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METHOD AND APPARATUS FOR VIDEO
CODING

INCORPORATION BY REFERENCE

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/236,209, filed on Dec. 28, 2018,
which claims priority to U.S. Provisional Application No.
62/697,999, “METHODS OF AFFINE MODEL PREDIC-
TION IN VIDEO CODING,” filed on Jul. 13, 2018. The
benefit of priority is claimed to each of the foregoing, and
the entire contents of each of the foregoing are incorporated
herein by reference.

TECHNICAL FIELD

[0002] The present disclosure describes embodiments
generally related to video coding.

BACKGROUND

[0003] The background description provided herein is for
the purpose of generally presenting the context of the
disclosure. Work of the presently named inventors, to the
extent the work is described in this background section, as
well as aspects of the description that may not otherwise
qualify as prior art at the time of filing, are neither expressly
nor impliedly admitted as prior art against the present
disclosure.

[0004] Video coding and decoding can be performed using
inter-picture prediction with motion compensation. Uncom-
pressed digital video can include a series of pictures, each
picture having a spatial dimension of, for example, 1920x
1080 luminance samples and associated chrominance
samples. The series of pictures can have a fixed or variable
picture rate (informally also known as frame rate), of, for
example 60 pictures per second or 60 Hz. Uncompressed
video has significant bitrate requirements. For example,
1080p60 4:2:0 video at 8 bit per sample (1920x1080 lumi-
nance sample resolution at 60 Hz frame rate) requires close
to 1.5 Gbit/s bandwidth. An hour of such video requires
more than 600 GBytes of storage space.

[0005] One purpose of video coding and decoding can be
the reduction of redundancy in the input video signal,
through compression. Compression can help reduce the
aforementioned bandwidth or storage space requirements, in
some cases by two orders of magnitude or more. Both
lossless and lossy compression, as well as a combination
thereof can be employed. Lossless compression refers to
techniques where an exact copy of the original signal can be
reconstructed from the compressed original signal. When
using lossy compression, the reconstructed signal may not
be identical to the original signal, but the distortion between
original and reconstructed signals is small enough to make
the reconstructed signal useful for the intended application.
In the case of video, lossy compression is widely employed.
The amount of distortion tolerated depends on the applica-
tion; for example, users of certain consumer streaming
applications may tolerate higher distortion than users of
television distribution applications. The compression ratio
achievable can reflect that: higher allowable/tolerable dis-
tortion can yield higher compression ratios.

[0006] Motion compensation can be a lossy compression
technique and can relate to techniques where a block of
sample data from a previously reconstructed picture or part
thereof (reference picture), after being spatially shifted in a
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direction indicated by a motion vector (MV henceforth), is
used for the prediction of a newly reconstructed picture or
picture part. In some cases, the reference picture can be the
same as the picture currently under reconstruction. MVs can
have two dimensions X and Y, or three dimensions, the third
being an indication of the reference picture in use (the latter,
indirectly, can be a time dimension).

[0007] In some video compression techniques, an MV
applicable to a certain area of sample data can be predicted
from other MVs, for example from those related to another
area of sample data spatially adjacent to the area under
reconstruction, and preceding that MV in decoding order.
Doing so can substantially reduce the amount of data
required for coding the MV, thereby removing redundancy
and increasing compression. MV prediction can work effec-
tively, for example, because when coding an input video
signal derived from a camera (known as natural video) there
is a statistical likelihood that areas larger than the area to
which a single MV is applicable move in a similar direction
and, therefore, can in some cases be predicted using a similar
motion vector derived from MV of neighboring area. That
results in the MV found for a given area to be similar or the
same as the MV predicted from the surrounding MVs, and
that in turn can be represented, after entropy coding, in a
smaller number of bits than what would be used if coding the
MV directly. In some cases, MV prediction can be an
example of lossless compression of a signal (namely: the
MVs) derived from the original signal (namely: the sample
stream). In other cases, MV prediction itself can be lossy, for
example because of rounding errors when calculating a
predictor from several surrounding MVs.

[0008] Various MV prediction mechanisms are described
in H.265/HEVC (ITU-T Rec. H.265, “High Efficiency Video
Coding”, December 2016). Out of the many MV prediction
mechanisms that H.265 offers, described here is a technique
henceforth referred to as “spatial merge”.

[0009] Referring to FIG. 1, a current block (101) com-
prises samples that have been found by the encoder during
the motion search process to be predictable from a previous
block of the same size that has been spatially shifted. Instead
of coding that MV directly, the MV can be derived from
metadata associated with one or more reference pictures, for
example from the most recent (in decoding order) reference
picture, using the MV associated with either one of five
surrounding samples, denoted AO, Al, and BO, B1, B2 (102
through 106, respectively). In H.265, the MV prediction can
use predictors from the same reference picture that the
neighboring block is using.

SUMMARY

[0010] Aspects of the disclosure provide methods and
apparatuses for video encoding/decoding. In some
examples, an apparatus for video decoding includes receiv-
ing circuitry and processing circuitry. The processing cir-
cuitry decodes prediction information of a current block in
a current picture from a coded video bitstream. The predic-
tion information is indicative of an affine model in a merge
mode. The processing circuitry obtains, from a buffer,
motion information of bottom locations in a neighboring
block that is adjacent of the current block in the current
picture, and determines parameters of the affine model that
is used to transform between the block and a reference block
in a reference picture based on the motion information of the
bottom locations in the neighboring block. Further, the
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processing circuitry reconstructs samples of the current
block based on the affine model.

[0011] According to an aspect of the disclosure, the pro-
cessing circuitry obtains, from a line buffer that buffers
motion vectors of minimum-size blocks at bottom locations
in a coding tree unit (CTU) row above the current block,
motion vectors of specific minimum-size blocks. In an
embodiment, the line buffer is configured not to buffer
motion vectors of non-bottom minimum-size blocks in the
CTU row above the current block. In another embodiment,
the line buffer is configured not to buffer motion information
of control points of affine coded blocks.

[0012] In some embodiments, the processing circuitry
derives motion vectors of control points of the current block
based on the motion vectors of the specific minimum-size
blocks using 4-parameter affine model. In an embodiment,
the processing circuitry detects, based on an affine flag,
whether a minimum-size block neighboring to the control
point is affine coded, the affine flag indicating whether a
plurality of consecutive minimum-size blocks belong to an
affine coded block. Then, the processing circuitry derives the
motion vector of the control point based on the motion
vector of the minimum-size block when the minimum-size
block is affine coded. In an example, the processing circuitry
uses the motion vector of the minimum-size block as the
motion vector of the control point when the minimum-size
block neighboring to the control point is affine coded.
[0013] In some embodiments, the processing circuitry
determines a pair of minimum-size blocks that are affine
coded, and determines parameters of a four-parameter affine
model based on motion vectors of the pair of minimum-size
blocks. In an example, the processing circuitry determines a
pair of consecutive minimum-size blocks that are affine
coded, and determines the parameters of the four-parameter
affine model based on motion vectors of the pair of con-
secutive minimum-size blocks.

[0014] In an embodiment, the processing circuitry deter-
mines a pair of minimum-size blocks that are affine coded,
and determines motion vectors of control points at two top
corners of the current block based on motion vectors of the
pair of minimum-size blocks.

[0015] In another embodiment, the processing circuitry
disables an affine merge mode when none of left neighboring
blocks of the current block is available as an affine coded
block.

[0016] Aspects of the disclosure also provide a non-
transitory computer-readable medium storing instructions
which when executed by a computer for video decoding
cause the computer to perform the method for video decod-
ing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Further features, the nature, and various advan-
tages of the disclosed subject matter will be more apparent
from the following detailed description and the accompa-
nying drawings in which:

[0018] FIG. 1 is a schematic illustration of a current block
and its surrounding spatial merge candidates in one example.
[0019] FIG. 2 is a schematic illustration of a simplified
block diagram of a communication system (200) in accor-
dance with an embodiment.

[0020] FIG. 3 is a schematic illustration of a simplified
block diagram of a communication system (300) in accor-
dance with an embodiment.
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[0021] FIG. 4 is a schematic illustration of a simplified
block diagram of a decoder in accordance with an embodi-
ment.

[0022] FIG. 5 is a schematic illustration of a simplified
block diagram of an encoder in accordance with an embodi-
ment.

[0023] FIG. 6 shows a block diagram of an encoder in
accordance with another embodiment.

[0024] FIG. 7 shows a block diagram of a decoder in
accordance with another embodiment.

[0025] FIG. 8 shows an example of spatial and temporal
candidates in some examples.

[0026] FIG. 9 shows an example of a block (900) with an
affine model.
[0027] FIG. 10 shows examples of affine transformation in

some examples.

[0028] FIG. 11 shows a diagram of a current block and two
control points CPO and CP1 of the current block according
to some embodiment of the disclosure.

[0029] FIG. 12 shows a diagram of motion vector predic-
tion in an affine mode according to an embodiment of the
disclosure.

[0030] FIG. 13 shows another diagram of motion vector
prediction in an affine mode according to an embodiment of
the disclosure.

[0031] FIGS. 14A and 14B shows candidate positions for
the complex merge mode.

[0032] FIG. 15 shows a diagram for deriving control point
motion information from regular motion information
according to an embodiment of the disclosure.

[0033] FIG. 16 shows a diagram for illustrating a model
based affine merge candidate derivation with reduced line
buffer according to an embodiment of the disclosure.
[0034] FIG. 17 shows a flow chart outlining a process
according to an embodiment of the disclosure.

[0035] FIG. 18 is a schematic illustration of a computer
system in accordance with an embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

[0036] FIG. 2 illustrates a simplified block diagram of a
communication system (200) according to an embodiment
of the present disclosure. The communication system (200)
includes a plurality of terminal devices that can communi-
cate with each other, via, for example, a network (250). For
example, the communication system (200) includes a first
pair of terminal devices (210) and (220) interconnected via
the network (250). In the FIG. 2 example, the first pair of
terminal devices (210) and (220) performs unidirectional
transmission of data. For example, the terminal device (210)
may code video data (e.g., a stream of video pictures that are
captured by the terminal device (210)) for transmission to
the other terminal device (220) via the network (250). The
encoded video data can be transmitted in the form of one or
more coded video bitstreams. The terminal device (220) may
receive the coded video data from the network (250), decode
the coded video data to recover the video pictures and
display video pictures according to the recovered video data.
Unidirectional data transmission may be common in media
serving applications and the like.

[0037] In another example, the communication system
(200) includes a second pair of terminal devices (230) and
(240) that performs bidirectional transmission of coded
video data that may occur, for example, during videocon-
ferencing. For bidirectional transmission of data, in an
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example, each terminal device of the terminal devices (230)
and (240) may code video data (e.g., a stream of video
pictures that are captured by the terminal device) for trans-
mission to the other terminal device of the terminal devices
(230) and (240) via the network (250). Each terminal device
of the terminal devices (230) and (240) also may receive the
coded video data transmitted by the other terminal device of
the terminal devices (230) and (240), and may decode the
coded video data to recover the video pictures and may
display video pictures at an accessible display device
according to the recovered video data.

[0038] In the FIG. 2 example, the terminal devices (210),
(220), (230) and (240) may be illustrated as servers, personal
computers and smart phones but the principles of the present
disclosure may be not so limited. Embodiments of the
present disclosure find application with laptop computers,
tablet computers, media players and/or dedicated video
conferencing equipment. The network (250) represents any
number of networks that convey coded video data among the
terminal devices (210), (220), (230) and (240), including for
example wireline (wired) and/or wireless communication
networks. The communication network (250) may exchange
data in circuit-switched and/or packet-switched channels.
Representative networks include telecommunications net-
works, local area networks, wide area networks and/or the
Internet. For the purposes of the present discussion, the
architecture and topology of the network (250) may be
immaterial to the operation of the present disclosure unless
explained herein below.

[0039] FIG. 3 illustrates, as an example for an application
for the disclosed subject matter, the placement of a video
encoder and a video decoder in a streaming environment.
The disclosed subject matter can be equally applicable to
other video enabled applications, including, for example,
video conferencing, digital TV, storing of compressed video
on digital media including CD, DVD, memory stick and the
like, and so on.

[0040] A streaming system may include a capture subsys-
tem (313), that can include a video source (301), for example
a digital camera, creating for example a stream of video
pictures (302) that are uncompressed. In an example, the
stream of video pictures (302) includes samples that are
taken by the digital camera. The stream of video pictures
(302), depicted as a bold line to emphasize a high data
volume when compared to encoded video data (304) (or
coded video bitstreams), can be processed by an electronic
device (320) that includes a video encoder (303) coupled to
the video source (301). The video encoder (303) can include
hardware, software, or a combination thereof to enable or
implement aspects of the disclosed subject matter as
described in more detail below. The encoded video data
(304) (or encoded video bitstream (304)), depicted as a thin
line to emphasize the lower data volume when compared to
the stream of video pictures (302), can be stored on a
streaming server (305) for future use. One or more streaming
client subsystems, such as client subsystems (306) and (308)
in FIG. 3 can access the streaming server (305) to retrieve
copies (307) and (309) of the encoded video data (304). A
client subsystem (306) can include a video decoder (310),
for example, in an electronic device (330). The video
decoder (310) decodes the incoming copy (307) of the
encoded video data and creates an outgoing stream of video
pictures (311) that can be rendered on a display (312) (e.g.,
display screen) or other rendering device (not depicted). In
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some streaming systems, the encoded video data (304),
(307), and (309) (e.g., video bitstreams) can be encoded
according to certain video coding/compression standards.
Examples of those standards include ITU-T Recommenda-
tion H.265. In an example, a video coding standard under
development is informally known as Versatile Video Coding
(VVQ). The disclosed subject matter may be used in the
context of VVC.

[0041] It is noted that the electronic devices (320) and
(330) can include other components (not shown). For
example, the electronic device (320) can include a video
decoder (not shown) and the electronic device (330) can
include a video encoder (not shown) as well.

[0042] FIG. 4 shows a block diagram of a video decoder
(410) according to an embodiment of the present disclosure.
The video decoder (410) can be included in an electronic
device (430). The electronic device (430) can include a
receiver (431) (e.g., receiving circuitry). The video decoder
(410) can be used in the place of the video decoder (310) in
the FIG. 3 example.

[0043] The receiver (431) may receive one or more coded
video sequences to be decoded by the video decoder (410);
in the same or another embodiment, one coded video
sequence at a time, where the decoding of each coded video
sequence is independent from other coded video sequences.
The coded video sequence may be received from a channel
(401), which may be a hardware/software link to a storage
device which stores the encoded video data. The receiver
(431) may receive the encoded video data with other data,
for example, coded audio data and/or ancillary data streams,
that may be forwarded to their respective using entities (not
depicted). The receiver (431) may separate the coded video
sequence from the other data. To combat network jitter, a
buffer memory (415) may be coupled in between the
receiver (431) and an entropy decoder/parser (420) (“parser
(420)” henceforth). In certain applications, the buffer
memory (415) is part of the video decoder (410). In others,
it can be outside of the video decoder (410) (not depicted).
In still others, there can be a buffer memory (not depicted)
outside of the video decoder (410), for example to combat
network jitter, and in addition another buffer memory (415)
inside the video decoder (410), for example to handle
playout timing. When the receiver (431) is receiving data
from a store/forward device of sufficient bandwidth and
controllability, or from an isosynchronous network, the
buffer memory (415) may not be needed, or can be small.
For use on best effort packet networks such as the Internet,
the buffer memory (415) may be required, can be compara-
tively large and can be advantageously of adaptive size, and
may at least partially be implemented in an operating system
or similar elements (not depicted) outside of the video
decoder (410).

[0044] The video decoder (410) may include the parser
(420) to reconstruct symbols (421) from the coded video
sequence. Categories of those symbols include information
used to manage operation of the video decoder (410), and
potentially information to control a rendering device such as
a render device (412) (e.g., a display screen) that is not an
integral part of the electronic device (430) but can be
coupled to the electronic device (430), as was shown in FIG.
4. The control information for the rendering device(s) may
be in the form of Supplemental Enhancement Information
(SEI messages) or Video Usability Information (VUI)
parameter set fragments (not depicted). The parser (420)



US 2020/0021848 Al

may parse/entropy-decode the coded video sequence that is
received. The coding of the coded video sequence can be in
accordance with a video coding technology or standard, and
can follow various principles, including variable length
coding, Huffman coding, arithmetic coding with or without
context sensitivity, and so forth. The parser (420) may
extract from the coded video sequence, a set of subgroup
parameters for at least one of the subgroups of pixels in the
video decoder, based upon at least one parameter corre-
sponding to the group. Subgroups can include Groups of
Pictures (GOPs), pictures, tiles, slices, macroblocks, Coding
Units (CUs), blocks, Transform Units (TUs), Prediction
Units (PUs) and so forth. The parser (420) may also extract
from the coded video sequence information such as trans-
form coefficients, quantizer parameter values, motion vec-
tors, and so forth.

[0045] The parser (420) may perform an entropy decod-
ing/parsing operation on the video sequence received from
the buffer memory (415), so as to create symbols (421).
[0046] Reconstruction of the symbols (421) can involve
multiple different units depending on the type of the coded
video picture or parts thereof (such as: inter and intra
picture, inter and intra block), and other factors. Which units
are involved, and how, can be controlled by the subgroup
control information that was parsed from the coded video
sequence by the parser (420). The flow of such subgroup
control information between the parser (420) and the mul-
tiple units below is not depicted for clarity.

[0047] Beyond the functional blocks already mentioned,
the video decoder (410) can be conceptually subdivided into
a number of functional units as described below. In a
practical implementation operating under commercial con-
straints, many of these units interact closely with each other
and can, at least partly, be integrated into each other.
However, for the purpose of describing the disclosed subject
matter, the conceptual subdivision into the functional units
below is appropriate.

[0048] A first unit is the scaler/inverse transform unit
(451). The scaler/inverse transform unit (451) receives a
quantized transform coeflicient as well as control informa-
tion, including which transform to use, block size, quanti-
zation factor, quantization scaling matrices, etc. as symbol
(s) (421) from the parser (420). The scaler/inverse transform
unit (451) can output blocks comprising sample values, that
can be input into aggregator (455).

[0049] In some cases, the output samples of the scaler/
inverse transform (451) can pertain to an intra coded block;
that is: a block that is not using predictive information from
previously reconstructed pictures, but can use predictive
information from previously reconstructed parts of the cur-
rent picture. Such predictive information can be provided by
an intra picture prediction unit (452). In some cases, the intra
picture prediction unit (452) generates a block of the same
size and shape of the block under reconstruction, using
surrounding already reconstructed information fetched from
the current picture buffer (458). The current picture buffer
(458) buffers, for example, partly reconstructed current
picture and/or fully reconstructed current picture. The aggre-
gator (455), in some cases, adds, on a per sample basis, the
prediction information the intra prediction unit (452) has
generated to the output sample information as provided by
the scaler/inverse transform unit (451).

[0050] In other cases, the output samples of the scaler/
inverse transform unit (451) can pertain to an inter coded,
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and potentially motion compensated block. In such a case, a
motion compensation prediction unit (453) can access ref-
erence picture memory (457) to fetch samples used for
prediction. After motion compensating the fetched samples
in accordance with the symbols (421) pertaining to the
block, these samples can be added by the aggregator (455)
to the output of the scaler/inverse transform unit (451) (in
this case called the residual samples or residual signal) so as
to generate output sample information. The addresses within
the reference picture memory (457) from where the motion
compensation prediction unit (453) fetches prediction
samples can be controlled by motion vectors, available to the
motion compensation prediction unit (453) in the form of
symbols (421) that can have, for example X, Y, and refer-
ence picture components. Motion compensation also can
include interpolation of sample values as fetched from the
reference picture memory (457) when sub-sample exact
motion vectors are in use, motion vector prediction mecha-
nisms, and so forth.

[0051] The output samples of the aggregator (455) can be
subject to various loop filtering techniques in the loop filter
unit (456). Video compression technologies can include
in-loop filter technologies that are controlled by parameters
included in the coded video sequence (also referred to as
coded video bitstream) and made available to the loop filter
unit (456) as symbols (421) from the parser (420), but can
also be responsive to meta-information obtained during the
decoding of previous (in decoding order) parts of the coded
picture or coded video sequence, as well as responsive to
previously reconstructed and loop-filtered sample values.

[0052] The output of the loop filter unit (456) can be a
sample stream that can be output to the render device (412)
as well as stored in the reference picture memory (457) for
use in future inter-picture prediction.

[0053] Certain coded pictures, once fully reconstructed,
can be used as reference pictures for future prediction. For
example, once a coded picture corresponding to a current
picture is fully reconstructed and the coded picture has been
identified as a reference picture (by, for example, the parser
(420)), the current picture buffer (458) can become a part of
the reference picture memory (457), and a fresh current
picture buffer can be reallocated before commencing the
reconstruction of the following coded picture.

[0054] The video decoder (410) may perform decoding
operations according to a predetermined video compression
technology in a standard, such as ITU-T Rec. H.265. The
coded video sequence may conform to a syntax specified by
the video compression technology or standard being used, in
the sense that the coded video sequence adheres to both the
syntax of the video compression technology or standard and
the profiles as documented in the video compression tech-
nology or standard. Specifically, a profile can select certain
tools as the only tools available for use under that profile
from all the tools available in the video compression tech-
nology or standard. Also necessary for compliance can be
that the complexity of the coded video sequence is within
bounds as defined by the level of the video compression
technology or standard. In some cases, levels restrict the
maximum picture size, maximum frame rate, maximum
reconstruction sample rate (measured in, for example mega-
samples per second), maximum reference picture size, and
so on. Limits set by levels can, in some cases, be further
restricted through Hypothetical Reference Decoder (HRD)
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specifications and metadata for HRD buffer management
signaled in the coded video sequence.

[0055] In an embodiment, the receiver (431) may receive
additional (redundant) data with the encoded video. The
additional data may be included as part of the coded video
sequence(s). The additional data may be used by the video
decoder (410) to properly decode the data and/or to more
accurately reconstruct the original video data. Additional
data can be in the form of, for example, temporal, spatial, or
signal noise ratio (SNR) enhancement layers, redundant
slices, redundant pictures, forward error correction codes,
and so on.

[0056] FIG. 5 shows a block diagram of a video encoder
(503) according to an embodiment of the present disclosure.
The video encoder (503) is included in an electronic device
(520). The electronic device (520) includes a transmitter
(540) (e.g., transmitting circuitry). The video encoder (503)
can be used in the place of the video encoder (303) in the
FIG. 3 example.

[0057] The video encoder (503) may receive video
samples from a video source (501) (that is not part of the
electronic device (520) in the FIG. 5 example) that may
capture video image(s) to be coded by the video encoder
(503). In another example, the video source (501) is a part
of the electronic device (520).

[0058] The video source (501) may provide the source
video sequence to be coded by the video encoder (503) in the
form of a digital video sample stream that can be of any
suitable bit depth (for example: 8 bit, 10 bit, 12 bit, . . . ), any
colorspace (for example, BT.601 Y CrCB, RGB, . .. ), and
any suitable sampling structure (for example Y CrCb 4:2:0,
Y CrCb 4:4:4). In a media serving system, the video source
(501) may be a storage device storing previously prepared
video. In a videoconferencing system, the video source
(501) may be a camera that captures local image information
as a video sequence. Video data may be provided as a
plurality of individual pictures that impart motion when
viewed in sequence. The pictures themselves may be orga-
nized as a spatial array of pixels, wherein each pixel can
comprise one or more samples depending on the sampling
structure, color space, etc. in use. A person skilled in the art
can readily understand the relationship between pixels and
samples. The description below focuses on samples.
[0059] According to an embodiment, the video encoder
(503) may code and compress the pictures of the source
video sequence into a coded video sequence (543) in real
time or under any other time constraints as required by the
application. Enforcing appropriate coding speed is one func-
tion of a controller (550). In some embodiments, the con-
troller (550) controls other functional units as described
below and is functionally coupled to the other functional
units. The coupling is not depicted for clarity. Parameters set
by the controller (550) can include rate control related
parameters (picture skip, quantizer, lambda value of rate-
distortion optimization techniques, . . . ), picture size, group
of pictures (GOP) layout, maximum motion vector search
range, and so forth. The controller (550) can be configured
to have other suitable functions that pertain to the video
encoder (503) optimized for a certain system design.
[0060] In some embodiments, the video encoder (503) is
configured to operate in a coding loop. As an oversimplified
description, in an example, the coding loop can include a
source coder (530) (e.g., responsible for creating symbols,
such as a symbol stream, based on an input picture to be
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coded, and a reference picture(s)), and a (local) decoder
(533) embedded in the video encoder (503). The decoder
(533) reconstructs the symbols to create the sample data in
a similar manner as a (remote) decoder also would create (as
any compression between symbols and coded video bit-
stream is lossless in the video compression technologies
considered in the disclosed subject matter). The recon-
structed sample stream (sample data) is input to the refer-
ence picture memory (534). As the decoding of a symbol
stream leads to bit-exact results independent of decoder
location (local or remote), the content in the reference
picture memory (534) is also bit exact between the local
encoder and remote encoder. In other words, the prediction
part of an encoder “sees” as reference picture samples
exactly the same sample values as a decoder would “see”
when using prediction during decoding. This fundamental
principle of reference picture synchronicity (and resulting
drift, if synchronicity cannot be maintained, for example
because of channel errors) is used in some related arts as
well.

[0061] The operation of the “local” decoder (533) can be
the same as of a “remote” decoder, such as the video decoder
(410), which has already been described in detail above in
conjunction with FIG. 4. Briefly referring also to FIG. 4,
however, as symbols are available and encoding/decoding of
symbols to a coded video sequence by an entropy coder
(545) and the parser (420) can be lossless, the entropy
decoding parts of the video decoder (410), including the
buffer memory (415), and parser (420) may not be fully
implemented in the local decoder (533).

[0062] An observation that can be made at this point is that
any decoder technology except the parsing/entropy decod-
ing that is present in a decoder also necessarily needs to be
present, in substantially identical functional form, in a
corresponding encoder. For this reason, the disclosed subject
matter focuses on decoder operation. The description of
encoder technologies can be abbreviated as they are the
inverse of the comprehensively described decoder technolo-
gies. Only in certain areas a more detail description is
required and provided below.

[0063] During operation, in some examples, the source
coder (530) may perform motion compensated predictive
coding, which codes an input picture predictively with
reference to one or more previously-coded picture from the
video sequence that were designated as “reference pictures”.
In this manner, the coding engine (532) codes differences
between pixel blocks of an input picture and pixel blocks of
reference picture(s) that may be selected as prediction
reference(s) to the input picture.

[0064] The local video decoder (533) may decode coded
video data of pictures that may be designated as reference
pictures, based on symbols created by the source coder
(530). Operations of the coding engine (532) may advanta-
geously be lossy processes. When the coded video data may
be decoded at a video decoder (not shown in FIG. 5), the
reconstructed video sequence typically may be a replica of
the source video sequence with some errors. The local video
decoder (533) replicates decoding processes that may be
performed by the video decoder on reference pictures and
may cause reconstructed reference pictures to be stored in
the reference picture cache (534). In this manner, the video
encoder (503) may store copies of reconstructed reference
pictures locally that have common content as the recon-
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structed reference pictures that will be obtained by a far-end
video decoder (absent transmission errors).

[0065] The predictor (535) may perform prediction
searches for the coding engine (532). That is, for a new
picture to be coded, the predictor (535) may search the
reference picture memory (534) for sample data (as candi-
date reference pixel blocks) or certain metadata such as
reference picture motion vectors, block shapes, and so on,
that may serve as an appropriate prediction reference for the
new pictures. The predictor (535) may operate on a sample
block-by-pixel block basis to find appropriate prediction
references. In some cases, as determined by search results
obtained by the predictor (535), an input picture may have
prediction references drawn from multiple reference pic-
tures stored in the reference picture memory (534).

[0066] The controller (550) may manage coding opera-
tions of the source coder (530), including, for example,
setting of parameters and subgroup parameters used for
encoding the video data.

[0067] Output of all aforementioned functional units may
be subjected to entropy coding in the entropy coder (545).
The entropy coder (545) translates the symbols as generated
by the various functional units into a coded video sequence,
by lossless compressing the symbols according to technolo-
gies such as Huffman coding, variable length coding, arith-
metic coding, and so forth.

[0068] The transmitter (540) may buffer the coded video
sequence(s) as created by the entropy coder (545) to prepare
for transmission via a communication channel (560), which
may be a hardware/software link to a storage device which
would store the encoded video data. The transmitter (540)
may merge coded video data from the video coder (503)
with other data to be transmitted, for example, coded audio
data and/or ancillary data streams (sources not shown).
[0069] The controller (550) may manage operation of the
video encoder (503). During coding, the controller (550)
may assign to each coded picture a certain coded picture
type, which may affect the coding techniques that may be
applied to the respective picture. For example, pictures often
may be assigned as one of the following picture types:
[0070] An Intra Picture (I picture) may be one that may be
coded and decoded without using any other picture in the
sequence as a source of prediction. Some video codecs allow
for different types of intra pictures, including, for example
Independent Decoder Refresh (“IDR”) Pictures. A person
skilled in the art is aware of those variants of I pictures and
their respective applications and features.

[0071] A predictive picture (P picture) may be one that
may be coded and decoded using intra prediction or inter
prediction using at most one motion vector and reference
index to predict the sample values of each block.

[0072] A bi-directionally predictive picture (B Picture)
may be one that may be coded and decoded using intra
prediction or inter prediction using at most two motion
vectors and reference indices to predict the sample values of
each block. Similarly, multiple-predictive pictures can use
more than two reference pictures and associated metadata
for the reconstruction of a single block.

[0073] Source pictures commonly may be subdivided spa-
tially into a plurality of sample blocks (for example, blocks
of 4x4, 8x8, 4x8, or 16x16 samples each) and coded on a
block-by-block basis. Blocks may be coded predictively
with reference to other (already coded) blocks as determined
by the coding assignment applied to the blocks’ respective
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pictures. For example, blocks of I pictures may be coded
non-predictively or they may be coded predictively with
reference to already coded blocks of the same picture
(spatial prediction or intra prediction). Pixel blocks of P
pictures may be coded predictively, via spatial prediction or
via temporal prediction with reference to one previously
coded reference picture. Blocks of B pictures may be coded
predictively, via spatial prediction or via temporal prediction
with reference to one or two previously coded reference
pictures.

[0074] The video encoder (503) may perform coding
operations according to a predetermined video coding tech-
nology or standard, such as ITU-T Rec. H.265. In its
operation, the video encoder (503) may perform various
compression operations, including predictive coding opera-
tions that exploit temporal and spatial redundancies in the
input video sequence. The coded video data, therefore, may
conform to a syntax specified by the video coding technol-
ogy or standard being used.

[0075] Inan embodiment, the transmitter (540) may trans-
mit additional data with the encoded video. The source coder
(530) may include such data as part of the coded video
sequence. Additional data may comprise temporal/spatial/
SNR enhancement layers, other forms of redundant data
such as redundant pictures and slices, SEI messages, VUI
parameter set fragments, and so on.

[0076] A video may be captured as a plurality of source
pictures (video pictures) in a temporal sequence. Intra-
picture prediction (often abbreviated to intra prediction)
makes use of spatial correlation in a given picture, and
inter-picture prediction makes uses of the (temporal or
other) correlation between the pictures. In an example, a
specific picture under encoding/decoding, which is referred
to as a current picture, is partitioned into blocks. When a
block in the current picture is similar to a reference block in
a previously coded and still buffered reference picture in the
video, the block in the current picture can be coded by a
vector that is referred to as a motion vector. The motion
vector points to the reference block in the reference picture,
and can have a third dimension identifying the reference
picture, in case multiple reference pictures are in use.
[0077] In some embodiments, a bi-prediction technique
can be used in the inter-picture prediction. According to the
bi-prediction technique, two reference pictures, such as a
first reference picture and a second reference picture that are
both prior in decoding order to the current picture in the
video (but may be in the past and future, respectively, in
display order) are used. A block in the current picture can be
coded by a first motion vector that points to a first reference
block in the first reference picture, and a second motion
vector that points to a second reference block in the second
reference picture. The block can be predicted by a combi-
nation of the first reference block and the second reference
block.

[0078] Further, a merge mode technique can be used in the
inter-picture prediction to improve coding efficiency.
[0079] According to some embodiments of the disclosure,
predictions, such as inter-picture predictions and intra-pic-
ture predictions are performed in the unit of blocks. For
example, according to the HEVC standard, a picture in a
sequence of video pictures is partitioned into coding tree
units (CTU) for compression, the CTUs in a picture have the
same size, such as 64x64 pixels, 32x32 pixels, or 16x16
pixels. In general, a CTU includes three coding tree blocks



US 2020/0021848 Al

(CTBs), which are one luma CTB and two chroma CTBs.
Each CTU can be recursively quadtree split into one or
multiple coding units (CUs). For example, a CTU of 64x64
pixels can be split into one CU of 64x64 pixels, or 4 CUs of
32x32 pixels, or 16 CUs of 16x16 pixels. In an example,
each CU is analyzed to determine a prediction type for the
CU, such as an inter prediction type or an intra prediction
type. The CU is split into one or more prediction units (PUs)
depending on the temporal and/or spatial predictability.
Generally, each PU includes a luma prediction block (PB),
and two chroma PBs. In an embodiment, a prediction
operation in coding (encoding/decoding) is performed in the
unit of a prediction block. Using a luma prediction block as
an example of a prediction block, the prediction block
includes a matrix of values (e.g., luma values) for pixels,
such as 8x8 pixels, 16x16 pixels, 8x16 pixels, 16x8 pixels,
and the like.

[0080] FIG. 6 shows a diagram of a video encoder (603)
according to another embodiment of the disclosure. The
video encoder (603) is configured to receive a processing
block (e.g., a prediction block) of sample values within a
current video picture in a sequence of video pictures, and
encode the processing block into a coded picture that is part
of'a coded video sequence. In an example, the video encoder
(603) is used in the place of the video encoder (303) in the
FIG. 3 example.

[0081] In an HEVC example, the video encoder (603)
receives a matrix of sample values for a processing block,
such as a prediction block of 8x8 samples, and the like. The
video encoder (603) determines whether the processing
block is best coded using intra mode, inter mode, or bi-
prediction mode using, for example, rate-distortion optimi-
zation. When the processing block is to be coded in intra
mode, the video encoder (603) may use an intra prediction
technique to encode the processing block into the coded
picture; and when the processing block is to be coded in inter
mode or bi-prediction mode, the video encoder (603) may
use an inter prediction or bi-prediction technique, respec-
tively, to encode the processing block into the coded picture.
In certain video coding technologies, merge mode can be an
inter picture prediction submode where the motion vector is
derived from one or more motion vector predictors without
the benefit of a coded motion vector component outside the
predictors. In certain other video coding technologies, a
motion vector component applicable to the subject block
may be present. In an example, the video encoder (603)
includes other components, such as a mode decision module
(not shown) to determine the mode of the processing blocks.

[0082] In the FIG. 6 example, the video encoder (603)
includes the inter encoder (630), an intra encoder (622), a
residue calculator (623), a switch (626), a residue encoder
(624), a general controller (621), and an entropy encoder
(625) coupled together as shown in FIG. 6.

[0083] The inter encoder (630) is configured to receive the
samples of the current block (e.g., a processing block),
compare the block to one or more reference blocks in
reference pictures (e.g., blocks in previous pictures and later
pictures), generate inter prediction information (e.g.,
description of redundant information according to inter
encoding technique, motion vectors, merge mode informa-
tion), and calculate inter prediction results (e.g., predicted
block) based on the inter prediction information using any
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suitable technique. In some examples, the reference pictures
are decoded reference pictures that are decoded based on the
encoded video information.

[0084] The intra encoder (622) is configured to receive the
samples of the current block (e.g., a processing block), in
some cases compare the block to blocks already coded in the
same picture, generate quantized coeficients after trans-
form, and in some cases also intra prediction information
(e.g., an intra prediction direction information according to
one or more intra encoding techniques). In an example, the
intra encoder (622) also calculates intra prediction results
(e.g., predicted block) based on the intra prediction infor-
mation and reference blocks in the same picture.

[0085] The general controller (621) is configured to deter-
mine general control data and control other components of
the video encoder (603) based on the general control data. In
an example, the general controller (621) determines the
mode of the block, and provides a control signal to the
switch (626) based on the mode. For example, when the
mode is the intra mode, the general controller (621) controls
the switch (626) to select the intra mode result for use by the
residue calculator (623), and controls the entropy encoder
(625) to select the intra prediction information and include
the intra prediction information in the bitstream; and when
the mode is the inter mode, the general controller (621)
controls the switch (626) to select the inter prediction result
for use by the residue calculator (623), and controls the
entropy encoder (625) to select the inter prediction infor-
mation and include the inter prediction information in the
bitstream.

[0086] The residue calculator (623) is configured to cal-
culate a difference (residue data) between the received block
and prediction results selected from the intra encoder (622)
or the inter encoder (630). The residue encoder (624) is
configured to operate based on the residue data to encode the
residue data to generate the transform coefficients. In an
example, the residue encoder (624) is configured to convert
the residue data from a spatial domain to a frequency
domain, and generate the transform coefficients. The trans-
form coefficients are then subject to quantization processing
to obtain quantized transform coefficients. In various
embodiments, the video encoder (603) also includes a resi-
due decoder (628). The residue decoder (628) is configured
to perform inverse-transform, and generate the decoded
residue data. The decoded residue data can be suitably used
by the intra encoder (622) and the inter encoder (630). For
example, the inter encoder (630) can generate decoded
blocks based on the decoded residue data and inter predic-
tion information, and the intra encoder (622) can generate
decoded blocks based on the decoded residue data and the
intra prediction information. The decoded blocks are suit-
ably processed to generate decoded pictures and the decoded
pictures can be buffered in a memory circuit (not shown) and
used as reference pictures in some examples.

[0087] The entropy encoder (625) is configured to format
the bitstream to include the encoded block. The entropy
encoder (625) is configured to include various information
according to a suitable standard, such as the HEVC standard.
In an example, the entropy encoder (625) is configured to
include the general control data, the selected prediction
information (e.g., intra prediction information or inter pre-
diction information), the residue information, and other
suitable information in the bitstream. Note that, according to
the disclosed subject matter, when coding a block in the
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merge submode of either inter mode or bi-prediction mode,
there is no residue information.

[0088] FIG. 7 shows a diagram of a video decoder (710)
according to another embodiment of the disclosure. The
video decoder (710) is configured to receive coded pictures
that are part of a coded video sequence, and decode the
coded pictures to generate reconstructed pictures. In an
example, the video decoder (710) is used in the place of the
video decoder (310) in the FIG. 3 example.

[0089] In the FIG. 7 example, the video decoder (710)
includes an entropy decoder (771), an inter decoder (780), a
residue decoder (773), a reconstruction module (774), and
an intra decoder (772) coupled together as shown in FIG. 7.

[0090] The entropy decoder (771) can be configured to
reconstruct, from the coded picture, certain symbols that
represent the syntax elements of which the coded picture is
made up. Such symbols can include, for example, the mode
in which a block is coded (such as, for example, intra mode,
inter mode, bi-predicted mode, the latter two in merge
submode or another submode), prediction information (such
as, for example, intra prediction information or inter pre-
diction information) that can identify certain sample or
metadata that is used for prediction by the intra decoder
(772) or the inter decoder (780), respectively, residual
information in the form of, for example, quantized transform
coeflicients, and the like. In an example, when the prediction
mode is inter or bi-predicted mode, the inter prediction
information is provided to the inter decoder (780); and when
the prediction type is the intra prediction type, the intra
prediction information is provided to the intra decoder
(772). The residual information can be subject to inverse
quantization and is provided to the residue decoder (773).

[0091] The inter decoder (780) is configured to receive the
inter prediction information, and generate inter prediction
results based on the inter prediction information.

[0092] The intra decoder (772) is configured to receive the
intra prediction information, and generate prediction results
based on the intra prediction information.

[0093] The residue decoder (773) is configured to perform
inverse quantization to extract de-quantized transform coef-
ficients, and process the de-quantized transform coefficients
to convert the residual from the frequency domain to the
spatial domain. The residue decoder (773) may also require
certain control information (to include the Quantizer Param-
eter (QP)), and that information may be provided by the
entropy decoder (771) (data path not depicted as this may be
low volume control information only).

[0094] The reconstruction module (774) is configured to
combine, in the spatial domain, the residual as output by the
residue decoder (773) and the prediction results (as output
by the inter or intra prediction modules as the case may be)
to form a reconstructed block, that may be part of the
reconstructed picture, which in turn may be part of the
reconstructed video. It is noted that other suitable opera-
tions, such as a deblocking operation and the like, can be
performed to improve the visual quality.

[0095] It is noted that the video encoders (303), (503), and
(603), and the video decoders (310), (410), and (710) can be
implemented using any suitable technique. In an embodi-
ment, the video encoders (303), (503), and (603), and the
video decoders (310), (410), and (710) can be implemented
using one or more integrated circuits. In another embodi-
ment, the video encoders (303), (503), and (503), and the
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video decoders (310), (410), and (710) can be implemented
using one or more processors that execute software instruc-
tions.

[0096] Aspects of the disclosure provide techniques for
affine model prediction in video coding (encoding/decod-
ing).

[0097] Generally, a motion vector for a block can be coded
either in an explicit way, to signal the difference to a motion
vector predictor (e.g., advanced motion vector prediction or
AMVP mode); or in an implicit way, to be indicated com-
pletely from one previously coded or generated motion
vector. The later one is referred to as merge mode, meaning
the current block is merged into a previously coded block by
using its motion information.

[0098] Both the AMVP mode and the merge mode con-
struct candidate list during decoding.

[0099] FIG. 8 shows an example of spatial and temporal
candidates in some examples.

[0100] For the merge mode in the inter prediction, merge
candidates in a candidate list are primarily formed by
checking motion information from either spatial or temporal
neighboring blocks of the current block. In the FIG. 8
example, candidate blocks Al, B1l, BO, A0 and B2 are
sequentially checked. When any of the candidate blocks are
valid candidates, for example, are coded with motion vec-
tors, then, the motion information of the valid candidate
blocks can be added into the merge candidate list. Some
pruning operation is performed to make sure duplicated
candidates will not be put into the list again. The candidate
blocks Al, B1, B0, A0 and B2 are adjacent to corners of the
current block, and are referred to as corner candidates.

[0101] After spatial candidates, temporal candidates are
also checked into the list. In some examples, the current
block’s co-located block in a specified reference picture is
found. The motion information at CO position (bottom right
corner of the current block) of the co-located block will be
used as temporal merge candidate. If the block at this
position is not coded in inter mode or not available, C1
position (at the outer bottom right corner of the center of the
co-located block) will be used instead. The present disclo-
sure provides techniques to further improve merge mode.

[0102] According to an aspect of the disclosure, affine
motion compensation, for example by describing a 6-pa-
rameter (or a simplified 4-parameter) affine model for a
coding block, can efficiently predict the motion information
for samples within the current block. More specifically, in an
affine coded or described coding block, different part of the
samples can have different motion vectors. The basic unit to
have a motion vector in an affine coded or described block
is referred to as a sub-block. The size of a sub-block can be
as small as 1 sample only; and can be as large as the size of
current block.

[0103] When an affine mode is determined, for each
sample in the current block, its motion vector (relative to the
targeted reference picture) can be derived using such a
model (e.g., 6 parameter affine model or 4 parameter affine
model). In order to reduce implementation complexity,
affine motion compensation is performed on a sub-block
basis, instead of on a sample basis. That means, each
sub-block will derive its motion vector and for samples in
each sub-block, the motion vector is the same. A specific
location of each sub-block is assumed, such as the top-left
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or the center point of the sub-block, to be the representative
location. In one example, such a sub-block size contains 4x4
samples.

[0104] In general, an affine model has 6 parameters to
describe the motion information of a block. After the affine
transformation, a rectangular block will become a parallelo-
gram. In an example, the 6 parameters of an affine coded
block can be represented by 3 motion vectors at three
different locations of the block.

[0105] FIG. 9 shows an example of a block (900) with an

—_ —>
affine model. The block (900) uses motion vectors v, v, and

\7; at three corner locations A, B and C to describe the
motion information of the affine model used for the block
(900). These locations A, B and C are referred to as control
points.

[0106] In a simplified example, an affine model uses 4
parameters to describe the motion information of a block
based on an assumption that after the affine transformation,
the shape of the block does not change. Therefore, a rect-
angular block will remain a rectangular and same aspect
ratio (e.g., height/width) after the transformation. The affine
model of such a block can be represented by two motion
vectors at two different locations, such as at corner locations
A and B.

[0107] FIG. 10 shows examples of affine transformation
for a 6-parameter affine mode (using 6-parameter affine
model) and a 4-parameter affine mode (using 4-parameter
affine model).

[0108] According to an aspect of the disclosure, when
affine motion compensation is used, two signaling tech-
niques can be used. The first signaling technique is used in
the merge mode, and the second signaling technique is used
in residue mode or advanced motion vector prediction
(AMVP) mode.

[0109] In the merge mode, the affine information of cur-
rent block is predicted from previously affine coded blocks.
Various techniques can be used to predict the affine infor-
mation. In a first embodiment, the reference block and the
current block are assumed of a same affine object, so that the
motion vectors (MVs) at the control points of the current
block can be derived from the reference block’s model (e.g.,
corresponding points of the reference block). Further, the
MVs at other locations of the current block are linearly
modified in the same way as from one control point to
another in the reference block. The technique used in the first
embodiment is referred to as a model based affine prediction.
[0110] In a second embodiment, motion vectors of neigh-
boring blocks are used directly as the motion vectors at
current block’s control points. Then motion vectors at the
rest of the block are generated using the information from
the control points. The technique used in the second embodi-
ment is referred to as control point based affine prediction.
[0111] In the merge mode, in either of the first embodi-
ment and the second embodiment, no residue components of
the MVs at current block are signaled. The residue compo-
nents of the MVs are assumed to be zero.

[0112] In the residue mode (or AMVP mode), affine
parameters, or the MVs at the control points of the current
block, can be predicted. In an embodiment, because there are
more than one motion vectors to be predicted, the candidate
list for motion vectors at all control points is organized in a
grouped way such that each candidate in the candidate list
includes a set of motion vector predictors for all control
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points. For example, candidate 1={predictor 1A for control
point A, predictor 1B for control point B, predictor 1C for
control point C}; candidate 2={predictor 2A for control
point A, predictor 2B for control point B, predictor 2C for
control point C}, etc. The predictors for the same control
point in different candidates (e.g., the predictor 1A and the
predictor 2A) can be the same or different. The motion
vector predictor flag ((mvp_10_flag for List O or mvp_11_
flag for List 1) will be used to indicate which candidate from
the list is chosen. After prediction, the residue part of the
parameters (e.g., a difference of a parameter to a predicted
parameter by the predictor), or the differences of the MV’ at
the control points (e.g., a difference of a MV to a predicted
MV by a MV predictor), are to be signaled. The MV
predictor at each control point can also come from model
based affine prediction from one of its neighbors, using the
techniques described from the above description for (affine)
merge mode.

[0113] In some embodiments, for a block coded in affine
mode, once the parameters of the affine model are deter-
mined, for example the MVs at control points are decided,
the MVs for the rest locations of the block can be calculated
using the affine model.

[0114] For example, a pixel correspondence between a
location (%, y) in current block and a corresponding location
(x', ¥") in the reference picture is shown in (Eq. 1) using a
4-parameter affine model. In (Eq. 1), p is the scaling factor
for zooming, 6 is the angular factor for rotation, and (c, f) is
the motion vector to describe the translational motion. The
four parameters are p, 6, c and f

{ X' = pcosf-x + psinf -y + ¢ (Eq. 1)
Y

! = —psind - X + pcosf-y + f

[0115] In an embodiment, for an arbitrary position (X, y) in
the current block, its motion vectors pointing to the refer-
ence picture can be determined by getting the corresponding
location (x', y") of the corresponding pixel in the said
reference picture, using (Eq. 1). In the embodiment, the
motion vector MVO for the position (x, y) will be MV0=
(x'-X, y'-y). In an example, the affine compensation is
performed by dividing the whole block (current block) into
an array of smallest units. Pixels within a unit (e.g., smallest
unit) share the same motion vector. The location of each unit
(e.g., smallest unit) is determined by using a selected loca-
tion (representing location) in the unit, such as the top-left
pixel, the center of the unit, etc. The size of the smallest unit
for affine compensation can be 1 pixel, 4x4 pixels, MxN
pixels, M and N are positive integers, etc.

[0116] Insome examples, the current block is divided into
sub-blocks. In a sub-block, a location is selected, and a
motion vector for the selected location is referred to as a
motion vector field (MVF) of the sub-block. In an example,
a sub-block is a smallest unit for affine compensation. The
MVF of the sub-block can be determined based on motion
vectors at control points of the current block.

[0117] FIG. 11 shows a diagram of a current block and two
control points CPO and CP1 of the current block according
to some embodiment of the disclosure. In the FIG. 11
example, CPO is the control point located at the top-left
corner of the current block, and has a motion vector VO=
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(Voxs Vo), and CPl is the control point located at the
top-right corner of the current block, and has a motion vector
VI=(vyy, Vi)

[0118] In the FIG. 11 example, when the selected location
for a sub-block is (x,y) ((x,y) is the relative location to the
top left corner of the current block), then the MVF of the
sub-block is V=(v,, v,), and can be calculated using (Eq. 2):

(Vix —vor)  (Viy —voy) (Eq. 2)
_ ro y

Vy = —— — ¥V + Ve
w w

(Viy — voy) Vix = Vo
oo O yx+( x = Vox)

y Y+ Voy

w w

where w denotes the width and height of the current block
(e.g., the current block has a square shape).

[0119] It is noted that other suitable locations can be
chosen as control points, and the derivation of motion
vectors at any arbitrary positions inside the current block can
be similarly represented as in (Eq. 2). In an example, the
bottom two corners are used as control points CP2 and CP3.
CP2 is the control point located at the bottom-left corner of
the current block, and has a motion vector V2=(v,,, v, ), and
CP3 is the control point located at the bottom-right corner of
the current block, and has a motion vector V3=(vs,, v3,).
Then, the motion vector V=(v,, v,) at a location (x,y) ((X,y)
is the relative location to the top left corner of the current
block can be calculated using (Eq. 3):

Jsmva) (v3y — v2y) (Eq. 3
- w

w

x (y=w)+ v

(v3y —vay)  (V3x —v2y)
= T

—-w)+
” (y—w)+vay

Vy

[0120] According to an aspect of the disclosure, various
techniques can be used to generate affine predictors for the
current block, using either model based affine prediction
from multiple neighboring affine coded blocks, or using
multiple control point based affine merge from multiple
neighboring MVs.

[0121] FIG. 12 shows a diagram of motion vector predic-
tion in an affine mode according to an embodiment of the
disclosure. FIG. 12 shows three corners that can be selected
as control points CPO, CP1 and CP2. CPO0 is the control point
located at the top-left corner of the current block, and has a
motion vector v,=(V,, V,,), CP1 is the control point located
at the top-right corner of the current block, and has a motion
vector v,=(v,,, vy,), and CP2 is the control point located at
the bottom-left corner of the current block, and has a motion
vector V,=(V,,, v, ).

[0122] In an embodiment, in affine AMVP mode, a pair of
control points {CPO, CP1} is used and a candidate list with
motion vector pair of {CP0, CP1} is constructed using the
neighboring blocks. For example, the candidate list is rep-
resented by {(vo.V)IVo={V52.Va3.V.io}Vi={Va1, Vaol} As
shown in FIG. 12, v, is selected from the motion vectors of
the block B2, B3 or A2. The motion vector from the
neighboring block is scaled according to the reference list
and the relationship among the POC of the reference for the
neighboring block, the POC of the reference for the current
CU and the POC of the current CU. Similarly, v, is selected
from motion vectors of the neighboring block B1 and BO. In
an example, if the number of candidates in the candidate list
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is smaller than 2, the candidate list is padded by the motion
vector pair composed by duplicating each of the AMVP
candidates. For example, in v,={vg,, vz}, if vz, is not
available, each CP1 in {CP0O, CP1} pair will use vg,. In
another example, when the number of candidates in the
candidate list is larger than 2, the candidates are firstly sorted
according to the consistency of the neighboring motion
vectors (e.g., similarity of the two motion vectors in a pair
candidate) and only the first two candidates are kept. In
some examples, at the encoder side, a rate distortion (RD)
cost check is used to determine which motion vector pair
candidate is selected as the motion vector predictors (MVPs)
of the control points for the current block. Further, an index
indicating the position of a selected MVP of a control point
in the candidate list is signaled in the coded video bitstream.
After the MVP of the control point for the current affine
block is determined, affine motion estimation is applied and
the motion vector of the control point is found. Then the
difference of the MV of the control point and the MVP of the
control point is signaled in the coded video bitstream.

[0123] It is noted that, at the decoder side, the candidate
list is constructed in the similar manner as at the encoder
side. Further, the decoder decodes the index that indicates
the position of the selected MVP of the control point in the
candidate list from the coded video bitstream and decodes
the difference between the MVP and the MV of the control
point. Based on the MVP of the control point and the
difference, the decoder determines the MV of the control
point.

[0124] In another embodiment, a technique referred to as
a model based affine merge is used. For example, when a
block is applied in affine merge mode, candidate blocks from
the valid neighboring reconstructed blocks are checked to
find a block coded with affine mode. For example, the first
block coded with affine mode is selected as the merge
candidate.

[0125] The selection of the first block is according to a
selection order. In an example, the selection order for the
candidate blocks is from left, above, above right, left bottom
to above left, such as in the order of {Al, B1, B0, A0, B2}
in the FIG. 12 example. It is noted that other suitable
selection order can be used. For example, the neighboring
left block Al as shown in FIG. 12 is coded in affine mode.
The neighboring left block Al is in a coding unit N1. Then
the motion vectors of control points, such as CP0,,, CP1,,,
CP2,, at the top left corner, above right corner and left
bottom corner of the coding unit N1 are derived. Then, in an
example, the motion vector of the top left control point
(CPO) on the current CU (or current block) is calculated
according to motion vectors of CP0,,, CP1,,, and CP2_,.
Further, the motion vector of the above right control point
(CP1) of the current CU (or current block) is calculated
according to the motion vectors of CP0O,,, CP1,,, and
CP2,,.

[0126] After the MVs of the current CU’s control points
CPO and CP1 are derived, according to the simplified affine
motion model in an example, the MVF of the current CU can
be calculated for example according to (Eq. 2). In an
embodiment, when at least one neighboring block of the
current CU is coded in affine mode, the encoder signals an
affine flag in the coded video bitstream in order to identify
whether the current CU is coded with affine merge mode. At
the decoder side, the decoder can decodes the affine flag
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from the coded video bitstream, and determines whether the
current block is coded in affine merge mode based on the
affine flag.

[0127] FIG. 13 shows another diagram of motion vector
prediction in an affine mode according to an embodiment of
the disclosure. In the FIG. 13 example, the current block is
at a CTU top boundary. Thus, some of the neighboring
blocks, such as above neighboring blocks N2 and N3 and the
like, are in a different CTU. In an example, the neighboring
block B2 as shown in FIG. 13 is coded in affine mode and
is selected. The neighboring block B2 is in a coding unit N2.
Then the motion vectors of control points, such as CPOg,,
CP1g,, CP24, at the top left corner, above right corner and
left bottom corner of the coding unit N2 are derived. Then,
in an example, the motion vector of the top left control point
(CPO) on the current CU (or current block) is calculated
according to motion vectors of CPOg,, CP1,, and CP2,.
Further, the motion vector of the above right control point
(CP1) of the current CU (or current block) is calculated
according to the motion vectors of CPOg,, CPlg,, and
CP2,,.

[0128] In some examples, when the current block is at the
CTU top boundary as shown in FIG. 13, neighboring block’s
motion information are saved in a line buffer. In an example,
the line buffer saves information of all MVs of control points
for the neighboring blocks and the corresponding block
sizes, thus the line buffer needs to have a relatively large
size.

[0129] In another embodiment, multiple control points
based affine merge can be used. The multiple control points
based affine merge is referred to as a complex merge mode.
[0130] FIGS. 14A and 14B shows candidate positions for
the complex merge mode. FIG. 14A shows the positions for
spatial candidates for the complex merge mode, and FIG.
14B shows a position for a temporal candidate for the
complex merge mode.

[0131] In the complex merge mode, the control points are
needed to determine the motion models. In a first step of the
complex merge mode, the candidates of the control points
are determined. The candidates of predicting the control
points are shown in FIGS. 14A and 14B. CP, denotes the kth
control point. For example, control points CP0O, CP1, CP2
and CP3 are located at corners of the current block. In the
FIGS. 14A-14B example, CPO is the control point located at
the top-left corner of the current block, CP1 is the control
point located at the top-right corner of the current block,
CP2 is the control point located at the bottom-left corner of
the current block, and CP3 is the control point located at the
bottom-right corner of the current block. FIG. 14A shows
the spatial candidates for predicting the motion information
of CPO, CP1, and CP2. FIG. 14B shows the position of the
temporal candidate for predicting the motion information of
CP3. Specifically, the spatial candidates for predicting the
motion information of CP0 are shown as B,, A,, and B, the
spatial candidates for predicting the motion information of
CP1 are shown as B, and B, and the spatial candidates for
predicting the motion information of CP2 are shown as A,
and A;. The temporal candidate for predicting the motion
information of CP3 is shown as Tg,.

[0132] In some examples, a control point has multiple
candidates, and the motion information of the control point
is determined from the candidates according to a priority
order. For example, for CPO, the priority order for checking
is B,, A,, then Bj;; for CP1, the priority order for checking
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is B, then B, ; for CP2, the priority order for checking is A,
then A ; for CP3, Ty, is used.

[0133] The control points are then used to construct the
candidate model list. Various models can be constructed
based on subsets of the control points, such as CPO, CP1,
CP2 and CP3. For example, 11 models can be constructed.
A first model is an affine model that is constructed using two
control points (CP1, CP2); a second model is an affine model
that is constructed using two control points (CPO, CP2); a
third model is an affine model that is constructed using three
control points (CPO, CP1, CP2); a fourth model is an affine
model that is constructed using two control points (CPO,
CP1); a fifth model is an affine model that is constructed
using two control points (CP1, CP3); a sixth model is an
affine model that is constructed using two control points
(CP2, CP3); a seventh model is an affine model that is
constructed using two control points (CPO, CP3); an eighth
model is a bilinear model; a ninth model is an affine model
that is constructed using three control points (CPO, CP1,
CP3); a tenth model is an affine model that is constructed
using three control points (CP1, CP2, CP3); an eleventh
model is an affine model that is constructed using three
control points (CPO, CP2, CP3).

[0134] A candidate model list is constructed according to
an order, such as the order from the first model to the
eleventh model. For example, when the motion information
of'the selected control points for a model can be derived and
is not identical in at least one reference picture list (such as
LO or L.1), the model can be put into the candidate model list
as one of the candidate models. In an example, the encoder
encodes an index in the coded video stream for a model in
the candidate model list that is used at the encoder side for
prediction in the complex merge mode. The index can be
encoded as 3 binary bits using equal length binarization. At
the decoder side, the decoder decodes a complex merge
index from the 3 binary bits from the coded video bitstream.
The decoder starts a process to construct the candidate
model list. When a candidate index for a model to be put into
the candidate model list is equal to the decoded complex
merge index, the process stops, and the decoder determines
that the model to be the same model used by the encoder.
[0135] It is noted that when multiple affine prediction
candidates exist, either for merge mode or AMVP mode, the
affine prediction candidates are ordered in the same manner
at the encoder side and the decoder side. The encoder selects
a candidate and signals an index of the selected candidate in
the coded video bitstream. The decoder decodes the index
from the coded video bitstream and selects the candidate
according to the index.

[0136] Aspects of the disclosure provide techniques to
reduce the storage requirement of motion data to be stored
in a line buffer (also referred to as motion data line buffer)
for deriving affine merge candidates or affine MVP candi-
dates when the neighboring blocks above the current block
is outside of current largest coding unit, e.g. Coding Tree
Unit (CTU). More specifically, instead of storing motion
vectors of all the control points and block width and/or
height values, in some embodiments, motion vectors of the
minimum-size blocks (e.g., smallest units for compensation)
that are just above the current CTU line (e.g., adjacent from
the top to the CTU line) are stored in the line buffer. When
a control point is at a position other than just above the
current CTU line, then the motion vector of the control point
is not stored in the line buffer, also the block width and/or
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height of the neighboring blocks that are just above the CTU
line are not stored in the line buffer.

[0137] According to an aspect of the disclosure, motion
vector information of the control points can be derived from
regular motion information in the line buffer. Generally, the
line buffer stores the regular motion information of the
minimum-size blocks just above the CTU line, and the
regular motion information of the minimum-size blocks are
used for regular merge/skip/AMVP modes. In the affine
merge mode, when the current block is at the top CTU
boundary, the motion information of the two control points
at the top of current block may be derived from neighboring
blocks’ regular motion information (that is already stored in
the line buffer) when the neighboring candidate blocks are
above the current CTU boundary. Thus, the affine merge
mode shares the regular motion information of the mini-
mum-size blocks with the regular merge/skip/AMVP mode,
and the regular motion information has been already stored
for the regular merge/skip/AMVP mode. In an example, the
regular motion information of the minimum-size blocks
includes motion vectors respectively for the minimum-size
blocks. For example, a representative location is selected for
each minimum-size block, and the motion vector at the
representative location is used as the motion vector for the
minimum-size block. Thus, no additional motion informa-
tion, other than the regular motion information, needs to be
stored in the line buffer for the affine merge mode. In some
examples, the affine control point information or affine flag
may not be necessary to be saved in line buffer.

[0138] It is noted that when the current block is not at the
top CTU boundary, other suitable derivation techniques,
such as the model based affine merge, multiple control
points based affine merge, and the like can be used to derive
the affine model parameters for affine merge mode.

[0139] FIG. 15 shows a diagram for deriving control point
motion information from regular motion information
according to an embodiment of the disclosure. As shown in
FIG. 15, the current block is at a CTU boundary. Three
corners of the current block are selected as control points
CPO, CP1 and CP2. CPO is the control point located at the
top-left corner of the current block, CP1 is the control point
located at the top-right corner of the current block, and CP2
is the control point located at the bottom-left corner of the
current block. CP0 and CP1 are the control points at the top
corners of the current block. In an example, the control point
CPO has 3 candidate blocks, A2, B2, and B3 as shown in
FIG. 15; the control point CP1 has 2 candidate blocks, BO
and B1 as shown in FIG. 15.

[0140] In the FIG. 15 example, the line buffer stores the
regular motion information of the minimum-size blocks that
are above the CTU boundary. For example, the line buffer
buffers the motion vectors of B2, B3, B1 and BO.

[0141] In an embodiment, neighboring candidate blocks
that are on the left of the current block and are below the
CTU top boundary (referred to as left neighboring candidate
blocks), such as the AO, Al and A2 in the FIG. 15 example,
are checked. When a specific left neighboring candidate
block is available and affine coded, the affine parameters and
motion vectors of the control points of the current block can
be derived from the affine model of the specific left neigh-
boring candidate block, such as using techniques of the
model based affine merge. Various checking order can be
used to check the left neighboring candidate blocks, and the
first left neighboring candidate block that is affine coded can
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be used as merge candidate for the current block. The
checking order can be any one of {A0, Al, A2}, {A0, A2,
Al}, {Al, A0, A2}, (A1, A2, AO), {A2, A0, Al}, or {A2,
Al, AO}.

[0142] When none of A0, Al, or A2 is available or affine
coded, the control points of the current block at the top CTU
boundary may be derived using the regular motion infor-
mation of the neighboring blocks.

[0143] In an embodiment, as depicted in FIG. 15, the
control point CP0O has three neighboring candidate blocks
A2, B2, and B3. Various checking order can be used to check
the neighboring candidate blocks, and the first neighboring
candidate block that is affine coded can be used as merge
candidate. For example, the motion information (or a scaled
version of the motion information) of the first neighboring
candidate block that is affine coded is copied to CPO. The
checking order can be any one of {A2, B2, B3}, {A2, B3,
B2}, {B2, A2, B3}, {B2, B3, A2}, {B3, A2, B2}, or {B3,
B2, A2}

[0144] Similarly, the control point CP1 has two neighbor-
ing candidate block BO and B1. Various checking order can
be used to check the neighboring candidate blocks, and the
first neighboring candidate block that is affine coded can be
used as merge candidate. For example, the motion informa-
tion (or a scaled version of the motion information) of the
first neighboring candidate block that is affine coded is
copied to CP1. The checking order can be any one of {BO,
B1} or {B1, B0}.

[0145] In another embodiment, as depicted in FIG. 15, the
control point CPO has two neighboring candidate blocks B2,
and B3 in the line buffer. Various checking order can be used
to check the neighboring candidate blocks, and the first
neighboring candidate block that is affine coded can be used
as merge candidate. For example, the motion information (or
a scaled version of the motion information) of the first
neighboring candidate block that is affine coded is copied to
CPO. The checking order can be any one of {B2, B3} or {B3,
B2}

[0146] Similarly, the control point CP1 has two neighbor-
ing candidate block BO and B1. Various checking order can
be used to check the neighboring candidate blocks, and the
first neighboring candidate block that is affine coded can be
used as merge candidate. For example, the motion informa-
tion (or a scaled version of the motion information) of the
first neighboring candidate block that is affine coded is
copied to CP1. The checking order can be any one of {BO,
B1} or {B1, B0}.

[0147] In another embodiment, all the combinations of
CPO using motion information from any of {A2, B2, B3}
and CP1 using motion information from any of {B0, B1}
may be used to derive the current block’s affine model. It is
noted that redundant combinations when some or all of the
neighboring blocks for CPO or CP1 have the same motion
information can be pruned. All the combinations of CP0O and
CP1 motion information pair may form a candidate list after
the aforementioned redundancy pruning. Then, one of the
candidates in the candidate list is selected and the index of
the selected candidate is coded into the coded video bit-
stream by the encoder. At the decoder side, the decoder can
form the candidate list in the same manner as the encoder
and decodes the index of the selected candidate from the
coded video bitstream.

[0148] According to another aspect of the disclosure,
candidates of the model based affine merge can be derived
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from the regular motion information in the line buffer.
Similarly, the line buffer stores the regular motion informa-
tion of the minimum-size blocks just above the CTU line,
and the regular motion information of the minimum-size
blocks are used for regular merge/skip/AMVP modes. In the
affine merge mode, when the current block is at the top CTU
boundary, the affine model, such as 4-parameter affine
model, of current block may be derived from neighboring
blocks’ regular motion information (that is already stored in
the line buffer) when the neighboring candidate blocks are
above the current CTU boundary. Thus, the affine merge
mode shares the regular motion information of the mini-
mum-size blocks with the regular merge/skip/AMVP mode,
and the regular motion information has been already stored
for the regular merge/skip/AMVP mode. In an example, the
regular motion information of the minimum-size blocks
includes motion vectors respectively for the minimum-size
blocks. For example, a representative location is selected for
each minimum-size block, and the motion vector at the
representative location is used as the motion vector for the
minimum-size block. Thus, no additional motion informa-
tion, other than the regular motion information, needs to be
stored in the line buffer for the affine merge mode. In some
examples, the affine control point information or affine flag
may not be necessary to be saved in the line buffer. In an
example, the affine control point information and the affine
flag are not stored in the line buffer. In another example, the
affine control point information and/or the affine flag are
stored in the line buffer.

[0149] It is noted that when the current block is not at the
top CTU boundary, other suitable derivation techniques,
such as the model based affine merge, multiple control
points based affine merge, and the like can be used to derive
the affine model parameters for affine merge mode.

[0150] FIG. 16 shows a diagram for illustrating a model
based affine merge candidate derivation with reduced line
buffer according to an embodiment of the disclosure.

[0151] In the FIG. 16 example, the current block is at the
top of CTU boundary, all the above neighboring blocks
(minimum-size blocks) are stored in the line buffer (also
referred to as motion date line buffer). Three corners of the
current block are selected as control points CPO, CP1 and
CP2. CPO is the control point located at the top-left corner
of the current block, CP1 is the control point located at the
top-right corner of the current block, and CP2 is the control
point located at the bottom-left corner of the current block.
CPO and CP1 are the control points at the top corners of the
current block.

[0152] In the FIG. 16 example, B,, denotes the top-left
neighboring block, B,,_; denotes the immediate neighbor on
the right of B,,,, and B,,,, , denotes the immediate neighbor on
the left of B,,; B, denote the top-right neighboring block,
B,,_, denotes the immediate neighbor on the right of B,,, and
B,,.; denotes the immediate neighbor on the left of B,,.

[0153] In an example, the control point CPO has 3 candi-
date blocks, A2, B,,, and B, ,, as shown in FIG. 16; the
control point CP1 has 2 candidate blocks, B,, and B, ,, as
shown in FIG. 16.

[0154] In the FIG. 16 example, the line buffer stores the
regular motion information of the minimum-size blocks that
are above the CTU boundary. For example, the line buffer
buffers the motion vectors of B,,,,, B,,, B,,_1B,._5, - - - B,,125
B,.:; B, B,_1, . . ., and the like.
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[0155] In an embodiment, neighboring candidate blocks
that are on the left of the current block and are below the
CTU top boundary (referred to as left neighboring candidate
blocks), such as the AO, Al and A2 in the FIG. 16 example,
are checked. When a specific left neighboring candidate
block is available and affine coded, the affine parameters and
motion vectors of the control points of the current block can
be derived from the affine model of the specific left neigh-
boring candidate block, such as using techniques of the
model based affine merge. Various checking order can be
used to check the left neighboring candidate blocks, and the
first left neighboring candidate block that is affine coded can
be used as merge candidate for the current block. The
checking order can be any one of {A0, Al, A2}, {A0, A2,
Al}, {Al, A0, A2}, (A1, A2, AO), {A2, A0, Al}, or {A2,
Al, AO}.

[0156] When none of A0, Al, or A2 is available or affine
coded, the affine model and motion vectors of the control
points of the current block at the top CTU boundary may be
derived using the regular motion information of the above
neighboring blocks in the line buffer.

[0157] To describe the two control points of the current
block, (VOx, VOy) denote the motion vector of CPO, (V1x,
V1y) denote the motion vector of CP1. In an embodiment,
a pair of adjacent neighboring blocks in the line buffer may
be used in an affine model derivation.

[0158] In an example, (Eq. 1) is simplified. For example,
a denotes p cos 0, and b denotes p sin 0. (Eq. 1) is simplified
to (Eq. 4). In an example, the relationship of a and b to two
motion vectors (MV,”, MV,"), and (MV,”, MV,") are
shown in (Eq. 5)-(Eq. 8).

X =ax+by+c (Eq. 4)

{y’ =-bx+ay+f
MVE— pmvE (Eq. 5)

a= T
e MV} — MVY (Eq. 6)
w

c=MV} Eq. 7
=MV (Eq. 8)

[0159] As shown in FIG. 16, regular motion information
(e.g., motion vectors) of the above neighboring blocks are
stored in the line buffer. In order to derive 4-parameter affine
model, at least 2 candidate blocks are needed.

[0160] Inanembodiment, 4 pairs of consecutive candidate
blocks may be checked according to a checking order. Then,
during the checking, the first pair that is available to derive
affine model is used as merge candidate. The four pairs of
candidates are: a first pair PO of B,,,, and B,,, a second pair
P1 of B,,_; and B,,_,, a third pair P2 of B,,, and B, ,,, a
fourth pair P3 of B,,, B,,_;. The order of availability checking
may be any order with PO, P1, P2, P3, such as {P0, P1, P2,
P3}, {PO, P1, P3, P2}, {P3, P2, P1, PO}, {P3, P1, P2, PO},
etc.

[0161] In another embodiment, according to the merge
candidate list construction, when one of the above neigh-
boring positions is accessed for deriving model based affine
parameters, and the neighbors are above of current CTU top
boundary, then the pair of consecutive candidate blocks
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mentioned in the above embodiment that is located in the
said neighboring position can be used to derive the affine
model parameters of the neighboring block, and can be used
to derive control points’ motion information of the current
block.

[0162] Inthe embodiment, D denotes the distance between
each consecutive pair of candidates, and is the size or width
of minimum-size blocks with motion information. In an
example, D is four. Further, CO and C1 denote a pair of
consecutive neighboring blocks that are used for the deri-
vation process. The motion vectors for CO and C1 are
denoted as (V ¢q,, Vq,) for CO, and (V¢ ,, Vy,) Tor C1. CO
is positioned at (X, Yo ), and C1 is positioned at (X, Yo )-
Further, (x,, y,) denotes the position of the control point
CPO; and (x,, y,) denotes the position of the control point
CP1 in the FIG. 16 example. Then, the motion vectors for
the control points CPO and CP1 can be derived according to
(Eq. 9) and (Eq. 10):

(verx = veox )Xo = Xco) = (Very = Veoy (Yo = Yeo) (Eq. 9)
Vox = D + Vo
(very = veoy)®o = Xco) + (Verx — veor (Yo — Yeo)
Voy = 5 +Veoy
(verx = veox )Xt = Xco) = (Very = veoy (Y1 = Yeo) (Eq. 10)
Vix = D + Vo
(Vc1y - VCOy)(xl —xco) + (verx — Veo (Y1 — Yco)
Viy = D + vcoy
[0163] In an example, for each pair of candidates, when

the pair of candidates have identical motion vectors, that
indicates that the pair of candidates are coded with regular
translational motion vectors, and are not coded in affine
mode. Such pair of candidates will be skipped.

[0164] In another embodiment, 4 pairs of consecutive
neighboring blocks are checked. The four pairs of candidates
are: P0{B,,,, B,}. P1{B,_,, B, .}, P2{B, ., B,.,},
P3{B,, B,_,}. All available pairs of candidate blocks will be
used to derive a pair of control point’s motion vector values
for the current block.

[0165] For example, for each available pair of candidate
blocks, (Eq. 9) and (Eq. 10) are used to derive motion
vectors of the control points CPO and CP1. In an embodi-
ment, each available pair of derived CP0 and CP1 values can
be used as an affine merge candidate to form a candidate list
of derived CPO and CP1. In another embodiment, only the
spatial merge candidate locations in the above neighbors
will be checked. If a block in one of those locations is coded
in affine mode, affine parameters can be derived from this
block. For example, when deriving from the regular motion
information stored in motion data line buffer, the corre-
sponding coding blocks at the spatial merge candidate
locations (as BO, B1, B2 in FIG. 8 and FIG. 12) are checked.
When the corresponding block is affine coded, the current
block’s affine model and control points motion information
can be derived from the neighboring coding block, using the
regular motion information at the 2 bottom corners as an
approximation of the bottom control point motion informa-
tion.

[0166] It is noted that when the current block is not at the
top CTU boundary, the regular derivation methods for affine
merge candidate, such as model based affine merge, multiple
control points based affine merge, and the like can be used.
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[0167] According to another aspect of the disclosure,
affine merge is skipped for blocks at the top of a CTU, such
as at the top boundary of the CTU, to avoid extra motion
data storage for line buffer, reduce line buffer size and save
cost.

[0168] Insome embodiments, when the current block is at
the top CTU boundary, the affine merge mode may be
disabled when left neighboring affine merge candidates is
not available. For example, when the current block is at the
top CTU boundary and the blocks AO, Al and A2 are not
available or not affine coded, the affine merge mode is
disabled. Thus, there is no need to put affine motion infor-
mation of the neighboring blocks above the CTU boundary
into the line buffer.

[0169] In an embodiment, the affine merge candidate is
derived from the first available neighboring block, such as
the model based affine merge. When the left neighboring
blocks A0, Al and A2 of the current block are not available
or not affine coded, and when the current block is at the top
CTU boundary (for example in FIG. 16), the affine merge is
disabled for current block.

[0170] In another embodiment, the affine merge candidate
is combined with other regular inter merge candidates on a
unified merge candidate list. When the current block is at the
CTU top boundary (for example in FIG. 16), and the left
neighboring blocks A0, A1 and A2 of the current block are
not available or not affine coded, affine merge candidate will
not be added to the unified merge candidate list.

[0171] According to an aspect of the disclosure, an affine
flag is stored for each affine coded block in the line buffer.
In an example, the minimum allowed affine block is MxN
(M is the width, and N is the height of minimum allowed
affine block), and the width of the minimum-size block is D,
then for each M/D consecutive minimum-size blocks hori-
zontally, a 1-bit affine flag is stored to indicate whether a
block is affine coded or not.

[0172] In anembodiment, when a block is at the bottom of
a CTU, at the time to store the motion data information of
the block into the line buffer for future CTU row usage, the
affine flag for each M/D consecutive minimum-size blocks
is also stored in the line buffer.

[0173] For a current block that is on top of the CTU (just
blow a CTU boundary that separate a previous CTU row
with a current CTU row), the above neighbors are above the
current CTU row and are in the previous CTU row. When
the line buffer stores affine flag information, the affine flag
information can be used to, for example, determine whether
to derive model based affine merge candidate with regular
motion information in the line buffer. For example, when the
affine flag information indicates that one of the above
neighbors who is above the current CTU is not coded in
affine mode, the pair of minimum-size blocks in that location
cannot be used to derive affine model.

[0174] It is noted that while control point motion vector
derivation from neighboring blocks is used in the above
description, other suitable methods can be used in the similar
manner.

[0175] FIG. 17 shows a flow chart outlining a process
(1700) according to an embodiment of the disclosure. The
process (1700) can be used in the reconstruction of a block
coded in intra mode, so to generate a prediction block for the
block under reconstruction. In various embodiments, the
process (1700) are executed by processing circuitry, such as
the processing circuitry in the terminal devices (210), (220),



US 2020/0021848 Al

(230) and (240), the processing circuitry that performs
functions of the video encoder (303), the processing cir-
cuitry that performs functions of the video decoder (310),
the processing circuitry that performs functions of the video
decoder (410), the processing circuitry that performs func-
tions of the intra prediction module (452), the processing
circuitry that performs functions of the video encoder (503),
the processing circuitry that performs functions of the pre-
dictor (535), the processing circuitry that performs functions
of the intra encoder (622), the processing circuitry that
performs functions of the intra decoder (772), and the like.
In some embodiments, the process (1700) is implemented in
software instructions, thus when the processing circuitry
executes the software instructions, the processing circuitry
performs the process (1700). The process starts at (S1701)
and proceeds to (S1710).

[0176] At (S1710), prediction information of a current
block is decoded from a coded video bitstream. The predic-
tion information is indicative of an affine model in a merge
mode.

[0177] At (S1720), motion information of bottom loca-
tions, such as regular motion information of bottom loca-
tions, of a neighboring block that is adjacent to the current
block is obtained. In an example, the neighboring block is in
a different CTU row from the current block, such as a CTU
row above the current block. The motion information of the
neighboring block is stored in a line buffer. When motion
information of non-bottom locations (e.g., control points of
top corners of the neighboring block) is not needed for
determining the affine model, the line buffer does not need
to store the motion information of non-bottom locations.
Then, the size of the line buffer can be reduced to save cost.

[0178] At (S1730), parameters of the affine model are
determined based on the motion information of the bottom
locations in the neighboring block. For example, the motion
vectors of the control points of the current block can be
derived from the regular motion vectors of the bottom
locations of the neighboring block.

[0179] At (S1740), samples of the block are reconstructed
according to the affine model. In an example, a reference
pixel in the reference picture that corresponds to a pixel in
the block is determined according to the affine model.
Further, the pixel in the block is reconstructed according to
the reference pixel in the reference picture. Then, the process
proceeds to (S1799) and terminates.

[0180] The techniques described above, can be imple-
mented as computer software using computer-readable
instructions and physically stored in one or more computer-
readable media. For example, FIG. 18 shows a computer
system (1800) suitable for implementing certain embodi-
ments of the disclosed subject matter.

[0181] The computer software can be coded using any
suitable machine code or computer language, that may be
subject to assembly, compilation, linking, or like mecha-
nisms to create code comprising instructions that can be
executed directly, or through interpretation, micro-code
execution, and the like, by one or more computer central
processing units (CPUs), Graphics Processing Units
(GPUs), and the like.minimum-size block

[0182] The instructions can be executed on various types
of computers or components thereof, including, for example,
personal computers, tablet computers, servers, smartphones,
gaming devices, internet of things devices, and the like.
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[0183] The components shown in FIG. 18 for computer
system (1800) are exemplary in nature and are not intended
to suggest any limitation as to the scope of use or function-
ality of the computer software implementing embodiments
of'the present disclosure. Neither should the configuration of
components be interpreted as having any dependency or
requirement relating to any one or combination of compo-
nents illustrated in the exemplary embodiment of a computer
system (1800).

[0184] Computer system (1800) may include certain
human interface input devices. Such a human interface input
device may be responsive to input by one or more human
users through, for example, tactile input (such as: key-
strokes, swipes, data glove movements), audio input (such
as: voice, clapping), visual input (such as: gestures), olfac-
tory input (not depicted). The human interface devices can
also be used to capture certain media not necessarily directly
related to conscious input by a human, such as audio (such
as: speech, music, ambient sound), images (such as: scanned
images, photographic images obtain from a still image
camera), video (such as two-dimensional video, three-di-
mensional video including stercoscopic video).

[0185] Input human interface devices may include one or
more of (only one of each depicted): keyboard (1801),
mouse (1802), trackpad (1803), touch screen (1810), data-
glove (not shown), joystick (1805), microphone (1806),
scanner (1807), camera (1808).

[0186] Computer system (1800) may also include certain
human interface output devices. Such human interface out-
put devices may be stimulating the senses of one or more
human users through, for example, tactile output, sound,
light, and smell/taste. Such human interface output devices
may include tactile output devices (for example tactile
feedback by the touch-screen (1810), data-glove (not
shown), or joystick (1805), but there can also be tactile
feedback devices that do not serve as input devices), audio
output devices (such as: speakers (1809), headphones (not
depicted)), visual output devices (such as screens (1810) to
include CRT screens, LCD screens, plasma screens, OLED
screens, each with or without touch-screen input capability,
each with or without tactile feedback capability—some of
which may be capable to output two dimensional visual
output or more than three dimensional output through means
such as stereographic output; virtual-reality glasses (not
depicted), holographic displays and smoke tanks (not
depicted)), and printers (not depicted).

[0187] Computer system (1800) can also include human
accessible storage devices and their associated media such
as optical media including CD/DVD ROM/RW (1820) with
CD/DVD or the like media (1821), thumb-drive (1822),
removable hard drive or solid state drive (1823), legacy
magnetic media such as tape and floppy disc (not depicted),
specialized ROM/ASIC/PLD based devices such as security
dongles (not depicted), and the like.

[0188] Those skilled in the art should also understand that
term “‘computer readable media” as used in connection with
the presently disclosed subject matter does not encompass
transmission media, carrier waves, or other transitory sig-
nals.

[0189] Computer system (1800) can also include an inter-
face to one or more communication networks. Networks can
for example be wireless, wireline, optical. Networks can
further be local, wide-area, metropolitan, vehicular and
industrial, real-time, delay-tolerant, and so on. Examples of
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networks include local area networks such as Ethernet,
wireless LANSs, cellular networks to include GSM, 3G, 4G,
5G, LTE and the like, TV wireline or wireless wide area
digital networks to include cable TV, satellite TV, and
terrestrial broadcast TV, vehicular and industrial to include
CANBus, and so forth. Certain networks commonly require
external network interface adapters that attached to certain
general purpose data ports or peripheral buses (1849) (such
as, for example USB ports of the computer system (1800));
others are commonly integrated into the core of the com-
puter system (1800) by attachment to a system bus as
described below (for example Ethernet interface into a PC
computer system or cellular network interface into a smart-
phone computer system). Using any of these networks,
computer system (1800) can communicate with other enti-
ties. Such communication can be uni-directional, receive
only (for example, broadcast TV), uni-directional send-only
(for example CANbus to certain CANbus devices), or bi-
directional, for example to other computer systems using
local or wide area digital networks. Certain protocols and
protocol stacks can be used on each of those networks and
network interfaces as described above.

[0190] Aforementioned human interface devices, human-
accessible storage devices, and network interfaces can be
attached to a core (1840) of the computer system (1800).
[0191] The core (1840) can include one or more Central
Processing Units (CPU) (1841), Graphics Processing Units
(GPU) (1842), specialized programmable processing units
in the form of Field Programmable Gate Areas (FPGA)
(1843), hardware accelerators for certain tasks (1844), and
so forth. These devices, along with Read-only memory
(ROM) (1845), Random-access memory (1846), internal
mass storage such as internal non-user accessible hard
drives, SSDs, and the like (1847), may be connected through
a system bus (1848). In some computer systems, the system
bus (1848) can be accessible in the form of one or more
physical plugs to enable extensions by additional CPUs,
GPU, and the like. The peripheral devices can be attached
either directly to the core’s system bus (1848), or through a
peripheral bus (1849). Architectures for a peripheral bus
include PCI, USB, and the like.

[0192] CPUs (1841), GPUs (1842), FPGAs (1843), and
accelerators (1844) can execute certain instructions that, in
combination, can make up the aforementioned computer
code. That computer code can be stored in ROM (1845) or
RAM (1846). Transitional data can be also be stored in
RAM (1846), whereas permanent data can be stored for
example, in the internal mass storage (1847). Fast storage
and retrieve to any of the memory devices can be enabled
through the use of cache memory, that can be closely
associated with one or more CPU (1841), GPU (1842), mass
storage (1847), ROM (1845), RAM (1846), and the like.
[0193] The computer readable media can have computer
code thereon for performing various computer-implemented
operations. The media and computer code can be those
specially designed and constructed for the purposes of the
present disclosure, or they can be of the kind well known and
available to those having skill in the computer software arts.
[0194] As an example and not by way of limitation, the
computer system having architecture (1800), and specifi-
cally the core (1840) can provide functionality as a result of
processor(s) (including CPUs, GPUs, FPGA, accelerators,
and the like) executing software embodied in one or more
tangible, computer-readable media. Such computer-readable
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media can be media associated with user-accessible mass
storage as introduced above, as well as certain storage of the
core (1840) that are of non-transitory nature, such as core-
internal mass storage (1847) or ROM (1845). The software
implementing various embodiments of the present disclo-
sure can be stored in such devices and executed by core
(1840). A computer-readable medium can include one or
more memory devices or chips, according to particular
needs. The software can cause the core (1840) and specifi-
cally the processors therein (including CPU, GPU, FPGA,
and the like) to execute particular processes or particular
parts of particular processes described herein, including
defining data structures stored in RAM (1846) and modify-
ing such data structures according to the processes defined
by the software. In addition or as an alternative, the com-
puter system can provide functionality as a result of logic
hardwired or otherwise embodied in a circuit (for example:
accelerator (1844)), which can operate in place of or
together with software to execute particular processes or
particular parts of particular processes described herein.
Reference to software can encompass logic, and vice versa,
where appropriate. Reference to a computer-readable media
can encompass a circuit (such as an integrated circuit (IC))
storing software for execution, a circuit embodying logic for
execution, or both, where appropriate. The present disclo-
sure encompasses any suitable combination of hardware and
software.

Appendix A: Acronyms

[0195] JEM: joint exploration model

[0196] VVC: versatile video coding

[0197] BMS: benchmark set

[0198] MV: Motion Vector

[0199] HEVC: High Efficiency Video Coding
[0200] SEI: Supplementary Enhancement Information
[0201] VUI: Video Usability Information
[0202] GOPs: Groups of Pictures

[0203] TUs: Transform Units,

[0204] PUs: Prediction Units

[0205] CTUs: Coding Tree Units

[0206] CTBs: Coding Tree Blocks

[0207] PBs: Prediction Blocks

[0208] HRD: Hypothetical Reference Decoder
[0209] SNR: Signal Noise Ratio

[0210] CPUs: Central Processing Units

[0211] GPUs: Graphics Processing Units

[0212] CRT: Cathode Ray Tube

[0213] LCD: Liquid-Crystal Display

[0214] OLED: Organic Light-Emitting Diode
[0215] CD: Compact Disc

[0216] DVD: Digital Video Disc

[0217] ROM: Read-Only Memory

[0218] RAM: Random Access Memory

[0219] ASIC: Application-Specific Integrated Circuit
[0220] PLD: Programmable Logic Device
[0221] LAN: Local Area Network

[0222] GSM: Global System for Mobile communications
[0223] LTE: Long-Term Evolution

[0224] CANBus: Controller Area Network Bus
[0225] USB: Universal Serial Bus

[0226] PCI: Peripheral Component Interconnect
[0227] FPGA: Field Programmable Gate Areas
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[0228] SSD: solid-state drive

[0229] IC: Integrated Circuit

[0230] CU: Coding Unit

[0231] While this disclosure has described several exem-

plary embodiments, there are alterations, permutations, and
various substitute equivalents, which fall within the scope of
the disclosure. It will thus be appreciated that those skilled
in the art will be able to devise numerous systems and
methods which, although not explicitly shown or described
herein, embody the principles of the disclosure and are thus
within the spirit and scope thereof.
What is claimed is:
1. A method for video decoding in a decoder, comprising:
decoding prediction information of a current block in a
first coding tree unit (CTU) of a current picture from a
coded video bitstream, the prediction information being
indicative of an affine model in a merge mode;

obtaining one or more motion vectors of blocks located at
bottom locations in a CTU row of a second CTU above
the current block;

deriving, based on the obtained one or more motion

vectors, motion vectors of control points of the current
block using an affine model; and

reconstructing at least a sample of the current block based

on the affine model.

2. The method of claim 1, wherein the one or more motion
vectors are obtained from a line buffer that buffers motion
vectors of minimum-size blocks at the bottom locations in
the CTU row of the second CTU above the current block.

3. The method of claim 2, wherein the line buffer is
configured not to buffer motion vectors of non-bottom
minimum-size blocks in the CTU row above the current
block.

4. The method of claim 2, wherein the line buffer is
configured not to buffer motion information of control points
of affine coded blocks.

5. The method of claim 2, wherein the affine model is a
4-parameter affine model.

6. The method of claim 5, further comprising:

detecting, based on an affine flag, whether a minimum-

size block neighboring to one of the control points is
affine coded, the affine flag indicating whether a plu-
rality of consecutive minimum-size blocks belong to an
affine coded block,

wherein the deriving the motion vector of the one of the

control points is based on the motion vector of the
minimum-size block when the minimum-size block is
affine coded.

7. The method of claim 6, further comprising:

using the motion vector of the minimum-size block as the

motion vector of the one of the control points when the
minimum-size block neighboring to the control point is
affine coded.

8. The method of claim 2, wherein

the one or more obtained motion vectors consist of a pair

of minimum-size blocks that are affine coded, and
the affine model is a four-parameter affine model.

9. The method of claim 8, wherein

the pair of minimum-size blocks that are affine coded are

consecutive minimum-size blocks.

10. The method of claim 2, wherein

the one or more obtained motion vectors consist of a pair

of minimum-size blocks that are affine coded, and
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the determined motion vectors of the control points con-
sist of motion vectors of the two top corners of the
current block.

11. The method of claim 1, further comprising:

disabling an affine merge mode when none of left neigh-

boring blocks of the current block is available as an
affine coded block.

12. A video coder for video decoding, comprising:

processing circuitry configured to:

decode prediction information of a current block in a
first coding tree unit (CTU) of a current picture from
a coded video bitstream, the prediction information
being indicative of an affine model in a merge mode;

obtain one or more motion vectors of blocks located at
bottom locations in a CTU row of a second CTU
above the current block;

derive, based on the obtained one or more motion
vectors, motion vectors of control points of the
current block using an affine model; and

reconstruct at least a sample of the current block based
on the affine model.

13. The video decoder of claim 12, wherein the one or
more motion vectors are obtained from a line buffer that
buffers motion vectors of minimum-size blocks at the bot-
tom locations in the CTU row of the second CTU above the
current block.

14. The video decoder of claim 13, wherein the line buffer
is configured not to buffer motion vectors of non-bottom
minimum-size blocks in the CTU row above the current
block.

15. The video decoder of claim 13, wherein the line buffer
is configured not to buffer motion information of control
points of affine coded blocks.

16. The video decoder of claim 13, wherein the affine
model is a 4-parameter affine model.

17. The video decoder of claim 16, wherein the processing
circuitry is further configured to:

detect, based on an affine flag, whether a minimum-size

block neighboring to one of the control points is affine
coded, the affine flag indicating whether a plurality of
consecutive minimum-size blocks belong to an affine
coded block,

wherein the deriving the motion vector of the one of the

control points is based on the motion vector of the
minimum-size block when the minimum-size block is
affine coded.

18. The video decoder of claim 17, wherein the processing
circuitry is further configured to:

use the motion vector of the minimum-size block as the

motion vector of the one of the control points when the
minimum-size block neighboring to the control point is
affine coded.

19. The video decoder of claim 13, wherein

the one or more obtained motion vectors consist of a pair

of minimum-size blocks that are affine coded, and
the affine model is a four-parameter affine model.

20. A non-transitory computer readable medium having
instructions stored therein, which when executed by a pro-
cessor in a video decoder causes the processor to executed
a method comprising:

decoding prediction information of a current block in a

first coding tree unit (CTU) of a current picture from a
coded video bitstream, the prediction information being
indicative of an affine model in a merge mode;
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obtaining one or more motion vectors of blocks located
at bottom locations in a CTU row of a second CTU
above the current block;

deriving, based on the obtained one or more motion

vectors, motion vectors of control points of the current

block using an affine model; and

reconstructing at least a sample of the current block
based on the affine model.
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