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GRASPING OF AN OBJECT BY A ROBOT by the robot ( and optionally captures features of additional 
BASED ON GRASP STRATEGY environmental object ( s ) ) . For example , the sensor data can 
DETERMINED USING MACHINE include vision data that is generated by a vision component 

LEARNING MODEL ( S ) of a robot , and that captures an object to be grasped by the 
5 robot . Each grasp region generated using the trained 

BACKGROUND machine learning model indicates a corresponding portion of 
the sensor data and defines , directly or indirectly , a corre 

Many robots are programmed to utilize one or more end sponding spatial region for interacting with an object to 
effectors to grasp one or more objects . For example , a robot grasp the object . For example , a grasp region can define a 
may utilize a grasping end effector such as an " impactive ” 10 plurality of pixels in vision data that is a two - dimensional 
grasping end effector ( e.g. , jaws , claws , fingers , and / or bars ( 2D ) image , and those pixels can be mapped to correspond 
that grasp an object by direct contact upon the object ) or ing points in three - dimensional space that define a spatial 
" ingressive " grasping end effector ( e.g. , physically penetrat- region for interacting with an object to grasp the object . The 
ing an object using pins , needles , etc. ) to pick up an object semantic indication associated with a grasp region can 
from a first location , move the object to a second location , 15 indicate one or more values for a grasp strategy , such as a 
and drop off the object at the second location . Some addi- grasp direction ( e.g. , top , side ) and / or grasp type ( e.g. , pinch , 
tional examples of robot end effectors that may grasp objects power ) . Those implementations further select a grasp strat 
include “ astrictive ” grasping end effectors ( e.g. , using suc- egy based on the semantic indication , and determine an end 
tion or vacuum to pick up an object ) and one or more effector pose , for interacting with the object to grasp the 
“ contigutive ” grasping end effectors ( e.g. , using surface 20 object , based on the grasp strategy and one of the grasp 
tension , freezing or adhesive to pick up an object ) , to name regions . For example , the selected grasp strategy can include 
just a few . While humans innately know how to correctly a grasp direction and / or grasp type selected based on the 
grasp many different objects , determining an appropriate semantic indication , and the end effector pose can be a grasp 
manner to grasp an object for manipulation of that object pose determined based on the grasp direction and / or grasp 
may be a difficult task for robots . 25 type , and the grasp region . A robot is then controlled to cause 

an end effector of the robot to traverse to the end effector 
SUMMARY pose in association with attempting a grasp of an object . 

As one particular example , the vision data can be a 
This specification is directed to methods and apparatus two - dimensional ( 2D ) image generated by a vision compo 

related to grasping of an object , by an end effector of a robot , 30 nent of a robot and can be processed over a trained machine 
based on a grasp strategy that is selected using one or more learning model to generate one or more grasp regions and 
machine learning models . The grasp strategy utilized for a corresponding semantic indications . For instance , each 
given grasp is one of a plurality of candidate grasp strate- grasp region can indicate a bounding rectangle ( or other 
gies . Each candidate grasp strategy defines a different group bounding shape ) that encapsulates one or more contiguous 
of one or more values that influence performance of a grasp 35 pixels of the 2D image . Also , for instance , the corresponding 
attempt in a manner that is unique relative to the other grasp semantic indications can each indicate a grasp direction for 
strategies . For example , value ( s ) of a grasp strategy can the grasp ( e.g. , side , top , etc. ) . At least one grasp region can 
influence one or more poses of the end effector of a robot in be selected based on it corresponding to an object to be 
attempting a grasp , such as a grasp pose ( e.g. , a full grasped . For example , a given grasp region can be selected 
six - dimensional pose ) of the end effector prior to ( e.g. , 40 based in it corresponding to a region having a classification 
immediately prior to ) an attempted grasp utilizing the end that corresponds to an object to be grasped , where the 
effector . For instance , value ( s ) of a grasp strategy can dictate classification of the region is based on output generated over 
whether a grasp is performed from a “ top ” direction ( relative a separate object detection and classification machine learn 
to the object to be grasped ) , a “ side ” direction , or other ing model . Further , one or more particular three - dimensional 
direction ( e.g. , between “ top ” and “ side ” ) , which will influ- 45 ( 3D ) points can be selected , from a group of 3D points , 
ence the grasp pose of the end effector prior to an attempted based on the 3D point ( s ) corresponding to the pixel ( s ) 
grasp . Also , for example , value ( s ) of a grasp strategy can encapsulated by the selected grasp region . The group of 3D 
additionally alternatively influence whether points can be generated by the same vision component that 
manipulation ( s ) are performed on an object prior to and / or generated the 2D image ( e.g. , the 2D image can be the same 
after grasping the object , and can influence which manipu- 50 as the 3D points , except for lacking a depth channel ) or can 
lation ( s ) are performed ( if any ) . For instance , value ( s ) can be generated by an additional vision component ( e.g. , the 2D 
dictate that an object ( e.g. , a large plate ) is to first be slid to image can be generated by a camera and the 3D points can 
the edge of a surface prior to attempting a “ side ” grasp of the be a point cloud from a separate laser scanner ) and mapped 
object . As yet another example , value ( s ) of a grasp strategy to the pixels of the 2D image . A surface normal can be 
can additionally or alternatively influence parameters of the 55 determined for each of one or more of the selected 3D 
actual grasp itself , such as an amount of force that is applied point ( s ) , and an end effector approach vector determined 
in grasping and / or whether the grasp is a fingertip / pinch based on one or more of the surface normal ( s ) . The end 
grasp , a power grasp , a raking grasp , or other available ( e.g. , effector approach vector can have a direction component 
in view of grasp types achievable by the end effector ) type that is opposite from one of the surface normals , but 

60 otherwise strictly conforms to that surface normal . In some 
Some implementations described herein process sensor implementations , the grasp direction indicated by the 

data ( e.g. , vision data ) , using a trained machine learning semantic indication ( e.g. , top , side ) can be utilized to select 
model , to generate output that defines one or more grasp a surface normal utilized in determining the approach vector . 
regions and , for each of the one or more grasp regions , a For example , if a “ top ” grasp is to be performed , a surface 
corresponding semantic indication associated with the grasp 65 normal that extends “ up ” can be selected in lieu of one that 
region . The sensor data is generated by one or more sensors extends to the “ side ” or “ down ” . In this manner , the grasp 
of a robot , and captures features of an object to be grasped direction that defines at least part of the grasp strategy is 

or 

of grasp . 
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utilized in determining the approach vector and resultantly manipulation of sliding the chair can be performed after a 
the grasp pose determined based on the approach vector ) . An successful grasp of the chair , and prior to lifting the chair off 
end effector grasp pose that conforms to the end effector of the ground . 
approach vector can be determined , and one or more control Some implementations described herein select a grasp 
commands provided to actuators of the robot to cause the 5 strategy for a grasp attempt independent of output from a 
end effector to traverse to the grasp pose and attempt a grasp “ grasp regions and semantic indications model ” . For 
of the object subsequent to traversing to the grasp pose . example , some of those implementations process vision data 
Additionally , in some implementations multiple grasp poses using an object detection and classification model , to gen 

erate a semantic indication that includes a classification of can be considered for each of one or more end effector 
approach vectors , and one grasp pose selected based on it 10 the object to be grasped , and optionally classification ( s ) of 
avoiding collisions ( with the object and / or with other objects one or more additional objects in the environment . The 

classification ( s ) are then utilized in selecting a grasp strat in the environment ) , satisfying inverse kinematic con egy . For example , a “ small plate ” classification ( e.g. , a plate straints , and / or based on other criterion / criteria . with a width less than a maximum grasping width ) can be Although the preceding particular example is described 15 assigned , in a database , to a value that dictates a “ top grasp " 
with respect to semantic indications that indicate a grasp is to be performed . As another example , a “ large plate ” 
direction , the machine learning model can be trained to classification ( e.g. , a plate with a width greater than a 
provide additional and / or alternative semantic indications maximum grasping width ) can be assigned , in a database , to 
that can influence a grasp strategy . For example , the seman- a value that dictates a “ side grasp ” is to be performed 
tic indications can additionally and / or alternatively include 20 following a pre - grasp manipulation of “ slide to the edge of 
semantic indications that influence manipulation ( s ) that are the supporting surface ” . As yet another example , a “ chair " 
performed on an object prior to and / or after grasping the classification of an object to be grasped can be assigned , in 
object ( e.g. , " slide ” after sping , “ slide ” to an edge of a a database , to a value that dictates a post - gr manipulation 
surface before grasping ) and / or can include indications that of “ slide prior to lifting ” when a “ table ” classification is also 
influence parameters of the actual grasp itself ( e.g. , an 25 determined for another environmental object near the 
amount of force that is applied in grasping , a type of grasp ) . “ chair ” object ; whereas such a post - grasp manipulation is 

Additionally , in some implementations , other value ( s ) of not dictated when the " table " classification is not also 
a grasp strategy can be determined based at least in part on determined for any environmental object near the " chair " 

object . outputs generated utilizing one or more additional machine 
learning models . For example , some of those implementa As another example of implementations that select a grasp 
tions process vision data using an object detection and strategy for a grasp attempt independent of output from a 
classification model , to generate a semantic indication that " grasp regions and semantic indications model ” , classifica 

tion ( s ) and other contextual data ( e.g. , a location , a task includes a classification of the object to be grasped , and 
optionally classification ( s ) of one or more additional objects 35 learning model trained to predict a grasp strategy , and the 

being performed , etc. ) can be processed using a machine 
in the environment . Such classification ( s ) can additionally or predicted grasp strategy utilized in attempting a grasp of an alternatively be utilized in determining one or more values object . For instance , a classification of an object to be for a grasp strategy . For example , a classification of an grasped can be applied as input to the trained machine 
object to be grasped can be assigned , in a database , to a value learning model , optionally along with classification ( s ) of 
that dictates an amount of force to be applied in grasping- 40 other environmental object ( s ) and / or other contextual data . 
and such value utilized as part of a grasp strategy to dictate The input can be processed using the trained machine 
the amount of force that is to be applied in grasping the learning model to generate output that indicates a predicted 
object . As yet another example , assume a trained " grasp grasp strategy , and a corresponding grasp strategy selected 
regions and semantic indications ” model is utilized to deter- based on the output . 
mine a grasp region and a semantic indication that indicates 45 The preceding is provided as an example of various 
a “ side ” grasp direction and that a grasp pose is deter- implementations described herein . Additional description of 
mined based on the grasp region and the semantic indication those implementations , and of additional implementations , 
as described above . Further assume that a separate object are provided in more detail below , and in the detailed 
detection and classification model is utilized to determine description . 
the object to be grasped is a “ plate ” . In such an example , the 50 In some implementations , a method is provided that 
“ side ” grasp direction and the “ plate ” classification can be includes applying sensor data as input to at least one trained 
collectively mapped , in a database , to a pre - grasp manipu- machine learning model . The sensor data is generated by one 
lation of " slide to the edge of the supporting surface ” . Based or more sensor components of a robot and captures features 
on such mapping , the pre - grasp manipulation of sliding the of an object in an environment of the robot . The method 
plate to the edge of the supporting surface can first be 55 further includes processing the sensor data using the at least 
performed prior to attempting a grasp . As yet a further one trained machine learning model to generate output 
example , assume a trained " grasp regions and semantic defining a spatial region for interacting with the object to 
indications ” model is utilized to determine a grasp region grasp the object , and defining a semantic indication associ 
and a semantic indication that indicates a “ side ” grasp ated with the object . The method further includes selecting , 
direction and that a grasp pose is determined based on the 60 based on the semantic indication , a particular grasp strategy 
grasp region and the semantic indication as described above . of plurality of candidate grasp strategies . The method further 
Further assume that a separate object detection and classi- includes determining an end effector pose , for interacting 
fication model is utilized to determine the object to be with the object to grasp the object , based on the spatial 
grasped is a “ chair ” . In such an example , the “ side ” grasp region defined by the output and based on the particular 
direction and the chair " classification can be collectively 65 grasp strategy selected based on the semantic indication 
mapped , in a database , to a post - grasp manipulation of “ slide defined by the output . The method further includes provid 
prior to lifting ” . Based on such mapping , the post - grasp ing , to actuators of the robot , commands that cause an end 
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effector of the robot to traverse to the end effector pose in points generated by a vision component of a robot , where the 
association with attempting a grasp of the object . group of 3D data points capture an object in an environment 

These and other implementations of the technology dis- of a robot . The method further includes applying vision data 
closed herein can include one or more of the following as input to at least one trained machine learning model and 
features . 5 processing the vision data using the trained machine learn 

In some implementations , the particular grasp strategy ing model to generate output defining one or more grasp 
includes a grasp approach direction for approaching the regions and , for each of the one or more grasp regions , a 
object in attempting the grasp of the object , and determining corresponding semantic indication . The vision data captures 
the end effector pose is based on the grasp approach direc- the object in the environment of the robot and is based on the 
tion . In some of those implementations , the particular grasp 10 group of 3D data points , or is generated by an additional 
strategy further includes an initial manipulation to perform vision component of the robot . The method further includes 
on the object , prior to attempting the grasp of the object , and selecting a grasp region , of the one or more grasp regions , 
the method further includes : providing , to the actuators of based on the grasp region corresponding to the object and 
the robot , further commands that cause the end effector of the object being selected for grasping . The method further 
the robot to perform the initial manipulation on the object in 15 includes selecting , based on the semantic indication of the 
association with attempting the grasp of the object . In some grasp region , a particular grasp strategy of a plurality of 
versions of those implementations , the initial manipulation candidate grasp strategies . The method further includes 
includes sliding the object across a surface on which the determining an end effector pose , for interacting with the 
object rests in the environment . object to grasp the object , based on : the group of 3D points , 

In some implementations , the particular grasp strategy 20 the grasp region , and the particular grasp strategy . The 
includes a degree of force to apply in attempting the grasp method further includes providing , to actuators of the robot , 
of the object and / or a grasp type to be performed by the end commands that cause an end effector of the robot to traverse 
effector . to the end effector pose in association with attempting a 

In some implementations , the output is generated over a grasp of the object . 
single model of the at least one trained machine learning 25 These and other implementations of the technology dis 
model , and defines the at least one spatial region , and defines closed herein can include one or more of the following 
the semantic indication for the at least one spatial region . In features . 
some of those implementations , the sensor data processed In some implementations , determining the end effector 
using the single model includes vision data generated by a pose includes : selecting at least one particular 3D point from 
vision component of the one or more sensor components , 30 the group of 3D points based on the particular 3D point 
where the vision data lacks a depth channel . In some being within the grasp region ; and determining the at least 
versions of those implementations , determining the end one end effector pose based on a surface normal determined 
effector pose includes : selecting at least one particular based on the at least one particular 3D point . In some of 
three - dimensional ( 3D ) point , from a group of 3D points , those implementations , determining the at least one end 
based on the particular 3D point being within the spatial 35 effector pose based on the surface normal determined based 
region ; and determining the at least one end effector pose on the at least one particular 3D point is based on the surface 
based on the at least one particular 3D point . The group of normal conforming to a grasp approach direction defined by 
3D points includes a depth channel , and the group of 3D the particular grasp strategy . 
points is generated by the vision component , or is generated In some implementations , the vision data processed using 
by an additional vision component of the robot that is 40 the trained machine learning model to generate the output 
viewing the environment . For example , the group of 3D includes two - dimensional ( 2D ) vision data . 
points can be generated by the vision component , and the In some implementations , a method is provided that 
vision data processed using the single model can include the includes applying vision data as input to trained object 
group of 3D points without the depth channel . Determining classification machine learning model , and processing the 
the end effector pose based on the at least one particular 3D 45 vision data using the trained object classification machine 
point can , in some implementations , include determining an learning model to generate output indicating a semantic 
approach vector based on a surface normal determined based classification of the object . The vision data is generated by 
on the at least one particular 3D point , and determining the a vision component of a robot and captures an object in an 
end effector pose based on the surface normal . Selecting the environment of the robot . The method further includes 
at least one particular 3D point can be further based on the 50 selecting , from a plurality of candidate grasp strategies and 
surface normal conforming to a grasp approach direction of based on the semantic classification , a particular grasp 
the grasp strategy . strategy . The method further includes controlling an end 

In some implementations , the semantic indication asso- effector of the robot to cause the end effector to interact with 
ciated with the object that is defined by the output includes the object in accordance with the particular grasp strategy , in 
a classification of the object , and selecting the particular 55 attempting a grasp of the object . 
grasp strategy is based on the particular grasp strategy being These and other implementations of the technology dis 
stored in association with the classification of the object . In closed herein can include one or more of the following 
some of those implementations , the output generated by features . 
processing the vision data using the at least one trained In some implementations , the output generated based on 
machine learning model further includes an additional clas- 60 processing the vision data using the trained object classifi 
sification associated with an additional object in the envi- cation machine learning model further indicates an addi 
ronment , and selecting the particular grasp strategy is based tional semantic classification of an additional object in the 
on the particular grasp strategy being stored in association environment of the robot , and selecting the particular grasp 
with both : the classification of the object and the additional strategy is further based on the additional semantic classi 
classification of the additional object . 65 fication . In some of those implementations , selecting the 

In some implementations , a method is provided that particular grasp strategy based on the semantic classification 
includes receiving a group of three - dimensional ( 3D ) data and the additional semantic classification includes : applying 
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the semantic classification and the additional semantic clas- FIG . 9 is a flowchart illustrating another example method 
sification as additional input to an additional trained of providing control commands to cause an end effector to 
machine learning model ; processing the input using the traverse to an end effector pose determined based on a 
additional machine learning model to generate additional selected grasp strategy . 
output that indicates the grasp strategy ; and selecting the 5 FIG . 10 illustrates some surface normals that can be 
grasp strategy based on it being indicated by the additional determined based on 3D data points for a coffee mug . 
output . In some versions of those implementations , the FIG . 11 illustrates an example of generating a grasp 
additional output includes a probability for the grasp strat approach vector based on a surface normal determined based 
egy and additional probabilities for additional grasp strate on a local plane for a 3D point . 
gies , and the additional output indicates the grasp strategy FIG . 12 schematically depicts an example architecture of 

a robot . based on the probability for the grasp strategy satisfying a FIG . 13 schematically depicts an example architecture of threshold . a co yst Other implementations may include a non - transitory com 
puter readable storage medium storing instructions execut DETAILED DESCRIPTION 
able by a processor ( e.g. , a central processing unit ( CPU ) or 
graphics processing unit ( GPU ) ) to perform a method such FIG . 1 illustrates an example environment in which an 
as one or more of the methods described herein . Yet another object can be grasped by an end effector of a robot ( e.g. , 
implementation may include a system of one or more robot 180 , robot 190 , and / or other robots ) . The object can be 
computers and / or one or more robots that include one or 20 grasped in accordance with a grasp strategy that is selected 
more processors operable to execute stored instructions to by a grasp system 110 using one or more trained machine 
perform a method such as one or more ( e.g. , all ) aspects of learning models 160. For example , the grasp system 110 
one or more of the methods described herein . can : select the grasp strategy based on processing of sensor 

It should be appreciated that all combinations of the data from a robot using one or more trained machine 
foregoing concepts and additional concepts described in 25 learning models 160 ; determine , based on the selected grasp 
greater detail herein are contemplated as being part of the strategy , one or more end effector poses , grasp parameters , 
subject matter disclosed herein . For example , all combina- and / or pre - grasp and / or post - grasp manipulations for 
tions of claimed subject matter appearing at the end of this attempting a grasp of an object ; and can provide commands 
disclosure are contemplated as being part of the subject to actuators of the robot to cause an end effector of the robot 
matter disclosed herein . 30 to attempt the grasp of the object based on the determined 

end effector poses , grasp parameters , and / or pre - grasp and 
BRIEF DESCRIPTION OF THE DRAWINGS or post - grasp manipulations . 

Example robots 180 and 190 are illustrated in FIG . 1 . 
Robot 180 is a “ robot arm ” having multiple degrees of FIG . 1 illustrates an example environment in which an object can be grasped , by an end effector of a robot , based 35 freedom to enable traversal of a grasping end effector 185 of the robot 180 along any of a plurality of potential paths to on a grasp strategy that is selected using one or more trained position the grasping end effector 185 in any one of a machine learning models . plurality of desired poses . As used herein , a pose of an end FIG . 2A illustrates an example of a training instance that effector references a full six - dimensional ( “ 6D ” ) pose of the 

can be utilized to train a grasp regions and semantic indi- 40 end effector that specifies both a position and an orientation 
cations model , of the trained machine learning models of of the end effector . In some implementations , the position of 
FIG . 1 . the end effector may be the position of a reference point of 
FIG . 2B illustrates another example of a training instance the end effector . In some implementations , the reference 

that can be utilized to train the grasp regions and semantic point of an end effector may be a center of mass of the end 
indications model , of the trained machine learning models of 45 effector , and / or a point near where end effector attaches to 
FIG . 1 . other components of the robot , though this is not required . 
FIG . 3 illustrates an example of training the grasp regions The pose of an end effector may be defined in various 

and semantic indications model , of the trained machine manners , such as in joint space and / or in Cartesian / configu 
learning models of FIG . 1 . ration space . A joint space pose of an end effector may be a 
FIG . 4 illustrates an example of generating control com- 50 vector of values that define the states of each of the opera 

mands to provide to an end effector for grasping , based on tional components that dictate the position of the end 
a grasp strategy that is selected using one or more trained effector . A Cartesian space pose of an end effector may 
machine learning models . utilize coordinates or other values that define all six degrees 
FIG . 5 is a flowchart illustrating an example method of of freedom of the end effector relative to a reference frame . 

providing control commands to cause an end effector to 55 It is noted that some robots may have kinematic redundancy 
traverse to an end effector pose determined based on a and that more than one joint space pose of an end effector 
selected grasp strategy . may map to the same Cartesian space pose of the end 
FIG . 6 is another example of generating control com- effector in those robots . 

mands to provide to an end effector for grasping , based on Robot 180 further controls two opposed actuable mem 
a grasp strategy that is selected using one or more trained 60 bers 186A and 186B of the end effector 185 to actuate the 
machine learning models . actuable members 186A and 186B between at least an open 
FIG . 7 illustrates an example of training a trained grasp position and a closed position ( and / or optionally a plurality 

strategy model , of the trained machine learning models of of " partially closed ” positions ) . As described herein , robot 
FIG . 6 . 180 may operate semi - autonomously at least part of the time 
FIG . 8 is a flowchart illustrating an example method of 65 and control operational components thereof to attempt a 

controlling an end effector a robot in accordance with a grasp of an object in accordance with a grasp strategy 
selected grasp strategy . selected by grasp system 110. As also described herein , the 
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grasp strategy selected by grasp system 110 is selected based one or more motors for driving corresponding wheels 197A 
on output generated based on processing of sensor data , and 197B to achieve a desired direction , velocity , and / or 
from sensor ( s ) of a corresponding robot , using one or more acceleration of movement for the robot 190 . 
trained machine learning models 160. As used herein , an The robot 190 also includes a monographic camera 196A 
“ operational component ” of a robot may refer to actuators 5 and a 3D laser scanner 196B . A monographic camera 
such as motors ( e.g. , servo motors ) , gear trains , pumps ( e.g. , captures image data and the image data at a given instance 
air or liquid ) , pistons , drives , and / or other components that may be utilized to generate a two - dimensional ( “ 2D ” ) image 
may create and / or undergo propulsion , rotation , and / or at the given instance . A 3D laser scanner includes one or 
motion . Some operational components may be indepen- more lasers that emit light and one or more sensors that 
dently controllable , although this is not required . In some 10 generate sensor data related to reflections of the emitted 
instances , the more operational components robot 180 has , light . The generated sensor data from a 3D laser scanner may 
the more degrees of freedom of movement it may have . be utilized to generate a 3D point cloud , where each of the 

Stereographic camera 184 is also illustrated in FIG . 1. In 3D points of the 3D point cloud defines a 3D coordinate of 
some implementations , a stereographic camera includes two a surface of a corresponding object . A 3D laser scanner may 
or more sensors ( e.g. , charge - coupled devices ( CCDs ) ) , each 15 be , for example , a time - of - flight 3D laser scanner or a 
at a different vantage point and each generating image data . triangulation based 3D laser scanner and may include a 
Each of the two sensors generates image data and the image position sensitive detector ( PSD ) or other optical position 
data from each sensor at a given instance may be utilized to 
generate a two - dimensional ( “ 2D ” ) image at the given As described herein , robot 190 may operate semi - autono 
instance . Moreover , based on image data generated by the 20 mously at least part of the time and control operational 
two sensors , three - dimensional ( “ 3D ” ) vision data may also components thereof to grasp objects based on a grasp 
be generated in the form of an image with a “ depth " channel , strategy selected by grasp system 110. For example , the 
where each of the points of the 3D vision data defines a 3D robot 190 may control the wheels 197A and / or 197B , the 
coordinate of a surface of a corresponding object . For robot arms 194A and / or 194B , and / or the end effectors 195A 
example , a 3D point may be determined to be the intersec- 25 and / or 195B to grasp objects in accordance with a grasp 
tion point of a first ray from a first pixel of a first image strategy selected by grasp system 110 . 
generated by one of the sensors at a given instance and a Although particular robots 180 and 190 are illustrated in 
second ray from a corresponding second pixel of a second FIG . 1 , additional and / or alternative robots may be utilized , 
image generated by the other sensor at or near the given including robots having other robot arm forms , robots hav 
instance ( where the rays " project ” from the images based on 30 ing a humanoid form , robots having an animal form , robots 
“ known ” geometries between the images ( e.g. , the known that move via one or more wheels ( e.g. , self - balancing 
baseline and angles between the two sensors ) ) . In some other robots ) , submersible vehicle robots , an unmanned aerial 
implementations , a stereographic camera may include only vehicle ( “ UAV ” ) , and so forth . Also , although particular 
a single sensor and one or more mirrors utilized to effec- grasping end effectors are illustrated in FIG . 1 , additional 
tively capture image data from two different vantage points . 35 and / or alternative end effectors may be utilized , such as 
In various implementations , a stereographic camera may be alternative impactive grasping end effectors ( e.g. , those with 
a projected - texture stereo camera . For example , the stereo- grasping “ plates ” , those with more or fewer “ digits ” ! 
graphic camera may be a projected - texture stereo camera “ claws ” ) , “ ingressive ” grasping end effectors , “ astrictive ” 
that also includes a projector that projects a pattern in grasping end effectors , or “ contigutive ” grasping end effec 
infrared and senses the projected pattern ( e.g. , the sensed 40 tors , or non - grasping end effectors . 
pattern may be included in image data generated by one or Turning now to the grasp system 110 of FIG . 1 , it is 
more sensors of the camera ) . The sensed pattern may also be illustrated as separate from , but in communication with , both 
utilized in generating the 3D vision data . of robots 180 and 190. In some implementations , all or 

In FIG . 1 , stereographic camera 184 is mounted at a fixed aspects of grasp system 110 may be implemented on robot 
pose relative to the base or other stationary reference point 45 180 and / or robot 190 ( e.g. , via one or more processors of 
of robot 180. The stereographic camera 184 has a field of robots 180 and 190 ) . For example , robots 180 and 190 may 
view of at least a portion of the workspace of the robot 180 , each include an instance of the grasp system 110. In some 
such as the portion of the workspace that is near grasping implementations , all or aspects of grasp system 110 may be 
end effector 185. Although a particular mounting of stereo- implemented on one or more computer systems that are 
graphic camera 184 is illustrated in FIG . 1 , additional and / or 50 separate from , but in network communication with , robots 
alternative mountings may be utilized . For example , in some 180 and / or 190. Moreover , in some of those implementa 
implementations , stereographic camera 184 may be tions , each of the robots 180 and 190 may have their own 
mounted directly to robot 180 , such as on a non - actuable dedicated instance of the grasp system 110 . 
component of the robot 180 or on an actuable component of The sensor data engine 112 of grasp system 110 receives 
the robot 180 ( e.g. , on the end effector 185 or on a compo- 55 instance ( s ) of sensor data , from sensor ( s ) of a robot , and 
nent close to the end effector 185 ) . Also , for example , in provides the instance ( s ) to one or more other components of 
some implementations , the stereographic camera 184 may the grasp system 110 , for use in selecting a grasp strategy 
be mounted on a non - stationary structure that is separate and / or in determining how to perform a grasp attempt in 
from the robot 180 and / or may be mounted in a non- accordance with a selected grasp strategy . In some imple 
stationary manner on a structure that is separate from robot 60 mentations , the sensor data includes vision data , such as 2D 
180 . vision data and / or 3D vision data . 2D vision data can include 

The robot 190 includes robot arms 194A and 194B with 2D images generated based on image data captured by 
corresponding end effectors 195A and 195B , that each take camera ( s ) associated with a robot , and each of the 2D 
the form of a gripper with two opposing actuable members . images can include a plurality of pixels and values defined 
The robot 190 also includes a base 193 with wheels 197A 65 for each of one or more channels of each of the pixels . For 
and 197B provided on opposed sides thereof for locomotion example , a 2D image can include a plurality of pixels each 
of the robot 190. The base 193 may include , for example , having red , green , and blue channels and may define , for 
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each of the channels for each of the pixels , a value ( e.g. , The approach vector engine 132 generates an end effector 
from 0 to 255 ) . 3D vision data , as used herein , can include approach vector for an attempted grasp of an object . The 
so - called 2.5D images that include a depth channel in approach vector engine 132 can generate the approach 
addition to one or more color channels ) and / or can include vector based on sensor data provided by sensor data engine 
3D point cloud data that includes X , Y , and Z position values 5 112 , based on a spatial region determined by the model 
of detected surfaces ( optionally with “ intensity ” values ) . engine 120 , and / or based on a grasp strategy determined by 
As one particular example of sensor data that can be the model engine 120. Further , the approach vector engine 

received by sensor data engine 112 , the sensor data can 132 can generate an end effector grasp pose that conforms to 
include a 2D image generated based on image data from one the end effector approach vector . 
of the sensors of the stereographic camera 184 of the robot 10 In some implementations , the approach vector engine 132 
180 , and / or can include 3D vision data that is a 2.5D image generates the end effector approach vector based on a spatial 
generated based on image data from two sensors of the region determined by the model engine 120 , based on the 
stereographic camera 184. As another example , the sensor spatial region corresponding to an object to be grasped . The 
data can include a 2D image generated based on image data spatial region can be , for example , a grasp region defined by 
from the monographic camera 196A of the robot 190 , and 15 output from a “ grasp regions and semantic indications 
3D point cloud data generated based on data from the laser model ” as described herein , or a spatial region defined by an 
scanner 196B of robot 190. Although vision data is object detection and classification model as described 
described in the particular examples of this paragraph , herein . In some of those implementations , the approach 
non - vision sensor data can additionally or alternatively be vector engine 132 selects one or more particular 3D points , 
received and provided to one or more other components of 20 from a group of 3D points of 3D vision data , based on the 
the grasp system 110 , such as sensor data from one or more 3D point ( s ) corresponding to the pixel ( s ) encapsulated by 
acoustic sensors , sensor data from one or more tactile the spatial region . Further , the approach vector engine 132 
sensors , etc. determines a surface normal for each of one or more of the 

In some implementations , the sensor data engine 112 selected 3D point ( s ) , and determines an end effector 
optionally preprocesses sensor data prior to providing it to 25 approach vector based on one or more of the surface 
one or more other components of the grasp system 110. For normal ( s ) . The end effector approach vector can have a 
example , the sensor data engine 112 can crop a 2D image , direction component that is opposite from one of the surface 
resize a 2D image , alter colors in a 2D image , etc. For normals , but otherwise strictly conforms to that surface 
instance , the sensor data engine 112 can resize a 2D image normal . In some implementations , the approach vector 
to size it for input dimensions of one or more of the trained 30 engine 132 utilizes a grasp direction ( e.g. , top , side ) of a 
machine learning models 160 to be used by the model engine selected grasp strategy to select a surface normal utilized in 
120. Also , for instance , the sensor data engine 112 can determining the approach vector . For example , if a “ top ” 
preprocess a 2D image to “ crop in ” or “ crop out ” certain grasp is to be performed , a surface normal that extends “ up ” 
objects ( e.g. , to keep in only a target object to be grasped ) . can be selected in lieu of one that extends to the " side ” or 

The model engine 120 processes sensor data , provided by 35 “ down ” . As one example , and referring to FIG . 10 , a first 
sensor data engine 112 , using one or more trained machine surface normal 1002 A and a second surface normal 1002B 
learning models 160 , to generate output that is utilized to can both be determined based on separate 3D points , of 3D 
select a grasp strategy for grasping of an object . The output vision data , of a spatial region of a coffee mug . If a “ top ” 
can define a semantic indication associated with an object , grasp is to be performed , first surface normal 1002A can be 
and the grasp strategy can be selected , based on the semantic 40 selected in lieu of surface normal 1002B , as surface normal 
indication , from a plurality of candidate grasp strategies . 1002A extends in a “ top ” direction , whereas surface normal 
Each candidate grasp strategy defines a different group of 1002B extends in a “ side ” direction . Additionally , in some 
one or more values that influence performance of a grasp implementations multiple grasp poses can be considered for 
attempt in a manner that is unique relative to the other grasp each of one or more end effector approach vectors , and one 
strategies . For example , value ( s ) of a grasp strategy can 45 grasp pose selected based on it avoiding collisions ( with the 
influence one or more poses of the end effector of a robot in object and / or with other objects in the environment ) , satis 
attempting a grasp , can influence whether ( and which ) fying inverse kinematic constraints , and / or based on other 
manipulation ( s ) are performed on an object prior to and / or criterion / criteria . 
after grasping the object , and / or can influence parameters of Referring again to FIG . 1 , the group of 3D points that can 
the actual grasp itself . The output can also define a spatial 50 be considered by the approach vector engine 132 include 3D 
region for interacting with an object to grasp the object . The points that capture at least a portion of the surface of the 
spatial region can be utilized , for example , by the approach object to be grasped and are selected based on a mapping 
vector engine 132 in determining an approach vector and / or ( direct or indirect ) between the spatial region determined by 
grasp pose for grasping of an object . the model engine 120 and the group 3D points . For example , 

The trained machine learning models 160 can each be 55 the spatial region can be a bounding rectangle or other 
trained by a corresponding one of training engine ( s ) 140 , bounding area that encompasses pixel ( s ) of a 2D image , and 
based on corresponding training data 165 that is tailored to the approach vector engine can select a group of 3D points 
the trained machine learning model . The training data 165 that map to the encompassed pixels . The approach vector 
can include , for example , supervised and / or semi - supervised engine 132 can utilize various techniques to determine 
training data , such as training data described herein . Addi- 60 which particular 3D point ( s ) are mapped to pixel ( s ) of a 2D 
tional description is provided herein ( e.g. , in description of image . For example , in some implementations the 2D image 
FIGS . 2-9 ) of : the model engine 120 , examples of trained can be a first image of a stereographic camera of a robot 
machine learning models 160 that can be utilized by the ( e.g. , stereographic camera 184 ) . In some of those imple 
model engine 120 , examples of training such models , selec- mentations , the first image and a second image from the 
tion of grasp strategies based on output generated over the 65 stereographic camera that is captured at a different vantage 
trained machine learning models 160 , and of executing point ( e.g. , another image from another sensor of the ste 
grasp attempts in accordance with selected grasp strategies . reographic camera ) may be utilized to determine the 3D 
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points . For example , a 3D point may be determined to be the from the surface normal 1147 , but otherwise strictly con 
intersection point of a first ray from a first pixel of the first forms to the surface normal 1147. As described herein , in 
image and a second ray from a corresponding second pixel some implementations the approach vector engine 132 can 
of the second image ( where the rays “ project from the determine the grasp approach vector based on the surface 
images based on “ known ” geometries between the images 5 normal 1147 , based at least in part on determining that the 
( e.g. , the known geometries between two cameras of a surface normal 1147 is in a direction that conforms to a grasp stereographic camera ) ) . Accordingly , in implementations in direction ( e.g. , top , side ) defined by a selected grasp strategy . which a 2D image is a first image from a stereographic The approach vector engine 132 can further generate one camera of a robot , each pixel of that image may be directly or more candidate grasp poses of an end effector based on mapped to a corresponding 3D point based on a ray from 10 the grasp approach vector and / or other constraints . For that pixel being utilized to calculate the 3D point . In those example , the approach vector engine 132 can employ a implementations , the approach vector engine 132 can utilize collision checker to generate multiple candidate grasp poses the direct mappings between pixels and 3D points to deter 
mine particular 3D point ( s ) that map to selected pixel ( s ) . that each conform to the grasp approach vector ( e.g. , with a 
As another example , in some implementations a 2D rotational axis of the end effector aligned with the approach 

be an image from a camera ( stereo or mono ) of a robot ( e.g. , vector ) and that do not collide with the object to be grasped 
monographic camera 196A ) and the 3D points may be and / or with other object ( s ) in the environment with the 
generated based on a laser scanner ( e.g. , laser scanner 196B ) object to be grasped . The approach vector engine 132 can 
or other 3D scanner ( e.g. , a separate stereo camera ) . The 2D optionally utilize a model of the grasping end effector and / or 
image from the camera and the 3D points may optionally be 20 of other components of the robot to determine conformance 
generated based on corresponding sensor data generated at to a grasp approach vector and may utilize the model ( s ) and 
or near the same time . The poses of the camera and the 3D the 3D vision data to determine whether the end effector 
scanner may be known and those poses utilized to determine and / or other components of the robot collide with object ( s ) 
direct mappings between pixels of a 2D image captured by in the environment . One of the candidate grasp poses may 
the camera and 3D points generated by the 3D scanner . In 25 then be selected as a grasp pose of an end effector for 
those implementations , the approach vector engine 132 may utilization by a robot in attempting a grasp with the grasping 
utilize the direct mappings between pixels and 3D points to end effector . As described herein , the grasp pose defines a 
determine particular 3D point ( s ) that map to selected pose ( position and orientation / full 6D pose ) of an end 
pixel ( s ) . effector of the robot prior to ( e.g. , immediately prior to ) an 
As described above , the approach vector engine 132 30 attempted grasp utilizing the grasping end effector . 

determines a grasp approach vector based on one or more Referring again to FIG . 1 , the grasp parameters engine 
surface normal ( s ) of one or more particular 3D points of the 134 can optionally determine one or more parameters of an 
group of 3D points . Various techniques can be utilized be attempted , such as an amount of force that 
determine the surface normals of the 3D points , and to is applied in grasping and / or whether the grasp is a fingertip / 
determine a grasp approach vector based on one or more of 35 pinch grasp , a power grasp , a raking grasp , or other available 
the surface normals . One particular example of determining type of grasp . The grasp parameters engine 134 can deter 
a grasp approach vector is provided with reference to FIG . mine such parameters based on the parameters being defined 
11. FIG . 11 illustrates some 3D points 1141A - E of a 3D by a grasp strategy selected by the model engine 120 . 
point cloud that captures at least a portion of the surface of The pre / post - grasp manipulation engine 136 can option 
an object . It is understood that the 3D point cloud contains 40 ally determine whether manipulation ( s ) are performed on an 
many additional points than those illustrated in FIG . 11 . object prior to and / or after grasping the object , and can 
Further , it is noted that FIG . 11 illustrates positions of the 3D influence which manipulation ( s ) are performed ( if any ) . The 
points 1141A - E in only two dimensions and that each of the pre / post - grasp manipulation engine 136 can make such a 
3D points 1141A - E have a position in another dimension determination based on a grasp strategy selected by the 
( one that extends “ into ” and “ out of ” FIG . 11 ) that may vary 45 model engine 120 . 
from the positions of other of the 3D points 1141A - E in that The control engine 130 generates and provides control 
dimension . In other words , the 3D points are not all neces- commands to actuators of a robot that cause an end effector 
sarily coplanar with one another . of the robot to attempt grasp of the object based on 

In FIG . 11 , a surface normal 1147 of 3D point 1141A is determination ( s ) made by the approach vector engine 132 , 
illustrated and can be determined based on a local plane 50 the grasp parameters engine 134 , and / or the pre / post - grasp 
1145 that can be generated based on the 3D point 1141A and manipulation engine 130 — where such determinations are in 
based on one or more additional 3D points , such as addi- accordance with a selected grasp strategy . For example , the 
tional 3D points 1141B and 1141D that are in a neighbor- control engine 130 can provide control commands to attempt 
hood 1143 of the 3D point 1141A . The neighborhood 1143 the grasp of the object based on an end effector grasp pose 
can extend in all three dimensions and can encompass 55 determined by engine 132 based on an end effector approach 
additional 3D points not illustrated in FIG . 11B . The neigh- vector . For instance , the control engine 130 can provide 
borhood 1143 may vary in other implementations ( e.g. , it control commands to actuators of the robot to cause the end 
may have a different shape ) , and may optionally be deter- effector to traverse to the grasp pose and attempt a grasp of 
mined based on various factors , such as density of the 3D the object subsequent to traversing to the grasp pose . The 
point cloud . The approach vector engine 132 can utilize one 60 grasp can be attempted by , for example , moving actuable 
or more techniques to fit the local plane 1145 , such as least components of a grasping end effector toward one another to 
squares fitting and / or principal component analysis ( PCA ) . attempt a grasp . For instance , to attempt a grasp using the 
The surface normal 1147 is a normal of the local plane 1145 . robot 180 , actuable members 186A and 186B can be moved 
The approach vector engine 132 can determine a grasp toward one another until they are either at a fully closed 
approach vector based on the surface normal . For instance , 65 position or a torque reading or other reading measured by 
the approach vector engine 132 can determine a grasp torque or other force sensor ( s ) associated with the members 
approach vector to be a vector that is in an opposite direction satisfies a threshold . 

actual grasp 
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In implementations where a selected grasp strategy also 2A , it is noted that the bounding areas are illustrated on the 
defines grasp parameters ( e.g. , a grasp type and / or force of image 165A2A in FIG . 2B for ease of illustration , but can be 
a grasp ) , the control engine 130 can further provide control represented in the training instance output as a bounding 
commands that cause the attempted grasp of the object to be shape — and that that the semantic indication can be repre 
performed using the grasp parameters determined by the 5 sented in the training instance output as indications whose 
grasp parameters engine 134. Further , in implementations semantic meanings are not readily understood by a human . 
where a selected grasp strategy also defines pre and / or FIG . 3 illustrates an example of training the grasp regions 
post - grasp manipulations , the control engine 130 can further and semantic indications model 160A ( FIG . 4 ) , of the trained 
provide control commands that cause the object to be machine learning models 160 of FIG . 1. In FIG . 3 , the grasp 
manipulated , prior to and / or following the attempted grasp , 10 regions and semantic indications model is numbered with 
based on pre and / or post - grasp manipulations determined by 160A1 to represent that it is being trained , whereas it is 
the pre / post - grasp manipulation engine 136 . numbered with 160A in FIG . 4 to represent that is has been 

Turning now to FIGS . 2A , 2B , 3 , 4 , and 5 , implementa- trained . 
tions are described of training and utilizing a “ grasp regions The grasp regions and semantic indications model 160A1 
and semantic indications model ” of trained machine learning 15 is trained utilizing a plurality of training instances of training 
models 160 of FIG . 1. FIGS . 2A and 2B each illustrates an data 165 , such as training instances 165A1 and 165A2 of 
example of a training instance , of training data 165 , that can FIGS . 2A and 2B , and additional ( e.g. , thousands of ) similar 
be utilized by one of the training engine ( s ) 140 to train a training instances . A single training instance 165A1 ( of FIG . 
grasp regions and semantic indications model 160A . The 2A ) is illustrated in FIG . 3 and includes training instance 
training instances of FIGS . 2A and 2B can be generated , for 20 input 165A1A of a 2D image and includes training instance 
example , in a supervised manner based on user interface output 165A1B that indicates grasp region ( s ) with semantic 
input from human ( s ) . indication ( s ) ( i.e. , 165A1B1-4 of FIG . 2A ) . The training 
FIG . 2A illustrates a training instance 165A1 that includes engine 140A applies the training instance input 165A1A as 

training instance input of a 2D image 165A1A that includes input to the grasp regions and semantic indications model 
a coffee mug and a coffee pot . The training instance 165A1 25 160A1 , and processes the input using the model 160A1 to 
further includes training instance output that includes a generate predicted regions with predicted semantic indica 
plurality of grasp regions with corresponding semantic indi- tions 140A1 . 
cations 165A1B1 , 165A1B2 , 165A1B3 , and 165A1B4 . In An error module 142A , of the training engine 140A , 
particular , 165A1B1 illustrates a bounding area that encom- generates an error 143A1 based on comparing the predicted 
passes a plurality of pixels of the image 165A1A and that has 30 regions with predicted semantic indications 140A1 to the 
a semantic indication corresponding to “ top pinch ” ( i.e. , region ( s ) with semantic indication ( s ) indicated by the train 
indicating a “ top ” grasping direction and a “ pinch ” grasp ing instance output 165A1B . The error module 142A further 
type ) . In other words , 165A1B1 indicates an area of the updates the grasp regions and semantic indication model 
coffee mug , for interacting with the coffee mug for grasping 160A1 based on the determined error 143A1 . For example , 
the coffee mug , and indicates a grasping direction and 35 in non - batch techniques , a gradient can be determined based 
grasping type for the grasping . Further , 165A1B2 , on only the error 143A1 , and backpropagated over the model 
165A1B3 , and 165A1B4 each illustrate a corresponding 160A1 to update various weights of the model 160A1 . Also , 
bounding area that encompasses a corresponding plurality of for example , in batch techniques , the error 143A1 can be 
pixels of the image 165A1A and that has a semantic indi- combined with additional errors determined based on addi 
cation corresponding to " side ” ( i.e. , indicating a “ side ” 40 tional training instances , and utilized to update various 
grasping direction ) . In other words , 165A1B2 , 165A1B3 , weights of the model 160A1 . Although only the training 
and 165A1B4 each indicate an area of the coffee pot , for instance 165A1 is illustrated in FIG . 3 , it is understood that 
interacting with the coffee pot for grasping the coffee pot , many ( e.g. , thousands ) of additional training instances will 
and indicates a grasping direction for the grasping . It is be utilized during training . Through training , the grasp 
noted that the bounding areas are illustrated on the image 45 regions and semantic indications model 160A1 is trained to 
165A1A in FIG . 2A for ease of illustration , but can be enable prediction , using the model 160A1 and based on a 2D 
represented in the training instance output as a bounding image , of grasp regions of the 2D image and corresponding 
shape ( e.g. , a center pixel and a pixel “ width ” and “ height ” ; semantic indications . 
or four " corner ” pixels ) . Further , it is noted that the semantic In various implementations , the grasp regions and seman 
indications can be represented in the training instance output 50 tic indications model 160A1 is a deep neural network model , 
as indications whose semantic meanings are not readily such as a deep convolutional neural network ( CNN ) model 
understood by a human ( e.g. , " top pinch ” can be represented that includes a plurality of CNN layers . In some of those 
as “ 1 ” , “ side ” as “ 2 ” , “ side power ” as “ 3 ” , “ top power ” as implementations , the deep CNN model is pre - trained on 

etc. ) . large datasets to detect objects ( and optionally classifications 
FIG . 2B illustrates a training instance 165A2 that includes 55 of those objects ) , and re - trained as described with respect to 

training instance input of a 2D image 165A2A that includes FIG . 3 , to enable its use in predicting grasp regions and 
a plate resting on a table . The training instance 165A2 corresponding semantic indications . In some versions of 
further includes training instance output that includes grasp those implementations , the pre - trained model can be a 
region and corresponding semantic indication 165A2B1 . In Faster - RCNN model , optionally adapted with one or more 
particular , 165A2B1 illustrates a bounding area that encom- 60 alternative affine layers that are tuned to predicting grasp 
passes a plurality of pixels of the image 165A2A and that has regions and corresponding semantic indications . 
a semantic indication corresponding to " side ( after slide ) ” FIG . 4 illustrates an example of generating control com 
( i.e. , indicating a “ side ” grasping direction after a “ slide ” mands to provide to an end effector for grasping , based on 
pre - grasp manipulation ) . In other words , 165A2B1 indicates a grasp strategy that is selected using one or more trained 
an area of the plate , for interacting with the plate for 65 machine learning models , including at least the trained grasp 
grasping the plate , and indicates a pre - grasp manipulation to regions and semantic indications model 160A ( e.g. , trained 
be performed on the plate prior to the grasping . As with FIG . as described with respect to FIG . 3 ) . 

54 " , 
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In FIG . 4 , sensor data engine 112 provides 2D vision data classification ( s ) for object ( s ) 161A generated by the model 
112A1 ( e.g. , a 2D image ) to model engine 120 and provides engine 120 utilizing the trained object classification model 
3D vision data 112A2 to approach vector engine 132. The 1606. For example , the grasp parameters engine 134 can 
model engine 120 processes the 2D vision data 112A1 using determine grasp parameters 134A based on them being 
the trained grasp regions and semantic indications model 5 mapped , in a database , to a classification for the target object 
160A to generate one or more grasp regions and one or more and / or to classification ( s ) of other environmental object ( s ) . 
corresponding semantic indications 120A . For example , the The trained object classification model 1606 can be a trained 
one or more grasp regions can each indicate a plurality of object detection and classification model and can be utilized , 
pixels of the 2D vision data 112A1 and the one or more by the model engine 120 , to process the 2D vision data 
corresponding semantic indications can each indicate a 10 112A1 and generate one or more predicted classification ( s ) 
corresponding grasp direction , corresponding grasp param- for one or more object ( s ) , along with spatial regions indi 
eter ( s ) , and / or corresponding pre - grasp and / or post - grasp cating where the object ( s ) are located in the 2D vision data 
manipulations . 112A1 . 
The grasp region ( s ) and corresponding semantic indica- In some implementations when pre / post - grasp manipula 

tion ( s ) 120A are provided to the approach vector engine 132. 15 tion ( s ) 136A are generated , the pre / post - grasp manipulation 
The approach vector engine 132 selects at least one of the engine 136 can generate the pre / post - grasp manipulation ( s ) 
grasp regions , based on the selected grasp region corre- 136A based on a semantic indication , for a grasp region 
sponding to a target object to be grasped . The target object corresponding to the target object , of grasp region ( s ) and 
to be grasped can be based on a higher level task planner semantic indication ( s ) 120A . For example , the semantic 
( e.g. , a planner that outputs a next target object to be grasped 20 indication can indicate a pre and / or post - grasp manipulation 
to accomplish a robotic task ) and / or based on input from a to be performed . In some implementations when pre / post 
user ( e.g. , a verbal command of “ pick up X ” , a gesture , a grasp manipulation ( s ) 136A are generated , the pre / post 
selection on a graphical interface ) . In some implementa- grasp manipulation engine 136 can additionally or alterna 
tions , the approach vector engine 132 can determine a grasp tively generate the pre / post - grasp manipulation ( s ) 136A 
region corresponds to a target object based on output gen- 25 based on classification ( s ) for object ( s ) 161A generated by 
erated using trained object classification model 1606 ( de- the model engine 120 utilizing the trained object classifica 
scribed below ) . For example , output generated using the tion model 1606. For example , the pre / post - grasp manipu 
trained object classification model 1606 can indicate regions lation engine 136A can determine pre / post - grasp manipula 
in 2D vision data that correspond to objects , and classifica- tion ( s ) 136A based on them being mapped , in a database , to 
tions for those objects , and a grasp region selected based on 30 a classification for the target object and / or to classification ( s ) 
it overlapping with a region with a classification that cor- of other environmental object ( s ) . 
responds to the target object . Accordingly , in FIG . 4 the control engine 130 generates 

The approach vector engine 132 generates an approach control commands 130A that are in accordance with a 
vector for a grasp , based on one or more 3D points , of a selected grasp strategy . The selected grasp strategy is 
group of 3D points of the 3D vision data 112A2 that 35 selected by the model engine 120 and / or the engines 134 
correspond to pixels of the selected grasp region . For and / or 136 and defines a grasp direction and optionally grasp 
example , the approach vector engine 132 can generate the parameters and / or pre / post - grasp manipulations . 
approach vector based on the surface normal of one or more Turning now to FIG . 5 , a flowchart is provided that 
of the 3D points . In some implementations , the approach illustrates an example method 500 of providing control 
vector engine 132 utilizes a surface normal based on it 40 commands to cause an end effector to traverse to an end 
corresponding to a grasp direction indicated by a semantic effector pose determined based on a selected grasp strategy , 
indication for the selected grasp region . Further , the according to various implementations disclosed herein . For 
approach vector engine 132 generates one or more end convenience , the operations of the flow chart are described 
effector poses 198A based on the approach vector , such as an with reference to a system that performs the operations . This 
end effector grasp pose that conforms to the end effector 45 system may include one or more components , such as one or 
approach vector and that avoids collisions and satisfies more processors ( e.g. , CPU ( s ) , GPU ( s ) , and / or TPU ( s ) ) of a 
kinematic constraints . robot . While operations of method 500 are shown in a 

The end effector poses ( s ) 198A are provided to the control particular order , this is not meant to be limiting . One or more 
engine 130 , which generates control commands 130A based operations may be reordered , omitted or added . 
on the end effector pose ( s ) 198A , such as control commands 50 At block 552 , the system receives a group of 3D data 
that cause an end effector to traverse to a grasp pose of the points generated by a vision component of a robot capturing 
end effector pose ( s ) 198 , and attempt a grasp . In some an environmental object . The vision component can be , for 
implementations , the control engine 130 further generates example , a stereographic camera or a laser scanner . 
one or more of the control commands 130A based on grasp At block 554 , the system applies vision data as input to a 
parameters 134A generated by the grasp parameters engine 55 trained machine learning model . The vision data can be 
134 and / or based on pre / post - grasp manipulation ( s ) 136A based on the group of 3D data points or generated by an 
generated by the pre / post - grasp manipulation engine 136 . additional vision component of the robot . The vision data of 

In some implementations when grasp parameters 134A block 554 can be based on the group of 3D data points in that 
are generated , the grasp parameters engine 134 can generate the vision data and the group of 3D data points are both 
the grasp parameters 134A based on a semantic indication , 60 generated by the same vision component . For example , the 
for a grasp region corresponding to the target object , of grasp group of 3D data points can be generated based on an 
region ( s ) and semantic indication ( s ) 120A . For example , the instance of sensor output from multiple sensors of a stereo 
semantic indication can indicate the type of grasp and / or an graphic camera , and the vision data applied at block 554 can 
amount of force to be utilized for the grasp . In some be a 2D image that is based on the same instance from one 
implementations when grasp parameters 134A are gener- 65 or more of the sensors . In some implementations , the group 
ated , the grasp parameters engine 134 can additionally or of 3D data points can be based on a first vision component 
alternatively generate the grasp parameters 134A based on ( e.g. , a stereographic camera or a laser scanner ) and the 
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vision data of block 554 is a 2D image that is generated At optional block 564 , the system stores the end effector 
based on an additional vision component ( e.g. , a mono- pose and the vision data and / or the group of 3D points . The 
graphic camera ) . system stores the end effector pose and the vision data and / or 

At block 556 , the system processes the vision data of the group of 3D points as at least part of a training instance 
block 554 using the trained machine learning model to 5 used to train additional machine learning model ( s ) at 
generate output defining at least one grasp region and a optional block 566 . 
corresponding semantic indication for the grasp region . In At optional block 566 , the system trains additional 
some implementations , when the vision data applied at machine learning model ( s ) based on stored instances of an 
block 554 is a 2D image , the output can define the grasp end effector pose and vision data and / or a group of 3D 
region as a plurality of pixels of the 2D image . In many 10 points , including the instance stored at optional block 564 , 
situations , the output defines multiple grasp regions and a and additional instances stored at block 564 in additional 
corresponding semantic indication for each grasp region . iterations of method 500. For example , the stored instances 
The semantic indications can vary among grasp regions , can be training instances that each include corresponding 
and / or can be the same for one or more of the grasp regions . vision data and / or corresponding 3D points as training 

At block 558 , the system selects , from a plurality of 15 instance input , and that include a corresponding end effector 
candidate grasp strategies and based on the semantic indi- pose ( e.g. , a grasp pose ) as training instance output . In this 
cation of the grasp region , a particular grasp strategy . For manner , an additional machine learning model can be 
example , the semantic indication can indicate a grasp direc- trained that predicts an end effector pose ( e.g. , a grasp pose ) 
tion , a grasp type , a grasp force , and / or pre and / or post - grasp directly based on vision data ( e.g. , a 2D image ) and / or a 
manipulations and , based on such indication , the selected 20 group of 3D points . 
particular grasp strategy can define such indicated grasp FIG . 6 is another example of generating control com 
direction , a grasp type , a grasp force , and / or pre and / or mands to provide to an end effector for grasping , based on 
post - grasp manipulations . In some implementations , where a grasp trategy that is selected using one or more trained 
multiple grasp regions and semantic indications are gener- machine learning models . It is noted that , in the example of 
ated at block 556 , the system selects one of the grasp 25 FIG . 6 , the grasp regions and semantic indications model 
regions , and a corresponding semantic indication , based on 160A is not utilized . Rather , a trained object classification 
the selected one of the grasp regions corresponding to a model 1606 and optionally a trained strategy model 160C 
target object to be grasped . ( e.g. , trained as described with respect to FIG . 7 ) are 

At block 560 , the system determines an end effector pose utilized . 
for interacting with the object to grasp the object based on : 30 In FIG . 6 , sensor data engine 112 provides vision data 
the group of 3D points , the grasp region , and the particular 112B to model engine 120 and to approach vector engine 
grasp strategy . In some implementations , block 560 includes 132. The vision data 112B can include 3D vision data and / or 
sub - blocks 560A , SOB , and / or 560C . 2D vision data from vision component ( s ) of a robot . The 
At sub - block 560A , the system selects one or more model engine 120 processes the vision data 112B using the 

particular 3D points within the grasp region . For example , 35 trained object classification model 160B to generate one or 
the grasp region can define a plurality of pixels in vision data more classifications for one or more objects 161 captured by 
that is a two - dimensional ( 2D ) image , and the system can the vision data . For example , the classification ( s ) for 
select one or more particular 3D points based on those object ( s ) 161 can include classification ( s ) for an object to be 
particular 3D point ( s ) being mapped to pixel ( s ) defined by grasped , and optionally classification ( s ) for additional envi 
the grasp region . 40 ronmental object ( s ) . The classification ( s ) for the object to be 

At sub - block 5606 , the system determines a correspond- grasped are a semantic indication associated with the object . 
ing surface normal for each of one or more of the 3D points The model engine 120 utilizes the classification ( s ) for the 
selected at sub - block 560A . object ( s ) 161 , and optionally additional contextual data 
At sub - block 560C , the system determines an end effector 163B , to select a grasp strategy and provides values 120B 

pose based on one or more of the surface normal ( s ) deter- 45 for the selected grasp strategy to the approach vector engine 
mined at sub - block 560B . In some implementations , the 132 , the pre / post - grasp manipulation engine 136 , and the 
system determines an end effector approach vector based on grasp parameters engine 134. The additional contextual data 
one or more of the surface normals , and determines a grasp 163B can include , for example , an indication of a higher 
pose based on the end effector approach vector . The grasp level task ( e.g. , unloading a dishwasher , clearing a table , 
pose can further be determined based on it avoiding colli- 50 picking up toys ) being performed by the robot , where an 
sions , satisfying kinematic constraints , and / or based on other attempted grasp is one part of the higher level task . The 
criterion / criteria . In some implementations , the particular additional contextual data 163B can additionally or alterna 
grasp strategy defines a grasp direction , and the system tively include an indication of a location of the robot , such 
determines a grasp pose based on a given surface normal , as “ kitchen ” , " living room ” , “ warehouse ” , “ home ” , etc. 
based on the given surface normal conforming to the grasp 55 The model engine 120 selects a grasp strategy , and 
direction defined by the particular grasp strategy . In some corresponding values 120B , using a trained strategy model 
additional or alternative implementations , the particular 160C and / or using a strategy database 162. The trained 
grasp strategy defines a grasp type , and the system deter- strategy model 160C can be trained to be used to generate , 
mines a grasp pose based on the grasp end effector pose based on classification ( s ) for object ( s ) 161B and optionally 
conforming to the grasp type ( e.g. , a “ pinch ” grasp pose 60 additional contextual data 163B , output that indicates a 
when the grasp strategy defines a “ pinch ” grasp type ) . predicted grasp strategy . The model engine 120 can select a 

At block 562 , the system provides commands that cause corresponding grasp strategy based on the output . For 
the end effector of the robot to traverse to the end effector example , the output can indicate probabilities for each of 
pose in association with attempting a grasp of the object . The one or more values of a grasp strategy , and the grasp strategy 
system can optionally provide further commands , in asso- 65 selected based on those value ( s ) having probabilities that 
ciation with attempting the grasp of the object , that are based satisfy threshold ( s ) . For instance , the output can include a 
on other features of the selected particular grasp strategy . probability for each of a plurality of grasp directions , and the 
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grasp direction with the highest probability selected . Also , control engine 130 generates control commands 130B that 
for instance , the output can additionally or alternatively are in accordance with a selected grasp strategy . 
include a probability for each of a plurality of grasp types , FIG . 7 illustrates an example of training the trained grasp 
and the grasp type with the highest probability selected . strategy model 160C , of the trained machine learning mod 
Also , for instance , the output can additionally or alterna- 5 els of FIG . 6. In FIG . 7 , the grasp strategy model is 
tively include a probability for each of a plurality of pre numbered with 160C1 to represent that it is being trained , 
and / or post - grasp manipulations , and one or more of those whereas it is numbered with 160C in FIG . 6 to represent that 
optionally selected based on their probability . The model is has been trained . 
engine 120 can select a grasp strategy based at least in part The grasp strategy model 160C1 is trained utilizing a 
on selection of corresponding value ( s ) based on probabili 10 plurality of training instances of training data 165 , such as 

training instance 165C1 and additional ( e.g. , thousands of ) ties . As another example , the output generated using the similar training instances . A single training instance 165C1 trained strategy model 160C can indicate probabilities for is illustrated in FIG . 7 and includes training instance input each of one or more grasp strategies , and one of the 165C1A of classification ( s ) and / or contextual data and strategies selected based on the probabilities . For instance , 15 includes training instance output 165C1B that indicates the output can include a probability for “ grasp strategy A ” probabilities for each of a plurality of values of a grasping 
( e.g. , " top " direction , " pinch " grasp type , no pre / post - grasp strategy . The training engine 140C applies the training 
manipulations ) , a probability for “ grasp strategy B ” ( e.g. , instance input 165C1B as input to the grasp strategy model 
“ top direction ” , “ power ” grasp type , no pre / post - grasp 160C1 , and processes the input using the strategy model 
manipulations ) , etc. Additional description of one example 20 16001 to generate predicted probabilities for values of a 
of training the trained strategy model 160C is described grasping strategy 140C1 . 
below with respect to FIG . 7 . An error module 142C , of the training engine 140C , 

The model engine 120 can additionally or alternatively generates an error 143C1 based on comparing the predicted 
select the grasp strategy based at least in part on a strategy probabilities for values of a grasping strategy 140C1 to the 
database 162. The strategy database 162 can include stored 25 probabilities for values of a grasping strategy indicated by 
mappings of classification ( s ) and / or additional contextual the training instance output 165C1B . The error module 142C 
data to grasp strategies or value ( s ) for grasp strategies . For further updates the grasp strategy model 160C1 based on the 
example , a “ small plate ” classification can be assigned , in determined error 143C1 . For example , in non - batch tech 
the strategy database 162 , to a value that dictates a “ top niques , a gradient can be determined based on only the error 
grasp ” is to be performed . As another example , a “ large 30 143C1 , and backpropagated over the model 160C1 to update 
plate ” classification can be assigned , in the strategy database various weights of the model 160C1 . Also , for example , in 
162 , to a value that dictates a “ side grasp ” is to be performed batch techniques , the error 143C1 can be combined with 
following a pre - grasp manipulation of “ slide to the edge of additional errors determined based on additional training 
the supporting surface ” . The model engine 120 can select a instances , and utilized to update various weights of the 
grasp strategy based at least in part on the mappings of the 35 model 160C1 . Although only the training instance 165C1 is 
strategy database 162 . illustrated in FIG . 7 , it is understood that many ( e.g. , 

The approach vector engine 132 uses the vision data thousands ) of additional training instances will be utilized 
112B , and optionally one or more of the values 120B , to during training . Through training , the grasp strategy model 
determine one or more end effector pose ( s ) 198 for inter- 160C1 is trained to enable prediction , using the model 
acting with an object to grasp the object . The approach 40 16001 and based on classification ( s ) and / or contextual data , 
vector engine 132 can generate an approach vector for a of values for a grasp strategy . 
grasp , based on the vision data 112B , and generate the one In various implementations , the strategy model 160C1 is 
or more end effector poses 198B based on the approach a deep neural network model , such as a feed - forward deep 
vector , such as an end effector grasp pose that conforms to neural network model . In various implementations , the 
the end effector approach vector and that avoids collisions 45 training instance 165C1 and other training instances utilized 
and satisfies kinematic constraints . Various techniques can to train the strategy model 16001 are semi - supervised 
be utilized by the approach vector engine 132 , such as using training instances generated based on actual grasp attempts 
surface normals of 3D points corresponding to an object , by robots . For example , the classification ( s ) and / or contex 
and / or alternative techniques ( e.g. , using a stored object tual data of the training instance input 165C1A can be based 
model for the object to be grasped ) . In some implementa- 50 on corresponding data determined by a robot in association 
tions , the approach vector engine 132 determines an with a grasp attempt . Further , the probabilities of the training 
approach vector and / or an end effector pose based on a grasp instance output 165C1B can be “ 1 ” ( or other positive value ) 
direction and / or grasp type defined by one or more of the for those value ( s ) utilized in performing the grasp attempt , 
values 120B . when the grasp attempt was successful . 

The grasp parameters engine 134 can generate the grasp 55 Turning now to FIG . 8 , a flowchart is provided that 
parameters 134B based on grasp parameters ( e.g. , grasp type illustrates another example method 800 of controlling an end 
and / or grasp force ) defined by one or more of the values effector a robot in accordance with a selected grasp strategy , 
120B . The pre / post - grasp manipulation engine 136 can according to various implementations disclosed herein . For 
generate the pre / post - grasp manipulation ( s ) 136B based on convenience , the operations of the flow chart are described 
pre and / or post - grasp manipulation ( s ) defined by the 60 with reference to a system that performs the operations . This 
value ( s ) 120B . system may include one or more components , such as one or 

The end effector poses ( s ) 198B , grasp parameters 134B , more processors ( e.g. , CPU ( s ) , GPU ( s ) , and / or TPU ( s ) ) of a 
and pre / post - grasp manipulations 136B are provided to the robot . While operations of method 800 are shown in a 
control engine 130 , which generates control commands particular order , this is not meant to be limiting . One or more 
130B based on such data , that control an end effector to 65 operations may be reordered , omitted or added . 
cause the end effector to interact with the target object in At block 852 , the system applies vision data as input to a 
attempting a grasp of the object . Accordingly , in FIG . 6 the trained object classification machine learning model . The 
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vision data can be generated by a vision component of a classification ( s ) generated using the trained object classifi 
robot and captures an environmental object to be grasped , cation model and / or to additional contextual data . Also , for 
and optionally additional environmental object ( s ) . The example , the system can select a particular grasp strategy 
vision data can be 2D and / or 3D vision data . based on the grasp strategy being indicated by output 

At block 854 , the system processes the vision data using 5 generated using a trained grasp strategy model , based on 
the trained object classification model to generate output processing ( using the trained grasp strategy model ) of clas 
indicating semantic classification ( s ) of the environmental sification ( s ) generated using the trained object classification 
object ( s ) . For example , one or more classifications can be model and / or of additional contextual data . 
generated for the environmental object to be grasped , and At block 958 , the system determines , based on the spatial 
optionally one or more corresponding classifications can be 10 region and the particular grasp strategy , an end effector pose 
generated for each of one or more other environmental for interacting with the object to grasp the object . 
object ( s ) . At block 960 , the system provides , to actuators of the 

At block 856 , the system selects , from a plurality of robot , commands that cause an end effector of the robot to 
candidate grasp strategies and based on the semantic clas- traverse to the end effector pose in association with attempt 
sification ( s ) , a particular grasp strategy . For example , the 15 ing a grasp of the object . 
system can select a particular grasp strategy using a strategy Turning now to FIG . 12 , an example architecture of a 
machine learning model and / or a strategy database , as robot 1220 is schematically depicted . The robot 1220 
described herein . In some implementations , the system includes a robot control system 1260 , one or more opera 
selects the particular grasp strategy further based on addi- tional components 1240a - 1240n , and one or more sensors 
tional contextual data as described herein . 20 1242a - 1242m . The sensors 1242a - 1242m may include , for 

At block 858 , the system controls an end effector of the example , vision sensors ( e.g. , camera ( s ) , 3D scanners ) , light 
robot to cause the end effector to interact with the object in sensors , pressure sensors , pressure wave sensors ( e.g. , 
accordance with the particular grasp strategy in attempting microphones ) , proximity sensors , accelerometers , gyro 
a grasp of the object . scopes , thermometers , barometers , and so forth . While sen 

Turning now to FIG . 9 , a flowchart is provided that 25 sors 1242a - m are depicted as being integral with robot 1220 , 
illustrates another example method 900 of providing control this is not meant to be limiting . In some implementations , 
commands to cause an end effector to traverse to an end sensors 1242a - m may be located external to robot 1220 , e.g. , 
effector pose determined based on a selected grasp strategy , as standalone units . 
according to various implementations disclosed herein . For Operational components 1240a - 1240n may include , for 
convenience , the operations of the flow chart are described 30 example , one or more end effectors ( e.g. , grasping end 
with reference to a system that performs the operations . This effectors ) and / or one or more servo motors or other actuators 
system may include one or more components , such as one or to effectuate movement of one or more components of the 
more processors ( e.g. , CPU ( s ) , GPU ( s ) , and / or TPU ( s ) ) of a robot . For example , the robot 1220 may have multiple 
robot . While operations of method 900 are shown in a degrees of freedom and each of the actuators may control 
particular order , this is not meant to be limiting . One or more 35 actuation of the robot 1220 within one or more of the 
operations may be reordered , omitted or added . degrees of freedom responsive to the control commands . As 

At block 952 , the system applies sensor data as input to used herein , the term actuator encompasses a mechanical or 
at least one trained machine learning model . The sensor data electrical device that creates motion ( e.g. , a motor ) , in 
is generated by sensor component ( s ) of a robot and captures addition to any driver ( s ) that may be associated with the 
features of an environmental object to be grasped . The 40 actuator and that translate received control commands into 
sensor data can include , for example , vision data ( e.g. , 2D one or more signals for driving the actuator . Accordingly , 
and / or 3D vision data ) generated by vision component ( s ) of providing a control command to an actuator may comprise 
the robot ( e.g. , camera ( s ) and / or laser scanner ) providing the control command to a driver that translates the 

At block 954 , the system processes the sensor data using control command into appropriate signals for driving an 
the at least one trained machine learning model to generate 45 electrical or mechanical device to create desired motion . 
output defining a spatial region for interacting with the The robot control system 1260 may be implemented in 
object to grasp the object , and defining a semantic indication one or more processors , such as a CPU , GPU , and / or other 
associated with the object . For example , the system can controller ( s ) of the robot 1220. In some implementations , 
process the sensor data using a trained grasp regions and the robot 1220 may comprise a “ brain box ” that may include 
semantic indications model described herein , to generate 50 all or aspects of the control system 1260. For example , the 
output defining a grasp region and a semantic indication that brain box may provide real time bursts of data to the 
directly indicates a grasp direction , grasp type , and / or pre / operational components 1240a - n , with each of the real time 
post - grasp manipulation ( s ) . Also , for example , the system bursts comprising a set of one or more control commands 
can additionally or alternatively process the sensor data that dictate , inter alia , the parameters of motion ( if any ) for 
using a trained object classification model described herein , 55 each of one or more of the operational components 1240a - n . 
to generate output defining a spatial region for the object ( the In some implementations , the robot control system 1260 
entire object , not “ grasp ” regions ) , and a classification for may perform one or more aspects of method 500 , method 
the object . 800 , and / or method 900 described herein . 

At block 956 , the system selects , based on the semantic As described herein , in some implementations all or 
indication , a particular grasp strategy of a plurality of 60 aspects of the control commands generated by control 
candidate grasp strategies . For example , the system can system 1260 in positioning an end effector to grasp an object 
select a particular grasp strategy based on it being indicated , may be based on control commands generated in accordance 
in output generated using the trained grasp regions and with a grasp strategy . Although control system 1260 is 
semantic indications model , by a semantic indication for a illustrated in FIG . 12 as an integral part of the robot 1220 , 
grasp region that corresponds to an object to be grasped . 65 in some implementations , all or aspects of the control system 
Also , for example , the system can select a particular grasp 1260 may be implemented in a component that is separate 
strategy based on it being mapped , in a strategy database , to from , but in communication with , robot 1220. For example , 
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all or aspects of control system 1260 may be implemented farm , or any other data processing system or computing 
on one or more computing devices that are in wired and / or device . Due to the ever - changing nature of computers and 
wireless communication with the robot 1220 , such as com- networks , the description of computing device 1310 
puting device 1310 . depicted in FIG . 13 is intended only as a specific example for 

FIG . 13 is a block diagram of an example computing 5 purposes of illustrating some implementations . Many other 
device 1310 that may optionally be utilized to perform one configurations of computing device 1310 are possible hav 
or more aspects of techniques described herein . Computing ing more or fewer components than the computing device 
device 1310 typically includes at least one processor 1314 depicted in FIG . 13 . 
which communicates with a number of peripheral devices What is claimed is : 
via bus subsystem 1312. These peripheral devices may 10 1. A method implemented by one or more processors , 
include a storage subsystem 1324 , including , for example , a comprising : 
memory subsystem 1325 and a file storage subsystem 1326 , applying vision data as input to at least one trained 
user interface output devices 1320 , user interface input machine learning model , the vision data being gener 
devices 1322 , and a network interface subsystem 1316. The ated by one or more vision components of a robot and 
input and output devices allow user interaction with com- 15 capturing features of an object in an environment of the 
puting device 1310. Network interface subsystem 1316 robot and additional features of an alternative object in 
provides an interface to outside networks and is coupled to the environment ; 
corresponding interface devices in other computing devices . processing the vision data using the at least one trained 

User interface input devices 1322 may include a key- machine learning model to generate output , of the 
board , pointing devices such as a mouse , trackball , touch- 20 machine learning model , defining : 
pad , or graphics tablet , a scanner , a touchscreen incorporated a spatial region for interacting with the object to grasp 
into the display , audio input devices such as voice recogni the object , the spatial region being a bounding area 
tion systems , microphones , and / or other types of input that encompasses a portion of the vision data corre 
devices . In general , use of the term “ input device ” is sponding to the object , and 
intended to include all possible types of devices and ways to 25 a semantic indication for the spatial region , 
input information into computing device 1310 or onto a an alternative spatial region for interacting with the 
communication network . alternative object , the alternative spatial region being 

User interface output devices 1320 may include a display an alternative bounding area that encompasses an 
subsystem , a printer , a fax machine , or non - visual displays alternative portion of the vision data corresponding 
such as audio output devices . The display subsystem may 30 to the alternative object , and 
include a cathode ray tube ( CRT ) , a flat - panel device such as an alternative semantic indication for the additional 
a liquid crystal display ( LCD ) , a projection device , or some spatial region ; 
other mechanism for creating a visible image . The display selecting the spatial region based on the spatial region 
subsystem may also provide non - visual display such as via corresponding to the object and the object being 
audio output devices . In general , use of the term “ output 35 selected for grasping ; 
device ” is intended to include all possible types of devices selecting , based on the semantic indication , a particular 
and ways to output information from computing device 1310 grasp strategy of a plurality of candidate grasp strate 
to the user or to another machine or computing device . gies , wherein selecting the particular grasp strategy 

Storage subsystem 1324 stores programming and data based on the semantic indication is based on the 
constructs that provide the functionality of some or all of the 40 semantic indication being for the spatial region and the 
modules described herein . For example , the storage subsys- spatial region being selected ; 
tem 1324 may include the logic to perform selected aspects determining an end effector pose for interacting with the 
of the method of FIG . 5 , the method of FIG . 8 , and / or the object to grasp the object , wherein determining the end 
method of FIG.9 . effector pose is based on the spatial region defined by 

These software modules are generally executed by pro- 45 the output and is based on the particular grasp strategy 
cessor 1314 alone or in combination with other processors . selected based on the semantic indication defined by 
Memory 1325 used in the storage subsystem 1324 can the output ; and 
include a number of memories including a main random providing , to actuators of the robot , commands that cause 
access memory ( RAM ) 1330 for storage of instructions and an end effector of the robot to traverse to the end 
data during program execution and a read only memory 50 effector pose in association with attempting a grasp of 
( ROM ) 1332 in which fixed instructions are stored . A file the object . 
storage subsystem 1326 can provide persistent storage for 2. The method of claim 1 , wherein the particular grasp 
program and data files , and may include a hard disk drive , strategy comprises a grasp approach direction for approach 
a floppy disk drive along with associated removable media , ing the object in attempting the grasp of the object , and 
a CD - ROM drive , an optical drive , or removable media 55 wherein determining the end effector pose is based on the cartridges . The modules implementing the functionality of grasp approach direction . 
certain implementations may be stored by file storage sub- 3. The method of claim 2 , wherein the particular grasp 
system 1326 in the storage subsystem 1324 , or in other strategy further comprises an initial manipulation to perform 
machines accessible by the processor ( s ) 1314 . on the object , prior to attempting the grasp of the object , and 

Bus subsystem 1312 provides a mechanism for letting the 60 further comprising : 
various components and subsystems of computing device providing , to the actuators of the robot , further commands 
1310 communicate with each other as intended . Although that cause the end effector of the robot to perform the 
bus subsystem 1312 is shown schematically as a single bus , initial manipulation on the object in association with 
alternative implementations of the bus subsystem may use attempting the grasp of the object . 
multiple busses . 4. The method of claim 3 , wherein the initial manipulation 

Computing device 1310 can be of varying types including comprises sliding the object across a surface on which the 
a workstation , server , computing cluster , blade server , server object rests in the environment . 

65 
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5. The method of claim 1 , wherein the particular grasp classification associated with an additional object in the 
strategy comprises at least one of : a degree of force to apply environment , and wherein selecting the particular grasp 
in attempting the grasp of the object , and a grasp type to be strategy is based on the particular grasp strategy being stored 
performed by the end effector . in association with both : the classification of the object and 

6. The method of claim 1 , wherein the output is generated 5 the additional classification of the additional object . 14. A method implemented by one or more processors , over a single model of the at least one trained machine 
learning model , and defines the spatial region , defines the comprising : 
semantic indication for the spatial region , defines the alter applying vision data as input to a trained object classifi 
native spatial region , and defines the alternative semantic cation machine learning model , the vision data being 
indication for the alternative spatial region . generated by a vision component of a robot and cap 

7. The method of claim 6 , wherein the vision data lacks turing an object in an environment of the robot and an 
a depth channel . additional object in the environment of the robot ; 

8. The method of claim 7 , wherein determining the end processing the vision data using the trained object clas 
effector pose comprises : sification machine learning model , to generate output 

selecting at least one particular three - dimensional ( 3D ) 15 indicating a semantic classification of the object and an 
additional semantic classification of the additional point , from a group of 3D points , based on the particu object ; lar 3D point being within the spatial region , 

wherein the group of 3D points includes a depth channel , selecting , from a plurality of candidate grasp strategies 
and based on both the semantic classification of the and wherein the group of 3D points is generated by the 

vision component , or is generated by an additional 20 object and the additional semantic classification of the 
vision component of the robot that is viewing the additional object , a particular grasp strategy for grasp 
environment ; and ing the object ; and 

determining the at least one end effector pose based on the controlling an end effector of the robot to cause the end 
at least one particular 3D point . effector to manipulate the object in accordance with the 

9. The method of claim 8 , wherein the group of 3D points 25 particular grasp strategy selected based on both the 
is generated by the vision component , and wherein the semantic classification of the object and the additional 
vision data processed using the single model comprises the semantic classification of the additional object , in 
group of 3D points without the depth channel . attempting a grasp of the object . 

10. The method of claim 8 , wherein determining the end 15. The method of claim 14 , wherein selecting the par 
effector pose based on the at least one particular 3D point 30 ticular grasp strategy based on the semantic classification 
comprises determining an approach vector based on a sur and the additional semantic classification comprises : 
face normal determined based on the at least one particular applying the semantic classification and the additional 
3D point , and determining the end effector pose based on the semantic classification as additional input to an addi 

tional trained machine learning model ; surface normal . 
11. The method of claim 10 , wherein selecting the at least 35 processing the input using the additional machine learning 

one particular 3D point is further based on the surface model to generate additional output that indicates the 
normal conforming to a grasp approach direction of the grasp strategy ; 
grasp strategy . selecting the grasp strategy based on it being indicated by 

the additional output . 12. The method of claim 1 , wherein the semantic indica 
tion associated with the object that is defined by the output 40 16. The method of claim 15 , wherein the additional output 
comprises a classification of the object , and wherein select comprises a probability of successful grasp for the grasp 
ing the particular grasp strategy is based on the particular strategy and additional probabilities of successful grasp for 
grasp strategy being stored in association with the classifi additional grasp strategies of the candidate grasp strategies , 
cation of the object . and wherein the additional output indicates the grasp strat 

13. The method of claim 12 , wherein the output generated 45 egy based on the probability for the grasp strategy satisfying 
a threshold . by processing the vision data using the at least one trained 

machine learning model further comprises an additional * 


