US 20200019382A1

a2y Patent Application Publication (o) Pub. No.: US 2020/0019382 Al

a9y United States

NORMAN

43) Pub. Date: Jan. 16, 2020

(54) CONSTRAINT PROGRAMMING USING
BLOCK-BASED WORKFLOWS

(71) Applicant: Applied Materials, Inc., Santa Clara,
CA (US)

(72) Inventor: David Everton NORMAN, Bountiful,
UT (US)

(21) Appl. No.: 16/412,150
(22) Filed: May 14, 2019

Related U.S. Application Data

(60) Provisional application No. 62/697,217, filed on Jul.

12, 2018.

Publication Classification

(51) Int. CL
GOGF 8/20 (2006.01)
GOGF 8/35 (2006.01)

FACTORY
STORAGE SYSTEM
140

MANUFACTURING
EXECUTION SYSTEM
130

DISPATCHERS
160

(52) US.CL
CPC . GOGF 8/20 (2013.01); GOGF 8/35 (2013.01)

(57) ABSTRACT

Embodiments presented herein provide techniques for
executing a block-based (BB) workflow to solve a constraint
programming (CP) model related to a semiconductor manu-
facturing environment. Embodiments include receiving at
least one BB workflow comprising a plurality of blocks. The
plurality of blocks may specify a set of operations. Embodi-
ments include accessing a plurality of block definitions
corresponding to the plurality of blocks. Embodiments
include executing the at least one BB workflow by perform-
ing the set of operations based on the plurality of block
definitions, including extracting data from the semiconduc-
tor manufacturing environment, the data comprising both
static data and dynamic data related to equipment in the
manufacturing environment, creating the CP model based on
the data and at least one constraint defined in the BB
workflow, using a solver to determine a solution to the CP
model; and publishing the solution to at least one component
in the semiconductor manufacturing environment.

100

RUN STORES

J.QQ//*

BLOCK-BASED
CONSTRAINT
PROGRAMMING
COMPONENT
» 120

COMPUTING SYSTEM 110

EXTERNAL
STORAGE SYSTEM
170

US 2020/0019382 A1l

Jan. 16,2020 Sheet 1 of 7

Patent Application Publication

0l
W31SAS IOVHOLS
TYNYILX3
4 OLT W3LSAS ONILNJWOD
oct o
ININOJWOD a4}
ONINWVHEOOYd HHOMLIN
INIVHLISNOD
a3asva-»ooid
- Y,
05T
~ S3I™OLS NN
00}

0ol

SH3IHOLVdSIA

0t
WILSAS NOLLNO3X3
ONIFNLOVANNYIN

ol
NTLSAS d9VHO1S

AHOLOVH

Yo
«
2 09t ¢ 3dN9Oid
3¢ SYIHOLYJSIA
3
S A
m sjnsay
2 0ZT WALSAS uoRdIpsid
z JOVHOLS 5 .
TYNY3LX3
20¢ o¢ce
e~ MOTIMHOM INION3
s synsoy a3asva-do014 ONINNYEDOHd
ﬂ. uonoIpald LNIVHLISNOD
>
-]
=
wn
(=]
o
(=]
(o]
&
= oz 05z
i 01g
< INIONT MO TIHEOM SITNY ANV
= S1¥0d3d

a4sva-»001d
ad3asva-x100714g

051
S3HOLS NN

(o744
INIONT ONILHOdTY
a3sva-»o00714d

oVl
WN3ILSAS 29VHOLS

AdOLOVA

004

¢l LNINOJINOO ONIANVHOOHd INIVHLISNOD A3svyd-»0014

Patent Application Publication

US 2020/0019382 A1l

Jan. 16,2020 Sheet 3 of 7

Patent Application Publication

€ ANOId

Insey abessapy sbessapy
Wb > 0
oze 776 -~ vze -
J19ISYIANI
UONBLLLIOJU| IBPONAD uonjeLIolu| BuEPO
xai0t Riley| apoosn) puy mo.mEf co_HME_oE_ uny
: . .007
o 1eh < > ‘
gze ~ gze ~ gre
1nvd | 1nva |
obessay abessoy
L MMW%
ie H 60 H
Joug ioug
601 :bo
ole H oLe H
obessay obessopy
o L o
MOTHOM g9 8Lc -/ L1E -

Insey

abessapy

e
uopewLoU|
607

4

kas

b
e

abesso|y apooen)

mc__mn.os_
IPPONAD goeuiny

S1€ 13NVd MOTIMHOM Q3SYE-400719

Ge TANVd M0071d

av 3dNSld

I bNOId

US 2020/0019382 A1l

4gdy s | w0
(SpucLBLInORUIL) SONODHS; POYeR. W05
oy iol Awoprag am
Jerowad wpors
SRARIDY papew Brivweioss wentoD Uy
R - R -
o SR O

dne ey TR
e S RO BI04 PRy
-~ Lad
TSI PIRRIY |30 BORLaRIEDY RIS PPOR
% B wvm U0 DY

0%V 13NV S31LY340¥d %0019

SZV 1ANVd SAILE3d0dd %001d

gy 34NOld

Jan. 16,2020 Sheet 4 of 7

c » s

HCIGIRORTY 95,05

AN NS

YUKV NS

ELTIN BN
simousereg

PP

S provespy R Bunicnbau W Wery

F al) Sa0IS %101

V¥ 3dNOid

e e g e i

e -
S

o v weed e

P —

WIS R SRAIIOD SuPpOpRIINY

| TRUTTG KG9 L DSCL SAAPONRINT

RS I L S0 Begigorieung
IR wqe (>bumes shumdg

SRR | RRARY apoyy BininsRIbeid WRTBND 9AI

Ea h Fe—

j
|
|
H

e BIC PPN T B
- - " iy
- s s

i
t

s
!

0¢v 13NVd S3LLHEA40™d ND0T18

417 TNV S3LLHAd0¥d $H001d

Patent Application Publication

Patent Application Publication Jan. 16,2020 Sheet 5 of 7 US 2020/0019382 A1

502
f

RECEIVE A BB WORKFLOW COMPRISING BLOCKS THAT
SPECIFY OPERATIONS FOR SOLVING A CONTRAINT
PROGRAMMING MODEL

500

504
l ‘
ACCESS BLOCK DEFINITIONS CORRESPONDING TO THE
BLOCKS
506
! E

EXECUTE THE BB WORKFLOW BY PERFORMING THE
FOLLOWING OPERATIONS

‘ I 508

EXTRACT DATA FROM
MANUFACTURING ENVIRONMENT
RELATED TO EQUIPMENT

¢ /510

CREATE CP MODEL BASED ON
THE DATA AND AT LEAST ONE
CONSTRAINT DEFINED IN THE BB
WORKFLOW

¢ /512

USE A SOLVER TO DETERMINE
SOLUTION FOR CP MODEL

514
v
POST-PROCESS SOLUTION
516
voor

PUBLISH SOLUTION

FIGURE 5

Patent Application Publication Jan. 16,2020 Sheet 6 of 7 US 2020/0019382 A1

600
602 L

Y

EXECUTE A BB WORKFLOW

DONE

FOR EACH BLOCK

A

614
604 -

SAVE OUTPUT FROM
BLOCK TO FILE
DIRECTORY
(OPTIONAL)

A

NO BB SUB-RULE

OR REPORT?

606
/

EVALUATE SUB-RULE OR REPORT

l ; 608

SAVE INPUT TO BLOCK TO FILE DIRECTORY
(OPTIONAL)

Y

l /610

ACCESS BLOCK DEFINITION
CORRESPONDING TO TYPE OF BLOCK IN BB
WORKFLOW

¢ /612

PERFORM THE OPERATION(S) SPECIFIED
WITHIN THE BLOCK BASED ON THE BLOCK
DEFINITIONS AND ONE OR MORE
PROPERTIES OF THE BLOCK

FIGURE 6

Patent Application Publication Jan. 16,2020 Sheet 7 of 7 US 2020/0019382 A1

1O Devices To Data Communications
12 Network
A

'

CPU 1/0 Device Interface Network interface
705 710 715
\ 717
Memory 720 Storage 740
Block-based
Block-based Reporting Engine 732 Workflow(s) 742

Block-based Workflow Engine 734 Factory Data 744

Constraint Programming Engine 736

Block-based Rules
and Reporis 746

BB Constraint Programming Component 730

Computing System 700

FIGURE 7

US 2020/0019382 Al

CONSTRAINT PROGRAMMING USING
BLOCK-BASED WORKFLOWS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/697.217, entitled “CON-
STRAINT PROGRAMMING USING BLOCK-BASED
WORKFLOWS,” by the same inventors, filed 12 Jul. 2018
(Attorney Docket No.: 44015559US01), the contents of
which are incorporated herein in their entirety.

BACKGROUND

Field

[0002] Embodiments of the present disclosure generally
relate to constraint programming, and more particularly to
techniques for using block-based workflows for constraint
programming.

Description of the Related Art

[0003] Manufacturing facilities across many different
industries are responsible for producing products that are
used in every facet of life. In the case of semiconductor
manufacturing, for example, semiconductor manufacturing
facilities manufacture products such as, microprocessors,
memory chips, microcontrollers, and other semiconductor
devices that have a ubiquitous presence in everyday life.
These semiconductor devices are used in a wide variety of
applications, examples of which include automobiles, com-
puters, home appliances, cellular phones, and many others.
Further, in recent years, both the number of applications and
demand for devices (including semiconductor devices) has
steadily increased. This increased demand has led manufac-
turing facilities to become increasingly conscious of increas-
ing product variety and reducing delivery times.

[0004] Each manufacturing environment is unique and
extremely complex, often requiring immense amounts of
capital for the necessary equipment, tools, facilities, etc.
Because manufacturing is so capital intensive, even small
increases in factory performance (e.g., such as building to
demand, shortening order to delivery time, etc.) can have
large effects on financial performance (e.g., by reducing cost
through leaner manufacturing, freeing up capital tied to idle
inventory, etc.). For this reason, many manufacturing facili-
ties have recently become interested in implementing sched-
uling systems in their facilities to manage the complexity,
provide high-quality, on-time deliveries, etc. Scheduling in
a manufacturing facility involves making complicated deci-
sions about what operations should be performed and the
order of these operations. As such, many scheduling systems
involve the use of constraint programming.

[0005] Constraint programming can be used in a wide
variety of constraint problems including scheduling, where
a scheduling problem involves time and/or value restrictions
placed in scheduling the tasks. Constraint programming can
be used to find a solution which can satisfy all of the
constraints. Constraint programming includes a set of search
variables, domains that set boundaries for the possible
values for each of the variables, and a set of constraints.
Typical scheduling problems involve creating search vari-
ables for each task, including at least one variable to
represent the equipment that can process a task and at least
another variable to represent the start time for the task. In

Jan. 16, 2020

some cases variables may include an end time for the task,
a task pause, a task resume, and others.

[0006] Existing techniques for creating constraint pro-
gramming models require the use of custom code. Custom
code, however, can be difficult to maintain and inflexible,
which makes it difficult to make modifications. In many
cases, for example, the manufacturing facility may undergo
changes to account for new applications, tool improvements,
etc. With constraint programming models that are created
using custom code, however, adapting to such changes can
require a level of technical expertise that may not be
available to the manufacturing facility (e.g., an end user may
not have coding experience, etc.), require a significant time
commitment, substantial costs (e.g., due to the complexity of
the facility), etc.

SUMMARY

[0007] Embodiments disclosed herein include methods,
systems, and computer program products for constraint
programming (CP) using block-based (BB) workflows in a
manufacturing environment. In one embodiment, a method
for executing a block-based (BB) workflow to solve a
constraint programming (CP) model related to a semicon-
ductor manufacturing environment is disclosed. The method
includes: receiving at least one BB workflow comprising a
plurality of blocks, wherein the plurality of blocks specify a
set of operations for solving the CP model; accessing a
plurality of block definitions corresponding to the plurality
of blocks; and executing the at least one BB workflow by
performing the set of operations based on the plurality of
block definitions, comprising: extracting data from the semi-
conductor manufacturing environment, wherein the data
comprises both static data and dynamic data related to
equipment in the manufacturing environment; creating the
CP model based on the data and at least one constraint
defined in the BB workflow; using a solver to determine a
solution to the CP model; and publishing the solution to at
least one component in the semiconductor manufacturing
environment (the solution may first be post-processed into a
format usable by the one component), wherein the solution
is used to determine a manufacturing schedule for the
semiconductor manufacturing environment.

[0008] Another embodiment provides a non-transitory
computer-readable medium containing computer program
code that, when executed, performs an operation for execut-
ing a block-based (BB) workflow to solve a constraint
programming (CP) model related to a semiconductor manu-
facturing environment is disclosed. The operation includes:
receiving at least one BB workflow comprising a plurality of
blocks, wherein the plurality of blocks specify a set of
operations for solving the CP model; accessing a plurality of
block definitions corresponding to the plurality of blocks;
and executing the at least one BB workflow by performing
the set of operations based on the plurality of block defini-
tions, comprising: extracting data from the semiconductor
manufacturing environment, wherein the data comprises
both static data and dynamic data related to equipment in the
manufacturing environment; creating the CP model based on
the data and at least one constraint defined in the BB
workflow; using a solver to determine a solution to the CP
model; and publishing the solution to at least one component
in the semiconductor manufacturing environment (the solu-
tion may first be post-processed into a format usable by the

US 2020/0019382 Al

one component), wherein the solution is used to determine
a manufacturing schedule for the semiconductor manufac-
turing environment.

[0009] Still another embodiment provides a system com-
prising at least one processor and a memory containing a
program that, when executed by the at least one processor,
performs an operation for executing a block-based (BB)
workflow to solve a constraint programming (CP) model
related to a semiconductor manufacturing environment is
disclosed. The operation includes: receiving at least one BB
workflow comprising a plurality of blocks, wherein the
plurality of blocks specify a set of operations for solving the
CP model; accessing a plurality of block definitions corre-
sponding to the plurality of blocks; and executing the at least
one BB workflow by performing the set of operations based
on the plurality of block definitions, comprising: extracting
data from the semiconductor manufacturing environment,
wherein the data comprises both static data and dynamic
data related to equipment in the manufacturing environment;
creating the CP model based on the data and at least one
constraint defined in the BB workflow; using a solver to
determine a solution to the CP model; and publishing the
solution to at least one component in the semiconductor
manufacturing environment (the solution may first be post-
processed into a format usable by the one component),
wherein the solution is used to determine a manufacturing
schedule for the semiconductor manufacturing environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the manner in which the above recited
features of the present disclosure can be understood in detail,
a more particular description of the disclosure, briefly sum-
marized above, may be had by reference to embodiments,
some of which are illustrated in the appended drawings. It is
to be noted, however, that the appended drawings illustrate
only typical embodiments of this disclosure and are there-
fore not to be considered limiting of its scope, for the
disclosure may admit to other equally effective embodi-
ments.

[0011] FIG. 1 illustrates a block diagram of an architecture
of a manufacturing environment configured with a block-
based constraint programming (CP) component, in accor-
dance with embodiments of the present disclosure.

[0012] FIG. 2illustrates a block diagram of an architecture
of a block-based CP component within a manufacturing
environment, in accordance with embodiments of the pres-
ent disclosure.

[0013] FIG. 3 illustrates an interface with a block-based
workflow for solving a CP model in a manufacturing envi-
ronment, in accordance with embodiments of the present
disclosure.

[0014] FIGS. 4A, 4B, 4C, and 4D illustrate example block
properties panels that can be used to configure sets of
operations to be performed for particular blocks in a BB
workflow, according to one embodiment.

[0015] FIG. 5 is a flow diagram illustrating a method for
using BB workflow to solve a CP model related to a
manufacturing environment, in accordance with embodi-
ments of the present disclosure.

[0016] FIG. 6 is a flow diagram illustrating another
method for using BB workflow to solve a CP model related
to a manufacturing environment, in accordance with
embodiments of the present disclosure.

Jan. 16, 2020

[0017] FIG. 7 illustrates a computing system configured
with a block-based CP component, in accordance with
embodiments of the present disclosure.

[0018] To facilitate understanding, identical reference
numerals have been used, wherever possible, to designate
identical elements that are common to the Figures. Addi-
tionally, it is contemplated that elements disclosed in one
embodiment may be beneficially used in other embodiments
described herein without specific recitation.

DETAILED DESCRIPTION

[0019] Embodiments presented herein present techniques
for solving a constraint programming (CP) model in a
manufacturing environment, using block-based (BB) work-
flows. The workflows can be used by an end-user to con-
struct a CP system that creates and determines a solution to
a CP model based on data captured from the manufacturing
environment and/or constraints defined by the user via the
BB workflow, and the solution may be used for scheduling
and dispatching within the manufacturing environment (e.g.,
after being post-processed into a format usable by one or
more components of the manufacturing environment and
published to the one or more components). For example,
each workflow contains an order of a series of operations
(e.g., represented by one or more blocks of the workflow)
that are performed in order to determine a solution for a CP
model. Examples of these operations can include retrieving
data from different sources, manipulating and transforming
the data into different formats, analyzing the data, creating
CP models based on the data (and, in some instances, based
on user-defined constraints and/or parameters), determining
a solution to the CP model, manipulating and transforming
the solution into different formats, determining a manufac-
turing schedule based on the solution, providing or publish-
ing the solution and/or schedule to multiple outputs, etc. By
arranging and/or modifying blocks within the workflow, an
end-user (e.g., of a manufacturing environment) can adapt
the CP system to account for any change to the manufac-
turing environment, without having specialized program-
ming knowledge or writing complicated scripting and code.
[0020] Today, manufacturing facilities have very complex
environments in which facilities typically perform several
different tasks related to the manufacture of a product. These
tasks can include, but are not limited to, tasks for servicing
tools (or equipment) within the manufacturing environment,
tasks for using manufacturing tools, tasks for changing a tool
setup, tasks for inspecting a manufacturing tool, tasks for
performing one or more processes on resources (or an
unfinished product) in order to manufacture a completed
product, etc. In the case of semiconductor manufacturing,
the semiconductor manufacturing process is generally
divided into two parts, “front-end” and “back-end,” both of
which use different types of semiconductor manufacturing
equipment. Front-end typically refers to wafer fabrication.
For example, front-end manufacturing facilities generally
start with blank semiconductor wafers (e.g., silicon wafers)
and perform various processes, such as photolithography,
deposition, etching, cleaning, ion implantation, chemical
and mechanical polishing, etc., to fabricate a completed
wafer with many semiconductor die on the wafer. Back-end
typically refers to the assembly and testing of individual
semiconductors. For example, once the front-end production
process is completed, the completed wafers are transferred
to a back-end manufacturing facility, which typically per-

US 2020/0019382 Al

forms functions such as dicing the completed wafer into
individual semiconductor die, testing, assembly, packaging
etc. As such, front-end and back-end processes can consist
of hundreds of processing steps performed by several dif-
ferent tools or automated devices within the manufacturing
environment. To meet the ever increasing demand for manu-
facturing products, it is becoming increasingly important for
manufacturing environments to schedule the series of com-
plex tasks performed within the manufacturing environment
and/or control the tools (or groups of tools) and automated
devices within the manufacturing environment.

[0021] In order to perform scheduling in manufacturing
environments, CP models are sometimes used. CP can be
used to find a solution which can satisty all of the con-
straints. CP includes a set of search variables, domains that
set boundaries for the possible values for each of the
variables, and a set of constraints. Scheduling problems
involve creating search variables for each task: at least one
variable to represent the equipment that can process a task
and at least another variable to represent the start time for the
task. Other variable are often included. In many cases, CP
models have to be modified to account for changes in the
manufacturing cycle (e.g., a change in the process flow,
changes to processing times, different tool groups, new tools
introduced, and the like) problems within the manufacturing
environment (e.g., tool failures, defects in the output prod-
uct, maintenance operations, and the like), new incoming
orders, changes to orders, etc. Keeping CP models config-
ured and maintained using existing techniques involves
modifying custom code. This can involve complicated
scripting and code to be written by a user with specialized
programming knowledge, involve a significant amount of
time, decreased productivity, etc.

[0022] As will be described in more detail below, embodi-
ments provide techniques that can be used to define and
configure CP processes that are open, configurable and
extensible by the end user (e.g., of a manufacturing facility)
through the use of block-based workflows. For example, an
end-user can use the techniques presented herein to extend
the workflow (e.g., to include additional steps, etc.), adjust
processing order of a workflow, configure (or customize) the
set of operations within the workflow, etc., all without the
need to understand or write any code. As such, the CP
system presented herein provides manufacturing facilities
with the ability to configure and maintain CP processes
despite changing circumstances and without requiring spe-
cialized programming knowledge, or difficult and time-
consuming operations that are associated with conventional
techniques.

[0023] One embodiment includes a method for executing,
by a block-based (BB) CP component, at least one BB
workflow to create and solve a CP model related to a
manufacturing environment (e.g., front-end or back-end
semiconductor facility or factory). Within the manufacturing
environment, several tools (or equipment) can be available
for processing raw material or a work-in-progress (e.g.,
unfinished goods) to produce a completed product. For
example, in semiconductor manufacturing, one or more
tools can be used to process one or more lots during
front-end processing, back-end processing, etc. For front-
end, the one or more lots generally refer to one or more
blank semiconductor wafers. For back-end, the one or more
lots generally refer to one or more semiconductor die (e.g.,
on completed semiconductor wafers).

Jan. 16, 2020

[0024] In one embodiment, the BB CP component allows
for determining a solution to a CP model that is created
based on the state of a manufacturing facility and its
components. A solution generally refers to a set of values
(e.g., to be assigned to variables in the CP model) that satisty
the constraints of the model. Constraints generally refer to
restrictions, such as time and/or value restrictions, that apply
to variables in the CP model (e.g., an inspection task can
only be started if a counter has a value that is greater than
a threshold). Variables generally include task state variables
(e.g., task start, task end, task pause, task resume, etc.), task
equipment variables (e.g., representing the station capable of
performing a task), etc. A domain for a variable defines
allowed values for that variable. A domain sets boundaries
for the possible values for each of the variables.

[0025] To create the CP model, the BB CP component can
extract data from the manufacturing environment. The data
can include static data (e.g., equipment used by a source
system, capability of different pieces of the equipment, etc.)
and dynamic data (e.g., current equipment state, products
being currently processed by equipment of a source system,
the product characteristics, etc.). The BB CP component
may also use constraints defined by the user via the BB
workflow in creating the CP model. For example, the BB CP
component may create the CP model by defining logic using
the plurality of variables, domains, constraints, and the like.
To solve the CP model, the BB CP component may provide
the CP model to a CP solver, which determines a solution
that satisfies the constraints. An example of a CP solver is
Gecode, which uses search engines (e.g., depth first search,
branch-and-bound, etc.) to find a solution to a CP model. A
solution may be a model that contains single values for all
variables. The BB CP component can publish the deter-
mined solution to at least one device or component (e.g., to
perform scheduling/dispatching in the manufacturing envi-
ronment, etc.). In certain embodiments, the solution is
post-processed to convert the solution into a format that is
usable by the at least one device or component. In some
embodiments, a scheduling component is used to determine
a manufacturing schedule based on the solution (e.g., a
schedule that is in accord with the values of the variables in
the solution). The post-processed solution and/or schedule
may be processed and/or converted into a form usable by
additional devices or components, and may be published to
the additional devices and/or components (e.g., via dispatch-
ers).

[0026] In one embodiment, the BB CP component per-
forms each of the above operations based on various blocks
within a BB workflow. Each block of the BB workflow
specifies one or more operations of the set of operations that
the BB CP component performs when the BB CP component
executes the workflow. Using the techniques presented
herein, a user can edit and/or customize the sequence of
operations (that are executed by the BB CP component) by
changing the order of the blocks in the BB workflow,
adding/removing blocks in the BB workflow, adding/remov-
ing links (e.g., representing data flow) between blocks in the
BB workflow, etc. For example, a user may generate and/or
edit the BB workflow via a user interface that supports
drag-and-drop input. Further, the techniques presented
herein also allow a user to configure some or all of the
operations within one or more blocks of the BB workflow
with one or more BB rules and reports. For example, upon
executing one or more blocks in the BB workflow, the BB

US 2020/0019382 Al

CP component may further evaluate at least one BB sub-rule
or report configured for the respective workflow block in
order to perform the operations specified by the workflow
block. Doing so in this manner provides manufacturing
facilities the ability to edit, and customize (e.g., without
understanding or writing code) CP operations to account for
any changes in the manufacturing facility. BB reports, rules,
and sub-rules can be created by a user and allow the user to
configure, without the need to understand or write any code,
the operations for each block in the BB workflow(s). In this
manner, the techniques presented herein allow the user to
customize the operations for the blocks in the CP workflow
that may be used to extract data, convert the data, and/or
perform error checking.

[0027] Note that, for the sake of convenience, terminology
related the manufacture of semiconductor devices is used in
much of the following description as a reference example of
a manufacturing production process that can be scheduled
based on solutions generated using the techniques presented
herein. Similarly, many of the following embodiments use
front-end and back-end semiconductor manufacturing facili-
ties as reference examples of types of manufacturing envi-
ronments in which the techniques presented herein can be
used to provide a CP system that is open, extensible, and
fully configurable by an end-user. Note, however, that the
techniques presented herein can also be applied to other
types of manufacturing environments (e.g., in other indus-
tries), manufacturing processes, etc.

[0028] FIG. 1 is a block diagram illustrating an architec-
ture of a manufacturing environment (or system) 100, in
which aspects of the present disclosure may be practiced.
For example, in one embodiment, the manufacturing envi-
ronment 100 is an example of a semiconductor manufactur-
ing system. As shown, the manufacturing environment 100
includes a computing system 110, manufacturing execution
system (MES) 130, factory storage system 140, dispatchers
160, run stores 150 and external storage system 170 con-
nected via a network 122. In general, the network 122 can
be a wide area network (WAN), local area network (LAN),
wireless LAN (WLAN), etc. The factory storage system
140, external storage system 170 and run stores 150, in
general, can be any kind of storage system, including, for
example, relational and/or hierarchal databases, distributed
filing systems, etc. In one embodiment, the computing
system 110, MES 130, and dispatchers 160 can be any kind
of physical computing system having a network interface,
such as a desktop computer, laptop computer, mobile device,
tablet computer, server computing systems, gateway com-
puters, and the like.

[0029] The MES 130 is generally configured to manage
and control the operation of a current work-in-progress
(WIP) within the manufacturing environment 100. For
example, the MES 130 can monitor the operation of one or
more tools (or equipment) operating in the manufacturing
environment 100, receive data directly from the tools, ana-
lyze data from the tools, and/or collect the data. In one
embodiment, the MES 130 can store the data (received from
the tools) into factory storage system 140. Such information
stored in the factory storage system 140 can include infor-
mation regarding the current WIP, current tool state, manu-
facturing data, etc.

[0030] As shown, the computing system 110 includes BB
CP component 120. The BB CP component 120 generally
represents logic (e.g., a software application, device firm-

Jan. 16, 2020

ware, an ASIC, etc.) that is configured to implement one or
more of the techniques presented herein. For example, the
BB CP component 120 could perform method 500 illustrated
in FIG. 5, method 600 illustrated in FIG. 6, and/or any of the
techniques (or combination of techniques) described herein.
In one embodiment, the BB CP component 120 creates a CP
model and determines a solution to the CP model by
executing a BB workflow defined by a user (e.g., via a user
interface). For example, in the case of semiconductor manu-
facturing, the manufacturing system can perform several
different tasks related to the fabrication of semiconductor
wafers (e.g., associated with front-end processing), cutting,
assembly, and testing of semiconductor die on the wafers
(e.g., associated with back-end processing), and the like. The
BB CP component 120 may retrieve data from the manu-
facturing environment 100, such as from the MES 130 and
other devices/components (e.g., a material control system
(MCS) and/or other tools). In one embodiment, the BB CP
component 120 creates a CP model based on the data (which
may first be transformed or converted into an appropriate
format for use in CP) and based on constraints defined by the
user via the BB workflow. The BB CP component 120 then
uses a solver to determine a solution to the CP model that
satisfies all of the constraints of the CP model. The solution
may be post-processed, such as by converting the solution
into a format compatible with at least one other component
(e.g., a scheduling component, which may also be located on
computing system 110 or one a separate system) or device,
and then may be published to the at least one other compo-
nent or device.

[0031] Insome cases, the manufacturing system may have
a large number of lots that need to be processed. To manage
the processing, a scheduling component may periodically
generate schedules (e.g., every five minutes, ten minutes, or
some other configurable time period) based on solutions
determined by the BB CP component 120 to allocate some
or all of the lots to available tools, sequence the lots, etc. For
example, the schedule can include a list of which tasks
should be processed on which tool and at what time. In one
embodiment, a schedule is generated based on the solution
and is then provided to dispatchers 160, which are generally
configured to dispatch (e.g., according to the schedule) the
lots to the tools for processing. For example, dispatchers 160
may automate the one or more devices within the manufac-
turing environment according to the generated schedule.
Alternatively or additionally, solutions and/or schedules
may be written (or saved) by the BB CP component 120 or
another component to an external storage system 170. Main-
taining the solutions, post-processed results, and/or sched-
ules in the external storage system 170 allows the solutions
and/or schedules to be made available to different entities.

[0032] In one embodiment, the BB CP component 120 is
configured to execute one or more BB workflows in order to
solve a CP model. The BB CP component 120 can receive
a workflow (e.g., created by an end-user via a user interface)
that includes a plurality of blocks where each block in the
workflow specifies one or more operations that are per-
formed when the BB CP component 120 executes the
respective block. This workflow can be more easily edited
and/or customized (e.g., by a user) without any specialized
programming knowledge, relative to conventional scripting
solutions. For example, the user can re-arrange the blocks in
the workflow (e.g., to adjust the steps that the BB CP
component 120 performs related to creating or solving a CP

US 2020/0019382 Al

model), add blocks to the workflow (e.g., to add steps that
the BB CP component 120 performs related to creating or
solving a CP model), and/or remove blocks from the work-
flow (e.g., to remove steps that the BB CP component 120
performs related to creating or solving a CP model). As
described below, the user can also configure the specific
operations for one or more blocks in the workflow with a BB
sub-rule and/or report. Doing so in this manner provides a
fully configurable CP system that allows manufacturing
systems to adapt their CP systems, as needed, without the
complexities involved in modifying custom code.

[0033] In one embodiment, the BB CP component 120 is
configured to write, for each CP run, some or all the input
and/or output data associated with the blocks of the work-
flow to the run stores 150. This data captures the state of the
manufacturing system at one or more steps of a CP run, such
that, in the event there is a problem with a solution or
schedule that is based on a solution, the manufacturing
system can reproduce the problem since all data needed to
reproduce what occurred is available in run stores 150. In
this manner, the manufacturing system can troubleshoot any
problems by retrospectively debugging the system.

[0034] Note, however, that FIG. 1 illustrates merely one
possible arrangement of the manufacturing environment
100. More generally, one of ordinary skill in the art will
recognize that other embodiments of manufacturing systems
can also be configured to implement CP techniques in
accordance with the techniques presented herein. For
example, although the computing system 110, MES 130 and
dispatchers 160 are shown as separate entities, in other
embodiments, these components could be included as part of
one computing system.

[0035] FIG. 2 further illustrates an example of the BB CP
component 120 described relative to FIG. 1, according to
one embodiment. The BB CP component 120 is configured
to create and solve a CP model related to the manufacturing
environment 100 and its components. For example, the CP
model (created by the BB CP component 120) may specify
logic (e.g., in the form of an executable program) that is
based on a plurality of variables, domains, constraints, and
the like. A solution to the CP model may comprise a model
that includes single values for the variables that satisty the
constraints of the CP model.

[0036] As shown, the BB CP component 120 includes a
BB workflow engine 210, a BB reporting engine 220, a CP
engine 230, BB reports and rules (RR) storage system 250,
and a BB workflow storage system (e.g., database) 202. In
one embodiment, the BB workflow engine 210 interacts
with and manages BB reporting engine 220, and CP engine
230 in order to create and solve a CP model related to the
manufacturing environment 100. The BB workflow storage
system 202 includes one or more BB workflows, each of
which can be used (e.g., by the BB CP component 120) to
perform operations related to creating and solving a CP
model. The BB workflows can be created, edited and/or
customized by a user and stored in the BB workflow storage
system 202.

[0037] In one embodiment, the BB workflow engine 210
receives at least one BB workflow (e.g., from a user) or
retrieves at least one BB workflow (e.g., from BB workflow
storage system 202, etc.) and executes each of the blocks in
an order specified within the BB workflow(s). As mentioned
above, each block of the BB workflow(s) specifies one or
more operations that are performed (e.g., by one of the BB

Jan. 16, 2020

reporting engine 220, CP engine 230, etc.) when the BB
workflow engine 210 executes the respective block.
Examples of operations that can be included within the BB
workflow(s) include, but are not limited to, retrieving data
about the manufacturing facility, transforming and manipu-
lating the data, creating a CP model based on the data and
based on constraints defined by the user in the BB workflow,
determining a solution for the CP model, making the solu-
tion available to one or more requestors, saving information
about the state of the manufacturing facility, performing
error checking on the CP model, solution, and data, reporting
the error to a user, generating a schedule based on the
solution, publishing the schedule, etc. In this manner, the BB
workflow engine 210 can control the sequence of operations
that the BB CP component 120 performs to provide a
solution.

[0038] According to various embodiments, depending on
the blocks specified in the BB workflow(s), the BB CP
component 120 can use one of the BB workflow engine 210,
BB reporting engine 220, or CP engine 230 to execute the
respective block. For example, in one embodiment, the BB
CP component 120 can extract, via the BB reporting engine
220, data about the manufacturing environment 100 from
the factory storage system 140. In some embodiments, the
BB reporting engine 220 can query other systems and/or
web services (e.g., using representational state transfer
(REST), or some other communication protocol) for data
about the manufacturing environment 100. Such data can
include, for example, descriptions of equipment in the
manufacturing environment 100, capabilities of different
pieces of equipment, current state of equipment, what prod-
uct is currently being processed by equipment, characteris-
tics of the product, and the like.

[0039] Upon extracting the information, the BB CP com-
ponent 120 can use the BB reporting engine 220 to perform
one or more transformations or manipulations on the
extracted data. For example, the data extracted from factory
storage system 140 may be in a format (or schema) that is
specific or proprietary to the manufacturing environment
100 and not compatible with the BB CP component 120. In
these situations, the BB reporting engine 220 can convert the
data from the proprietary format to a common schema that
is compatible with the rest of the BB CP component 120. In
addition, the BB reporting engine 220 can evaluate the data
in the proprietary format and common schema data for
errors, and if errors are detected, correct the errors in the
common schema data, and report the errors to a user (e.g.,
via email, storing in a database, etc.). In some embodiments,
the BB reporting engine 220 can use at least one BB sub-rule
and/or report within the BB RR storage system 250 to
perform the data extraction, data conversion, error checking,
etc. For example, the BB reports and/or rules can be created
by a user and allow the user to configure, without the need
to understand or write any code, the operations for each
block in the BB workflow(s). In this manner, the techniques
presented herein allow the user to customize the operations
for the blocks in the CP workflow that may be used to extract
data, convert the data, and/or perform error checking.

[0040] In one embodiment, once the BB reporting engine
220 converts the extracted data into a common CP schema
and performs error checking on the common schema data,
the BB workflow engine 210 may evaluate the data, create
a CP model based on the data and constraints, determine a
solution to the CP model, and the like. In some embodi-

US 2020/0019382 Al

ments, the BB workflow engine 210 can use the CP engine
230 to create the CP model and determine the solution. Note
that, although the CP engine 230 and BB reporting engine
220 are shown within the BB CP component 120, in some
embodiments, the CP engine 230 and/or BB reporting
engine 220 can be external to the BB CP component 120.

[0041] The CP engine 230 can be configured with one or
more BB rules and/or reports created by a user and stored in
the BB report and rules (RR) storage system 250. One or
more BB reports can be used to configure, define, and/or
modify constraints, specify settings, convert data into a
format understood by the CP engine 230, etc. In addition or
alternatively, one or more BB rules (created by a user) can
be used to configure an objective function for the CP model,
determine which constraints will govern the CP model,
process the results of the CP engine 230 that creates and
solves the CP model (e.g., which can include converting the
results back to the common schema, etc.), and the like.

[0042] In one embodiment, once the CP engine 230 deter-
mines the solution, the CP engine 230 provides the solution
to the BB workflow engine 210, which can publish the
solution or a schedule based on the solution to at least one
of the dispatchers 160 or external storage system 170. In one
embodiment, the BB workflow engine 210 can use at least
one BB report and/or rule (e.g., within BB RR storage
system 250) to process the solution (e.g., converting the
solution to a format used by the manufacturing environment,
etc.) before publishing the solution or a schedule determined
based on the solution to at least one of the dispatchers 160
or external storage system 170.

[0043] As mentioned above, the techniques presented
herein also allow the BB CP component 120 to evaluate
generated solutions and perform troubleshooting in the event
of any problems or errors. For example, in one embodiment,
upon receiving the input and output data associated with the
execution of each block in the BB workflow, the BB
workflow engine 210 writes some or all of the input and/or
output data for one or more blocks to the run stores 150. For
example, for each CP run, the BB workflow engine 210 can
write any one of the extracted data, common schema data,
CP model and its results, CP model input and output,
published solutions, and other information associated with
blocks in the BB workflow to the run stores. In one embodi-
ment, the BB workflow engine 210 writes to a file system
directory (within the run stores 150) that is unique to each
CP run. In this manner, the BB CP component 120 is able to
reproduce the state of the manufacturing environment 100
for one or more steps of a CP run. The BB CP component
120, for example, can evaluate the data associated with one
or more steps via the BB reporting engine 220 (and via one
or more BB reports and rules) to determine any changes that
need to be made to the CP process. As such, the techniques
presented herein allow for retrospective debugging, since all
the data associated with one or more steps of a CP run can
be made available via the run stores 150.

[0044] Note, however, that FIG. 2 illustrates merely one
possible arrangement of the BB CP component 120. More
generally, one of ordinary skill in the art will recognize that
other embodiments of the BB CP component 120 can also be
configured to create and solve CP models in accordance with
the techniques presented herein. For example, although the
BB workflow engine 210, BB reporting engine 220, and CP

Jan. 16, 2020

engine 230 are shown as separate entities, in other embodi-
ments, these components could be included as part of one
computing system.

[0045] FIG. 3 illustrates a user interface 300 with a BB
workflow 330 that can be used to determine a solution to a
CP model related to a manufacturing environment, accord-
ing to one embodiment. As shown, the user interface 300
includes a block panel 350 and a BB workflow panel 315.
The block panel 350 includes a plurality of blocks that allow
a user to customize operations within a BB workflow to
determine a solution for a CP model related to a manufac-
turing environment. In this embodiment, each block is
depicted as a small image characteristic of the block’s
function. However, note that, in general, the blocks can be
depicted in other manners (e.g., size, shape, color, etc.). BB
workflow panel 315 illustrates one example of a BB work-
flow 330. Note that, for the sake of convenience, only a
portion of the BB workflow 330 is illustrated. More gener-
ally, those of ordinary skill in the art will recognize that a
user can create and/or modify any BB workflow to include
any number of blocks.

[0046] In one embodiment, the user interface (UI) 300 is
a graphical user interface (GUI) that allows the user to drag
and drop blocks from block panel 350 into BB workflow
panel 315. The user can arrange the blocks (in BB workflow
panel 315) in any order or configuration, which allows the
user to quickly adapt the CP system to any changes within
the manufacturing environment, without understanding or
writing any code. For example, each block in the block panel
350 is a logical abstraction that represents an operation or a
series of operations that can be performed related to creating
a solving a CP model. In one embodiment, the UI 300 allows
the user to specify one or more properties for each block in
the workflow panel 315. The one or more properties can
specify a data source for the block, timing of one or more
operations associated with the block, constraints, and/or
other criteria associated with performing the operations
associated with the block. Examples of block properties
panels are shown below in FIGS. 4A-D. In one embodiment,
the operations and/or the properties for each block in the BB
workflow panel 315 can be stored in one or more block
definition files that the BB CP component can access in
order to execute each block.

[0047] In one embodiment, once the BB CP component
120 executes the BB workflow, the BB CP component 120
reads the definition files, converts the operations listed in the
files into a low-level script that the BB CP component 120
executes to create a CP model and determine a solution to
the CP model. The BB CP component 120 can provide the
solution or post-processed solution to other devices or
components (e.g., a scheduling component), evaluate the
solution for errors, or provide the solution or post-processed
solution to anyone that requests the solution.

[0048] In another embodiment, once the BB CP compo-
nent 120 retrieves at least one BB workflow from the BB
workflow storage system 202, the BB CP component 120
reads and parses the BB workflow to determine the type of
blocks within the BB workflow. The BB CP component 120
can access one or more block definitions corresponding to
each type of block within the BB workflow. The BB CP
component 120 can execute the BB workflow based on the
block definitions and/or the properties of the blocks in the
BB workflow. For example, in one implementation, the BB
CP component 120 can determine at least one function to

US 2020/0019382 Al

call to perform the operations in the block (e.g., execute the
block) based on the block type and/or properties of the
block. The BB CP component 120 can then execute the BB
workflow by performing the set of operations using the
determined functions.

[0049] In this particular embodiment, this portion of the
BB workflow 330 includes blocks 302-329, which together
specify a sequence of operations which, when executed by
the BB CP component 120, can result in solving a CP model
related to a manufacturing environment. Specifically, block
302 defines a start operation that triggers the initial execu-
tion of the BB workflow 330. Block 304 defines an operation
for writing results of the start operation to a log file. Blocks
305 and 306 are connected by an “and” block 307, which
means that the operations in both blocks 305 and 306 are
performed (e.g., simultaneously). Block 305 defines a fur-
nace modeling operation that loads/collects customer data
(e.g., data collected from one or more tools in the manu-
facturing environment). Block 306 defines global setting
operation that modifies one or more settings associated with
the CP process.

[0050] Block 308 defines an operation that creates the CP
model related to the manufacturing environment based on
data collected from the manufacturing environment and
based on constraints defined by the user. Blocks 309-311
represent operations for handling errors related to executing
the operation defined by block 308, such as a “FAULT”
condition, including sending messages to a user and/or other
component related to an error.

[0051] Block 312 defines an operation for writing the
results of executing the operation defined by block 308 to a
log file. Block 313 defines an operation for determining a
solution to the CP model. For example, the operation may
include using a solver to determine the solution. Blocks
314-318 represent operations for handling errors related to
executing the operation defined by block 313, such as a
“FAULT” condition, including sending messages to a user
and/or other component related to an error. Blocks 320-324
represent operations for handling different errors related to
executing the operation defined by block 313, such as an
“INFEASIBLE” condition (e.g., if there is no feasible solu-
tion to the CP model that satisfies all constraints), including
sending messages to a user and/or other component related
to an error. Block 326 defines an operation for writing the
results of executing the operation defined by block 313 to a
log file.

[0052] Block 328 represents an operation for outputting
results of previous blocks (e.g., the solution) to a text file
(and/or converting the solution to a different format, deter-
mining a schedule based on the solution, etc.). Block 329
defines an operation for outputting a result, such as a
solution, such as by publishing the solution to one or more
devices or components. In some embodiments, one or more
of'blocks 326-329 also define operations for post-processing
the solution to create input that is usable for other purposes,
such as determining a schedule based on the solution.
[0053] Note that the BB workflow 330 depicted in FIG. 3
and described above represents merely one example of a
sequence of blocks that can be configured, e.g., by a user
without coding. In general, the techniques presented herein
can be used to modify and/or customize a scheduling system
to any manufacturing environment.

[0054] It is noted that, while BB workflow 330 includes
two separate blocks 308 and 313 for creating and solving the

Jan. 16, 2020

CP model, these blocks may alternatively be combined into
a single block that both creates and solves the CP model.
[0055] FIG. 4A illustrates an example block properties
panel 415 that can be used to configure a set of operations
to be performed for a particular block in a BB workflow,
according to one embodiment. For example, block proper-
ties panel 415 may be used to configure operations to be
performed for block 308 or block 313 of BB workflow 330
in FIG. 3. In certain embodiments, block properties panel
415 is launched by a user interaction with a block, such as
double-clicking on the block or right-clicking on the block
and selecting a “block properties” menu item associated
with the block.

[0056] Block properties panel 415 includes several prop-
erties that can be selected and/or modified by a user. For
example, block properties panel 415 allows the user to
specify a solver for the CP model and other information
related to creating a CP model (e.g., model data for the CP
model, such as constraints). For instance, the user may
specify constraints for the CP model using block properties
panel 415.

[0057] FIG. 4B illustrates an example block properties
panel 420 that can be used to configure a set of operations
to be performed for a particular block in a BB workflow,
according to one embodiment. For example, block proper-
ties panel 420 may be used to configure operations to be
performed for block 308 or block 313 of BB workflow 330
in FIG. 3. Block properties panel 420 includes several
properties that can be selected and/or modified by a user. For
example, block properties panel 420 allows the user to
specify advanced parameters for the solver to be user for
determining a solution to the CP model.

[0058] FIG. 4C illustrates an example block properties
panel 425 that can be used to configure a set of operations
to be performed for a particular block in a BB workflow,
according to one embodiment. For example, block proper-
ties panel 425 may be used to configure operations to be
performed for block 308 or block 313 of BB workflow 330
in FIG. 3 or a different block that defines operations for
modifying a CP model. Block properties panel 425 includes
several properties that can be selected and/or modified by a
user. For example, block properties panel 425 allows the
user to specify model data that is used to modify the CP
model.

[0059] FIG. 4D illustrates an example block properties
panel 430 that can be used to configure a set of operations
to be performed for a particular block in a BB workflow,
according to one embodiment. For example, block proper-
ties panel 430 may be used to configure operations to be
performed for block 308 or block 313 of BB workflow 330
in FIG. 3. Block properties panel 430 includes several
properties that can be selected and/or modified by a user. For
example, block properties panel 430 allows the user to
specify a model, a run directory, and a solver timeout for
running a CP model.

[0060] Note that the block properties panels 415, 420, 425,
and 430 depicted in FIGS. 4A-D and described above are
only examples of block properties panels that can be con-
figured, e.g., by a user without coding. Additional or differ-
ent properties may also be included.

[0061] FIG. 5 is a flow diagram of a method 500 for
executing a BB workflow to determine a solution to a CP
model related to a manufacturing environment, according to
one embodiment. As shown, the method begins at block 502,

US 2020/0019382 Al

where a BB CP component 120 (e.g., as shown and
described with respect to FIG. 1) receives a BB worktlow
(e.g., from a user). The BB workflow includes a plurality of
blocks that specify a set of operations for that specify
operations for creating and solving a CP model related to a
manufacturing environment. To perform the set of opera-
tions, at block 504, the BB CP component 120 accesses
block definitions corresponding to the plurality of blocks. At
block 506, the BB CP component 120 executes the BB
workflow by performing the operations shown at steps 508,
510, 512, 514, and 516.

[0062] At step 508, the BB CP component 120 extracts
data (e.g., via the BB reporting engine) from the manufac-
turing environment. In one embodiment, the data includes
device data (e.g., from tools or equipment in the manufac-
turing environment) that describes a number of lots available
for processing and one or more devices operating in the
manufacturing environment. The data can include static data
(e.g., equipment used by a source system, capability of
different pieces of the equipment, etc.) and dynamic data
(e.g., current equipment state, products being currently
processed by equipment of a source system, the product
characteristics, etc.). In some embodiments, the BB CP
component 120 can convert the data from a first schema (or
format) used by the manufacturing environment to a second
schema. The BB CP component 120 can also evaluate the
data in at least one of the first schema or second schema for
errors, and report any errors to a user.

[0063] At step 510, the BB CP component 120 creates a
CP model based on the data extracted at step 508 and at least
one constraint defined by the user (e.g., via the BB work-
flow).

[0064] At step 512, the BB CP component 120 determines
a solution to the CP model using a solver. For example, the
solution may comprise a model with a single value for each
variable such that all constraints are satisfied. In one
embodiment, the BB CP component 120 can process the
solution (e.g., converting the solution to a format used by the
manufacturing environment, etc.) before publishing the
solution to other devices or components.

[0065] At step 514, the BB CP component 120 post-
processes the solution. Foe example, the BB CP component
120 may transform the solution into a format compatible
with at least one component in the manufacturing environ-
ment so that the solution can be published to the at least one
component.

[0066] At step 516, BB CP component 120 publishes the
solution or post-processed solution to the at least one
component in the manufacturing environment. In one
embodiment, the component comprises a scheduling com-
ponent that determines a schedule (e.g., including an allo-
cation and processing order) based on the solution. One or
more devices may be automated within the manufacturing
environment based on the determined allocation and the
processing order. For example, as mentioned above, the
determined allocation and processing order may be pub-
lished to dispatchers 160 to automate the one or more
devices. Additionally or alternatively, the BB CP component
120 can write (or save) the solution to one or more storage
systems (e.g., such as external storage system 170, etc.) in
the manufacturing environment.

[0067] FIG. 6 is a flow diagram of a method 600 for
executing a block-based workflow to determine a solution to
a CP model related to a manufacturing environment, accord-

Jan. 16, 2020

ing to one embodiment. As shown the method begins at
block 602, where the BB CP component 120 executes a BB
workflow. For each block, the BB CP component, at block
604, determines if the block is configured with a BB sub-rule
or report (block 604). If so, the BB CP component 120
evaluates, at block 606, the BB sub-rule or report to deter-
mine at least one operation to perform when executing the
workflow block. After evaluating the BB sub-rule or report
(or if the BB CP component 120 determines the workflow
block is not configured with a BB sub-rule or report), the BB
CP component 120 optionally saves, at block 608, the input
to the workflow block to a file directory (e.g., such as in run
stores 150). In one embodiment, the BB CP component 120
can save some or all of the input from the workflow block
to the file directory. In one embodiment, the BB CP com-
ponent 120 can determine to save none of the input from the
workflow block to the file directory (e.g., in situations where
the BB CP component 120 can reproduce the state of the
manufacturing environment without such data, etc.). At
block 610, the BB CP component 120 accesses a block
definition corresponding to a type of the block in the BB
workflow. At block 612, the BB CP component 120 per-
forms the operation(s) specified within the block based on
the block definitions and one or more properties of the block.
For example, as mentioned above, the BB CP component
120 can determine at least one function to call in order to
execute the workflow block, based on the block definition
and/or one or more properties of the block. At block 614, the
BB CP component 120 optionally saves the output from the
workflow block to the file directory. In one embodiment, the
BB CP component 120 can save some or all of the output
from the workflow block to the file directory. In one embodi-
ment, the BB CP component can determine to save none of
the output from the workflow block to the file directory (e.g.,
in situations where the BB CP component 120 can reproduce
the state of the manufacturing environment without such
data, etc.). Doing so in this manner, allows the CP system to
reproduce the state of the manufacturing environment at
each step of the CP run, which can be used to troubleshoot
the CP process in the event of errors.

[0068] FIG. 7 illustrates a computing system 700 config-
ured to execute a block-based workflow to determine a
solution for a CP model related to a manufacturing envi-
ronment, according to one embodiment. As shown the
computing system 700 includes, without limitation, a central
processing unit (CPU) 705, a network interface 715, a
memory 720, and storage 740, each connected to a bus 717.
The computing system 700 may also include an /O device
interface 710 connecting /O devices 712 (e.g., keyboard,
mouse, and display devices) to the computing system 700.
Further, in context of this disclosure, the computing ele-
ments shown in the computing system 700 may correspond
to a physical computing system (e.g., a system in a data
center) or may be a virtual computing instance executing
within a computing cloud.

[0069] The CPU 705 retrieves and executes programming
instructions stored in the memory 720 as well as stores and
retrieves application data residing in the memory 720. The
interconnect or bus 717 is used to transmit programming
instructions and application data between CPU 705, 1/O
devices interface 710, storage 740, network interface 715,
and memory 720. Note, CPU 705 is included to be repre-
sentative of a single CPU, multiple CPUs, a single CPU
having multiple processing cores, and the like. Memory 720

US 2020/0019382 Al

is generally included to be representative of a random access
memory. Storage 740 may be a disk drive storage device.
Although shown as a single unit, storage 740 may be a
combination of fixed and/or removable storage devices, such
as fixed disc drives, removable memory cards, or optical
storage, network attached storage (NAS), or a storage area-
network (SAN).

[0070] Illustratively, the memory 720 includes a BB CP
component 730, which includes BB reporting engine 732, a
BB workflow engine 734, and CP engine 736. The storage
740 includes BB workflow(s) 742, factory data 744 and BB
rules and reports 746. Further, although not shown, memory
720 can also include dispatchers 160, a scheduling compo-
nent, etc. In one embodiment, the BB workflow engine 734
executes each of the blocks in BB workflow(s) 742. For
example, as mentioned above, each block in the BB work-
flow(s) 742 can specify one or more operations to be
performed when executing each block. Further, one or more
operations can be configured with one or more BB reports
and rules (e.g., stored in BB rules and reports 746). As also
mentioned above, the BB workflow engine 734 can further
interact with the BB reporting engine 732 and the CP engine
736 when executing the workflow blocks.

[0071] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

[0072] As will be appreciated by one skilled in the art,
aspects of the present disclosure may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present disclosure may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0073] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any

Jan. 16, 2020

suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0074] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0075] Computer program code for carrying out opera-
tions for aspects of the present disclosure may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, C#, Smalltalk, C++ or the like and conventional
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

[0076] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0077] These computer program instructions may also be
stored in a computer readable medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

[0078] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present disclosure. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently,
executed in parallel, or the blocks may sometimes be
executed in the reverse order, depending upon the function-

US 2020/0019382 Al

ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

[0079] While the foregoing is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A method for executing a block-based (BB) workflow
to solve a constraint programming (CP) model related to a
semiconductor manufacturing environment, comprising:

receiving at least one BB workflow comprising a plurality
of blocks, wherein the plurality of blocks specify a set
of operations for solving the CP model;

accessing a plurality of block definitions corresponding to
the plurality of blocks; and

executing the at least one BB workflow by performing the
set of operations based on the plurality of block defi-
nitions, comprising:
extracting data from the semiconductor manufacturing
environment, wherein the data comprises both static
data and dynamic data related to equipment in the
manufacturing environment;

creating the CP model based on the data and at least one
constraint defined in the BB workflow;

using a solver to determine a solution to the CP model;
and

publishing the solution to at least one component in the
semiconductor manufacturing environment, wherein
the solution is used to determine a manufacturing
schedule for the semiconductor manufacturing envi-
ronment.

2. The method of claim 1, wherein executing the at least
one BB workflow further comprises: transforming the solu-
tion into a format compatible with the at least one compo-
nent, wherein the solution is published to the at least one
component in the format.

3. The method of claim 1, wherein the manufacturing
schedule comprises an allocation of a number of lots to a
subset of the equipment in the semiconductor manufacturing
environment, start and end times for each lot processing on
a tool, and a processing order in which the lots should be
processed by the subset of the equipment, and wherein the
subset of the equipment in the semiconductor manufacturing
environment is automated based on the allocation and the
processing order.

4. The method of claim 1, further comprising evaluating,
for one or more blocks of the at least one BB workflow, at
least one BB sub-rule or report to determine at least one
operation of the set of operations to perform.

5. The method of claim 1, wherein receiving the at least
one BB workflow comprises: receiving input from a user, via
a user interface, that identifies the plurality of blocks.

6. The method of claim 5, wherein the input further

identifies one or more links connecting the plurality of
blocks.

Jan. 16, 2020

7. The method of claim 1, wherein executing the at least
one BB workflow further comprises:

writing at least one of the extracted data, the solution, or

the manufacturing schedule to a storage system in the
semiconductor manufacturing environment; and

upon determining an error related to determining the

solution, reporting the error to a user.

8. The method of claim 1, wherein the at least one
constraint comprises one of: a time restriction; and a value
restriction.

9. A non-transitory computer-readable medium containing
computer program code that, when executed by a processor,
performs an operation for executing a block-based (BB)
workflow to solve a constraint programming (CP) model
related to a semiconductor manufacturing environment, the
operation comprising:

receiving at least one BB workflow comprising a plurality

of blocks, wherein the plurality of blocks specify a set
of operations for solving the CP model;

accessing a plurality of block definitions corresponding to

the plurality of blocks; and

executing the at least one BB workflow by performing the

set of operations based on the plurality of block defi-

nitions, comprising:

extracting data from the semiconductor manufacturing
environment, wherein the data comprises both static
data and dynamic data related to equipment in the
manufacturing environment;

creating the CP model based on the data and at least one
constraint defined in the BB workflow;

using a solver to determine a solution to the CP model;
and

publishing the solution to at least one component in the
semiconductor manufacturing environment, wherein
the solution is used to determine a manufacturing
schedule for the semiconductor manufacturing envi-
ronment.

10. The non-transitory computer-readable medium of
claim 9, wherein executing the at least one BB workflow
further comprises: transforming the solution into a format
compatible with the at least one component, wherein the
solution is published to the at least one component in the
format.

11. The non-transitory computer-readable medium of
claim 9, wherein the manufacturing schedule comprises an
allocation of a number of lots to a subset of the equipment
in the semiconductor manufacturing environment, start and
end times for each lot processing on a tool, and a processing
order in which the lots should be processed by the subset of
the equipment, and wherein the subset of the equipment in
the semiconductor manufacturing environment is automated
based on the allocation and the processing order.

12. The non-transitory computer-readable medium of
claim 9, wherein the operation further comprises evaluating,
for one or more blocks of the at least one BB workflow, at
least one BB sub-rule or report to determine at least one
operation of the set of operations to perform.

13. The non-transitory computer-readable medium of
claim 9, wherein receiving the at least one BB workflow
comprises: receiving input from a user, via a user interface,
that identifies the plurality of blocks.

14. The non-transitory computer-readable medium of
claim 13 wherein the input further identifies one or more
links connecting the plurality of blocks.

US 2020/0019382 Al

15. The non-transitory computer-readable medium of
claim 9, wherein executing the at least one BB workflow
further comprises:

writing at least one of the extracted data, the solution, or

the manufacturing schedule to a storage system in the
semiconductor manufacturing environment; and

upon determining an error related to determining the

solution, reporting the error to a user.

16. The non-transitory computer-readable medium of
claim 9, wherein the at least one constraint comprises one of:
a time restriction; and a value restriction.

17. A system comprising:

at least one processor; and

a memory containing a program that, when executed by

the at least one processor, performs an operation for
executing a block-based (BB) workflow to solve a
constraint programming (CP) model related to a semi-
conductor manufacturing environment, the operation
comprising:

receiving at least one BB workflow comprising a plurality

of blocks, wherein the plurality of blocks specify a set
of operations for solving the CP model;

accessing a plurality of block definitions corresponding to

the plurality of blocks; and

executing the at least one BB workflow by performing the

set of operations based on the plurality of block defi-

nitions, comprising:

extracting data from the semiconductor manufacturing
environment, wherein the data comprises both static
data and dynamic data related to equipment in the
manufacturing environment;

Jan. 16, 2020

creating the CP model based on the data and at least one
constraint defined in the BB workflow;

using a solver to determine a solution to the CP model;
and

publishing the solution to at least one component in the
semiconductor manufacturing environment, wherein
the solution is used to determine a manufacturing
schedule for the semiconductor manufacturing envi-
ronment.

18. The system of claim 17, wherein executing the at least
one BB workflow further comprises: transforming the solu-
tion into a format compatible with the at least one compo-
nent, wherein the solution is published to the at least one
component in the format.

19. The system of claim 17, wherein the manufacturing
schedule comprises an allocation of a number of lots to a
subset of the equipment in the semiconductor manufacturing
environment, start and end times for each lot processing on
a tool, and a processing order in which the lots should be
processed by the subset of the equipment, and wherein the
subset of the equipment in the semiconductor manufacturing
environment is automated based on the allocation and the
processing order.

20. The system of claim 17, wherein the method further
comprises evaluating, for one or more blocks of the at least
one BB workflow, at least one BB sub-rule or report to
determine at least one operation of the set of operations to
perform.

