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SYSTEMS AND METHODS FOR SPEED
LIMIT CONTEXT AWARENESS

FIELD

[0001] The present disclosure relates generally to control-
ling autonomous vehicle travel. More particularly, the pres-
ent disclosure relates to systems and methods that include
and/or leverage machine-learned models to provide speed
limit context awareness in determining and controlling
autonomous vehicle driving speeds.

BACKGROUND

[0002] An autonomous vehicle is a vehicle that is capable
of sensing its environment and navigating with little to no
human input. In particular, an autonomous vehicle can
observe its surrounding environment using a variety of
sensors and can attempt to comprehend the environment by
performing various processing techniques on data collected
by the sensors. Given knowledge of its surrounding envi-
ronment, the autonomous vehicle can identify an appropriate
motion path through such surrounding environment.

SUMMARY

[0003] Aspects and advantages of embodiments of the
present disclosure will be set forth in part in the following
description, or can be learned from the description, or can be
learned through practice of the embodiments.

[0004] One example aspect of the present disclosure is
directed to a computer-implemented method of for applying
speed limit context awareness in autonomous vehicle opera-
tion. The method includes obtaining, by a computing system
comprising one or more computing devices, a plurality of
features descriptive of a context and a state of an autono-
mous vehicle. The method further includes determining, by
the computing system, a context response for the autono-
mous vehicle based at least in part on a machine-learned
model and the plurality of features, wherein the context
response includes a derived speed constraint for the autono-
mous vehicle. The method further includes providing, by the
computing system, the context response to a motion plan-
ning application of the autonomous vehicle to determine a
motion plan for the autonomous vehicle.

[0005] Another example aspect of the present disclosure is
directed to an autonomous vehicle. The autonomous vehicle
includes a machine-learned model that has been trained to
determine a context response based at least in part on
features associated with a context and a state of the autono-
mous vehicle. The autonomous vehicle further includes a
vehicle computing system including one or more processors;
and one or more memories including instructions that, when
executed by the one or more processors, cause the one or
more processors to perform operations. The operations
include obtaining a plurality of features descriptive of the
context and the state of the autonomous vehicle. The opera-
tions further include generating a feature vector based at
least in part on the plurality of features. The operations
further include inputting the feature vector to the machine-
learned model. The operations further include obtaining a
context response as an output of the machine-learned model,
wherein the context response includes a derived speed
constraint for the autonomous vehicle. The operations fur-
ther include providing the context response to a motion
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planning application of the autonomous vehicle to determine
a motion plan for the autonomous vehicle.

[0006] Another example aspect of the present disclosure is
directed to a computing system. The computing system
includes one or more processors and one or more memories
including instructions that, when executed by the one or
more processors, cause the one or more processors to
perform operations. The operations include obtaining a
plurality of features descriptive of a context and a state of an
autonomous vehicle. The operations further include deter-
mining a context response for the autonomous vehicle based
at least in part on a machine-learned model and the plurality
of features, wherein the context response includes a derived
speed constraint for the autonomous vehicle. The operations
further include providing the context response to a motion
planning application of the autonomous vehicle to determine
a motion plan for the autonomous vehicle.

[0007] Other aspects of the present disclosure are directed
to various systems, apparatuses, non-transitory computer-
readable media, user interfaces, and electronic devices.
[0008] These and other features, aspects, and advantages
of various embodiments of the present disclosure will
become better understood with reference to the following
description and appended claims. The accompanying draw-
ings, which are incorporated in and constitute a part of this
specification, illustrate example embodiments of the present
disclosure and, together with the description, serve to
explain the related principles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Detailed discussion of embodiments directed to
one of ordinary skill in the art is set forth in the specification,
which makes reference to the appended figures, in which:
[0010] FIG. 1 depicts a block diagram of an example
system for controlling the navigation of a vehicle according
to example embodiments of the present disclosure;

[0011] FIG. 2 depicts an example of autonomous vehicle
environment around a nominal path according to example
embodiments of the present disclosure;

[0012] FIG. 3A-3C depict examples of autonomous
vehicle narrow region scenarios according to example
embodiments of the present disclosure;

[0013] FIG. 4A-4B depict examples of autonomous
vehicle occluded region scenarios according to example
embodiments of the present disclosure;

[0014] FIG. 5 depicts an example of an autonomous
vehicle context scenario according to example embodiments
of the present disclosure;

[0015] FIG. 6 depicts a flowchart diagram of example
operations for speed limit context awareness according to
example embodiments of the present disclosure;

[0016] FIG. 7 depicts a flowchart diagram of example
operations for speed limit context awareness according to
example embodiments of the present disclosure;

[0017] FIGS. 8A-8B depict flowchart diagrams of
example operations for speed limit context awareness
according to example embodiments of the present disclo-
sure;

[0018] FIG. 9 depicts a flowchart diagram of example
operations for training a machine learning model according
to example embodiments of the present disclosure;

[0019] FIG. 10 depicts a flowchart diagram of example
operations for generating labeled training data according to
example embodiments of the present disclosure; and
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[0020] FIG. 11 depicts a block diagram of an example
computing system according to example embodiments of the
present disclosure.

DETAILED DESCRIPTION

[0021] Reference now will be made in detail to embodi-
ments, one or more example(s) of which are illustrated in the
drawings. Each example is provided by way of explanation
of the embodiments, not limitation of the present disclosure.
In fact, it will be apparent to those skilled in the art that
various modifications and variations can be made to the
embodiments without departing from the scope of the pres-
ent disclosure. For instance, features illustrated or described
as part of one embodiment can be used with another embodi-
ment to yield a still further embodiment. Thus, it is intended
that aspects of the present disclosure cover such modifica-
tions and variations.

[0022] Generally, the present disclosure is directed to
systems and methods that include and/or leverage machine-
learned models to provide speed limit context awareness in
determining and controlling autonomous vehicle travel
speeds. In particular, the systems and methods of the present
disclosure can determine a maximum speed limit prediction
for an autonomous vehicle in one or more segments of the
vehicle’s nominal path based on the context and environ-
ment surrounding the vehicle. For instance, an autonomous
vehicle computing system can obtain information regarding
the context around the autonomous vehicle. The autono-
mous vehicle computing system can determine a plurality of
features associated with the autonomous vehicle context.
For example, such features can include features regarding
aggregate information about objects in a context region
around the nominal path (e.g., pedestrians, vehicles, path
boundaries, and/or the like) and/or features that are relative
to the vehicle current position (e.g., posted speed limit,
distances to traffic control devices, distances to other queued
objects, and/or the like). To determine appropriate driving
speed predictions for the autonomous vehicle, the autono-
mous vehicle computing system can include a machine-
learned model that has been trained to determine driving
speed predictions for regions of the vehicle’s nominal path
based at least in part on the obtained features. For example,
the features can be provided to the machine-learned model
as input (e.g., as a feature vector) and can be analyzed using
the machine-learned model to predict a maximum speed
limit value to be applied for the autonomous vehicle at a
future moment, for example, to be applied one second in the
future. In another example, the machine-learned model
could predict a speed limit to be applied for each segment of
the path ahead of the autonomous vehicle based on the
obtained features. Alternatively or additionally, the
machine-learned model could provide a target offset from
the nominal path based on the obtained features, for
example, to optimize the positioning of the autonomous
vehicle in a roadway based on the context around the
vehicle. In this way, the autonomous vehicle can use context
awareness in limiting the travel speed and/or biasing the lane
position and thereby achieve safer driving behavior.

[0023] In particular, an autonomous vehicle may be trav-
eling a nominal path where operation of the autonomous
vehicle at a posted speed limit may not be feasible and/or
desirable based on various conditions along segments of the
path such that it would be desirable to operate the autono-
mous vehicle at a modified (e.g., reduced) driving speed
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based on the current context of the path segments, for
example, where a human driver having awareness of the
environment might naturally drive below the posted speed
limit. As one example, an autonomous vehicle may be
required to travel through a narrow region of the nominal
path due to objects in a segment of the path (e.g., other
vehicles, pedestrians, etc.) and/or properties of the path (e.g.,
road boundaries, etc.), and as such, it may be desirable for
the autonomous vehicle to travel through the narrow region
at a speed below a posted speed. As another example, some
regions of a nominal path may include one or more occlu-
sions (e.g., parked vehicles, large vehicles, buildings, signs,
etc.) that limit the visibility within the region and as such, it
may be desirable for the autonomous vehicle to travel
through the region that is visibly occluded at a speed below
a posted speed. In another example, an autonomous vehicle
may be required to travel through regions of a nominal path
having a complex environment, for example, a busy street
where there may be narrow travel lanes, numerous parked
vehicles, pedestrians, bicyclists, and/or the like, such that it
may be desirable for the autonomous vehicle to travel
through the region at a speed below a posted speed.

[0024] Accordingly, in some embodiments, a vehicle com-
puting system of an autonomous vehicle can determine a
maximum speed limit, and/or an offset from the nominal
path, for a path segment based at least in part on the context
around the autonomous vehicle. As one example, in some
embodiments, a vehicle computing system can include one
or more machine-learned models that can receive as input a
plurality of features describing the context around the
autonomous vehicle and provide as output a maximum
speed limit prediction, and/or a nominal path offset predic-
tion, that can be applied by the autonomous vehicle for a
path segment at a particular moment, for example, one
second in the future. In particular, the features can include
information about pedestrians in a path segment, parked
and/or moving vehicles in a path segment, the shape of the
path segments (e.g., road boundaries), a distance to a next
traffic control device, crosswalk, etc., a speed of a preceding
vehicle, and/or the like. The machine-learned model can be
used to analyze the plurality of features and provide as
output a prediction of a maximum speed limit that can be
applied by the autonomous vehicle at some point in the
future (e.g., a speed limit to be applied to the vehicle
operation one second in the future, speed limits to be applied
for one or more upcoming segments of the path, and/or the
like). Additionally or alternatively, in some embodiments,
the machine-learned model can provide as output a target
offset from the nominal path to be applied at some point in
the future (e.g., to be applied one second in the future, to be
applied at determined distance ahead, and/or the like) based
on the features.

[0025] More particularly, an autonomous vehicle (e.g., a
ground-based vehicle, air-based vehicle, or other vehicle
type) can include a variety of systems onboard the autono-
mous vehicle to control the operation of the vehicle. For
instance, the autonomous vehicle can include one or more
data acquisition systems (e.g., sensors, image capture
devices), one or more vehicle computing systems (e.g. for
providing autonomous operation), one or more vehicle con-
trol systems, (e.g., for controlling acceleration, braking,
steering, etc.), and/or the like. The data acquisition system(s)
can acquire sensor data (e.g., lidar data, radar data, image
data, etc.) associated with one or more objects (e.g., pedes-
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trians, vehicles, etc.) that are proximate to the autonomous
vehicle and/or sensor data associated with the vehicle path
(e.g., path shape, boundaries, markings, etc.). The sensor
data can include information that describes the location
(e.g., in three-dimensional space relative to the autonomous
vehicle) of points that correspond to objects within the
surrounding environment of the autonomous vehicle (e.g., at
one or more times). The data acquisition system(s) can
provide such sensor data to the vehicle computing system.
[0026] In addition to the sensor data, the vehicle comput-
ing system can obtain map data that provides other detailed
information about the surrounding environment of the
autonomous vehicle. For example, the map data can provide
information regarding: the identity and location of various
roadways, road segments, buildings, or other items; the
location and direction of traffic lanes (e.g. the boundaries,
location, direction, etc. of a travel lane, parking lane, a
turning lane, a bicycle lane, and/or other lanes within a
particular travel way); traffic control data (e.g., the location
and instructions of signage, traffic signals, and/or other
traffic control devices); and/or any other map data that
provides information that can assist the autonomous vehicle
in comprehending and perceiving its surrounding environ-
ment and its relationship thereto.

[0027] The vehicle computing system can include one or
more computing devices and include various subsystems
that can cooperate to perceive the surrounding environment
of the autonomous vehicle and determine a motion plan for
controlling the motion of the autonomous vehicle. For
instance, the vehicle computing system can include a per-
ception system, a prediction system, and a motion planning
system. The vehicle computing system can receive and
process the sensor data to generate an appropriate motion
plan through the vehicle’s surrounding environment.
[0028] The perception system can detect one or more
objects that are proximate to the autonomous vehicle based
on the sensor data. In particular, in some implementations,
the perception system can determine, for each object, state
data that describes a current state of such object. As
examples, the state data for each object can describe an
estimate of the object’s: current location (also referred to as
position); current speed/velocity; current acceleration; cur-
rent heading; current orientation; size/footprint; class (e.g.,
vehicle class versus pedestrian class versus bicycle class,
etc.); and/or other state information. In some implementa-
tions, the perception system can determine state data for
each object over a number of iterations. In particular, the
perception system can update the state data for each object
at each iteration. Thus, the perception system can detect and
track objects (e.g., vehicles, bicycles, pedestrians, etc.) that
are proximate to the autonomous vehicle over time, and
thereby produce a presentation of the world around an
autonomous vehicle along with its state (e.g., a presentation
of the objects within a scene at the current time along with
the states of the objects).

[0029] The prediction system can receive the state data
from the perception system and predict one or more future
locations for each object based on such state data. For
example, the prediction system can predict where each
object will be located within the next 5 seconds, 10 seconds,
20 seconds, etc. As one example, an object can be predicted
to adhere to its current trajectory according to its current
speed. As another example, other, more sophisticated pre-
diction techniques or modeling can be used.
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[0030] The motion planning system can determine a
motion plan for the autonomous vehicle based at least in part
on predicted one or more future locations for the object
and/or the state data for the object provided by the percep-
tion system. Stated differently, given information about the
current locations of objects and/or predicted future locations
of proximate objects, the motion planning system can deter-
mine a motion plan for the autonomous vehicle that best
navigates the autonomous vehicle along the determined
travel route relative to the objects at such locations.

[0031] As one example, in some implementations, the
motion planning system can determine a cost function for
each of one or more candidate motion plans for the autono-
mous vehicle based at least in part on the current locations
and/or predicted future locations of the objects. For
example, the cost function can describe a cost (e.g., over
time) of adhering to a particular candidate motion plan. For
example, the cost described by a cost function can increase
when the autonomous vehicle approaches impact with
another object and/or deviates from a preferred pathway
(e.g., a predetermined travel route).

[0032] Thus, given information about the current locations
and/or predicted future locations of objects, the motion
planning system can determine a cost of adhering to a
particular candidate pathway. The motion planning system
can select or determine a motion plan for the autonomous
vehicle based at least in part on the cost function(s). For
example, the motion plan that minimizes the cost function
can be selected or otherwise determined. The motion plan-
ning system then can provide the selected motion plan to a
vehicle controller that controls one or more vehicle controls
(e.g., actuators or other devices that control acceleration,
steering, braking, etc.) to execute the selected motion plan.
[0033] More particularly, in some implementations, the
perception system, prediction system, and/or motion plan-
ning system can determine one or more features associated
with objects and/or the roadway in the surrounding envi-
ronment of the autonomous vehicle, for example, based at
least in part on the state data. In some implementations, the
perception system, prediction system, and/or motion plan-
ning system can determine the features based at least in part
on other information, such as acquired map data. The
features can be indicative of the context around the autono-
mous vehicle along the nominal path and/or the autonomous
vehicle current state.

[0034] For instance, in some implementations, the features
can be determined from aggregate information about the
autonomous vehicle’s position in the world and the relation-
ship between the objects in the surrounding environment and
the nominal path. In some implementations, the features can
fall into two categories: autonomous vehicle features and
context features. Autonomous vehicle features can include
features that only occur once in a scene and are relative to
the autonomous vehicle’s current position/state. Context
features can include aggregate information about the other
objects in the scene in some context region along/around the
nominal path. For instance, there can be a number of tiled
context regions along the nominal path ahead of the autono-
mous vehicle which can be of a configurable length and
radius and context features can be determined for each
region.

[0035] In particular, in some implementations, the sur-
rounding environment of the autonomous vehicle (e.g., a
nominal path for the autonomous vehicle and a certain



US 2019/0025843 Al

radius surrounding the vehicle and the path) can be divided
into a series of segments or bins. For example, the nominal
path of the autonomous vehicle can be divided into a
plurality of defined length segments, such as 10 meters, 15
meters, etc., each segment being a context region for speed
limit context awareness. Each segment or context region can
be used to group together information about features includ-
ing objects (e.g., pedestrians, vehicles, etc.), path properties
(e.g., nominal path geometrical properties), road boundaries
(e.g., distances to road/lane boundaries, etc.), and/or the like.
For instance, context regions can be defined by start/end
locations on the nominal path along with a radius around the
path which defines which objects can be considered part of
the context region.

[0036] Insome implementations, autonomous vehicle fea-
tures (e.g., features determined with respect to the current
autonomous vehicle state) can include one or more of: a
posted speed limit; distance to traffic control device (e.g.,
stop sign, yellow light, red light, etc.); distance from nose of
the autonomous vehicle to a closest queue object (e.g., other
vehicle, etc.) along the nominal path; speed of the closest
queue object (e.g., speed toward path, speed along path,
etc.); acceleration of the closest queue object (e.g., accel-
eration toward path, acceleration along path, etc.); and/or the
like.

[0037] In some implementations, context features (e.g.,
features determined with respect to a region along the
nominal path) can include one or more of: average distance
to pedestrians on the left/right; speed of closest pedestrian
on the left/right; distance to nominal path of the closest
pedestrian on the left/right; distribution of pedestrians to the
left/right of the nominal path; average distance to other
vehicles on the left/right; speed of closest other vehicle on
the left/right; distance to nominal path of the closest other
vehicle on the left/right; distribution of other vehicles to the
left/right of the nominal path; maximum curvature along
nominal path in context region; closest distance between
road boundary to the left and the autonomous vehicle in
context region; average distance to the left; closest distance
between road boundary to the right and the autonomous
vehicle in context region; average distance to the right; a
rendered overhead-view image of the upcoming path; an
actual camera image in the direction of the future path;
and/or the like.

[0038] In particular, in some implementations, the vehicle
computing system can divide the nominal path into a plu-
rality of regions (e.g., n bins of x length) and compute
statistics and features (e.g., associated with pedestrians,
vehicles, road boundaries, etc.) to the left and right of the
autonomous vehicle inside each region. For example, the
vehicle computing system can configure a number of bins
for objects (e.g., pedestrians, vehicles, etc.) in the nominal
path and assign the objects to the bins to compute statistics
and features. The vehicle computing system can also deter-
mine a closest pedestrian and a closest vehicle to the
autonomous vehicle within a region (e.g., inside a bin), for
example. Additionally, some features can be determined
without binning, such as autonomous vehicle features (e.g.,
posted speed limit, distance to traffic control device, distance
to crosswalk, distance to vehicle in front, speed of vehicle in
front, etc.) that may appear once within a current autono-
mous vehicle scene. Alternatively, in some implementations,
features can be obtained using a convolutional neural net-
work feature extractor.
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[0039] The vehicle computing system can concatenate the
plurality of features into one feature vector for use as input
to a machine-learned model for determining a maximum
speed limit prediction and/or a minimum offset from nomi-
nal path prediction for the autonomous vehicle. For
example, the vehicle computing system can generate a
feature vector of cat(autonomous_vehicle_features, contex-
t_features_region_1, context_features_region_2 . . . contex-
t_features_region_n) and input this feature vector into a
machine-learned model to generate a speed limit prediction.
As an example, the feature vector can comprise a concat-
enation of one or more autonomous_vehicle_features, such
as posted speed limit, distance to stop sign, distance to
yellow signal, distance to red signal, distance from front of
vehicle to closet queue object in scene, speed of closest
queue object toward nominal path, speed of closest queue
object along nominal path, acceleration of closest queue
object toward nominal path, acceleration of closest queue
object along nominal path, and/or the like, as well as one or
more context features for the plurality of regions/bins, such
as average distance to pedestrians on left, average distance
to pedestrians on right, speed of closest pedestrian on left,
speed of closest pedestrian on right, distance to nominal path
of closest pedestrian on left, distance to nominal path of
closest pedestrian on right, count of pedestrians to left in bin
1, count of pedestrians to left in bin 2, count of pedestrians
to left in bin 3, count of pedestrians to left in bin 4, count of
pedestrians to right in bin 1, count of pedestrians to right in
bin 2, count of pedestrians to right in bin 3, count of
pedestrians to right in bin 4, and/or the like, as well as one
or more context features for the plurality of regions/bins,
such as average distance to other vehicles on left, average
distance to other vehicles on right, speed of closest other
vehicle on left, speed of closest other vehicle on right,
distance to nominal path of closest other vehicle on left,
distance to nominal path of closest other vehicle on right,
count of other vehicles to left in bin 1, count of other
vehicles to left in bin 2, count of other vehicles to left in bin
3, count of other vehicles to left in bin 4, count of other
vehicles to right in bin 1, count of other vehicles to right in
bin 2, count of other vehicles to right in bin 3, count of other
vehicles to right in bin 4, minimum gap for objects in context
region, maximum curvature along nominal path in context
region, closest distance between road boundary and vehicle
in context region on left, average distance between road
boundary and vehicle in context region on left, closest
distance between road boundary and vehicle in context
region on right, average distance between road boundary
and vehicle in context region on right, and/or the like. The
feature vector comprising a concatenation of the plurality of
autonomous_vehicle_features and context features can then
be provided for use in determining a maximum speed limit
prediction and/or a minimum offset from nominal path
prediction for the autonomous vehicle.

[0040] In particular, the vehicle computing system can
determine a maximum speed limit and/or a nominal path
offset for the autonomous vehicle based at least in part on the
features. To do so, the vehicle computing system can
include, employ, and/or otherwise leverage a model, such as
a machine-learned model. For example, the machine-learned
model can be or can otherwise include one or more various
model(s) such as, for example, neural networks (e.g., deep
neural networks), or other multi-layer non-linear models.
Neural networks can include recurrent neural networks (e.g.,
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long, short-term memory recurrent neural networks), feed-
forward neural networks, convolutional neural networks,
and/or other forms of neural networks.

[0041] For instance, supervised training techniques can be
performed to train the model (e.g., using labeled driving log
data, etc.) to determine a maximum speed limit prediction
based at least in part on the features associated with a
context region and the autonomous vehicle current position.
The vehicle computing system can input data indicative of
at least the features (e.g., a feature vector) into the machine-
learned model and receive, as an output, data indicative of
a recommended maximum speed limit. Additionally, or
alternatively, the vehicle computing system can input data
indicative of at least the features (e.g., a feature vector) into
the machine-learned model and receive, as an output, data
indicative of a nominal path offset.

[0042] In some implementations, a machine-learned
model can be implemented as a regression problem, where
the desired output from the machine-learned model is an
exact speed limit. Alternatively, a machine-learned model
can be implemented as a classification problem, for
example, having a range (e.g., 0 to 25 mph) and a special
token, where if the response is not in the range, an exact
speed limit would be output. For instance, a speed limit
range can be divided into bins, for example, of 2.5 mph
width, with the speed labels being used for assignments into
the bins and a special label being used when a labeler
specified that no caution is needed (e.g., there is no reason
for the speed to be reduced based on the context). If a
probability of “no caution” is above a threshold (e.g.,
indicating that there is nothing to slow down for based on the
context of the scene), then a posted speed limit can be used
as the maximum speed limit. Alternatively, if the probability
of “no caution” is below the threshold, then a probability
distribution can be computed over the speed limit bins (e.g.,
the 2.5 mph increments) to determine a maximum speed
limit. In some implementations, the mean of the probability
distribution over the bins can be used as the maximum speed
limit.

[0043] More particularly, the machine-learned model(s)
can be trained using ground truth labels (e.g., providing
speed labels based on particular contexts/situations) from
one or more sources such that the machine-learned model
can “learn” suitable speed for an autonomous vehicle to be
driven given certain scenarios. In some implementations, the
training data for the machine-learned model(s) can include
continuous labels over sequences, for example absolute
speed and distance, versus discrete decisions.

[0044] In particular, in some implementations, model
training data can be generated from driving logs. For
example, data can be captured when a vehicle changes speed
and this data can be used to generate driving sequences that
can then be labeled for training a machine-learned model. In
another example, event data can be analyzed for certain
situations and the data can be used to generate driving
sequences that can then be labeled for training a machine-
learned model. As another example, manually driven vehicle
data can be captured, for instance, when a vehicle is going
below a posted speed limit with/without another vehicle in
front, and the data can be used to generate driving sequences
that can then be labeled for training a machine-learned
model. As another example, driving data can be obtained
from vehicles in a service fleet (e.g., a rideshare service),
such as GPS data and image data, which can be analyzed and
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labeled to generate training data sets. Additionally, in some
implementations, training data can be generated using driv-
ing data from simulations, such as driving simulations using
a test track and/or simulated real world scenarios that are
more difficult for an autonomous vehicle to handle.

[0045] As an example, in some implementations, ground
truth label training data could be obtained from a labeling
team (e.g., human labelers) reviewing various events/situa-
tions from driving logs and providing indications of a
maximum speed (and/or a target offset from a nominal path)
for time increments in each situation. For example, labelers
can be provided with short snippets of driving activity (e.g.,
one minute driving data and video snippets) which the
labelers can review and provide indications of speed a
vehicle could comfortably travel in the situation. In some
cases, the human labelers can ignore or screen out some
information in the snippet when making determinations,
such as a slower vehicle traveling in front, a traffic light, etc.
The human labeler can provide a speed label for each time
step of the snippet. In some cases, the human labeler can
indicate that no caution is needed (e.g., the autonomous
vehicle can drive at the posted speed limit) for a time step
of the snippet. For example, when reviewing a snippet, the
human labeler can indicate what speed a passenger may feel
comfortable with the autonomous vehicle driving in a cer-
tain scenario. In some implementations, multiple labelers
can review each sequence clip and determine appropriate
speeds, such that the determinations can be averaged when
generating the ground truth label data, for example, to
reduce individual labeler biases.

[0046] In particular, in some implementations, generating
labeled training data can include absolute value label extrac-
tion. For instance, a labeler can review a short log snippet
(e.g., one minute snippet, etc.) that contains a speed context
awareness situation/scenario. The log snippet can be divided
into small increments of time (e.g., time steps) and the
labeler can provide absolute speed and/or offset from nomi-
nal path as speed labels for each time increment. The labeler
can be provided with the autonomous vehicles actual driving
speed and nominal path offset in each region as reference
points.

[0047] Insome implementations, generating labeled train-
ing data can include a labeler feedback mechanism, such as
smart playback (e.g., video playback speed modification).
For instance, a labeler can review a short log snippet that
contains a speed context awareness situation/scenario and
provide speed labels for time increments within the snippet.
To gain feedback on the speed label determinations, the
labeler can be provided with playback of the log snippet at
increased or reduced playback speeds based on the speed
labels, for example, to simulate driving at the labeled speed.
The labeler can then determine whether the playback speed
lets the driving events proceed at an appropriate speed. For
example, some situations mostly occur with respect to static
or slow moving objects, and changing the playback rate can
provide the illusion that the vehicle is moving at a different
speed in the situation. As an example, if a front car is going
10 miles per hour and the labeler thinks 20 miles per hour
could be appropriate for the scenario, the snippet could be
played back at two times the speed for the labeler to judge
whether the labeled speed is appropriate.

[0048] In some implementations, generating labeled train-
ing data can include reference matching. For instance, a
labeler can review a short log snippet that contains a speed
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context awareness situation. The log snippet can be divided
into small increments of time and the labeler can provide a
discrete label for the situation at each time step. For
example, a number of categories could be established (e.g.,
extremely cautious, moderately cautious, light caution, no
caution). For each category, a labeler can be provided with
reference videos of situations where a human driver drove
through a number of example situations that highlight the
situation type and appropriate speeds associated with each
category. Additionally, or alternatively, a similar reference
category scheme could be provided for use in determining
nominal lane offset labels.

[0049] As another example, in some implementations,
ground truth label training data could be obtained based on
operator override data. For instance, an operator can provide
speed modifications and/or in-lane shift modifications for
the autonomous vehicle during operation. For example, the
operator can set target values (e.g., speed target, offset
target) in a particular situation and clear the target values
when no longer wanted. The situations where these over-
rides are employed can be extracted from driving data logs,
for example, by tracking override events and determining
start and end times for the override in the driving data logs.
These extracted override situations can be labeled and added
to training data sets for use in training the machine-learned
model(s). In some cases, the override events can be filtered
to reduce improper/unnecessary uses of overrides (e.g., an
operator using the modifications for reasons other than speed
context awareness).

[0050] As another example, in some implementations,
ground truth label training data could be obtained based on
labeling of human driving data logs. For instance, in some
implementations, driving data logs can be obtained from
human drivers who have been instructed to drive optimally
(e.g., as if a rider was in the vehicle). For example, human
driven data logs can be obtained and checked for validity
(e.g., driver operating vehicle as expected). Labeling can be
applied to the logs to identify regions where the human
driver is believed to be limiting the vehicle speed based on
speed limit context awareness situations. For example,
human driving data logs can be filtered to remove situations
where driving speed was reduced for reasons other than a
context awareness scenario. The labeled situations can be
added to training data sets for use in training the machine-
learned model(s). In some implementations, the labeling can
include human driving logs generated from simulated driv-
ing scenarios, such as using a test track, in addition to real
street environments.

[0051] As another example, ground truth label training
data could be generated based on analysis of other driver
behavior in the surrounding environment of the autonomous
vehicle. For instance, sensors, such as lidar, radar, image
capture devices, and/or the like, can capture data regarding
the behavior of other vehicles around the autonomous
vehicle in certain situations. The data can then be analyzed
to extract context awareness scenarios which can be added
to a training data set.

[0052] In some implementations, the vehicle computing
system can determine a speed limit and/or a target offset
from the nominal path for the autonomous vehicle. For
instance, in some implementations, a model, such as a
machine-learned model, can determine a speed limit for the
autonomous vehicle based at least in part on the features
(e.g., the autonomous vehicle features and the context fea-
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tures). Additionally, or alternatively, the machine-learned
model can determine a target offset from the nominal path
for the autonomous vehicle based at least in part on the
features (e.g., the autonomous vehicle features and the
context features). For example, the model output can indi-
cate that based on the context of the autonomous vehicle, the
autonomous vehicle should travel at a speed below the
posted speed limit. For instance, based on a model output, an
autonomous vehicle could slow down autonomously (e.g.,
without being overridden by an operator) in certain context
scenarios, such as on busy streets with numerous pedestrians
and/or parked vehicles. Additionally, or alternatively, the
model output can indicate that based on the context of the
autonomous vehicle, the autonomous vehicle should move
over a defined amount in the current travel lane or change
travel lanes.

[0053] In particular, the machine-learned model can out-
put speed limit context decisions in various scenarios and
thereby improve the safe driving behavior of the autono-
mous vehicle. For instance, the vehicle computing system
can determine that scenarios such as a squeeze maneuver, an
occlusion interaction, and/or a context interaction could
require reducing the speed of the autonomous vehicle and/or
implementing an offset from the nominal path of the autono-
mous vehicle.

[0054] As an example, a squeeze maneuver may require
the autonomous vehicle to travel through a narrow region of
free space created by other objects in the scene (e.g., other
vehicles, pedestrians, etc.) and/or properties of the roadway.
The vehicle computing system can determine that the
autonomous vehicle speed should be limited as a function of
the narrow region’s size (e.g., the squeeze gap size). In
addition, the vehicle’s speed can be limited based in part on
the type of objects (e.g., vehicles versus pedestrians) form-
ing the boundary of the narrow region and their anticipated
movements.

[0055] As another example, an occlusion interaction may
require the autonomous vehicle to reduce speed and/or move
over because it must travel in proximity to a region of space
that is visibly occluded to the autonomous vehicle, for
example, where a bus is stopped at a crosswalk. In such
situations, as the autonomous vehicle approaches the
occluded region, the crosswalk for example, it can be
determined that the autonomous vehicle should reduce speed
(and/or move over) to protect against unseen objects, such as
a pedestrian entering the crosswalk. In another example, an
occlusion interaction could require an autonomous vehicle
to travel through a visibly occluded region at some point
along the future path, such as when the vehicle is making a
right hand turn but the lane of travel is blocked by a parked
vehicle (e.g., a parked box truck) or when making a left turn
at a stop sign where the area the vehicle is turning into is
occluded by traffic stopped at the stop sign.

[0056] In another example, a context interaction may
require the autonomous vehicle to travel though a complex
region, such as regions with numerous pedestrians, traveling
close to parked vehicles for a significant distance, and the
like, where an appropriate vehicle response cannot be deter-
mined by an individual actor, occlusion, or gap in the region.
[0057] More particularly, in some embodiments, the
model can provide a maximum speed limit value as output,
which can be provided to other components of the vehicle
computing system for use in motion planning. For example,
the maximum speed limit value can be applied in a cost
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function of a motion planning system and provide a modi-
fied speed limit which should be applied in a future moment
(e.g., one second in the future). The autonomous vehicle
operation can be controlled (e.g., using one or more vehicle
controls) such that the autonomous vehicle is at/under that
speed limit at the future moment (e.g., in one second).
Additionally, or alternatively, the vehicle computing system
can predict a speed limit for one or more upcoming segments
of the path based at least in part on the model output. In
some implementations, one or more parameters may be used
to control how quickly the speed limit change is applied by
the autonomous vehicle, such as rules for limiting lateral
jerk, lateral deceleration, and/or the like, for example.
[0058] In some implementations, vehicle-to-vehicle com-
munication can be used to enhance the determination of a
maximum speed limit, such as providing previews of
upcoming route segments. For instance, a first vehicle can
provide information on a current route segment the vehicle
is traveling, to a routing system for example, and the routing
system can provide information on that route segment to
other vehicles that are approaching that route segment to use
in determining maximum speed limit values and/or nominal
path offset values. For example, in some cases, the receiving
autonomous vehicle may use the information to determine
appropriate speed limits for the segment, determine that a
lane change is appropriate for the segment, or even, deter-
mine that an alternate route should be selected.

[0059] The systems and methods described herein can
provide a number of technical effects and benefits. For
instance, the vehicle computing system can locally (e.g., on
board the autonomous vehicle) detect the surrounding con-
text of the autonomous vehicle, evaluate the features (e.g.,
context features and autonomous vehicle state features)
relative to one or more context regions, and adjust the speed
and/or lane position of the autonomous vehicle accordingly.
By performing such operations onboard the autonomous
vehicle, the vehicle computing system can avoid latency
issues that arise from communicating with a remote com-
puting system. The vehicle computing system can be con-
figured to continuously perform an iterative speed optimi-
zation process as the autonomous vehicle travels through
different regions along the nominal path. As such, the
vehicle computing system can proactively control the speed
of the autonomous vehicle to reduce sudden changes and to
achieve improved driving safety.

[0060] The systems and methods described herein can also
provide resulting improvements to vehicle computing tech-
nology tasked with operation of an autonomous vehicle. For
example, aspects of the present disclosure can enable a
vehicle computing system to more efficiently and accurately
control an autonomous vehicle’s motion by allowing for
smoother adjustment of travel speeds based on the analysis
of context features along a nominal path. Additionally, the
systems and methods described herein provide for lower
computational cost and complexity than other potential
solutions, for example, where it may be necessary to gen-
erate predictions for every object in a scene, even if an
interaction with an object has a low likelihood of occurring.
[0061] With reference to the figures, example embodi-
ments of the present disclosure will be discussed in further
detail. FIG. 1 depicts a block diagram of an example system
100 for controlling the navigation of a vehicle 102 according
to example embodiments of the present disclosure. The
autonomous vehicle 102 is capable of sensing its environ-

Jan. 24, 2019

ment and navigating with little to no human input. The
autonomous vehicle 102 can be a ground-based autonomous
vehicle (e.g., car, truck, bus, etc.), an air-based autonomous
vehicle (e.g., airplane, drone, helicopter, or other aircraft), or
other types of vehicles (e.g., watercraft). The autonomous
vehicle 102 can be configured to operate in one or more
modes, for example, a fully autonomous operational mode
and/or a semi-autonomous operational mode. A fully
autonomous (e.g., self-driving) operational mode can be one
in which the autonomous vehicle can provide driving and
navigational operation with minimal and/or no interaction
from a human driver present in the vehicle. A semi-autono-
mous (e.g., driver-assisted) operational mode can be one in
which the autonomous vehicle operates with some interac-
tion from a human driver present in the vehicle.

[0062] The autonomous vehicle 102 can include one or
more sensors 104, a vehicle computing system 106, and one
or more vehicle controls 108. The vehicle computing system
106 can assist in controlling the autonomous vehicle 102. In
particular, the vehicle computing system 106 can receive
sensor data from the one or more sensors 104, attempt to
comprehend the surrounding environment by performing
various processing techniques on data collected by the
sensors 104, and generate an appropriate motion path
through such surrounding environment. The vehicle com-
puting system 106 can control the one or more vehicle
controls 108 to operate the autonomous vehicle 102 accord-
ing to the motion path.

[0063] The vehicle computing system 106 can include one
or more processors 130 and at least one memory 132. The
one or more processors 130 can be any suitable processing
device (e.g., a processor core, a microprocessor, an ASIC, a
FPGA, a controller, a microcontroller, etc.) and can be one
processor or a plurality of processors that are operatively
connected. The memory 132 can include one or more
non-transitory computer-readable storage mediums, such as
RAM, ROM, EEPROM, EPROM, flash memory devices,
magnetic disks, etc., and combinations thereof. The memory
132 can store data 134 and instructions 136 which are
executed by the processor 130 to cause vehicle computing
system 106 to perform operations. In some implementations,
the one or more processors 130 and at least one memory 132
may be comprised in one or more computing devices, such
as computing device(s) 129, within the vehicle computing
system 106.

[0064] In some implementations, vehicle computing sys-
tem 106 can further be connected to, or include, a position-
ing system 120. Positioning system 120 can determine a
current geographic location of the autonomous vehicle 102.
The positioning system 120 can be any device or circuitry
for analyzing the position of the autonomous vehicle 102.
For example, the positioning system 120 can determine
actual or relative position by using a satellite navigation
positioning system (e.g. a GPS system, a Galileo positioning
system, the GLObal Navigation satellite system (GLO-
NASS), the BeiDou Satellite Navigation and Positioning
system), an inertial navigation system, a dead reckoning
system, based on IP address, by using triangulation and/or
proximity to cellular towers or WiFi hotspots, and/or other
suitable techniques for determining position. The position of
the autonomous vehicle 102 can be used by various systems
of the vehicle computing system 106.

[0065] As illustrated in FIG. 1, in some embodiments, the
vehicle computing system 106 can include a perception
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system 110, a prediction system 112, and a motion planning
system 114 that cooperate to perceive the surrounding
environment of the autonomous vehicle 102 and determine
a motion plan for controlling the motion of the autonomous
vehicle 102 accordingly. In some implementations, the
vehicle computing system 106 can also include a feature
extractor/concatenator 122 and a speed limit context aware-
ness machine-learned model 124 that can be provide data to
assist in determining the motion plan for controlling the
motion of the autonomous vehicle 102.

[0066] In particular, in some implementations, the percep-
tion system 110 can receive sensor data from the one or more
sensors 104 that are coupled to or otherwise included within
the autonomous vehicle 102. As examples, the one or more
sensors 104 can include a Light Detection and Ranging
(LIDAR) system, a Radio Detection and Ranging (RADAR)
system, one or more cameras (e.g., visible spectrum cam-
eras, infrared cameras, etc.), and/or other sensors. The
sensor data can include information that describes the loca-
tion of objects within the surrounding environment of the
autonomous vehicle 102.

[0067] As one example, for LIDAR system, the sensor
data can include the location (e.g., in three-dimensional
space relative to the LIDAR system) of a number of points
that correspond to objects that have reflected a ranging laser.
For example, LIDAR system can measure distances by
measuring the Time of Flight (TOF) that it takes a short laser
pulse to travel from the sensor to an object and back,
calculating the distance from the known speed of light.
[0068] As another example, for RADAR system, the sen-
sor data can include the location (e.g., in three-dimensional
space relative to RADAR system) of a number of points that
correspond to objects that have reflected a ranging radio
wave. For example, radio waves (pulsed or continuous)
transmitted by the RADAR system can reflect off an object
and return to a receiver of the RADAR system, giving
information about the object’s location and speed. Thus,
RADAR system can provide useful information about the
current speed of an object.

[0069] As yet another example, for one or more cameras,
various processing techniques (e.g., range imaging tech-
niques such as, for example, structure from motion, struc-
tured light, stereo triangulation, and/or other techniques) can
be performed to identify the location (e.g., in three-dimen-
sional space relative to the one or more cameras) of a
number of points that correspond to objects that are depicted
in imagery captured by the one or more cameras. Other
sensor systems can identify the location of points that
correspond to objects as well.

[0070] Thus, the one or more sensors 104 can be used to
collect sensor data that includes information that describes
the location (e.g., in three-dimensional space relative to the
autonomous vehicle 102) of points that correspond to
objects within the surrounding environment of the autono-
mous vehicle 102.

[0071] In addition to the sensor data, the perception sys-
tem 110 can retrieve or otherwise obtain map data 118 that
provides detailed information about the surrounding envi-
ronment of the autonomous vehicle 102. The map data 118
can provide information regarding: the identity and location
of different travelways (e.g., roadways), road segments,
buildings, or other items or objects (e.g., lampposts, cross-
walks, curbing, etc.); the location and directions of traffic
lanes (e.g., the location and direction of a parking lane, a
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turning lane, a bicycle lane, or other lanes within a particular
roadway or other travelway); traffic control data (e.g., the
location and instructions of signage, traffic lights, or other
traffic control devices); and/or any other map data that
provides information that assists the vehicle computing
system 106 in comprehending and perceiving its surround-
ing environment and its relationship thereto.

[0072] The perception system 110 can identify one or
more objects that are proximate to the autonomous vehicle
102 based on sensor data received from the one or more
sensors 104 and/or the map data 118. In particular, in some
implementations, the perception system 110 can determine,
for each object, state data that describes a current state of
such object. As examples, the state data for each object can
describe an estimate of the object’s: current location (also
referred to as position); current speed; current heading (also
referred to together as velocity); current acceleration; cur-
rent orientation; size/footprint (e.g., as represented by a
bounding shape such as a bounding polygon or polyhedron);
class (e.g., vehicle versus pedestrian versus bicycle versus
other); yaw rate; and/or other state information.

[0073] In some implementations, the perception system
110 can determine state data for each object over a number
of iterations. In particular, the perception system 110 can
update the state data for each object at each iteration. Thus,
the perception system 110 can detect and track objects (e.g.,
vehicles, pedestrians, bicycles, and the like) that are proxi-
mate to the autonomous vehicle 102 over time.

[0074] The prediction system 112 can receive the state
data from the perception system 110 and predict one or more
future locations for each object based on such state data. For
example, the prediction system 112 can predict where each
object will be located within the next 5 seconds, 10 seconds,
20 seconds, etc. As one example, an object can be predicted
to adhere to its current trajectory according to its current
speed. As another example, other, more sophisticated pre-
diction techniques or modeling can be used.

[0075] The motion planning system 114 can determine a
motion plan for the autonomous vehicle 102 based at least
in part on the predicted one or more future locations for the
object provided by the prediction system 112 and/or the state
data for the object provided by the perception system 110.
Stated differently, given information about the current loca-
tions of objects and/or predicted future locations of proxi-
mate objects, the motion planning system 114 can determine
a motion plan for the autonomous vehicle 102 that best
navigates the autonomous vehicle 102 relative to the objects
at such locations.

[0076] As one example, in some implementations, the
motion planning system 114 can determine a cost function
for each of one or more candidate motion plans for the
autonomous vehicle 102 based at least in part on the current
locations and/or predicted future locations of the objects.
For example, the cost function can describe a cost (e.g., over
time) of adhering to a particular candidate motion plan. For
example, the cost described by a cost function can increase
when the autonomous vehicle 102 approaches a possible
impact with another object and/or deviates from a preferred
pathway (e.g., a preapproved pathway).

[0077] Thus, given information about the current locations
and/or predicted future locations of objects, the motion
planning system 114 can determine a cost of adhering to a
particular candidate pathway. The motion planning system
114 can select or determine a motion plan for the autono-
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mous vehicle 102 based at least in part on the cost function
(s). For example, the candidate motion plan that minimizes
the cost function can be selected or otherwise determined.
The motion planning system 114 can provide the selected
motion plan to a vehicle controller 116 that controls one or
more vehicle controls 108 (e.g., actuators or other devices
that control gas flow, acceleration, steering, braking, etc.) to
execute the selected motion plan.

[0078] In some implementations, the vehicle computing
system 106 can include a feature extractor/concatenator 122.
The feature extractor/concatenator 122 can extract features
regarding the autonomous vehicle state and the surrounding
environment of the autonomous vehicle for use in enabling
speed limit context awareness in the motion planning. The
feature extractor/concatenator 122 can receive feature data
(e.g., features relative to objects in a context region around
the nominal path and/or features that are relative to the
vehicle current position), for example, from the perception
system 110, the prediction system 112, and/or the motion
planning system 114, based at least in part on the object state
data, map data, and/or the like. The feature extractor/
concatenator 122 can divide a portion of the nominal path of
an autonomous vehicle into a plurality of regions (e.g., n
bins of x length) and compute statistics and features (e.g.,
associated with pedestrians, vehicles, road boundaries, etc.)
inside each region/bin. Additionally, the feature extractor/
concatenator 122 can determine features associated with the
autonomous vehicle position/state, which may appear a
single time within a current scene and not be divided among
the bins. The feature extractor/concatenator 122 can concat-
enate the plurality of feature data into a feature vector for use
as input to a machine-learned model.

[0079] In some implementations, the vehicle computing
system 106 can include a speed limit context awareness
machine-learned model 124. The context awareness
machine-learned model 124 can provide speed limit context
awareness predictions, based on features regarding the
autonomous vehicle state and the surrounding environment
of the autonomous vehicle, that can be provided to the
motion planning system 114 for use in determining/adjust-
ing a motion plan for the autonomous vehicle 102. For
example, the context awareness machine-learned model 124
can receive a feature vector as input, for example, from the
feature extractor/concatenator 122. The context awareness
machine-learned model 124 can predict a maximum speed
limit value to be applied for the autonomous vehicle 102 at
a future moment while traveling the nominal path. Addi-
tionally or alternatively, the context awareness machine-
learned model 124 can predict a speed limit to be applied for
each segment of the path ahead of the autonomous vehicle
102. Additionally or alternatively, the context awareness
machine-learned model 124 can predict a target offset from
the nominal path.

[0080] In some implementations, the feature extractor/
concatenator 122 and/or the context awareness machine-
learned model 124 may be included as part of the motion
planning system 114 or another system within the vehicle
computing system 106.

[0081] Each of the perception system 110, the prediction
system 112, the motion planning system 114, the vehicle
controller 116, the feature extractor/concatenator 122, and
the speed limit context awareness machine-learned model
124 can include computer logic utilized to provide desired
functionality. In some implementations, each of the percep-

Jan. 24, 2019

tion system 110, the prediction system 112, the motion
planning system 114, the vehicle controller 116, the feature
extractor/concatenator 122, and the speed limit context
awareness machine-learned model 124 can be implemented
in hardware, firmware, and/or software controlling a general
purpose processor. For example, in some implementations,
each of the perception system 110, the prediction system
112, the motion planning system 114, the vehicle controller
116, the feature extractor/concatenator 122, and the speed
limit context awareness machine-learned model 124
includes program files stored on a storage device, loaded
into a memory, and executed by one or more processors. In
other implementations, each of the perception system 110,
the prediction system 112, the motion planning system 114,
the vehicle controller 116, the feature extractor/concatenator
122, and the speed limit context awareness machine-learned
model 124 includes one or more sets of computer-executable
instructions that are stored in a tangible computer-readable
storage medium such as RAM hard disk or optical or
magnetic media.

[0082] FIG. 2 depicts an example autonomous vehicle
environment 200 around a nominal path according to
example embodiments of the present disclosure.

[0083] As described herein, an autonomous vehicle can
include one or more computing devices and various subsys-
tems that can cooperate to perceive the surrounding envi-
ronment of the autonomous vehicle and determine a motion
plan for controlling the motion of the autonomous vehicle.
As illustrated in FIG. 2, an autonomous vehicle environment
200 may include a plurality of objects and/or roadway
features along a nominal path 204 of an autonomous vehicle
202. The autonomous vehicle 202 may detect and/or classify
a plurality of objects along/around the nominal path 204, for
example, one or more queue objects along the nominal path
(e.g., queue vehicle 206 ahead of the autonomous vehicle
202), one or more other vehicles around the nominal path,
(e.g., stationary vehicles 208), one or more traffic control
devices (e.g., stop sign 210), and/or one or more pedestrians
(e.g., pedestrians 212 and pedestrians 214). The systems and
methods of the present disclosure can obtain information
regarding the context around the autonomous vehicle,
including a plurality of features associated with the autono-
mous vehicle context. For example, such features can
include features regarding aggregate information about
objects in a context region around the nominal path (e.g.,
pedestrians, vehicles, path boundaries, and/or the like) and/
or features that are relative to the vehicle current position
(e.g., posted speed limit, distances to traffic control devices,
distances to other queued objects, and/or the like).

[0084] In some implementations, the autonomous vehicle
surrounding environment 200 (e.g., a nominal path for the
autonomous vehicle and a certain radius surrounding the
vehicle and the path) can be divided into a series of segments
or bins (e.g., n bins of x length). As illustrated in FIG. 2, the
environment 200 along nominal path 204 can be divided into
context bins of a defined length, such as context 221, context
222, and context 223, for example. Each bin, for example,
context 221, context 222, and context 223, can be used to
group together information about features including objects
(e.g., pedestrians, vehicles, and/or the like), path properties
(e.g., nominal path geometrical properties), road boundaries
(e.g., distances to road/lane boundaries, etc.), and/or the like.
[0085] In particular, the autonomous vehicle 202 (e.g., the
vehicle computing system) can identify features located
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inside each bin and compute statistics and features inside
each bin. As an example, as illustrated in FIG. 2, the
autonomous vehicle 202 can divide a portion of the nominal
path 204 into a plurality of bins, context 221, context 222,
and context 223. The autonomous vehicle 202 can identify
that a first bin, context 221, includes two stationary vehicles
208. The autonomous vehicle 202 can identify that a second
bin, context 222, includes a queued vehicle 206, two sta-
tionary vehicles 208, and four pedestrians 212. In addition,
the autonomous vehicle 202 may determine that some
detected objects are outside a certain radius surrounding the
vehicle 202 and the path 204, for example, pedestrians 214,
and as such, not include those objects may not be included
within a bin and may not be considered in a speed limit
context awareness analysis.

[0086] The autonomous vehicle 202 can compute features
and statistics for these objects in each bin, as well as
roadway properties in each bin, such as average distance to
pedestrians on the left/right, speed of closest pedestrian on
the left/right, distance to nominal path of the closest pedes-
trian on the left/right, distribution of pedestrians to the
left/right of the nominal path, average distance to other
vehicles on the left/right, speed of closest other vehicle on
the left/right, distance to nominal path of the closest other
vehicle on the left/right, distribution of other vehicles to the
left/right of the nominal path, maximum curvature along
nominal path in context region, closest distance between
road boundary to the left and the autonomous vehicle in
context region and average distance to the left, closest
distance between road boundary to the right and the autono-
mous vehicle in context region and average distance to the
right, and/or the like, for example.

[0087] Additionally, the autonomous vehicle 202 can
determine autonomous vehicle features that may occur once
within the scene such as a posted speed limit, distance to
traffic control device, distance from nose of the autonomous
vehicle to a closest queue object along the nominal path,
speed of the closest queue object, acceleration of the closest
queue object, and/or the like. For example, the autonomous
vehicle 202 may determine autonomous vehicle features
relative to the queued vehicle 206 and/or stop sign 210
within the autonomous vehicle environment 200.

[0088] FIG. 3A-3C, FIG. 4A-4B, and FIG. 5 illustrate
some example scenarios where operation of the autonomous
vehicle at a posted speed limit along a nominal path may not
be feasible and/or desirable based on the context around the
autonomous vehicle, such that the systems and methods of
the present disclosure may determine a speed limit for the
autonomous vehicle below the posted speed limit.

[0089] As one example, an autonomous vehicle may be
required to travel through a narrow region of the nominal
path (e.g., a squeeze maneuver) due to objects in or around
the nominal path and/or properties of the nominal path, and
therefore, it may be desirable for the autonomous vehicle to
travel through the narrow region at a reduced speed. FIG. 3A
through FIG. 3C depict example autonomous vehicle narrow
region scenarios 300A, 300B, and 300C according to
example embodiments of the present disclosure.

[0090] As illustrated in FIG. 3A in context scenario 300A,
the nominal path of an autonomous vehicle 302 may require
the autonomous vehicle 302 to travel through a narrow
region of free space, e.g., gap region 312, created by other
objects in the scene, such as moving object 304 (e.g., a
moving vehicle) and one or more stationary vehicles 306.

Jan. 24, 2019

The autonomous vehicle 302 (e.g., via a vehicle computing
system) can determine that the autonomous vehicle speed
should be limited as a function of the gap region 312’s size.
In addition, the autonomous vehicle’s speed can be limited
based in part on the type of objects (e.g., moving vehicle 304
and parked vehicles 306) forming the boundary of the gap
region 312 and their anticipated movements.

[0091] As illustrated in FIG. 3B in context scenario 300B,
the nominal path of an autonomous vehicle 302 may require
the autonomous vehicle 302 to travel through a narrow
region of free space, e.g., gap region 314, created by a
moving vehicle 304 and a road boundary 308 (e.g. a road-
way curb, etc.). The autonomous vehicle 302 (e.g., via a
vehicle computing system) can determine that the autono-
mous vehicle speed should be limited as a function of the
gap region 314’s size as well as the type of objects (e.g.
vehicle 304 and boundary 308) forming the gap region 314.
[0092] As illustrated in FIG. 3C in context scenario 300C,
the nominal path of an autonomous vehicle 302 may require
the autonomous vehicle 302 to travel through a narrow
region of free space, e.g., gap region 316, created by a
moving vehicle 304 and a plurality of pedestrians 310 near
the road boundary 308. The autonomous vehicle 302 (e.g.,
via a vehicle computing system) can determine that the
autonomous vehicle speed should be limited as a function of
the gap region 316’s size as well as the type of objects (e.g.
vehicle 304 and pedestrians 310) forming the gap region
316. For example, in scenario 300C, since gap region 316 is
bounded by a plurality of pedestrians 310, the autonomous
vehicle 302 can determine that the vehicle speed should be
reduced further in scenario 300C than in scenarios 300A and
300B where the gap region boundaries are other vehicles
and/or roadway boundaries.

[0093] As another example, some regions of a nominal
path may include one or more occlusions (e.g., parked
vehicles, large vehicles, buildings, signs, etc.) that limit the
visibility within the region and therefore, it may be desirable
for the autonomous vehicle to travel through the region that
is visibly occluded at a reduced speed. FIG. 4A and FIG. 4B
depict example autonomous vehicle occluded region sce-
narios 400A and 400B according to example embodiments
of the present disclosure.

[0094] As illustrated in FIG. 4A in context scenario 400A,
a nominal path, such as nominal path 404, of an autonomous
vehicle 402 may require the autonomous vehicle 402 to
travel through an occluded region, such as occluded region
412. For example, when an autonomous vehicle 402
approaches a traffic control device, such as stop sign 406,
and the nominal path 404 requires a left turn, an occluded
region 412 can occur as a result of other vehicles, such as
vehicle 408, stopped for the stop sign 406. For instance, as
illustrated in FIG. 4A, occluded region 412, located between
parked car 410 and stopped vehicle 408 along the nominal
path 404, occurs due to vehicle 408 being stopped at stop
sign 406, thus reducing visibility for autonomous vehicle
402 along the nominal path following the left turn, which in
turn may necessitate reducing the travel speed of autono-
mous vehicle 402.

[0095] Additionally, as illustrated in FIG. 4B in context
scenario 400B, a nominal path, such as nominal path 414, of
an autonomous vehicle 402 may require the autonomous
vehicle 402 to travel along an occluded region, such as
occluded region 418, where visibility of objects approaching
the nominal path may be limited. For example, autonomous
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vehicle 402 may be approaching an intersection, crosswalk,
or the like on a nominal path 414 and may have to pass a
large vehicle, such as bus 416. As illustrated, due to the
location of bus 416, which may be stopped at a bus stop with
passengers unloading, for example, the autonomous vehicle
may have reduced visibility of potential objects (e.g., pedes-
trians) in an occluded region 418. For instance, one or more
pedestrians may be preparing to enter the crosswalk from
occluded region 418 and may not be visible to the autono-
mous vehicle 402, which may suggest that the travel speed
of autonomous vehicle be reduced to avoid a potential
interaction with an unseen object (e.g., a pedestrian).

[0096] FIG. 5 depicts an example of an autonomous
vehicle complex context scenario 500 according to example
embodiments of the present disclosure. As illustrated in FIG.
5 by context scenario 500, a nominal path of an autonomous
vehicle 502 may require the autonomous vehicle 502 to
travel through complex regions, such as a busy street where
there may be narrower travel lanes, numerous parked
vehicles 506, pedestrians 508, other moving vehicles 504,
and/or the like, for example. For instance, as illustrated in
FIG. 5, autonomous vehicle 502 may travel a nominal path
503 between another vehicle 504 and a number of parked
vehicles 506. A number of occluded regions, such as
occluded regions 510, 512, and 514 may occur along the
nominal path 503 as a result of the parked vehicles 506. In
addition, a number of pedestrians, such as pedestrians 508,
may be traveling near or approaching the nominal path 503
and may not be visible to the autonomous vehicle 502 due
to the occluded regions. For example, a pedestrian 508 could
be approaching the nominal path 503 by moving between
parked vehicles 506 in occluded region 512, such as to
return to a parked vehicle, and the pedestrian may not be
visible due to the occlusion, and thus it may be desirable to
reduce the vehicle travel speed to allow for an appropriate
response time to such an unseen object.

[0097] FIG. 6 depicts a flowchart diagram of example
operations 600 for providing speed limit context awareness
during operation of an autonomous vehicle according to
example embodiments of the present disclosure. One or
more portion(s) of the operations 600 can be implemented
by one or more computing devices such as, for example, the
vehicle computing system 106 of FIG. 1, the computing
system 1102 of FIG. 11, the computing system 1130 of FIG.
11, or the like. Moreover, one or more portion(s) of the
operations 600 can be implemented as an algorithm on the
hardware components of the device(s) described herein
(e.g., as in FIGS. 1 and 11) to, for example, provide speed
limit context awareness during autonomous vehicle opera-
tion.

[0098] At 602, one or more computing devices included
within a computing system can obtain a plurality of features
for a scene along the nominal path of an autonomous
vehicle. For instance, a computing system (e.g., an autono-
mous vehicle computing system) can obtain information,
such as sensor and/or map data, regarding the context around
the autonomous vehicle and determine a plurality of features
associated with the autonomous vehicle context. For
example, the computing system can obtain features regard-
ing aggregate information about objects in a context region
around the nominal path of the vehicle (e.g., pedestrians,
vehicles, path boundaries, and/or the like) and/or features
that are relative to the vehicle current position (e.g., posted
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speed limit, distances to traffic control devices, distances to
other queued objects, and/or the like).

[0099] At 604, the computing system can determine a
context response for the autonomous vehicle based on the
plurality of features (e.g., context features and autonomous
vehicle features in a current scene). In some implementa-
tions, the context response can at least include a derived
speed constraint for the autonomous vehicle. For instance, in
some implementations, a machine-learned model can deter-
mine a predicted maximum speed limit for the autonomous
vehicle, to be provided as part of the context response, based
at least in part on a feature vector (e.g., a concatenation of
the autonomous vehicle features and the context features).
Additionally or alternatively, the machine-learned model
could determine a prediction of a target offset from the
nominal path for the autonomous vehicle, to be provided as
part of the context response, based at least in part on a
feature vector. For example, the context response can indi-
cate that based on the context of the autonomous vehicle, the
autonomous vehicle should travel at a speed below the
posted speed limit, and for example, provide a maximum
speed limit to be applied one second in the future, and/or
indicate that the autonomous vehicle should adjust its lane
position and, for example, provide a target offset from the
nominal path to be applied one second in the future.

[0100] At 606, the computing system can provide the
context response, including, for example, a derived speed
constraint (e.g., a maximum speed limit constraint for the
autonomous vehicle) for use in determining a motion plan
for the autonomous vehicle, for example, by the motion
planning system 114. For instance, based on context
response data, an autonomous vehicle motion plan could
slow down the vehicle and/or adjust the autonomous vehicle
lane position autonomously (e.g., without being overridden
by an operator) in certain context scenarios, such as on busy
streets with numerous pedestrians and/or parked vehicles.

[0101] FIG. 7 depicts a flowchart diagram of example
operations 700 for providing speed limit context awareness
during operation of an autonomous vehicle according to
example embodiments of the present disclosure. One or
more portion(s) of the operations 700 can be implemented
by one or more computing devices such as, for example, the
vehicle computing system 106 of FIG. 1, the computing
system 1102 of FIG. 11, the computing system 1130 of FIG.
11, or the like. Moreover, one or more portion(s) of the
operations 700 can be implemented as an algorithm on the
hardware components of the device(s) described herein
(e.g., as in FIGS. 1 and 11) to, for example, provide speed
limit context awareness during autonomous vehicle opera-
tion.

[0102] At 702, one or more computing devices included
within a computing system can obtain a portion of a nominal
path of an autonomous vehicle, for example, the portion of
the nominal path within a current scene of the autonomous
vehicle, such as nominal path 204 illustrated in FIG. 2.

[0103] At 704, the computing system can divide the por-
tion of the nominal path into a plurality of bins or segments.
For instance, the surrounding environment of the autono-
mous vehicle (e.g., a nominal path for the autonomous
vehicle and a certain radius surrounding the vehicle and the
path) can be divided into a series of segments or bins. For
example, the nominal path of the autonomous vehicle can be
divided into a plurality of defined length segments, such as
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10 meters, 15 meters, etc., with each segment being a
context region for speed limit context awareness.

[0104] At 706, the computing system can compute context
features inside each bin/segment of the nominal path. For
instance, each segment or bin can be used to group together
information about features including objects (e.g., pedestri-
ans, vehicles, etc.), path properties (e.g., nominal path
geometrical properties), road boundaries (e.g., distances to
road/lane boundaries, etc.), and/or the like. The computing
system can compute aggregate features and statistics of the
objects within each bin. The computing system can also
determine a closest pedestrian and a closest vehicle to the
autonomous vehicle within a region (e.g., inside a bin), for
example. Additionally, the computing system can determine
one or more autonomous vehicle features associated with the
current position of the autonomous vehicle that are not
particular to a single bin.

[0105] At 708, the computing system can concatenate the
plurality of features, for example, context features and the
autonomous vehicle features as described herein, into a
feature vector which can be provided as input to a machine-
learned model. For example, the computing system can
concatenate the plurality of features (e.g., context features
and autonomous vehicle features) into one feature vector for
use as input to a machine-learned model to provide speed
limit context awareness for the autonomous vehicle. For
example, the computing system can generate a feature vector
of cat(autonomous_vehicle_features, context_features_re-
gion_1, context features_region_2 . . . context_features_
region_n). The feature vector can then be provided as input
to a machine-learned model.

[0106] FIG. 8A depicts a flowchart diagram of example
operations 800A for providing speed limit context awareness
during operation of an autonomous vehicle according to
example embodiments of the present disclosure. One or
more portion(s) of the operations 800A can be implemented
by one or more computing devices such as, for example, the
vehicle computing system 106 of FIG. 1, the computing
system 1102 of FIG. 11, the computing system 1130 of FIG.
11, or the like. Moreover, one or more portion(s) of the
operations 800A can be implemented as an algorithm on the
hardware components of the device(s) described herein
(e.g., as in FIGS. 1 and 11) to, for example, provide speed
limit context awareness during autonomous vehicle opera-
tion.

[0107] At 802, one or more computing devices included
within a computing system can obtain a plurality of features
for a scene along the nominal path of an autonomous
vehicle. For instance, a computing system (e.g., an autono-
mous vehicle computing system) can obtain information,
such as sensor and/or map data, regarding the context around
the autonomous vehicle and determine a plurality of features
associated with the autonomous vehicle context. For
example, the computing system can obtain features regard-
ing aggregate information about objects in a context region
around the nominal path of the vehicle (e.g., pedestrians,
vehicles, path boundaries, and/or the like) and/or features
that are relative to the vehicle current position (e.g., posted
speed limit, distances to traffic control devices, distances to
other queued objects, and/or the like).

[0108] At 804, the computing system can generate a
feature vector based on the plurality of features. For
instance, the computing system can concatenate the plurality
of obtained features (e.g., context features and autonomous
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vehicle features) into one feature vector for use as input to
a machine-learned model to provide speed limit context
awareness for the autonomous vehicle. For example, the
computing system can generate a feature vector of cat
(autonomous_vehicle_features, context_features_region_1,
context_features_region_2 . . . context_features_region_n).
[0109] At 806, the computing system can provide the
feature vector as input to a trained machine-learned model
(e.g., a machine-learned model that has been trained to
determine driving speed predictions for regions of the vehi-
cle’s nominal path based at least in part on the obtained
features) to be used in generating machine-learned model
output data for providing speed limit context awareness. A
machine-learned model into which a feature vector can be
provided as input at 806 can correspond, for example, to a
machine-learned model 124 of FIG. 1, machine-learned
model 1110 of FIG. 11, and/or machine-learned model 1140
of FIG. 11.

[0110] At 808, the computing system can receive maxi-
mum speed limit data (e.g., a predication of a maximum
speed limit for the autonomous vehicle) as an output of the
machine-learned model. For instance, in some implementa-
tions, a machine-learned model can determine a speed limit
for the autonomous vehicle based at least in part on the
feature vector (e.g., the autonomous vehicle features and the
context features). For example, the model output can indi-
cate that based on the context of the autonomous vehicle, the
autonomous vehicle should travel at a speed below the
posted speed limit, and, for example, provide a maximum
speed limit (e.g., driving speed constraint) to be applied one
second in the future.

[0111] At 810, the computing system can provide the
maximum speed limit data for use in determining a motion
plan for the autonomous vehicle, for example, by the motion
planning system 114. For instance, based on a model output,
an autonomous vehicle motion plan could slow down the
vehicle autonomously (e.g., without being overridden by an
operator) in certain context scenarios, such as on busy streets
with numerous pedestrians and/or parked vehicles.

[0112] FIG. 8B depicts a flowchart diagram of example
operations 800B for providing speed limit context awareness
during operation of an autonomous vehicle according to
example embodiments of the present disclosure. One or
more portion(s) of the operations 800B can be implemented
by one or more computing devices such as, for example, the
vehicle computing system 106 of FIG. 1, the computing
system 1102 of FIG. 11, the computing system 1130 of FIG.
11, or the like. Moreover, one or more portion(s) of the
operations 800B can be implemented as an algorithm on the
hardware components of the device(s) described herein
(e.g., as in FIGS. 1 and 11) to, for example, provide speed
limit context awareness during autonomous vehicle opera-
tion.

[0113] At 822, one or more computing devices included
within a computing system can obtain a plurality of features
for a scene along the nominal path of an autonomous
vehicle. For instance, a computing system (e.g., an autono-
mous vehicle computing system) can obtain information,
such as sensor and/or map data, regarding the context around
the autonomous vehicle and determine a plurality of features
associated with the autonomous vehicle context. For
example, the computing system can obtain features regard-
ing aggregate information about objects in a context region
around the nominal path of the vehicle (e.g., pedestrians,
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vehicles, path boundaries, and/or the like) and/or features
that are relative to the vehicle current position (e.g., posted
speed limit, distances to traffic control devices, distances to
other queued objects, and/or the like).

[0114] At 824, the computing system can generate a
feature vector based on the plurality of features. For
instance, the computing system can concatenate the plurality
of obtained features (e.g., context features and autonomous
vehicle features) into one feature vector for use as input to
a machine-learned model to provide speed limit context
awareness for the autonomous vehicle. For example, the
computing system can generate a feature vector of cat
(autonomous_vehicle_features, context_features_region_1,
context_features_region_2 . . . context_features_region_n).
[0115] At 826, the computing system can provide the
feature vector as input to a trained machine-learned model
(e.g., a machine-learned model that has been trained to
determine target offset from a nominal path predictions for
regions of the vehicle’s nominal path based at least in part
on the obtained features) to be used in generating machine-
learned model output data. A machine-learned model into
which a feature vector can be provided as input at 826 can
correspond, for example, to a machine-learned model 124 of
FIG. 1, machine-learned model 1110 of FIG. 11, and/or
machine-learned model 1140 of FIG. 11.

[0116] At 828, the computing system can receive nominal
path offset data as an output of the machine-learned model.
For example, the machine-learned model could provide a
prediction of a target offset from the nominal path, for
example, to optimize the positioning of the autonomous
vehicle in a roadway based on the context around the
vehicle.

[0117] At 830, the computing system can provide the
nominal path offset data for use in determining a motion plan
for the autonomous vehicle, for example, by the motion
planning system 114. For instance, based on a model output,
an autonomous vehicle motion plan could adjust the nominal
path of the autonomous vehicle by a certain offset amount to
safely travel through certain context scenarios, such as on
busy streets with numerous pedestrians and/or parked
vehicles.

[0118] FIG. 9 depicts a flowchart diagram of example
operations 900 for training a machine learning model
according to example embodiments of the present disclo-
sure. One or more portion(s) of the operations 900 can be
implemented by one or more computing devices such as, for
example, the computing system 1130 of FIG. 11, the com-
puting system 1102 of FIG. 11, the vehicle computing
system 106 of FIG. 1, or the like. Moreover, one or more
portion(s) of the operations 900 can be implemented as an
algorithm on the hardware components of the device(s)
described herein (e.g., as in FIGS. 1 and 11) to, for example,
provide training of a machine learning model.

[0119] At 902, one or more computing devices included
within a computing system can obtain vehicle driving event
data. For instance, driving event data can be extracted from
driving logs for one or more autonomous vehicles and/or
manually driven vehicles within a fleet.

[0120] At 904, the computing system can generate context
scenario snippets based on the driving event data. For
example, data can be captured when a vehicle changes speed
and this data can be used to generate snippets. In another
example, event data can be analyzed for certain situations
and the data can be used to generate snippets. In a further
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example, snippets can be generated using driving event data
from simulations, such as driving simulations using a test
track and/or simulated real world scenarios.

[0121] At 906, a label can be determined for each time
increment of each snippet to generate training data for
training a machine-learning model. For example, a speed
label can be determined for each time step of the snippet
indicating a desired speed that a vehicle can travel based on
the context scenario of the snippet. In some cases, the label
indicate that no caution is needed (e.g., an autonomous
vehicle can drive at the posted speed limit) for a time step
of the snippet based on the context. Additionally or alter-
natively, one or more time increments of a snippet can be
labeled with a target offset from the nominal path based on
the context.

[0122] At 908, the computing system can generate and/or
update one or more sets of model training data based on the
labeled snippets.

[0123] At 910, the computing system can use one or more
of the training data sets to perform training of a machine
learning model to provide speed limit context awareness.
For instance, supervised training techniques can be per-
formed to train the model (e.g., using labeled driving log
data, etc.) to determine a maximum speed limit prediction
based at least in part on the features associated with a
context region and the autonomous vehicle current position.
[0124] FIG. 10 depicts a flowchart diagram of example
operations 1000 for generating labeled training data accord-
ing to example embodiments of the present disclosure. One
or more portion(s) of the operations 1000 can be imple-
mented by one or more computing devices such as, for
example, the computing system 1130 of FIG. 11, the com-
puting system 1102 of FIG. 11, the vehicle computing
system 106 of FIG. 1, or the like. Moreover, one or more
portion(s) of the operations 1000 can be implemented as an
algorithm on the hardware components of the device(s)
described herein (e.g., as in FIGS. 1 and 11) to, for example,
provide training of a machine learning model.

[0125] At 1002, one or more computing devices included
within a computing system can obtain a snippet of a driving
event (e.g., sensor data and/or video data) from a driving log.
In some implementations, the snippet can be divided into
time steps for use in labeling increments of the snippet to
develop model training data.

[0126] At 1004, the computing system can provide for
review of the snippet data (e.g., sensor and/or video data) for
determination of training labels.

[0127] At 1006, one or more queued and/or stopped
objects within the snippet can be disregarded during review
of the snippet.

[0128] At 1008, maximum speed and/or nominal path
offset labels can be determined for each time step of the
snippet.

[0129] At 1010, the computing system can optionally
provide smart playback of the snippet, for example, by
modifying the playback speed of the snippet based on speed
labels, to provide feedback on the appropriateness of the
labeling. Based on the smart playback, one or more speed
labels for the snippet can be updated.

[0130] At 1012, the computing system can provide the
labeled snippet data for inclusion in a training data set for a
machine learning model.

[0131] Although FIG. 6-10 depict steps performed in a
particular order for purposes of illustration and discussion,
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the methods of the present disclosure are not limited to the
particularly illustrated order or arrangement. The various
steps of the methods 600, 700, and 800 can be omitted,
rearranged, combined, and/or adapted in various ways with-
out deviating from the scope of the present disclosure.
[0132] FIG. 11 depicts a block diagram of an example
computing system 1100 according to example embodiments
of the present disclosure. The example system 1100 includes
a computing system 1102 and a machine learning computing
system 1130 that are communicatively coupled over a net-
work 1180.

[0133] In some implementations, the computing system
1102 can perform autonomous vehicle motion planning
including determining a maximum speed limit for one or
more segments of a nominal path of the autonomous vehicle.
In some implementations, the computing system 1102 can
be included in an autonomous vehicle. For example, the
computing system 1102 can be on-board the autonomous
vehicle. In other implementations, the computing system
1102 is not located on-board the autonomous vehicle. For
example, the computing system 1102 can operate offline to
perform object detection including making object class
predictions and object location/orientation estimations. The
computing system 1102 can include one or more distinct
physical computing devices.

[0134] The computing system 1102 includes one or more
processors 1112 and a memory 1114. The one or more
processors 1112 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, a FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
The memory 1114 can include one or more non-transitory
computer-readable storage media, such as RAM, ROM,
EEPROM, EPROM, one or more memory devices, flash
memory devices, etc., and combinations thereof.

[0135] The memory 1114 can store information that can be
accessed by the one or more processors 1112. For instance,
the memory 1114 (e.g., one or more non-transitory com-
puter-readable storage mediums, memory devices) can store
data 1116 that can be obtained, received, accessed, written,
manipulated, created, and/or stored. The data 1116 can
include, for instance, sensor data, map data, data identifying
detected objects including current object states and predicted
object locations and/or trajectories, autonomous vehicle
and/or context features, motion plans, machine-learned
models, rules, etc. as described herein. In some implemen-
tations, the computing system 1102 can obtain data from one
or more memory device(s) that are remote from the system
1102.

[0136] The memory 1114 can also store computer-read-
able instructions 1118 that can be executed by the one or
more processors 1112. The instructions 1118 can be software
written in any suitable programming language or can be
implemented in hardware. Additionally, or alternatively, the
instructions 1118 can be executed in logically and/or virtu-
ally separate threads on processor(s) 1112.

[0137] For example, the memory 1114 can store instruc-
tions 1118 that when executed by the one or more processors
1112 cause the one or more processors 1112 to perform any
of the operations and/or functions described herein, includ-
ing, for example, operations of FIG. 6-10.

[0138] According to an aspect of the present disclosure,
the computing system 1102 can store or include one or more
machine-learned models 1110. As examples, the machine-
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learned models 1110 can be or can otherwise include various
machine-learned models such as, for example, neural net-
works (e.g., deep neural networks), support vector
machines, decision trees, random forest models, ensemble
models, k-nearest neighbors models, Bayesian networks, or
other types of models including linear models and/or non-
linear models. Example neural networks include feed-for-
ward neural networks, convolutional neural networks, recur-
rent neural networks (e.g., long short-term memory
recurrent neural networks), or other forms of neural net-
works.

[0139] In some implementations, the computing system
1102 can receive the one or more machine-learned models
1110 from the machine learning computing system 1130
over network 1180 and can store the one or more machine-
learned models 1110 in the memory 1114. The computing
system 1102 can then use or otherwise implement the one or
more machine-learned models 1110 (e.g., by processor(s)
1112). In particular, the computing system 1102 can imple-
ment the machine learned model(s) 1110 to enable maxi-
mum speed limit predictions/determinations, and/or nominal
path offset predictions/determinations, based on the context
around an autonomous vehicle.

[0140] For example, in some implementations, the com-
puting system 1102 can employ the machine-learned model
(s) 1110 by inputting a feature vector into the machine-
learned model(s) 1110 and receiving a prediction of the
maximum speed limit and/or offset to a nominal path for one
or more segments of a nominal path of an autonomous
vehicle as an output of the machine-learned model(s) 1110.

[0141] The machine learning computing system 1130
includes one or more processors 1132 and a memory 1134.
The one or more processors 1132 can be any suitable
processing device (e.g., a processor core, a MiCroprocessor,
an ASIC, a FPGA, a controller, a microcontroller, etc.) and
can be one processor or a plurality of processors that are
operatively connected. The memory 1134 can include one or
more non-transitory computer-readable storage media, such
as RAM, ROM, EEPROM, EPROM, one or more memory
devices, flash memory devices, etc., and combinations
thereof.

[0142] The memory 1134 can store information that can be
accessed by the one or more processors 1132. For instance,
the memory 1134 (e.g., one or more non-transitory com-
puter-readable storage mediums, memory devices) can store
data 1136 that can be obtained, received, accessed, written,
manipulated, created, and/or stored. The data 1136 can
include, for instance, sensor data, map data, data identifying
detected objects including current object states and predicted
object locations and/or trajectories, motion plans, autono-
mous vehicle features, context features, driving log data,
machine-learned models, model training data, rules, etc. as
described herein. In some implementations, the machine
learning computing system 1130 can obtain data from one or
more memory device(s) that are remote from the system
1130.

[0143] The memory 1134 can also store computer-read-
able instructions 1138 that can be executed by the one or
more processors 1132. The instructions 1138 can be software
written in any suitable programming language or can be
implemented in hardware. Additionally, or alternatively, the
instructions 1138 can be executed in logically and/or virtu-
ally separate threads on processor(s) 1132.
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[0144] For example, the memory 1134 can store instruc-
tions 1138 that when executed by the one or more processors
1132 cause the one or more processors 1132 to perform any
of the operations and/or functions described herein, includ-
ing, for example, operations of FIG. 6-10.

[0145] In some implementations, the machine learning
computing system 1130 includes one or more server com-
puting devices. If the machine learning computing system
1130 includes multiple server computing devices, such
server computing devices can operate according to various
computing architectures, including, for example, sequential
computing architectures, parallel computing architectures,
or some combination thereof.

[0146] In addition or alternatively to the model(s) 1110 at
the computing system 1102, the machine learning comput-
ing system 1130 can include one or more machine-learned
models 1140. As examples, the machine-learned models
1140 can be or can otherwise include various machine-
learned models such as, for example, neural networks (e.g.,
deep neural networks), support vector machines, decision
trees, random forest models, ensemble models, k-nearest
neighbors models, Bayesian networks, or other types of
models including linear models and/or non-linear models.
Example neural networks include feed-forward neural net-
works, convolutional neural networks, recurrent neural net-
works (e.g., long short-term memory recurrent neural net-
works), or other forms of neural networks.

[0147] As an example, the machine learning computing
system 1130 can communicate with the computing system
1102 according to a client-server relationship. For example,
the machine learning computing system 1130 can implement
the machine-learned models 1140 to provide a service to the
computing system 1102. For example, the service can pro-
vide an autonomous vehicle motion planning service.
[0148] Thus, machine-learned models 1110 can be located
and used at the computing system 1102 and/or machine-
learned models 1140 can be located and used at the machine
learning computing system 1130.

[0149] In some implementations, the machine learning
computing system 1130 and/or the computing system 1102
can train the machine-learned models 1110 and/or 1140
through use of a model trainer 1160. The model trainer 1160
can train the machine-learned models 1110 and/or 1140
using one or more training or learning algorithms. One
example training technique is backwards propagation of
errors. In some implementations, the model trainer 1160 can
perform supervised training techniques using a set of labeled
training data. In other implementations, the model trainer
1160 can perform unsupervised training techniques using a
set of unlabeled training data. The model trainer 1160 can
perform a number of generalization techniques to improve
the generalization capability of the models being trained.
Generalization techniques include weight decays, dropouts,
or other techniques.

[0150] In particular, the model trainer 1160 can train a
machine-learned model 1110 and/or 1140 based on one or
more sets of training data 1162. The training data 1162 can
include, for example, vehicle driving log data which can
include labels for driving events, driving speeds, path off-
sets, and/or the like. The model trainer 1160 can be imple-
mented in hardware, firmware, and/or software controlling
one Or more processors.

[0151] The computing system 1102 can also include a
network interface 1124 used to communicate with one or
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more systems or devices, including systems or devices that
are remotely located from the computing system 1102. The
network interface 1124 can include any circuits, compo-
nents, software, etc. for communicating with one or more
networks (e.g., 1180). In some implementations, the network
interface 1124 can include, for example, one or more of a
communications controller, receiver, transceiver, transmit-
ter, port, conductors, software, and/or hardware for commu-
nicating data. Similarly, the machine learning computing
system 1130 can include a network interface 1164.

[0152] The network(s) 1180 can be any type of network or
combination of networks that allows for communication
between devices. In some embodiments, the network(s) can
include one or more of a local area network, wide area
network, the Internet, secure network, cellular network,
mesh network, peer-to-peer communication link, and/or
some combination thereof, and can include any number of
wired or wireless links. Communication over the network(s)
1180 can be accomplished, for instance, via a network
interface using any type of protocol, protection scheme,
encoding, format, packaging, etc.

[0153] FIG. 11 illustrates one example computing system
1100 that can be used to implement the present disclosure.
Other computing systems can be used as well. For example,
in some implementations, the computing system 1102 can
include the model trainer 1160 and the training dataset 1162.
In such implementations, the machine-learned models 1110
can be both trained and used locally at the computing system
1102. As another example, in some implementations, the
computing system 1102 is not connected to other computing
systems.

[0154] In addition, components illustrated and/or dis-
cussed as being included in one of the computing systems
1102 or 1130 can instead be included in another of the
computing systems 1102 or 1130. Such configurations can
be implemented without deviating from the scope of the
present disclosure. The use of computer-based systems
allows for a great variety of possible configurations, com-
binations, and divisions of tasks and functionality between
and among components. Computer-implemented operations
can be performed on a single component or across multiple
components. Computer-implemented tasks and/or opera-
tions can be performed sequentially or in parallel. Data and
instructions can be stored in a single memory device or
across multiple memory devices.

[0155] Computing tasks discussed herein as being per-
formed at computing device(s) remote from the autonomous
vehicle can instead be performed at the autonomous vehicle
(e.g., via the vehicle computing system), or vice versa. Such
configurations can be implemented without deviating from
the scope of the present disclosure. The use of computer-
based systems allows for a great variety of possible con-
figurations, combinations, and divisions of tasks and func-
tionality between and among components. Computer-
implemented operations can be performed on a single
component or across multiple components. Computer-
implements tasks and/or operations can be performed
sequentially or in parallel. Data and instructions can be
stored in a single memory device or across multiple memory
devices. While the present subject matter has been described
in detail with respect to various specific example embodi-
ments thereof, each example is provided by way of expla-
nation, not limitation of the disclosure. Those skilled in the
art, upon attaining an understanding of the foregoing, can
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readily produce alterations to, variations of, and equivalents
to such embodiments. Accordingly, the subject disclosure
does not preclude inclusion of such modifications, variations
and/or additions to the present subject matter as would be
readily apparent to one of ordinary skill in the art. For
instance, features illustrated or described as part of one
embodiment can be used with another embodiment to yield
a still further embodiment. Thus, it is intended that the
present disclosure cover such alterations, variations, and
equivalents.

What is claimed is:
1. A computer-implemented method for applying speed
limit context awareness in autonomous vehicle operation
comprising:
obtaining, by a computing system comprising one or more
computing devices, a plurality of features descriptive of
a context and a state of an autonomous vehicle;

determining, by the computing system, a context response
for the autonomous vehicle based at least in part on a
machine-learned model and the plurality of features,
wherein the context response includes a derived speed
constraint for the autonomous vehicle; and

providing, by the computing system, the context response

to a motion planning application of the autonomous
vehicle to determine a motion plan for the autonomous
vehicle.

2. The computer-implemented method of claim 1,
wherein determining, by the computing system, a context
response for the autonomous vehicle based at least in part on
a machine-learned model and the plurality of features com-
prises:

generating, by the computing system, a feature vector

based at least in part on the plurality of features
descriptive of the context and the state of the autono-
mous vehicle;

inputting, by the computing system, the feature vector to

the machine-learned model; and

obtaining, by the computing device, the context response

as an output of the machine-learned model.

3. The computer-implemented method of claim 1,
wherein the context response comprises a maximum speed
limit to be applied at a future time instance.

4. The computer-implemented method of claim 1,
wherein the context response comprises an offset from a
nominal path to be applied at a future time instance.

5. The computer-implemented method of claim 1,
wherein the context response comprises speed limits to be
applied for one or more segment of a path ahead of the
autonomous vehicle.

6. The computer-implemented method of claim 1, further
comprising:

identifying, by the computing system, a nominal path

associated with the autonomous vehicle;
determining, by the computing system, a plurality of
context regions for the nominal path; and

determining for each of the plurality of context regions,
by the computing system, one or more features descrip-
tive of a context of the autonomous vehicle associated
with each context region.

7. The computer-implemented method of claim 1,
wherein the plurality of features comprise (i) features
regarding aggregate information about objects in a context
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region around a nominal path associated with the autono-
mous vehicle and (ii) features relative to a current position
of the autonomous vehicle.

8. The computer-implemented method of claim 7,
wherein the features regarding aggregate information about
objects in the context region comprise one or more of:
average distance to pedestrians to left; average distance to
pedestrians to right; speed of closest pedestrian on left;
speed of closest pedestrian on right; distance to a nominal
path of the closest pedestrian on the left; distance to nominal
path of the closest pedestrian on the right; distribution of
pedestrians to left of the nominal path; distribution of
pedestrians to right of the nominal path; average distance to
other vehicles on left; average distance to other vehicles on
right; speed of closest other vehicle on left; speed of closest
other vehicle on right; distance to a nominal path of the
closest other vehicle on the left; distance to a nominal path
of the closest other vehicle on the right; distribution of other
vehicles to left of the nominal path; distribution of other
vehicles to right of the nominal path; minimum gap for all
objects in context region; maximum curvature along nomi-
nal path in context region; closest distance between road
boundary to left and the autonomous vehicle in context
region; average distance to left of the autonomous vehicle;
closest distance between road boundary to right and the
autonomous vehicle in context region; average distance to
the right of the autonomous vehicle; rendered overhead-
view image of upcoming path; and camera image in a
direction of a future path.

9. The computer-implemented method of claim 7,
wherein the features relative to a current position of the
autonomous vehicle comprise one or more of: a posted
speed limit; distance to a traffic control device; distance from
nose of the autonomous vehicle to a closest queue object
along the nominal path; speed of a closest queue object; and
acceleration of a closest queue object.

10. An autonomous vehicle comprising:

a machine-learned model that has been trained to deter-
mine a context response based at least in part on
features associated with a context and a state of the
autonomous vehicle;

a vehicle computing system comprising:
one or more processors; and
one or more memories including instructions that,

when executed by the one or more processors, cause

the one or more processors to perform operations,

the operations comprising:

obtaining a plurality of features descriptive of the
context and the state of the autonomous vehicle;

generating a feature vector based at least in part on
the plurality of features;

inputting the feature vector to the machine-learned
model;

obtaining a context response as an output of the
machine-learned model, wherein the context
response includes a derived speed constraint for
the autonomous vehicle; and

providing the context response to a motion planning
application of the autonomous vehicle to deter-
mine a motion plan for the autonomous vehicle.

11. The autonomous vehicle of claim 10, wherein the
context response comprises a maximum speed limit to be
applied at a future time instance.
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12. The autonomous vehicle of claim 10, wherein the
context response comprises an offset from a nominal path to
be applied at a future time instance.

13. The autonomous vehicle of claim 10, wherein the
context response comprises speed limits to be applied for
one or more segment of a path ahead of the autonomous
vehicle.

14. The autonomous vehicle of claim 10, wherein the
operations further comprise:

identifying a nominal path associated with the autono-

mous vehicle;

determining a plurality of context regions for the nominal

path; and

determining for each of the plurality of context regions,

one or more features descriptive of the context of the
autonomous vehicle associated with each context
region.

15. The autonomous vehicle of claim 10, wherein the
plurality of features comprise (i) features regarding aggre-
gate information about objects in a context region around a
nominal path associated with the autonomous vehicle and
(i1) features relative to a current position of the autonomous
vehicle.

16. A computing system comprising:

one or more processors; and

one or more memories including instructions that, when

executed by the one or more processors, cause the one

or more processors to perform operations, the opera-

tions comprising:

obtaining a plurality of features descriptive of a context
and a state of an autonomous vehicle;
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determining a context response for the autonomous
vehicle based at least in part on a machine-learned
model and the plurality of features, wherein the
context response includes a derived speed constraint
for the autonomous vehicle; and

providing the context response to a motion planning
application of the autonomous vehicle to determine
a motion plan for the autonomous vehicle.

17. The computing system of claim 16, wherein deter-
mining a context response for the autonomous vehicle based
at least in part on a machine-learned model and the plurality
of features comprises:

generating a feature vector based at least in part on the

plurality of features descriptive of the context and the
state of the autonomous vehicle;

inputting the feature vector to the machine-learned model;

and

obtaining the context response as an output of the

machine-learned model.

18. The computing system of claim 16, wherein the
context response comprises a maximum speed limit to be
applied at a future time instance.

19. The computing system of claim 16, wherein the
context response comprises an offset from a nominal path to
be applied at a future time instance.

20. The computing system of claim 16, wherein the
context response comprises speed limits to be applied for
one or more segment of a path ahead of the autonomous
vehicle.



