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This disclosure describes a novel method for predicting
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solutions are deterministic and based on mechanical theory.
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MICROMECHANICAL ELASTIC
PROPERTIES SOLVER

PRIOR RELATED APPLICATIONS

[0001] This application is a non-provisional application
which claims benefit under 35 USC §119(e) to U.S. Provi-
sional Application Ser. No. 62/195,629 filed Jul. 22, 2015,
entitled “MICROMECHANICAL ELASTIC PROPERTIES
SOLVER,” which is incorporated herein in its entirety.

FIELD OF THE DISCLOSURE

[0002] The disclosure generally relates to a method of
estimating the elastic properties of rock formation, and more
particularly to a method implementing micromechanical
approach to estimate the elastic properties of subterranean
formation along a wellbore from mineralogy data.

BACKGROUND OF THE DISCLOSURE

[0003] Industry practice commonly relies on dynamic
sonic-based data to solve for the elastic moduli, which must
be converted to static (rock mechanics-based) moduli using
empirical dynamic-static transforms. Examples include the
method described in W02009108432.

[0004] Despite success in conventional reservoirs, the
sonic-based approach has not been accurate or reliable on
many non-conventional rock layers, such as shale, mudstone
or marl, which are strongly heterogeneous and exhibit
ductile behavior. Research has been published attempting to
empirically correlate mineralogy to mechanical properties
for different rock formation, but have been less than satis-
factory. A common intensive rock mechanics analysis is to
test numerous rock samples in the laboratory and to study
their mechanical variations. However, this approach is not
possible in reservoir settings where physical sampling is
scarce. A common petrophysical application is to cross-plot
dynamic elastic properties versus porosity or some other
rock parameter to derive empirical relationships for the field.
Micromechanical techniques are often employed in petro-
physical applications for two-phase composites, such as
solid and pore-space.

[0005] In continuum mechanics, the term Eshelby’s inclu-
sion problems refers to a set of problems involving ellip-
soidal elastic inclusions in an infinite elastic body. An
“inclusion” is a region in an infinite homogeneous isotropic
elastic medium undergoing a change of shape and size
which, but for the constraint imposed by its surroundings
(the “matrix”), would be arbitrary homogeneous strain.
Analytical solutions to these problems were first devised by
John D. Eshelby in 1957. Eshelby found that the resulting
elastic field can be found using a “sequence of imaginary
cutting, straining and welding operations.” Eshelby’s find-
ing that the strain and stress field inside the ellipsoidal
inclusion is uniform and has a closed-form solution, regard-
less of the elastic material properties and initial transforma-
tion strain (also called the eigenstrain), has spawned a large
amount of work in the mechanics of composites.

[0006] Micromechanics is an approach for predicting
behaviors of heterogeneous materials. Heterogeneous mate-
rials, such as composites, solid foams, polycrystals, or bone,
consist of clearly distinguishable constituents (or phases)
that show different mechanical and physical material prop-
erties. One goal of micromechanics of materials is predicting
the response of the heterogeneous material on the basis of
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the geometries and properties of the individual constituents,
which is known as homogenization. Another goal is local-
ization of materials, which attempts to evaluate the local
stress and strain fields in the phases for given macroscopic
load states, phase properties and phase geometries.

[0007] Because most heterogeneous materials show a sta-
tistical rather than a deterministic arrangement of the con-
stituents, the methods of micromechanics are typically based
on the concept of the representative volume element (RVE).
An RVE is understood to be a sub-volume of an inhomo-
geneous medium that is of sufficient size for providing all
geometrical information necessary for obtaining an appro-
priate homogenized behavior. Most methods in microme-
chanics of materials are based on continuum mechanics
rather than on atomistic approaches such as molecular
dynamics.

[0008] Currently there are several mechanical solutions
for heterogeneous rocks. For example, Single Elastic Inclu-
sion has long been implemented in elasticity calculations.
Eshelby’s formula leads to the response of a single ellip-
soidal elastic inclusion in an elastic whole space to a uniform
strain imposed at infinity. In single elastic inclusion, the rock
is assumed to be an isotropic and homogeneous elastic
medium. However, calculating the external fields to the
inclusions can be laborious.

[0009] The second is Multiple Elastic Inclusions, which
assumes there are infinite number of elastic domains and can
be expressed by:

N
C= C+Zf"‘(c°‘ Y

a=1

In which C is the overall elasticity tensor, C and C* are the
elasticity of the matrix and inclusion phases, respectively,
and f is the volume fraction of the inclusion phase, I* is a
constant fourth order tensor that relates the average strain of
the inclusion. The strain concentration tensor J* and the
relationship (C*-C) are estimated by using various averag-
ing schemes such as the dilute distribution assumption, the
self-consistent method, or the Mori-Tanaka method.

[0010] These approaches cannot efficiently model the
stress field along the wellbore with minimum mineralogy
provided. Thus, a better method is needed in the art.

SUMMARY OF THE DISCLOSURE

[0011] This disclosure describes a novel method for pre-
dicting continuous wellbore mechanical properties, such as
static elastic stiffness, where the properties solutions are
deterministic and based on mechanical theory. It has at least
three immediate applications: (a) continuous plots of
mechanical properties vs. depth, (b) conceptual testing of the
effect of changing constituent volume fractions, and (c)
ternary plots. The disclosed method can be conducted inde-
pendent of logging data and does not rely on acoustic
wave-speeds. Further, the analysis can be applied to cuttings
analysis to derive continuous properties in horizontal wells.
[0012] This method uses the continuum micromechanics
concept of elastic inclusions to model the composite
mechanical behavior of multiphase heterogeneous mixtures.
Volume fractions of matrix components and multiphase
inclusions are used in this method, and they can be derived
continuously from laboratory or log-based mineralogy. Vol-
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ume averaged eigenstrains are thus solved for any hetero-
geneous mixture with a microstructural geometry that is
approximated by the well-developed Eshelby method.

[0013] This disclosure provides an analytical method to
predict mechanical properties continuously along the well-
bore using a deterministic, mechanics-based approach. Well
established multi-mineral micromechanical solution tech-
niques are employed in order to link the elastic rock prop-
erties with rock composition and texture from various data
such as log-based mineralogy curves or x-ray diffraction
data (XRD). In this approach the rock is idealized as a
heterogeneous, isotropic, multi-phase composite embedded
in an infinite elastic domain.

[0014] The individual constituents are assumed to be
significantly smaller than the total domain so that all inter-
actions can be solved using a continuous mechanics
approach. The host matrix is defined as the dominant min-
eral constituents with either predetermined properties (e.g.,
a double-inclusion scheme) or iteratively averaged elastic
properties (self-consistent scheme). Each constituent is
assumed to be a spheroidal elastic inclusion (e.g. a quartz
grain) with a shape factor determined by Eshelby’s 6x6
shape tensor [S]. The inclusions are assumed to be evenly
distributed in the rock so that the solution is not spatially
variant. The micromechanical solution scheme calculates
the stress-strain relationships inside and outside of the
inclusions using eigenstrain concepts, and then the overall
elastic moduli are solved for.

[0015] As used herein, the term “inclusion” refers to a
mathematically defined small area within a larger area of
interest. Each inclusion is assumed to be isotropic, homo-
geneous and elastic.

[0016] As used herein, the term “eigenstrain” refers to the
kind of strain (i.e. deformation) produced without external
forces or stresses. For example, thermal expansion and
phase changes are eigenstrains.

[0017] The use of the word “a” or “an” when used in
conjunction with the term “comprising” in the claims or the
specification means one or more than one, unless the context
dictates otherwise.

[0018] The term “about” means the stated value plus or
minus the margin of error of measurement or plus or minus
10% if no method of measurement is indicated.

[0019] The use of the term “or” in the claims is used to
mean “and/or” unless explicitly indicated to refer to alter-
natives only or if the alternatives are mutually exclusive.

[0020] The terms “comprise”, “have”, “include” and “con-
tain” (and their variants) are open-ended linking verbs and
allow the addition of other elements when used in a claim.

[0021] The phrase “consisting of” is closed, and excludes
all additional elements.

[0022] The phrase “consisting essentially of” excludes
additional material elements, but allows the inclusions of
non-material elements that do not substantially change the
nature of the invention.

[0023] The following abbreviations are used herein:
ABBREVIATION TERM
XRD x-ray diffraction

Jan. 26, 2017

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] FIG. 1 is a flow chart illustrating the method of this
disclosure.
[0025] FIG. 2A-B shows the modeling results of Young’s

modulus comparing Finite Element Method (FEM) and
MMEPS solution for a 2-phase and 3-phase composite.
[0026] FIG. 3A-B shows the continuous modeling for
Young’s Modulus along two wellbores.

[0027] FIG. 4A-C shows the modeling results of the
disclosed method.

[0028] FIG. 4A is a ternary plot of clay-carbonate+pyrite-
quartz+feldspar.

[0029] FIG. 4B is the grouping of data points based on
similar parameters.

[0030] FIG. 4C shows the linking between elastic rock
properties and rock composition and texture.

[0031] FIG. 5A-B illustrates the basic assumptions of
inhomogeneities and same volume fraction for the phases in
the inclusion scheme.

DETAILED DESCRIPTION

[0032] Mechanical rock properties are fundamental input
for reservoir stress modeling. Current means to determine
mechanical properties from logs is not accurate in shale gas
systems. Therefore if a quantitative link between deposi-
tional stratigraphy and mechanical stratigraphy can be estab-
lished to derive continuous mechanical properties, well-
drilling can be more efficiently accomplished.

[0033] Non-conventional reservoirs refers to reservoirs
that are not produced through conventional oil production
techniques and may include oil sand, shale, tight-gas sands,
coalbed methane, heavy oil, tar sands, etc. These reservoirs
generally cannot be simulated through conventional tech-
niques and data. Therefore, the strategy for non-conven-
tional reservoirs could be to constrain the uncertainty in
dynamic stress measurements by understanding the relation-
ship between observed deformation behavior and lithology.
[0034] The disclosed method therefore focuses on imple-
menting the micromechanical solutions for the overall elas-
tic moduli and its application to mineralogical data from the
well, especially as applied to wells located in or near
non-conventional reservoirs.

[0035] In one embodiment, this disclosure describes a
method of deriving continuous mechanical properties in a
subterranean formation having at least one wellbore therein,
said method comprising: a) obtaining mineralogy data
around said wellbore, wherein said mineralogy data com-
prises composition and texture parameters by depth, con-
stituent type, volume fraction of constituents, porosity,
shape factor, and elastic parameters including Young’s
modulus, Poisson’s ratio, bulk modulus, and Lame’s con-
stants; b) compiling said mineralogy data by volume fraction
and designating at least two of said constituent elasticity
parameters; ¢) inverting said elastic parameters into a com-
pliance tensor [C]; d) converting said shape factor param-
eters into Eshelby shape tensors; e) performing continuum
micromechanical elastic properties modeling iteratively
using Eshelby’s inclusion method for heterogeneous com-
posite materials; f) calculating overall micro-mechanically
averaged compliance tensors; and g) printing or displaying
results as at least one of (1) continuous plots of mechanical
properties vs. depth, (2) conceptual testing of the effect of
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changing constituent volume fractions, or (3) ternary plots
of volume fraction and elastic properties.
[0036] The results of the compliance tensor can be further
calibrated by using at least one of the following steps: 1)
substituting said elasticity parameters in step a) with field-
tested value or experimentally derived values from litera-
ture; ii) grouping mechanically similar constituents in said
mineralogy data; iii) separating mechanically dissimilar
constituents in said mineralogy data; iv) comparing the
calculated results with laboratory data; v) plotting curves
according to the calculated results and iteratively adjusting
unknown parameters to match predicted curves to control
points; and vi) interpreting discrepancies between the cal-
culated results and control points.
[0037] The MicroMechanical Elastic Properties Solver
(MMEPS) tool has been developed to perform the approach.
MMEPS reads in column-based mineralogical data, typi-
cally each data point will include a depth and the volume
fraction of each constituent. The user then has the option to
modify a data file for each potential constituent that includes
its parameters, or for some common constituents, default
parameters from the literature can be used.
[0038] The program then creates a data structure linking
the input mineralogy data to the parameter definitions. Each
data point (either sorted by depth or sample name) has its
constituents sorted by volume fraction and the software
builds compiled data structures depending on if a matrix
constituent (maximum volume %) needs to be defined, as is
the case for the self-consistent scheme.
[0039] A separate micromechanical Matlab script is modi-
fied and implemented to invert the elastic input parameters
into a compliance tensor [C] and to convert the shape factors
into the Eshelby shape tensor [S]. These are also inputs to
choose one of two multi-mineral micromechanical solutions
(self-consistent or a multi-component e.g., polycrystalline
scheme, after Nemat-Nasser and Hori, 1993). Other schemes
may be added if necessary.

[0040] MMEPS assembles all the data structures and

then runs a script that solves the multi-mineral micro-
mechanical equations:

CT=C+2 _ M (C-C) (- IO (C-coyIC-5o !

[0041] The above equation is solved using an iterative
numerical scheme using an initial guess of C and S%, for
example C°=C(u,v) and S°=S(v), where p,v are elastic
constants. The incremental form of the micromechanical
equation is solved by

TH=C- (- O ([T CHTY (- T3

[0042] From the new matrix C**' the updated elastic
parameter v'*! is determined and used to update S as
S+ (v**1). The iteration ends when norm(C™*+'-C")<critical
value, e.g. 10-5. The scheme generally converges in about
4~7 iterations with an error of <10%.

[0043] The program then outputs the overall “microme-
chanically averaged” compliance tensor [C] for each data
point. It has options to export compliance or to solve for
other stiffness moduli such as Young’s modulus, shear
modulus, etc.

[0044] A plotting script is run to create e.g., one or more
graphs, such as (1) depth vs. elastic property (in the case of
log-based data); (2) volume fraction vs. elastic property (in
the case of conceptual modeling of compositional mixing
effects); (3) a ternary plot comprised of a color contoured
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equilateral triangle, where the color is the elastic property
and the points of the triangle are volume fractions for
sedimentalogically sorted end-members (e.g., total clay-
carbonate-siliciclastics).

[0045] The solution results can be calibrated by at least
one of the following: (1) inputting the best-known constitu-
ent parameters using field-tested values or experimentally
derived values from the literature; (2) grouping mechani-
cally similar constituents in the original mineralogy data file
to reduce the number of independent variables that must be
calibrated; (3) separating mechanically dissimilar constitu-
ents in the original data file if necessary (e.g., separating
quartz grains from quartz overgrowth cement if thin section
data is also available); (4) comparing the solver predictions
with laboratory data for selected intervals to “lock-in”
constituent parameters and reduce the number of unknowns;
(5) iteratively adjusting remaining unknown parameters to
match the continuous predicted curves to control points; and
(6) using geologic experience to interpret remaining dis-
crepancies (e.g., a certain zone has undergone a unique
cementation process or thin micro-laminations are introduc-
ing anisotropic effects).

[0046] The technique offers an alternative way to derive
continuous mechanical elastic properties in the wellbore.
Previously, the only approach readily available to derive
continuous mechanical properties was based on dynamic
moduli measured with sonic velocity-based logging tools or
using empirical transforms for gamma ray and density logs.
The sonic-approach requires conversion using a dynamic-
static transform, which may be difficult to attain in horizon-
tal wells. The gamma ray and density log approach is
typically poorly calibrated and yields extreme non-unique
solutions.

[0047] The developed micromechanical approach in this
disclosure does not require a dynamic-static transform, and
is instead based on geologic description of the composition
and texture, and when applied to drilling cuttings data (e.g.,
XRD), can be used continuously along horizontal wells,
where there are often difficulties running the logging tools.

[0048] Referring to FIG. 1, which is a flow chart of the
disclosed method, as exemplified in a script for MATLAB.
However, the same concept can be applied to any software
that process geomechanical information.

[0049] In step 101, the first step of the method is to obtain
and import the mineralogy data around a particular wellbore
of interest. The mineralogy data is preferably column-based
and typically contains information such as the depth of the
location where the sample was taken, and the volume
fraction of each constituent. For example, for a sample that
was taken at 2,500 feet below surface and having quartz,
calcite, kerogen with 50% porosity, the data would read
2500-0.25-0.5-0.2-0.5.

[0050] In step 103, the user may modify and compile the
data file for each potential constituent that includes certain
useful parameters. In some embodiments, default param-
eters from literature or other verified sources may be used
for certain common constituents. For example, the param-
eters for a quartz grain may read: [Quartz—Young’s modu-
lus=30 GPa; Poisson’s ratio=0.15; shape factor a=b=c=1
(i.e. sphere)]. The program then creates a data structure
linking the input mineralogy data in step 101 to the param-
eter definitions. The data file can be sorted however the user
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wishes, and each data point has its constituents sorted by
volume fraction. The software thus builds a compiled data
structure.

[0051] In step 105, with this modified data file, the soft-
ware then inverts the elasticity parameters into an initial
compliance tensor [C]. The typical elastic inputs are
Young’s modulus E and Poisson’s ratio v. For the isotropic
case there are only two parameters and the elastic tensor can
be written as

Cijkl:}\‘éijékﬁ'p'(6z'jékl+}“6iléjl)

[0052] Where A and p are Lame constants, and A=K-2p1/3,
and K is the Bulk modulus, K=FE/3(1-2v), so that for
example, component

1-v

Cyp=——+ .
Lo Tey TToo

[0053] In step 107, the shape factor is converted to
Eshelby 6x6 shape tensor [S]. This is required to apply the
Eshelby inclusion as discussed above. For the most general
cases, the form of Eshelby’s shape tensor for an ellipsoidal
inclusion with semi-axes a,>a,>a; has the form as

In which Q and R are constants as Q=3/8w(1-v), and
R=(1-2v)/8n(1-v). The I terms are given as follows

[
[
4 1
5= A dras f df_f 1 - k2sin2é dé
(af - a%)\/af -a \/1 — k2sin¢ )
0

[2_ .2
Arna aras ary ar —az
L=
2

ayas

2]
—f 1 —k2sin2é de
0

(@3 —adai - a3

L=dn—1 -1
L-1;
P -ay T
b= g ie ek
3a? v

i

In which the parameter 6 and k have the form as

2 2 _ 2
.1 a3 a - a3

= -—=, k=
6 = sin 1 5, k= ——
ar ar —a3

Qatliy + Rl Qdili» — Rl Qaihis — Rl 0 0 0
Qaihi — Rl Qdihs+RL Qdihs —RD 0 0 0
Qaily — RIy Qdily — RI; Qdils + Rl 0 0 0
R
0 0 0 %(af+a§)112+ 5 U1+ 1) 0 0
R
0 0 0 0 %(u% +ad)iy + 5(12 +13) 0
R
0 0 0 0 0 %(a§+af)l31+5(13+11)

Jan. 26, 2017

For example, one special geometric case is an oblate spher-
oid with axes (a;=a,>a,)

2rata a a a2\
P 713[605—1_3 i} _3(1 i} _3]

@ -a3)" a al &

Inhy =n/3a; —113/4

[0054] Instep 109, the user elects either the self-consistent
or multi-component schemes, which means the elastic prop-
erties of the dominant constituents are either predetermined
or iteratively averaged and corrected. Either scheme pro-
vides effective medium approximations based on Eshelby’s
elasticity solution for an inhomogeneity embedded in an
infinite medium. The multiphase composite method (Nemat-
Nasser and Hori, 1993) is a generalization of the double-
inclusion method and assumes an ellipsoidal volume with
inclusions and its overall properties, all embedded in an
infinite elastic domain with a known elasticity. Interactions
are approximated and it is not necessary to have a matrix
phase. If a matrix phase is required, then the infinite elas-
ticity can be set in one of two ways. If the infinite elasticity

is set to the matrix constituent C, then the result is the
Mori-Tanaka model. If the infinite elasticity C of the
medium is selected as equal to the overall material proper-
ties of the composite, the self-consistent method is modeled
and numerical iteration is required to determine the con-
verged overall stiffness from an initial estimate.

[0055] The basic assumptions are inhomogeneities and
same volume fraction for the phases, as illustrated in FIG.
5A-B.

[0056] The user has the option to import experimentally
proven values for the elastic properties to be used as the
inclusion properties. Each constituent is assumed to be an
ellipsoidal elastic inclusion with a shape factor determined
by the axes (a,, a,, a;) that are input into the equation for
Eshelby’s 6x6 shape tensor [S]. The shape factor can be
determined from thin section analysis or other methods.

[0057] The internal stresses and strains are solved for
within the heterogeneous volume depending on whether
boundary strain or stress is applied. The convention of
Nemat-Nasser and Hori (1999) is implemented in the soft-
ware, however other equivalent forms of the homogeniza-
tion can be used. For example, consider the self-consistent
scheme and that a composite is subjected to the displace-
ment boundary condition:

HOZEOX
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Each phase is considered as a single inhomogeneity embed-
ded in the effect medium:

The localization tensor is then obtained from the effective
elastic properties of the medium:

T,=[+SM(ZL,-D)]™!

where T=2_ V¢ L A

[0058] Consider the composite being subjected to pre-
scribed tractions:

t°=cn

At the boundary, the strain is expressed using the Hooke’s
law:

e9-Mo®—e’-Mo
T, =T Mo—¢,=T,Mo

By applying the Hooke’s law again:

0,-L.T,MG

The stress concentration tensor is therefore written as:

Finally, the effective stiffness tensor is obtained from the
expression of the concentration tensors because:

N
M= Z &M, B,

=0

and ML=1

[0059] In summary, for self-consistent scheme, average
strain of the composite is:

€ge~€ =€ Where Ly, =L

[0060] Instead of dealing with phases of the above-men-
tioned heterogeneous solid, a technique is used to approxi-
mate an equivalent homogeneous solid with uniform prop-
erties. The difference between the properties of the
inclusions and matrix are addressed by introducing the
micromechanical concept of eigenstrains or eigenstresses
due to either far-field stresses or strains, respectively. The
eigenstrain €* is the suitable strain field introduced in the
domain such that the equivalent homogeneous solid has the
same strain and stress fields as the actual heterogeneous
solid under applied tractions or displacements, whichever
may be the case. The strain and stress fields over the matrix
M and inclusion Q are thus given as a function of the
uniform (e.g., €”) and disturbed (&%) states:
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2(x) = & + &4(x) and o(x) = ¢ + o4(x)

C: (& + &%) in M
a(x)=C: (e(x) - &"(x) = o a )
C: (& +&x) - (x)) inQ

[0061] The average eigenstrains over the matrix and inclu-
sions are substituted back into exact solutions for the aver-
age strain and stress over the volume. The elastic tensors are
derivations of the stress and strain fields.

[0062] In step 111, the overall elastic moduli are then
calculated according to predetermined equations and the
overall micromechanically averaged compliance tensor [C]
is obtained. The combined effect of all the inclusions among
the domain is determined by their respective volume frac-
tions. The constituents with higher volume fractions will be
assigned higher weight in the calculation. Here the inclu-
sions are assumed to be evenly distributed in the rock so that
the solution is not spatially variant. In other words, the
Representative Volume Flement or “RVE” is maintained.
The micromechanical solution scheme calculates the stress-
strain relationship inside and outside of the inclusion,
including at the boundaries, and then the overall elastic
moduli are solved for.

[0063] In one embodiment, equations are given for the
multi-phase composite, Mori-Tanaka, or self-consistent
methods, depending on how the matrix stiffness is pre-
scribed, and according the form:

T=C42, o= C)(C-Co) 1 TYC-C)1T-59) !

[0064] However, other suitable solution methods may also
be used interchangeably or integrated herein. For example,
a Hashin-Shtrikman definition may be added so that the
results are compatible with other two-component rock phys-
ics tools.

[0065] Hashin-Shtrikman Bounds.

[0066] The Hashin-Shtrikman bounds are the tightest
bounds possible from range of composite moduli for a
two-phase material. Specifying the volume fraction of the
constituent moduli allows the calculation of rigorous upper
and lower bounds for the elastic moduli of any composite
material. The so-called Hashin-Shtrikman bounds for the
bulk, K, and shear moduli p is given by:

[4
(K1 — K2y +

Kfis =Ky +

_1-é
K +4u2 /3

[4
21 = $)Kp +2u2)
Sua(Kz + 442 /3)

Hizs = t2 +
(-2t +

[0067] The upper bound is computed when K,>K,. The
lower bound is computed by interchanging the indices in the
equations. For the case of a solid-fluid mixture, K, is K, the
bulk modulus of the solid component, and K, is K the bulk
modulus of the fluid component.

[0068] In step 113, the user has the option to plot the
results as depth vs. elastic properties, volume fraction vs.
elastic properties, or as a ternary plot, depending on user’s
need. Depth vs. elastic property plots is typically used for
log-based data; the volume fraction vs. elastic property plot
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is typically used for conceptual modeling of compositional
mixing effects; the ternary plot usually comprises a color-
contoured equilateral triangle, where the color is the elastic
property and the points of the triangle are volume fractions
for sedimentalogically sorted end-members, such as total
clay-carbonate-siliciclastics as the three points.

[0069] Alternatively or in addition, the final results can be
recorded and stored and/or sent to another reservoir mod-
eling program. Ultimately, the results are used to make and
implement decisions on an optimal development plan for a
reservoir and/or to predict production levels and the like.

[0070] Steps 115-125 are several ways to calibrate the
modeling results in steps 111. These steps may be used alone
or two or more of these steps may be used together to obtain
more accurate results.

[0071] In step 115, the inputs for parameters of the con-
stituents are replaced with field-tested values or experimen-
tally derived values. The results are then compared with the
results from step 111 to see if further adjustment to the
method is necessary.

[0072] In step 117, the inputs for parameters of the con-
stituents are grouped based on mechanical similarities. The
similar ones are grouped together to reduce the number of
independent variables that need to be calibrated. By “simi-
lar” what is meant is the type of the constituent is the similar,
such as grouping two types of clay, and that grouping the
parameters results in no more than 30% variation, preferably
no more than 25%, and most preferably no more than 20%
variation from a solution that does not group similar con-
stituents.

[0073] In step 119, the inputs for parameters of the con-
stituents are separated if they are mechanically dissimilar.
For example, thin section petrographic characterization may
be available to distinguish quartz grains from quartz over-
growth cement. By “dissimilar” what is meant is the type of
the constituent is believed to be mechanically distinct, the
volume fraction of each constituent may be different, and
differentiating the components yields results with values are
at least 30% different from leaving the components grouped.
For example, matrix supporting clay should be distinguished
from grain-coating cement occurring from diagenetic altera-
tion.

[0074] In step 121, the modeling results are compared
with laboratory data for selected intervals (i.e. those with
same parameters), so as to “lock-in” the constituent param-
eters and reduce the number of unknowns. For example, a
laboratory sample with 90% quartz volume of and 10%
porosity can be used to set the constituent parameters for
quartz by assuming the porous volume has zero stiffness.

[0075] In step 123, the modeling results from step 111 are
iteratively adjusted for the remaining unknown parameters
to match the continuous prediction curves to control points.
For example, if the user can use step 121 to determine the
parameters for quartz and porosity phases, then a third
sample containing 80% quartz, 10% porosity, and 10% clay
could be used to solve for the unknown stiffness of the clay
phase.

[0076] In step 125, already existing geologic experience
can be helpful in interpreting the remaining discrepancies
between the calculated results and the actual observation.
For example, for certain zones that undergo a unique cemen-
tation process or thin micro-lamination could introduce
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anisotropic effects to the formation. Such experience can be
added to the software so that the discrepancies can be
accounted for and corrected.

[0077] The final results can be displayed in any suitable
manner, e.g., on a monitor, projected as a hologram, or
printed for use. Alternatively, the results can be stored in
memory, and/or forwarded to another program for further
use, e.g., in reservoir modeling, planning, and the like.
[0078] The following descriptions are intended to be illus-
trative only, and not unduly limit the scope of the appended
claims.

Test 1

[0079] The hypothetical variations of a two-phase rock
was tested for validating the model. Under the FE (finite
element) Model, a triaxial loading of heterogeneous plug
was assumed, where the Young’s moduli (E) varied for each
element. For this test, the results of the finite element method
are assumed to represent the actual overall stiffness of the
rock as a function of compositional variation. The overall
elasticity of the same rock formation was also modeled by
using Micromechanical Elastic Properties Solver (MMEPS)
of this disclosure. The results are shown in FIG. 2A-B.
[0080] Results show that Young’s modulus decreases non-
linearly with addition of the less stiff volume constituent.
For the two-phase model (FIG. 2A) the MMEPS solution
using the self-consistent scheme (E_SC) closely matches the
finite element result, whereas the multiphase-component
model (E_MPC) has greater error. The MMEPS implemen-
tation allowed for very rapid testing of an appropriate
micromechanical solution for this configuration, with gen-
eration of the input file taking only a minute and computa-
tional run-time of only a few seconds. In contrast, the finite
element solution set took several hours to build, run, and
compile results.

[0081] Similarly, FIG. 2B shows the robustness of the
MMEPS model to add a third volume phase, porosity, shown
for 5% and 10% volume fractions, and using the self-
consistent model. Setting up and running the model using
MMEPS took only a few seconds, whereas adding porosity
to the same finite element would have increased model setup
time and run time significantly.

Test 2

[0082] The MMEPS modeling approach was further tested
with two wells in the Muskwa formation, Horn River Basin
Canada. The method was as described above. FIG. 3A-B
shows the depth vs. Young’s Modulus chart, where the
actual core data taken at different depth was compared with
different volume fractions of clay, calcite and quartz. FIG.
3A-B shows that the modeling results closely follow the
actual core data.

Test 3

[0083] The third test shows the ability to link potentially
proprietary MMEPS mechanical solutions to other support-
ing data, for example micro-facies characterization from
published papers. An exemplary ternary plot based on the
MMEPS approach is shown in FIG. 4A-C, where the
mineralogy data was taken from the Lewis Shale in Wyo-
ming.

[0084] FIG. 4A is a ternary plot showing volume fraction
total clay-carbonate+pyrite-quartz+feldspar. The ternary
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plot shows data from a ConocoPhillips well overlaid on
digitized results from a publication by Almon et al. (2005),
who provide the mineral categorization scheme. All the
mineralogy data is overlaid on an MMEPS elastic properties
solution that is calibrated to unpublished laboratory data.
This is an easy way to quickly identify the elastic properties
of the formation.

[0085] FIG. 4B is an exemplary grouping of data points
based on similar properties for the data (Almon et al. 2005).
For example, Group 1 is likely to show similar properties as
massive organic mudstones; Group 2 is likely to show
similar properties as organic laminated shales; Group 3 is
likely to show similar properties as calcareous laminated
shales; Group 4 is likely to show similar properties as
organic bioturbated shales; and Group 5 is likely to show
similar properties as massive calcareous.

[0086] In this grouping, a centroid is iteratively calculated
by averaging the values of all included data points, and the
variation between each data point and the centroid is then
calculated. The overlapped grouping will adopt smaller
variation to remove the overlap. This grouping further
simplifies the modeling process, because instead of 100 data
points, now only 5 groups of similar properties are consid-
ered, and which can be linked back to the ternary plot.
Accuracy may be sacrificed for simplification, but an opti-
mal balance can be achieved by adjusting the grouping
criteria.

[0087] FIG. 4C shows the linking between elastic rock
properties and rock composition and texture (Almon et al.
2005). This compiled data is not only useful for current
wellbore, but can serve as additional references for future
wellbores that have similar properties in terms of composi-
tion, depth and elastic properties.

[0088] The minimum computer requirements are pro-
gramming language software that can incorporate the algo-
rithms. Because the equations include a numerical iterative
scheme, software capable of programming and running
iterative loops must be used. A robust graphical plotting tool
is necessary to display multiple solutions, such as continu-
ous logs or the properties ternary plot. The present imple-
mentation was performed in MATLAB, though other pro-
gramming environments such as FORTRAN could be used.
[0089] The following references are incorporated by ref-
erence in their entirety for all purposes:

[0090] WO2009108432 Rock physics model for simulat-
ing seismic response in layered fractured rocks.

[0091] US20140373616 Mechanical characterization of
core samples.
[0092] US20140352949 Integrating rock ductility with

fracture propagation mechanics for hydraulic fracture
design.

[0093] Voigt, W. (1889), Uber die Beziehung zwischen
den beiden Elastizitatskonstanten isotroper Korper, Wied.
Ann. Physik, Vol. 38, 573-587.

[0094] Budianksy, B. (1965), On the elastic moduli of
some heterogeneous materials, J. Mech. Phys. Solids, Vol.
13, 223-227.

[0095] Hashin, Z. (1962), The elastic moduli of heteroge-
neous materials, ASME J. Appl. Mech., Vol. 29, 143-150.

[0096] Hashin, Z. and Shtrikman, S. (1963), A Variational
approach to the theory of the elastic behavior of multiphase
materials, J. Mech. Phys. Solids, Vol. 11, 127-140.

Jan. 26, 2017

[0097] Hashin, Z. (1968), Assessment of the self-consis-
tent scheme approximation, J. Compos. Mater., Vol. 2,
284-300.

[0098] Hill, R. (1965), A self-consistent mechanics of
composite materials, J. Mech. Phys. Solids, Vol. 13, 213-
222.

[0099] Kroner, E. (1958), Berechnung der elastischen
Konstanten des Vielkristalls aus den Konstanten des Eink-
ristalls, Z. Phys. Vol. 151, 504-518.

[0100] Mori, T., and Tanaka, K. (1973), Average stress in
matrix and average elastic energy of materials with misfit-
ting inclusions, Acta Met., Vol. 21, 571-574.

[0101] Nemat-Nasser, S., and Hori, M. (1999). Microme-
chanics: overall properties of heterogencous materials.
Elsevier Science B.V., Amsterdam, The Netherlands, Sec-
ond edition, 786 pages.

What is claimed is:

1. A method of deriving continuous mechanical properties
in a subterranean formation having at least one wellbore
therein, said method comprising:

a) obtaining mineralogy data around a wellbore, wherein
said mineralogy data comprises composition and tex-
ture parameters by depth: constituent type, volume
fraction of constituents, porosity, shape factor, and
elastic parameters including Young’s modulus, Pois-
son’s ratio, bulk modulus, and Lame’s constants;

b) compiling said mineralogy data by volume fraction and
designating at least two of said constituent elasticity
parameters;

¢) inverting said elastic parameters into a compliance
tensor;

d) converting said shape factor parameters into Eshelby
shape tensors;

e) performing continuum micromechanical elastic prop-
erties modeling iteratively using Eshelby’s inclusion
method for heterogeneous composite materials;

f) calculating overall micro-mechanically averaged com-
pliance tensors; and

g) displaying results as at least one of (1) continuous plots
of mechanical properties vs. depth, (2) conceptual
testing of the effect of changing constituent volume
fractions, or (3) ternary plots of volume fraction and
elastic properties.

2. The method of claim 1, wherein in step b) said

mineralogy data is sorted according to the volume fraction.

3. The method of claim 1, further comprising calibration
step h):

h) calibrating said compliance tensor using at least one of

the following steps:

1) substituting said elasticity parameters in step a) with
field-tested value or experimentally derived values
from literature;

i) grouping mechanically similar constituents in said
mineralogy data;

iii) separating mechanically dissimilar constituents in
said mineralogy data;

iv) comparing the calculated results with laboratory
data;

v) plotting curves according to the calculated results
and iteratively adjusting unknown parameters to
match predicted curves to control points; and

vi) interpreting discrepancies between the calculated
results and control points.
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4. The method of claim 1, wherein the Eshelby’s tensor in
step d) is represented by the following matrix:

wherein al, a2, a3 are semi-axes and al>a2>a3; Q and R
are constant where Q=3/8m(1-v) and R=(1-2v)/8x(1-
v); the I terms are
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wherein the parameter 6 and k are represented as
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5. The method of claim 1, wherein in step d) the elastic
properties in the continuum micromechanical elastic prop-
erties modeling are imported from experimentally proven
values.

6. The method of claim 1, wherein in step e) the con-
tinuum micromechanical elastic properties modeling is per-
formed with the following equation:

N
C=c+) e -oc-cy e~ cyle-5T"

a=1

using an initial assumption of C and S“ to incrementally
solve the equation by

Ti=C-H(C*-O)[(C-C)T) [ ([C-Cy =57
7. The method of claim 6, wherein the initial assumption

C°=C(,v) and S°=S(v), where 1, v are elastic constants.

8. The method of claim 6, wherein the step e) is termi-
nated when norm(C"*'-C") is smaller than a predetermined
critical value.

Qathy + Rl Qdil» — Rl Qailis — Rl 0
Qaily — R, Qdilp+RL, Qdily—RL 0
Qaily — RIy Qdily, — RI; Qdilss + Rl 0
R
0 0 0 %(af+a§)112+ SUi+h)
0 0 0 0
0 0 0 0

Jan. 26, 2017

0 0
0 0
0 0
0 0
1] R
5@+ adhs + 5(1 + 1) 0
Q R
0 5 (@ +abl + 5+ 1)

9. The method of claim 6, wherein the step ¢) is performed
for more than 3 iterations and fewer than 8 iterations.

10. A method of deriving continuous mechanical proper-
ties in a subterranean formation having at least one wellbore
therein, said method comprising:

a) obtaining mineralogy data around a wellbore, wherein
said mineralogy data comprises composition and tex-
ture parameters by depth: constituent type, volume
fraction of constituents, porosity, shape factor, and
elastic parameters including Young’s modulus, Pois-
son’s ratio, bulk modulus, and Lame’s constants;

b) compiling said mineralogy data by volume fraction and
designating at least two of said constituent elasticity
parameters;

¢) inverting said elastic parameters into a compliance
tensor;

d) converting said shape factor parameters into Eshelby
shape tensors;

e) performing continuum micromechanical elastic prop-
erties modeling iteratively using Eshelby’s inclusion
method for heterogeneous composite materials;

f) calculating overall micro-mechanically averaged com-
pliance tensors using at least one of the following steps:

1) substituting said elasticity parameters in step a) with
field-tested value or experimentally derived values
from literature;

i) grouping mechanically similar constituents in said
mineralogy data;

iii) separating mechanically dissimilar constituents in
said mineralogy data;

iv) comparing the calculated results with laboratory
data;

v) plotting curves according to the calculated results
and iteratively adjusting unknown parameters to
match predicted curves to control points; and

vi) interpreting discrepancies between the calculated
results and control points.

g) displaying results as at least one of (1) continuous plots
of mechanical properties vs. depth, (2) conceptual
testing of the effect of changing constituent volume
fractions, or (3) ternary plots of volume fraction and
elastic properties.
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11. The method of claim 1, wherein the Eshelby’s tensor
in step d) is represented by the following matrix:

Qathy + Rl Qdil» — Rl Qailis — Rl 0
Qaily — R, Qdilp+RL, Qdily—RL 0
Qaily — RIy Qdily, — RI; Qdilss + Rl 0
R
0 0 0 %(af+a§)112+ SUi+h)
0 0 0 0
0 0 0 0

wherein al, a2, a3 are semi-axes and al>a2>a3; Q and R
are constant where Q=3/8m(1-v) and R=(1-2v)/8x(1-
v); the I terms are
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12. The method of claim 10, wherein in step d) the elastic
properties in the continuum micromechanical elastic prop-
erties modeling are imported from experimentally proven
values.

13. The method of claim 10, wherein in step e) the
continuum micromechanical elastic properties modeling is
performed with the following equation:

N
C=c+) e -oc-cy - cy'e-s"

a=1

using an initial assumption of C and S* to incrementally
solve the equation by

T =CofH(C*-O)(C-CHTN[(C-CH 1 T=-5]
14. The method of claim 13, wherein the initial assump-
tion C°=C(u,v) and S°=S(v), where 1, v are elastic constants.

15. The method of claim 13, wherein the step e) is
terminated when norm(C***-C") is smaller than a predeter-
mined critical value.



