I*I Innovation, Sciences et Innovation, Science and CA 2931904 C 2021/06/01

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 93 1 904
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(22) Date de dépd6t/Filing Date: 2016/06/21 (51) ClInt./Int.Cl. GO6F 7/00(2006.01)
(41) Mise a la disp. pub./Open to Public Insp.: 2016/12/22 (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2021/06/01 TURNER, JOSHUA, CA
(30) Priorité/Priority: 2015/06/22 (US62/182,872) (73) Propriétaires/Owners:

CARCEMA INC., CA,
6899005 CANADA INC., CA

(74) Agent: MOFFAT & CO.

(54) Titre : METHODES ET SYSTEMES DE MAILLAGE SEMANTIQUE AMELIORE
(54) Title: METHODS AND SYSTEMS FOR IMPROVED SEMANTIC MESHING

Document A

Document B |

|
| 0

Receive Input Stream i

32

34
~ OO - O
1 2 4 5 n

37

a4
Reset to 0, value

Yes

No

lus of Digest
=0

Rehash Stream Subset
a2

Generate Shingle

46

Append to Hash

(57) Abrégé/Abstract:

In at least one embodiment, the present invention provides methods and systems for improved semantic meshing, comprising
receiving an input data stream consisting of a plurality of characters; generating a normalized stream having an initial value based
on said input data stream; applying a plural character rolling window to a subset of the normalized stream to select at least one
stream subset, the at least one stream subset having a plurality of characters and an initial at least one stream subset value and a
last at least one stream subset value, applying a first uniform hash function to the at least one stream subset to create at least one
digest, If the modulus of the at least one digest is zero, identifying a cut, wherein identifying a cut includes applying a second
uniform hash function to at least one set of remainder values of the normalized stream, the at least one set of remainder values
including the characters of the normalized stream extending from the initial value of the normalized stream to the initial at least one
stream subset value, applying a second uniform hash function to the at least one set of remainder values, generating at least one
shingle, the at least one shingle comprised of a single character, resetting the plural character rolling window with a plurality of
zeros, aggregating the at least one shingle into a semantic hash.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

CA 02931904 2016-06-21

ABSTRACT

In at least one embodiment, the present invention provides methods and systems for improved
semantic meshing, comprising receiving an input data stream consisting of a plurality of
characters; generating a normalized stream having an initial value based on said input data
stream; applying a plural character rolling window {o a subset of the normalized stream to select
at least one stream subset, the at least one stream subset having a plurality of characters and
an initial at least one stream subset value and a last at least one stream subset value, applying
a first uniform hash function to the at least one stream subset to create at least one digest, If the
modulus of the at least one digest is zero, identifying a cut, wherein identifying a cut includes
applying a second uniform hash function to at least one set of remainder values of the
normalized stream, the at least one set of remainder values including the characters of the
normalized stream extending from the initial value of the normalized stream to the initial at least
one stream subset value, applying a second uniform hash function to the at least one set of
remainder values, generating at least one shingle, the at least one shingle comprised of a single
character, resetting the plural character rolling window with a plurality of zeros, aggregating the

at least one shingle into a semantic hash.

10

15

20

25

CA 02931904 2016-06-21

Methods and Systems for Improved Semantic Meshing

FIELD

The present invention relates to information management and governance. More specifically,
the present invention relates to methods and systems for the improved semantic meshing of

digital data files.
BACKGROUND

In the fields of information management and governance it is frequently desirable to be able to
identify a subset of documents that are considered “similar’ to one another. Although readily

understood in a colloquial or qualitative sense, “similarity” is a poorly-defined concept.

There are a number of challenges that are presented when trying to determine the similarity of a
plurality of digital data files. Some of these challenges include, but are not limited to, file format

impedance, performance considerations, sample window alignment and comprehensibility.

With respect to file format impedance, it is well known that different software vendors use
different ways of writing files which can give substantially similar content from completely
dissimilar (and incomparable) representations on disk, which can significantly complicate the

task of detecting the similarity of two (or more) digital data files.

With respect to performance considerations, it will be readily appreciated that detecting
similarity is generally only useful when applied to large volumes of content. Simple
implementations of similarity detection have performance limitations that increase sharply as

more {and larger) documents are added to the plurality of digital data files being considered.

With respect to sample window alignment, it will be readily appreciated that known methods of
block-based sampling have an inherent problem when determining digital data file similarity as
insertions or deletions in the middle of a file subsequently shift which bytes/characters are in

subsequent sampled blocks.

Finally, with respect to the concept of comprehensibility, a given collection can have a resultant
set of similarity relationships that ranges from no similarity at all to every file being identical, with
no clear way to make the results presentable. In these instances, the best guarantee of

outcome is that there will be some number of nodes with some number of relationships running

10

15

20

25

CA 02931904 2016-06-21

in a single (but not predictable) non-directed graph of relationships with an arbitrary number of
roots.

A number of prior art solutions have been developed in an attempt to address at least some of
these challenges discussed above when trying to identify a subset of similar digital data files

when presented with a plurality of seemingly otherwise disparate digital data files.

For example, known block-deduplicating file systems, such as ZFS, can detect files with
identical beginnings; yet such systems can store only the differences detected after the first
change.

Further, known genetic sequence alignment algorithms such as BLAST and FAST can detect
subsequence segments in long stretches of DNA, however these algorithms cannot do many-to-

many comparisons of segments simuitaneously or efficiently.

Moreover, Fuzzy-Hash algorithms such as SSDEEP can find one-to-one similarities of raw byte
streams, but cannot detect similarity across file formats, nor can they efficiently do many-to-

many comparisons.

Furthermore, the aforementioned comprehensibility problem has been addressed in a variety of
different ways. Two such examples include microarray heatmaps and subsample cluster

analysis.

Microarray heatmaps often employ rectangular arrays of colour for many-to-many comparison of
large arrays, but this approach has the fundamental weakness that the appearance is
dependent on the sort applied to each axis and that every cell in the array needs to be

calculated, which has the potential to be very expensive in terms of processing resources.

Alternatively, subsample cluster analysis involves the use of a subset of the matched

documents, which simply renders a list of the relationships attached to that particular document.

Therefore, it would be desirable to detect subsets of digital data files that are all composed of
substantially similar subsequences, regardless of where the differences between the files are

actually located.

Accordingly, there is need for methods and systems for the improved semantic meshing of

digital data files.

10

15

20

25

30

CA 02931904 2016-06-21

BRIEF SUMMARY
The present invention provides systems and methods for improved semantic meshing.

In at least one embodiment, it is contemplated that the present invention can provide a method
for improved semantic meshing, having the steps of receiving at least one first input data stream
consisting of a plurality of characters and corresponding to at ieast a first document retrieved
from a database and at least one second input data stream consisting of a plurality of
characters and corresponding to at least a second document retrieved from a database,
generating at least one first normalized stream having an initial value based on the at least one
first input data stream and at least one second normalized stream having an initial value based
on the at least one second input data stream, applying a plural character rolling window to a
subset of the at least one first normalized stream and the at least one second normalized
stream to select at least one stream subset from each of the at least one first normalized stream
and the at least one second normalized stream, each at least one stream subset having a
plurality of characters and an initial at least one stream subset value and a last at least one
stream subset value, applying a first uniform hash function to each at least one stream subset to
create at least one first digest and at least one second digest, and determining a modulus of the
at least one first digest and the at least one second digest using a scaling factor, the scaling
factor selected based on a size of at least one of the at least one first normalized stream and
the at least one second normalized stream, identifying a cut when the modulus is determined to
be equal to zero, and applying a second uniform hash function to at least one set of remainder
values of the at least one first normalized stream and the at least one second normalized
stream, the at least one set of remainder values including the characters of at least one of the at
least one first normalized stream and the at least one second normalized stream extending from
the initial value of the at least one first normalized stream or the at least one second normalized
stream to the respective initial of the at least one stream subset value, generating at least one
shingle from the output of the second uniform hash function, resetting the plural character rolling
window with a plurality of zeros, appending the at least one shingle into at least one semantic

hash, and storing the semantic hash in the database.
BRIEF DESCRIPTION OF THE FIGURES

The following invention will be better understood in connection with the following Figures, in

which:

10

15

20

25

CA 02931904 2016-06-21

Figure 1 is an illustration of at least one embodiment of a computer terminal for use in

connection with the present invention;

Figure 2 is an illustration of at least one embodiment of at least two computer terminals as

illustrated in Figure 1 in electronic communication over a network; and

Figure 3 is an illustration of at least one embodiment of a system and method in accordance

with the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS

It will be readily appreciated that the presently disclosed methods and systems may be
performed in a variety of manners using a wide variety of suitable hardware, as will be readily

contemplated by the skilled person.

The present methods and systems for improved semantic meshing can overcome the
aforementioned block alignment problem by using a local condition (such as, for example, a 7-
byte wide rolling window) to determine where to cut the data stream into blocks. In this way, it is
contemplated that any insertions and deletions to the source data stream only affect the
contents of a single block or, if the insertion modifies the content of a triggering 7-byte
sequence, a pair of neighbouring blocks. In all cases, it is contemplated that small changes to

the source content will in turn produce small, contained changes to the resultant digest.

It is further contemplated that the present methods and systems for improved semantic meshing
can overcome the file format impedance problem by using a set of file format text extraction
utilities to extract the text from files as a stream of characters and then employ a set of
transformations to eliminate parts of the text stream that are not semantically meaningful in

order to create a normalized stream for the detection of similarity.

It is further contemplated that the present methods and systems for improved semantic meshing
can overcome the performance problem by precalculating data structures that can represent,
enable and accelerate a set of cheaply and easily calculable threshold conditions for similarity,
eliminating the vast majority of similarity candidate relationships at minimal resource cost with
respect to processing resources, and conducting more computationally expensive comparisons

only where pairs meet all of the threshold conditions.

10

15

20

25

30

CA 02931904 2016-06-21

At the same time, it is contemplated that as the set of “successful” similarity matches fill up, the
minimum degree of similarity applied to the threshold conditions is raised to the minimum level
necessary to supplant any of the successful matches so far. This has the effect of “raising the
bar” as the process runs, allowing the present method to automatically consider fewer candidate

pairs as the present invention progresses through the collection.

It is contemplated that the present methods and systems for improved semantic meshing can
represent the resultant set of relationships using a force-directed mesh. In these embodiments,
the non-directed graph is modelled as a physical system of springs, mass, friction, and
gravitation and the relationships are allowed to self-organize. It is contemplated that these
graphs rapidly settle into a state where a user can easily see the parts of the collection that are

derived from each other.

In some embodiments, the presently disclosed methods and systems can detect content that
has been derived from other content, regardless of the source. Accordingly, it is contemplated
that in some embodiments the presently disclosed methods and systems can be used for
detecting, for example, plagiarism, fraud, draft versions of documents, information leaks, and
wasted space on storage devices, among other desired actions as will be readily appreciated by

the skilled person.

It is contemplated that the presently disclosed methods and systems can also optimize content
ordering in lossless compressed content streams. In embodiments that include data streams
using backwards references for compression, it is contemplated that placing similar content
close together in the stream can increase the chance that shared subsequences will be in the
compression scope during the process of compression, thereby improving the compression ratio
for what is otherwise identical content.

It is further contemplated in some embodiments that the present invention can provide a method
that is adapted to consider a large collection of documents in various file formats, and find the
most similar pairs of documents having a substantially similar subsequences of content in a

short time.

In this way, it is contemplated that the present systems and methods can have applications in
both information governance applications (for the detection of, for example, versions, leaks,
plagiarism, and fraud) and in content storage and compression applications (for eliminating, for

example, duplicate blocks or streams on a file system, and for ordering content in a container

5

10

15

20

25

30

CA 02931904 2016-06-21

that will be subjected to lossless compression, in order to maximize the amount of compression

in the stream).

In some embodiments, it is contemplated that the user can designate a collection of information
resources that can be represented as a sequence of characters or bytes. In the present

disclosure, it is contemplated that the term character or byte can be used interchangeably.

The system can then retrieve these streams of bytes, and in some embodiments use a set of
libraries to transform those bytes into a character stream, discarding all of the characters which
do not directly contribute to the textual meaning of the document. In some embodiments it is

contemplated that this character stream can be represented internally as Unicode code points.

In some embodiments, it is contemplated that the character stream can be normalized to
remove all characters which do not represent letters or numbers in any language, leaving a long
sequence of characters. For example, in embodiments involving languages having the concept
of majuscule letters, it is contemplated that all majuscules are replaced with their minuscule

peers in the provided output, which can be referred to as the *normalized stream™.

Further, it is contemplated that depending on the number of characters in the resultant
normalized stream, a scaling factor can be selected, and in at least one embodiment the
selected scaling factor is roughly proportional to the logarithm of the size of the normalized
stream. As will be readily appreciated by the skilled person, streams within a given size bracket

will produce the same scaling factor.

In at least one embodiment, a multi-character rolling window is passed along the normalized
stream to select a subset of multiple characters of the normalized stream corresponding to the
multi-character rolling window. In at least one embodiment, it is contemplated that the multi-
character window is 7 characters wide; however other sizes of character windows are readily

contemplated by the skilled person.

Next, it is contemplated that a first uniform hash function can subsequently be applied to this
subset (i.e.. the characters within the window). If the modulus of the digest and the scaling
factor returns zero, the window is said to have triggered a “cut’, as this indicates that these
values are identical, as will be understood by the skilled person. It is also contemplated that the
scaling factor can, in some embodiments, be selected to have at least one large prime factor

that can fit comfortably within the muiti-character window.

10

15

20

25

CA 02931904 2016-06-21

As will be readily understood by the skilled person, two numerical values are considered
congruent with respect to a particular numericai value (i.e. the “modulus” or “modulo”) if they
give the same remainder when divided by that number. For example: 19 and 64 are congruent

modulo 5, as both numbers give a remainder of 4 when divided by 5.

In the context of the present invention, it is contemplated that the digest can be a whole number,
the scaling factor can be a whole number and accordingly if dividing the digest by the scaling
factor leaves no remainder, a cut is triggered. In other words, if the digest can be evenly divided

by the scaling factor, a cut is triggered.

In other embodiments, it is contemplated that if a first digest (corresponding to a first document
under consideration) can be evenly divided by a second digest (corresponding to a second

document under consideration), a cut is triggered.

When a cut is triggered, all of the bytes since the previous cut (or, in some embodiments, the
beginning of the stream) are hashed using a second simple uniform hashing function, and a
shingle is produced to represent the contents of the variable-length span between the cuts. The
rolling window can then be reset to contain zeroes prior to starting the next segment of the

normalized stream and the process can continue.

Subsequently, it is contemplated that the set of produced shingles can be assembled into a
string corresponding to a particular document under consideration that is subsequently stored
for future retrieval. It is further contemplated that this string constitutes the *semantic hash* of a
document. As will be readily appreciated by the skilled person, similar documents will produce

semantic hashes with low Levenshtein distances.
Comparison Acceleration

In at least one embodiment, it is contemplated that the semantic hashes can be compared using
any of a wide variety of known algorithms, but in at least one embodiment it is contemplated that
the comparator routine accelerates comparisons using a set of threshold functions and a

minimum similarity cutoff.

In this embodiment, it is contemplated that the first cutoff is length comparison. If the ratio of the
lengths of the hashes to be compared exceeds the minimum similarity, the candidate pair is

subsequently discarded.

10

15

20

25

CA 02931904 2016-06-21

Further, it is contemplated that the second cutoff can be a difference of incidence histograms.
For example, given two hashes x and y, a histogram of the number of incidences of each
shingle is created and stored. It is contemplated that these histograms can then be subtracted
from one another in order to produce a histogram z (with, in some embodiments, potentially
negative values in some buckets, as will be understood by the skilled person). It is contemplated

that identical hashes will produce perfectly empty values for z.

Next, it is contemplated that the sum of the absolute values of the buckets in the z histogram
can then be compared to the total of the x hash, producing an incidence factor that will be equal

or higher than the actual similarity value.

In embodiments where the considered hash pairs produce incidence factors lower than the

similarity cutoff value, the hash pairs can be subsequently discarded.

Next, hash pairs which pass both first and second cutoffs discussed herein can then
subsequently be compared using a dynamic programming approach to the determined
Levenshtein distance. In at least one embodiment, it is contemplated that the ratio of the
Levenshtein distance to the length of the first hash can then be used as the similarity factor,

among other arrangements that will be readily appreciated by the skilled person.

Example:

By way of example and as will be readily understood by the skilled person, given some set of n

semantic hashes:
Set(n)=[1, 2, 3....n]
Each hash has a sequence of shingle values, represented here as decimal digits for clarity:
Hash 1 = 973457782304388026088303
Hash 2 = 368837506504581644110948
Hash 3 = 9734576823043880268303

For each sequence, two derived values can be inexpensively (with respect to processing power)
calculated (with respect to processing power): a length, and an occurrence histogram of each

shingle:

10

15

CA 02931904 2016-06-21

Hash Length Histogram
1 24 [4,0,2,5,2,1,1,3,5,1]
2 24 [3,3,0,2,4,33,1,4,1]
3 22 [3,0,2,5,2,1,2,2,4,1]

As will be understood by the skilled person, comparing a pair of hashes (1 and 2 in the example
provided herein) follows a sequence of gateway conditions, in increasing order of computational

cost.
Given a minimum similarity of 50%:
Length of 1 + Length of 2 = 24/24 = 1
As the lengths differ by less than 50%, so the pair passes to the next condition.
The difference of the two histograms:
Histogram 1:[4,0, 2, 5,2, 1, 1, 3, 5, 1]
Histogram 2: [3, 3,0, 2, 4, 3, 3, 1, 4, 1]
Difference = [1, -3, 2, 3,-2,-2,-2, 2, 1, 0]
Flipping the result to absolute values yields:
Absolute value of Difference =[1, 3, 2, 3, 2,2, 2,2, 1, 0]
The sum of buckets yields:
Sum|1,3,2,3,2,2,2,2,1,01=18
Accordingly, the ratio of the sum to the length of the hash:

18/24 = 0.75 - which, being greater than the 50% cutoff, excludes the pair from being

identified as similar.

10

15

20

CA 02931904 2016-06-21

Comparing a second pair of hashes (1 and 2 in the example provided herein) follows the same

sequence of gateway conditions:
Given a minimum similarity of 50%:
Length of 1 + Length of 2 = 22/24 = 0.916
The lengths differ by less than 50%, so the pair passes to the next condition.
The difference of the two histograms:
Histogram 1:[4,0, 2,5, 2, 1,1, 3, 5, 1]
Histogram 3:[3,0,2,5,2, 1,2, 2, 4, 1]
Difference =[1,0,0,0,0, 0, -1, 1, 1, 0]
Flipping the result to absolute values yields:
Absolute value of Difference =[1,0,0,0,0,0, 1,1, 1,0]
The sum of buckets yields:
Sum[1,0,0,0,0,0,1,1,1,0]=4
Accordingly, the ratio of the sum to the length of the hash:
4/24 = 0.17

Which, being less than the 50% cutoff, promotes the pair to the next condition — calculating

actual Levenshtein distance, as would be understood by the skilled person:
Lev(“973457782304388026088303", “9734576823043880268303") = 3
3/24 = 0.13 - which, being less than 50%, flags this pair as similar.

Turning to Figure 1, at least one embodiment of a computer terminal 10 that can be used in
connection with the present invention is illustrated. It will be readily appreciated that computer

terminal 10 can take the form of a desktop computer, laptop computer, a mobile device and

10

10

15

20

25

30

CA 02931904 2016-06-21

remote server, among any other suitable types of computer terminal that will be readily
understood by the skilled person.

In this embodiment, computer terminal 10 includes a processor 12 (such as, but not limited to, a
central procession unit, among other arrangements that will be readily appreciated by the skilled
person) in electronic communication with temporary storage 14 (such as, but not limited to,
static or dynamic random access memory, among other arrangements that will be readily
appreciated by the skilled person), database storage 16, a communications module 18 and any
suitable input/output peripheral 20. Communication module 18 can include, but is not limited to,
a radio frequency module or an optical communication module as will be readily appreciated by
the skilled person. Moreover, it is further contemplated that communications module 18 may
include transmitting and receiving functions and may be in wired or wireless communication with

optional remote database storage 22.

Turning to Figure 2, an embodiment demonstrating two computer terminals, pursuant to Figure
1, in communication with one another is illustrated. In this embodiment, first computer terminal
24 is in wireless, remote communication with second computer terminal 26 through a
communication network 28, however other arrangements are also contemplated as will be
readily understood by the skilled person. In this embodiment, it is contemplated that first
computer terminal 24 and/or second computer terminal 26 can be a desktop computer, laptop
computer, a mobile device and remote server, among any other suitable types of computer
terminal that will be readily understood by the skilled person. In the present context, it is
contemplated that the first and second computer terminals 24, 26 can function as distributed

system node(s) as will be readily understood by the skilled person.

Turning to Figure 3, at least one embodiment of a system and method in accordance with the
present invention is illustrated. In this embodiment, at least a first and second document is
retrieved from a database. It will be readily understood that these documents are electronic
documents having associated electronic data and can be any type of suitable electronic
document as will be understood by the skilled person, without limitation, and that the database
can be any suitable type of electronic database for storing or generating suitable electronic
documents or data in a structured manner for use in connection with the present invention
including but not limited to a remote cloud server database, a local hard drive or temporary
RAM, among any other suitable type of electronic databases as will be readily appreciated by

the skilled person.

11

10

15

20

25

30

CA 02931904 2016-06-21

Moreover, for the purposes of the present invention it is contemplated that electronic documents
and associated electronic data can be received (extracted or pushed) by the computer terminal
performing the present invention from a live stream of data that is obtained from a remote cloud
server database such as, but limited to, a social network, among other analogous arrangements
that will be readily appreciated by the skilled person. In other embodiments, it is contemplated
that electronic documents and associated electronic data can be received (extracted or pushed)
by the computer terminal performing the present invention, such as for example, an email sent
from an email server (or analogous electronic message) containing an electronic document for

consideration.

Next, at least one input data stream is received by a suitable computer terminal. In some
embodiments it is contemplated that the computer terminal is at least one distributed system

node, as discussed previously.

In at least one embodiment, the at least one input data stream is extracted from each document
30 and received by the computer terminal performing the present invention. It is contemplated
that extraction can be achieved using any suitable set of known file format text extraction utilities
as will be readily understood by the skilled person. In other embodiments, it is contemplated that
the least one input data stream is pushed to the computer terminal performing the present

invention in a manner that will be readily appreciated by the skilled person.

In this embodiment, it is contemplated that the at least one input stream is comprised of a
plurality of characters, which are subsequently normalized to generate in a normalized stream
32. Specifically, it is contemplated that normalization involves the process of removing
characters from the at least one input stream to remove any characters that are predetermined
as not semantically meaningful.

A plural character rolling window is subsequently applied to a selected subset of this normalized
stream 34. In this embodiment, it is contemplated that an n-character rolling window is applied
to the selected subset of the normalized stream. It is contemplated that this stream subset also
is comprised of a plurality of characters and has a first stream subset value and a last stream

subset value.

Next, a suitable uniform hash function is applied to the stream subset value 36 to create a
digest (i.e. hash output) obtained from the normalized stream subset retrieved from each of the

documents under comparison. Next, the modulus of these digests are obtained 37 which in

12

10

15

20

25

30

CA 02931904 2016-06-21

some embodiments can occur using a scaling factor selected based on the size of the
normalized stream under consideration, among other arrangements that will be readily

understood by the skilled person.

Next, a comparative function 38 is automatically employed wherein if the modulus of the hashed
stream subsets under comparison is determined to be equal to zero, a cut is identified and a
suitable second uniform hash function is applied to at least one set of remainder values of the
normalized stream 40.

It is contemplated that in some embodiments the at least one set of remainder values can
include the characters of the initially obtained normalized stream 32 that extend from the initial
value of the normalized stream to the initial at least one stream subset value obtained at step
34. In other embodiments, the remainder values under consideration are those values present
between the last character of the previous cut identified and the first value of the presently
identified cut. In other words, the remainder values are those values that exist between

identified cuts, as will be readily understood by the skilled person.

Next, at least one shingle is generated 42 from the output of the second uniform hash function
applied at step 32 to represent these remainder values that precede the identified cut.
Subsequently, the plural character rolling window is reset with a plurality of zeros 44, and the at
least one shingle is appended to at least one semantic hash 46, which is finally stored in a

suitable database for future retrieval as required by the present method.

In this way a number of shingles can be appended together in a semantic hash that is stored in
a database and representing the data values in a document that exist between “cuts” or
otherwise similar data points within the documents. Therefore, and as discussed above, the
skilled person will appreciate that similar documents will produce semantic hashes with low
Levenshtein distances, which can be in turn used to identify similar documents in an efficient,

many to many comparison, as required by the practitioner of the present invention.

The present disclosure provides for reference to specific examples. It will be understood that the
examples are intended to describe embodiments of the invention and are not intended to limit
the invention in any way. Moreover, it is obvious that the foregoing embodiments of the
invention are examples and can be varied in many ways. Such present or future variations are

not to be regarded as a departure from the spirit and scope of the invention, and all such

13

CA 02931904 2016-06-21

modifications as wouid be obvious to one skilled in the art are intended to be included within the

scope of the following claims.

14

10

15

20

25

30

35

THE EMBODIMENTS OF THE INVENTION FOR WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A method for improved semantic meshing, comprising the steps of:

automatically extracting and receiving, with a computer terminal, at least one first input data
stream consisting of a plurality of characters and corresponding to at least a first electronic
document automatically retrieved from a database by the computer terminal and at least one
second input data stream consisting of a plurality of characters and corresponding to at least a
second electronic document automatically retrieved from the database by the computer
terminal, the database in electronic communication with the computer terminal over an

electronic communication network;

automatically generating, with the computer terminal, at least one first normalized stream having
an initial value based on the at least one first input data stream and at least one second

normalized stream having an initial value based on the at least one second input data stream;

automatically applying, with the computer terminal, a predetermined plural character rolling
window to a subset of the at least one first normalized stream and the at least one second
normalized stream to select at least one stream subset from each of the at least one first
normalized stream and the at least one second normalized stream, each at least one stream

subset having a plurality of characters and an initial at least one stream subset value and a last
at least one stream subset value,

automatically applying, with the computer terminal, a first uniform hash function to each at least
one stream subset to create at least one first digest and at least one second digest; and

automatically determining, with the computer terminal, a modulus of the at least one first digest
and the at least one second digest using a scaling factor, the scaling factor selected based on a
size of at least one of the at least one first normalized stream and the at least one second

normalized stream;

automatically identifying, with the computer terminal, a cut when the modulus is determined to

be equal to zero; and

15

CA 2931904 2020-11-17

10

15

20

25

30

35

2.

automatically applying, with the computer terminal, a second uniform hash function to at
least one set of remainder values of the at least one first normalized stream and the at
least one second normalized stream, the at least one set of remainder values including
the characters of at least one of the at least one first normalized stream and the at least
one second normalized stream extending from the initial value of the at least one first
normalized stream or the at least one second normalized stream to the respective initial
of the at least one stream subset value;

automatically generating, with the computer terminal, at least one shingle from the
output of the second uniform hash function;

automatically resetting, with the computer terminal, the plural character rolling window
with a plurality of zeros;

automatically appending, with the computer terminal, the at least one shingle into at
least one semantic hash; and

automatically storing the at least one semantic hash in the database.

The method of claim 1, wherein the at least one semantic hash is a first semantic hash

corresponding to the first document and a second semantic hash corresponding to the second

document, and further comprising the steps of:

automatically determining, with the computer terminal, the Levenshtein distance
between the first semantic hash and the second semantic hash; and

automatically assigning, with the computer terminal, a similarity score to the first
semantic hash and the second semantic hash based on the Levenshtein distance.

The method of claim 2 further comprising the step of:

if the Levenshtein distance is above a predetermined threshold, automatically identifying,

with the computer terminal, the first semantic hash and the second semantic has as dissimilar.

4.

The method of either one of claim 2 or claim 3, wherein the first semantic hash and the

second semantic hash are automatically compared, with the computer terminal, using a

predetermined cutoff algorithm.

16

CA 2931904 2020-11-17

10

15

20

25

30

35

5.

The method of claim 4, wherein the predetermined cutoff algorithm includes a ratio

comparison of the length of the first semantic hash and the length of the second semantic hash,

and further comprising the step of:

6.

if the ratio comparison exceeds a first predetermined threshold for minimum similarity,
automatically identifying, with the computer terminal, the first semantic hash and the
second semantic hash as dissimilar.

The methods of either one of claim 4 or claim 5, wherein the predetermined cutoff

algorithm further includes an incidence histogram comprising the steps of:

automatically generating, with the computer terminal, a first histogram of the
occurrences of one of the at least one shingle in the first semantic hash;

automatically generating, with the computer terminal, a second histogram of the
occurrences of one of the at least one shingle in the second semantic hash; and

automatically generating, with the computer terminal, a resultant histogram by
subtracting one of the first histogram and the second histogram from the other of the first
histogram and the second histogram.

The method of claim 6, further comprising the step of

if the resultant histogram contains results above a predetermined threshold,

automatically identifying, with the computer terminal, the first semantic hash and the second

semantic hash as dissimilar.

8.

The method of either one of claim 6 or claim 7 further comprising the steps of:

automatically comparing, with the computer terminal, the absolute value of the resultant

histogram with the length of the first semantic hash to generate an incidence factor, and

if the incidence factor is equal to or lower than a second predetermined threshold for minimum

similarity, automatically identifying, with the computer terminal, the first semantic hash and the

second semantic has as dissimilar.

17

CA 2931904 2020-11-17

10

15

20

25

30

35

9. The method of claim 8 wherein the Levenshtein distance is automatically compared, with
the computer terminal, to the length of at least one of the first sematic hash and the second
semantic hash and a similarity score is automatically assigned, by the computer terminal, to the
first semantic hash and the second semantic hash based on this comparison.

10. A system for improved semantic meshing, comprising:

a computer terminal comprising a processor, temporary storage, database storage, a
communication module and at least one peripheral, the computer terminal adapted to:

receive at least one first input data stream consisting of a plurality of characters and
corresponding to at least a first document retrieved from a database and at least one second
Input data stream consisting of a plurality of characters and corresponding to at least a second
document retrieved from a database;

generate at least one first normalized stream having an initial value based on the at least one
first input data stream and at least one second normalized stream having an initial value based
on the at least one second input data stream;

apply a plural character rolling window to a subset of the at least one first normalized stream
and the at least one second normalized stream to select at least one stream subset from each
of the at least one first normalized stream and the at least one second normalized stream, each
at least one stream subset having a plurality of characters and an initial at least one stream

subset value and a last at least one stream subset value,

apply a first uniform hash function to each at least one stream subset to create at least one first
digest and at least one second digest; and

determine a modulus of the at least one first digest and the at least one second digest using a
scaling factor, the scaling factor selected based on a size of at least one of the at least one first
normalized stream and the at least one second normalized stream;

identify a cut when the modulus is determined to be equal to zero; and

apply a second uniform hash function to at least one set of remainder values of the at
least one first normalized stream and the at least one second normalized stream, the at
least one set of remainder values including the characters of at least one of the at least

18

CA 2931904 2020-11-17

10

one first normalized stream and the at least one second normalized stream extending
from the initial value of the at least one first normalized stream or the at least one
second normalized stream to the respective initial of the at least one stream subset

value;

generate at least one shingle from the output of the second uniform hash function;
reset the plural character rolling window with a plurality of zeros;

append the at least one shingle into at least one semantic hash; and

store the semantic hash in the database.

19

CA 2931904 2020-11-17

CA 02931904 2016-06-21

10
12 20
CPU 1/0 18
» COMM
[14 A T
RAM i
. 22
Figure 1
24 28 26
Terminall je--»_ <\ J¢¥ 7 » Terminal 2

Figure 2

CA 02931904 2016-06-21

y 4

30 .-

-

Receive Input Stream

-
-

r'e

32

Normalize Input Stream

34

S =
[Fs) () - it

44

ue

1 2 3 4 5 n
36
Hash Stream Subset
v 37
Obtain Modulus of Digest
Reset to 0, val
4
No
40
Rehash Stream Subset
i 42
Generate Shingle
. 46

ISemantic Hashl<

Append to Hash

Figure 3

-

1
|
1 30 .-

34
44
| Obtain Modulus of Digest |
| Reset to 0, value

38
Yes
Modulus of Digest

Rehash Stream Subset
42

Generate Shingle

46

Append to Hash

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - CLAIMS
	Page 18 - CLAIMS
	Page 19 - CLAIMS
	Page 20 - CLAIMS
	Page 21 - CLAIMS
	Page 22 - DRAWINGS
	Page 23 - DRAWINGS
	Page 24 - REPRESENTATIVE_DRAWING

