., bus ducts), or communication deliverers 436 (e.g., network

switches and cables) of the host machines 110 at the rack level. Each rack 430 or rack

level -cooling deliverer 432, -power deliverer 434, or -communication deliverer 436 has a

system domain 40.2. The third system level 3 corresponds to any cells 420, 42 0a-n of the

30 distribution center module 410 and the cell cooling 422, cell power 424, or cell level

networking 426 supplied to the associated racks 430. Each cell 420 or cell cooling 422,

12

WO 2015/116490 PCT/US2015/012629

cell power 424, or cell level networking 426 has a system domain 402. The fourth

system level 4 corresponds to the distribution center module 410. Each distribution

center 410 module has a system domain 402.

[0044] FIG. 4A shows a strict system hierarchy 400a where each hierarchy

5 component (e.g., a resource host 110, a rack 430, a cell 420, or a distribution center

module 410) of the system hierarchy 400 depends on one other hierarchy component 110,

410, 420, 430. While FIG. 4B shows a non-strict system hierarchy 400b, where one

hierarchy component 110, 410, 420, 430 has more than one input feed. In some

examples, job management system 220 stores the system hierarchy 400 on the non

10 transitory memory 204 of its processor 202. For example, the job management system

220 maps a first resource host 110 (and its corresponding processor resource 1 12a and

storage resource 114a) to a first rack 430a, the first rack 430a to a first bus duct 420a, and

the first bus duct 420a to a first distribution center module 410a.

10045] The job management system 220 determines, based on the mappings of the

15 hierarchy components 110, 410, 420, 430, which resource hosts 110 are inactive when a

hierarchy component 110, 410, 420, 430 is undergoing maintenance. Once the job

management system 220 maps the system domains 402 to the resource hosts 110 (and

therefore to their corresponding processor resources 1 12a and storage resources I 14a)

the job management system 220 determines a highest level (e.g., levels 1-4) at which

20 maintenance can be performed while maintaining processor or data availability.

[0046] A system domain 402 includes a hierarchy component 110, 410, 420, 430

undergoing maintenance and any hierarchy components 110, 410, 420, 430 depending

therefrom. Therefore, when one hierarchy component 110, 410, 420, 430 undergoes

maintenance, that hierarchy component 110, 410, 420, 430 is inactive and any other

25 hierarchy components 110, 410, 420, 430 in the system domain 402 of the hierarchy

component 110, 410, 420, 430 are also inactive. For example, when a resource host 110

is undergoes maintenance, a level I system domain 402a, which includes the storage

device 114, the data processor 1 12, and the NIC 116, is in the inactive state. When a rack

430 undergoes maintenance, a level 2 system domain 402b, which includes the rack 430

30 and any resource hosts 110 depending from the rack 430, is in the inactive state. When a

cell component 420 (for example, to any one of the cell cooling component 422, the bust

13

WO 2015/116490 PCT/US2015/012629

duct 424, and/or the network switch 426 of the cell component 420a) undergoes

maintenance, a level 3 system domain 402c, which includes the cell 420 and any

hierarchy components 110, 410, 420, 430 in levels 3 and 4 that depend from the cell

component 420, is in the inactive state. Finally, when a distribution center module 410

5 undergoes maintenance, a level 4 system domain 402, 402d, which includes the

distribution center module 41 0a and any hierarchy components 110, 410, 420, 430 in

levels 2 to 4 depending from the distribution center module 410, is in the inactive state.

[00471 In some examples, as shown in FIG 4B, a non-strict hierarchy component 410,

420, 430, 114 may have dual feeds, i.e., the hierarchy component 110, 410, 420, 430

10 depends on two or more other hierarchy components 110, 410, 420, 430. For example, a

cell component 420 may have a feed from two distribution center modules 410; and/or a

rack 430 may have a dual feed from two cell components 420, As shown, a level 2

system domain 402b may include two racks 430a, 430n, where the second rack 430n

includes two feeds from two cell components 420a, 420n. Therefore, the second rack

15 430n is part of two system domains 402bb and 402cc. Therefore, the lower levels of the

system hierarchy 400 are maintained without causing the loss of the higher levels of the

system hierarchy 400. This causes a redundancy in the distributed system 100 which

allows the for data accessibility. In particular, the distribution cen ter module 410 may be

maintained without losing any of the cell components 420 depending from it. In some

20 examples, the racks 430 include a dual-powered rack that allows the maintenance of the

bus duct 424 without losing power to the dual-powered racks 430 depending from it. In

some examples, system domains 402 that may be maintained without causing outages are

ignored when distributing chunks 330n to allow for maintenance however, the ignored

system domains 402 may be included when distributing the chunks 330n since an

25 unplanned outage may still cause the loss of chunks 330n.

[00481 In some examples, a cooling device, such as the cell cooling 422 and the rack

cooling 432, are used to cool the cell components 420 and the racks 430, respectively.

The cell cooling component 422 may cool one or multiple cell components 420.

Similarly, a rack cooling component 432 may cool one or more racks 430. The curator

30 210 stores the association of the resource hosts 110 with the cooling devices (i.e., the cell

cooling 422 and the rack cooling 432). In some implementations, the job management

14

WO 2015/116490 PCT/US2015/012629

system 220 considers all possible combinations of maintenance that might occur within

the system 100 to determine a system hierarchy 400 or a combination of maintenance

hierarchies 400, before storing the association of the resource hosts 110 with the cooling

devices 422, 432. For example, a system hierarchy 400 where one or more cooling

5 devices 422, 432 fail, or a system hierarchy 400 where the network devices 116, 426, 436

fail, or a system hierarchy 400 where the power distribution 424, 434 fails.

[0049] Therefore, when a hierarchy component 110, 410, 420, 430 in the system 100

undergoes maintenance or fails, that hierarchy component 110, 410, 420, 430 and any

hierarchy components 110, 410, 420, 430 that are mapped to or depending from that

10 hierarchy component 110, 410, 40, 430 are in an inactive state. A hierarchy component

110, 410, 420, 430 in an inactive state is inaccessible by a user 120, while a hierarchy

component 110, 410, 420, 430 in an active state is accessible by a user 120, allowing the

user 120 to process/access data 312 stored/supported/maintained by that hierarchy

component 110, 410, 420, 430. As previously mentioned, during the inactive state, a user

15 120 is incapable of accessing the resource hostl10 associated with the system domains

402 undergoing maintenance; and therefore, the user 120 is incapable of accessing the

files 310 (i.e., chunks 330, which include stripe replicas 330n, data chunks 330nD and

non-data chunks 330nC).

100501 In some implementations, the curator 210 restricts a number of chunks 330

20 distributed to storage devices 114 of any one system domain 402, e.g., based on the

mapping of the hierarchy components 110, 410, 420, 430. Therefore, if a level 1 system

domain 402 is inactive, the curator 210 maintains accessibility to the file 310 (or stripe

320) although some chunks 330 may be inaccessible. In some examples, for each file

310 (or stripe .320), the curator 210 determines a maximum number of chunks 330 that

25 may be placed within any storage device 114 within a single system domain 402, so that

if a system domain 402 associated with the storage device 114 storing chunks 330 for a

file 310 is undergoing maintenance, the curator 210 may still retrieve the file 310. The

maximum number of chunks 330 ensures that the curator 210 is capable of reconstructing

the file 310 although some chunks 330 may be unavailable. In some examples, the

30 maximum number of chunks 330 is set to a lower threshold to accommodate for any

system failures, while still being capable of reconstructing the file 310 from the chunks

15

WO 2015/116490 PCT/US2015/012629

330. When the curator 210 places chunks 330 on the storage devices 114, the curator 210

ensures that within a stripe 320, no more than the maximum number of chunks 330 are

inactive when a single system domain 402 undergoes maintenance. Moreover, the

curator 210 may also restrict the number of processing jobs on a data processor 112 of a

5 resource host 110 within a system domain 402, e.g., based on the mapping of the

hierarchy components 110, 410, 420, 430. Therefore, if a level I system domain 402 is

inactive, the curator 210 maintains accessibility to the jobs although some of the

processors 112 of the resource hosts 110 are inactive.

[0051] Referring to FIG. 5, in some implementations, the system 100 follows the

10 operations 500 shown for efficiently using storage resources 114 and data processors 112

when a maintenance event occurs. The system 100 identifies, at step 502., a resource

type: 1) non-storage resources (e.g., computing usage of a data processor 112,

networking, power delivery, cooling, etc.); 2) storage capacity resources (e.g., a byte

usage / storage capacity of a storage device 114); or 3) storage bandwidth resources (e.g.

15 a number of input/output operations per second allowed to hard disk storage or the

amount of spindle utilization/access allowed for such storage).

[00521 The system 100 also identifies two classes of jobs/requests 122. A first class

of jobs 122 includes high-availabi lity jobs 122a and a second class includes standard or

low-availability jobs 122b (FIG. 1B). The system 100 executes processing jobs 122 on

20 the processor 112 of the resource host 110 and storage jobs 122 for accessing/storing data

312 on the storage devices 114 of the resource hosts 110, The high-availability jobs 122a

are jobs 122 that have a higher priority than the low-availability jobs 122b, when both

types of jobs I 22a, 122b are within a quota (discussed below).

100531 In some implementations, when the system 100 designates which types of

25 resource losses may be tolerated, the system 100 determines a strategy, at step 504, for

tolerating that loss based on whether the loss includes a loss of data processors 112 or

memory devices 114 or both. For non-storage resource usage, the job management

system 220 uses a first strategy 506a of migrating and/or restarting jobs 122 from failed

non-storage resources (eg., data processor 112) to other available non-storage resources.

30 For storage resource usage, the job management system 220 uses a second strategy 506b

of leaving jobs 122 accessing failed storage resources 114 in place (at least for a certain

16

WO 2015/116490 PCT/US2015/012629

period of time) and/or may use data reconstruction to retrieve unavailable data 312. In

some examples, the first strategy handles resources 110 relating to computing resources

112 (e.g., computation or networking); and the second strategy handles storage resources

114 (eg., storage devices, such as hard disks and flash memory). When a failure/loss

5 occurs, the job management system 220 may determine whether the loss is a loss of data

processors 112 or storage device 114. If the loss is a loss of storage devices 114, the job

management system 220 employs strategy 2 at step 506b; otherwise, the job management

system 220 employs strategy I at step 506a.

[0054] When the job management system 220 employs the first strategy (at step

10 506a) that relates to data processors 112 (i.e., computation and networking), the job

management system 220 migrates and/or re-executes high-availability computing jobs

122 assigned to data processors 112 lost due to tolerated events to the remaining available

data processors 112. For example, if a certain power or network maintenance event

renders 10% of the data processors 112 unavailable, the job management system 220

15 moves the jobs 122 to run on the remaining 90% of the data processors 112.

[0055] When the job management system 220 employs the second strategy (at step

506b) used for storage resources 114, the job management system 220 leaves the data

312 stored on the storage devices 114 that are in the inactive state during the maintenance

or failure events, and allows the system 100 to use the replication and/or coding

20 (discussed with respect to FIGS. 3A and 3B) to reconstruct the unavailable data 312. In

some examples, the system 100 employs the first and second strategies simultaneously.

[0056] Once the system 100 detenines which strategy to use, the system 100

calculates the quantity (i.e., a quota Q) of each resource 110 (i.e., the storage resource

114 and the data processor resource 112) that is available to the jobs 122 during normal

25 use (i.e., when the system 100 is not undergoing maintenance) at step 508.

[0057] The job management system 220 determines a first quota Q, and a second

quota Q2of available resources 110. The first quota Q, of available resources 110

includes resources 110 available to low-availability jobs 122b and is a quantity of the

resources 110 available during normal operations (i.e., when the system 100 is not

30 undergoing maintenance or a failure). The second quota Q2 of available resources 110

includes resources 110 available to high-availability jobs 122b and is a quantity of the

17

WO 2015/116490 PCT/US2015/012629

resources 110 available during normal operations. When infrequent maintenance or a

failure event occurs, the low-availability jobs I 22b encounter insufficient resources 110,

which results in degraded or nonexistent performance. The total available quota or job

capacity Q may be calculated using the following equation:

5Q = Q1 + Qz (1)

where Q is the total available quota of resources 110 demanded by the jobs 122 (high

availability and low-availability), QJ is the first quota, and 22 is the second quota. Since

the total available demanded quota/capacity Q may exceed the quantity of resources

available during normal operations RN, , the job management system 220 constrains a

10 total usage of the resources 110 by both the high-availability jobs 122a and the low

availability jobs 122b to the quantity of the resources 110 that are available during

normal operations RN (i.e., when the system 100 is not undergoing maintenance or a

failure) to ensure that the number of jobs 122 allocated to the resources 110 does not

exceed an actual available capacity of the resources 110 (e,g, RN). The system 100 may

15 use equation 1 to determine the available quota Q for storage resources 114 and

processing resources 112. The available quota Q may be the capacity, a capacity

percentage, a bandwidth, or a size measurement of the resources.

[00581 In some examples, the system 100 lowers the first quota Q1 of the resources

110 available to low-availability jobs 122b for a period of tirne before the tolerated event

20 (i.e., maintenance event or system failure) and increases the second quota Q2 of the

available resources 110 to high-availability jobs 122a for the period of time before the

tolerated event. Additionally or alternatively, the system 100 may suspend or end at least

some of the low-availability jobs 122b for the period of time before the tolerated event.

This allows the system 100 to move the high-availability jobs 122a to the available

25 resources 110.

[0059] In some implementations, the system 100 may determine the quantity of the

resources 110 lost due to a tolerated event based on an assignment of the jobs 122 to

particular resources 110 associated with the system hierarchy 400 (FIGS. 4A and 4B) of

the distributed storage system 100. In some implementations, the job management

30 system 220 designates certain types of host resource 110 losses as "tolerated" when a

planned maintenance or failure occurs. The quota Q available to these jobs 122 is

18

WO 2015/116490 PCT/US2015/012629

reduced by the maximum amount of loss that is tolerated, while maintaining data

accessibility and data processing accessibility. The system hierarchy 400a, 4001, the

distribution center module 410, the cell component 420, the rack 430, or the resource host

110 may be designated as being tolerated.

5 10060] In some examples, during normal operations of the system 100, 100% of the

resources 110 are available for storing data 312 on the storage devices 114 or for

processing the data 312 on the data processors 112 of the resource hosts 110. A "largest"

tolerated event (i.e., maintenance event or system failure) may result in a loss of 20% of

the available resources 110, based on the system hierarchy 400 and the assignment of the

10 resources 110 to system domains 402. This leaves 80% of the resources 110 always

available despite a maximum loss of 20% of the resources 110. Therefore, job

management system 220 assigns a maximum of 80% of the resources 110 to high

availability jobs 122a, allowing the system 100 to have enough resources 110 when a

scheduled maintenance or system failure occurs. If the job management system 220 re

15 assigns jobs 122 related to the data processor 212 to 80% of available processors 212,

then the system 100 will have enough processors 212 to execute the high-availability jobs

122a. In addition, if the system 100 has to reconstruct data 312 unavailable due to the

inactive state of the system domain 402 that includes the storage device 114 storing the

data 312, the system 100 has enough storage devices 114 that have enough chunks 330

20 (e.g., data chunks 330nD and non-data chunks 330nC) and replicas 330n to reconstruct

the lost data 312.

[0061] When determining, at step 508a, the second quota 22 of resources 110

available to high-availability jobs I 22a for non-storage resource usage (i.e., under

strategy 1), the second quota Qg of available resources 110 is a quantity of the resources

25 110 available during normal operations minus a quantity of the resources 110 lost due to

a tolerated event. Therefore, the second quota O2 may be calculated based on the

following equation when the resource 110 lost is data processors 112:

Q2 = RN- RL (2)

where RN is the quantity of the resources available during normal operations, and RL is

30 the maximum quantity of the resources lost due to a tolerated event.

19

WO 2015/116490 PCT/US2015/012629

100621 In some implementations, the system 100 determines the second quota Q2

when the resource 110 lost is a storage device 114. When determining, at step 508b, the

second quota Q, of resources 110 available to high-availability jobs I 22a for storage

capacity usage (i.e., under strategy 2), the second quota Q2 of the storage devices 114

5 available to high-availability jobs 122a may equal the full amount of the resource 110

that is normally available (although the usage of that resource 110 could require

redundancy of replicated chunks 330n or coded chunks 330nC, 330nD), for example, as

calculated using equation 3.

Qz = RN

10 This may apply for byte usage /capacity of the storage device 114. For example, up to

100% of the byte usage /capacity of the storage device 114 can be assigned to high

availability jobs 122a.

[0063] When determining, at step 508c, the second quota Q2 of resources 110

available to high-availability jobs 122a for storage bandwidth usage (i.e., under strategy

5 2), the second quota Q2 (i.e., bandwidth or usage) of that storage resource 114 (such as

the number of input/output operations per second allowed to hard disk storage or the

amount of spindle utilization/access allowed for such storage) may be calculated as the

amount of resource 110 normally available RN- minus the largest loss R_ of that resource

110 due to a tolerated event minus the increased quantity R1 of that resource used due to

20 the largest loss due to a tolerated event, as shown in the following equation:

Q = RN - R1 - R, (4)

[0064] In some examples, the system 100 may determine the second quota Q2 using

the following equation when calculating the resources 110 lost are storage devices 114,

such as hard disks:

2 5 Q, = N -Rj,) (5 A)
(RN -x*RL)

where x is a resource multiplier corresponding to the tolerated event.

[0065] For example, if up to 10% of the hard disk spindles can be lost in a tolerated

event, and if each access to the data 312 that is lost requires on average 4 times as much

spindle usage (due to the need to reconstruct the data 312 using a code), then using

30 equation 5A:

20

WO 2015/116490 PCT/US2015/012629

Q2 - (100%-10%) == 69% (5B)

[00661 Therefore, 69% of the spindle resource can be made available to high

availability jobs (this calculation is based on the fact that only 90% of the spindles are

available and support 130% of the normal load from high-availability jobs).

5 [00671 Once the system 100 calculates the second quota 2 of the resource 110, the

system 100 allows both low-availability jobs and high-availability jobs to run in the data

center, subject to two constraints at step 510. The first constraint is that the total amount

of each resource 110 used by the high-availability and the low-availability jobs 122a,

122b (Q1 + Q2) cannot exceed the quantity of the resource that is normally available RN,

10 as shown in the below equation:

Q1 + Q2 s RN (6)

[0068] The second constraint is that the amount of each resource used Qu by the

high-availability jobs I 22a cannot exceed the second quota Q2, as shown in the following

equation:

15 Qu 5 Q2 (7)

[0069] In some implementations, the job management system 220 monitors a usage

of the resources 110 by the high-availability jobs 122a to ensure that they do not consume

too many resources 110. When a high-availability job 12 2 a exceeds a threshold usage,

the job management system 220 downgrades the high-availability job 122a to a low

20 availability job 122b. When a high-availability job 122a is downgraded, the job

management system 220 may terminate the downgraded job 122b, which increases the

available capacity (second quota) available for the high-availability jobs 122a.

[0070] After the job management system 220 determines the quotas 22 that may be

used, the job management system 220 implements the processes for accommodating the

25 maintenance and failure events. When a maintenance or failure event decreases lie

amount of a resource 110 that is available, the job management system 220 may suspend,

kill, evict or otherwise prevent a sufficient number of low-availability jobs 122b are from

using the resource 110, so that the resource 110 is available for the high-availability jobs

122a. In addition, if these jobs 122 are serving live traffic, the amount of traffic sent to

30 them may be reduced or diverted to other data centers.

21

WO 2015/116490 PCT/US2015/012629

100711 Furthermore, in the case of planned maintenance, the job management system

220 may suspend, kill, evict or otherwise prevent some or all low-availability jobs 122b

from using certain resources 110 for some amount of time prior to the maintenance in

order to allow the high-availability jobs 122a to move to use those resources 110.

5 [0072] While the above description focused on resources 110 in a data center, the

same principles can be applied at the level of a resource host 110 (machine), a rack 430, a

cell 420, a network, cluster, building, site, region, or entire global collection of data

centers.

[0073] FIG. 6 provides an exemplary arrangement of operations for a method 600 of

10 efficiently using resources 110 (e.g., processors 112 and/or resource hosts 114) in data

centers. The method 600 includes identifying 602 high-availability jobs 122a and low

availability jobs 122b that demand usage of resources 110 of a distributed system 100 and

determining 604 a first quota Q, of the resources 110 available to low-availability jobs

122b as a quantity of the resources 110 available during normal operations RN- The

15 method 600 also includes determining 606 a second quota Q2 of the resources 110

available to high-availability jobs 122a as a quantity of the resources 110 available during

normal operations minus a quantity of the resources 110 lost due to a tolerated event RL

The method 600 includes executing 608 the jobs 122, 122a, 122b on the distributed

system 100 and constraining a total usage of the resources 110 by both the high

20 availability jobs 122a and the low-availability jobs 122a to the quantity of the resources

110 available during normal operations RN[

[0074] In some implementations, the resources 110, 112, 116, 422, 424, 426, 432,

434, 436 include data processing devices 112, networking systems 116, 426, 436, power

systems 424, 434, or cooling systems 422, 432. For these types of resources 110, 112,

25 116, 422, 424, 426, 432, 434, 436, the 600 method may include migrating or re-executing

jobs 122 assigned to resources 110 lost due to the tolerated event to remaining resources

110 to maintain accessibility of the data 312 or accessibility of the data processors 212.

10075] In some implementations, the resources 110 include non-transitory memory

devices 114. For this type of resources 114, the method 600 may include leaving jobs

30 assigned to the lost resources 110 without reassigning the jobs to remaining resources

110, and reconstructing any unavailable data associated with the lost resources 110.

22

WO 2015/116490 PCT/US2015/012629

100761 The method 600 may include determining the second quota Qg of the resource

110 available to high-availability jobs 122a as the quantity of the resources 110 available

during normal operations RN minus the quantity of the resources 110 lost due to a

tolerated event RL minus an increased quantity of the remaining resources 110 needed due

5 to the tolerated event R,. Additionally or alternatively, the method 600 may include

limiting a sum of the first quota 2, and the second quota Q2 to a maximum quota.

[0077] In some implementations, the method 600 includes monitoring a usage of the

resources 110 by the high-availability jobs 12a. When a high-availability job 122a

exceeds a threshold usage, the method 600 includes downgrading the high-availability

10 job 122a to a low-availability job 122b.

[00781 The method 600 may further include lowering the first quota Q of the

resources 110 available to low-availability jobs 122b for a period of time before the

tolerated event, and increasing the second quota Q2 of the resources 110 available to

high-availability jobs 122a for the period of time before the tolerated event. Additionally

15 or alternatively, the method 600 may include suspending or ending at least some of the

low-availability jobs 122b for the period of time before the tolerated event.

[00791 In some examples, the method 600 includes determining the quantity of the

resources 110 lost due to a tolerated event R based on an assignment of the jobs 122 to

particular resources 110 and a system hierarchy 400 of the distributed system 100. The

20 system hierarchy 400 includes system domains or units 402. Each system domain 402

has an active state or an inactive state. The system hierarchy 400 may include system

levels, such as levels 1-4. The first system level (e.g., level 1) corresponds to resource

hosts 110 having data processing devices 112, non-transitory memory devices 114 or

network interface controllers 116. Each data processing device 112 or memory device

25 114 has one or more system domains 402. The second system level (e.g., level 2)

corresponds to host machines 430 (e.g., racks) of the memory devices 114 or the data

processing devices 112, each host machine having one or more system domain 402. A

third system level (e.g., level 3) corresponding to power deliverers 424 (e.g., bus ducts),

communication deliverers 426, or cooling deliverers 422 for the host machines 110. Each

30 power deliverer 424, communication deliverer 426, or cooling deliverer 422 has a system

domain 402. The fourth system level (e.g., level 4) corresponds to a distribution center

23

WO 2015/116490 PCT/US2015/012629

module 410 of the power deliverer 424, communication deliverer 426, or cooling

deliverer 4'22. Each distribution center module 410 has a system domain 402.

[0080] FIG, 7 provides an exemplary arrangement of operations for a method 700 of

efficiently using resources 110. The method 700 includes identifying 702 high

5 availability jobs 122a and low-availability jobs 122b that demand usage of resources 112,

114 of a distributed system 100, determining 702 a first quota Qi of the resources 112,

114 available to low-availability jobs 122a as a quantity of the resources 112, 114

available during normal operations, and determining 706 a second quota Q2 of the

resources 112, 114 available to high-availability jobs 122a based on a type of resource

10 usage of the jobs 122. For storage capacity usage, the second quota Q2 of the resources

114 available to high-availability jobs 122a is the quantity RN of the resources 114

available during normal operations. For storage bandwidth usage, the second quota Q2 of

the resources 114 available to high-availability jobs 122a is the quantity RN of the

resources 114 available during normal operations minus a quantity RL of the resources

15 114 lost due to a tolerated event and minus an increased quantity R, of the remaining

resources 114 needed due to the tolerated event. For other resource usage, the second

quota Q2 of the resources 112 available to high-availability jobs 122a is the quantity RN of

the resources 112 available during normal operations minus the quantity Rf of the

resources lost due to a tolerated event. The method further includes executing 708 the

20 jobs 122 on the resources 112,. 114 of the distributed system 100 and constraining 710 a

total usage of the resources 112, 114 by both the high-availability jobs 122a and the low

availability jobs 122b to the quantity RN of the resources available during normal

operations.

100811 Various implementations of the systems and techniques described here can be

25 realized in digital electronic circuitry, integrated circuitry, specially designed ASICs

(application specific integrated circuits), computer hardware, firmware, software, and/or

combinations thereof. These various implementations can include implementation in one

or more computer programs that are executable and/or interpretable on a programmable

system including at least one programmable processor, which may be special or general

30 purpose, coupled to receive data and instructions from, and to transmit data and

instructions to, a storage system, at least one input device, and at least one output device.

24

WO 2015/116490 PCT/US2015/012629

100821 These computer programs (also known as programs, software, software

applications or code) include machine instructions for a programmable processor and can

be implemented in a high-level procedural and/or object-oriented programming language,

and/or in assembly/machine language. As used herein, the terms "machine-readable

5 medium" and "computer-readable medium" refer to any computer program product,

apparatus and/or device (e.g., magnetic discs, optical disks, memory, Programmable

Logic Devices (PLDs)) used to provide machine instructions and/or data to a

programmable processor, including a machine-readable medium that receives machine

instructions as a machine-readable signal. The term "machine-readable signal" refers to

10 any signal used to provide machine instructions and/or data to a programmable processor.

[00831 Implementations of the subject matter and the functional operations described

in this specification can be implemented in digital electronic circuitry, or in computer

software, firmware, or hardware, including the structures disclosed in this specification

and their structural equivalents, or in combinations of one or more of them. Moreover,

15 subject matter described in this specification can be implemented as one or more

computer program products, i.e., one or more modules of computer program instructions

encoded on a computer readable medium for execution by, or to control the operation of,

data processing apparatus. The computer readable medium can be a machine-readable

storage device, a machine-readable storage substrate, a memory device, a composition of

20 matter affecting a machine-readable propagated signal, or a combination of one or more

of them, The terms "data processing apparatus", "computing device" and "computing

processor" encompass all apparatus, devices, and machines for processing data, including

by way of example a programmable processor, a computer, or multiple processors or

computers. The apparatus can include, in addition to hardware, code that creates an

25 execution environment for the computer program in question, e.g., code that constitutes

processor finnware, a protocol stack, a database management system, an operating

system, or a combination of one or more of them. A propagated signal is an artificially

generated signal, eg., a machine-generated electrical, optical, or electromagnetic signal

that is generated to encode information for transmission to suitable receiver apparatus.

30 [0084] A computer program (also known as an application, program, software,

software application, script, or code) can be written in any form of programming

25

WO 2015/116490 PCT/US2015/012629

language, including compiled or interpreted languages, and it can be deployed in any

form, including as a stand-alone program or as a module, component, subroutine, or other

unit suitable for use in a computing environment. A computer program does not

necessarily correspond to a file in a file system. A program can be stored in a portion of

5 a file that holds other programs or data (e.g., one or more scripts stored in a markup

language document), in a single file dedicated to the program in question, or in multiple

coordinated files (e.g., files that store one or more modules, sub programs, or portions of

code). A computer program can be deployed to be executed on one computer or on

multiple computers that are located at one site or distributed across muliple sites and

10 interconnected by a communication network.

[00851 The processes and logic flows described in this specification can be performed

by one or more programmable processors executing one or more computer programs to

perform functions by operating on input data and generating output. The processes and

logic flows can also be performed by, and apparatus can also be implemented as, special

15 purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC

(application specific integrated circuit).

[00861 Processors suitable for the execution of a computer program include, by way

of example, both general and special purpose microprocessors, and any one or more

processors of any kind of digital computer. Generally, a processor will receive

20 instructions and data from a read only memory or a random access memory or both. The

essential elements of a computer are a processor for performing instructions and one or

more memory devices for storing instructions and data. Generally, a computer will also

include, or be operatively coupled to receive data from or transfer data to, or both, one or

more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or

25 optical disks. However, a computer need not have such devices. Moreover, a computer

can be embedded in another device, e.g., a mobile telephone, a personal digital assistant

(PDA), a mobile audio player, a Global Positioning System (GPS) receiver, to name just

a few. Computer readable media suitable for storing computer program instructions and

data include all forms of non-volatile memory, media and memory devices, including by

30 way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash

memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto

26

WO 2015/116490 PCT/US2015/012629

optical disks; and CD ROM and DVD-ROM disks. The processor and the memory can

be supplemented by, or incorporated in, special purpose logic circuitry.

[0087] To provide for interaction with a user, one or more aspects of the disclosure

can be implemented on a computer having a display device, e.g., a CRT (cathode ray

5 tube), LCD (liquid crystal display) monitor, or touch screen for displaying information to

the user and optionally a keyboard and a pointing device, e.g., a mouse or a trackball, by

which the user can provide input to the computer. Other kinds of devices can be used to

provide interaction with a user as well; for example, feedback provided to the user can be

any form of sensory feedback, e.g., visual feedback, auditory feedback, or tactile

10 feedback; and input from the user can be received in any form, including acoustic,

speech, or tactile input. In addition, a computer can interact with a user by sending

documents to and receiving documents from a device that is used by the user; for

example, by sending web pages to a web browser on a user's client device in response to

requests received from the web browser.

15 100881 One or more aspects of the disclosure can be implemented in a computing

system that includes a backend component, e.g., as a data server, or that includes a

middleware component, e.g., an application server, or that includes a frontend

component, e.g., a client computer having a graphical user interface or a Web browser

through which a user can interact with an implementation of the subject matter described

20 in this specification, or any combination of one or more such backend, middleware, or

frontend components. The components of the system can be interconnected by any form

or medium of digital data communication, e.g., a communication network. Examples of

communication networks include a local area network ("LAN") and a wide area network

("WAN"), an inter-network (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc

25 peer-to-peer networks).

[00891 The computing system can include clients and servers. A client and server are

generally remote from each other and typically interact through a communication

network. The relationship of client and server arises by virtue of computer programs

running on the respective computers and having a client-server relationship to each other.

30 In some implementations, a server transmits data (e.g., an HTML page) to a client device

(e.g., for purposes of displaying data to and receiving user input from a user interacting

27

WO 2015/116490 PCT/US2015/012629

with the client device). Data generated at the client device (e.g., a result of the user

interaction) can be received from the client device at the server.

[0090] While this specification contains many specifics, these should not be

construed as limitations on the scope of the disclosure or of what may be claimed, but

5 rather as descriptions of features specific to particular implementations of the disclosure.

Certain features that are described in this specification in the context of separate

implementations can also be implemented in combination in a single implementation.

Conversely, various features that are described in the context of a single implementation

cai also be implemented in multiple implementations separately or in any suitable sub

10 combination. Moreover, although features may be described above as acting in certain

combinations and even initially claimed as such, one or more features from a claimed

combination can in some cases be excised from the combination, and the claimed

combination may be directed to a sub-combination or variation of a sub-combination.

10091] Similarly, while operations are depicted in the drawings in a particular order,

15 this should not be understood as requiring that such operations be performed in the

particular order shown or in sequential order, or that all illustrated operations be

performed, to achieve desirable results. In certain circumstances, multi-tasking and

parallel processing may be advantageous. Moreover, the separation of various system

components in the embodiments described above should not be understood as requiring

20 such separation in all embodiments, and it should be understood that the described

program components and systems can generally be integrated together in a single

software product or packaged into multiple software products.

10092] A number of implementations have been described. Nevertheless, it will be

understood that various modifications may be made without departing from the spirit and

25 scope of the disclosure. Accordingly, other implementations are within the scope of the

following claims. For example, the actions recited in the claims can be performed in a

different order and still achieve desirable results.

28

WHAT IS CLAIMED IS:

1. A method comprising:

identifying high-availability jobs and low-availability jobs that demand usage of

resources of a distributed system;

determining a first quota of the resources available to low-availability jobs as a

quantity of the resources available during normal operations;

determining a second quota of the resources available to high-availability jobs as

a quantity of the resources available during normal operations minus a quantity of the

resources lost due to a tolerated event;

executing the jobs on the resources of the distributed system; and

constraining a total usage of the resources by both the high-availability jobs and

the low-availability jobs to the quantity of the resources available during normal

operations.

2. The method of claim 1, wherein the resources comprise data processing devices,

networking systems, power systems, or cooling systems.

3. The method of claim 2, further comprising migrating or re-executing jobs

assigned to resources lost due to the tolerated event to remaining resources.

4. The method of claim 1, wherein the resources comprise non-transitory memory

devices.

5. The method of claim 4, further comprising:

leaving jobs assigned to the lost resources without reassigning the jobs to

remaining resources; and

reconstructing any unavailable data associated with the lost resources.

6. The method of claim 1, further comprising determining the second quota of the

resources available to high-availability jobs as:

29

Q2 = RN - RL - RI

wherein Q2 is the second quota, RN is the quantity of the resources available

during normal operations, RL is the quantity of the resources lost due to a tolerated event,

and R, is an increased quantity of the remaining resources needed due to the tolerated

event.

7. The method of claim 1, further comprising determining the second quota of the

resource available to high-availability jobs as:

(RN - RL)

(RN + x * RL)

wherein Q2 is the second quota, RN is the quantity of the resource available during

normal operations, RL is the quantity of the resource lost due to a tolerated event, and x is

a resource multiplier corresponding to the tolerated event.

8. The method of claim 7, wherein the resource comprises non-transitory memory

devices.

9. The method of claim 1, further comprising limiting a sum of the first quota and

the second quota to a maximum quota.

10. The method of claim 1, further comprising:

monitoring a usage of the resources by the high-availability jobs; and

when a high-availability job exceeds a threshold usage, downgrading the high

availability job to a low-availability job.

11. The method of claim 1, further comprising suspending or ending at least some of

the low-availability jobs for the period of time before the tolerated event.

12. The method of claim 1, further comprising determining the quantity of the

resources lost due to a tolerated event based on an assignment of the jobs to particular

30

resources and a system hierarchy of the distributed system, the system hierarchy

comprising system domains, each having an active state or an inactive state.

13. The method of claim 13, wherein the system hierarchy comprises system levels

comprising:

a first system level corresponding to host machines of data processing devices,

non-transitory memory devices, or network interface controllers, each host machine

having a system domain;

a second system level corresponding to power deliverers, communication

deliverers, or cooling deliverers of racks housing the host machines, each power

deliverer, communication deliverer, or cooling deliverer of the rack having a system

domain; and

a third system level corresponding to power deliverers, communication deliverers,

or cooling deliverers of cells having associated racks, each power deliverer,

communication deliverer, or cooling deliverer of the cell having a system domain; and

a fourth system level corresponding to a distribution center module of the cells,

each distribution center module having a system domain.

14. A system comprising:

resources of a distributed system; and

a computer processor in communication with the resources, the computer

processor:

identifying high-availability jobs and low-availability jobs that demand

usage of the resources;

determining a first quota of the resources available to low-availability jobs

as a quantity of the resources available during normal operations;

determining a second quota of the resources available to high-availability

jobs as a quantity of the resources available during normal operations minus a quantity of

the resources lost due to a tolerated event;

executing the jobs on the resources of the distributed system; and

31

constraining a total usage of the resources by both the high-availability

jobs and the low-availability jobs to the quantity of the resources available during normal

operations.

15. The system of claim 14, wherein the resources comprise data processing devices,

networking systems, power systems, or cooling systems.

16. The system of claim 15, wherein the computer processor migrates or re-executes

jobs assigned to resources lost due to the tolerated event to remaining resources.

17. The system of claim 1, wherein the resources comprises non-transitory memory

devices.

18. The system of claim 17, wherein the computer processor:

leaves jobs assigned to the lost resources without reassigning the jobs to

remaining resources; and

reconstructs any unavailable data associated with the lost resources.

19. The system of claim 14, wherein the computer processor determines the second

quota of the resources available to high-availability jobs as:

Q2 = RN - RL - RI

wherein Q2 is the second quota, RN is the quantity of the resources available

during normal operations, RL is the quantity of the resources lost due to a tolerated event,

and R, is an increased quantity of the remaining resources needed due to the tolerated

event.

20. The system of claim 14, wherein the computer processor determines the second

quota of the resource available to high-availability jobs as:

(RN - RL)

(RN + x * RL)

32

wherein Q2 is the second quota, RN is the quantity of the resource available during

normal operations, RL is the quantity of the resource lost due to a tolerated event, and x is

a resource multiplier corresponding to the tolerated event.

21. The system of claim 20, wherein the resources comprise non-transitory memory

devices.

22. The system of claim 14, wherein the computer processor limits a sum of the first

quota and the second quota to a maximum quota.

23. The system of claim 14, wherein the computer processor:

monitors a usage of the resources by the high-availability jobs; and

when a high-availability job exceeds a threshold usage, downgrades the high

availability job to a low-availability job.

24. The system of claim 14, wherein the computer processor suspends or ends at least

some of the low-availability jobs for the period of time before the tolerated event.

25. The system of claim 14, wherein the computer processor determines the quantity

of the resources lost due to a tolerated event based on an assignment of the jobs to

particular resources and a system hierarchy of the distributed system, the system

hierarchy comprising system domains, each having an active state or an inactive state.

26. The system of claim 25, wherein the system hierarchy comprises system levels

comprising:

a first system level corresponding to host machines of data processing devices,

non-transitory memory devices, or network interface controllers, each host machine

having a system domain;

a second system level corresponding to power deliverers, communication

deliverers, or cooling deliverers of racks housing the host machines, each power

33

deliverer, communication deliverer, or cooling deliverer of the rack having a system

domain; and

a third system level corresponding to power deliverers, communication deliverers,

or cooling deliverers of cells having associated racks, each power deliverer,

communication deliverer, or cooling deliverer of the cell having a system domain; and

a fourth system level corresponding to a distribution center module of the cells,

each distribution center module having a system domain.

27. A method comprising:

identifying high-availability jobs and low-availability jobs that demand usage of

resources of a distributed system;

determining a first quota of the resources available to low-availability jobs as a

quantity of the resources available during normal operations;

determining a second quota of the resources available to high-availability jobs

based on a resource type, wherein:

for storage capacity resources, the second quota of the resources available

to high-availability jobs is the quantity of the resources available during normal

operations;

for storage bandwidth resources, the second quota of the resources

available to high-availability jobs is the quantity of the resources available during normal

operations minus a quantity of the resources lost due to a tolerated event and minus an

increased quantity of the remaining resources needed due to the tolerated event; and

for non-storage resource resources, the second quota of the resources

available to high-availability jobs is the quantity of the resources available during normal

operations minus the quantity of the resources lost due to a tolerated event;

executing the jobs on the resources of the distributed system; and

constraining a total usage of the resources by both the high-availability jobs and

the low-availability jobs to the quantity of the resources available during normal

operations.

34

28. The method of claim 27, further comprising, for non-storage resources, migrating

or re-executing jobs assigned to resources lost due to the tolerated event to remaining

resources.

29. The method of claim 27, further comprising, for storage resources:

leaving jobs assigned to the lost resources without reassigning the jobs to

remaining resources; and

reconstructing any unavailable data associated with the lost resources.

30. The method of claim 27, further comprising determining the quantity of the

resources lost due to a tolerated event based on an assignment of the jobs to particular

resources and a system hierarchy of the distributed system, the system hierarchy

comprising system domains, each having an active state or an inactive state.

Google Inc.

Patent Attorneys for the Applicant

SPRUSON & FERGUSON

35

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

