

US 20160025395A1

(19) United States (12) Patent Application Publication

Harkins

(10) Pub. No.: US 2016/0025395 A1 (43) Pub. Date: Jan. 28, 2016

(54) SYSTEM AND METHOD FOR RETROFITTING A REFRIGERATION SYSTEM FROM HCFC TO HFC REFRIGERANT

- (71) Applicant: Hudson Technologies, Inc., Pearl River, NY (US)
- (72) Inventor: Charles Harkins, Hampstead, NH (US)
- (21) Appl. No.: 14/877,609
- (22) Filed: Oct. 7, 2015

Related U.S. Application Data

- (63) Continuation of application No. 14/744,776, filed on Jun. 19, 2015.
- (60) Provisional application No. 62/032,129, filed on Aug. 1, 2014, provisional application No. 62/017,530, filed on Jun. 26, 2014.

Publication Classification

- (51) Int. Cl. *F25B 45/00* (2006.01) *C09K 5/04* (2006.01)

(57) **ABSTRACT**

A system and method for retrofitting a refrigeration system containing an HCFC refrigerant and a compatible lubricant, with an HFC refrigerant, comprising providing a transport container containing a mixture of a miscible lubricant and the HFC refrigerant, removing the HCFC refrigerant from the refrigeration system while maintaining at least a portion of a lubricant immiscible with the HFC refrigerant, and charging the refrigeration system with the mixture. The polyol ester lubricant may be present in a range exceeding about 5-15% by weight, e.g., 8%.

SYSTEM AND METHOD FOR RETROFITTING A REFRIGERATION SYSTEM FROM HCFC TO HFC REFRIGERANT

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] The present application is a Continuation of U.S. patent application Ser. No. 14/744,776, filed Jun. 19, 2015, now pending, and is a 35 U.S.C. §371 national stage filing of PCT/US15/37689, filed Jun. 25, 2015, now pending, which each claim benefit of priority from U.S. Provisional Patent Application No. 62/032,129, filed Aug. 1, 2014 and from U.S. Provisional Patent Application No. 62/017,530, filed Jun. 26, 2014, the entirety of which are expressly incorporated herein by reference

FIELD OF THE INVENTION

[0002] The present invention relates to the field of refrigerants, refrigeration systems, and refrigeration system lubricants.

BACKGROUND OF THE INVENTION

[0003] R-407C is an HFC refrigerant replacement for R-22, a HCFC refrigerant, in positive displacement systems such as new or existing residential and commercial air-conditioners and heat pumps. R-407C offers similar performance to R-22 and can be used to retrofit existing R-22 air-conditioning and refrigeration systems.

[0004] R-407C is a mixture of hydrofluorocarbons used as a refrigerant. It is a zeotropic blend of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a). R-32, R-125 and R-134a are present in the proportions 23%/25%/52% by weight (a ±2% tolerance is allowed for each of the components). R-407A is a mixture of 20% R32, 40% R125, and 40% R-134a, and is therefore R-407A is similar in many respects to R407C. Difluoromethane serves to provide the heat capacity, pentafluoroethane decreases flammability, tetrafluoroethane reduces pressure. R-22 is chlorodifluoromethane.

[0005] Most compressors require a lubricant to protect internal moving parts. The compressor manufacturer usually recommends the type of lubricant and proper viscosity that should be used to ensure acceptable operation and equipment durability. Recommendations are based on several criteria, which can include: lubricity; lubricant/refrigerant solubility; lubricant/refrigerant miscibility; compatibility with materials of construction; and thermal stability and compatibility with other lubricants. It is important to follow the manufacturer's recommendations for lubricants to be used with their equipment.

[0006] Lubricant return to the compressors is very important as well. One factor that affects this is the liquid-phase lubricant/refrigerant miscibility, particularly at evaporator temperatures. Miscibility is the ability of two liquids to mix and form a single liquid phase. Ideally, the lubricant-refrigerant pair have sufficient miscibility or mutual solubility to allow the lubricant to flow with the liquid refrigerant and return to the compressor in a single phase. Even if the lubricant/refrigerant pair are not miscible (two liquid phases form) in the evaporator, they may still have some degree of solubility. Solubility of refrigerant in lubricant lowers lubricant viscosity, which helps it flow through the evaporator and return to the compressor. This is why many refrigeration systems can operate properly, even though the lubricant and refrigerant are immiscible (yet partially soluble) at evaporation temperatures. Other factors, such as refrigerant vapor velocity and system geometry, play key roles in lubricant return. Overall, it is important to note that lubricant/refrigerant miscibility is helpful, but not necessarily essential for proper system operation.

[0007] In general, R-22 and mineral oil are miscible over most of the expected ranges of operating conditions for normal air conditioning and high to medium temperature operation. Miscibility is generally believed to aid lubricant return to the compressor. The miscibility of refrigerant and lubricant is determined by several factors: the relative amounts of refrigerant and lubricant present, the temperature, the chemical makeup of the lubricant and of the refrigerant, and the viscosity of the lubricant.

[0008] Therefore, it may be desirable in a retrofit of an existing system of this type to use a miscible lubricant, such as polyol ester lubricant, with R-407C refrigerant. In general, R-407C is miscible with polyol ester (POE) lubricant and immiscible with alkylbenzene and mineral oil lubricant.

[0009] Residual mineral oil or alkylbenzene left in a refrigeration system after a retrofit to any HFC refrigerant is performed is known to decrease the lubricant/refrigerant miscibility. This is one of the reasons why three oil changes are generally recommended when a system is being converted or retrofit to use HFC refrigerants and POE lubricants. Thus, a traditional recommendation is to replace all mineral oil or alkylbenzene lubricant with POE during a retrofit.

[0010] Emerson Climate Technologies (Copeland®) provided in 1995 & 2005 the following recommendations when conducting a changeover: "Copeland's only approved lubricants for use with R-407C are Polyol ester lubricants"; "Mineral oil lubricant, such as 3GS, cannot be used as the compressor lubricant. Copeland recommends the following lubricant choices: Polyol Ester (POE)"; "The mineral oil must be removed from the compressor crankcase. Hermetic compressors will have to be removed from the piping and the lubricant drained out through the suction stub. It is advisable to do an acid test on the lubricant removed"; "Those systems that have oil separators, oil reservoirs, oil floats and suction line accumulators must have the oil drained from them. If the liquid control device is going to be replaced, it is advisable that the suction line, liquid line, and evaporator coil be blown clean using properly regulated dry nitrogen"; "POEs are very hygroscopic. They will very quickly absorb moisture from the air once the container is opened Once the lubricant is added to the compressor, the compressor should be quickly installed. Like an open container, an open compressor with POE will absorb moisture. Add the correct amount of lubricant to the compressor. On systems using enhanced surfaces in the heat exchanger, excessive mineral oil can adversely effect the heat transfer due to logging. Therefore, it is desirable to have no more than one percent mineral oil in systems employing these types surfaces." lvhvac.com/cope_bulletins/95-14.pdf.

[0011] Dupont (2004) advises that no more than 5% mineral oil remain in the refrigeration system after a changeover from R-22 to R-407C. (www2.dupont.com/Refrigerants/en_ US/assets/downloads/h70004_Suva407C_retrofit_guide. pdf)

[0012] Similarly, Tecumseh advised in 2009 (www.air-innovations.nl/web/pdf/GUIDELINES-FOR-UTILIZATION-OF-R407C.pdf): **[0013]** Synthetic Lubricants: Polyol Esters (POEs) and Polyvinyl Ethers (PVEs)

[0014] A) Miscibility

- **[0015]** 1. Miscibility is the ability of the lubricant and the refrigerant to mix. This miscibility is a very important factor in providing proper heat transfer and in returning lubricant to the compressor in a refrigeration system over its range of operating temperatures.
- [0016] 2. R407C and Mineral oils (MO) are not miscible[0017] 3. Polyol Ester (POE) as well as Polyvinyl Ether
- (PVE) oils and R407C are miscible.
- [0018] 4. R407C and Synthetic Alkylate (SA) oils are partially miscible

[0019] C) Compatibility . . .

[0020] 2. While polyol ester and polyvinyl ether oils are compatible with mineral oils, they should not be indiscriminately mixed with mineral oils in R407C refrigerant systems. This practice could result in the inability of the oil to return to the compressor and/or reduce heat transfer performance in the evaporator. However, small amounts up to 5% of mineral oil are acceptable in field retrofit situations (1% or less is preferred).

[0021] Ennio Campagna et al., "The Use of R-407C: Applications and Guidelines", makina.beun.edu.tr/eskisite/akademik_kadro/meyriboyun/mak723/The_Use_of R-407C. pdf, states:

[0022] 1) General Considerations for HFC Refrigerants

- **[0023]** Systems which use R407C normally have compressors charged with a miscible lubricant such as POE (polyolester). There are many manufacturers and grades of these lubricants. R-407C is generally not used with mineral or alkyl-benzene (i.e. hydrocarbon based) oils as the miscibility is not adequate to ensure satisfactory oil return to the compressor. It is very important that, when servicing a system and oil is needed, the correct oil be used. Seek guidance from the system or compressor manufacturer on which specific oil to use in a maintenance situation.
- [0024] ***
- [0025] b) System contamination with mineral oils, or with R22, can have a serious effect on performance and system reliability. Systems which use enhanced tube heat exchangers (evaporators and condensers) are particularly vulnerable to performance degradation arising from the presence of HC based oils. It is strongly recommended that dedicated service gauge sets are used for R407C to prevent inadvertent contamination.

[0026] Similarly, Herronhill provides general guidelines to assist in the replacement of R22 condensing units with equivalent R407C units (2004, www.heronhill.co.uk/technical-information/40/converting-r22-systems-to-r407c), stating "Condensing units built and supplied by IMI Air Conditioning Ltd. (now Marstair Ltd) before 1999, for use with R22 will contain mineral oil. R407C units will contain polyolester oil (POE). Check the compressor label to confirm the type of oil in the system. For safe system operation it is essential to remove the mineral oil from the existing system, as R407C is not compatible with mineral oil. On completion of the change over the concentration of mineral oil remaining in the system should not exceed 5% of the total oil charge.

[0027] Sundaresan, S. G.; Pate, M. B.; Doerr, T. M.; and Ray, D. T., "A Comparison of the Effects of POE and Mineral Oil Lubricants on the In-Tube Evaporation of R-22, R-407C and R-410A" (1996). International Refrigeration and Air Conditioning Conference. Paper 322. docs.lib.purdue.edu/ iracc/322, describe tests on the heat transfer efficiency of R-22, R-407C and R-410A on smooth and fined tubes, when neat, mixed with mineral oil, and when mixed with POE oil. POE-mineral oil mixtures were not tested. The heat transfer efficiency was higher for R-407C mixed with POE than with mineral oil.

[0028] Some more recent consideration of the choice or lubricant considers mixtures of lubricants, including mineral oil (MO) and polyol esters (POE). For example, The News, (Peter Powell, Dec. 3, 2012, www.achrnews.com/articles/ print/121529-retrofit-round-up-plenty-of-options) states:

[0029] Retrofit Round-Up: Plenty of Options

- **[0030]** Because no one HFC refrigerant can be retrofitted efficiently into the entire range of R-22 equipment, a wide and sometimes changing variety of HFCs have entered the market. The NEWS contacted a number of refrigerant manufacturers asking them to discuss some of their most popular HFCs for R-22 retrofits, the range of applications, and servicing tips.
- **[0031]** While this can provide a guideline, The NEWS urges readers to contact refrigerant manufacturers directly to discuss the specific R-22 system being considered for retrofit and what HFC refrigerants might best work in such applications. This listing is in alphanumerical order according to ASHRAE designations.
- [0032] R-407A
 - [0033] Gus Rolotti, technical marketing director of Arkema's North American fluorochemicals business, described R-407A as a refrigerant for low- and mediumtemp refrigeration. "Both R-407A and R-407C are well proven in the industry and provide good performance coupled with a lower GWP. They require the use of a POE oil." Because of that, there needs to be a changeout of the mineral oil in an existing R-22 system.
 - [0034] Noted Rolotti, "First, fix any leaks and identify components that may need to be replaced or fixed. Recover the R-22 completely, repair/replace any components as identified earlier and pull the system into a deep vacuum. Remove the required amount of mineral oil either by flushing with an external agent or using the R-22 from the system. Once most of the mineral oil is removed, replace it with POE oil and pull the system into a deep vacuum again. Refill with the appropriate amount of the retrofit refrigerant and run the system to set up controls and operating conditions. It is recommended that the filter drier is always replaced when the system is opened to ensure that there is fresh desiccant available to dry the system."
- [0035] R-407C
 - [0036] Arkema's Rolotti considers R-407C a choice for air conditioning. Retrofit procedures are similar to those with R-407A refrigerant.
 - [0037] In his comments regarding R-407C, Ron Vogl, technical marketing manager for Honeywell Refrigerants, described it as a choice for residential and light commercial a/c applications. The retrofit process for R-407C, he said, involves recovering R-22. Then, regarding oil, Vogl said, "POE is recommended. If existing MO is used, the addition of some POE to the system is required for proper oil return." The use of the refrigerant requires a minimum of 20 percent POE for closecoupled a/c systems with no liquid receivers. No TXV change required, but minor adjustments may be needed.

Replace any O-rings, seals, and other elastomers used in the system. In most air conditioning and heat pump systems this only applies to the Schrader valve seal and cap seal material. The next step is to evacuate and recharge. (Pounds of 407C=pounds of original refrigerant×70.6 divided by 73.9.) Then adjust system safety and operating controls; label system indicating refrigerant and charged lubricant.

[0038] National Refrigerants, states (date unknown, www. nationalref.com/pdf/R22_Alternatives.pdf):

- [0039] Will the blends work with mineral oil?
- [0040] HFC Refrigerants with Mineral Oil
- [0041] They don't mix so the mineral oil will form a separate layer in the receiver or other high-side liquid hold up.
- **[0042]** Mineral Oil will remain thick on the low side and not be returned back to the compressor.
- [0043] Will the blends work with mineral oil?
- [0044] Hydrocarbons (HC) in Blends
- **[0045]** HC soaks into mineral oil and thins it so it will circulate easily around the system.
- [0046] The thinned mineral oil will move easily on the low side.
- [0047] The mineral oil/HC mixture will still not mix with liquid HFC on the high side of the system. A layer of oil will still form in the receiver or other liquid hold-up.
- [0048] Partial POE Retrofit
 - [0049] Some amount of mineral oil is replaced with POE (does not require 3 flushes or less than 5% mineral oil).
 - [0050] The POE mixes well with the mineral oil, and the resulting mixture dissolves somewhat into liquid HFC.
 - **[0051]** The oil mixture will be carried by the liquid HFC out of the receiver.
 - **[0052]** National Refrigerants testing has shown that as little as 10% POE in mineral oil will circulate as much as an older compressor will pump out into a system.
 - [0053] These tests have also shown that there is very little difference in oil solubility with all of the blends on the market, regardless of the hydrocarbon content in the blend. Partial POE works with all of the blends, but hydrocarbons do not appear to help with liquid solubility of mineral oil with HFCs.

[0054] Therefore, there has been some evolution as to whether mineral oil can remain in the refrigeration system after a retrofit, with the permissible proportion of mineral oil increasing. In particular, National Refrigerants proposes a partial POE retrofit, with greater than 5% mineral oil remaining. However, the existing recommendations appear to require empirical testing for cases other than less than 5% mineral oil remaining.

[0055] See, U.S. Pat. Nos. 2,834,748; 2,846,458; 2,889, 379; 2,917,480; 2,931,840; 2,970,988; 3,085,918; 3,384,828; 3,723,318; 3,884,828; 4,138,855; 4,198,313; 4,272,960; 4,465,786; 4,482,465; 4,788,352; 4,798,818; 4,810,403; 4,941,986; 4,944,890; 5,026,497; 5,053,155; 5,080,823; 5,108,637; 5,182,040; 5,227,245; 5,304,320; 5,318,716; 5,360,566; 5,370,812; 5,387,357; 5,417,871; 5,425,890; 5,458,798; 5,616,275; 5,622,644; 5,624,596; 5,626,790; 5,648,017; 5,672,293; 5,685,163; 5,714,083; 5,785,883; 5,788,886; 5,811,603; 5,968,406; 6,025,532; 6,106,740; 6,111,150; 6,117,356; 6,235,951; 6,258,292; 6,316,681; 6,374,629; 6,426,019; 6,516,837; 6,526,764; 6,589,355; 6,604,368; 6,606,868; 6,629,419; 6,673,976; 6,783,691; 6,858,571; 6,991,743; 7,238,299; 7,279,451; 7,341,984;

7,442,321; 7,465,698; 7,524,805; 7,629,306; 7,767,638; 7,825,081; 7,829,748; 7,833,433; 7,846,355; 7,862,742; 7,972,528; 8,008,244; 8,053,404; 8,101,672; 8,148,317; 8,444,874; 8,465,664; 8,551,354; 8,557,136; U.S. Published Patent Application Nos. 20020046568; 20030042463; 20040089839; 20040119047; 20040127383; 20040256594; 20050233923; 20050233931; 20050233932; 20050245421; 20050247905; 20060019857; 20060025322; 20060043331; 20060058560; 20060243944; 20060243945; 20070007488; 20070010592; 20070069175; 20070108403; 20070210275; 20070210276; 20070290163; 20070290177; 20080069177; 20080075673; 20080099190; 20080121837; 20080171652; 20080230738; 20080308763; 20080314073; 20090041677; 20090053695; 20090120619; 20090158771; 20090224199; 20090242828; 20090253820; 20090278076; 20090285764; 20090302285; 20090305876; 20100025619; 20100044619; 20100048961; 20100075046; 20100122545; 20100127209; 20100200798; 20110162410; 20110226983; 20110289748; 20120138846; 20120187331; 20120312048; 20130075063; 20130119299; 20130126776; 20130126777; 20130126778; CN101864276; CN95117074; DE4116274; EP0398147; EP0430169; EP0509673; EP0539952; EP0565265; EP0582451; EP0608164; EP0659862; EP0720639; EP0779352; EP0974571; EP1167894; EP1193305: EP1716216; EP1832640; EP1985680; EP2036943; EP2149592; EP2246649; EP2249104; GB2007000746; GB2435747; GB2440258; JP4110388; RU2073058; WO1998050331; WO2004037752; WO2004037913; WO2005042663; WO2005083028; WO2005103190; WO2005103191; WO2005103192; WO2005105947; WO2005108522; WO2005108523; WO2006094303; WO2007035697; WO2007053697: WO2007002625; WO2007099350; WO2007109748; WO2008027555; WO2008065011; WO2008076272; WO2008121776; WO2008121783; WO2008121785; WO2009047535; WO2009134957; WO2009114397; WO2009151669; WO2010002020; WO2010000993: WO2010000994; WO2010002023: WO2010056695: WO2010059677: WO2010065005; WO2010075046; WO2010088320; WO2010119265; WO2011019350; each of which is expressly incorporated herein by reference in its entirety.

SUMMARY OF THE INVENTION

[0056] The present invention provides a premixed HFC refrigerant and compatible POE lubricant, e.g., in a transport container. The amount of lubricant is selected to an amount between about 5% to 20% by weight of the refrigerant. Preferably, the amount is 8% by weight.

[0057] The amount of POE should be at least 10% of the total lubricant amount, with about 20% POE by weight of refrigerant representing the amount of POE in the absence of mineral oil.

[0058] The mixture is preferably provided in a transport container, typically DOT approved, such as a DOT-39 container.

[0059] The refrigerant-lubricant mixture is charged into the refrigeration system after recovery of the R-22 from the system, without special efforts to remove the mineral oil lubricant. Assuming that the residual mineral oil is 8-24% of the charge, and the mixed refrigerant includes 8% POE, the resulting mixture is about 25-50% of the total lubricant, and the resulting mixed lubricant is 16-32% of refrigerant charge. Therefore, the present technology provides a compromise amount of lubricant that is sufficient to provide a charge to a

range of refrigeration systems to be retrofitted, without having to remove mineral oil already in the system, measure the amount of oil removed or infer the total amount, measure an amount of POE to be added to the system based on the actual amount of R-407C added to the system, or measuring mineral oil/POE ratios.

[0060] Therefore, the present technologies vastly simplify the process for retrofitting, while achieving good results. Indeed, preliminary tests show that the efficiency of an R-22 air conditioning system is improved after the retrofitting, a surprising result given that the system itself is optimized for R-22 and mineral oil.

[0061] The container may be, for example, a 10, 15, 20, 30, 40, 50, 96, 123 pound or larger container. The amount of lubricant may be, for example, 0.8, 1.2, 1.6, 2.4, 3.2, 4, 8, or 10 pounds (8% lubricant). Bulk quantities may also be provided.

[0062] The amount of POE may be varied, for example, and may be about 5%, 6%, 7%, 7.5%, 8%, 9%, 10%, 12%, 12.5%, 15%, or the like. The precision of measurement may be, for example. $\pm 0.1\%$, $\pm 0.2\%$, $\pm 0.25\%$, $\pm 0.3\%$, $\pm 0.5\%$, $\pm 0.75\%$, $\pm 1\%$, or $\pm 2\%$. Preferably, the precision is within $\pm 0.5\%$.

[0063] The container may be a DOT 3, 3A, 3AA, 3AL, 3B, 3BN, 3E, 4B, 4BA, 4B240ET, 4BW, 4E, 39, steel drum, for example: DOT-3AL1800; DOT 4D; DOT-3; DOT-39; DOT-3A; DOT-3A1000; DOT-3A1200; DOT-3A150; DOT-3A1800; DOT-3A2000; DOT-3A225; DOT-3A240; DOT-3A2400; DOT-3A300; DOT-3A400; DOT-3A480; DOT-3A480X; DOT-3AA; DOT-3AA1000; DOT-3AA1200; DOT-3AA150; DOT-3AA1800; DOT-3AA2000; DOT-3AA225; DOT-3AA240; DOT-3AA2400; DOT-3AA300; DOT-3AA400; DOT-3AA480; DOT-3AAX1800; DOT-3AAX2000; DOT-3AAX2200; DOT-3AAX2400; DOT-3AL; DOT-3AL1000; DOT-3AL150; DOT-3AL1800; DOT-3AL2000; DOT-3AL225; DOT-3AL240; DOT-3AL2400; DOT-3AL400; DOT-3AL480; DOT-3AX1800; DOT-3AX2000; DOT-3AX2200; DOT-3AX2400; DOT-3B; DOT-3B150; DOT-3B1800; DOT-3B225; DOT-3B240; DOT-3B300; DOT-3B400; DOT-3BN400; DOT-3BN480; DOT-3E1800; DOT-3HT; DOT-3HT2000; DOT-3T1800; DOT-3T2000; DOT-3T2200; DOT-3T2400; DOT-4A; DOT-4AA480; DOT-4B; DOT-4B150; DOT-4B150; DOT-4B225; DOT-4B240; DOT-4B240ET; DOT-4B300; DOT-4B400; DOT-4B480; DOT-4BA; DOT-4BA225; DOT-4BA240; DOT-4BA300; DOT-4BA400; DOT-4BW; DOT-4BW225; DOT-4BW240; DOT-4BW300; DOT-4BW400; DOT-4BW480; DOT-4DA; DOT-4DS; DOT-4E225; DOT-4E240; DOT-4L; DOT-AAX2400; and ICC-3E1800.

[0064] The preferred embodiment encompasses R-407C. However, the method is more generally directed to a retrofitting of systems employing a range of refrigerants that generally require mineral oil, alkane or alkylbenzene lubricants (CFC, PCC, HCC, HCFC, CFO, HCFO), with refrigerants that generally require polymeric or oxygenated lubricants, e.g., POE, PVE (HFC, PFO) (CFC=Chlorofluorocarbon, CFO=Chlorofluoroolefin, HCFC=Hydrochlorofluorocarbon, HCFO=Hydrochlorofluoroolefin, HFC=Hydrofluorocarbon, HFO=Hydrofluoroolefin, PCC=Perchlorocarbon). See Table 1, en.wikipedia.org/wiki/List_of_refrigerants.

[0065] It is therefore an object to provide a transportable container for charging a refrigerant system, having a charging port, containing a polyol ester (POE) lubricant and a compatible HFC refrigerant in a predetermined proportion. The pro-

portion may be at least 2%, 3%, or 5% by weight and less than 25%, 20%, or 15% by weight, and preferably 8% by weight. [0066] It is another object to provide a composition for retrofitting an R-22 refrigeration system, comprising POE and R-407C. The POE may be present at between 2-25%, 3-20%, 5-15%, or preferably 8% by weight, with the balance substantially R-407C.

[0067] It is a further object to provide a method for retrofitting a refrigeration system from R-22 refrigerant to R-407C refrigerant, comprising evacuating the R-22 refrigerant from the refrigeration system while maintaining at least 25% of the lubricant, wherein the lubricant is not POE, and adding a premixture of POE mixed in R-407C to charge the refrigeration system. The POE may be present at between 2-25%, 3-20%, 5-15%, or preferably 8% by weight, with the balance substantially R-407C.

[0068] It is a still further object to provide a retrofit kit for an R-22 refrigeration system, comprising a DOT-approved transport container for R-407C containing a mixture of R-407C and POE, and at least one replacement seal compatible with R-407C. The POE may be present at between 2-25%, 3-20%, 5-15%, or preferably 8% by weight, with the balance substantially R-407C.

[0069] It is a still further object to provide a method for retrofitting a hermetically sealed refrigeration system from an HCFC refrigerant compatible with a mineral oil or alkyl benzene lubricant to a HFC refrigerant compatible with polyol ester lubricant, comprising: providing a transport container containing the HFC refrigerant mixed with polyol ester lubricant; withdrawing the HCFC from within the refrigeration system through a charge-discharge port, leaving at least a portion of the mineral oil or alkyl benzene lubricant; and charging the refrigeration system from the transport container with the HFC mixed with the polyol ester lubricant. The polyol ester lubricant may be present at between 2-25%, 3-20%, 5-15%, or preferably 8% by weight, with the balance substantially HFC.

[0070] Another object is to provide a method for retrofitting a system from an HCFC refrigerant compatible with a mineral oil or alkyl benzene lubricant to an HFC refrigerant compatible with a polyol ester lubricant, comprising: evacuating the HCFC from the system, leaving at least a portion of the mineral oil or alkyl benzene lubricant; and charging the refrigeration system with an HFC refrigerant mixed with a polyol ester lubricant in a predetermined ratio of 5-15% by weight.

[0071] A kit is provided for retrofitting an HCFC refrigeration system having residual mineral oil lubricant, comprising: a transport container, containing an HFC refrigerant mixed polyol ester lubricant. A kit is also provided for retrofitting an R-22 refrigeration system having residual mineral oil lubricant, comprising: a U.S. Department of Transportation certified transport container; and R-407C mixed with polyol ester lubricant. The polyol ester lubricant may be present at between 2-25%, 3-20%, 5-15%, or preferably 8% by weight. The mineral oil or alkyl benzene lubricant may be a mineral oil lubricant.

[0072] The HCFC to be replaced may comprise R-22, R-401A, R-409A, R-401B, R-409B, R-402A, R-402B, R-403B, R-403B, R-408A, R-502, and/or mixtures of HCFCs, for example as provided in Table 1.

[0073] The HFC may comprise R-134a, R-404A, R-407A, R-407C, R-407F, R-410A, R-417A, R-417B, R-422A, R-422B, R-422B, R-422D, R-424A, R-427A, R-428A,

R-434A, R-438A, R-442A, and RS07A, or for example, other blends of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a). Other HFCs or HFC blends, or HFC/HC blends, for example as provided in Table 1, may also be employed. The HFC may be a zeotropic blend.

[0074] The refrigeration system after recharging may have a concentration of about 15-32% mixed lubricant, or a concentration of about 20-25% mixed lubricant, or a concentration of about 15-25% mixed lubricant, by weight.

[0075] The transport container may be U.S. Department of Transportation compliant, e.g., DOT-39.

[0076] The metrics recited herein are intended to be interpreted according to common understanding and usage among those skilled in the art of refrigerant manufacture, distribution, and refrigeration system maintenance.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Example 1

[0077] A test was conducted of a residential air conditioning unit to determine the results of retrofitting an R-22 system with R-407C. In the test, the R-22 system, which was design and manufactured optimally for R-22, and used a mineral oil lubricant, was retrofitted with R-407C.

[0078] Instead of removing all of the mineral oil in the system, and replacing it with a defined amount of POE oil, which is required for R-407C, the R-22 was removed, and the residual mineral oil allowed to remain.

[0079] The evacuated system was recharged with a premixed quantity of R-407C with 8% by weight POE oil. Since R-407C is charged in the liquid phase, all of the oil, and most of the R-407C was transferred to the system from a transport container, e.g., DOT-39. The final POE concentration is estimated at 10-15% of the total oil in the system.

[0080] Prior to retrofitting, system was run for 13 hours over two days with the R-22 to collect the baseline data. The R-22 was then evacuated, and charged with R-407C to about 85% of the R-22 charge. The retrofitted refrigeration system with R-407C was then run for 91 hours.

[0081] The operating temperatures for R-22 (>86 F and <86 F) and R-407C (<86 F) were not the same, so performance measurements are not directly comparable, but the results support a conclusion that the R-407C does not degrade system efficiency performance.

[0082] Therefore, despite the various unknowns, including the amount of mineral oil remaining in the system, migration characteristics of the mixed lubricants around the system, the impact of the various lubricant phases on compressor lubrication, the operation of the system with R-407C was improved over the R-22 implementation.

Comparative Example 1

[0083] See: www.honeywell-refrigerants.com/india/?document=guide-to-retrofitting-ac-systems-from-r-22-to-r-422d-or-r-407c&download=1; www.honeywell.com/sites/servlet/com.merx.npoint.servlets.

DocumentServlet?docid=DB0284B 88-942E-B0A5-4028-CAFB85BB40AB, which are expressly incorporated herein by reference.

Comparative Example 2

[0084] See: www2.dupont.com/Refrigerants/en_US/assets/downloads/h70004_Suva407C_retrofit_guide.pdf, which is expressly incorporated herein by reference.

Comparative Example 3

[0085] See: opi.emersonclimate.com/CPID/GRAPHICS/ Types/AEB/95-14.pdf, which is expressly incorporated herein by reference.

Comparative Example 4

[0086] See: www.refrigerants.com/pdf/Nat-R407Broch. pdf, which is expressly incorporated herein by reference.

Comparative Example 5

[0087] See: neilorme.com/Tecumseh %20Guidelines %20R407c.shtml, which is expressly incorporated herein by reference.

Comparative Example 6

[0088] See: www.bristolcompressors.com/files/1313/ 5464/2815/application_bulletin_124.pdf, which is expressly incorporated herein by reference.

Comparative Example 7

[0089] See: americas.forane.com/export/sites/foraneamericas/.content/medias/downloads/literature/forane-technical-digest.pdf, which is expressly incorporated herein by reference.

[0090] Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.

Туре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number
CFC	R-211	1,1,1,2,2,3,3-Heptachloro-3- fluoropropane	C ₃ FCl ₇	422-78-6
CFC	R-112a	1,1,1,2-Tetrachloro-2,2- difluoroethane	$C_2F_2Cl_4$	76-11-9
CFC	R-213	1,1,1,3,3-Pentachloro-2,2,3- trifluoropropane	$C_3F_3Cl_5$	6/5/2354
CFC	R-215	1,1,1-Trichloro-2,2,3,3,3- pentafluoropropane	$C_3F_5Cl_3$	4259-43-2
CFC	R-113a	1,1,1-Trichlorotrifluoroethane	C ₂ F ₃ Cl ₃	354-58-5
CFC	R-112	1,1,2,2-Tetrachloro-1,2- difluoroethane	$C_2F_2Cl_4$	76-12-0

HCFC R-234cd 1,1-Dichloro-1,2,2,3-

tetrafluoropropane

	ASHRAE		Molecular		
Туре	Number	IUPAC Name	Formula	CAS Number	
CFC	R-113	1,1,2-Trichlorotrifluoroethane	C ₂ F ₃ Cl ₃	76-13-1	
CFC	R-114a	1,1-Dichlorotetrafluoroethane	$C_2F_4Cl_2$	374-07-2	
CFC	R-214	1,2,2,3-Tetrachloro-1,1,3,3-	$C_3F_4Cl_4$	2268-46-4	
		tetrafluoropropane			
CFC	R-216	1,2-Dichloro-1,1,2,3,3,3-	C ₃ F ₆ Cl ₂	661-97-2	
		hexafluoropropane			
CFC	R-114	1,2-Dichlorotetrafluoroethane	$C_2F_4Cl_2$	76-14-2	
CFC	R-216ca	1,3-Dichloro-1,1,2,2,3,3-	$C_3F_6Cl_2$	662-01-1	
	D 217	hexafluoropropane		122.96.6	
CFC	R-217	1-Chloro-1,1,2,2,3,3,3- heptafluoropropane	C ₃ F ₇ Cl	422-86-6	
CFC	R-217ba	2-Chloro-1,1,1,2,3,3,3-	C ₃ F ₇ Cl	76-18-6	
	K 21704	heptafluoropropane	egi /ei	/0 10 0	
CFC	R-C317	Chloroheptafluorocyclobutane	$C_4 ClF_7$	377-41-3	
CFC	R-115	Chloropentafluoroethane	C_2F_5Cl	76-15-3	
CFC	R-13	Chlorotrifluoromethane	CCIF ₃	75-72-9	
CFC	R-12	Dichlorodifluoromethane	CCl_2F_2	75-71-8	
CFC	R-C316	Dichlorohexafluorocyclobutane	$C_4Cl_2F_6$	356-18-3	
CFC	R-212	Hexachlorodifluoropropane	$C_3F_2Cl_6$	76546-99-3	
CFC	R-111	Pentachlorofluoroethane	C ₂ FCl ₅	354-56-3	
CFC	R-4 00	R-/114(50/50 wt %) OR	$50\% \text{ CCl}_2\text{F}_2 \bullet 50\%$		
		(60/40)(must be specified)	$C_2F_4Cl_2OR$		
			$60\% \text{ CCl}_2\text{F}_2$ •40%		
CFC	R-11	Trichlorofluoromethane	$C_2F_4Cl_2$ CCl_3F	75-69-4	
CFO	R-1112a	1,1-Dichloro-2,2-difluoroethylene	$C_2Cl_2F_2$	79-35-6	
CFO	R-1112a R-1113	Chlorotrifluoroethylene	$C_2 Cl_{21212}$ $C_2 ClF_3$	79-38-9	
ICC	R-130a	1,1,1,2-Tetrachloroethane	$C_2H_2Cl_4$	630-20-6	
ICC	R-140a	1,1,1-Trichloroethane (Methyl	$C_2H_3Cl_3$ or	71-55-6	
		chloroform)	CH ₃ ČCI ₃		
ICC	R-130	1,1,2,2-Tetrachloroethane	$C_2H_2Cl_4$	79-34-5	
ICC	R-14 0	1,1,2-Trichloroethane	C ₂ H ₃ Cl ₃	79-00-5	
ICC	R-150a	1,1-Dichloroethane	$C_2H_4Cl_2$	75-34-3	
ICC	R-150	1,2-Dichloroethane	$C_2H_4Cl_2$	107-06-2	
ICC	R-160	Chloroethane (ethyl chloride)	C_2H_5Cl	75-00-3	
ICC	R-20	Chloroform (Trichloromethane)	CHCl ₃	67-66-3	
ICC	R-40	Chloromethane	CH ₃ Cl	74-87-3	
łCC	R-3 0	Dichloromethane (Methylene chloride)	CH_2Cl_2	75-09-2	
ICC	R-120	Pentachloroethane	C ₂ HCl ₅	76-01-7	
ICFC	R-221	1,1,1,2,2,3-Hexachloro-3-	C ₃ HFCl ₆	422-26-4	
1010	10 221	fluoropropane	03111 016	122 20 1	
ICFC	R-121a	1,1,1,2-Tetrachloro-2-fluoroethane	C ₂ HFCl ₄	354-11-0	
ICFC	R-222c	1,1,1,3,3-Pentachloro-2,2-	C ₃ HF ₂ Cl ₅	422-49-1	
		difluoropropane			
ICFC	R-223cb	1,1,1,3-Tetrachloro-2,2,3-	C ₃ HF ₃ Cl ₄	422-50-4	
		trifluoropropane			
ICFC	R-232cb	1,1,1,3-Tetrachloro-2,2-	$C_3H_2F_2Cl_4$	677-54-3	
IOFO	D 22 /	difluoropropane		100 51 5	
ICFC	R-224cc	1,1,1-Trichloro-2,2,3,3-	$C_3HF_4Cl_3$	422-51-5	
ICEC	D 222	tetrafluoropropane 1,1,1-Trichloro-2,2,3-	CHEO	121211 71 7	
ICFC	R-233cc		$C_3H_2F_3Cl_3$	131211-71-7	
ICFC	R-122b	trifluoropropane 1,1,1-Trichloro-2,2-difluoroethane	C ₂ HF ₂ Cl ₃	354-12-1	
ICFC	R-1220 R-131b	1,1,1-Trichloro-2-fluoroethane	$C_2Hr_2Cr_3$ $C_2H_2FCr_3$	2366-36-1	
ICFC	R-121	1,1,2,2-Tetrachloro-1-fluoroethane	$C_2H_2H_2H_3$ C_2HFCl_4	354-14-3	
ICFC	R-122a	1,1,2-Trichloro-1,2-difluoroethane	$C_2HF_2Cl_3$	354-15-4	
ICFC	R-131a	1,1,2-Trichloro-1-fluoroethane	$C_2H_2FCl_3$	811-95-0	
ICFC	R-122	1,1,2-Trichloro-2,2-difluoroethane	$C_2 HF_2 Cl_3$	354-21-2	
ICFC	R-131	1,1,2-Trichloro-2-fluoroethane	$\tilde{C_2H_2FCl_3}$	359-28-4	
ICFC	R-223ca	1,1,3,3-Tetrachloro-1,2,2-	C ₃ HF ₃ Cl ₄	422-52-6	
		trifluoropropane			
ICFC	R-232ca	1,1,3,3-Tetrachloro-2,2-	$C_3H_2F_2Cl_4$	1112-14-7	
IOFC	D 22 / 1	difluoropropane		400 50 5	
ICFC	R-224cb	1,1,3-Trichloro-1,2,2,3-	$C_3HF_4Cl_3$	422-53-7	
ICEO	D 222-L	tetrafluoropropane	CHEC	401.00.9	
ICFC	R-233cb	1,1,3-Trichloro-1,2,2- trifluoronronane	C ₃ H ₂ F ₃ Cl ₃	421-99-8	
ICFC	P_22200	trifluoropropane 1,1,3-Trichloro-2,2,3-	CHEC	131221 26 9	
ICI'U	R-233ca	trifluoropropane	$C_3H_2F_3Cl_3$	131221-36-8	
HCFC	R-225cc	1,1-Dichloro-1,2,2,3,3-	C3HF5Cl2	13474-88-9	
-		pentafluoropropane	2 د د		

 $C_3H_2F_4Cl_2$

70192-63-1

TABLE 1-continued

HCFC R-244cb

1-Chloro-1,2,2,3,3-pentafluoropropane

1-Chloro-1,2,2,3-

tetrafluoropropane

 $C_3H_3F_4Cl$

67406-66-0

	TABLE 1-continued				
Туре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number	
	D 1001	11 Distance 122 to Brown strong		812.04.4	
HCFC HCFC	R-123b R-243cc	1,1-Dichloro-1,2,2-trifluoroethane 1,1-Dichloro-1,2,2-	$C_2HF_3Cl_2$ $C_3H_3F_3Cl_2$	812-04-4 7125-99-7	
nere	10-24500	trifluoropropane	031131 3012	1125-55-1	
HCFC	R-225eb	1,1-Dichloro-1,2,3,3,3-	C3HF5Cl2	111512-56-2	
		pentafluoropropane	5 5 2		
HCFC	R-132c	1,1-Dichloro-1,2-difluoroethane	$C_2H_2F_2Cl_2$	1842-05-3	
HCFC	R-252ec	1,1-Dichloro-1,2-difluoropropane	$C_3H_4F_2Cl_2$		
HCFC	R-234fb	1,1-Dichloro-1,3,3,3-	$C_3H_2F_4Cl_2$	64712-27-2	
HCFC	R-141b	tetrafluoropropane 1,1-Dichloro-1-fluoroethane	C ₂ H ₃ FCl ₂	1717-00-6	
HCFC	R-234cb	1,1-Dichloro-2,2,3,3-	$C_3H_2F_4Cl_2$	1/6/4071	
		tetrafluoropropane	-32-42		
HCFC	R-243cb	1,1-Dichloro-2,2,3-	$C_3H_3F_3Cl_2$	70192-70-0	
		trifluoropropane			
HCFC	R-132a	1,1-Dichloro-2,2-difluoroethane	$C_2H_2F_2Cl_2$	471-43-2	
HCFC HCFC	R-252cb R-141a	1,1-Dichloro-2,2-difluoropropane 1,1-Dichloro-2-fluoroethane	$C_3H_4F_2Cl_2$ $C_2H_3FCl_2$	1112-01-2 430-53-5	
HCFC	R-141a R-225bb	1,2-Dichloro-1,1,2,3,3-	$C_2H_3FCI_2$ $C_3HF_5CI_2$	422-44-6	
nere	R 22500	pentafluoropropane	03111 5012	722 77 0	
HCFC	R-234bc	1,2-Dichloro-1,1,2,3-	$C_3H_2F_4Cl_2$	149329-26-0	
		tetrafluoropropane			
HCFC	R-123a	1,2-Dichloro-1,1,2-trifluoroethane	C ₂ HF ₃ Cl ₂	354-23-4	
HCFC	R-225da	1,2-Dichloro-1,1,3,3,3-	$C_3HF_5Cl_2$	431-86-7	
HCFC	R-132b	pentafluoropropane 1,2-Dichloro-1,1-difluoroethane	C ₂ H ₂ F ₂ Cl ₂	1649-08-7	
HCFC	R-252dc	1,2-Dichloro-1,1-difluoropropane	$C_{2}H_{2}F_{2}C_{12}$ $C_{3}H_{4}F_{2}Cl_{2}$	1049-08-7	
HCFC	R-234ba	1,2-Dichloro-1,2,3,3-	$C_3H_2F_4Cl_2$	425-94-5	
	10 20 100	tetrafluoropropane	0311214012	120 5 1 0	
HCFC	R-141	1,2-Dichloro-1-fluoroethane	C ₂ H ₃ FCl ₂	430-57-9	
HCFC	R-261ba	1,2-Dichloro-2-fluoropropane	$C_3H_5FCl_2$	420-97-3	
HCFC	R-224ca	1,3,3-Trichloro-1,1,2,2-	$C_3HF_4Cl_3$	422-54-8	
HOLO	D 225-1	tetrafluoropropane		507.55.1	
HCFC	R-225cb	1,3-Dichloro-1,1,2,2,3- pentafluoropropane	$C_3HF_5Cl_2$	507-55-1	
HCFC	R-234cc	1,3-Dichloro-1,1,2,2-	C ₃ H ₂ F ₄ Cl ₂	422-00-5	
		tetrafluoropropane	5242		
HCFC	R-225ea	1,3-Dichloro-1,1,2,3,3-	C3HF5Cl2	136013-79-1	
		pentafluoropropane			
HCFC	R-243ec	1,3-Dichloro-1,1,2-	C ₃ H ₃ F ₃ Cl ₂	149329-27-1	
HCFC	D 224fa	trifluoropropane	CHEC	76140 20 1	
пстс	R-234fa	1,3-Dichloro-1,1,3,3- tetrafluoropropane	$C_3H_2F_4Cl_2$	76140-39-1	
HCFC	R-234ca	1,3-Dichloro-1,2,2,3-	$C_3H_2F_4Cl_2$	70341-81-0	
	10 20 100	tetrafluoropropane	0311214012	/	
HCFC	R-243ca	1,3-Dichloro-1,2,2-	C ₃ H ₃ F ₃ Cl ₂	67406-68-2	
		trifluoropropane	5552		
HCFC	R-243ea	1,3-Dichloro-1,2,3-	C ₃ H ₃ F ₃ Cl ₂	151771-08-3	
		trifluoropropane			
HCFC	R-252ca	1,3-Dichloro-2,2-difluoropropane	$C_3H_4F_2Cl_2$	1112-36-3	
HCFC	R-226cb	1-Chloro-1,1,2,2,3,3-	C ₃ HF ₆ Cl	422-55-9	
HOLO	D 225.	hexafluoropropane		(70.00.2	
HCFC	R-235cc	1-Chloro-1,1,2,2,3-	C ₃ H ₂ F ₅ Cl	679-99-2	
HCFC	R-124a	pentafluoropropane 1-Chloro-1,1,2,2-tetrafluoroethane	C ₂ HF ₄ Cl	354-25-6	
HCFC	R-124a R-244cc	1-Chloro-1,1,2,2-	$C_{3}H_{3}F_{4}Cl$	421-75-0	
nere	10 2 1 100	tetrafluoropropane	031131 401	121 10 0	
HCFC	R-226ea	1-Chloro-1,1,2,3,3,3-	C3HF6Cl	359-58-0	
		hexafluoropropane	5 0		
HCFC	R-244ec	1-Chloro-1,1,2,3-	C ₃ H ₃ F ₄ Cl		
		tetrafluoropropane			
HCFC	R-133b	1-Chloro-1,1,2-Trifluoroethane	C ₂ H ₂ F ₃ Cl	421-04-5	
HCFC	R-253ec	1-Chloro-1,1,2-trifluoropropane	C ₃ H ₄ F ₃ Cl		
HCFC	R-235fa	1-Chloro-1,1,3,3,3-	C ₃ H ₂ F ₅ Cl	677-55-4	
HOLO	D 2440	pentafluoropropane	OHEO	0700 64 5	
HCFC	R-244fb	1-Chloro-1,1,3,3-	$C_3H_3F_4Cl$	2730-64-5	
HCFC	R-253fc	tetrafluoropropane 1-Chloro-1,1,3-trifluoropropane	C ₃ H ₄ F ₃ Cl		
HCFC	R-142b	1-Chloro-1,1,3-difluoroethane	$C_3H_4F_3Cl$ $C_2H_3F_2Cl$	75-68-3	
HCFC	R-235ca	1-Chloro-1,2,2,3,3-	$C_3H_2F_5Cl$	28103-66-4	
		pentafluoropropane	5 2 3		

TABLE 1-continued

7

R-226 R-235 R-244 R-253

R-132

R-252

Chlorotetrafluoropropane Chlorotrifluoropropane

Dichlorodifluoroethane

Dichlorodifluoropropane

HCFC

HCFC

HCFC

TABLE 1-continued				
Туре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number
HCFC	R-133	1-Chloro-1,2,2-Trifluoroethane	C ₂ H ₂ F ₃ Cl	431-07-2
HCFC	R-253cb	1-Chloro-1,2,2-trifluoropropane	C ₃ H ₄ F ₃ Cl	70192-76-6
HCFC	R-253eb	1-Chloro-1,2,3-trifluoropropane	C ₃ H ₄ F ₃ Cl	
HCFC	R-142a	1-Chloro-1,2-difluoroethane	C ₂ H ₃ F ₂ Cl	25497-29-4
HCFC	R-262fb	1-Chloro-1,3-difluoropropane	C ₃ H ₅ F ₂ Cl	
HCFC	R-151a	1-Chloro-1-fluoroethane	C ₂ H ₄ ClF	1615-75-4
HCFC HCFC	R-271fb R-133a	1-Chloro-1-fluoropropane 1-Chloro-2,2,2-Trifluoroethane	C ₃ H ₆ FCl C ₂ H ₂ F ₃ Cl	75-88-7
HCFC	R-253ca	1-Chloro-2,2,3-trifluoropropane	$C_3H_4F_3Cl$	56758-54-4
HCFC	R-262ca	1-Chloro-2,2-difluoropropane	$C_3H_5F_2Cl$	420-99-5
HCFC	R-225aa	2,2-Dichloro-1,1,1,3,3- pentafluoropropane	$C_3HF_5Cl_2$	128903-21-9
HCFC	R-234ab	2,2-Dichloro-1,1,1,3- tetrafluoropropane	$\mathrm{C_3H_2F_4Cl_2}$	149329-24-8
HCFC	R-123	2,2-Dichloro-1,1,1-trifluoroethane	C ₂ HF ₃ Cl ₂	306-83-2
HCFC	R-234aa	2,2-Dichloro-1,1,3,3-	$C_3H_2F_4Cl_2$	17705-30-5
HCFC	R-225ba	tetrafluoropropane 2,3-Dichloro-1,1,1,2,3-	$C_3HF_5Cl_2$	422-48-0
HCFC	R-234bb	pentafluoropropane 2,3-Dichloro-1,1,1,2-	C ₃ H ₂ F ₄ Cl ₂	149329-25-9
HCFC	R-234da	tetrafluoropropane 2,3-Dichloro-1,1,1,3-		146916-90-7
		tetrafluoropropane	$C_3H_2F_4Cl_2$	
HCFC	R-243da	2,3-Dichloro-1,1,1- trifluoropropane	C ₃ H ₃ F ₃ Cl ₂	338-75-0
HCFC	R-226ba	2-Chloro-1,1,1,2,3,3- hexafluoropropane	C ₃ HF ₆ Cl	51346-64-6
HCFC	R-124	2-Chloro-1,1,1,2-tetrafluoroethane	C ₂ HF ₄ Cl	2837-89-0
HCFC	R-244bb	2-Chloro-1,1,1,2- tetrafluoropropane	$C_3H_3F_4Cl$	421-73-8
HCFC	R-226da	2-Chloro-1,1,1,3,3,3- hexafluoropropane	C ₃ HF ₆ Cl	431-87-8
HCFC	R-235da	2-Chloro-1,1,1,3,3- pentafluoropropane	C ₃ H ₂ F ₅ Cl	134251-06-2
HCFC	R-244db	2-Chloro-1,1,1,3- tetrafluoropropane	$C_3H_3F_4Cl$	117970-90-8
HCFC	R-253bb	2-Chloro-1,1,2-trifluoropropane	C ₃ H ₄ F ₃ Cl	
HCFC	R-244da	2-Chloro-1,1,3,3- tetrafluoropropane	C ₃ H ₃ F ₄ Cl	19041-02-2
HCFC	R-244ba	2-Chloro-1,2,3,3- tetrafluoropropane	C ₃ H ₃ F ₄ Cl	
HCFC	R-253ba	2-Chloro-1,2,3-trifluoropropane	C ₃ H ₄ F ₃ Cl	
HCFC	R-271d	2-Chloro-1-fluoropropane	C ₃ H ₆ FCl	
HCFC	R-271b	2-Chloro-2-fluoropropane	C ₃ H ₆ FCl	420-44-0
HCFC	R-225ca	3,3-Dichloro-1,1,1,2,2- pentafluoropropane	C ₃ HF ₅ Cl ₂	422-56-0
HCFC	R-226ca	3-Chloro-1,1,1,2,2,3- hexafluoropropane	C ₃ HF ₆ Cl	422-57-1
HCFC	R-235cb	3-Chloro-1,1,1,2,3- pentafluoropropane	C ₃ H ₂ F ₅ Cl	422-02-6
HCFC	R-244eb	3-Chloro-1,1,1,2- tetrafluoropropane	C ₃ H ₃ F ₄ Cl	
HCFC	R-244fa	3-Chloro-1,1,1,3- tetrafluoropropane	$C_3H_3F_4Cl$	
HCFC	R-253fb	3-Chloro-1,1,1-trifluoropropane	C ₃ H ₄ F ₃ Cl	460-35-5
HCFC	R-244ca	3-Chloro-1,1,2,2- tetrafluoropropane	$C_3H_3F_4Cl$	679-85-6
HCFC	R-244ea	3-Chloro-1,1,2,3- tetrafluoropropane	$C_3H_3F_4Cl$	
HCFC	R-253ea	3-Chloro-1,1,2-trifluoropropane	$C_3H_4F_3Cl$	
HCFC	R-262fa	3-Chloro-1,1-difluoropropane	C ₃ H ₅ F ₂ Cl	
HCFC	R-253fa	3-Chloro-1,3,3-trifluoropropane	C ₃ H ₄ F ₃ Cl	25107.00
HCFC	R-142 R-22	Chlorodifluoroethane	C ₂ H ₃ F ₂ Cl	25497-29-4 75-45-6
HCFC HCFC	R-22 R-262	Chlorodifluoromethane Chlorodifluoropropane	$CHClF_2$ $C_3H_5F_2Cl$	75-45-6 134190-53-7
HCFC	R-262 R-151	Chlorofluoroethane	$C_3H_5F_2CI$ C_2H_4CIF	110587-14-9
HCFC	R-31	Chlorofluoromethane	CH ₂ FCl	593-70-4
HCFC	R-271	Chlorofluoropropane	C ₃ H ₆ FCl	134190-54-8
HCFC	R-226	Chlorohexafluoropropane	C ₃ HF ₆ Cl	134308-72-8
HCFC	R-235	Chloropentafluoropropane	C ₃ H ₂ F ₅ Cl	134237-41-5
HCFC	R-244	Chlorotetrafluoropropane	C ₃ H ₃ F ₄ Cl	134190-50-4

TABLE 1-continued

8

134237-44-8

25915-78-0

134190-52-6

C₃H₄F₃Cl

 $\mathrm{C_2H_2F_2Cl_2}$

 $C_3H_4F_2Cl_2$

Туре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number
HCFC HCFC	R-21	Dichlorofluoromethane	CHFCl ₂	75-43-4 134237-45-9
HCFC	R-261 R-225	Dichlorofluoropropane Dichloropentafluoropropane	C ₃ H ₅ FCl ₂	127564-92-5
		Dichlorotetrafluoropropane	$C_3HF_5Cl_2$ $C_3H_2F_4Cl_2$	127564-83-4
ICFC ICFC	R-234 R-243	Dichlorotrifluoropropane	$C_3H_2F_4Cl_2$ $C_3H_3F_3Cl_2$	134237-43-7
ICFC	R-243 R-222	Pentachlorodifluoropropane	$C_3H_3C_3C_2$ $C_3HF_2Cl_5$	134237-36-8
ICFC	R-222 R-231	Pentachlorofluoropropane	$C_3H_2Cl_5$ $C_3H_2FCl_5$	134190-48-0
HCFC	R-500	R-/152a (73.8/26.2)	73.8% CCl ₂ F ₂ •26.2%	Carrene #7 ^[2]
	D 505	B (21 (70/22)	$C_2H_4F_2$	
HCFC	R-505	R-/31 (78/22)	78% CCl ₂ F ₂ •22% CH ₂ FCl	
HCFC	R-408A	R-/143a/22 (7 \pm 2/46 \pm 1/47 \pm 2)	$7 \pm 2\% C_2 HF_5 \bullet 46 \pm 1\% C_2 H_3 F_3 \bullet 47 \pm 1\% C_2 H_3 + 1\% C_2 H_3$	FX-10 ^{[2][1]}
HCFC	R-402B	R-/290/22 (38 ± 2/2 ± 1/60 ± 2)	2% CHClF ₂ 38 ± 2% C ₂ HF ₅ •2 ± 1% C ₃ H ₈ •60 ±	HP-81 ^{[2][1]}
HCFC	R-402A	R-/290/22 (60 $\pm 2/2 \pm 1/38 \pm 2$)	2% CHClF ₂ 60 \pm 2% C ₂ HF ₅ •2 \pm	HP-80 ^{[2][1]}
			1% C ₃ H ₈ •38 ± 2% CHClF ₂	
HCFC	R-416A	R-a/124/600 (59 + .5,-1/39.5 + 1,5/	59 + .5,-1%	FRIGC (FR-) ^[2]
		1.5 + 1,2)	$C_2H_2F_4 \bullet 39.5 +$	
			1,5% C ₂ HF ₄ Cl•1.5 +	
			1,2%	
			C_4H_{10}	
HCFC	R-420A	R-a/142b (88 + 1,-0/12 + 0,-1)	88 + 1,-0%	Choice
			$C_2H_2F_4$ •12 + 0,-1%	Refrigerant ^[1]
			$C_2H_3F_2Cl$	
ICFC	R-502	R-/115 (48.8/51.2)	48.8% CHClF ₂ •51.2%	
HCFC	R-501	R-/12 (75/25)	C ₂ F ₅ Cl 75% CHClF ₂ •25%	
			CCl ₂ F ₂	
HCFC	R-409A	R-/124/142b (60 $\pm 2/25 \pm 2/15 \pm 1$)	$60 \pm 2\%$ CHClF ₂ •25 ± 2% C ₂ HF ₄ Cl•15 ± 1%	FX-56 ^{[2][1]}
HCFC	R-409B	R-/124/142b (65 ± 2/25 ± 2/10 ± 1)	$\begin{array}{l} C_2H_3F_2Cl \\ 65 \pm 2\% \ CHClF_2 \bullet 25 \pm \\ 2\% \ C_2HF_4Cl \bullet 10 \pm \\ 1\% \end{array}$	FX-57 ^[2]
HCFC	R-414B	R-/124/600a/142b	$C_2H_3F_2Cl$ 50 ± 2% CHClF ₂ •39 ±	Hot Shot, ^{[2][1]}
nere	K-414D	$(50 \pm 2/39 \pm 2/1.5 \pm .5/9.5 + .5, -1)$	$50 \pm 2\%$ CHCH ₂ -39 \pm 2% C ₂ HF ₄ Cl•1.5 \pm .5% C ₄ H ₁₀ •9.5 + .5,-1%	Kar Kool ^[2]
		_ //_ //_	$C_2H_3F_2Cl$	
HCFC	R-414A	$\begin{array}{l} \text{R-}/124/600a/142b} \\ (51 \pm 2/28.5 \pm 2/4 \pm .5/16.5 + .5, -1) \end{array}$	$51 \pm 2\%$ CHClF ₂ •28.5 ± 2% C ₂ HF ₄ Cl•4 ± .5%	GHG-X4, ^[2] Autofrost, ^[2] Chill-It ^[2]
			C_4H_{10} •16.5 + .5,-1% $C_2H_3F_2Cl$	
HCFC	R-415B	R-/152a (25 ± 1/75 + 1)	$25 \pm 1\%$ CHClF ₂ •75 ±	
HCFC	R-415A	R-/152a (82 ± 1/18 ± 1)	$1\% C_2H_4F_2$ 82 ± 1% CHClF ₂ •18 ±	
HCFC	R-401C	R-/152a/124 (33 ± 2/15 + .5,-1.5/	1% C ₂ H ₄ F ₂ 33 ± 2% CHClF ₂ •15 +	MP-52 ^[1]
		52 ± 1)	.5,-1.5% C ₂ H ₄ F ₂ •52 ± 1%	
UOTO	D 401 -	D /152-/124 (52 - 2/12 - 5 - 1 5/	C_2HF_4Cl	ND 20[2][1]
HCFC	R-401A	$\begin{array}{l} \text{R-}/152a/124~(53 \pm 2/13 + .5, -1.5/\\ 34 \pm 1) \end{array}$	$53 \pm 2\%$ CHClF ₂ •13 + .5,-1.5% C ₂ H ₄ F ₂ •34 ± 1%	MP-39 ^{[2][1]}
			C_2HF_4Cl	
HCFC	R-401B	$\begin{array}{l} \text{R-/152a/124} \ (61 \pm 2/11 \pm .5, -1.5/\\ 28 \pm 1) \end{array}$	$61 \pm 2\%$ CHClF ₂ •11 + .5,-1.5% C ₂ H ₄ F ₂ •28 ± 1%	MP-66 ^{[2][1]}
HCFC	R-405A	R-/152a/142b/C318	$C_2 HF_4 Cl$ $C_2 HF_4 Cl$ $45 \pm 0\% CHClF_2 \bullet 7 \pm$	GREENCOOL
		$(45 \pm 0/7 \pm 1/5.5 \pm 1/42.5 \pm 2)$	$1\% C_2H_4F_2 \bullet 5.5 \pm 1\% C_2H_3F_2Cl \bullet 42.5 \pm$	G2015 ^[2]
			$2\% C_4 F_8$	
ICFC	R-509[A]	R-/218 (44/56)	44% CHClF ₂ •56%	Arcton TP5R2 ^[2]
			C ₃ F ₈	

TABLE 1-continued

9

TABLE 1-continued				
Гуре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number
CFC	R-412A	R-/218/142b (70 ± 2/5 ± 2/25 ± 1)	70 ± 2% CHClF ₂ •5 ± 2% C ₃ F ₈ •25 ±	Arcton TP5R ^[2]
CFC	R-406A	R-/600a/142b (55 \pm 2/4 \pm 1/41 \pm 0)	$1\% C_2H_3F_2Cl$ 55 ± 2% CHClF ₂ •4 ± $1\% C_4H_{10}$ •41 ±	GHG ^{[2][1]}
CFC	R-406B	R-/600a/142b (65 \pm 2/4 \pm 1/31 \pm 0)	$0\% C_2H_3F_2Cl$ $65 \pm 2\% CHClF_2 \cdot 4 \pm 1\% C_4H_{10} \cdot 31 \pm $	GHG-HP ^[2]
CFC	R-503	R-/13 (40.1/59.9)	0% C ₂ H ₃ F ₂ Cl 40.1% CHF ₃ •59.9% CClF ₃	
CFC	R-418A	R-0/22/152a (1.5 ± .5/96 ± 1/2.5 ± .5)	$1.5 \pm .5\% C_{3}H_{8}\bullet 96 \pm$ 1% CHClF ₂ •2.5 ±	
CFC	R-403B	R-0/22/218 (5 + .2,-2/56 \pm 2/39 \pm 0)	$.5\% C_2H_4F_2$ $5 \pm .2,-2\% C_3H_8 \pm 56 \pm 2\% CHClF_2 \pm 39 \pm 0\% CF_2$	ISCEON 69-L ^[2]
CFC	R-403A	R-0/22/218 (5 + .2,-2/75 ± 2/20 ± 0)	0% C_3F_8 5 + .2,-2% $C_3H_8 \cdot 75 \pm$ 2% CHClF ₂ • 20 ±	ISCEON 69-S ^[2]
CFC	R-506	R-/114 (55.1/44.9)	0% C ₃ F ₈ 55.1% CH ₂ FCl•44.9% C ₂ F ₄ Cl ₂	
CFC	R-504	R-/115 (48.2/51.8)	48.2% CH ₂ F ₂ •51.8% C ₂ F ₅ Cl	
CFC CFC	R-232 R-241	Tetrachlorodifluoropropane Tetrachlorofluoropropane	$C_3H_2F_2Cl_4$ $C_3H_3FCl_4$	134237-39-1 134190-49-1
CFC	R-241 R-223	Tetrachlorotrifluoropropane	$C_3H_3FCl_4$ $C_3HF_3Cl_4$	134237-37-9
CFC	R-242	Trichlorodifluoropropane	$C_3H_3F_2Cl_3$	134237-42-6
CFC	R-251	Trichlorofluoropropane	C ₃ H ₄ FCl ₃	134190-51-5
FC	R-224	Trichlorotetrafluoropropane	$C_3HF_4Cl_3$	134237-38-0
FC	R-233	Trichlorotrifluoropropane	C ₃ H ₂ F ₃ Cl ₃	134237-40-4
FO FO	R-1233zd R-411A	1-Chloro-3,3,3-trifluoropropene R-0/22/152a (1.5 + 0,-1/87.5 + 2,-0/	C ₃ H ₂ ClF ₃ 1.5 + 0,-1% C ₃ H ₆ •87.5 +	2730-43-0 GREENCOOL
	K IIII	11+0,-1)	2,-0% CHClF ₂ •11 + 0,-1% C ₂ H ₄ F ₂	G2018a ^[2]
CFO	R-411B	R-0/22/152a (3 + 0,-1/94 + 2,-0/ 3 + 0,-1)	$3 + 0,-1\% C_3 H_6 \cdot 94 +$ 2,-0% CHClF ₂ \cdot 3 + 0,-1% C ₂ H ₄ F ₂	GREENCOOL G2018b ^[2]
CFO	R-411C	R-0/22/152a (3 + 0,-1/95.5 + 2,-0/ 1.5 + 0,-1)	$C_2 M_4 L_2$ 3 + 0,-1% $C_3 H_6 \bullet 95.5 +$ 2,-0% CHClF ₂ •1.5 + 0,-1%	GREENCOOL G2018c ^[2]
			$C_2H_4F_2$	
0	R-1140	Chloroethylene (vinyl chloride)	C ₂ H ₃ Cl	75-01-4
20 20	R-1130 R-1120	cis-1,2-Dichloroethylene Trichloroethylene (trielene)	C ₂ H ₂ Cl ₂ C ₂ HCl ₃	156-59-2 79-01-6
ČC	R-329ccb	1,1,1,2,2,3,3,4,4- Nonafluorobutane	C_4HF_9	375-17-7
FC	R-347ccd	1,1,1,2,2,3,3-Heptafluorobutane	$C_4H_3F_7$	662-00-0
FC	R-236cb	1,1,1,2,2,3-Hexafluoropropane	C ₃ H ₂ F ₆	677-56-5
FC	R-227ea	1,1,1,2,3,3,3-Heptafluoropropane	C ₃ HF ₇	431-89-0
FC FC	R-236ea	1,1,1,2,3,3-Hexafluoropropane	C ₃ H ₂ F ₆	431-63-0
EC EC	R-338eea R-245eb	1,1,1,2,3,4,4,4-Octafluorobutane 1,1,1,2,3-Pentafluoropropane	C ₄ H ₂ F ₈	75995-72-1 431-31-2
FC FC	R-245eb R-134a	1,1,1,2,3-Pentanuoropropane 1,1,1,2-Tetrafluoroethane	C ₃ H ₃ F ₅	431-31-2 811-97-2
FC	R-134a R-236fa	1,1,1,3,3,3-Hexafluoropropane	$C_2H_2F_4$ $C_3H_2F_6$	690-39-1
FC	R-365mfc	1,1,1,3,3-Pentafluorobutane	$C_{4}H_{5}F_{5}$	406-58-6
č	R-245fa	1,1,1,3,3-Pentafluoropropane	$C_3H_3F_5$	460-73-1
°C	R-143a	1,1,1-Trifluoroethane	$C_2H_3F_3$	420-46-2
ⁱ C	R-ca	1,1,2,2,3,3,3-Heptafluoropropane	C_3HF_7	2252-84-8
C	R-245ca	1,1,2,2,3-Pentafluoropropane	$C_3H_3F_5$	679-86-7
FC	R-134	1,1,2,2-Tetrafluoroethane	$C_2H_2F_4$	359-35-3
FC	R-254cb	1,1,2,2-Tetrafluoropropane	$C_3H_4F_4$	40723-63-5
FC	R-245ea	1,1,2,3,3-Pentafluoropropane	$C_3H_3F_5$	24270-66-4
FC	R-143	1,1,2-Trifluoroethane	$C_2H_3F_3$	430-66-0
FC	R-152a	1,1-Difluoroethane	C ₂ H ₄ F ₂	75-37-6
FC	R-236me	1,2,2,2-Tetrafluoroethyl difluoromethyl ether	$C_3H_2F_6O$	57041-67-5
FC	R-152	1,2-Difluoroethane	$C_2H_4F_2$	624-72-6
re				
FC	R-E143a	2,2,2-Trifluoroethyl methyl ether Bis(difluoromethyl)ether	C ₃ H ₅ F ₃ O	460-43-5

TABLE 1-continued

Гуре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number
			. Jilliulu	
IFC	R-32	Difluoromethane	CH ₂ F ₂	75-10-5
IFC	R-245qc	Diffuoromethyl 1,1,2-	C ₃ H ₃ F ₅ O	69948-24-9
IFC	R-245mf	trifluoroethyl ether Difluoromethyl 2,2,2-	СНЕО	1885-48-9
пс	K-245IIII	trifluoroethyl ether	$C_3H_3F_5O$	1885-48-9
IFC	R-272	Difluoropropane	C ₃ H ₆ F ₂	
IFC	R-161	Fluoroethane	C_2H_5F	353-36-6
IFC	R-41	Fluoromethane	CH ₃ F	593-53-3
IFC	R-281	Fluoropropane	C ₃ H ₇ F	575 55 5
IFC	R-FE-36	Hexafluoropropane	$C_3H_2F_6$	359-58-0
IFC	R-254pc	Methyl 1,1,2,2-tetrafluoroethyl ether	$C_3H_4F_4O$	425-88-7
IFC	R-245mc	Methyl pentafluoroethyl ether	C ₃ H ₃ F ₅ O	22410-44-2
IFC	R-143m	Methyl trifluoromethyl ether	C ₂ H ₃ F ₃ O	421-14-7
IFC	R-E125	Pentafluorodimethyl ether	C ₂ HF ₅ O	3822-68-2
IFC	R-125	Pentafluoroethane	C_2HF_5	354-33-6
IFC	R-245cb	Pentafluoropropane	$C_3H_3F_5$	1814-88-6
IFC	R-	Perfluoroisopropyl methyl ether	$C_4H_3F_7O$	22052-84-2
TO	347mmy		0 11 5 0	275 02 1
IFC		Perfluoropropyl methyl ether	$C_4H_3F_7O$	375-03-1
IFC	R-421A	R-/134a (58 \pm 1/42 \pm 1)	$58 \pm 1\% C_2 HF_5 \cdot 42 \pm 1\% C_2 HF_5 + 1\% C_2 HF_5 +$	Choice
IEC	D 411D	$D_{1240} (95 + 1/15 + 1)$	$1\% C_2 H_2 F_4$	R421A ^[1]
IFC	R-421B	$R-/134a (85 \pm 1/15 \pm 1)$	$85 \pm 1\% C_2 HF_5 \cdot 15 \pm 1\% C_2 HF_5 \cdot 15 \pm 1\% C_2 HF_5$	Choice 421B ^[1]
IFC	R-417A	R-/134a/600	$1\% C_2 H_2 F_4$ 46.6 ± 1.1%	ISCEON 59, ^[2]
пC	x-41/A	$(46.6 \pm 1.1/50 \pm 1/3.4 + .1,4)$	$40.0 \pm 1.1\%$ C ₂ HF ₅ •50 ± 1%	NU-22 ^[2]
		(1,) = 1.1/50 = 1/5.4 + .1,4)	$C_2HF_5^{\bullet}30 \pm 1\%$ $C_2H_2F_4^{\bullet}3.4 + .1,4\%$	110-22
			$C_2H_2F_4$ - 5.4 + .1,4% C_4H_{10}	
IFC	R-417B	R-/134a/600	C_{4}^{11} C ₂ HF ₅ •18.3 ±	
	10 11/12	$(79 \pm 1/18.3 \pm 1/2.7 \pm .1,5)$	$1\% C_2 H_2 F_4 \bullet 2.7 +$	
		(=	.1,5%	
			C_4H_{10}	
IFC	R-437A	R-/134a/600/601 (19.5 + .5,-1.8/	19.5 + .5,-1.8%	
		78.5 + 1.5,7/1.4 + .1,2/	C ₂ HF ₅ •78.5 +	
		.6 + .1,2)	1.5,7%	
		. ,	$C_2H_2F_4 \bullet 1.4 + .1,2\%$	
			$C_4 H_{10} \bullet .6 +$	
			.1,2% C ₅ H ₁₂	
IFC	R-426A	R-/134a/600/601a	$5.1 \pm 1\% C_2 HF_5 \bullet$	RS-24 (new
		$(5.1 \pm 1/93 \pm 1/1.3 + .1,2/.6 + .1,2)$	$93 \pm 1\% C_2 H_2 F_4 \bullet 1.3 +$	comp.) ^[1]
			.1,2%	
			C_4H_{10} •.6 + .1,–.2%	
			C ₅ H ₁₂	100 IV
IFC	R-422B	R-/134a/600a (55 \pm 1/42 \pm 1/3 $+$.1,5)	$55 \pm 1\% C_2 HF_5 \cdot 42 \pm$	ICOR XAC1 ^[1]
			$1\% C_2 H_2 F_4 \bullet 3 +$	
TC	D 4005	D (124-)(00-)(551-0-1-1)	$.1,5\% C_4 H_{10}$	ROPON
IFC	R-422D	R-/134a/600a (65.1 + .9,-1.1/	65.1 + .9,-1.1%	ISCEON
		$31.5 \pm 1/3.4 + .1,4$	$C_2HF_5 \cdot 31.5 \pm 1\%$	MO29 ^[1]
			$C_2H_2F_4 \cdot 3.4 + .1,4\%$	
IFC	B 4110	$P_{124_2/600_2}(82 \pm 1/15 \pm 1/2 \pm 1 - 5)$	C_4H_{10}	ICOD VITI[1]
IFC	R-422C	$R-/134a/600a (82 \pm 1/15 \pm 1/3 + .1,5)$	$82 \pm 1\% C_2 HF_5 \cdot 15 \pm 1\% C_2 HF_5 \cdot 3 \pm 1\% C_2 HF_5 \cdot 3\% C_2 HF_5 + 1\% C_2 HF_5 \cdot 3\% C_2 HF_5 + 1\% C_2 H$	ICOR XLT1 ^[1]
			1% C ₂ H ₂ F ₄ •3 + .1,5% C ₄ H ₁₀	
IFC	R-422A	R-/134a/600a	$1,5\% C_4 H_{10}$ 85.1 ± 1% C ₂ HF ₅ •11.5 ±	ISCEON 79 ^[1]
пС	N- ₩22A	$(85.1 \pm 1/11.5 \pm 1/3.4 + .1,4)$	$85.1 \pm 1\% C_2 HF_5 \bullet 11.5 \pm 1\% C_2 H_2 F_4 \bullet 3.4 +$	TOCEON /91-1
		(05.1 ± 1/11.5 ± 1/5.4 ± .1,4)	$1\% C_2 H_2 F_4 + 3.4 + .1,4\%$	
			C ₄ H ₁₀	
IFC	R-424A	R-/134a/600a/600/601a	$C_4 H_{10}$ 50.5 ± 1% C ₂ HF ₅ •47 ±	RS-44 (new
		$(50.5 \pm 1/47 \pm 1.9 + .1,2/$	$1\% C_2 H_2 F_4 \bullet 1/.9 +$	$comp.)^{[1]}$
		1 + .1, + .2/.6 + .1,2)	.3,1%	* /
		, , , -,	C_4H_{10} •.6 + .1,2%	
			$C_{5}H_{12}$	
IFC	R-419A	R-/134a/E170 (77 ± 1/19 ± 1/4 ± 1)	$77 \pm 1\% C_2 HF_5 \cdot 19 \pm 10$	
		· /	$1\% C_2 H_2 F_4 \bullet 4 \pm$	
			1% C ₂ H ₆ O	
IFC	R-507[A]	R-/143a (50/50)	50% C ₂ HF ₅ •50%	AZ-50 ^{[2][1]}
			$C_2H_3F_3$	
IFC	R-404A	R-/143a/134a (44 ± 2/52 ± 1/4 ± 2)	$44 \pm 2\% C_2 HF_5 \bullet 52 \pm$	HP-62, ^{[2][1]} FX-
			10/ C II E +4 -	$70^{[2][1]}$
			$1\% C_2H_3F_3 \cdot 4 \pm$	701-11-1

TABLE 1-continued

Туре	ASHRAE Number	IUPAC Name	Molecular Formula	CAS Number
HFC	R-434A	$\begin{array}{l} R-/143a/134a/600a\\ (63.2 \pm 1/18 \pm 1/16 \pm 1/2.8 \pm .1,2) \end{array}$	$\begin{array}{c} 63.2 \pm 1\% \ C_2 HF_5 \bullet 18 \pm \\ 1\% \ C_2 H_3 F_3 \bullet 16 \pm \\ 1\% \ C_2 H_2 F_4 \bullet 2.8 + \\ .1,2\% \end{array}$	RS-45 ^[1]
HFC	R-428A	R-/143a/290/600a (77.5 ± 1/20 ± 1/.6 + .1,2/1.9 + .1,2)	$\begin{array}{c} 1.,-2.70\\ C_4H_{10}\\ 77.5 \pm 1\% C_2HF_5 \bullet 20 \pm \\ 1\% C_2H_3F_3 \bullet .6 + \\ .1,2\% C_3H_8 \bullet 1.9 + \\ .1,2\% \end{array}$	RS-52 ^[1]
HFC	R-423A	R-a/227ea (52.5 ± 1/47.5 ± 1)	C_4H_{10} 52.5 ± 1% $C_2H_2F_4$ •47.5 ±	
HFC	R-430A	R-a/600a (76 ± 1/24 ± 1)	$1\% C_3HF_7$ 76 ± 1% C ₂ H ₄ F ₂ •24 ±	
HFC	R-413A	R-/134a/600a (9 \pm 1/88 \pm 2/3 \pm 0,-1)	$1\% C_4 H_{10}$ 9 ± 1% C_3 F_8 • 88 ± 2% C_2 H_2 F_4 • 3 +	ISCEON 49 ^[2]
HFC	R-508[A]	R-/116 (39/61)	$0,-1\% C_4 H_{10}$ 39% CHF ₃ •61%	Klea 5R3 ^{[2][1]}
HFC	R-508B	R-/116 (46/54)	C ₂ F ₆ 46% CHF ₃ •54% C ₂ F ₆	Suva 95 ^{[2][1]}
HFC	R-440A	$\begin{array}{l} \text{R-0/134a/152a} \\ (.6 \pm .1/1.6 \pm .6/97.8 \pm .5) \end{array}$	$C_{2}F_{6}$.6 ± .1% C ₃ H ₈ •1.6 ± .6% C ₂ H ₂ F ₄ •97.8 ± .5%	
HFC	R-431A	R-0/152a (71 ± 1/29 ± 1)	$C_2H_4F_2$ 71 ± 1% $C_3H_8 \cdot 29 \pm$ 1% C H F	
HFC	R-410B	R-/125 (45 ± 1/55 ± 1)	$1\% C_2H_4F_2$ $45 \pm 1\% CH_2F_2 \cdot 55 \pm$ $1\% C_2HF_5$	AC9100 ^[1]
HFC	R-410A	R-/125 (50 + .5,-1.5/50 + 1.5,5)	$1\% C_2HF_5$ 50 + .5,-1.5% CH ₂ F ₂ •50 + 1.5,5% C ₂ HF ₅	AZ-20, ^[2] Puron, ^[2] Suva 9100 ^[2]
HFC	R-407B	R-/125/134a (10 $\pm 2/70 \pm 2/20 \pm 2$)	$\begin{array}{l} 10 \pm 2\% \ {\rm CH}_2 {\rm F}_2 \bullet 70 \pm \\ 2\% \ {\rm C}_2 {\rm HF}_5 \bullet 20 \pm \end{array}$	Klea 61 ^[2]
HFC	R-407D	R-/125/134a (15 $\pm 2/15 \pm 2/70 \pm 2$)	$2\% C_2H_2F_4$ $15 \pm 2\% CH_2F_2 \cdot 15 \pm 2\% C_2HF_5 \cdot 70 \pm 2\% C_2HF_5 + 2\% C_2HF_5 \cdot 70 \pm 2\% C_2HF_5 + 2\% C$	
HFC	R-407A	R-/125/134a (20 \pm 2/40 \pm 2/40 \pm 2)	$2\% C_2H_2F_4$ $20 \pm 2\% CH_2F_2\bullet 40 \pm$ $2\% C_2HF_5\bullet 40 \pm$ $2\% C_2HF_5\bullet 40 \pm$	Klea 60 ^{[2][1]}
HFC	R-407C	R-/125/134a (23 $\pm 2/25 \pm 2/52 \pm 2$)	$2\% C_2H_2F_4$ $23 \pm 2\% CH_2F_2 \cdot 25 \pm$ $2\% C_2HF_5 \cdot 52 \pm$ $2\% C_1HF_5 \cdot 52 \pm$	Klea 66, ^[2] AC9000 ^[1]
HFC	R-407E	R-/125/134a (25 $\pm 2/15 \pm 2/60 \pm 2$)	$2\% C_2H_2F_4$ $25 \pm 2\% CH_2F_2 \cdot 15 \pm$ $2\% C_2HF_5 \cdot 60 \pm$ $2\% C_1HF_5 \cdot 60 \pm$	
HFC	R-407F	R-/125/134a (30 ± 2/30 ± 2/40 ± 2)	$2\% C_2H_2F_4$ $30 \pm 2\% CH_2F_2 \bullet 30 \pm 2\% C_2HF_5 \bullet 40 \pm 2\% C_2H$	Genetron Performax LT ^{[1}
HFC	R-438A	R-/125/134a/600/601a (8.5 + .5,-1.5/ 45 ± 1.5/44.2 ± 1.5/1.7 + .1,2/ .6 + .1,2)	2% $C_2H_2F_4$ 8.5 + .5, -1.5% $CH_2F_2 \cdot 45 \pm 1.5\%$ $C_2HF_5 \cdot 44.2 \pm$ 1.5% $C_2H_2F_4 \cdot 1.7 + .1,2\%$ $C_4H_{10} \cdot 6 +$	KDD5, ^[1] ISCEON MO99 ^[1]
HFC	R-427A	$\begin{array}{l} \text{R-/125/143a/134a} \\ (15 \pm 2/25 \pm 2/10 \pm 2/50 \pm 2) \end{array}$	$\begin{array}{c} .1,2\% \ C_5 H_{12} \\ 15 \pm 2\% \ C H_2 F_2 \bullet 25 \pm \\ 2\% \ C_2 H F_5 \bullet 10 \pm \\ 2\% \ C_2 H_3 F_3 \bullet 50 \pm \end{array}$	Forane 427A ^[1]
HFC	R-439A	R-/125/600a (50 ± 1/47 ± 1/3 ± .5)	$2\% C_2H_2F_4$ $50 \pm 1\% CH_2F_2 \cdot 47 \pm 1\% C_2HF_5 \cdot 3 \pm 5\% C_2HF_5$	
HFC	R-425A	R-/134a/227ea (18.5 ± .5/69.5 ± .5/12 ± .5)	$\begin{array}{l} .5\% \ C_4 H_{10} \\ 18.5 \pm .5\% \ C H_2 F_2 \bullet 69.5 \pm \\ .5\% \\ C_2 H_2 F_4 \bullet 12 \pm .5\% \\ C_3 H F_7 \end{array}$	
HFC	R-435A	R-E170/152a (80 ± 1/20 ± 1)	$C_3 HF_7$ 80 ± 1% $C_2 H_6 O \bullet 20 \pm$ 1% $C_2 H_4 F_2$	
HFC	R-429A	R-E170/152a/600a (60 ± 1/10 ± 1/30 ± 1)	$60 \pm 1\% C_2 H_6 O \bullet 10 \pm 1\% C_2 H_4 F_2 \bullet 30 \pm 1\% C_4 H_{10}$	

TABLE 1-continued

	ASHRAE		Molecular		
Туре	Number	IUPAC Name	Formula	CAS Number	
HFC	R-23	Trifluoromethane (Fluoroform)	CHF3	75-46-7	
HFC	R-227ca2	Trifluoromethyl 1,1,2,2- tetrafluoroethyl ether	C ₃ HF ₇ O	2356-61-8	
HFC	R-227me	Trifluoromethyl 1,2,2,2- tetrafluoroethyl ether	C ₃ HF ₇ O	2356-62-9	
HFC	R-263	Trifluoropropane	C ₃ H ₅ F ₃		
HFO	R-1132a	1,1-Difluoroethylene	C ₂ H ₂ F ₂	75-38-7	
HFO	R-1234ze	1,3,3,3-Tetrafluoropropene	$C_{3}H_{2}F_{4}$	1645-83-6	
HFO	R-1234yf	2,3,3,3-Tetrafluoropropene	C ₃ H ₂ F ₄	754-12-1	
HFO	R-1141	Fluoroethylene (vinyl fluoride)	C ₂ H ₃ F	75-02-5	
PCC	R-1 0	Carbon tetrachloride (Tetrachloromethane)	CCl ₄	56-23-5	
PCC	R-110	Hexachloroethane	C ₂ Cl ₆	67-72-1	

TABLE 1-continued

[1]Composition of Refrigerant Blends, www.epa.gov/ozone/snap/refrigerants/refblend.html

[2]Andy's HVAC/R Web Page, users.isp.com/aschoen/refchart.pdf

What is claimed is:

1. A kit for retrofitting a refrigeration system operating with an HCFC refrigerant and a mineral oil lubricant, for operation with an HFC refrigerant and a polyol ester lubricant, comprising:

- a U.S. Department of Transportation regulation compliant container for common carrier transport;
- an HFC refrigerant; and
- a polyol ester lubricant in an amount of at least 5% by weight, and less than about 20% by weight.

2. The kit according to claim **1**, wherein the HFC refrigerant comprises a blend of diffuoromethane (R-32), pentafluoroethane (R-125), and 1,1,2-tetrafluoroethane (R-134a).

3. The kit according to claim **1**, wherein the HCFC refrigerant comprises R-22, the HFC refrigerant is R-407C, and the polyol ester lubricant is present in an amount of between 2% and 25% by weight of the R-407C.

4. The kit according to claim **1**, wherein the HCFC refrigerant comprises R-22, the HFC refrigerant is R-407C, and the polyol ester lubricant is present in an amount of between 5% and 15% by weight of the R-407C.

5. The kit according to claim **1**, wherein the HCFC refrigerant comprises R-22, the HFC refrigerant is R-407C, and the polyol ester lubricant is present in an amount of between 7.5% and 8.5% by weight of the R-407C.

6. The kit according to claim **1**, wherein the HFC is a refrigerant selected from the group consisting of R-134a, R-404A, R-407A, R-407C, R-407F, R-410A, R-417A, R-417B, R-422A, R-422B, R-422C, R-422D, R-424A, R-427A, R-428A, R-434A, R-438A, R-442A, and RS07A.

7. The method according to claim 1, wherein the U.S. Department of Transportation regulation compliant container for common carrier transport is compliant with at least one of U.S. Department of Transportation standards DOT-39, DOT 3, DOT 3A, DOT 3AA, DOT 3AL, DOT 3B, DOT 3BN, DOT 3E, DOT 4B, DOT 4BA, DOT 4B240ET, DOT 4BW, DOT 4E, DOT 3AL1800; DOT 4D; DOT-3A1000; DOT-3A1200; DOT-3A150; DOT-3A1800; DOT-3A2000; DOT-3A225; DOT-3A240; DOT-3A2400; DOT-3A300; DOT-3A400; DOT-3A480; DOT-3A480X; DOT-3AA; DOT-3AA1000; DOT-3AA1200; DOT-3AA150; DOT-3AA1800; DOT-3AA2000; DOT-3AA225; DOT-3AA240; DOT-3AA2400; DOT-3AA300; DOT-3AA400; DOT-3AA480; DOT-3AAX1800; DOT-3AAX2000; DOT-3AAX2200; DOT-3AAX2400; DOT-3AL; DOT-3AL1000; DOT-3AL150; DOT-3AL1800; DOT-3AL2000; DOT-3AL225; DOT-

3AL240; DOT-3AL2400; DOT-3AL400; DOT-3AL480; DOT-3AX1800; DOT-3AX2000; DOT-3AX2200; DOT-3AX2400; DOT-3B; DOT-3B150; DOT-3B1800; DOT-3B225; DOT-3B240; DOT-3B300; DOT-3B400; DOT-3BN400; DOT-3BN480; DOT-3E1800; DOT-3HT; DOT-3HT2000; DOT-3T1800; DOT-3T2000; DOT-3T2200; DOT-3T2400; DOT-4A; DOT-4AA480; DOT-4B; DOT-4B150; DOT-4B150; DOT-4B225; DOT-4B240; DOT-4B240ET; DOT-4B300; DOT-4B400; DOT-4B480; DOT-4BA; DOT-4BA225; DOT-4B400; DOT-4BA300; DOT-4BA400; DOT-4BW225; DOT-4BW240; DOT-4BW300; DOT-4BW400; DOT-4BW480; DOT-4DA; DOT-4DS; DOT-4E225; DOT-4E240; DOT-4L; DOT-AAX2400; and ICC-3E1800.

8. The kit according to claim **1**, wherein the U.S. Department of Transportation regulation compliant container for common carrier transport comprises a DOT-39 container.

9. The kit according to claim **8**, wherein the DOT-39 container has a capacity of 30 pounds, and is filled with about 2.4 pounds of polyol ester lubricant and about 27.6 pounds of HFC refrigerant.

10. The kit according to claim **8**, wherein the DOT-39 container has a capacity of 50 pounds, and is filled with about 4 pounds of polyol ester lubricant and about 46 pounds of HFC refrigerant.

11. A method for retrofitting a hermetically sealed refrigeration system from an HCFC refrigerant compatible with a mineral oil or alkyl benzene lubricant to a HFC refrigerant compatible with polyol ester lubricant, comprising:

providing a kit according to claim 1;

- withdrawing the HCFC from within the refrigeration system through a charge-discharge port, leaving at least a portion of the mineral oil or alkyl benzene lubricant; and
- charging the refrigeration system from the HFC mixed with the polyol ester lubricant from the U.S. Department of Transportation regulation compliant container for common carrier transport.

12. The method according to claim **11**, wherein the portion of the mineral oil or alkyl benzene lubricant remaining in the refrigeration system is at least 5% by weight of the HCFC refrigerant capacity of the refrigeration system.

13. The method according to claim **11**, wherein the at least a portion of the mineral oil or alkyl benzene lubricant comprises about 8% to 24% by weight of the charge capacity of the refrigeration system, and the refrigeration system after

said charging contains about 25% to 50% of the total lubricant by weight polyol ester lubricant.

14. The method according to claim 11, wherein the refrigeration system after said charging contains a mixed lubricant comprising the mineral oil or alkyl benzene lubricant and polyol ester lubricant in an amount of between 16% and 32% by weight.

15. The method according to claim **11**, wherein the mineral oil or alkyl benzene lubricant is a mineral oil lubricant, the HCFC refrigerant comprises R-22, and the HFC refrigerant comprises R-407C.

16. The method according to claim 11, wherein the polyol ester is provided in an amount of about 5% to 15% by weight of the HCFC refrigerant.

17. The method according to claim **11**, wherein the polyol ester is provided in an amount of about 8% by weight of the HCFC refrigerant.

18. The method according to claim 11, wherein the U.S. Department of Transportation regulation compliant container for common carrier transport is compliant at least one of U.S. Department of Transportation standards DOT-39, DOT 3, DOT 3A, DOT 3AA, DOT 3AL, DOT 3B, DOT 3BN, DOT 3E, DOT 4B, DOT 4BA, DOT 4B240ET, DOT 4BW, DOT 4E, DOT 3AL1800; DOT 4D; DOT-3A1000; DOT-3A1200; DOT-3A150; DOT-3A1800; DOT-3A2000; DOT-3A225; DOT-3A240; DOT-3A2400; DOT-3A300; DOT-3A400; DOT-3A480; DOT-3A480X; DOT-3AA; DOT-3AA1000; DOT-3AA1200; DOT-3AA150; DOT-3AA1800; DOT-3AA2000; DOT-3AA225; DOT-3AA240; DOT-3AA2400; DOT-3AA300; DOT-3AA400; DOT-3AA480; DOT-3AAX1800; DOT-3AAX2000; DOT-3AAX2200; DOT-3AAX2400; DOT-3AL; DOT-3AL1000; DOT-3AL150; DOT-3AL1800; DOT-3AL2000; DOT-3AL225; DOT-3AL240; DOT-3AL2400; DOT-3AL400; DOT-3AL480; DOT-3AX1800; DOT-3AX2000; DOT-3AX2200; DOT-3AX2400; DOT-3B; DOT-3B150; DOT-3B1800; DOT-3B225; DOT-3B240; DOT-3B300; DOT-3B400; DOT-3BN400; DOT-3BN480; DOT-3E1800; DOT-3HT; DOT-3HT2000; DOT-3T1800; DOT-3T2000; DOT-3T2200; DOT-3T2400; DOT-4A; DOT-4AA480; DOT-4B; DOT-4B150; DOT-4B150; DOT-4B225; DOT-4B240; DOT-4B240ET; DOT-4B300; DOT-4B400; DOT-4B480; DOT-4BA; DOT-4BA225; DOT-4BA240; DOT-4BA300; DOT-4BA400; DOT-4BW225; DOT-4BW240; DOT-4BW300; DOT-4BW400; DOT-4BW480; DOT-4DA; DOT-4DS; DOT-4E225; DOT-4E240; DOT-4L; DOT-AAX2400; and ICC-3E1800.

19. The method according to claim **1**, wherein the HFC refrigerant comprises a blend of diffuoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a), and the U.S. Department of Transportation regulation compliant container for common carrier transport comprises a DOT-39 compliant container.

20. A method for retrofitting a refrigeration system from an HCFC refrigerant mixed with a mineral oil or alkyl benzene lubricant to an HFC refrigerant, comprising:

- evacuating the HCFC from the system, leaving at least a portion of the mineral oil or alkyl benzene lubricant, the mineral oil or alkyl benzene lubricant being immiscible with the HFC refrigerant and comprising at least 5% by weight of a refrigerant charge capacity of the refrigeration system;
- providing at least one U.S. Department of Transportation regulation compliant container for common carrier transport containing the HFC refrigerant premixed with at least a polyol ester lubricant in an amount of at least 5% by weight of the HFC refrigerant; and
- charging the refrigeration system with the HFC refrigerant premixed with the polyol ester lubricant from the U.S. Department of Transportation regulation compliant container.

21. The method according to claim **20**, wherein the HFC refrigerant comprises a blend of diffuoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a), the polyol ester lubricant is provided in an amount between 5% and 15% by weight of the HFC refrigerant, and the U.S. Department of Transportation regulation compliant container comprises a DOT-39 compliant container.

* * * * *