008/037662 A2 |00 000 0 000 OO

o

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO O 0

International Bureau

(43) International Publication Date
3 April 2008 (03.04.2008)

(10) International Publication Number

WO 2008/037662 A2

(51) International Patent Classification:
HO4L 29/08 (2006.01) HO4L 29/06 (2006.01)

(21) International Application Number:
PCT/EP2007/060022

(22) International Filing Date:
21 September 2007 (21.09.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/536,962 29 September 2006 (29.09.2006) US
(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York

10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HERNESS, Eric
Nels [US/US]; 4492 County Road 3 SW, Byron, Minnesota
55920 (US). PHAN, Anh-Khoa Dinh [US/US]; 123 11th
Avenue SE, #1, Rochester, Minnesota 55904 (US). ZOU,

Chendong [US/US]; 7547 De Foe Drive, Cupertino,

California 95014 (US).
(74) Agent: ROBERTS, Scott; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2IN (GB).
(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, L.C, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: GENERIC SEQUENCING SERVICE FOR BUSINESS INTEGRATION

EVENT SEQUENCING |~ 310
SCA -4 (PROCESSING ORDER)
| SCHEMA
306~,] COMPONENT KIND 5
SERVICE > | 10 | EVENT SEQUENCING
/4 302 COMPONENT [— - (PROCESSING ORDER)
304 SPECIFICATION
N
1 }) 300 308

(57) Abstract: A computer implemented method, data processing system, and computer program product for providing a generic
sequencing service for ordering processing requests in a scalable business integration environment. When a request is received at a
sequencing component, the operation specified in the request is identified. A determination is then made as to whether to sequence
the operation according to a sequencing specification. If the operation is to be sequenced, key information of the operation is classi-
) fied according to the sequencing specification. A lock on the request is then requested using the operation and the key information.
Responsive to the lock being granted, a determination is then made as to whether the request is synchronous or asynchronous. If
the request is synchronous, the target service component is invoked synchronously. If the request is asynchronous, the target service

component is invoked asynchronously.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

GENERIC SEQUENCING SERVICE FOR BUSINESS INTEGRATION

Field of the Invention

The present invention relates generally to an improved data processing system, and in
particular, to a computer implemented method, data processing system, and computer
program product for providing a generic sequencing service for ordering processing requests

in a business integration environment.

Background of the Invention

The integration of business processes across organizations allows individuals and
systems both internal and external to an enterprise to communicate and work together in
support of business strategies. Clients may call out a service in the business enterprise, and the
appropriate business component in the business enterprise responds to the request. A client
may issue a synchronous request, meaning that the client issues the request for a service and
then suspends its processing while waiting for a response. In this manner, the client controls
the order or sequence of the requests, since the client will not initiate the next request until the
previous request has been processed. However, it is common in business integration
environments that requests are batched together asynchronously, or in parallel. With an
asynchronous request, the client issues a request for a service and then resumes its processing
without waiting for a response from the business component. The service handles the client
request and returns a response at a later time, at which time the client retrieves the response

and proceeds with its processing.

For example, a client may issue requests to a target component which comprise a set
of changes to be made, which are passed along asynchronously via, for example, a message
queue (MQ). To correctly process these asynchronous requests, the service must observe the
order in which the requests are received, since two or more of the asynchronous requests may
operate on the same target. Consider the example of a banking service which allows
customers to make deposits, withdrawals, and check account information. For a given

account, a customer may issue two asynchronous requests to modify an account — one to

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

deposit $100 into the account, and one to withdraw $50 from the account. In this example, it
may be important that the banking service processes the asynchronous requests in the order in
which they are received (first deposit, then withdraw), so that funds will be available in the
customer’s account to withdraw. If the requests are not processed in sequence, adverse
consequences may result, such as the customer incurring charges for having insufficient funds

for the withdrawal.

Solutions in the current art provide for single-threading asynchronous requests in order
to maintain the processing order, such that all requests received from clients are processed
serially. Thus, processing order is maintained since the service receiving all of the requests
must provide a response to the first request before responding to the next request. Although
serial processing allows one to maintain the processing order, it is not scalable. Thus,
although the current art allows one to guarantee the processing order of requests, it does not,

however, allow for adapting to increased demands on the system and provide scalability.

Therefore, it would be advantageous to have an improved system and method for
ensuring that the order in which requests are processed is preserved in a scalable business

integration environment.

Summary of the Invention

The illustrative embodiments provide a computer implemented method, data
processing system, and computer program product for providing a generic sequencing service
for ordering processing requests in a scalable business integration environment. When a
request is received at a sequencing component, the operation specified in the request is
identified. A determination is then made as to whether to sequence the operation according to
a sequencing specification. If the operation is to be sequenced, key information of the
operation is classified according to the sequencing specification. A lock on the request is then
requested using the operation and the key information. Responsive to the lock being granted,
a determination is then made as to whether the request is synchronous or asynchronous. If the
request is synchronous, the target service component is invoked synchronously. If the request

is asynchronous, the target service component is invoked asynchronously.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

Brief Description of the Drawings

Preferred embodiments of the present invention will now be described, by way of
example only, with reference to the following drawings in which:

Figure 1 depicts a pictorial representation of a network of data processing systems in
which the illustrative embodiments may be implemented;

Figure 2 is a block diagram of a data processing system in which the illustrative
embodiments may be implemented;

Figure 3 is a diagram of exemplary components with which the generic sequencing
service for ordering processing requests of the illustrative embodiments may be implemented;

Figures 4 and 5 illustrate an exemplary schema for specifying the processing order of
requests in accordance with the illustrative embodiments;

Figure 6 illustrates an exemplary extensible markup language file specifying the
processing request order for an update operation in accordance with the illustrative
embodiments;

Figure 7 illustrates an exemplary extensible markup language file specifying the
processing order for multiple operations in accordance with the illustrative embodiments;

Figure 8 illustrates a schema for declaring the component specification extension for
Service Component Architecture (SCA) in accordance with the illustrative embodiments;

Figure 9 illustrates an exemplary extensible markup language component file declaring
an SCA component in accordance with the illustrative embodiments;

Figure 10 is a flowchart of a process for guaranteeing the processing order of
asynchronous requests in a business integration environment in accordance with the illustrative
embodiments; and

Figure 11 is a flowchart of a process for invoking a callback to the sequencing

component in accordance with the illustrative embodiments.

Detailed Description of the Preferred Embodiments

With reference now to the figures and in particular with reference to Figures 1-2,

exemplary diagrams of data processing environments are provided in which illustrative

embodiments may be implemented. It should be appreciated that Figures 1-2 are only

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

exemplary and are not intended to assert or imply any limitation with regard to the
environments in which different embodiments may be implemented. Many modifications to

the depicted environments may be made.

With reference now to the figures, Figure 1 depicts a pictorial representation of a
network of data processing systems in which illustrative embodiments may be implemented.
Network data processing system 100 is a network of computers in which embodiments may be
implemented. Network data processing system 100 contains network 102, which is the
medium used to provide communications links between various devices and computers
connected together within network data processing system 100. Network 102 may include

connections, such as wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. These
clients 110, 112, and 114 may be, for example, personal computers or network computers. In
the depicted example, server 104 provides data, such as boot files, operating system images,
and applications to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server
104 in this example. Network data processing system 100 may include additional servers,

clients, and other devices not shown.

In the depicted example, network data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host computers, consisting of thousands of
commercial, governmental, educational and other computer systems that route data and
messages. Of course, network data processing system 100 also may be implemented as a
number of different types of networks, such as for example, an intranet, a local area network
(LAN), or a wide area network (WAN). Figure 1 is intended as an example, and not as an

architectural limitation for different embodiments.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

With reference now to Figure 2, a block diagram of a data processing system is shown
in which illustrative embodiments may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in Figure 1, in which computer usable
code or instructions implementing the processes may be located for the illustrative

embodiments.

In the depicted example, data processing system 200 employs a hub architecture
including a north bridge and memory controller hub (MCH) 202 and a south bridge and
input/output (I/0) controller hub (ICH) 204. Processor 206, main memory 208, and graphics
processor 210 are coupled to north bridge and memory controller hub 202. Graphics
processor 210 may be coupled to the MCH through an accelerated graphics port (AGP), for

example.

In the depicted example, local area network (LAN) adapter 212 is coupled to south
bridge and I/O controller hub 204 and audio adapter 216, keyboard and mouse adapter 220,
modem 222, read only memory (ROM) 224, universal serial bus (USB) ports and other
communications ports 232, and PCI/PCle devices 234 are coupled to south bridge and 1/0
controller hub 204 through bus 238, and hard disk drive (HDD) 226 and CD-ROM drive 230
are coupled to south bridge and I/O controller hub 204 through bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards, and PC cards for notebook
computers. PCI uses a card bus controller, while PCle does not. ROM 224 may be, for
example, a flash binary input/output system (BIOS). Hard disk drive 226 and CD-ROM drive
230 may use, for example, an integrated drive electronics (IDE) or serial advanced technology
attachment (SATA) interface. A super I/O (S10) device 236 may be coupled to south bridge
and 1/O controller hub 204.

An operating system runs on processor 206 and coordinates and provides control of
various components within data processing system 200 in Figure 2. The operating system
may be a commercially available operating system such as Microsoft® Windows® XP
(Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other
countries, or both). An object oriented programming system, such as the Java™ programming

system, may run in conjunction with the operating system and provides calls to the operating

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

system from Java programs or applications executing on data processing system 200 (Java and
all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,

other countries, or both).

Instructions for the operating system, the object-oriented programming system, and
applications or programs are located on storage devices, such as hard disk drive 226, and may
be loaded into main memory 208 for execution by processor 206. The processes of the
illustrative embodiments may be performed by processor 206 using computer implemented
instructions, which may be located in a memory such as, for example, main memory 208, read

only memory 224, or in one or more peripheral devices.

The hardware in Figures 1-2 may vary depending on the implementation. Other
internal hardware or peripheral devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in addition to or in place of the
hardware depicted in Figures 1-2. Also, the processes of the illustrative embodiments may be

applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200 may be a personal digital
assistant (PDA), which is generally configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-generated data. A bus system may be
comprised of one or more buses, such as a system bus, an I/O bus and a PCI bus. Of course
the bus system may be implemented using any type of communications fabric or architecture
that provides for a transfer of data between different components or devices attached to the
fabric or architecture. A communications unit may include one or more devices used to
transmit and receive data, such as a modem or a network adapter. A memory may be, for
example, main memory 208 or a cache such as found in north bridge and memory controller
hub 202. A processing unit may include one or more processors or CPUs. The depicted
examples in Figures 1-2 and above-described examples are not meant to imply architectural
limitations. For example, data processing system 200 also may be a tablet computer, laptop

computer, or telephone device in addition to taking the form of a PDA.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

The illustrative embodiments provide a computer implemented method, data
processing system, and computer program product for preserving the order in which requests
are processed in a business integration environment. The generic sequencing service in the
illustrative embodiments provides a declarative programming model that allows a user to
specify the order that particular requests (e.g., asynchronous requests) received by a target
business component are processed by the component. In this manner, the order of requests

received by a component may be preserved.

To specify the processing order, a user may first define criteria in which the requests
may be classified. Each asynchronous request received from a client is classified according to
the criteria defined by the user. For example, for a banking service, the user may specify that
the bank account number supplied within each request should be used to classify the requests.
Thus, requests having the same bank account number are classified together, and requests
having a different bank account number will not have the same classification. In another
example, for a retail supplier, the user may specify that a customer identifier (customer ID)
supplied within each request, such as a string of alphanumeric characters identifying the
requesting customer, should be used to classify the requests. Requests having the same
customer ID will have the same classification, and requests with a different customer ID will
have different classifications. Although bank account number and customer ID are used to
describe particular classification criteria, the generic sequencing service in the illustrative
embodiments is not limited to a particular set of criteria; rather, the generic sequencing service
provides flexibility by allowing the user to specify classification criteria to suit the particular

business purpose.

The generic sequencing service also provides for scalability of the sequencing service
by allowing particular requests to be processed serially (and in a particular order) while
allowing other requests to be processed in parallel. The generic sequencing service uses the
request classification to determine whether a request is relevant. A request is relevant if the
request has the same classification as another request in the group. For example, requests may
be deemed relevant if a banking service receives two or more requests to update the same
bank account, and the classification criteria of these requests are based on bank account

number. In this case, the order in which the requests are processed is important and should be

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

preserved. Conversely, a request may be deemed irrelevant if the banking service receives
another request to update a different bank account. In this case, since the requests modify
different bank accounts, the order in which these requests are processed requests does not

matter, and thus the requests may be processed in parallel.

In one illustrative embodiment, the generic sequencing service is described in the
context of the Service Component Architecture (SCA) framework (as shown below in Figure
3). In this context, the software is organized as services provided by components.
Components that provide business services are programmed/scripted based on the type of
component, or ‘component kind’. The component kind concept is used to capture the type of
the component, for example, a service, a business process execution language (BPEL)
workflow, a data-map, and the like, that can be customized and reused easily. For example, a
BPEL component kind means that the implementation of the service will be a BPEL process.
SCA is inherently extensible, and the illustrative embodiments allow a new component kind to
be designed and built for the SCA service. This new component kind is called ‘sequencing
component kind’. The sequencing component kind allows one to specify an event sequencing
specification using a declarative language. The sequencing component kind observes the

process sequencing specified and is scalable.

Figure 3 is a diagram of exemplary components with which the generic sequencing
service for ordering processing requests may be implemented. The components shown in
Figure 3 may be implemented in a data processing system, such as data processing system 200
in Figure 2. One exemplary application to which the generic sequencing service may apply is
a WebSphere® Process Server business application. WebSphere® Process Server (WPS) is a
product available from International Business Machines Corporation. WebSphere® Process
Server business applications are composed of interacting services. In this illustrative example,
Service Component Architecture (SCA) 300 provides a container in which components, such
as component 302, may reside. Services, such as service 304, are provided by the components

and made available by the Service Component Architecture.

Each component within SCA 300 is programmed/scripted in a component kind specific

way. For example, component kind 306 may be scripted or programmed in a component-kind

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022

specific markup language. The generic sequencing service in the illustrative embodiments
extends SCA by implementing a new component kind, sequencing component kind, which
allows one to specify an event sequencing (processing order) specification 308 using a

declarative language.

For each sequencing component kind, the corresponding event sequencing
specification 308 allows the sequencing component kind to observe the sequence of incoming
service requests to determine the order the requests are to be processed. Event sequencing
specification 308 is an XML file which defines the language for the sequencing specification,
and also specifies the keys and operations of the requests that are to be ordered. Event
sequencing (processing order) schema 310 specifies the classification logic and defines the
declarative language which is used to construct event sequencing specification 308. Event
sequencing specification 308 and event sequencing schema 310 may be provided to
Monitoring Runtime 312. Monitoring Runtime 312 provides an implementation that uses the
event sequencing specification 308 and event sequencing schema 310 to order the processing

of requests in the business integration environment.

Turning next to Figures 4 and §, an exemplary schema defining the declarative
language used to specify the processing order of requests in accordance with the illustrative
embodiments is shown. Schema 400 may be implemented as a markup language schema using
a standard schema format, such as extensible schema definition (XSD) format. Schema 400 is
an example of an event sequencing schema, such as event sequencing schema 310 in Figure 3.
In this illustrative example, schema 400 includes eventSequencing 402 element, which

specifies the order in which the events or requests are to be processed.

EventSequencing 402 comprises operationSequencingGroup 404, which defines the
group of requests to be processed in a particular order. OperationSequencingGroup 404
includes an operation sequencing element (operationSequencing 406) which specifies the
order in which the operations are to be processed. OperationSequencing 406 is defined by
operation 408 clement and a key specification element (keySpecification 410). Operation 408

describes a type of operation of the event, such as, for example, ‘update’ or ‘upgrade’.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
10

Operations defined in the same operationSequencingGroup 404 are executed one by one in a

designated sequence.

In addition, data types such as keySpecification 410 and keyAttribute 412 may be used
to define a particular property or attribute of a service data object (SDO) to be the key. Keys
are used to define the actual lock/isolation object used to classify the requests and thereby
determine the processing order. A lock is a mechanism for isolating data by enforcing limits
on access to a resource in an environment where there are many threads of execution. For
example, if the lock/isolation object is the bank account number, the key is used to determine
which requests are relevant (i.e., requests directed to a same bank account number) and then

preserve the order of those relevant requests.

Figure 6 illustrates an exemplary extensible markup language (XML) file specifying
the processing request order for an update operation in accordance with the illustrative
embodiments. In particular, this exemplary extensible markup language file is an example of
an event sequencing specification, such as event sequencing specification 308 in Figure 3,
which utilizes the schema 400 in Figures 4 and 5 to specify the sequence of processing the

requests.

Event sequencing specification XML file 600 comprises operationSequencingGroup
602 which includes an operation sequencing element (operationSequencing 604).
OperationSequencing 604 comprises operation 606, which defines the type of operation of the

request. Given an example interface

public interface bankOperation {

public void update(String account, int amount);

the operation in event sequencing specification XML file 600 is “‘update’ 608. A key
specification element (KeySpecification 610) defines the lock/isolation object, which in this
case is the bank account number (‘account’ 612). Thus, update operation requests directed to

a given bank account are classified as relevant and will be processed one-by-one in a particular

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
11

order. In contrast, requests that are directed to different bank accounts are not classified as

relevant to one other, and thus, these update operation requests may be processed in parallel.

Figure 7 illustrates an exemplary extensible markup language file specifying the
processing request order for multiple operations in accordance with the illustrative
embodiments. Like event sequencing specification XML file 600 in Figure 6, this exemplary
extensible markup language file also utilizes event sequencing schema 400 in Figures 4 and §
to specify the sequence of processing the requests. This XML file also illustrates the flexibility
of schema 400. In particular, event sequencing specification XML file 700 shows how one
may specify that multiple operations of the same interface are to be processed in a particular

order.

For example, interface

public interface bankOperation {
public void update(String account, int amount);
public void upgrade(String account, int type);
}

comprises two bank operations: update and upgrade. Event sequencing specification XML
file 700 comprises OperationSequencingGroup 702 which defines the operationSequencing
704 and 706 for cach operation (update 708 and upgrade 710). In this illustrative example,
since ‘account’ 712 is defined as the KeySpecification 714 and 716 for update 708 operation
and upgrade 710 operation, an update and an upgrade operation are be performed serially and
in order if the operations are directed to the same account. In other words, operations
performed on the same account are be performed one after the other. In contrast, the update
708 operation and upgrade 710 operation may be performed in parallel if the operations are

directed to different accounts.

Figure 8 illustrates a schema for declaring the component specification extension for
Service Component Architecture (SCA) in accordance with the illustrative embodiments. In
particular, Figure 8 illustrates the component specification extension for SCA using Service

Component Description Language (SCDL) to define the component. An SCDL file is an

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
12

XML file that references the elements used to produce the component. Schema 800 may be
implemented as a markup language schema using a standard schema format, such as extensible
schema definition (XSD) format. In this illustrative example, schema 800 includes
eventSequencinglmplementation 802, which defines the component extension for providing

the event sequencing.

Figure 9 illustrates an exemplary extensible markup language component file declaring
an SCA component in accordance with the illustrative embodiments. In particular, the
component file in Figure 9 illustrates how one may declare an SCA sequencing component
using the defining component schema 800 in Figure 8 and the event sequencing specifications

in Figures 6 and 7 as the implementation of the component.

In this illustrative example, the implementation of the sequencing component is defined
as component ‘bvt/target/InnerTargetSequencing’ 902. Sequencing component
‘bvt/target/InnerTargetSequencing’ 902 determines the order in which the requests are to be
processed. Sequencing component ‘bvt/target/InnerTargetSequencing’ 902 includes interface
‘bvt.target.BankOperation’ 904 and the implementation type EventSequencinglmplementation
906, which includes sequencing file ‘bvt/target/InnerTarget.Sequencing’ 908. Reference
‘InnerTarget’ 910 includes interface ‘bvt.target.BankOperation’ 904 and a wire target
‘bvt/target/InnerTarget’ 912, which implements the business logic of the target component.
The method name of the operation is defined as ‘update’ 914. The implementation of the
sequencing component bvt/target/InnerTarget.Sequencing’ 908 precedes the real business
service component ‘bvt/target/InnerTarget’ 912, so that the sequencing component may

provide the necessary ordering of requests before the real business service component is

called.

Figure 10 is a flowchart of a process for guaranteeing the processing order of
asynchronous requests in a business integration environment in accordance with the illustrative
embodiments. The process described in Figure 10 may be implemented in a data processing

system, such as data processing system 200 in Figure 2.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
13

The process begins with the sequencing component kind reading the sequencing
specification in the component’s implementation (step 1002), such as, for example, esfile
“bvt/target/InnerTarget.Sequencing” 908 in Figure 9 to determine the order of processing
requests. Upon reading the sequencing specification, the sequencing component kind maps
each operation sequencing group specified in the sequencing specification to a different lock
name space (LNS) (step 1004). The lock name space is a logical name space that is not
exposed to the user. The sequencing component kind then constructs a hash table within an
internal in-memory data structure, wherein the hash table is keyed by operation (step 1006).
The value of each operation in the hash table is defined as a lock name space and operation

sequencing pair (e.g., LNS, OperationSequencing).

When an incoming service request is received at a sequencing component, the
sequencing component kind identifies the operation in the incoming request (step 1008). It
should be noted that a sequencing component is usually placed in front of the target business
service component to preserve ordering. In other words, the incoming service request is
received at the sequencing component prior to the target business service component being
called. The sequencing component kind then determines whether it is recommended that the
operation specified in the request be sequenced by checking to see if the operation is defined
in the hash table (step 1010). The recommendation may comprise a requirement that the
operation be sequenced action, or a suggestion that the operation should be sequenced. If the
operation is not found in the hash table (a ‘no’ output to step 1010), then no sequencing is
required to be performed on the request, and the process skips to step 1030 to proceed with
the invocation of the request. In step 1030, a determination is then made as to whether the
request is synchronous. If the request is a synchronous request (a ‘yes’ output to step 1030),
the process will invoke the target component synchronously (step 1032). For example, the
process may call the ‘update’ operation synchronously. If the request is an asynchronous
request (a ‘no’ output to step 1030), the process then proceeds to perform the operation by
invoking the target component asynchronously (step 1034), with the process terminating
thereafter. For instance, the ‘update’ operation may be called asynchronously, and the
sequencing component’s implementation is passed as the callback parameter of the

asynchronous invocation.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
14

Turning back to step 1010, if the operation is found in the hash table (a “yes’ output to
step 1010), the sequencing component kind classifies the request key information in the
payload by retrieving the lock name space and operation sequencing pair for the operation
from the hash table (step 1014), and then obtaining the actual key value from the request's
payload according to the key specification of the operation sequencing element in the
sequencing specification (step 1016). For instance, the request key information and value may
be a bank account number. The sequencing component kind then requests that a lock be
created on the request using the operation and the key information (step 1018). For example,
a lock request may comprise a lock name space (LNS) and the request key information for the

operation.

Next, a determination is made as to whether the lock has been granted (step 1020). If
no lock is granted (a ‘no’ output to step 1020), a determination is made as to whether the
request is synchronous (step 1022). If the request is a synchronous request (a ‘yes’ output to
step 1022), the process waits at step 1024 for the lock to be granted. This waiting may be
performed by registering a semaphore as part of the lock request, and the process will wait on
that semaphore. Once the lock is granted, the process will invoke the target component
synchronously (step 1026). For example, the process may call the ‘update’ operation

synchronously.

Turning back to step 1022, if the request is an asynchronous request (a ‘no’ output to
step 1022), then the process remembers the caller’s asynchronous callback, and returns (step

1028), with the process terminating thereafter.

Turning back to step 1020, if the request is granted (a ‘yes’ output to step 1020), a
determination is made as to whether the request is synchronous (step 1030). If the request is
synchronous request, the process will invoke the target component synchronously (step 1032).
For example, the process may call the “‘update’ operation synchronously. If the request is an
asynchronous request, the process then proceeds to perform the operation by invoking the

target component asynchronously (step 1034), with the process terminating thereafter.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
15

Figure 11 is a flowchart of a process for invoking a callback to the sequencing
component in accordance with the illustrative embodiments. The process described in Figure
11 may be implemented in a data processing system, such as data processing system 200 in
Figure 2. As mentioned in Figure 10 above, the sequencing component invokes the target for
the business logic, and it is important to note that the target is always invoked asynchronously.
In this illustrative example, the callback is invoked when the asynchronous response returns to
the sequencing component kind (step 1102). The process then calls the original caller’s
callback (step 1104), which was saved as part of the handling of the original asynchronous
requests, as described in step 1028 in Figure 10. When the callback arrives, the callback
implementation may either wake up the waiting process in the synchronous request case in
step 1024 in Figure 10 which then proceeds to perform the actual target invocation, or in the
asynchronous case, the callback implementation may perform the actual target invocation.
Upon receiving the response (callback) at the sequencing component kind, the sequencing
component kind calls an unlock function to unblock the next request in the operation
sequencing group (step 1106). The sequencing component kind then calls the target business
component for the request that has just been unblocked (step 1108), with the process

terminating thereafter.

Embodiments of the invention can take the form of an entirely hardware embodiment,
an entirely software embodiment or an embodiment containing both hardware and software
elements. A preferred embodiment is implemented in software, which includes but is not

limited to firmware, resident software, microcode, etc.

Furthermore, embodiments of the invention can take the form of a computer program
product accessible from a computer-usable or computer-readable medium providing program
code for use by or in connection with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer readable medium can be any
tangible apparatus that can contain, store, communicate, propagate, or transport the program

for use by or in connection with the instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or

semiconductor system (or apparatus or device) or a propagation medium. Examples of a

10

15

20

25

WO 2008/037662 PCT/EP2007/060022
16

computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of optical disks include compact

disk — read only memory (CD-ROM), compact disk — read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or executing program code will
include at least one processor coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory employed during actual execution
of the program code, bulk storage, and cache memories which provide temporary storage of at
least some program code in order to reduce the number of times code must be retrieved from

bulk storage during execution.

Input/output or I/0O devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening 1/0

controllers.

Network adapters may also be coupled to the system to enable the data processing
system to become coupled to other data processing systems or remote printers or storage
devices through intervening private or public networks. Modems, cable modem and Ethernet

cards are just a few of the currently available types of network adapters.

The description of embodiments of the present invention has been presented for
purposes of illustration and description, and is not intended to be exhaustive or limited to the
form disclosed. Many modifications and variations will be apparent to those of ordinary skill

in the art.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
17

CLAIMS

1. A computer implemented method for guaranteeing a processing order of requests in a
business integration environment, the computer implemented method comprising:

responsive to receiving a request at a sequencing component, identifying an operation
specified in the request;

determining whether to sequence the operation according to a sequencing
specification;

responsive to a determination to sequence the operation, classifying key information of
the operation according to the sequencing specification;

requesting a lock on the request using the operation and the key information;

responsive to the lock being granted, determining whether the request is synchronous
or asynchronous;

if the request is synchronous, invoking the target service component synchronously;
and

if the request is asynchronous, invoking the target service component asynchronously.
2. The computer implemented method of claim 1, further comprising:

responsive to a determination not to sequence the operation, determining whether the
request is synchronous or asynchronous;

if the request is synchronous, invoking the target service component synchronously;
and

if the request is asynchronous, invoking the target service component asynchronously.

3. The computer implemented method of claim 1, wherein an operation is sequenced if

the operation is defined in a hash table as a lock name space and an operation sequencing pair.

4. The computer implemented method of claim 1, further comprising:
if the request is asynchronous, passing an implementation of the sequencing

component as a callback parameter of the asynchronous invocation.

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
18

5. The computer implemented method of claim 3, wherein classifying key information of
the operation further comprises:

retrieving the lock name space and the operation sequencing pair for the operation
from the hash table; and

obtaining the key information from a payload of the request according to a key

specification of the operation sequencing pair in the sequencing specification.

6. The computer implemented method of claim 1, further comprising:

responsive to no lock being granted, determining whether the request is synchronous
or asynchronous;

if the request is synchronous, registering a semaphore as part of the lock request to
wait for the lock to be granted; and

invoking the target service component synchronously when the lock is granted.

7. The computer implemented method of claim 1, wherein the request is received at the

sequencing component prior to invoking the target business service component.

8. The computer implemented method of claim 1, wherein the sequencing specification is

user-defined.

9. The computer implemented method of claim 1, further comprising:

invoking a callback upon return of an asynchronous response to the sequencing
component, wherein the callback invocation comprises:

invoking the target service component;

responsive to receiving the callback at the sequencing component, calling an unlock
function to unblock a next request in the sequencing specification; and

invoking the target service component for the next request.

10. A data processing system for guaranteeing a processing order of requests in a business
integration environment, the data processing system comprising:

a bus;

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
19

a storage device connected to the bus, wherein the storage device contains computer
usable code;

at least one managed device connected to the bus;

a communications unit connected to the bus; and

a processing unit connected to the bus, wherein the processing unit executes the
computer usable code to identify an operation specified in a request in response to receiving
the request at a sequencing component, determine whether to sequence the operation
according to a sequencing specification, classify key information of the operation according to
the sequencing specification in response to a determination to sequence the operation, request
a lock on the request using the operation and the key information, determine whether the
request is synchronous or asynchronous in response to the lock being granted, invoke the
target service component synchronously if the request is synchronous, and invoke the target

service component asynchronously if the request is asynchronous.

11. The data processing system of claim 10, wherein the processing unit further executes
the computer usable code to determine whether the request is synchronous or asynchronous in
response to a determination not to sequence the operation, invoke the target service

component synchronously if the request is synchronous, and invoke the target service

component asynchronously if the request is asynchronous.

12. A computer program product for guaranteeing a processing order of requests in a
business integration environment, the computer program product comprising:

a computer usable medium having computer usable program code tangibly embodied
thereon, the computer usable program code comprising:

computer usable program code for identifying an operation specified in a request in
response to receiving the request at a sequencing component;

computer usable program code for determining whether to sequence the operation
according to a sequencing specification;

computer usable program code for classifying key information of the operation
according to the sequencing specification in response to a determination to sequence the

operation;

10

15

20

25

30

WO 2008/037662 PCT/EP2007/060022
20

computer usable program code for requesting a lock on the request using the operation
and the key information;

computer usable program code for determining whether the request is synchronous or
asynchronous in response to the lock being granted,;

computer usable program code for invoking the target service component
synchronously if the request is synchronous; and

computer usable program code for invoking the target service component

asynchronously if the request is asynchronous.

13. The computer program product of claim 12, further comprising:

computer usable program code for determining whether the request is synchronous or
asynchronous in response to a determination not to sequence the operation;

computer usable program code for invoking the target service component
synchronously if the request is synchronous; and

computer usable program code for invoking the target service component

asynchronously if the request is asynchronous.

14. The computer program product of claim 12, wherein an operation is sequenced if the

operation is defined in a hash table as a lock name space and an operation sequencing pair.

15. The computer program product of claim 12, further comprising:
computer usable program code for passing an implementation of the sequencing
component as a callback parameter of the asynchronous invocation if the request is

asynchronous.

16. The computer program product of claim 14, wherein the computer usable program
code for classifying key information of the operation further comprises:

computer usable program code for retrieving the lock name space and operation
sequencing pair for the operation from the hash table; and

computer usable program code for obtaining the key information from a payload of the
request according to a key specification of the operation sequencing pair in the sequencing

specification.

10

15

20

WO 2008/037662 PCT/EP2007/060022
21

17. The computer program product of claim 12, further comprising:

computer usable program code for determining whether the request is synchronous or
asynchronous in response to no lock being granted;

computer usable program code for registering a semaphore as part of the lock request
to wait for the lock to be granted if the request is synchronous; and

computer usable program code for invoking the target service component

synchronously when the lock is granted.

18. The computer program product of claim 12, wherein the request is received at the

sequencing component prior to invoking the target business service component.

19. The computer program product of claim 12, wherein the sequencing specification is

user-defined.

20. The computer program product of claim 12, further comprising:

computer usable program code for invoking a callback upon return of an asynchronous
response to the sequencing component, wherein the callback invocation comprises:

computer usable program code for invoking the target service component;

computer usable program code for calling an unlock function to unblock a next request
in the sequencing specification in response to receiving the callback at the sequencing
component; and

computer usable program code for invoking the target service component for the next

request.

WO 2008/037662

1/6

PCT/EP2007/060022

B FIG. 1 4 110
104~)
102 oYYy
= | CLIENT
SERVER NETWORK
—-| 112
CLIENT
106" ||L|
= j 114
SERVER STORAGE oRPPS
CLIENT
108
FIG. 2
206~ | PROCESSING
UONT 200
210 202 208 216 236
\ N / / /
GRAPHICS MAIN AUDIO
PROCESSOR [W—1 NBMCH K= viEMoRy ADAPTER | | SO
204 @
240 \ 238
BUS BUS
<1£ U SB/ICH U U 4 U U ' L_>
KEYBOARD
gﬁ\g}g co-rom| | AN US?HAE';D PCI/PCle AND MODEM | | Rom
b ADAPTER | | DTHEZ | | DEVICES | | MOUSE
ADAPTER
/ / / / / N N N\
226 230 212 232 234 220 222 224

WO 2008/037662 PCT/EP2007/060022
2/6

EVENT SEQUENCING |~ 310
FIG. 3 SCA r{ (PROCESSING ORDER)
l SCHEMA
306~ COMPONENT KIND I
SERVICE > L4 1 | EVENT SEQUENCING
’ 3021 COMPONENT |11~ | (PROCESSING ORDER)
304 SPECIFICATION
N
] - 300 g
FIG. 4 400
<?xml version="1.0" encoding="UTF-8"?> ’/
<schema
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmins:es
="http://www.ibm.com/xmins/prod/websphere/wbiserver/eventSequencing/6.0.0"
targetNamespace
="http://www.ibm.com/xmins/prod/websphere/wbiserver/eventSequencing/6.0.0">
/~—402

<element name="eventSequencing" type="es:eventSequencing" />

<complexType name="eventSequencing">
<sequence minOccurs="1" maxOccurs="unbounded">
<element name="operationSequencingGroup"
type="es:operationSequencingGroup"/> 404
</sequence>
</complexType> 404

< complexType name="operationSequencingGroup">
<sequence minOccurs="1" maxOccurs="unbounded" >
< element name="operationSequencing" type="es:operationSequencing"/>
</sequence>

</complexType> 406 406

< complexType name="operationSequencing">
<sequence> —~—408
<element name="operation" type="string"/>
<sequence minOccurs="0" maxOccurs="unbounded">
<element name ="keySpecification" type="es:keySpecification" />
</sequence>
</sequence> 410
</complexType>

WO 2008/037662 PCT/EP2007/060022
3/6

FIG. 5 41\0 400

< complexType name="keySpecification"> r/
<sequence=>
<element name="parameterName" type="string"/>
<I1-- for now, 0 occurance of attribute implies that either
the parameter has a key by default or it's a primitive type.
-—>
< sequence minOccurs="0" maxOccurs="unbounded">
<element name ="keyAttribute" type ="es:keyAttribute"/>

</sequence>
</sequence> 412
</complexType> 412

< complexType name="keyAttribute">
<sequence>
< element name ="atiributeName" type="string"/>
<!-- probably needs to qualify this xpath string -->
<element name ="xpath" type="string"/>
</sequence>
<l--
<key name="esKey">
<selector xpath="./fieldName"/>
<field xpath="@value"/>
</key>
-—>>
</complexType>

</schema>
FIG. 6 600
[<7?xml version="1.0" encoding="UTF-8"?> P/

<es:eventSequencing
xmins:es="http://www.ibm.com/xmins/prod/websphere/wbiserver/eventSequencing/6.0.0" >
<operationSequencingGroup>——602
<operationSequencing>-——604
< operation>update </operation>
< ZkeySpecification>
606
610" < paramef[nggme>account</parameterName >
</keySpecification>
</operationSequencing> 612
</operationSequencingGroup>
</es:eventSequencing>

WO 2008/037662 PCT/EP2007/060022
4/6

FIG. 7 700

<?xml version="1.0" encoding="UTF-8"?> /
<es:eventSequencing
xmins:es="http://www.ibm.com/xmins/prod/websphere/wbiserver/eventSequencing/6.0.0">
<operationSequencingGroup>——702
<operationSequencing>-—704
<operation>update </operation>
<keySpecification>""708
71 ~< parameterName>account</parameterName >
</keySpecification>
</operationSequencing > 2
<operationSequencing>—— 706
< operation>upgrade </operation>
<keySpecification> ~710
71 6’/< parameterName>account</parameterName >
</keySpecification>
</operationSequencing> 712
</operationSequencingGroup>
</es:eventSequencing >

800
FIG. & v

<7ml version="1.0" encoding="UTF-8"?>

<schema xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:es="http://www.ibm.com/xmIns/prod/websphere/wbiserver/es/6.0.0"
xmins:scdl="http://www.ibm.com/xmins/prod/websphere/scd!/6.0.0"
targetNamespace ="http://www.ibm.com/xmins/prod/websphere/wbiserver/es/6.0.0" >
<import

namespace ="http://www.ibm.com/xmlns/prod/websphere/scdl/6.0.0"
schemalocation="scdl.xsd" /> 802

- L~
<I--Event sequencing implementation-->
< complexType name="EventSequencinglmplementation">
<complexContent>
<extension base="scdl:Implementation">
< attribute name="esFile" type="string" />
</extension>
</complexContent>
</complexType>

</schema>

WO 2008/037662 PCT/EP2007/060022
5/6

FIG. 9 900

<ml version="1.0" encoding="UTF-8"?> '/

<scdl:component
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:java="http://www.ibm.com/xmins/prod/websphere/scdl/java/6.0.0"
xmins:scdl="http://www.ibm.com/xmIns/prod/websphere/scd|/6.0.0"
xmins:es="http://www.ibm.com/xmins/prod/websphere/wbiserver/es/6.0.0"
name= "bvt/target/lnnerTargetSiquencing" >

<interfaces> 902
<interface xsi:type="java:Javalnterface"
interface="bvt.target.BankOperation"/>

</interfaces> N

904

< <implementation xsi:type="es:EventSequencingimplementation"
esFile="bvt/target/InnerTarget.sequencing"/>

906
<references> 908
<reference name="lnnerTarget">——910
<interface xsi:type ="java:Javainterface"
interface="bvt.target.BankOperation">
<method name="update’/> ~— 904
</interface> ~— 014
<wire target="bvt/target/InnerTarget"'/>
</reference>
</references> 912
</scdl:component> FIG. 11
START
1102 CALLBACK INVOKED WHEN
™ ASYNCHRONOUS RESPONSE RETURNS
TO THE SEQUENCING COMPONENT KIND
1104~ CALL THE ORIGINAL CALLER'S CALLBACK

CALL UNLOCK FUNCTION TO UNBLOCK THE
1106 —] NEXT REQUEST IN OperationSequencingGroup

\

CALL TARGET BUSINESS COMPONENT
1108 FOR UNBLOCKED REQUEST

A 4

(END)

WO 2008/037662
6/6

READ SEQUENCING
SPECIFICATION IN COMPONENT'S
IMPLEMENTATION

Y
MAP EACH
OperationSequencingGroup IN THE
SEQUENCING SPECIFICATION TO
A DIFFERENT LOCK NAME SPACE

1002~

1004~

Y
1006~ CONSTRUCT HASH TABLE
KEYED BY OPERATION
v
1008~ IDENTIFY THE OPERATION IN

AN INCOMING REQUEST

IS
OPERATION
DEFINED IN THE
HASH TABLE

RETRIEVE LOCK NAME SPACE AND
OperationSequencing PAIR FOR THE
OPERATION FROM HASH TABLE

Y

OBTAIN ACTUAL KEY VALUE FROM
REQUEST'S PAYLOAD ACCORDING
TO keySpecification OF
OperationSequencing ELEMENT IN
SEQUENCING SPECIFICATION

v
REQUEST A LOCK FOR THE
REQUEST BE CREATED USING
THE OPERATION AND
REQUEST KEY INFORMATION

1014

1016~

1018

LOCK BEEN GRANTED

FIG. 10

IS REQUEST

SYNCHRONOUS
?

PCT/EP2007/060022

YES

1032
\ /
INVOKE THE TARGET | | INVOKE THE TARGET
COMPONENT COMPONENT
ASYNCHRONOUSLY | | SYNCHRONOUSLY
/
1034 | ‘
IS REQUEST _YES
YNCHRON
S CHgo S 1 32 4
A
1022 WAIT FOR LOCK
TO BE GRANTED
REMEMBER
THE CALLER'S Y
ASYNCHRONOUS | [INVOKE THE TARGET
CALLBACK, AND COMPONENT
RETURN SYNCHRONOUSLY
/ N
1028 N 1026

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings

