(19) 日本国特許庁(JP)

再公表特許(A1) (11)国際公開番号

W02020/136864

発行日	令和	3年2月1	5日 (2021.2.15)			(43) 国際公開日	令和2年7月2日(2020.7.2)	
(51) Int	.Cl.			FΙ			テーマコード (参考)	
co	4 <i>B</i>	35/56	(2006.01)	C O 4 B	35/56		5H050	
co	4 B	35/00	(2006.01)	C O 4 B	35/56	180		
но	1 M	4/58	(2010.01)	C O 4 B	35/00			
но	1 M	4/139	(2010.01)	HO1M	4/58			
				HO1M	4/139			
					審査書	青求有 予備審查	請求 未請求 (全 29 頁)	
出馬	顏番号		特願2019-522342(日	P2019-522342)	(71) 出願人	501402730		
(21) 国際	祭出願	番号	PCT/JP2018/048448	3		株式会社アドマ	テックス	
(22) 国際出願日			平成30年12月28日	(2018.12.28)		愛知県みよし市	黒笹町丸根1099番地2	
(11)特許番号			特許第6564552号(日	P6564552)		0		
(45)特許公報発行日			令和1年8月21日 (20	019.8.21)	(71)出願人	000003609		
						株式会社豊田中	央研究所	
						愛知県長久手市	横道41番地の1	
					(74)代理人	110000604		
						特許業務法人	共立	
					(72)発明者	佐藤 仁俊		
						愛知県みよし市	黒笹町丸根1099番地2	
						0 株式会社ア	ドマテックス内	
					(72)発明者	渡辺 友祐		
						愛知県みよし市	黒笹町丸根1099番地2	
						0 株式会社ア	ドマテックス内	
							最終頁に続く	

(54) 【発明の名称】 MX en e粒子材料、スラリー、二次電池、透明電極、 MX en e粒子材料の製造方法

(57)【要約】

導電性を有するMX en e粒子材料及びその製造方法 を提供することを解決すべき課題とする。

M_aAl_bX_c、式中のMはTi、V、Cr、Zr、 Nb、Mo、Hf、Taからなる群から選択される1種 類以上の元素であり、XはC、[C_(1-x)N_x(0) < x 1)]、からなる群から選択される1以上の構造 からなる。aは2又は3、bは0.02超、cはaが2 の時には0.8から1.2、aが3の時には1.8から 2.6、で表される組成を持つMXene粒子材料から なる。そして、厚みの平均値が3.5nm以上20nm 以下、大きさ「(長辺+短辺)/2]の平均値が50n m以上300nm以下である粒子材料。上述の組成を持 つMXene粒子材料について粒子を上述した大きさと 厚みにすることにより、電気的特性や機械的特性に優れ たMXene粒子材料にすることができた。

【特許請求の範囲】

【請求項1】

M_aAl_bX_c、式中のMはTi、V、Cr、Zr、Nb、Mo、Hf、Taからなる 群から選択される1種類以上の元素であり、XはC、[C_(1.0-x)N_x(0 < x 1. 0)]、からなる群から選択される1以上の構造からなる。aは2又は3、bは0.02超 、cはaが2の時には0.8から1.2、aが3の時には1.8から2.6、で表される 組成を持つ粒子材料からなり、

厚みの平均値が3.5 nm以上20 nm以下、大きさ[(長辺 + 短辺) / 2]の平均値 が50 nm以上300 nm以下である粒子材料。

【請求項2】

10

MがTiであって、下記(1)~(4)のうちいずれか1つを満たす請求項1に記載の 粒子材料。

(1) X M C M S A U, a = 2, 0.65 b 0.03, 1.2 c 0.8, (2) X M [C (1.0-x) N (0 < x 1.0)] M S A U, <math>a = 2, 0.65 b0.03, 1.2 c 0.8,

(3)XがCからなり、a=3、0.65 b 0.03、2.6 c 1.8、 (4)Xが[C_(1.0-×)N_×(0<x 1.0)]からなり、a=3、0.65 b 0.03、2.6 c 1.8。

【請求項3】

圧粉体の表面抵抗が0.1 / 以上300 / 以下である請求項1又は請求項2に ²⁰ 記載の粒子材料。

【 請 求 項 4 】

MがTiであって、下記(1)と(2)のうちいずれか1つを満たす請求項1から3の うちのいずれか1項に記載の粒子材料。

(1) X が C からなり、 a が 2 の時、 真密度が 3 . 3 6 g / c m³ から 3 . 5 0 g / c
 m³、 a が 3 の時、 真密度が 3 . 7 0 g / c m³ から 4 . 4 5 g / c m³、

(2) X が [C (1.0-x) N x (0 < x 1.0)]からなり、 a が 2 の時、 真密度が 3.36g / cm³から 3.50g / cm³、 a が 3 の時、 真密度が 3.70g / cm³から 4.45g / cm³。

【請求項5】

請求項1から4のうちのいずれか1項に記載の粒子材料と、

前記粒子材料を分散する液状の有機材料と、

を有し、

前記粒子材料は前記有機材料中の粒子径分布における D 5 0 % が 5 0 n m 以上 5 0 0 n m 以下であるスラリー。

【請求項6】

請求項1~4のうちのいずれか1項に記載の粒子材料を電極活物質材料として有する二次電池。

【請求項7】

請 求 項 1 ~ 4 の う ち の い ず れ か 1 項 に 記 載 の 粒 子 材 料 を 導 電 材 料 と し て 有 す る 透 明 電 極 40

【請求項8】

M_aAl_bX_c、式中のMはTi、V、Cr、Sc、Zr、Nb、Mo、Hf、Taからなる群から選択される1種類以上の元素である。XはC、[C_(1.0-x)N_x(0 <x 1.0)]、からなる群から選択される1以上の構造からなる。aは2又は3、b は0.02超、cはaが2の時には0.8から1.2、aが3の時には1.8から2.6 、で表される組成を持つ原料に対して、

厚みの平均値が3.5 nm以上20 nm以下、大きさ[(長辺 + 短辺) / 2]の平均値 が50 nm以上300 nm以下である粒子材料を製造する剥離工程を有する粒子材料の製 造方法。

50

【請求項9】

M_a A l_d X_c、式中のMはTi、V、Cr、Sc、Zr、Nb、Mo、Hf、Taからなる群から選択される1種類以上の元素である。XはC、[C_(1.0-x)N_x(0< < x 1.0)]、からなる群から選択される元素からなる。aは2又は3、dは1、c は a が 2 の時には1、3 の時には 2 で、表される組成を持つMAX相セラミックス粉末に 対し、フッ化塩と塩酸との組み合わせでなる酸性物質を 2 0 から3 0 に制御された状態で反応させて、含有するA 1 元素の一部を除去することで前記原料を製造する前処理工 程を有する請求項 8 に記載の粒子材料の製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、粒子材料及びその製造方法、並びにその粒子材料を有するスラリー、二次電池、透明電極に関する。

【背景技術】

【0002】

従来より層状化合物であるTi₃A1C₂などのMAX相セラミックス粉末から酸処理 によりA1を除去して得られるMXene層状化合物からなる粒子材料(本明細書では適 宜「MXene粒子材料」と称したり、「層状化合物粒子材料」と称したり、単に「粒子 材料」と称したりすることがある。)が知られている(特許文献1、2、3、4)。これ らのMXene層状化合物は、A1層が除去された空隙層にNaイオンやLiイオンが貯 蔵/脱離可能であることから二次電池(蓄電池)の負極活物質材料、また導電性が優れて いることから透明導電膜材料などへの応用が期待されている。

[0003]

MAX相セラミックスは層状化合物であり、一般式はM_{n + 1}AX_nと表される。式中のMは遷移金属(Ti、Sc、Cr、Zr、Nbなど)、AはAグループ元素、XはCか、[C_(1.0-x)N_x(0 < x 1.0)]、nは1から3、で構成されている。 【0004】

その中、 A を A 1 とした時、 M - X との結合よりも M - A あるいは A - X の結合が弱い ため、酸処理で選択的に A 1 層が除去される。 H F 水溶液、あるいは 3 5 から 4 5 の L i F + H C 1 水溶液あるいは K F + H C 1 水溶液に 1 5 時間から 3 0 時間、浸漬するこ とによって A 1 層を溶解し、水洗後、沈降物(M X e n e クレイ)を 3 本ローラーでフィ ルム化して、二次電池の負極活物質材料、電磁波吸収材、ガス分離膜などの産業への利用 が試みられている。

[0005]

更に、水洗後の沈降物(MXeneクレイ)をエタノールなどのアルコールに置換した 後、超音波照射し、その上澄み液を採取することで層間の剥離が進行した薄片状の形態を 持つMXene粒子材料が得られることが報告され、二次電池の負極活物質材料、透明導 電膜への利用が試みられている。

[0006]

用途によっては、均一に剥離させたMXene粒子材料であり、有機溶媒中に高分散さ 40 せたスラリーが必須となる。従来技術においては、MAX相セラミックス粉末を酸処理し 、A1層を完全に除去した後、有機溶剤に置換した後、剥離を超音波照射による方法で行っている。溶媒に超音波を照射すると、キャビテーションが発生し、その圧壊により、粉 体どうしが衝突するメカニズムで層状化合物を構成する層の剥離が進行する。

[0 0 0 7]

しかしながら、キャビテーションの発生が起き易い水を用いたとしても、剥離が進行す るのは一部のみである。さらに水を用いるとMXene粒子材料の一部の表面が酸化して 電気抵抗が増加するという課題もある。また用途によってはキャビテーション発生が起き にくい有機溶媒中にて超音波照射を行う必要がある。 【0008】 10

20

我々の検討では、従来から行われているHF水溶液、又は35 から45 のフッ化塩 +塩酸への15時間から30時間の浸漬では、完全にAlを除去可能で、数層の単位格子 まで剥離可能となるが、一方で表面の一部が酸化し電気抵抗の増加をまねくことが分かっ た。我々が鋭意検討した所、20 から30 のフッ化塩+塩酸水溶液に、12時間から 30時間、浸漬すると、Alが残存するが、低抵抗のMXene粒子材料が得られること が分かった。しかし、従来の超音波照射などの剥離方法ではほとんど剥離できないという 問題があった。

(4)

【先行技術文献】

【特許文献】

[0009]

10

【特許文献2】特開2017-76739号公報 【特許文献3】米国特許出願公開第2017/0294546号明細書 【特許文献4】米国特許出願公開第2017/0088429号明細書 【発明の概要】

【発明が解決しようとする課題】

【特許文献1】特開2016-63171号公報

[0010]

本発明は上記実情に鑑み完成したものであり、二次電池の負極活物質材料、透明導電膜、導電性フィラー及び電磁波吸収材料、ガス分離膜などに応用可能で、屈曲性に優れ、導 電性を有する薄片状で層状化合物であるMXene粒子材料及びその製造方法、並びにそ の粒子材料を有するスラリー、二次電池の負極活物質、透明電極を提供することを解決す べき課題とする。

【課題を解決するための手段】

[0011**]**

上記課題を解決する目的で本発明者らは鋭意検討を行い以下の知見を得た。すなわち、 製造条件を調節することにより所定の組成を有し、所定の厚みと大きさの粒子材料を製造 することで、Naイオン、Liイオンを貯蔵/脱離可能な二次電池の負極活物質材料、高 い屈曲性などの高い性能を持つ電極を形成できる粒子材料を提供できることを見出した。 【0012】

層状化合物であるMXene粒子材料を電極などに応用する場合に、粉末状から剥離した薄片状の粉粒体とする必要がある。その場合に層状化合物は結晶構造的に、Al層を除去した時に形成される層間距離が大きな空隙層を有することにより、特許文献1~4に示すように、二次電池の負極活物質材料などへの応用が可能な電気特性を持つことになる。また剥離させて薄片化することにより、粉体面に強固に面接触することが可能となる。そのため、結晶構造的にAl層を除去して得られる大きな空隙層を有する層状構造を保持したまま、剥離させて薄片状の粉粒体にする必要がある。

【0013】

従来技術においては、特許文献3に示すように、粉末状MXene層状化合物から剥離 させて薄片化させる方法として、液中での超音波照射による方法が採用されている。超音 波照射することにより層状化合物粉末を衝突させて、極めて薄く剥離することができ、遠 心分離などの方法で、薄片状の粉粒体を取り出すことができている。薄片状の粉粒体の製 造方法として一般的な粉砕操作を採用すると、粉末状層状化合物粒子から薄片状に剥離す ることができず、1µmほどまで粒子径が小さくなった粉末状層状化合物粒子が得られる のみであった。

[0014]

本発明は、遠心分離で微小ビーズとスラリーを分離可能な機能を具備したビーズミルに おいて、10µmから300µmの微小サイズのビーズを用いたビーズミル処理を行うこ とで、遠心分離で分級操作を行って一部のみを取り出すことなく、薄片の厚みと大きさを 所定範囲まで剥離させることができ、二次電池の負極活物質材料、及び透明電極材料に適 した粒子材料を提供することが可能になるとの発見に基づき完成した。従来から行われて 20

10

30

いる300µmを超えるビーズやボールを用いたボールミルやビーズミル処理では、1µ m程度の粉末状の層状化合物粉粒体が得られるのみで、薄片状に剥離させることが不可能 であった。更に、薄片状の層状化合物である粒子材料中にA1を所定の範囲内で残存させ ることにより、表面酸化による電気抵抗の増加が抑制可能であった。 【0015】

(I)上記課題を解決する本発明の粒子材料は、M_aAl_bX_c、式中のMはTi、V 、Cr、Zr、Nb、Mo、Hf、Taからなる群から選択される1種類以上の元素であ り、XはC、[C_(1.0-x)N_x(0 < x 1.0)]からなる群から選択される1以 上の構造からなる。aは2又は3、bは0.02超、cはaが2の時には0.8から1. 2、aが3の時には1.8から2.6、で表される組成を持つ粒子材料からなる。そして 、厚みの平均値が3.5 n m以上20 n m以下であり、大きさ[(長辺 + 短辺) / 2]の 平均値が、50 n m以上300 n m以下である。上述の組成と大きさと厚みにすることに より、低電気抵抗であり、二次電池の負極活物質材料や透明電極に有効な材料にすること ができた。この(I)に開示の発明は、以下の(II)から(IV)の構成要素のうちの 1つ以上を任意に組み合わせることができる。

【0016】

(II)MがTiであって、下記(1)~(4)のうちいずれか1つを満たす粒子材料

【0017】

(3)XがCからなり、a=3、0.65 b 0.03、2.6 c 1.8、 (4)Xが[C_(1.0-×)N_×(0<x 1.0)]からなり、a=3、0.65 b 0.03、2.6 c 1.8。

【0018】

(III) 圧粉体の表面抵抗が0.1 / 以上300 / 以下であることが好ましい。圧粉体とする条件は、0.5 kg/cm²で 12mmの金型を用いてペレットを作製し、3t/cm²でCIP処理することによりペレット状の圧粉体を作製し、0.1mmの銅線を用いた4端子法にて測定できる。

【0019】

- (IV) M が T i であって、下記(1)、(2)のうちいずれか1つを満たす粒子材料。 【0020】
- (1) XがCからなり、aが2の時、真密度が3.36g/cm³から3.50g/cm³、aが3の時、真密度が3.70g/cm³から4.45g/cm³、
- (2) Xが[C_(1.0-x) N_x (0 < x 1.0)]からなり、aが2の時、真密度が3
 36g/cm³から3.50g/cm³、aが3の時、真密度が3.70g/cm³から4.45g/cm³。

【0021】

(V)上記課題を解決する本発明のスラリーは上述の粒子材料と、前記粒子材料を分散 40 する液状の有機材料とを有し、前記粒子材料は前記有機材料中の粒子径分布におけるD5 0%が50nm以上500nm以下である。

【 0 0 2 2 】

(VI)上記課題を解決する本発明の二次電池は上述の粒子材料を電極材料活物質とし て有する。

【0023】

(VII)上記課題を解決する本発明の透明電極は上述の粒子材料を導電材料として有 する。

【0024】

(VIII)上記課題を解決する本発明の粒子材料の製造方法は、M_aAl_bX_c、式 ⁵⁰

(5)

中のMはTi、V、Cr、Sc、Zr、Nb、Mo、Hf、Taからなる群から選択される1種類以上の元素である。XはC、[C_(1,0-x)N_x(0 < x 1.0)]からなる群から選択される1種類以上の構造からなる。aは2又は3、bは0.02超、cはaが2の時には0.8から1.2、aが3の時には1.8から2.6、で表される組成を持つ粒子材料からなる原料に対して、10µm~300µmのビーズを用いたビーズミルによる剥離処理により、厚みの平均値が3.5 nm以上20 nm以下、大きさ[(長辺+短辺)/2]の平均値が50 nm以上300 nm以下である粒子材料を製造する剥離工程を有する。

[0025]

(IX)上述の(VIII)の製造方法は、M_aAl_dX_c、式中のMはTi、V、Cr、 Sc、Zr、Nb、Mo、Hf、Taからなる群から選択される1種類以上の元素である 。XはC、[C_{(1.0}-x)N_x(0<x 1.0)]、からなる群から選択される元素 からなる。aは2又は3、dは1、cはaが2の時には1、3の時には2、で表される組 成を持つMAX相セラミックス粉末に対し、フッ化塩と塩酸との組み合わせでなる酸性物 質を20 から30 に制御された状態で反応させて、含有するAl元素の一部を除去す ることで前記原料を製造する前処理工程を有することが好ましい。

【発明の効果】

【0026】

本発明の粒子材料によれば、酸処理工程での発熱反応で温度上昇が起きる、その際にA 1が残存した結晶構造とすることにより、表面酸化が起こりにくく、低電気抵抗を示す薄 片状の粒子材料を多く得ることができる。さらにこの大きさと厚みの薄片状の粒子材料と することにより、A1層が除去されることで得られた大きな空隙層を有した薄片状の粒子 材料を二次電池の負極活物質材料と、透明電極として有効であった。

[0027]

そして本発明の製造方法によれば、厚みと大きさが所定の範囲になるよう、ビーズの大きさを選択したビーズミル処理を行うことで、低電気抵抗を有する特性を保ったまま、薄片状に効果的に剥離することが可能になった。従来から行われてきた超音波照射による剥離では、ほんの一部のみが剥離されるのみなので、遠心分離によって、分級して取り出すことが必須であったが、この手法によれば、薄片化された粒子材料が大量に剥離され、ナノシート化された粒子を多く含むMXene粒子材料を製造することが可能になった。 【図面の簡単な説明】

[0028]

30

10

20

【図1】実施例1の粒子材料のSEM写真である。 【図2】実施例2の粒子材料のSEM写真である。 【図3】実施例4の粒子材料のSEM写真である。 【図4】実施例5の粒子材料のSEM写真である。 【図5】実施例6の粒子材料のSEM写真である。 【図6】比較例1の粒子材料のSEM写真である。 【図7】比較例2の粒子材料のSEM写真である。 【図8】比較例3の粒子材料のSEM写真である。 【図9】比較例4の粒子材料のSEM写真である。 【図10】実施例1の粒子材料について測定したXRDプロファイルである。 【図11】実施例2の粒子材料について測定したXRDプロファイルである。 【図12】実施例4の粒子材料について測定したXRDプロファイルである。 【図13】実施例5の粒子材料について測定したXRDプロファイルである。 【図14】実施例6の粒子材料について測定したXRDプロファイルである。 【図15】比較例2の粒子材料から剥離された粒子材料を分級する途中経過のSEM写真 である。 【図16】比較例7のシートの外観写真(a)とSEM写真(b)である。 【発明を実施するための形態】

【0029】

本発明の粒子材料及びその製造方法、スラリー、二次電池、透明電極について実施形態 に基づいて以下に詳細に説明を行う。本実施形態の粒子材料は、導電性を示すなどの電気 的特性に優れ、A1層が除去されたことから形成される大きな空隙層を有することから、 二次電池(Liイオン二次電池、Naイオン二次電池、キャパシタなど)の負極活物質材 料や、透明電極の電極材料などへの応用が可能である。本実施形態の粒子材料は、電極材 料などへの応用のために薄片状に粒子化されている。薄片状の粒子材料は粉末状層状化合 物である粒子材料を剥離することにより得られる。

(7)

 $\begin{bmatrix} 0 & 0 & 3 & 0 \end{bmatrix}$

(粒子材料)

実施形態の粒子材料は、所定の組成式を持つ層状化合物からなる。この層状化合物は酸処理によってAl層の一部が除去されて大きな空隙層を有する。所定の組成式としては、 M_aAl_bX_cである。式中、MはTi、V、Cr、Sc、Zr、Nb、Mo、Hf、T aからなる群から選択される1種類以上の元素である。特にMはTiであることが好まし い。XとしてはC、[C_(1.0-×)N_×、(0<× 1.0)]、からなる群から選択 される1以上の構造である。また、これらの元素以外にもO、OH、ハロゲン基を表面官 能基として有することができる。粒子材料の表面層、また酸処理によってA1層の一部が 除去された空隙層、具体的にはAが存在した層にO、OH、ハロゲン基が吸着するために 、A1層が除去された後、層間が広がる。

【0031】

そして、 a は 2 又は 3 である。 b は 0 . 0 2 超である。 b の下限としては、 0 . 0 3、 0 . 0 4 が採用でき、上限としては 0 . 5 8、 0 . 5 6 が採用できる。 c は a が 2 の時に は 0 . 8 から 1 . 2、 a が 3 の時には 1 . 8 から 2 . 6 である。 a が 2 である場合の c の 下限としては、 0 . 8、 0 . 9 が採用でき、上限としては、 1 . 2、 1 . 1 が採用できる 。 a が 3 である場合の c の下限としては、 1 . 8、 1 . 9 が採用でき、上限としては、 2 . 6、 2 . 4、 2 . 2 が採用できる。 これら b 及び c について提示した下限及び上限につ いては、それぞれ任意に組み合わせて採用することができる。

【0032】

MがTiである場合、X、a、b、cについて特に好ましい組み合わせを開示すると以下の(1)から(4)の通りである。

【 0 0 3 3 】

0.03、2.6 c 1.8。

[0034]

本実施形態の粒子材料の粒子形状は、板状、葉状、薄片状などである。層状化合物の層 の積層方向を「厚み」とし、厚みと直行する方向における最大値を「長辺」最小値を「短 辺」とした場合に、大きさ[(長辺 + 短辺) / 2]の平均値が50nm以上300nm以 下、厚みの平均値が3.5nm以上20nm以下である。大きさの下限としては50nm 、70nm、100nm、上限としては300nm、250nmが採用できる。厚みの平 均値としては、下限としては3.5nm、4.0nm、4.2nm、上限としては20n m、15nmが採用できる。これら「大きさ」「厚み」について提示した、下限及び上限 については、それぞれ任意に組み合わせて採用することができる。

【 0 0 3 5 】

本実施形態の粒子材料は圧粉体とした場合の表面抵抗が0.1 / 以上300 / 以下であることが好ましい。酸処理する際、発熱反応により温度上昇する際に表面が一部 酸化し、抵抗増加してしまうため、ある程度の抵抗値(例えば0.1 / 以上)を許容

10

20

することで製造条件を酸化が進行し難い雰囲気にしなくても容易に製造することが可能に なる。一方、300 / 以下にすることにより、二次電池の負極活物質材料や透明電極 へ応用した時に、必要な性能を得ることができる。表面抵抗値は、下限が0.1 / 、 1.0 / 、3.0 / 、上限が300 / 、280 / 、260 / とする ことができる。

[0036]

表面抵抗測定時における圧粉体とする製造条件は、 0 .5 kg / cm²で 1 2 mmの 金型を用いてペレットを作製し、 3 t / cm²でCIP処理することによりペレット状の 圧粉体を作製し、 0 .1 mmの銅線を用いて 4 端子法にて測定できる。

【0037】

本実施形態の粒子材料の真密度は、下限が3.36g/cm²、3.40g/cm²、 3.42g/cm²、上限が4.10g/cm²、4.20g/cm²、4.45g/c m²とすることができる。特にMがTiである場合に選択したXに応じて好ましい真密度 の下限・上限は異なっており、その組み合わせにおける真密度の好ましい値としては下記 の(1)又は(2)の通りである。

[0038]

(1) XがCからなり、aが2の時、真密度が3.36g/cm³から3.50g/cm³、aが3の時、真密度が3.70g/cm³から4.45g/cm³、

(2) Xが[C_(1.0-x) N_x (0 < x 1.0)]からなり、aが2の時、真密度が3
 .36g/cm³から3.50g/cm³、aが3の時、真密度が3.70g/cm³か²⁰
 .45g/cm³。

[0039]

(粒子材料の製造方法)

本実施形態の粒子材料の製造方法は、上述の粒子材料を製造するのに好適な方法である。本実施形態の粒子材料は、粉末状の粒子材料を10µmから300µmのビーズを用いたビーズミル処理する剥離工程により薄片状の粒子材料にする方法である。

【0040】

剥離工程に供する原料としては、M_aAl_bX_cの組成式を持つ層状化合物からなる粒 子材料であり、最終的に製造する粒子材料の組成と同じ組成のものを採用することができ る。従って、M、Xの種類、a、b、cの値、層状化合物の真密度などは上述した粒子材 料にて説明したものがそのまま適用できるので詳細な説明は省略する。

(0 0 4 1 **)**

・前処理工程

剥離工程に供する原料は、MAX相セラミックス粉末に酸性物質を20 から30 で 接触させて、MAX相セラミックス粉末に含まれるA1元素の一部を除去することで製造 することができる。前処理工程に供する原料はM_{n+1}AX_n、n=1又は2、式中のM は遷移金属、AはA1、XはCか[C_(1.0-×)N_×、0<× 1.0]と表される組 成を有するMAX相セラミックス粉末である。A1を除去する量は酸性物質により酸処理 されて製造されるMAX相セラミックス粉末中のA1の量(bに相当)が0.02超にな る程度に残存するように調節する。なお、A1を全部除去することも可能であり、その場 合にはA1を完全に除去する以上にまで酸処理を進めないことが好ましい。 【0042】

除去されるA1の量は、酸性物質(酸水溶液など)と接触する時間(長くすると除去される量が増加する)、酸性物質の濃度(濃度が高い方が除去される量が増加する)、酸性物質の量(酸性物質の絶対量が多い方が除去され得る量を多くできる)、接触させる温度 (温度が高い方が除去される量が増加する)を変化させることで調節できる。 【0043】

層状化合物であるMAX相セラミックス粉末(A元素がA1)に対して、酸処理を行う ことによりA1を除去して粒子材料を構成する空隙層を有する層状化合物とする。A1層 を除去するための酸としてはフッ酸と塩酸との組み合わせた酸性物質を採用する。フッ酸

(8)

10

30

50

と塩酸との組み合わせを実現するためにはフッ酸の塩(KF、LiFなど)と塩酸とを混 合してフッ酸と塩酸との混合物を得ることが好ましい。 【0044】

特に酸性物質としてはこれらの酸の水溶液を採用する。フッ化塩が完全に解離したと仮定した時に形成されるフッ酸と塩酸との混合濃度としては特に限定しない。フッ酸の濃度としては下限が1.7mo1/L、2.0mo1/L、2.3mo1/L、上限が2.5mo1/L、2.6mo1/L、2.7mo1/L程度にすることができる。塩酸の濃度としては下限が2.0mo1/L、3.0mo1/L、4.0mo1/L、上限が13.0mo1/L、14.0mo1/L、15.0mo1/L程度にすることができる。

フッ化塩が完全に解離したと仮定した時に形成されるフッ酸と塩酸との混合比(モル比)についても特に限定しないが、フッ酸の下限として、1:13、1:12、1:11、 上限として1:5、1:6、1:7程度を採用することができる。ここで示したフッ酸及 び塩酸濃度、混合比についてはそれぞれ任意に組み合わせて採用することができる。酸処 理温度については、20 から30 が好ましい。20 から25 がさらに好ましい。 【0046】

・剥離工程

1つの例として、剥離工程では剥離工程後に製造される薄片状の粒子が多く含まれる粒 子材料が上述した粒子材料にて記載した形態になるようビーズ径、周速、スラリー送り速 度、ビーズ充填量、スラリー粒子濃度を調節する。剥離工程は原料である層状化合物の層 を剥離する工程である。10µm~300µmの微小サイズのビーズを用いることで酸処 理によってA1層を除去した空隙層から剥離することが可能となる。微小サイズのビーズ を層状化合物の層間に衝突させることによってナノレベルの厚みで剥離させることができ る。

[0047]

剥離工程に供される原料は、前述の粒子材料を構成する材料と同じ組成のものが採用で きる。剥離工程では組成は概ね変化しない。

【0048】

遠心分離で微小なビーズとスラリーを分級する機構を具備したビーズミルで剥離することが可能となる。例えばビーズの大きさの下限を10µm、15µm、20µm、30µm、40µm、上限を300µm、200µm、100µmにすることができる。10µm以上であるとビーズとスラリーの分級が容易である。300µm以下のビーズを用いると粒子材料のサイズを小さくするよりも、剥離が優先して進行することができる。これらの下限及び上限は任意に組み合わせて採用することができる。ビーズの大きさが適正な範囲であると付与するエネルギーが大きくでき、且つ、剥離を優先して進行できるため、50µm~100µmのビーズを採用することが最も好ましい。

ビーズの材質は特に限定しないが、ジルコニア、アルミナ、窒化ケイ素などのセラミックスが採用できる。特に破壊靭性が大きい部分安定化ジルコニアが好ましい。一方、300µm超のビーズを用いる微小サイズの隙間でビーズとスラリーを分級させる一般的に用いられるビーズミルによると、粒子材料のサイズを小さくすることが、剥離に優先して進行する。また、300µm超のビーズやボールを用いた遊星ボールミルなどのボールミルによっても、粒子材料のサイズを小さくすることが剥離に優先する。 【0050】

剥離工程における周速は、6m/sec~12m/secの周速が採用できる。8m/ sec~10m/secの周速が好ましい。6m/sec以上であると剥離効率が良く、 12m/sec以下であると付与する過大なエネルギー付与が抑制され、得られる粒子材 料の温度上昇が抑制できるため、得られる粒子材料の表面における酸化の進行が抑制でき 、電気抵抗を低くできる。スラリー送り速度は100mL/分から300mL/分が採用 できる。スラリー粒子濃度は5mg/mL~1mg/mLが採用できる。5mg/mL以 10

20

下の条件によると剥離が充分に進行でき、遠心分離などで分級することにより薄片状の粒 子材料を選択する必要が低くなるため好ましい。さらに、スラリーの液中粒子径を小さく 保つことが可能になる。1mg/mL以上にすると剥離の効率が良くなる。 【0051】

スラリー温度は35 以下が好ましい。35 以下にすると表面酸化が抑制でき、粒子 材料の電気抵抗を低く保つことができる。

【 0 0 5 2 】

ビーズの充填量は40%~80%が採用できる。40%以上にすると剥離の効率が良く なり、80%以下にするとビーズとスラリーの分級が容易となる。ビーズの充填量として は45%、50%、55%、60%、65%、70%、75%が例示できる。目的の薄片 状の粒子を多く含む粒子材料が製造されたかどうかは、SEM、TEMなどの観察によっ て判断できる。特に粒子材料の厚みについてはAFM分析することによって判断できる。 剥離工程で得られた粒子材料は、必要に応じて遠心分離などの方法によって分級して使用 することも可能である。剥離工程における最適な条件については、装置の大きさによって 変化するので、これらの数値は限定されるものではない。

【 0 0 5 3 】

X R D 分析の結果から、例えば T i 3 A 1 C 2 の例で説明すると、M A X 相セラミックス(T i 3 A 1 C 2)粉末における(0 0 2)面の面間隔は0.929 n mであったが、本発明による剥離後の薄片状のM X e n e 粒子材料では、(0 0 2)面の面間隔が1.3 6 0 n m に広がった。具体的には約0.4 3 n m の空隙が存在する。空隙層の層間距離は、剥離後の薄片状の粒子材料における002面の面間隔から、M A X 相セラミックス粉末の002面の面間隔を差し引くことによって算出できる。この空隙層表面にはO H 基、ハロゲン基などの官能基が付着しており、L i イオンやN a イオンとの親和性に優れている。この空隙面に二次電池材料の負極活物質に用いると、L i や N a イオンが貯蔵される。このために、本開発品は二次電池の負極活物質として有効である。

[0054]

なお、従来の剥離手法として、超音波照射や湿式ジェットミルやローラーを用いると、 十分に剥離させることは困難である。

[0055]

(二次電池)

本実施形態の二次電池は上述した粒子材料を電極材料のうちの活物質として含有する。 リチウム二次電池、及びナトリウム二次電池に有効である。酸処理によってA1層を除去 した空隙層にリチウムイオンやナトリウムイオンが貯蔵、脱離される。

[0056]

ここではリチウム二次電池を例に挙げて説明する。電極は、本実施形態の粒子材料から なる活物質を含む活物質層と、金属の薄板などから構成され表面に活物質からなる活物質 層が形成される集電体とを有する。活物質層を形成するためにはバインダを含むことがで きる。また活物質層には必要に応じて本実施形態の粒子材料以外の活物質・導電補助剤な どを含有させることができる。バインダはカルボキシメチルセルロース、ポリフッ化ビニ リデン、スチレン - ブタジエンゴム、ポリビニルピロリドン、ポリビニルアルコールなど の汎用されているバインダやその他バインダとして利用できるものが採用できる。導電補 助剤としてはアセチレンブラック、ケツチェンブラック、カーボンナノチューブ、グラフ ェン、カーボンファイバ、黒鉛粉末、ハードカーボン粉末などが採用できる。

(透明電極)

本実施形態の透明電極は、本実施形態の粒子材料とバインダとその他必要な部材とを有 する。バインダとしては上述の二次電池にて説明したものが採用でき、特に透明度が高い 材料が好ましい。

【実施例】

【0058】

50

10

20

30

(実施例1)

TiC(3μm、レアメタリック)、Ti(35μm、高純度化学)、Al(30μm 、高純度化学)のそれぞれの粉末を混合して混合粉末(TiC:Ti:AL=2:1:1 モル)とした。得られた混合粉末を、小型真空加圧焼結炉により、Ar気流中1450 で固相反応させてMAX相セラミックスを作製した。

(11)

【 0 0 5 9 】

得られたMAX相セラミックスをアルミナ乳鉢で解砕した後、イソプロピルアルコール (IPA)中で直径5mmジルコニアボールを用いたボールミルにより粉砕(24h)、 さらに直径0.5mmジルコニアボールを用いた遊星ボールミルにより粉砕(45分)を 行った。動的光散乱式粒子径分布測定装置(マルバーン製ゼータサイザーナノZSP)によ リIPA中の平均粒子径を測定した結果、1.0µmであった。

[0060]

真空中 6 0 の条件で、エバポレータを用いてIPAを除去した後、試料水平型多目的 X線回折装置によりXRD分析し、Ti₃AIC₂ 単一相であることを確認した。結果 を図10に示した。XRD回折試験は、「シリカガラス製ホルダー、40KV/40mA、Scan Sp eed;8°/min、Sampling Step;0.01°、2 (5 - 8 0°)」の条件で行った。

【0061】

得られた T i ₃ A 1 C ₂ 粉末 1 0 gを、 L i F を 1 8 . 0 gと 1 2 M の H C L を 3 0 0 m L の 混合水溶液(ポリテトラフルオロエチレンるつぼを氷で冷却)にゆっくり投入し、 2 0 から 3 0 に制御した水溶液温度で、 2 4 時間撹拌しながら放置した(前処理工程)。

【0062】

遠心分離により、10回 水洗した後、遠心分離、上澄み除去を3回繰り返して、溶媒をエタノールに置換した。室温でエタノールスラリーを乾燥し、XRD分析を行い、結果を図10に示した。また、エタノールスラリーを粒子濃度2mg/mLに希釈し、ビーズ径50µm(ニッカトーYTZ)を用いたビーズミル処理(3パス、周速 10m/sec、送液速度150mL/分、ビーズ充填率60%)を行った。

【0063】

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径を動 的光散乱式粒子径分布測定装置で測定し、得られた結果を表1に示した。また得られたエ タノールスラリー10mLをスピンコーター(ミカサ、MS-B100、600rpm)によりSi製 ウエハ上に滴下して、SEM観察により、製造された粒子材料の大きさ(長辺と短辺の平 均値)を、AFM分析で厚みをそれぞれ測定した。測定は、それぞれ100個の孤立した 粒子を選択して平均の大きさと厚みを算出し、得られた結果を表1に示した。剥離した状 態のSEM写真を図1に示した。SEM写真は走査型電子顕微鏡(日立製作所、SU8020) を用いた。AFMによる厚み測定は原子間力顕微鏡(ブルカー・エイエックス社製、Nano Scope/Dimension Icon、測定モード;タッピングモード、測定点数;512×512)を用い た。

[0064]

得られた粒子材料のエタノールスラリーを室温乾燥し、得られた粉末を用いて表面電気 ⁴⁰ 抵抗、化学分析によるTi、A1、C量の測定、真密度測定、XRD分析を行った。 【0065】

化学分析についてはTi、Al、Cのatom%を用いて、Tiを3とした時のAl、 C量を算出した。得られた結果を表1に示した。化学分析は、試料を白金皿にはかりとり 、硝酸+硫酸+フッ化水素酸を加えて、加熱(120 程度)して溶解後、さらに高温(300)で加熱して硝酸とフッ化水素酸を飛ばして試料溶液(硫酸)を作製し、作製し た試料溶液を適宜希釈してICPで定量分析を行った。

【0066】

表面電気抵抗については、直径12mm金型を用いてペレットを作製し、さらに冷間等 方圧プレス(CIP)で3ton/cm²で処理し、相対密度60%から65%の直径1

10

2 mm×2 mmの成形体を作製した。得られた成形体に対して、0.1 mm径の銅線を成 形体片表面に銀ペーストで固定し、4 端子法で電気抵抗を測定し、表面抵抗(/)と した。得られた結果を表1に示した。真密度はHeガスを用いた定容積膨張法(島津製作 所、アキュピックII1340)で測定し、表1に示した。さらにXRD分析し、結果を 図10に示した。

(12)

[0067]

(実施例2)

T i C (3 μm、レアメタリック)、T i N (3 μm、レアメタリック)、T i (35 μm、高純度化学)、A l (30μm、高純度化学)のそれぞれの粉末を混合して混合粉 末(T i C : T i N : T i : A l = 1 : 1 : 1 : 1 モル)とした。得られた混合粉末を、 C I P 1 t / c m²処理し、A r 気流中1550 で固相反応させてMAX相セラミック スを作製した。得られたMAX相セラミックスをアルミナ乳鉢で解砕した後、イソプロピ ルアルコール(I P A)中で直径5 m m ジルコニアボールを用いたボールミル粉砕(2 4 h)、さらに直径0.5 m m ジルコニアボールを用いた遊星ボールミル粉砕(4 5 分)を 行った。

[0068]

動的光散乱式粒子径分布測定装置でIPA中の平均粒子径を測定した結果、1.0µm であった。真空中60 の条件で、エバポレータを用いてIPAを除去した後、XRD分 析し、Ti₃A1(C_{0.5}N_{0.5})₂ 単一相であることを確認した。結果を図11 に示した。得られたTi₃A1(C_{0.5}N_{0.5})₂粉末10gを、実施例1と同様に 前処理工程とビーズミル処理を行った。

【0069】

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径、平均の大きさと厚み、表面電気抵抗、化学分析によるTi、Al、C、N量の測定、真密度 測定、XRD分析を実施例1と同様に行い、結果を表1と図11に示した。剥離した状態 の粒子材料のSEM写真を図2に示した。

 $\begin{bmatrix} 0 & 0 & 7 & 0 \end{bmatrix}$

(実施例3)

T i C (3 µ m、 レアメタリック)、 T i N (3 µ m、 レアメタリック)、 T i (3 5 µ m、高純度化学)、 A 1 (3 0 µ m、高純度化学)のそれぞれの粉末を混合して混合粉 末(T i C : T i N : T i : A 1 = 1 . 8 : 0 . 2 : 1 : 1 モル)とした。得られた混合 粉末を、A r 気流中 1 4 5 0 で固相反応させてMAX相セラミックスを作製した。得ら れたMAX相セラミックスをアルミナ乳鉢で解砕した後、イソプロピルアルコール(I P A)中で直径 5 m mジルコニアボールを用いたボールミル粉砕(2 4 h)、さらに直径 0 .5 m mジルコニアボールを用いた遊星ボールミル粉砕(4 5 分)を行った。動的光散乱 式粒子径分布測定装置でI P A 中の平均粒子径を測定した結果、1 . 0 µ m であった。真 空中 6 0 の条件で、エバポレータを用いて I P A を除去した後、X R D 分析し、T i 3 A 1 (C 0 . 9 N 0 . 1) 2 単一相であることを確認した。得られたT i 3 A 1 (C 0 . 9 N 0 . 1) 2 粉末 1 0 gを、実施例 1 と同様に前処理工程とビーズミル処理を行った 。得られた剥離した状態の粒子材料のS E M 観察を行い実施例 1 で示す図 1 と同等であっ た。

[0071]

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径、平均の大きさと厚み、表面電気抵抗、化学分析による T i 、 A l 、 C 、 N 量の測定、真密度 測定を実施例 1 と同様に行い、結果を表 1 に示した。

【0072】

(実施例4)

T i C (3 μ m 、 レアメタリック)、 T i (3 5 μ m 、高純度化学)、 A l (3 0 μ m 、高純度化学)のそれぞれの粉末を混合して混合粉末(T i C :T i : A l = 1 : 1 : 1 モル)とした。得られた混合粉末を、 C I P 1 t / c m ²処理し、その圧粉体破砕片を A

10

r 気流中1350 で固相反応させてMAX相セラミックスを作製した。得られたMAX 相セラミックスをアルミナ乳鉢で解砕した後、イソプロピルアルコール(IPA)中で直 径5mmジルコニアボールを用いたボールミル粉砕(24h)、さらに直径0.5mmジ ルコニアボールを用いた遊星ボールミル粉砕(45分)を行った。真空中60 の条件で 、エバポレータを用いてIPAを除去した後、XRD分析し、Ti2A1C とTi3A 1C2 の混合相であることを確認した。結果を図12に示す。得られたTi2A1C粉 末5gを、LiFを4.5gと6MのHCLを300mLの混合水溶液(ポリテトラフル オロエチレンるつぼを氷で冷却)にゆっくり投入し、20 から30 に制御した水溶液 温度で、18時間撹拌しながら放置した(前処理工程)。

[0073]

10

20

30

40

遠心分離により、5回 水洗した後、遠心分離、上澄み除去を3回繰り返して、溶媒を エタノールに置換した。室温でエタノールスラリーを乾燥し、XRD分析を行い、結果を 図12に示した。

【0074】

実施例1と同様にビーズミル処理を行った。得られた剥離した状態の粒子材料のSEM 観察を行い図3に示した。

【0075】

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径、平均の大きさと厚み、表面電気抵抗、化学分析によるTi、Al、C量の測定、真密度測定、XRDを実施例1と同様に行い、結果を表1と図12に示した。

[0076]

(実施例5)

TiC(3µm、レアメタリック)、Ti(35µm、高純度化学)、Al(30µm 、高純度化学)のそれぞれの粉末を混合して混合粉末(TiC:Ti:Al=1:1.2 :1.2モル)とした。得られた混合粉末を、CIP1t/cm²処理し、その圧粉体を Ar気流中1300 で固相反応させてMAX相セラミックスを作製した。得られたMA X相セラミックスをアルミナ乳鉢で解砕した後、イソプロピルアルコール(IPA)中で 直径5mmジルコニアボールを用いたボールミル粉砕(24h)、さらに直径0.5mm ジルコニアボールを用いた遊星ボールミル粉砕(45分)を行った。動的光散乱式粒子径 分布測定装置でIPA中の平均粒子径を測定した結果、1.0µmであった。真空中60 の条件で、エバポレータを用いてIPAを除去した後、XRD分析し、Ti₂AlC とTi₃AlC₂ の混合相ではあるが、ほぼTi₂AlC 相であることを確認した。 結果を図13に示す。得られたTi₂AlC粉末5gを、LiFを4.5gと6MのHC

Lを300mLの混合水溶液(ポリテトラフルオロエチレンるつぼを氷で冷却)にゆっくり投入し、20 から30 に制御した水溶液温度で、18時間撹拌しながら放置した(前処理工程)。

【 0 0 7 7 】

遠心分離により、 5回 水洗した後、遠心分離、上澄み除去を 3回繰り返して、溶媒を エタノールに置換した。室温でエタノールスラリーを乾燥し、 X R D 分析を行い、結果を 図 1 3 に示した。

【0078】

実施例1と同様に前処理工程とビーズミル処理を行った。得られた剥離した状態の粒子 材料のSEM観察を行い図4に示した。

【0079】

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径、平均の大きさと厚み、表面電気抵抗、化学分析によるTi、Al、C量の測定、真密度測定、XRD測定を実施例1と同様に行い、結果を表1に示した。XRD測定結果を図13に示した。

[0080]

(実施例6)

T i C (3 μm、 レアメタリック)、 T i N (3 μm、 レアメタリック)、 T i (35 μm、高純度化学)、 A l (30μm、高純度化学)のそれぞれの粉末を混合して混合粉 末(T i C : T i N : T i : A l = 0 . 5 : 0 . 5 : 1 : 1 モル)とした。得られた混合 粉末を、 C I P 1 t / c m²処理し、その圧粉体破砕片をAr気流中1350 で固相反 応させて M A X 相セラミックスを作製した。得られた M A X 相セラミックスをアルミナ乳 鉢で解砕した後、イソプロピルアルコール(I P A)中で直径 5 m m ジルコニアボールを 用いたボールミル粉砕(24 h)、さらに直径 0 . 5 m m ジルコニアボールを用いた遊星 ボールミル粉砕(45分)を行った。

【0081】

真空中60 の条件で、エバポレータを用いてIPAを除去した後、XRD分析し、ほ ¹⁰ ぼTi₂ Al(C_{0.5} N_{0.5}) 単一相であることを確認した。結果を図14に示す 。得られたTi₂ Al(C_{0.5} N_{0.5})粉末5gを、LiFを4.5gと6 MのHC Lを300mLの混合水溶液(ポリテトラフルオロエチレンるつぼを氷で冷却)にゆっく り投入し、20 から30 に制御した水溶液温度で、18時間撹拌しながら放置した。 【0082】

遠心分離により、 5回 水洗した後、遠心分離、上澄み除去を 3回繰り返して、溶媒を エタノールに置換した。室温でエタノールスラリーを乾燥し、 X R D 分析を行い、結果を 図 1 4 に示した。

【 0 0 8 3 】

実施例1と同様にビーズミル処理を行った。得られた剥離した状態の粒子材料のSEM 20 観察を行い図5に示した。

【0084】

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径、平均の大きさと厚み、表面電気抵抗、化学分析によるTi、Al、C、N量の測定、真密度 測定、XRD測定を実施例1と同様に行い、結果を表1に示した。XRD測定結果を図1 4に示した。

[0085]

(実施例7)

T i C (3 μm、レアメタリック)、T i N (3 μm、レアメタリック)、T i (35 μm、高純度化学)、A l (30μm、高純度化学)のそれぞれの粉末を混合して混合粉 末(T i C : T i N : T i : A l = 0 . 9 : 0 . 1 : 1 : 1 モル)とした。得られた混合 粉末を、C I P 1 t / c m²処理し、その圧粉体破砕片をA r 気流中1350 で固相反 応させてMAX相セラミックスを作製した。得られたMAX相セラミックスをアルミナ乳 鉢で解砕した後、イソプロピルアルコール(I P A)中で直径5 m m ジルコニアボールを 用いたボールミル粉砕(24 h)、さらに直径0.5 m m ジルコニアボールを用いた遊星 ボールミル粉砕(45分)を行った。

[0086]

真空中60 の条件で、エバポレータを用いてIPAを除去した後、XRD分析し、T i₂A1(C_{0. 9}N_{0. 1})とTi₃A1(C_{0. 9}N_{0. 1})₂ の混合相であるこ とを確認した。得られたTi₂A1(C_{0. 9}N_{0. 1})粉末5gを、実施例4と同様に 前処理工程とビーズミル処理を行った。得られた剥離した状態の粒子材料のSEM観察を 行い実施例4で示す図3と同等であった。

【0087】

剥離された薄片状の粒子材料のエタノールスラリーのエタノール中での平均粒子径、平均の大きさと厚み、表面電気抵抗、化学分析によるTi、Al、C、N量の測定、真密度 測定を実施例4と同様に行い、結果を表1に示した。

[0088]

(実施例8)

TiC(3μm、レアメタリック)、Ti(35μm、高純度化学)、AlN(0.5 μm、トクヤマ)のそれぞれの粉末を混合して混合粉末(TiC:Ti:AlN=1:2 ⁵⁰

(14)

: 1 モル)とした。得られた混合粉末を、 C I P で 1 t o n / c m ² 処理を行い、圧粉体 破砕片を A r 気流中 1 5 5 0 で固相反応させて M A X 相セラミックスを作製した。 【 0 0 8 9】

得られたMAX相セラミックスをアルミナ乳鉢で解砕した後、IPA中で直径5mmジ ルコニアボールを用いたボールミル粉砕(24h)、さらに直径0.5mmジルコニアボ ールを用いた遊星ボールミル粉砕(45分)を行った。

 $\begin{bmatrix} 0 & 0 & 9 & 0 \end{bmatrix}$

真空中 6 0 の条件で、エバポレータで I P A を除去した後、 X R D 分析した結果、 T i ₃ A 1 (C _{0 5} N _{0 5}) ₂ の単一相であった。

【0091】

得られた T i 3 A 1 (C 0 5 N 0 5) 2 粉末 1 0 g を、 K F 1 4 9 g と 6 M の H C L、 1 0 0 m L の混合溶液にゆっくり投入し、 2 0 から 3 0 に制御した水溶液温 度で、 3 0 時間撹拌しながら放置した(前処理工程)。遠心分離により 1 0 回水洗した後 、遠心分離、上澄み液除去を 3 回繰り返し、溶媒を I P A に置換した。 I P A スラリーを 粒子濃度 2 m g / m L に薄め、ビーズ径 5 0 µ m (部分安定化ジルコニア)のビーズミル 処理 (2 0 パス、周速 1 0 m / s e c、送液速度 1 5 0 m L / 分、ビーズ充填率 6 0 %) を行った。得られた剥離した状態の粒子材料の S E M 観察を行い実施例 2 で示す図 2 と同 等であった。

[0092]

得られた薄片状の粒子材料の大きさと厚みの平均値、Ti、A1、C、N量、真密度、 20 表面電気抵抗値、IPAスラリーのIPA中の平均粒子径を実施例2と同様に測定し、表 1に示した。

[0093]

(実施例9)

ビーズ径100µm(ニッカトー、YTZ)のビーズミル処理(20パス)を行った以外 は、実施例8と同様に薄片状の粒子材料を作製した。得られた粒子材料の大きさと厚みの 平均値、Ti、A1、C、N量、表面電気抵抗値、IPAスラリーのIPA中の平均粒子 径を実施例1と同様に測定し、表1に示した。得られた剥離した状態の粒子材料のSEM 観察を行い実施例2で示す図2と同等であった。

【0094】

(実施例10)

ビーズ径30µm(ニイミNZビーズ30、ニイミ産業)のビーズミル処理(20パス) を行った以外は、実施例8と同様に薄片状の粒子材料を作製した。得られた粒子材料の大 きさと厚みの平均値、Ti、AL、C、N量、表面電気抵抗値、IPAスラリーのIPA 中の平均粒子径を実施例1と同様に測定し、表1に示した。得られた剥離した状態の粒子 材料のSEM観察を行い実施例2で示す図2と同等であった。

[0095]

(実施例11)

T i (35μm、高純度化学)、T i N (3μm、レアメタリック)、A l (30μm 、高純度化学)の混合粉末(T i : T i N : A l = 1 : 2 : 1 モル)を用いた以外は実施 例 8 と同様に薄片状の粒子材料を作製した。得られた粒子材料の大きさと厚みの平均値、 T i、A l、N量、表面電気抵抗値、Ι P A 中の平均粒子径を実施例 8 と同様に測定し、 表 1 に示した。

【0096】

(比較例1)

実施例1と同様にTi₃A1C₂粉末を作製し。実施例8と同様に、酸処理、IPA置換 を行い、2mg/cc濃度のIPAスラリーを作製した。そのスラリーを用いて、超音波 ホモジナイザーにより、振幅40µm、周波数19.5kHz、出力150Wで3秒間超 音波照射、1秒間休止の条件で、30分間超音波照射による剥離を行ない、粒子材料を作 製した。得られた粒子材料の大きさと厚みの平均値、Ti、A1、C量、表面電気抵抗値 30

10

、 真 密 度 、 I P A ス ラ リ ー の I P A 中 の 平 均 粒 子 径 を 実 施 例 1 と 同 様 に 測 定 し 、 表 1 に 示 し た 。 超 音 波 照 射 で 剥 離 を 試 み た 後 の 粒 子 材 料 の S E M 写 真 を 図 6 に 示 し た 。 【 0 0 9 7 】

(比較例2)

超音波ホモジナイザーにより、振幅40µm、周波数19.5kHz、出力150Wで 3時間超音波照射による剥離を行った以外は、比較例1と同様に粒子材料を作製した。得られた粒子材料の大きさと厚みの平均値、Ti、Al、C、N量、表面電気抵抗値、真密度、IPAスラリーのIPA中の平均粒子径を実施例1と同様に測定し、表1に示した。 超音波照射で剥離を試みた後の粒子材料のSEM写真を図7に示した。

[0098]

また、自然放置48時間行う方法で分級した。その上澄み液に存在する薄片状の粒子材料のSEM観察による形態とAFM分析による厚みと大きさの測定を行った。結果を図15に示した。

[0099]

(比較例3)

ビーズ径500µm(ニッカトー、YTZ)のビーズミル処理(20パス)を行った以外 は、実施例8と同様に粒子材料を作製した。得られた粒子材料の大きさと厚みの平均値、 Ti、Al、C、N量、表面電気抵抗値、真密度、IPAスラリーのIPA中の平均粒子 径を実施例1と同様に測定し、表1に示した。ビーズ径500µmのビーズを用いたビー ズミル処理で剥離を試みた後の粒子材料のSEM写真を図8に示した。

20

10

【0100】 (比較例4)

圧力200MPa、クロスノズルの湿式ジェットミル(30パス)による剥離を行った 以外は、比較例1と同様に粒子材料を作製した。得られた粒子材料の大きさと厚みの平均 値、Ti、Al、C、N量、表面電気抵抗値、真密度、IPAスラリーのIPA中の平均 粒子径を実施例1と同様に測定し、表1に示した。湿式ジェットミルで剥離を試みた後の 粒子材料のSEM写真を図9に示した。

[0101]

(比較例5)

実施例1と同様に、Ti₃AlC₂粉末を作製し、前処理工程において、10%HF水 ³⁰ 溶液、20 から30 に制御した水溶液温度で30時間処理し、実施例8と同様に粒子 材料を作製した。得られた粒子材料の大きさと厚みの平均値、Ti、Al、C、N量、表 面電気抵抗値、真密度、IPAスラリーのIPA中の平均粒子径を実施例1と同様に測定 し、表1に示した。

[0102]

(比較例6)

K F 1 4 . 9 g、 6 M H C 1 3 0 0 m L の混合溶液にゆっくり T i ₃ A 1 C ₂ 粉末 を投入した後、 3 5 ~ 4 0 の水溶液温度で、 3 0 時間撹拌しながら放置した以外は、 比較例 5 と同様に粒子材料を作製した。得られた粒子材料の大きさと厚みの平均値、 T i 、 A 1 、 C 、 N 量、表面電気抵抗値、真密度、 I P A スラリーの I P A 中の平均粒子径を 実施例 1 と同様に測定し、表 1 に示した。

(0 1 0 3 **)**

(比較例7)

実施例1において、粉末10gをKF14.9gと6M HC1 300mLの混合溶 液で酸処理し、IPAに置換した後、室温で風乾し、粒子材料を得た後、10µm~30 0µmのビーズを用いたビーズミルによる剥離操作に代えて、少量の粒子材料をセルガー ドメンブランに挟み、応力を加えることによりローラーを用いて本比較例のフィルムを作 製した。得られたフィルムの外観写真を図16に示した。得られたフィルムをIPAに投 入し、超音波照射(振幅40µm、周波数19.5kHz、出力150W)を30分間行 い均一に液中分散したスラリーを作製した。スラリーをSi製ウエハーにごく微量滴下し

、乾燥後SEM観察し、粒子材料の剥離状況をSEMにより調べた(図16)。

- 【0104】
- 【表1】

	MAX相の 種類	酸処理 手法	剥離 手法	剥離後 SEM像	形筧 厚み (nm)	^変 大きさ (nm)	組成	表面抵抗 〔Ω/□〕	真比重	液中 平均 粒子径 (nm)
実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実実	Ti3AlC2 Ti3Al(C0.5N0.5)2 Ti3Al(C0.9N0.1)2 Ti2AlC Ti2AlC Ti2Al(C0.5N0.5) Ti2Al(C0.9N0.1) Ti3Al(C0.5N0.5)2 Ti3Al(C0.5N0.5)2 Ti3Al(C0.5N0.5)2 Ti3Al(C0.5N0.5)2 Ti3Al(C0.5N0.5)2	A A B B B C C C C	50μm BM 50μm BM 50μm BM 50μm BM 50μm BM 50μm BM 50μm BM 100μm BM 30μm BM	図1 図2 図3 図4 図5	5.1 9.8 6.3 4.3 4.3 4.5 4.4 15.0 9.5 5.8 4.2	120 120 100 100 110 110 130 200 250 160	Ti3 AL0.10 C1.92 Ti3 AL 0.10 C0.96 N0.96 Ti3 AL0.10 C1.62 N0.18 Ti2 AL 0.04 C0.91 Ti2 AL 0.06 C0.91 Ti2 AL 0.04 C0.45 N0.45 Ti2 AL0.05 C0.79 N0.09 Ti3 AL0.36 C1.06 N1.06 Ti3 AL0.58 C1.07 N1.07 Ti3 AL0.56 C1.11 N1.11 Ti3 AL0.33 N2.07	3.5 250 23 4.1 5.6 260 34 128 153 161 300	3.88 3.88 3.42 3.42 3.42 4.02 4.10 4.05 4.08 4.45	110 110 110 110 120 120 180 190 210 120
比較例1 比較例2 比較例3 比較例4 比較例6 比較例7	Ti3AlC2 Ti3AlC2 Ti3Al(20.5N0.5)2 Ti3AlC2 Ti3AlC2 Ti3AlC2 Ti3AlC2 Ti3AlC2	C C C D E C	US US 500µm BM WJ 50µm BM 50µm BM □ - ラ -	図6 図7 図8 図9 図16	989 955 150 960 2.3 1.5 1320	990 960 150 960 110 110 1320	Ti3 AL0.21 C 2.08 Ti3 AL0.20 C 2.07 Ti3 AL0.58 C1.20 N1.20 Ti3 AL0.62 C2.33 Ti3 AL0.00 C2.00 Ti3 AL0.00 C2.00 Ti3 AL0.36 C2.10	18.3 17.4 47 58 480 530 5.5	4.45 4.40 4.35 4.45 3.35 3.35 4.02	1100 1100 150 1200 80 90 1500

(酸処理) A: MAX相セラミックス粉末10g、LiF18.0g、12MHCL300mL水溶液中、20℃から30℃で、24時間浸漬
 B: MAX相セラミックス粉末5g、LiF4.5g、6MHCL300mL水溶液中、20℃から30℃で、18時間浸漬
 C: MAX相セラミックス粉末10g、KF14.9g、6MHCL300mL水溶液中、を20℃から30℃で、24時間浸漬
 D: MAX相セラミックス粉末10g、10%HF300ml水溶液中、20℃から30℃で、30時間浸漬
 E: MAX相セラミックス粉末10g、KF14.9g、6MHCL300mL水溶液中、35℃から40℃で、24時間浸漬

(剥離) BMはビーズミル、USは超音波照射、WJは湿式ジェットミルを示す

[0105]

(結果及び考察)

(1) MAX相セラミックスの作製方法について

(a) T i ₃ A l (C_{0.5} N_{0.5})₂ については、混合原料をC I P で 1 t / c m ²から 3 t / c m²の圧力範囲で圧粉体破砕片を作製し、1500 から1550 不活 性雰囲気中で焼成することで得られた。焼成温度を1500 以上とすることで未反応生 成物と中間生成物の残留が抑制でき、1550 以下にすることでMAX相セラミックス が分解せずに回収できた。

[0106]

混合原料の圧粉体破砕片の作製条件については、より緻密にすると低い焼成温度で高純 度MAX相セラミックスを得ることが可能となるが、酸処理工程でA1の除去が進行しに くくなる一方、10µmから300µmのビーズ径のビーズミルによる剥離工程で、薄片 が剥離されにくくなった。用途に応じて、適した形態(圧粉体作製条件)を選択すればよ いことが分かった。圧粉体作製を本実験ではCIPを用いているが、1t/cm²から3 t/cm²の条件による一軸加圧など他の方法でも可能である。得られる薄片状の粒子材 料の電気抵抗については、MAX相セラミックス粉末が単一相であることが重要で、Ti 2 相との混合相であると酸処理工程で表面の酸化が進行し、電気抵抗が高くなり好ましく ないことが分かった。

【0107】

(b) T i ₃ A 1 C ₂ と T i ₃ A 1 (C _{0.9} N _{0.1}) ₂ については、1400 か ら1450 の範囲で、不活性雰囲気中で、焼成することによって得られた。焼成温度を 1400 以上にすることで未反応生成物と中間生成物の残留が抑制され、1450 以 下にすることでMAX相セラミックスを分解せずに回収できた。 10

20

[0108]

(c) Ti₂ AlCとTi₂ Al(C_{0.5} N_{0.5})とTi₂ Al(C_{0.9} N_{0.} 1)については、1300 から1350 の範囲で、不活性雰囲気中で、焼成することによって得られた。焼成温度を1300 から1350 の範囲にすることで、さらに、 TiとAlを少し増量することで、未反応生成物を抑制し、Ti₃相の生成を抑制できる ことが分かった。圧粉体破砕片の作製条件については、Ti₃ Al(C_{0.5} N_{0.5}) 2と同様であった。

(18)

[0109]

(2)得られた粒子材料の化学組成と真密度

酸処理を行う前処理工程において、20 から30 で制御した水溶液温度範囲で、1 ¹⁰ 0%以上のHF水溶液に24時間以上浸漬するとA1は完全に除去された(従来技術)。 また35 から45 で、LiF+HC1あるいはKF+HC1水溶液に、24時間以上 浸漬してもA1は完全に除去された(従来技術)。いずれも酸処理工程で一部表面酸化が 進行し、電気抵抗が増加することが分かった。

[0110]

20 から30 でLiF+HClあるいはKF+HCl水溶液に浸漬する条件においては、Alが残留するが、上記に比べると表面酸化の進行が緩く、得られる薄片状の粒子 材料の電気抵抗が小さかった。

[0 1 1 1 **]**

したがって、A1が完全に除去されず残存する条件を採用すると、得られる薄片状の粒 ²⁰ 子材料の電気抵抗が低下することができるため好ましいことが分かった。

【0112】

また、詳細は示さないが出発原料にC源としてカーボンブラックを用いると、得られる MAX相セラミックスの結晶性が悪く、酸処理によって、Alの他、Tiも大量に溶解し 、結果としてC、C₂あるいは[C_(1.0-x)N_x(0 < x 1.0)]あるいは[C₍ 1.0-x)N_x(0 < x 1.0)]₂の比率が高くなってしまうことが分かっている。 【0113】

一方、20 から30 でLiF+HClあるいはKF+HCl水溶液に浸漬する条件 においては、酸処理後の剥離工程において、従来の超音波照射による方法では粒子材料の 剥離が極めて困難であることが明らかになった。

【0114】

MAX相セラミックス粉末の真密度は、Ti2AlCが4.16g/mL、Ti3Al C2が4.30g/cm³、Ti3Al(C0.5N0.5)2が4.53/cm³であ った。Ti3AlC2粉末を35 から45 でKF+HCl水溶液に24時間浸漬した 場合、真密度が3.35g/cm³、20 から30 で10%HF水溶液に24時間浸 漬した場合、真密度が3.35g/cm³と小さかったが、Ti3AlC2粉末を20 から30 でLiF+HCl水溶液に24時間浸漬した場合、真密度が3.88g/cm ³であった。MAX相セラミックス作製でCIP圧を小さくすると真密度は小さくなり、 CIP圧を大きくすると真密度が大きくなった。これはMAX相セラミックス粉末からA 1が除去される量が多いほど真密度が小さくなったためであり、CIP圧を小さくすると Alの除去量が大きくなるからである。

【0115】

T i ₂ A 1 C 粉末については、3 5 から 4 5 でK F + H C 1 水溶液に2 4 時間浸漬 した場合、真密度が3 . 3 5 g / c m ³、2 0 から 3 0 で 1 0 % H F 水溶液に2 4 時 間浸漬した場合、真密度が3 . 3 5 g / c m ³ と小さかったが、2 0 から 3 0 で L i F + H C 1 に 1 8 時間浸漬した場合、真密度が3 . 4 2 g / c m ³ であった。

【0116】

(3) 粒子材料の剥離手法について

剥離する方法として従来は超音波照射やローラーによる方法を用いていた。 超音波照射 による剥離方法について検討を行った結果、 剥離して薄片状の粒子材料を製造するのは困

30

難であることが分かった。超音波照射によって層間を剥離する速度は極めて遅い上に、超 音波照射によっては剥離しない場合もあった。またローラーによる方法でも剥離はほとん ど進行しなかった。

[0 1 1 7 **]**

また、湿式ジェットミルによる方法でも剥離が困難であった。ビーズ径10μmから3 00μmの範囲のビーズを用いたビーズミル処理することで、SEM像から得られる大き さ[(長辺+短辺)/2]の平均値が50nm以上300nm以下、AFM分析によって 得られる厚みの平均値が3.5nm以上で20nm以下の薄片が均一な状態で速やかに得 られることが分かった。

【0118】

10

特にスラリーの粒子濃度を1から5mg/mLに調整して有機溶媒中で剥離工程を行う ことにより、有機溶媒中で測定した平均粒子径がD50%径で、50nm以上500nm 以下で、かつ高分散のスラリーを得ることができた。一方、ビーズ径500µmのビーズ を用いたビーズミル処理を行うと、粉砕が進行して剥離は十分に起きなかった。 【0119】

酸処理後に超音波照射して剥離を試みた粒子材料について、従来から行われている自然 放置する手法で剥離されていない粗大粒子を除去する方法で分級し薄片状の粒子を作製し た。大きさの平均値は26.7 nm、厚みの平均値が4.2 nmであり、本開発品の大き さの平均値が50 nm以上300 nm以下であり、かつ厚みの平均値が3.5 nm以上2 0 nm以下である薄片状の粒子材料を得ることができないことを確認した。

[0120]

図10と図11と図12と図13と図14に本開発品の代表例である実施例1、実施例2、実施例4、実施例5、と実施例6で作製した薄片状の粒子材料のXRDパターンを示した。例えば図10で示すと、(0002)面が低角度にシフトし、A1層が除去され、表面官能基が付着したことによって、面間隔が0.923nmから1.360nmまで拡がり、約0.43nmの空隙層が形成されたことを示した。この層間にNaイオンやLiイオンが貯蔵されることによって、Naイオン電池やLiイオン電池に使用可能となる。 【0121】

(4) 薄片状の粒子材料を含むスラリーについて

エタノール、IPA、その他のアルコール、N-メチルピロリドン、メチルエチルケト ³ ン、メチルイソブチルケトン、プロピレングリコール、モノメチルエーテルを分散媒とし て用いて実施例の薄片状の粒子材料を液中に分散したスラリーを調整できた。

【図3】

【図4】

【図7】 【図8】 kV 1.9mm 50 9 1.8mm x5 SU8000 2.0kV Î, SEAD

【図12】

20

40 2θ(degree)

【図15】

(b) 超音波照射→自然放置48h後の上澄み液 (厚み ; 4.2nm/AFM、大きさ ; 26.7nm/AFM)

(b) 超音波照射→自然放置48h後の沈降物 (0.386µm/SEM) 【図16】

(a) 目視観察

(b) sem像

(23)

【手続補正書】
【提出日】令和1年7月1日(2019.7.1)
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】請求項8
【補正方法】変更
【補正の内容】
【請求項8】
M a A 1 b X c、式中のMはTi、V、Cr、Sc、Zr、Nb、Mo、Hf、Taか

らなる群から選択される1種類以上の元素である。XはC、[C_(1.0-×)N_×(0 <× 1.0)]、からなる群から選択される1以上の構造からなる。aは2又は3、b は0.02超、cはaが2の時には0.8から1.2、aが3の時には1.8から2.6 、で表される組成を持つ原料から粒子材料を製造する製造方法であって、

<u>10µm~300µmのビーズを用いたビーズミルによる剥離処理により、</u>厚みの平均 値が3.5nm以上20nm以下、大きさ[(長辺+短辺)/2]の平均値が50nm以 上300nm以下である粒子材料を<u>前記原料から</u>製造する剥離工程を有する粒子材料の製 造方法。

【国際調査報告】

	INTERNATIONAL SEARCH REPORT International application No.							
			PCT/JP2018/048448					
A CLASSIFIC	CATION OF SUBJECT MATTER							
Int.Cl. C04B35/56(2006.01)i, C04B35/00(2006.01)i, H01M4/58(2010.01)i								
According to Int	ernational Patent Classification (IPC) or to both national	classification and IP	с					
B. FIELDS SE	ARCHED							
Minimum docum	nentation searched (classification system followed by cla	ssification symbols)						
Int.Cl. 0	C04B35/56, C04B35/00, H01M4/58	- /						
Documentation s	earched other than minimum documentation to the exten	it that such document	s are included in th	e fields searched				
Publishe	ed examined utility model application	ns of Japan		1922-1996				
Publishe	ed unexamined utility model applications of i	lons of Japan		1971-2019				
Publishe	ed registered utility model applicati	ions of Japan		1994-2019				
Electronic data h	and computed during the international search (name of d	eta hesa and where r	matiaabla, aaarab ta					
JSTPlus	s/JST7580/JSTChina (JDreamIII)	ata base anu, where p	racticable, search te					
C DOCIDE								
C. DOCUMER	I CONSIDERED I O DE RELEVANI							
Category*	Citation of document, with indication, where app	propriate, of the relev	ant passages	Relevant to claim No.				
А	WO 2011/136136 A1 (NATIONAL II	NSTITUTE FOF	l.	1-9				
	MATERIALS SCIENCE) 03 November	r 2011, clai	.ms 1-3 &					
	US 2013/0052438 AL, claims 1	3 & CN 10293	3519 A					
А	JP 2016-63171 A (THE UNIVERSI	ΤΥ ΟΓ ΤΟΚΥΟ)	25 April	1-9				
	2016, claim 6 (Family: none)	,	- 1					
A	JP 2017-76739 A (THE UNIVERSI	ΤΥ ΟΓ ΤΟΚΥΟ)	20 April	1-9				
Eurther do	cuments are listed in the continuation of Box C	See patent far	nily annex					
* Special cate	gories of cited documents:	"T" later document r	ublished after the int	emistional filing data or priority				
"A" document d	efining the general state of the art which is not considered	date and not in c	onflict with the applic	eation but cited to understand				
to be of part "E" earlier appli	cution or patent but published on or after the international	"X" document of per	ticular relevance: the	elaimed invention cannot be				
filing date		considered nov	el or cannot be consi	dered to involve an inventive				
"L" document w cited to est	hich may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other	"Y" document of par	ticular relevance: the	; claimed invention cannot be				
special reas	on (as specified)	considered to i	nvolve an inventive	step when the document is				
"P" document re	terring to an oral disclosure, use, exhibition or other means ublished prior to the international filing date but later than	being obvious to	a person skilled in th	e art				
the priority	date claimed	"&" document memb	er of the same patent	family				
Data of the actor	l completion of the international second	Data of mailing -fr	ha international	rah ramart				
26 Feb	ruary 2019 (26,02,2019)	12 March	2019 (12.)	03.2019)				
			/	,				
Name and mailie								
Japan Pater	at Office	Authorized officer						
3-4-3, Kası	migaseki, Chiyoda-ku,	m 1 1						
Tokyo 100-	8915, Japan	Telephone No.						
Form PCT/ISA/210 (second sheet) (January 2015)								

PCT/JP2018/048448 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 11-279745 A (NGK SPARK PLUG CO., LTD.) 12 1-9 October 1999, claim 1 (Family: none) 1-9	PCT/JP2018/048448 C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 11-279745 A (NGK SPARK PLUG CO., LID.) 12 1-9 October 1999, claim 1 (Family: none) 1-9
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 11-279745 A (NGK SPARK PLUG CO., LTD.) 12 1-9 October 1999, claim 1 (Family: none) 1-9	C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 11-279745 A (NGK SPARK PLUG CO., LTD.) 12 1-9 October 1999, claim 1 (Family: none) 1-9
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 11-279745 A (NGK SPARK PLUG CO., LTD.) 12 1-9 October 1999, claim 1 (Family: none) 1-9	Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A JP 11-279745 A (NGK SPARK PLUG CO., LTD.) 12 1-9 October 1999, claim 1 (Family: none) 1-9
A JP 11-279745 A (NGK SPARK PLUG CO., LTD.) 12 1-9 October 1999, claim 1 (Family: none)	A JP 11-279745 A (NCK SPARK PLUG CO., LTD.) 12 October 1999, claim 1 (Family: none)

E.

	国際調査報告	国際出願番号 PCT/JP201	8/048448				
A. 発明の扉 Int.Cl. Ct	【する分野の分類(国際特許分類(IPC)))4B35/56(2006.01)i, C04B35/00(2006.01)i, H	01M4/58(2010.01)i					
 B. 調査を行 	テった分野						
調査を行った最 Int.Cl. ()	≿小限資料(国際特許分類(IPC)) 04B35/56, C04B35/00, H01M4/58						
最小限資料以夕 日本国実用 日本国公開 日本国支用 日本国登録	・の資料で調査を行った分野に含まれるもの 新案公報 1922-1996年 実用新案公報 1971-2019年 新案登録公報 1996-2019年 実用新案公報 1994-2019年						
国際調査で使用 JSTPlus/ J	引した電子データベース(データベースの名称、 ST7580 /JSTChina (JDreamIII)	調査に使用した用語)					
C. 関連すると認められる文献 3日本社の 【 明海オス							
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求項の番号				
A	WO 2011/136136 A1 (独立行政法人物質・材料研究機構) 2011.11.03, 請求項1-3 & US 2013/0052438 A1,請求項1-3 & CN 102933519 A						
A	JP 2016-63171 A (国立大学法人東京大学) 2016.04.25, 請求項6 1-9 (ファミリーなし)						
А	JP 2017-76739 A (国立大学法人東京大学) 2017.04.20, 請求項6 1-9 (ファミリーなし)						
☆ C欄の続きにも文献が列挙されている。							
 * 引用文献のカテゴリー A」特に関連のある文献ではなく、一般的技術水準を示す もの FL」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す) FD」国際出願目前で、かつ優先権の主張の基礎となる出願 FD」国際出願目前で、かつ優先権の主張の基礎となる出願 の日の後に公表された文献 の日の後に公表された文献 の日の後に公表された文献 T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの TX」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの FD」国際出願日前で、かつ優先権の主張の基礎となる出願 FD」国際出願日前で、かつ優先権の主張の基礎となる出願 							
国際調査を完了	「した日 26.02.2019 _.	国際調査報告の発送日 12.03	3. 2019				
国際調査機関6 日本国 東京者	□回防調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 国防調査報告の免疫区日 12、03、2019 国防調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 4T 610 電話番号 03-3581-1101 内線 3465						

様式PCT/ISA/210 (第2ページ) (2015年1月)

	国際調査	 全報告	国際出願番号	РСТ/ЈР20	18/048448
C(続き).	関連すると認めら;	れる文献			
引用文献の カテゴリー*	引用文献名	及び一部の箇所が関連するとき	は、その関連する	る箇所の表示	関連する 請求項の番号
А	JP 11-279745 A ァミリーなし)	(日本特殊陶業株式会社)	1999. 10. 12,	請求項1(フ	1-9

フロントページの続き

(81)指定国 · 地域 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,T J,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,R O,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ, BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,G T,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM, TN,TR,TT

(72)発明者 冨田 亘孝

愛知県みよし市黒笹町丸根1099番地20 株式会社アドマテックス内

(72)発明者 須田 明彦

愛知県長久手市横道41番地の1 株式会社豊田中央研究所内

(72)発明者 深野 達雄

愛知県長久手市横道41番地の1 株式会社豊田中央研究所内

Fターム(参考) 5H050 AA19 BA17 CB01 GA10 HA02 HA04 HA05 HA08 HA14 HA17

(注)この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に 係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法 第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。