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by a variational autoencoder . A graphical processing unit 
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IDENTIFYING IMAGE SEGMENTATION 
QUALITY USING NEURAL NETWORKS 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application is a continuation of U.S. patent 
application Ser . No. 16 / 380,759 , filed Apr. 10 , 2019 , entitled 
“ IDENTIFYING IMAGE SEGMENTATION QUALITY 
USING NEURAL NETWORKS , ” the disclosure of which is 
incorporated herein by reference in its entirety . 

[ 0012 ] FIG . 8 illustrates an example of parallel processing 
unit ( “ PPU ” ) , in accordance with an embodiment ; 
[ 0013 ] FIG . 9 illustrates an example of a general process 
ing cluster ( “ GPC ” ) , in accordance with one embodiment ; 
[ 0014 ] FIG . 10 illustrates an example of a memory parti 
tion unit , in accordance with one embodiment ; 
[ 0015 ] FIG . 11 illustrates an example of a streaming 
multi - processor , in accordance with one embodiment ; and 
[ 0016 ] FIG . 12 illustrates a computer system in which the 
various examples can be implemented , in accordance with 
one embodiment . 

BACKGROUND 
DETAILED DESCRIPTION 

[ 0002 ] In image processing , segmentation refers to iden 
tifying boundaries of elements of an image , such as dividing 
regions in an image according to boundaries of objects 
depicted in the image . A segmentation process might use a 
trained neural network for automated boundary detection . 
Segmentation might be useful in processing medical images 
as well as in other fields . An automated segmentation 
process may fail , when encountering a rare image that does 
not segment easily . Sometimes , additional training of the 
neural network using additional training data might help 
with some automated segmentation processes , but it still 
may fail on the rare cases that might not have counterparts 
in the training data . As a result , it can be hard to completely 
prevent a segmentation process failure . 
[ 0003 ] One solution is to also have an automated process 
for quality assessment . An applied Bayesian neural network 
might be used to capture an uncertainty of the segmentation 
result and base the quality assessment based on the uncer 
tainty . However , this also suffers from rare events since a 
segmentation process might make a mistake and yet be 
confident about that mistake on some rare events . 

a 

a 

BRIEF DESCRIPTION OF THE DRAWINGS 
a 

[ 0017 ] Segmentation is a process of determining from an 
image where boundaries of elements depicted in the image 
are , and possible also labeling those objects . Humans can 
often easily identify where one object in an image begins 
and other objects end , however this can be a hard process for 
a computer system to perform . Also , in some types of 
images , even untrained humans can have a hard time dis 
cerning boundaries of objects or the existence of objects in 
an image . As one example , a computed tomography ( " CT " ) 
scan might image parts of a human body and a professional 
radiologist might spend significant time observing , identi 
fying , and labeling boundaries of objects in the CT scan data 
and so it would be beneficial to have an automated process 
that can perform those tasks , albeit with some flag , indica 
tion , or alarm in the rare cases where the automated seg 
mentation process fails . 
[ 0018 ] FIG . 1 illustrates an example of a segmentation , in 
particular showing a segment dataset 102 comprising an 
image 104 and a label mask 106 , in an embodiment . Each of 
these items is represented as stored computer - readable data 
in a memory and / or as computer - readable data in transmis 
sion . In an embodiment , the image 104 is taken as a 
two - dimensional slice of a three - dimensional CT scan of a 
human body directed at an abdomen of a patient and the 
label mask 106 is obtained via a user interface from a 
professional radiologist manually inputting the determined 
boundaries of the pancreas and adding a label to identify the 
boundaries as being that of the pancreas . In more complex 
images , in an embodiment , there are more than one bounded 
element of the CT scan and corresponding labels , and 
include multiple objects with incomplete boundaries and 
other features . 
[ 0019 ] In an embodiment , a “ segment dataset ” refers to a 
data structure that comprises an image and its associated 
label mask . In an embodiment , one goal of a segmentation 
system is to be able to generate at least the boundaries of 
objects in an image in computer - generated fashion so that a 
human does not have to manually input the boundaries of 
objects in images . A collection of segment datasets , in an 
embodiment , comprises one or more segment datasets , each 
of which would comprise an image and an associated label 
mask . In a specific embodiment , a label mask comprises 
boundaries of objects , object numbers uniquely identifying 
closed boundaries in the label mask and a reference to the 
background of the image , and names for objects . 
[ 0020 ] In an embodiment , a collection of segment datasets 
( X , Y ) comprises a collection , X , of images , in computer 
readable data form , along with a collection , Y , of corre 
sponding label masks , where each label mask indicates 
partial or full segmentation of its corresponding image . In 
some embodiments , the collection includes labels for seg 

[ 0004 ] Various techniques will be described with refer 
ence to the drawings , in which : 
[ 0005 ] FIG . 1 illustrates an example of a segmentation , in 
accordance with an embodiment ; 
[ 0006 ] FIG . 2 illustrates a diagram of a system for training 
a neural network , in accordance with an embodiment , to 
evaluate segmentations of input images ; 
[ 0007 ] FIG . 3 illustrates a diagram of a system for vali 
dating a neural network to be validated , in accordance with 
an embodiment ; 
[ 0008 ] FIG . 4 illustrates a diagram of a variational auto 
encoder ( VAE ) to be trained on ground truth label masks , in 
accordance with an embodiment ; 
[ 0009 ] FIG . 5 illustrates a process for training a segmenter 
on segmenting images to arrive at label mask for images and 
for training a VAE on ground truth label masks for assessing 
quality of the label masks output by the segmenter , in an 
embodiment ; 
[ 0010 ] FIG . 6 illustrates a diagram of a system for pro 
cessing images , generating label masks for the images , 
applying the label masks to an autoencoder , comparing the 
label masks with the outputs of the autoencoder , and taking 
actions depending on the results of the comparisons , in 
accordance with an embodiment ; 
[ 0011 ] FIG . 7 illustrates an autoencoder that encodes an 
input label mask to a latent representation and decodes the 
latent representation to an output label mask , in accordance 
with an embodiment ; 
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ments of the label mask , whereas in other embodiments , the 
label mask includes segmentation boundaries without seg 
ment labels . Where the label mask for an image is created by 
a person examining the image , or by a known good process , 
it is often referred to as a “ ground truth ” or “ GT " label mask . 
In an embodiment , collection ( X , Y ) comprises a training 
subcollection ( X YT ) and a validation subcollection ( Xy , 
Yy ) . The training subcollection has label masks that are 
ground truth label masks and those can be used to train a 
neural network . In an embodiment , the neural network is 
tested using the validation subcollection , which also has 
label masks that are ground truth label masks ; the validation 
subcollection can be used to validate Ithe training of the 
neural network . 
[ 0021 ] In an embodiment , as an example , if FO ) refers to 
a segmentation process , the quality of the segmentation 
process is tested by comparing F ( Xy ) and Y , for various 
segment datasets of the validation subcollection . In an 
embodiment , an input to a trained neural network is an 
image X and an output might be F ( X ) . Where the corre 
sponding ground truth label mask , Y , is not known , F ( X ) is 
usable as the label mask for image X. 
[ 0022 ] Despite being trained , in an embodiment , the neu 
ral network might nonetheless output a label mask F ( X ) that 
is not a good segmentation of the image X , perhaps because 
the contents of image X are rare or unexpected . In an 
embodiment , by using a different process for determining an 
estimate for Y , that determination can be compared with 
F ( X ) to determine if the segmentation process F ( ) worked 
on image X If boundaries of objects in image X are correctly 
identified , then the output of the separate process will be 
close to F ( X ) , which is the output of the neural network that 
is part of the trained segmenter . An alarm ( e.g. , a notification 
or a change in an interface ) , in an embodiment , is provided 
to a user of a system when there is a significant difference 
between boundaries identified that is more than an accept 
able threshold from the output of the trained segmenter . 
[ 0023 ] In an embodiment , an image is processed with a 
first neural network to determine a first segmentation of the 
image ( e.g. , a label mask indicating at least the boundaries 
of some objects in the image ) . The first segmentation , in an 
embodiment , is the output of other than a neural network , 
but in many examples described her4lein , that first segmen 
tation is an output of a neural network . The label mask is 
passed through a second neural network that effectively 
maps the label mask into a feature space . The output of that 
second neural network , in an embodiment , is then be used to 
predict or estimate the quality of the segmentation in that 
label mask . 
[ 0024 ] In an embodiment , the second neural network 
comprises a variational autoencoder ( “ VAE ” ) that takes as it 
input a label mask and outputs and output label mask . An 
autoencoder is a neural network that comprises an encoder 
that encodes its input data into a latent representation that is 
a compressed form of the input data and also comprises a 
decoder that decodes the latent representation and to the 
original input data as close as possible , where training the 
autoencoder involves reducing differences between the 
encoder input and the decoder output . In a VAE , in the 
learning process , the VAE makes strong assumptions con 
cerning the distribution of variables in the latent represen 
tation . In other embodiments , more generally , a type of fully 
convolutional neural network is used where the VAE is 
described herein as being used . 

[ 0025 ] In an embodiment , the first segmentation produced 
by the first neural network is compared to the second 
segmentation produced by the VAE . In an embodiment , this 
is done using a loss function . In another embodiment , this is 
done using another method . In an embodiment , the second 
neural network is trained using segmentations of images that 
are known to be good . If the comparison shows that the first 
and second segmentations are close , the first neural network 
probably worked well . If they are significantly different , 
there was probably a problem . In such cases , where the 
segmentation is part of a system with a user interface , a flag , 
alert , alarm , or the like could be output to alert a user that the 
segmentation is suspect . 
[ 0026 ] As for the strong assumptions concerning the dis 
tribution of variables in the latent representation , in an 
embodiment one approach is to project segmentation results 
into a low - dimensional feature space , and then have the VAE 
learn classifiers and / or regressors in the feature space to 
predict the qualities of segmentation results . In an embodi 
ment , the feature space uses shape features with strong prior 
information shared among different data , to predict the 
qualities of segmentation results given different segmenta 
tion algorithms on different datasets . 
[ 0027 ] In an embodiment , the shape feature of a segmen 
tation result is captured using the value of loss function and 
the segmentation result tested using a VAE that is trained 
using only ground truth masks ( i.e. , label masks that are 
ground truth label masks ) . As a result , bad segmentations 
could be expected to result in bad shapes that become rare 
events for VAE and will result in large loss values . 
[ 0028 ] In the preceding and following description , various 
techniques are described . For purposes of explanation , spe 
cific configurations and details are set forth in order to 
provide a thorough understanding of possible ways of imple 
menting the techniques . However , it will also be apparent 
that the techniques described below may be practiced in 
different configurations without the specific details . Further 
more , well - known features may be omitted or simplified to 
avoid obscuring the techniques being described . 
[ 0029 ] FIG . 2 illustrates a diagram of a system 200 in 
which one or more arithmetic logic circuits at least partially 
cause a neural network to be trained , in accordance with an 
embodiment to evaluate segmentations of input images . In 
an embodiment , a computing entity 202 , such as a computer 
system or computer server , processes a training collection of 
images and label masks and generates segmentations , such 
as in the form of label masks . In an embodiment , the 
computing entity 202 is , or includes , a computer system or 
processing unit such as one or more of those described in 
connection with FIGS . 8-12 . In an embodiment , the com 
puting entity 202 is a distributed system comprising multiple 
computer servers that collectively operate as a computing 
entity that generates the segmentations . In an embodiment , 
the computing entity 202 is a server computer system , a 
server cluster , a virtual computer system , a virtual server , a 
virtual runtime environment , a container environment , a 
serverless execution environment , or service hosting system . 
In an embodiment , the computing entity 202 is , or includes , 
an application - specific integrated circuit ( ASIC ) microchip 
that is designed for a specific use or application . In an 
embodiment , the computing entity can include specialized 
circuity for sparse activation ; low - precision computations ; 
low - latency operations ( e.g. , in a real - time operating system 
( RTOS ) computing environment ) ; low - power hardware ; and 

a 
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combinations thereof . In an embodiment , the computing 
entity 202 has associated memory in a memory hierarchy 
such that there are regions of faster memory ( e.g. , registers 
and Ll cache ) as well as regions of slower memory ( e.g. , 
main memory ) . 
[ 0030 ] In an embodiment , the computing entity 202 is 
used in training a segmenter of a segmentation system and 
includes storage for a training collection 204 and storage for 
a set of training output label masks 206. In an embodiment , 
the computing entity 202 implements a segmenter 210 , such 
as by executing program code having program instructions 
that when execute , perform the role of a neural network that 
can be trained on the training collection 204. In an embodi 
ment of an operation of computing entity 202 , the training 
collection 204 comprises a plurality of images and a corre 
sponding ground truth label mask for each image , wherein 
the ground truth label mask for an image in training collec 
tion 204 represents a known good segmentation of that 
image and possibly also labels for some or all segments of 
the segmentation . In an embodiment , the segmenter 210 is 
trained such that its output for a training image is a label 
mask that approximates the ground truth label mask for that 
image . Where the output training label mask does not match 
the ground truth label mask well , training feedback can be 
provided to the segmenter 210 to improve the output . 
[ 0031 ] Various other elements in the figures can be imple 
mented , in an embodiment , using one or more arithmetic 
logic circuits , a computer system or computer server , or 
processing unit such as one or more of those described in 
connection with FIGS . 8-12 . For example , in an embodi 
ment , elements of FIGS . 3-7 are implemented by a comput 
ing entity having memory and that can execute program 
instructions , such as a distributed system comprising mul 
tiple computer servers that collectively operate as a com 
puting entity that generates segmentations or performs train 
ing , including , in embodiments , a server computer system , a 
server cluster , a virtual computer system , a virtual server , a 
virtual runtime environment , a container environment , a 
serverless execution environment , a service hosting system , 
an application - specific integrated circuit ( ASIC ) microchip 
that is designed for a specific use or application , and / or 
specialized circuity for sparse activation ; low - precision 
computations ; low - latency operations ( e.g. , in a real - time 
operating system ( RTOS ) computing environment ) ; low 
power hardware ; and combinations thereof . In an embodi 
ment , data can be stored in associated memory in a memory 
hierarchy such that there are regions of faster memory ( e.g. , 
registers and L1 cache ) as well as regions of slower memory 
( e.g. , main memory ) and elements can be implemented by 
program code having program instructions that when 
executed , perform the role of the element as described . 
[ 0032 ] FIG . 3 illustrates a diagram of a system 300 in 
which one or more arithmetic logic circuits at least partially 
cause a trained neural network to be validated , in accordance 
with an embodiment . In an embodiment shown , a computing 
entity 302 implements a validation collection 304 of seg 
ment datasets , where images of the validation collection 304 
are applied to an input of a trained segmenter 310 , which 
outputs segmentations of images of the validation collection 
304. In an embodiment , a comparator 312 compares the 
output segmentations of images to the label masks from the 
validation collection 304 , wherein those label masks are 
ground truth label masks , and outputs evaluations 314 of 

quality of the output segmentations . These evaluations 314 
can be used for fine tuning the trained segmenter . 
[ 0033 ] FIG . 4 illustrates a diagram of a system 400 in an 
embodiment in which one or more arithmetic logic circuits 
at least partially cause a variational autoencoder ( VAE ) to be 
trained on ground truth label masks 404. In an embodiment 
shown , a computing entity 402 includes a VAE 408 that 
takes the ground truth label masks 404 as its input and 
outputs output label masks 406. In an embodiment , a com 
parator 412 compares the ground truth label masks 404 and 
the output label masks 406 to determine the training feed 
back needed for the VAE 408. In an embodiment , the 
training results in adjustment of weights and connections 
between layers of the VAE 408 to optimize or minimize a 
loss function . 
[ 0034 ] FIG . 5 shows an illustrative example of a process 
502 in an embodiment for training a segmenter on segment 
ing images to arrive at label mask for images and for training 
a VAE on ground truth label masks for assessing quality of 
the label masks output by the segmenter . In an embodiment , 
the process begins with applying a set of training label 
masks ( step 504 ) that comprise ground truth label masks or 
other label masks known to be good examples of segmen 
tation . In an embodiment , the set of training label masks is 
applied to an autoencoder , such as VAE 408 referenced 
herein as the input to the autoencoder . As explained herein , 
in an embodiment , an autoencoder will encode its input into 
a latent representation and then decode the latent represen 
tation into an output of the autoencoder . Next , at step 506 , 
in an embodiment , the segmenter system in training com 
pares the output label masks output by the autoencoder with 
the input label masks input to the autoencoder . At step 508 , 
the autoencoder is tuned so as to reduce differences , as might 
be measured by a loss function , between the input label 
masks and the output label masks . Once this is done , in an 
embodiment , the autoencoder takes in an input label mask 
and outputs an output label mask . 
[ 0035 ] Then , at step 510 , a training collection of segment 
datasets ( images and their corresponding label masks ) in an 
embodiment is applied to a segmenter . Since the label masks 
are available for those segment datasets , a label mask for an 
image can be compared ( Step 512 ) with an output of the 
segmenter . In an embodiment , the segmenter system in 
training can then ( Step 514 ) check whether there is sufficient 
matching of a label mask in the training collection and the 
output of the segmenter . A well - trained segmenter can be 
expected to output a label mask for an image in a segment 
dataset that is similar to the label mask of the segment 
dataset , if the image is not an unusual image , so this 
comparison is a valid test of whether the segmenter is 
trained . 
[ 0036 ] In an embodiment , if the segmenter is not suffi 
ciently tuned , feedback can be provided ( step 520 ) and the 
process returns to step 510 for additional training . In an 
embodiment , if the segmenter is sufficiently tuned , the 
process can move to step 516 , wherein the validation col 
lection is applied to the segmenter and if needed ( step 518 ) 
further training can be provided , and the training process 
completes ( step 522 ) . 
[ 0037 ] FIG . 6 illustrates a diagram of a system 600 in an 
embodiment in which one or more arithmetic logic circuits 
at least partially process an input image , generate a label 
mask for the input image , apply the label mask to an 
autoencoder , compare the label mask with the output of the 
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autoencoder , and take an action depending on the results of 
the comparison . In an embodiment shown , a computing 
entity 602 , such as a computer system or computer server , 
includes a trained segmenter 604 , an autoencoder 606 , a 
comparator 608 , storage for an input image 610 , storage for 
a label mask 612 , and storage for a quality indicator 614. In 
an embodiment , the autoencoder 606 comprises an encoder 
620 , storage for a latent representation 622 , and a decoder 
624. In an embodiment , the autoencoder 606 is a variational 
autoencoder trained on shape features . In an embodiment , 
the computing entity 602 is usable with a plurality of 
images , some of which may be three - dimensional images 
and some of which may be two - dimensional images . In an 
embodiment , the computing entity 602 is , or includes , a 
computer system or processing unit such as one or more of 
those described in connection with FIGS . 8-12 . 
[ 0038 ] In an embodiment , system 600 operates according 
to the processes described in FIG . 5 for training and then in 
operation , the trained segmenter 604 takes in the input image 
610 without requiring a ground truth as to the labels or 
segmentation of objects in the input image 610. In an 
embodiment , the train segmenter 604 outputs the label mask 
612 as the output of system 600. In an embodiment , the label 
mask 612 informs the user of objects present in the input 
image 610 and boundaries of those objects . In an embodi 
ment , the label mask 612 is applied to an input layer of the 
autoencoder , which in turn outputs an autoencoder output 
630 , which is in the form of a label mask . In an embodiment , 
the comparator 608 compares the autoencoder output 630 
with the label mask 612 and outputs the quality indicator 
614. In an embodiment , the quality indicator 614 can be an 
alarm , a flag , a color , and / or a value that is shown to the user 
as part of a user interface to indicate whether the label mask 
612 is likely a good segmentation of the input image 610 . 
For a poor segmentation , it is more likely that the input and 
output of the autoencoder 606 will not closely match , but for 
a good segmentation , it is more likely that they will . In an 
embodiment , where the autoencoder 606 is trained on shape 
features , the latent representation in the autoencoder 606 is likely to be representative of shape features . 
[ 0039 ] In an embodiment , the comparator 608 comprises 
logic , a general purpose ALUs , fixed function hardware , 
FPGA , or the like . While shown as a separate component in 
FIG . 6 , in an embodiment , comparator 608 might be imple 
mented in combination with the trained segmenter 604 and 
the autoencoder 606. For example , a dedicated hardware 
component might process input images to segment them and 
form label masks , process the label masks through the 
autoencoder , and compare the label masks with the autoen 
coder output . 
[ 0040 ] FIG . 7 illustrates a diagram of an autoencoder 702 
in an embodiment in which one or more arithmetic logic 
circuits at least partially encode an input label mask to a 
latent representation and decode the latent representation to 
an output label mask . In an embodiment shown , the auto 
encoder 702 is a neural network comprising several layers , 
including an input layer 704 , coupled to a first hidden layer 
706 , coupled to a latent layer 708 , coupled to a second 
hidden layer 710 , that is in turn coupled to an output layer 
712. In an embodiment , the autoencoder 702 is , or includes , 
a computer system or processing unit such as one or more of 
those described in connection with FIGS . 8-12 . 

Specific Example Implementation 
[ 0041 ] In a specific example described in this section , a 
system is described in various embodiments wherein a 
variational autoencoder is trained with a set of known good 
label masks ( a label mask ) and the variational autoencoder 
is trained to encode each input label mask into a latent 
representation and then decode an output label mask from 
that latent representation , where the training seeks to reduce 
losses from the encoding and decoding . The latent repre 
sentation represents shape features . 
[ 0042 ] The use of shape feature in a process of segmenting 
objects often provides stable shapes among different cases , 
especially in volumetric images ( i.e. , data corresponding to 
voxel values for a three - dimensional image ) . The shape 
feature can provide strong prior information for judging the 
quality of a segmentation result , i.e. , bad segmentation 
results in a label mask tend to have bad shapes and vice 
versa . As used herein , a “ prior ” such as a “ shape prior ” refers 
to data that represents some assumptions made , such as a 
machine learned prior notion of plausible shapes or other 
wise determined prior notion of shapes . 
[ 0043 ] Modelling the shape prior from the segmentation 
mask space can be quicker and simpler computationally than 
doing so in the image space and the shape prior can be 
shared among different datasets while the features like 
image intensity are affected by many factors . That means the 
shape feature can deal with not only rare events , but also 
different data distributions in the image space , which can 
provide good generalization and potential in transfer learn 
ing . In an embodiment , a VAE is used to pture the shape 
feature . In an embodiment , the VAE is trained on the ground 
truth label masks , and afterwards the value of the loss 
function is coputed as the shape feature of a segmentation 
result when it is tested with the VAE network . In an 
embodiment , after the VAE is trained , bad segmentation 
results with bad shapes would be rare events to the VAE 
because it is trained using only the ground truth masks 
known good label masks that are under the distribution of 
normal shapes . Thus they will have larger loss value . In this 
sense , the segmentation system uses the fact that the learning 
process will perform badly on the rare events . Formally 
speaking , the loss function , known as the variational lower 
bound , can be optimized to approximate the function log 
P ( Y ) during the training process . So after the training , the 
value of the loss function given a segmentation result , Y , is 
close to log PC? ) and thus is a good definition for the shape 
feature . 
[ 0044 ] In an embodiment , the VAE - based quality check 
ing system outputs to an alarm system to signal bad seg 
mentations . In another embodiment , other steps are taken in 
response to detection of bad segmentations . The qualities of 
the segmentation results can be well predicted using these 
systems . In an embodiment , to validate the effectiveness of 
the alarm system , it is tested on multiple segmentation 
processes . These segmentation processes can be trained on 
one dataset and tested on several other datasets to simulate 
when the rare events occur . 
[ 0045 ] To define logic of part of the process , denote the 
datasets as ( X , Y ) , where X is a set of images and Y is the 
label mask of X , i.e. , the label masks that are known good 
( ground truth ) segmentations of the images in X. The 
datasets ( X , Y ) can be divided into a training set ( X , Y ) 
and a validation set ( Xy , Yy ) . Here , F ( ) refers to a 
segmentation process trained on X. In an embodiment , the 

TY 
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Ey - YKA [ Q ( 2 | Y ) || P ( z \ Y ) ] = Ey - yt log P ( Y ) -Ez - q [ log 
P ( Yz ) ] + KA [ Q ( z \ Y ) || P ( z ) ] = Ey - yt log P ( Y ) -S ( Y ; 0 ) ( Eqn . 6 ) 

: 

a 

performance of F on Xy is be evaluated using Yy , but as 
explained herein , in an embodiment , the segmentation sys 
tem can evaluate without needing Yy . Formally , the training 
system tries to find a function L such that Equation 1 is 
satisfied . 

A ( F ( X ) , Y ) = L ( F , X ; 0 ) ( Eqn . 1 ) 

[ 0046 ] In Equation 1 , A is a function used to calculate the 
similarity of the segmentation result F ( X ) respect to the 
ground truth Y , i.e. , the quality of F ( X ) . Failures can occur 
when X a rare event . But to detect whether an image X is 
within the distribution of training data is very hard because 
of the complex structure of image space , and actually that is 
what F is trained to learn . The properties of F can be encoded 
by sampling the parameters of F and calculating the uncer 
tainty of output , and the uncertainty does help predict the 
quality , but the performance strongly relies on F. It requires 
F to have Bayesian structure , but well - trained F need not be 
so constrained . The uncertainty will mainly distribute on the boundary of segmentation prediction . Adding that constraint 
changes Equation 1 to Equation 2 . 

[ 0051 ] In Equation 6 , E - e [ log P ( Y12 ) ] + KA [ Q ( Z?Y ) || P ( 2 ) ] 
is denoted as S ( Y ; 0 ) for brevity . As illustrated by Equation 
6 , in an embodiment , the training process is actually learning 
a function to best fit log P ( Y ) over the distribution of Y. In 
an embodiment , after training the VAE , S ( Y ; 0 ) becomes a 
natural approximation for log P ( Y ) . As a result , S ( Y ; 0 ) can 
be used as a representative of the shape feature , in an 
embodiment . 
[ 0052 ] In an embodiment , a Dice Loss function is used 
when training the VAE and that is useful for medical 
segmentation tasks . In an embodiment , the final form of S is 
as shown in Equation 7 . 

S ( Y ; 0 ) = ( Eqn . 7 ) 

218 ( 2 ) : Y | 
Ex - Nu ( Y ) . ( Y ) 1812 + 1g ( z ) ) ? - AKA [ N ( u ( Y ) , X ( Y ) ) || N ( 0 , 1 ) ] 

A ( F ( X ) , Y ) = L ( F , X ; 0 ) ( Eqn . 2 ) 

[ 0053 ] In an embodiment , the encoder u , E and decoder g 
of Equation 7 are controlled by 0 , and à is a coefficient to 
balance the two terms . The first term is the Dice's coefficient 
between Y and g ( 2 ) , ranging from 0 to 1 and equal to 1 if 
Y = g ( z ) . In an embodiment , S ( Y ; 0 ) , the shape feature rep 
resentative of Equation 7 , indicates that after the VAE is 
trained using data with only normal shape , the predictive 
mask ý tends to be more likely in the distribution of normal 
shape if it can achieve less reconstruction error and is closer 
to prior distribution in the latent space , since log P ( ø ) s8 ( 9 ; 0 ) 
holds all the time . On the other hand , for cases with high 
P ( Ý ) but low S ( ? ; 0 ) , it would introduce a large penalty to the 
object function ( see Equation 6 ) , and is less likely to occur 
for a well - trained VAE . 

a 

Using Shape Feature for Predicting Quality 

a 

[ 0047 ] In an embodiment , by adding this constraint , the 
information from F and X is used , but not in direct way . A 
specific process might use a two - step method , where the first 
step is to encode a segmentation result F ( X ) into a feature 
space , and the second step to learn from the feature space to 
predict the quality of F ( X ) . The shape feature can be 
captured from F ( X ) , denoted here as S ( F ( X ) ; 0 ) . In that case , 
Equation 2 becomes Equation 3 . 

A ( F ( X ) , Y ) = L ( S ( F ( X ) ; 0 ) ( Eqn . 3 ) 

Shape Features with a Variational Autoencoder 
[ 0048 ] In an embodiment , the shape feature is captured 
from the VAE trained with the ground truth masks YEYT 
the shape of the segmentation masks as the distribution of 
the masks in volumetric form . Assuming the normal label Y 
obeys a certain distribution P ( Y ) , for a predictive mask ? , its 
quality should be related with P ( Y = ? ) . In an embodiment , 
the segmentation system estimates the function P ( Y ) . 
Because a VAE is used , an estimation function Q ( z ) is found 
that is minimizing a difference between Q ( z ) and P ( z Y ) , 
where z is the variable of the latent space that Y is encoding z 
into , optimizing as in Equation 4 . 

KA [ Q ( z ) || P ( z \ Y ) ] = Ez - @ [ log Q ( z ) -log P ( z \ Y ) ] ( Eqn . 4 ) 

[ 0049 ] In Equation 4 , KA is the Kullback - Leibler diver 
gence . By replacing Q ( z ) with Q ( z Y ) and rearranging 
terms , finally it would be deduced to the core equation of 
VAE as in Equation 5 . 

log P ( Y ) -KA [ Q ( z | 9 ) || P ( z \ Y ) ] = Ez - Q [ log P ( Yz ) ] - KA [ Q 
( z \ Y ) || P ( z ) ] ( Eqn . 5 ) 

[ 0050 ] In Equation 5 , P ( z ) is the prior distribution chosen 
for z , usually a Gaussian distribution , and Q ( Z?Y ) , P ( Y | Z ) 
correspond to the encoder and the decoder , respectively , in 
an embodiment . Once Y is given , log P ( Y ) is a constant . So 
by optimizing the right - hand side of Equation 5 , the varia 
tional lower bound of log P ( Y ) , this optimizes for KA [ Q ( z ) 
|| P ( Z?Y ) ] . In an embodiment , a quantity of interest is P ( Y ) . 
By exchanging the second term in the left - hand side of 
Equation 5 with all terms in the right - hand side of Equation 
( 5 ) , this results in Equation 6 , showing the training process 
as minimizing the quantity there . 

[ 0054 ] In an embodiment , the shape feature is often good 
enough for reliable quality assessment . One reason is that , 
for a segmentation result F ( X ) , the higher log P ( F ( X ) ) is , the 
better shape F ( X ) is in and thus the higher L ( F ( X ) , Y ) is . In 
an embodiment , formally , taking the shape feature captured 
from the VAE , the segmentation system can predict the 
quality of a segmentation by fitting a function L according 
to Equation 8 . 

L ( F ( X ) , Y ) = L ( S ( F ( X ) ; 0 ) ; 0 ) ( Eqn . 8 ) 

T 

[ 0055 ] In an embodiment , the parameter 0 in Equation 8 is 
learned by training the VAE , using labels in the training data 
Y ] , and is then fixed during the second step . In an embodi 
ment , the function L is chosen to be a simple linear model , 
in which case the energy function the segmentation system 
optimizes is as shown by Equation 9 . 

E ( S ( F ( X ) ; 0 ) ; a , b ) = llaS ( F ( X ) ; 0 ) + b - L ( F ( X ) , 7 ) | 12 ( Eqn . 9 ) 
a 

[ 0056 ] In an embodiment , a linear regression model is 
used and shows a strong linear correlation between the shape 
features and the qualities of segmentation results . In Equa 
tions 8 and 9 , L is the Dice's coefficient , as shown in 
Equation 10 . 
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( Eqn . 10 ) 2 | F ( X ) . Y | 22 
A ( F ( X ) , Y ) = | F ( X ) | - - | Y | 2 

Training Process 
[ 0057 ] In an embodiment , in the first step of a training 
process , the VAE is trained only using labels in training data . 
Then , in an embodiment , in the second step of a training 
process , 0 is fixed . In an embodiment , to learn a , b , one way 
is to optimize the energy function of Equation 9 using the 
segmentation results on the training data , as might be shown 
in Equation 11 . 

a 

arg min || as ( F ( X ) ; 6 ) + b - A ( F ( X ) , Y ) || 2 ( Eqn . 11 ) 
( X , Y ) E ( XT , YT ) 

T 
9 

[ 0058 ] In an embodiment , the segmentation process F that 
the segmentation system uses to learn a , b is referred to 
herein as the “ preparation process . ” In an embodiment , if F 
is trained on X7 , the quality of F ( X ) is expected to always 
be high , thus providing less information to regress a , b . To 
overcome this , in an embodiment , the segmentation system 
uses a jackknifing training strategy for F on X7 , wherein not 
all of X , are used at the outset . In an embodiment , the 
process includes first dividing X , into X , ' and X , and then 
training two versions of F on X , \ X , ' and X ; \ X , respec 
tively , say F , and F2 . In an embodiment , the optimizing 
function is then changed to that of Equation 12 . 

1 

1 2 

1 

referenced herein used on other than medical images . The 
public medical datasets for testing comprised the NIH 
Pancreas - CT Dataset ( NIH ) , the Medical Segmentation 
Decathlon ( MSD ) , and the Multi - atlas Labeling Challenge 
( MLC ) . 
[ 0062 ] The NIH Pancreas - CT Dataset ( NIH ) includes 82 
abdominal 3D CT scans ( Roth et al . , 2015 ) from 53 male and 
27 female subjects . The subjects were selected by a radi 
ologist from patients without major abdominal pathologies 
or pancreatic cancer lesions . The Medical Segmentation 
Decathlon ( MSD ) collected 420 abdominal 3D CT scans 
from Memorial Sloan Kettering Cancer Center ( 281 training 
scans and 139 testing scans ) . Each of the subjects had cancer 
lesions within pancreas region . The Multi - atlas Labeling 
Challenge ( MLC ) provides 50 ( 30 training , 20 testing ) 
abdomen CT scans randomly selected from a combination of 
an ongoing colorectal cancer chemotherapy trial and a 
retrospective ventral hernia study . 
[ 0063 ] In an embodiment , example segmentation pro 
cesses might include V - Net ( Milletari et al . , 2016 ) , 3D 
Coarse 2 Fine ( Zhu et al . , 2018 ) , Deeplabv3 ( Chen et al . , 
2018 ) , and 3D Coarse 2 Fine with Bayesian structure ( Kwon 
et al . , 2018 ) . The first two are based on 3D networks while 
the Deeplab is 2D - based . In an embodiment , the 3D Coarse 
2 Fine with Bayesian structure is employed to compare with 
uncertainty based method and is denoted as Bayesian neural 
network ( BNN ) afterwards . 
[ 0064 ] For data pre - processing , since the voxel size varies 
from case to case , which would affect the shape of pancreas 
and prediction of segmentation , the tests included a step of 
resampling the voxel size of all CT scans and annotation 
masks to 1 mm cubed voxels . For training the VAE , a simple 
alignment is applied on the annotation mask . A cube bound 
ing box , large enough to contain the whole pancreas region , 
is used and is centered at the pancreas centroid . The volume 
and the label mask are cropped out and resized to a fixed size 
of 128 by 128 by 128 voxels . A simple alignment works for 
these test cases , because the human pose is usually fixed 
when taking CT scan , e.g. , so the organ is not expected to 
rotate or deform heavily . For a segmentation prediction , the 
test also crops and resizes the predictive foreground to 128 
by 128 by 128 voxels and feeds it into the VAE to capture 
the shape feature , similar to what is shown in FIG . 6. As used 
herein , " annotation masks " can refer to , or be used instead 
of , a label mask that contains ground truth details . Ground 
truth details might be derived from manual input after 
examination of an image . 
[ 0065 ] In an embodiment , during the training process , 
rotations along the x , y , and z axes for -10 , 0 , and 10 degrees 
respectively , along with random translations for smaller than 
5 voxels on the annotation mask is used as data augmenta 
tion . This kind of mild disturbance can enhance the data 
distribution , while maintaining the alignment properties of 
the annotation mask . In an embodiment , a suitable dimen 
sion for latent space that contains the latent representation in 
the VAE might be 128. VAEs with latent spaces of different 
dimension may have different capabilities when it comes to 
quality assessment . In an embodiment , the hyper parameter 
à in the object function of the VAE is set to = 2 - S to balance 
the small value of Dice Loss and large KL Divergence . In a 
test embodiment , the network was trained by an SGD 
optimizer with batch size 4 and the learning rate for training 
the VAE was fixed to 0.1 . In an embodiment , the framework 
and other baseline models can be constructed using Tensor 

Arg min ? ? l | as ( Fk ( X ) ; ) + b - A ( F ( X ) , Y ) || 20 : ( Eqn . 12 ) 

k = 1,2 ( X , Y ) = ( xX , Y * ) 

T 

- 

[ 0059 ] In an embodiment , using the above process , the 
segmentation system can solve the problem above by simu 
lating the performance of F on the testing set . In an embodi 
ment , an accurate way is to do “ leave - one - out ” training for 
F , but if the time consumption is not acceptable , two - fold 
split , wherein X , is divided into two equal sized subsamples , 
one for training and one for validation , can be effective 
enough . In an embodiment , when the training is done , the 
trained segmenter can be tested using a segmentation algo 
rithm F and data Xto predict the quality using the quality 
metric of Equation 13 . 

Q = aS ( F ( X ) ; 0 ) + b ( Eqn . 13 ) 

[ 0060 ] As has now been described , in an embodiment , a 
segmentation system obtains reliable predictions for the 
qualities of segmentation results . In an embodiment , an 
alarm system can be used when the segmentation processes 
are tested on other datasets , with good quality assessment 
capability and transferability compared with uncertainty 
based methods , direct regression methods , and other meth 
ods . 
[ 0061 ] Tests were performed on images taken from public 
medical datasets comprising 3D labdominal CT images in 
portal venous phase with a pancreas region fully annotated 
in each image . The CT scans have resolutions of 512x512xh 
voxels with varying voxel sizes . In an embodiment , other 
images are used instead , or in addition , and the processes 
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Flow and the experiments run on an nVidia Tesla V100 
GPU . In one example , the first training step was done in 
20000 iterations and completed in around five hours . 
[ 0066 ] In an embodiment , after training , the segmentation 
system can be used for segmentation and the output of a 
trained segmenter provided to a VAE for quality assessment . 
The VAE can predict the qualities of the segmentation 
results without requiring the use of ground truth masks . The 
shape feature is useful in predicting the qualities of the 
segmentation results . To capture the shape feature , in an 
embodiment , the VAE is trained using only ground truth 
masks and relying on that rare events will achieve larger 
value for loss function , and successfully detect the out - of 
distribution shape according to the value for loss function in 
the testing time . 
[ 0067 ] As explained above , the segmentation system in an 
embodiment comprises a trained segmenter that takes in an 
image and determines a segmentation , which can be output 
as a label mask . In an embodiment , an autoencoder trained 
on shape features takes that label mask as its input and 
outputs a resulting label mask that is formed when the 
autoencoder encodes the label mask to a latent representa 
tion and then decodes that latent representation . In an 
embodiment , there is less loss in the autoencoding process 
when there is a good segmentation and more loss when there 
is a bad segmentation , where the quality of the segmentation 
represents how well boundaries of objects in an image are 
correctly identified . In an embodiment , a comparator checks 
whether boundaries between objects in an image are cor 
rectly identified by the output of the autoencoder to its input . 
If boundaries of objects in an image are correctly identified , 
those boundaries will be close to the output of the autoen 
coder . An alarm ( e.g. , notification or change in an interface ) 
might be provided to a user of the system when there is a 
significant difference between boundaries identified more 
than an acceptable threshold from the output of the autoen 
coder . 
[ 0068 ] In a particular embodiment , an image is processed 
with a first neural network to determine a first segmentation 
of the image ( i.e. , output that indicates the boundaries of 
objects in the image ) , while in other embodiments other than 
a neural network is used for segmentation . In an embodi 
ment , the segmentation is passed through a variational auto 
encoder ( VAE ) to obtain a second segmentation . In an 
embodiment , the first segmentation and second segmenta 
tion are compared , which might be done using a loss 
function . If the comparison shows that the first and second 
segmentations are close , the segmenter probably worked 
well . If they are significantly different , there was probably a 
problem . In an embodiment , the autoencoder is trained using 
segmentations of images that are known to be good seg 
mentations . Other embodiments may be apparent upon 
reading the descriptions herein . 
[ 0069 ] FIG . 8 illustrates a parallel processing unit ( “ PPU ” ) 
800 , in accordance with one embodiment . In an embodi 
ment , the PPU 800 is configured with machine - readable 
code that , if executed by the PPU , causes the PPU to perform 
some or all of processes and techniques described through 
out this disclosure . In an embodiment , the PPU 800 is a 
multi - threaded processor that is implemented on one or 
more integrated circuit devices and that utilizes multithread 
ing as a latency - hiding technique designed to process com 
puter - readable instructions ( also referred to as machine 
readable instructions or simply instructions ) on multiple 

threads in parallel . In an embodiment , a thread refers to a 
thread of execution and is an instantiation of a set of 
instructions configured to be executed by the PPU 800. In an 
embodiment , the PPU 800 is a graphics processing unit 
( " GPU ' ) configured to implement a graphics rendering 
pipeline for processing three - dimensional ( “ 3D " ) graphics 
data in order to generate two - dimensional ( “ 2D ” ) image data 
for display on a display device such as a liquid crystal 
display ( LCD ) device . In an embodiment , the PPU 800 is 
utilized to perform computations such as linear algebra 
operations and machine - learning operations . FIG . 8 illus 
trates an example parallel processor for illustrative purposes 
only and should be construed as a non - limiting example of 
processor architectures contemplated within the scope of 
this disclosure and that any suitable processor may be 
employed to supplement and / or substitute for the same . 
[ 0070 ] In an embodiment , one or more PPUs are config 
ured to accelerate High Performance Computing ( “ HPC ” ) , 
data center , and machine learning applications . In an 
embodiment , the PPU 800 is configured to accelerate deep 
learning systems and applications including the following 
non - limiting examples : autonomous vehicle platforms , deep 
learning , high - accuracy speech , image , text recognition sys 
tems , intelligent video analytics , molecular simulations , 
drug discovery , disease diagnosis , weather forecasting , big 
data analytics , astronomy , molecular dynamics simulation , 
financial modeling , robotics , factory automation , real - time 
language translation , online search optimizations , and per 
sonalized user recommendations , and more . 
[ 0071 ] In an embodiment , the PPU 800 includes an Input / 
Output ( “ I / O ” ) unit 806 , a front - end unit 810 , a scheduler 
unit 812 , a work distribution unit 814 , a hub 816 , a crossbar 
( “ Xbar ” ) 820 , one or more general processing clusters 
( “ GPCs ” ) 818 , and one or more partition units 822. In an 
embodiment , the PPU 800 is connected to a host processor 
or other PPUs 800 via one or more high - speed GPU inter 
connects 808. In an embodiment , the PPU 800 is connected 
to a host processor or other peripheral devices via an 
interconnect 802. In an embodiment , the PPU 800 is con 
nected to a local memory comprising one or more memory 
devices 804. In an embodiment , the local memory comprises 
one or more dynamic random access memory ( “ DRAM ” ) 
devices . In an embodiment , the one or more DRAM devices 
are configured and / or configurable as high - bandwidth 
memory ( “ HBM ” ) subsystems , with multiple DRAM dies 
stacked within each device . 
[ 0072 ] The high - speed GPU interconnect 808 may refer to 
a wire - based multi - lane communications link that is used by 
systems to scale and include one or more PPUs 800 com 
bined with one or more CPUs , supports cache coherence 
between the PPUs 800 and CPUs , and CPU mastering . In an 
embodiment , data and / or commands are transmitted by the 
high - speed GPU interconnect 808 through the hub 816 
to / from other units of the PPU 800 such as one or more copy 
engines , video encoders , video decoders , power manage 
ment units , and other components which may not be explic 
itly illustrated in FIG . 8 . 
[ 0073 ] In an embodiment , the I / O unit 806 is configured to 
transmit and receive communications ( e.g. , commands , 
data ) from a host processor ( not illustrated in FIG . 8 ) over 
the system bus 802. In an embodiment , the I / O unit 806 
communicates with the host processor directly via the sys 
tem bus 802 or through one or more intermediate devices 
such as a memory bridge . In an embodiment , the I / O unit 

a 
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806 may communicate with one or more other processors , 
such as one or more of the PPUs 800 via the system bus 802 . 
In an embodiment , the I / O unit 806 implements a Peripheral 
Component Interconnect Express ( “ PCIe ” ) interface for 
communications over a PCIe bus . In an embodiment , the I / O 
unit 806 implements interfaces for communicating with 
external devices . 
[ 0074 ] In an embodiment , the I / O unit 806 decodes pack 
ets received via the system bus 802. In an embodiment , at 
least some packets represent commands configured to cause 
the PPU 800 to perform various operations . In an embodi 
ment , the I / O unit 806 transmits the decoded commands to 
various other units of the PPU 800 as specified by the 
commands . In an embodiment , commands are transmitted to 
the front - end unit 810 and / or transmitted to the hub 816 or 
other units of the PPU 800 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc. ( not explicitly illustrated in FIG . 8 ) . In an 
embodiment , the I / O unit 806 is configured to route com 
munications between and among the various logical units of 
the PPU 800 . 
[ 0075 ] In an embodiment , a program executed by the host 
processor encodes a command stream in a buffer that pro 
vides workloads to the PPU 800 for processing . In an 
embodiment , a workload comprises instructions and data to 
be processed by those instructions . In an embodiment , the 
buffer is a region in a memory that is accessible ( e.g. , 
read / write ) by both the host processor and the PPU 800 — the 
host interface unit may be configured to access the buffer in 
a system memory connected to the system bus 802 via 
memory requests transmitted over the system bus 802 by the 
I / O unit 806. In an embodiment , the host processor writes 
the command stream to the buffer and then transmits a 
pointer to the start of the command stream to the PPU 800 
such that the front - end unit 810 receives pointers to one or 
more command streams and manages the one or more 
streams , reading commands from the streams and forward 
ing commands to the various units of the PPU 800 . 
[ 0076 ] In an embodiment , the front - end unit 810 is 
coupled to scheduler unit 812 that configures the various 
GPCs 818 to process tasks defined by the one or more 
streams . In an embodiment , the scheduler unit 812 is con 
figured to track state information related to the various tasks 
managed by the scheduler unit 812 where the state infor 
mation may indicate which GPC 818 a task is assigned to , 
whether the task is active or inactive , a priority level 
associated with the task , and so forth . In an embodiment , the 
scheduler unit 812 manages the execution of a plurality of 
tasks on the one or more GPCs 818 . 
[ 0077 ] In an embodiment , the scheduler unit 812 is 
coupled to a work distribution unit 814 that is configured to 
dispatch tasks for execution on the GPCs 818. In an embodi 
ment , the work distribution unit 814 tracks a number of 
scheduled tasks received from the scheduler unit 812 and the 
work distribution unit 814 manages a pending task pool and 
an active task pool for each of the GPCs 818. In an 
embodiment , the pending task pool comprises a number of 
slots ( e.g. , 32 slots ) that contain tasks assigned to be 
processed by a particular GPC 818 ; the active task pool may 
comprise a number of slots ( e.g. , 4 slots ) for tasks that are 
actively being processed by the GPCs 818 such that as a 
GPC 818 completes the execution of a task , that task is 
evicted from the active task pool for the GPC 818 and one 
of the other tasks from the pending task pool is selected and 

scheduled for execution on the GPC 818. In an embodiment , 
if an active task is idle on the GPC 818 , such as while 
waiting for a data dependency to be resolved , then the active 
task is evicted from the GPC 818 and returned to the pending 
task pool while another task in the pending task pool is 
selected and scheduled for execution on the GPC 818 . 
[ 0078 ] In an embodiment , the work distribution unit 814 
communicates with the one or more GPCs 818 via Xbar 820 . 
In an embodiment , the Xbar 820 is an interconnect network 
that couples many of the units of the PPU 800 to other units 
of the PPU 800 and can be configured to couple the work 
distribution unit 814 to a particular GPC 818. Although not 
shown explicitly , one or more other units of the PPU 800 
may also be connected to the Xbar 820 via the hub 816 . 
[ 0079 ] The tasks are managed by the scheduler unit 812 
and dispatched to a GPC 818 by the work distribution unit 
814. The GPC 818 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 818 , routed to a different GPC 818 via the 
Xbar 820 , or stored in the memory 804. The results can be 
written to the memory 804 via the partition units 822 , which 
implement a memory interface for reading and writing data 
to / from the memory 804. The results can be transmitted to 
another PPU 804 or CPU via the high - speed GPU intercon 
nect 808. In an embodiment , the PPU 800 includes a number 
U of partition units 822 that is equal to the number of 
separate and distinct memory devices 804 coupled to the 
PPU 800. A partition unit 822 will be described in more 
detail below in conjunction with FIG . 10 . 
[ 0080 ] In an embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( “ API ” ) that enables one or more applications 
executing on the host processor to schedule operations for 
execution on the PPU 800. In an embodiment , multiple 
compute applications are simultaneously executed by the 
PPU 800 and the PPU 800 provides isolation , quality of 
service ( “ QoS ” ) , and independent address spaces for the 
multiple compute applications . In an embodiment , an appli 
cation generates instructions ( e.g. , in the form of API calls ) 
that cause the driver kernel to generate one or more tasks for 
execution by the PPU 800 and the driver kernel outputs tasks 
to one or more streams being processed by the PPU 800. In 
an embodiment , each task comprises one or more groups of 
related threads , which may be referred to as a warp . In an 
embodiment , a warp comprises a plurality of related threads 
( e.g. , 32 threads ) that can be executed in parallel . In an 
embodiment , cooperating threads can refer to a plurality of 
threads including instructions to perform the task and that 
exchange data through shared memory . Threads and coop 
erating threads are described in more detail , in accordance 
with one embodiment , in conjunction with FIG . 10A . 
[ 0081 ] FIG . 9 illustrates a GPC 900 such as the GPC 
illustrated of the PPU 800 of FIG . 8 , in accordance with one 
embodiment . In an embodiment , each GPC 900 includes a 
number of hardware units for processing tasks and each 
GPC 900 includes a pipeline manager 902 , a pre - raster 
operations unit ( “ PROP ” ) 904 , a raster engine 908 , a work 
distribution crossbar ( “ WDX ” ) 916 , a memory management 
unit ( “ MMU ” ) 918 , one or more Data Processing Clusters 
( “ DPCs ” ) 906 , and any suitable combination of parts . It will 
be appreciated that the GPC 900 of FIG . 9 may include other 
hardware units in lieu of or in addition to the units shown in 
FIG . 9 . 
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[ 0082 ] In an embodiment , the operation of the GPC 900 is 
controlled by the pipeline manager 902. The pipeline man 
ager 902 manages the configuration of the one or more DPCs 
906 for processing tasks allocated to the GPC 900. In an 
embodiment , the pipeline manager 902 configures at least 
one of the one or more DPCs 906 to implement at least a 
portion of a graphics rendering pipeline . In an embodiment , 
a DPC 906 is configured to execute a vertex shader program 
on the programmable streaming multiprocessor ( “ SM ” ) 914 . 
The pipeline manager 902 is configured to route packets 
received from a work distribution to the appropriate logical 
units within the GPC 900 , in an embodiment , and some 
packets may be routed to fixed function hardware units in the 
PROP 904 and / or raster engine 908 while other packets may 
be routed to the DPCs 906 for processing by the primitive 
engine 912 or the SM 914. In an embodiment , the pipeline 
manager 902 configures at least one of the one or more 
DPCs 906 to implement a neural network model and / or a 
computing pipeline . 
[ 0083 ] The PROP unit 904 is configured , in an embodi 
ment , to route data generated by the raster engine 908 and 
the DPCs 906 to a Raster Operations ( “ ROP ” ) unit in the 
memory partition unit , described in more detail above . In an 
embodiment , the PROP unit 904 is configured to perform 
optimizations for color blending , organize pixel data , per 
form address translations , and more . The raster engine 908 
includes a number of fixed function hardware units config 
ured to perform various raster operations , in an embodiment , 
and the raster engine 908 includes a setup engine , a coarse 
raster engine , a culling engine , a clipping engine , a fine 
raster engine , a tile coalescing engine , and any suitable 
combination thereof . The setup engine , in an embodiment , 
receives transformed vertices and generates plane equations 
associated with the geometric primitive defined by the 
vertices ; the plane equations are transmitted to the coarse 
raster engine to generate coverage information ( e.g. , an x , y 
coverage mask for a tile ) for the primitive ; the output of the 
coarse raster engine is transmitted to the culling engine 
where fragments associated with the primitive that fail a 
z - test are culled , and transmitted to a clipping engine where 
fragments lying outside a viewing frustum are clipped . In an 
embodiment , the fragments that survive clipping and culling 
are passed to the fine raster engine to generate attributes for 
the pixel fragments based on the plane equations generated 
by the setup engine . In an embodiment , the output of the 
raster engine 908 comprises fragments to be processed by 
any suitable entity such as by a fragment shader imple 
mented within a DPC 906 . 
[ 0084 ] In an embodiment , each DPC 906 included in the 
GPC 900 comprises an M - Pipe Controller ( “ MPC ” ) 910 ; a 
primitive engine 912 ; one or more SMS 914 ; and any 
suitable combination thereof . In an embodiment , the MPC 
910 controls the operation of the DPC 906 , routing packets 
received from the pipeline manager 902 to the appropriate 
units in the DPC 906. In an embodiment , packets associated 
with a vertex are routed to the primitive engine 912 , which 
is configured to fetch vertex attributes associated with the 
vertex from memory ; in contrast , packets associated with a 
shader program may be transmitted to the SM 914 . 
[ 0085 ] In an embodiment , the SM 914 comprises a pro 
grammable streaming processor that is configured to process 
tasks represented by a number of threads . In an embodiment , 
the SM 914 is multi - threaded and configured to execute a 
plurality of threads ( e.g. , 32 threads ) from a particular group 

of threads concurrently and implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( e.g. , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
In an embodiment , all threads in the group of threads 
execute the same instructions . In an embodiment , the SM 
914 implements a SIMT ( Single - Instruction , Multiple 
Thread ) architecture wherein each thread in a group of 
threads is configured to process a different set of data based 
on the same set of instructions , but where individual threads 
in the group of threads are allowed to diverge during 
execution . In an embodiment , a program counter , call stack , 
and execution state is maintained for each warp , enabling 
concurrency between warps and serial execution within 
warps when threads within the warp diverge . In another 
embodiment , a program counter , call stack , and execution 
state is maintained for each individual thread , enabling equal 
concurrency between all threads , within and between warps . 
In an embodiment , execution state is maintained for each 
individual thread and threads executing the same instruc 
tions may be converged and executed in parallel for better 
efficiency . In an embodiment , the SM 914 is described in 
more detail below . 
[ 0086 ] In an embodiment , the MMU 918 provides an 
interface between the GPC 900 and the memory partition 
unit and the MMU 918 provides translation of virtual 
addresses into physical addresses , memory protection , and 
arbitration of memory requests . In an embodiment , the 
MMU 918 provides one or more translation lookaside 
buffers ( “ TLBs ” ) for performing translation of virtual 
addresses into physical addresses in memory . 
[ 0087 ] FIG . 10 illustrates a memory partition unit of a 
PPU , in accordance with one embodiment . In an embodi 
ment , the memory partition unit 1000 includes a Raster 
Operations ( “ ROP ” ) unit 1002 ; a level two ( “ L2 " ) cache 
1004 ; a memory interface 1006 ; and any suitable combina 
tion thereof . The memory interface 1006 is coupled to the 
memory . Memory interface 1006 may implement 32 , 64 , 
128 , 1024 - bit data buses , or the like , for high - speed data 
transfer . In an embodiment , the PPU incorporates U memory 
interfaces 1006 , one memory interface 1006 per pair of 
partition units 1000 , where each pair of partition units 1000 
is connected to a corresponding memory device . For 
example , PPU may be connected to up to Y memory devices , 
such as high bandwidth memory stacks or graphics double 
data - rate , version 5 , synchronous dynamic random access 
memory ( " GDDR5 SDRAM ” ) . 
[ 0088 ] In an embodiment , the memory interface 1006 
implements an HBM2 memory interface and Y equals half 
U. In an embodiment , the HBM2 memory stacks are located 
on the same physical package as the PPU , providing sub 
stantial power and area savings compared with conventional 
GDDR5 SDRAM systems . In an embodiment , each HBM2 
stack includes four memory dies and Y equals 4 , with HBM2 
stack including two 128 - bit channels per die for a total of 8 
channels and a data bus width of 1024 bits . 
[ 0089 ] In an embodiment , the memory supports Single 
Error Correcting Double - Error Detecting ( “ SECDED " ) 
Error Correction Code ( “ ECC ” ) to protect data . ECC pro 
vides higher reliability for compute applications that are 
sensitive to data corruption . Reliability is especially impor 
tant in large - scale cluster computing environments where 
PPUs process very large datasets and / or run applications for 
extended periods . 

a 

a 



US 2022/0044412 A1 Feb. 10 , 2022 
10 

a 

[ 0090 ] In an embodiment , the PPU implements a multi 
level memory hierarchy . In an embodiment , the memory 
partition unit 1000 supports a unified memory to provide a 
single unified virtual address space for CPU and PPU 
memory , enabling data sharing between virtual memory 
systems . In an embodiment the frequency of accesses by a 
PPU to memory located on other processors is traced to 
ensure that memory pages are moved to the physical 
memory of the PPU that is accessing the pages more 
frequently . In an embodiment , the high - speed GPU inter 
connect 808 supports address translation services allowing 
the PPU to directly access a CPU's page tables and provid 
ing full access to CPU memory by the PPU . 
[ 0091 ] In an embodiment , copy engines transfer data 
between multiple PPUs or between PPUs and CPUs . In an 
embodiment , the copy engines can generate page faults for 
addresses that are not mapped into the page tables and the 
memory partition unit 1000 then services the page faults , 
mapping the addresses into the page table , after which the 
copy engine performs the transfer . In an embodiment , 
memory is pinned ( i.e. , non - pageable ) for multiple copy 
engine operations between multiple processors , substan 
tially reducing the available memory . In an embodiment , 
with hardware page faulting , addresses can be passed to the 
copy engines without regard as to whether the memory 
pages are resident , and the copy process is transparent . 
[ 0092 ] Data from the memory of FIG . 8 or other system 
memory is fetched by the memory partition unit 1000 and 
stored in the L2 cache 1004 , which is located on - chip and is 
shared between the various GPCs , in accordance with one 
embodiment . Each memory partition unit 1000 , in an 
embodiment , includes at least a portion of the L2 cache 960 
associated with a corresponding memory device . In an 
embodiment , lower level caches are implemented in various 
units within the GPCs . In an embodiment , each of the SMS 
1040 may implement a level one ( “ L1 ” ) cache wherein the 
L1 cache is private memory that is dedicated to a particular 
SM 1040 and data from the L2 cache 1004 is fetched and 
stored in each of the Ll caches for processing in the 
functional units of the SMs 1040. In an embodiment , the L2 
cache 1004 is coupled to the memory interface 1006 and the 
Xbar 820 . 
[ 0093 ] The ROP unit 1002 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and more , in an embodiment . The ROP unit $$ 50 , 
in an embodiment , implements depth testing in conjunction 
with the raster engine 1025 , receiving a depth for a sample 
location associated with a pixel fragment from the culling 
engine of the raster engine 1025. In an embodiment , the 
depth is tested against a corresponding depth in a depth 
buffer for a sample location associated with the fragment . In 
an embodiment , if the fragment passes the depth test for the 
sample location , then the ROP unit 1002 updates the depth 
buffer and transmits a result of the depth test to the raster 
engine 1025. It will be appreciated that the number of 
partition units 1000 may be different than the number of 
GPCs and , therefore , each ROP unit 1002 can , in an embodi 
ment , be coupled to each of the GPCs . In an embodiment , 
the ROP unit 1002 tracks packets received from the different 
GPCs and determines which that a result generated by the 
ROP unit 1002 is routed to through the Xbar . 
[ 0094 ] FIG . 11 illustrates a streaming multi - processor 
such as the streaming multi - processor of FIG . 9 , in accor 
dance with one embodiment . In an embodiment , the SM 

1100 includes : an instruction cache 1102 ; one or more 
scheduler units 1104 ; a register file 1108 ; one or more 
processing cores 1110 ; one or more special function units 
( “ SFUs ” ) 1112 ; one or more load / store units ( “ LSUs ” ) 1114 ; 
an interconnect network 1116 ; a shared memory / L1 cache 
1118 ; and any suitable combination thereof . In an embodi 
ment , the work distribution unit dispatches tasks for execu 
tion on the GPCs of the PPU and each task is allocated to a 
particular DPC within a GPC and , if the task is associated 
with a shader program , the task is allocated to an SM 1100 . 
In an embodiment , the scheduler unit 1104 receives the tasks 
from the work distribution unit and manages instruction 
scheduling for one or more thread blocks assigned to the SM 
1100. In an embodiment , the scheduler unit 1104 schedules 
thread blocks for execution as warps of parallel threads , 
wherein each thread block is allocated at least one warp . In 
an embodiment , each warp executes threads . In an embodi 
ment , the scheduler unit 1104 manages a plurality of differ 
ent thread blocks , allocating the warps to the different thread 
blocks and then dispatching instructions from the plurality 
of different cooperative groups to the various functional 
units ( e.g. , cores 1110 , SFUs 1112 , and LSUs 1114 ) during 
each clock cycle . 
[ 0095 ] Cooperative Groups may refer to a programming 
model for organizing groups of communicating threads that 
allows developers to express the granularity at which threads 
are communicating , enabling the expression of richer , more 
efficient parallel decompositions . In an embodiment , coop 
erative launch APIs support synchronization amongst thread 
blocks for the execution of parallel algorithms . In an 
embodiment , applications of conventional programming 
models provide a single , simple construct for synchronizing 
cooperating threads : a barrier across all threads of a thread 
block ( e.g. , the syncthreads ( ) function ) . However , program 
mers would often like to define groups of threads at smaller 
than thread block granularities and synchronize within the 
defined groups to enable greater performance , design flex 
ibility , and software reuse in the form of collective group 
wide function interfaces . Cooperative Groups enables pro 
grammers to define groups of threads explicitly at sub - block 
( i.e. , as small as a single thread ) and multi - block granulari 
ties , and to perform collective operations such as synchro 
nization on the threads in a cooperative group . The pro 
gramming model supports clean composition across 
software boundaries , so that libraries and utility functions 
can synchronize safely within their local context without 
having to make assumptions about convergence . Coopera 
tive Groups primitives enable new patterns of cooperative 
parallelism , including producer - consumer parallelism , 
opportunistic parallelism , and global synchronization across 
an entire grid of thread blocks . 
[ 0096 ] In an embodiment , a dispatch unit 1106 is config 
ured to transmit instructions to one or more of the functional 
units and the scheduler unit 1104 includes two dispatch units 
1106 that enable two different instructions from the same 
warp to be dispatched during each clock cycle . In an 
embodiment , each scheduler unit 1104 includes a single 
dispatch unit 1106 or additional dispatch units 1106 . 
[ 0097 ] Each SM 1100 , in an embodiment , includes a 
register file 1108 that provides a set of registers for the 
functional units of the SM 1100. In an embodiment , the 
register file 1108 is divided between each of the functional 
units such that each functional unit is allocated a dedicated 
portion of the register file 1108. In an embodiment , the 
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register file 1108 is divided between the different warps 
being executed by the SM 1100 and the register file 1108 
provides temporary storage for operands connected to the 
data paths of the functional units . In an embodiment , each 
SM 1100 comprises a plurality of L processing cores 1110 . 
In an embodiment , the SM 1100 includes a large number 
( e.g. , 128 or more ) of distinct processing cores 1110. Each 
core 1110 , in an embodiment , includes a fully - pipelined , 
single - precision , double - precision , and / or mixed precision 
processing unit that includes a floating point arithmetic logic 
unit and an integer arithmetic logic unit . In an embodiment , 
the floating point arithmetic logic units implement the IEEE 
754-2008 standard for floating point arithmetic . In an 
embodiment , the cores 1110 include 64 single - precision 
( 32 - bit ) floating point cores , 64 integer cores , 32 double 
precision ( 64 - bit ) floating point cores , and 8 tensor cores . 
[ 0098 ] Tensor cores are configured to perform matrix 
operations in accordance with an embodiment . In an 
embodiment , one or more tensor cores are included in the 
cores 1110. In an embodiment , the tensor cores are config 
ured to perform deep learning matrix arithmetic , such as 
convolution operations for neural network training and 
inferencing . In an embodiment , each tensor core operates on 
a 4x4 matrix and performs a matrix multiply and accumulate 
operation D = AXB + C , where A , B , C , and D are 4x4 matri 
ces . 

Each SM 1100 includes an interconnect network 1116 that 
connects each of the functional units to the register file 1108 
and the LSU 1114 to the register file 1108 , shared memory / 
L1 cache 1118 in an embodiment . In an embodiment , the 
interconnect network 1116 is a crossbar that can be config 
ured to connect any of the functional units to any of the 
registers in the register file 1108 and connect the LSUs 1114 
to the register file and memory locations in shared memory / 
L1 cache 1118 . 
[ 0102 ] The shared memory / L1 cache 1118 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 1100 and the primitive engine and 
between threads in the SM 1100 in an embodiment . In an 
embodiment , the shared memory / L1 cache 1118 comprises 
128 KB of storage capacity and is in the path from the SM 
1100 to the partition unit . The shared memory / L1 cache 
1118 , in an embodiment , is used to cache reads and writes . 
One or more of the shared memory / L1 cache 1118 , L2 cache , 
and memory are backing stores . 
[ 0103 ] Combining data cache and shared memory func 
tionality into a single memory block provides improved 
performance for both types of memory accesses , in an 
embodiment . The capacity , in an embodiment , is used or is 
usable as a cache by programs that do not use shared 
memory , such as if shared memory is configured to use half 
of the capacity , texture and load / store operations can use the 
remaining capacity . Integration within the shared memory 
L1 cache 1118 enables the shared memory / L1 cache 1118 to 
function as a high - throughput conduit for streaming data 
while simultaneously providing high - bandwidth and low 
latency access to frequently reused data , in accordance with 
an embodiment . When configured for general purpose par 
allel computation , a simpler configuration can be used 
compared with graphics processing . In an embodiment , 
fixed function graphics processing units are bypassed , cre 
ating a much simpler programming model . In the general 
purpose parallel computation configuration , the work distri 
bution unit assigns and distributes blocks of threads directly 
to the DPCs , in an embodiment . The threads in a block 
execute the same program , using a unique thread ID in the 
calculation to ensure each thread generates unique results , 
using the SM 1100 to execute the program and perform 
calculations , shared memory / L1 cache 1118 to communicate 
between threads , and the LSU 1114 to read and write global 
memory through the shared memory / L1 cache 1118 and the 
memory partition unit , in accordance with one embodiment . 
In an embodiment , when configured for general purpose 
parallel computation , the SM 1100 writes commands that the 
scheduler unit can use to launch new work on the DPCs . 
[ 0104 ] In an embodiment , the PPU is included in or 
coupled to a desktop computer , a laptop computer , a tablet 
computer , servers , supercomputers , a smart - phone ( e.g. , a 
wireless , hand - held device ) , personal digital assistant 
( “ PDA ” ) , a digital camera , a vehicle , a head mounted 
display , a hand - held electronic device , and more . In an 
embodiment , the PPU is embodied on a single semiconduc 
tor substrate . In an embodiment , the PPU is included in a 
system - on - a - chip ( “ SOC ” ) along with one or more other 
devices such as additional PPUs , the memory , a reduced 
instruction set computer ( “ RISC ” ) CPU , a memory manage 
ment unit ( “ MMU ” ) , a digital - to - analog converter ( “ DAC ” ) , 
and the like . 
[ 0105 ] In an embodiment , the PPU may be included on a 
graphics card that includes one or more memory devices . 

[ 0099 ] In an embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices and the accumula 
tion matrices C and D are 16 - bit floating point or 32 - bit 
floating point matrices . In an embodiment , the tensor cores 
operate on 16 - bit floating point input data with 32 - bit 
floating point accumulation . In an embodiment , the 16 - bit 
floating point multiply requires 64 operations and results in 
a full precision product that is then accumulated using 32 - bit 
floating point addition with the other intermediate products 
for a 4'4x4 matrix multiply . Tensor cores are used to 
perform much larger two - dimensional or higher dimensional 
matrix operations , built up from these smaller elements , in 
an embodiment . In an embodiment , an API , such as CUDA 
9 C ++ API , exposes specialized matrix load , matrix multiply 
and accumulate , and matrix store operations to efficiently 
use tensor cores from a CUDA - C ++ program . In an embodi 
ment , at the CUDA level , the warp - level interface assumes 
16x16 size matrices spanning all 32 threads of the warp . 
[ 0100 ] In an embodiment , each SM 1100 comprises M 
SFUs 1112 that perform special functions ( e.g. , attribute 
evaluation , reciprocal square root , and the like ) . In an 
embodiment , the SFUs 1112 include a tree traversal unit 
configured to traverse a hierarchical tree data structure . In an 
embodiment , the SFUs 1112 include texture unit configured 
to perform texture map filtering operations . In an embodi 
ment , the texture units are configured to load texture maps 
( e.g. , a 2D array of texels ) from the memory and sample the 
texture maps to produce sampled texture values for use in 
shader programs executed by the SM 1100. In an embodi 
ment , the texture maps are stored in the shared memory / L1 
cache . The texture units implement texture operations such 
as filtering operations using mip - maps ( e.g. , texture maps of 
varying levels of detail ) , in accordance with one embodi 
ment . In an embodiment , each SM 1100 includes two texture 
units . 
[ 0101 ] Each SM 1100 comprises NLSUS 1054 that imple 
ment load and store operations between the shared memory / 
L1 cache 1006 and the register file 1108 , in an embodiment . 
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The graphics card may be configured to interface with a 
PCIe slot on a motherboard of a desktop computer . In yet 
another embodiment , the PPU may be an integrate graphics 
processing unit ( “ IGPU ” ) included in the chipset of the 
motherboard . 
[ 0106 ] FIG . 12 illustrates a computer system 1200 in 
which the various architecture and / or functionality can be 
implemented , in accordance with one embodiment . The 
computer system 1200 , in an embodiment , is configured to 
implement various processes and methods described 
throughout this disclosure . 
[ 0107 ] In an embodiment , the computer system 1200 
comprises at least one central processing unit 1202 that is 
connected to a communication bus 1210 implemented using 
any suitable protocol , such as PCI ( Peripheral Component 
Interconnect ) , PCI - Express , AGP ( Accelerated Graphics 
Port ) , HyperTransport , or any other bus or point - to - point 
communication protocol ( s ) . 
[ 0108 ] In an embodiment , the computer system 1200 
includes a main memory 1204 and control logic ( e.g. , 
implemented as hardware , software , or a combination 
thereof ) and data are stored in the main memory 1204 which 
may take the form of random access memory ( “ RAM ” ) . In 
an embodiment , a network interface subsystem 1222 pro 
vides an interface to other computing devices and networks 
for receiving data from and transmitting data to other 
systems from the computer system 1200 . 
[ 0109 ] The computer system 1200 , in an embodiment , 
includes input devices 1208 , the parallel processing system 
1212 , and display devices 1206 which can be implemented 
using a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED ( light emitting diode ) , plasma display , 
or other suitable display technologies . In an embodiment , 
user input is received from input devices 1208 such as 
keyboard , mouse , touchpad , microphone , and more . In an 
embodiment , each of the foregoing modules can be situated 
on a single semiconductor platform to form a processing 
system . 
[ 0110 ] In the present description , a single semiconductor 
platform may refer to a sole unitary semiconductor - based 
integrated circuit or chip . It should be noted that the term 
single semiconductor platform may also refer to multi - chip 
modules with increased connectivity which simulate on - chip 
operation , and make substantial improvements over utilizing 
a conventional central processing unit ( “ CPU ” ) and bus 
implementation . Of course , the various modules may also be 
situated separately or in various combinations of semicon 
ductor platforms per the desires of the user . 
[ 0111 ] In an embodiment , computer programs in the form 
of machine - readable executable code or computer control 
logic algorithms are stored in the main memory 1204 and / or 
secondary storage . Computer programs , if executed by one 
or more processors , enable the system 1200 to perform 
various functions in accordance with one embodiment . The 
memory 1204 , the storage , and / or any other storage are 
possible examples of computer - readable media . Secondary 
storage may refer to any suitable storage device or system 
such as a hard disk drive and / or a removable storage drive , 
representing a floppy disk drive , a magnetic tape drive , a 
compact disk drive , digital versatile disk ( “ DVD ” ) drive , 
recording device , universal serial bus ( “ USB " ) flash 
memory . 
[ 0112 ] In an embodiment , the architecture and / or func 
tionality of the various previous figures are implemented in 

the context of the central processor 1202 ; parallel processing 
system 1212 ; an integrated circuit capable of at least a 
portion of the capabilities of both the central processor 1202 ; 
the parallel processing system 1212 ; a chipset ( e.g. , a group 
of integrated circuits designed to work and sold as a unit for 
performing related functions , etc. ) ; and any suitable combi 
nation of integrated circuit . 
[ 0113 ] In an embodiment , the architecture and / or func 
tionality of the various previous figures is be implemented in 
the context of a general computer system , a circuit board 
system , a game console system dedicated for entertainment 
purposes , an application - specific system , and more . In an 
embodiment , the computer system 1200 may take the form 
of a desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e.g. , a wireless , 
hand - held device ) , personal digital assistant ( " PDA " ) , a 
digital camera , a vehicle , a head mounted display , a hand 
held electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 
[ 0114 ] In an embodiment , a parallel processing system 
1212 includes a plurality of PPUs 1214 and associated 
memories 1216. In an embodiment , the PPUs are connected 
to a host processor or other peripheral devices via an 
interconnect 1218 and a switch 1220 or multiplexer . In an 
embodiment , the parallel processing system 1212 distributes 
computational tasks across the PPUs 1214 which can be 
parallelizable for example , as part of the distribution of 
computational tasks across multiple GPU thread blocks . In 
an embodiment , memory is shared and accessible ( e.g. , for 
read and / or write access ) across some or all of the PPUS 
1214 , although such shared memory may incur performance 
penalties relative to the use of local memory and registers 
resident to a PPU . In an embodiment , the operation of the 
PPUs 1214 is synchronized through the use of a command 
such as syncthreads ( ) which requires all threads in a block 
( e.g. , executed across multiple PPUs 1214 ) to reach a certain 
point of execution of code before proceeding . 
[ 0115 ] The specification and drawings are , accordingly , to 
be regarded in an illustrative rather than a restrictive sense . 
It will , however , be evident that various modifications and 
changes may be made thereunto without departing from the 
broader spirit and scope of the invention as set forth in the 
claims . 
[ 0116 ] Other variations are within the spirit of the present 
disclosure . Thus , while the disclosed techniques are suscep 
tible to various modifications and alternative constructions , 
certain illustrated embodiments thereof are shown in the 
drawings and have been described above in detail . It should 
be understood , however , that there is no intention to limit the 
invention to the specific form or forms disclosed , but on the 
contrary , the intention is to cover all modifications , alterna 
tive constructions , and equivalents falling within the spirit 
and scope of the invention , as defined in the appended 
claims . 
[ 0117 ] The use of the terms “ a ” and “ an ” and “ the ” and 
similar referents in the context of describing the disclosed 
embodiments ( especially in the context of the following 
claims ) are to be construed to cover both the singular and the 
plural , unless otherwise indicated herein or clearly contra 
dicted by context . The terms " comprising , ” “ having , ” 
“ including , ” and “ containing ” are to be construed as open 
ended terms ( i.e. , meaning " including , but not limited to , " ) 
unless otherwise noted . The term " connected , ” when 
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unmodified and referring to physical connections , is to be 
construed as partly or wholly contained within , attached to , 
or joined together , even if there is something intervening . 
Recitation of ranges of values herein are merely intended to 
serve as a shorthand method of referring individually to each 
separate value falling within the range , unless otherwise 
indicated herein and each separate value is incorporated into 
the specification as if it were individually recited herein . The 
use of the term “ set ” ( e.g. , " a set of items ” ) or “ subset ” 
unless otherwise noted or contradicted by context , is to be 
construed as a nonempty collection comprising one or more 
members . Further , unless otherwise noted or contradicted by 
context , the term “ subset ” of a corresponding set does not 
necessarily denote a proper subset of the corresponding set , 
but the subset and the corresponding set may be equal . 
[ 0118 ] Conjunctive language , such as phrases of the form 
" at least one of A , B , and C , " or at least one of A , B and 
C , ” unless specifically stated otherwise or otherwise clearly 
contradicted by context , is otherwise understood with the 
context as used in general to present that an item , term , etc. , 
may be either A or B or C , or any nonempty subset of the set 
of A and B and C. For instance , in the illustrative example 
of a set having three members , the conjunctive phrases " at 
least one of A , B , and C ” and “ at least one of A , B and C ” 
refer to any of the following sets : { A } , { B } , { C } , { A , B } , 
{ A , C } , { B , C } , { A , B , C } . Thus , such conjunctive language 
is not generally intended to imply that certain embodiments 
require at least one of A , at least one of B and at least one 
of C each to be present . In addition , unless otherwise noted 
or contradicted by context , the term “ plurality ” indicates a 
state of being plural ( e.g. , “ a plurality of items ” indicates 
multiple items ) . The number of items in a plurality is at least 
two , but can be more when so indicated either explicitly or 
by context . Further , unless stated otherwise or otherwise 
clear from context , the phrase “ based on ” means “ based at 
least in part on ” and not “ based solely on . ” 
[ 0119 ] Operations of processes described herein can be 
performed in any suitable order unless otherwise indicated 
herein or otherwise clearly contradicted by context . In an 
embodiment , a process such as those processes described 
herein ( or variations and / or combinations thereof ) is per 
formed under the control of one or more computer systems 
configured with executable instructions and is implemented 
as code ( e.g. , executable instructions , one or more computer 
programs or one or more applications ) executing collec 
tively on one or more processors , by hardware or combina 
tions thereof . In an embodiment , the code is stored on a 
computer - readable storage medium , for example , in the 
form of a computer program comprising a plurality of 
instructions executable by one or more processors . In an 
embodiment , a computer - readable storage medium is a 
non - transitory computer - readable storage medium that 
excludes transitory signals ( e.g. , a propagating transient 
electric or electromagnetic transmission ) but includes non 
transitory data storage circuitry ( e.g. , buffers , cache , and 
queues ) within transceivers of transitory signals . In an 
embodiment , code ( e.g. , executable code or source code ) is 
stored on a set of one or more non - transitory computer 
readable storage media having stored thereon executable 
instructions ( or other memory to store executable instruc 
tions ) that , when executed ( i.e. , as a result of being executed ) 
by one or more processors of a computer system , cause the 
computer system to perform operations described herein . 
The set of non - transitory computer - readable storage media , 

in an embodiment , comprises multiple non - transitory com 
puter - readable storage media and one or more of individual 
non - transitory storage media of the multiple non - transitory 
computer - readable storage media lack all of the code while 
the multiple non - transitory computer- readable storage 
media collectively store all of the code . In an embodiment , 
the executable instructions are executed such that different 
instructions are executed by different processors for 
example , a non - transitory computer - readable storage 
medium store instructions and a main CPU execute some of 
the instructions while a graphics processor unit executes 
other instructions . In an embodiment , different components 
of a computer system have separate processors and different 
processors execute different subsets of the instructions . 
[ 0120 ] Accordingly , in an embodiment , computer systems 
are configured to implement one or more services that singly 
or collectively perform operations of processes described 
herein and such computer systems are configured with 
applicable hardware and / or software that enable the perfor 
mance of the operations . Further , a computer system that 
implement an embodiment of the present disclosure is a 
single device and , in another embodiment , is a distributed 
computer system comprising multiple devices that operate 
differently such that the distributed computer system per 
forms the operations described herein and such that a single 
device does not perform all operations . 
[ 0121 ] The use of any and all examples , or exemplary 
language ( e.g. , “ such as ” ) provided herein , is intended 
merely to better illuminate embodiments of the invention 
and does not pose a limitation on the scope of the invention 
unless otherwise claimed . No language in the specification 
should be construed as indicating any non - claimed element 
as essential to the practice of the invention . 
[ 0122 ] Embodiments of this disclosure are described 
herein , including the best mode known to the inventors for 
carrying out the invention . Variations of those embodiments 
may become apparent to those of ordinary skill in the art 
upon reading the foregoing description . The inventors 
expect skilled artisans to employ such variations as appro 
priate and the inventors intend for embodiments of the 
present disclosure to be practiced otherwise than as specifi 
cally described herein . Accordingly , the scope of the present 
disclosure includes all modifications and equivalents of the 
subject matter recited in the claims appended hereto as 
permitted by applicable law . Moreover , any combination of 
the above - described elements in all possible variations 
thereof is encompassed by the scope of the present disclo 
sure unless otherwise indicated herein or otherwise clearly 
contradicted by context . 
[ 0123 ] All references , including publications , patent appli 
cations , and patents , cited herein are hereby incorporated by 
reference to the same extent as if each reference were 
individually and specifically indicated to be incorporated by 
reference and were set forth in its entirety herein . 
[ 0124 ] In the description and claims , the terms " coupled ” 
and “ connected , ” along with their derivatives , may be used . 
It should be understood that these terms may be not intended 
as synonyms for each other . Rather , in particular examples , 
“ connected ” or “ coupled ” may be used to indicate that two 
or more elements are in direct or indirect physical or 
electrical contact with each other . “ Coupled ” may also mean 
that two or more elements are not in direct contact with each 
other , but yet still co - operate or interact with each other . 
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[ 0125 ] Unless specifically stated otherwise , it may be 
appreciated that throughout the specification terms such as 
" processing , " " computing , " " calculating , " " determining , " or 
the like , refer to the action and / or processes of a computer 
or computing system , or similar electronic computing 
device , that manipulate and / or transform data represented as 
physical , such as electronic , quantities within the computing 
system's registers and / or memories into other data similarly 
represented as physical quantities within the computing 
system's memories , registers or other such information 
storage , transmission or display devices . 
[ 0126 ] In a similar manner , the term “ processor ” may refer ? 

device or portion of a device that processes electronic 
data from registers and / or memory and transform that elec 
tronic data into other electronic data that may be stored in 
registers and / or memory . As non - limiting examples , “ pro 
cessor ” may be a Central Processing Unit ( CPU ) or a 
Graphics Processing Unit ( GPU ) . A " computing platform ” 
may comprise one or more processors . As used herein , 
" software ” processes may include , for example , software 
and / or hardware entities that perform work over time , such 
as tasks , threads , and intelligent agents . Also , each process 
may refer to multiple processes , for carrying out instructions 
in sequence or in parallel , continuously or intermittently . 
The terms “ system ” and “ method ” are used herein inter 
changeably insofar as the system may embody one or more 
methods and the methods may be considered a system . 
[ 0127 ] In the present document , references may be made 
to obtaining , acquiring , receiving , or inputting analog or 
digital data into a subsystem , computer system , or computer 
implemented machine . The process of obtaining , acquiring , 
receiving , or inputting analog and digital data can be accom 
plished in a variety of ways such as by receiving the data as 
a parameter of a function call or a call to an application 
programming interface . In some implementations , the pro 
cess of obtaining , acquiring , receiving , or inputting analog 
or digital data can be accomplished by transferring the data 
via a serial or parallel interface . In another implementation , 
the process of obtaining , acquiring , receiving , or inputting 
analog or digital data can be accomplished by transferring 
the data via a computer network from the providing entity to 
the acquiring entity . References may also be made to pro 
viding , outputting , transmitting , sending , or presenting ana 
log or digital data . In various examples , the process of 
providing , outputting , transmitting , sending , or presenting 
analog or digital data can be accomplished by transferring 
the data as an input or output parameter of a function call , 
a parameter of an application programming interface or 
interprocess communication mechanism . 
[ 0128 ] Although the discussion above sets forth example 
implementations of the described techniques , other archi 
tectures may be used to implement the described function 
ality , and are intended to be within the scope of this 
disclosure . Furthermore , although specific distributions of 
responsibilities are defined above for purposes of discussion , 
the various functions and responsibilities might be distrib 
uted and divided in different ways , depending on circum 
stances . 

[ 0129 ] Furthermore , although the subject matter has been 
described in language specific to structural features and / or 
methodological acts , it is to be understood that the subject 
matter defined in the appended claims is not necessarily 

limited to the specific features or acts described . Rather , the 
specific features and acts are disclosed as exemplary forms 
of implementing the claims . 
What is claimed is : 
1. A processor , comprising : one or more circuits to cause 

one or more output boundaries of one or more objects within 
one or more images generated by one or more neural 
networks to be compared to one or more input boundaries of 
the one or more objects to the one or more neural networks . 

2. The processor of claim 1 , wherein : 
the one or more images is a medical image ; and 
the one or more output boundaries represent a segmen 

tation of the medical image . 
3. The processor of claim 1 , wherein the one or more 

neural networks includes a variational autoencoder trained 
with ground truth boundary information . 

4. The processor of claim 1 , wherein a comparison of the 
one or more output boundaries to the one or more input 
boundaries is a value used to train the one or more neural 
networks . 

5. The processor of claim 1 , wherein a comparison of the 
one or more output boundaries to the one or more input 
boundaries is used to produce an indication that the one or 
more boundaries conforms to ground truth data . 

6. The processor of claim 1 , wherein the one or more 
output boundaries include a first label mask representing 
boundaries of objects in an image that are boundaries in a 
segmentation determined from a first segmentation process 
and the one or more input boundaries include a second label 
mask representing an output of a shape evaluation process 
into which the first label mask was an input , and wherein 
indication logic is configured to compare the first label mask 
and the second label mask to determine a quality of the 
segmentation . 

7. The processor of claim 6 , wherein the one or more 
neural networks include a first trained neural network that 
performs the first segmentation process to output the first 
label mask in response to obtaining a representation of the 
image . 

8. The processor of claim 7 , wherein the one or more 
neural networks include a second trained neural network that 
performs the shape evaluation process using the first label 
mask as its input and outputs the second label mask . 

9. The processor of claim 8 , wherein the second trained 
neural network is an autoencoder with an internal layer that 
maps its input to a latent representation in a feature space 
where features in the feature space are shape features . 

10. The processor of claim 9 , wherein the autoencoder is 
a variational autoencoder . 

11. The processor of claim 9 , further comprising logic for 
training the second trained neural network using a training 
subcollection of segment datasets , wherein a segment data 
set of the training subcollection comprises a training image 
and a corresponding training label mask . 

12. The processor of claim 11 , wherein the logic for 
training the second trained neural network further uses a 
validation subcollection of segment datasets . 

13. The processor of claim 1 , wherein the processor 
comprises a graphical processing unit ( “ GPU ” ) . 

14. A method , using a processor comprising one or more 
circuits , comprising causing one or more output boundaries 
of one or more objects within one or more images generated 
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by one or more neural networks to be compared to one or 
more input boundaries of the one or more objects to the one 
or more neural networks . 

15. The method of claim 14 , further comprising : 
generating a segmentation of the one or more images , 

wherein the segmentation represents a processor - deter 
mined set of boundaries of objects depicted in the one 
or more images ; 

inputting the segmentation to a neural network previously 
trained on a collection of training segmentations ; 

comparing the segmentation to an output of the neural 
network ; and 

determining a score for the segmentation , wherein the 
score is a function of differences between the segmen 
tation and the output of the neural network . 

16. The method of claim 15 , wherein the neural network 
is a variational autoencoder that takes the segmentation as its 
input , wherein the variational autoencoder maps features of 
its input to a reduced feature space from which the segmen 
tation can be approximately reproduced from features in the 
reduced feature space . 

17. The method of claim 16 , further comprising : 
training the variational autoencoder with the collection of 

training segmentations , wherein the collection of train 
ing segmentations are represented by label masks that 
are ground truth label masks of images in that segmen 
tations of those label masks are previously determined 
to be good segmentations of the images . 

18. The method of claim 16 , further comprising : 
training a segmenter to generate the segmentation of the 

one or more images by applying a collection of seg 
ment datasets to the segmenter , wherein each segment 
dataset of the collection of segment datasets comprises 
a training image and a corresponding training label 
mask that is a ground truth label mask of the training 
image in that the segmentation in the corresponding 
training label mask had previously been determined to 
be a good segmentation of the training image . 

19. The method of claim 15 , further comprising perform 
ing , using a first trained neural network , a first segmentation 
process to output a first label mask in response to obtaining 
a representation of the one or more images . 

20. The method of claim 15 , further comprising perform 
ing , using a second trained neural network , a shape evalu 
ation process using a first label mask as an input and outputs 
a second label mask . 

21. The method of claim 20 , further comprising mapping 
an input of the second trained neural network to a latent 
representation in a feature space where features in the 
feature space are shape features . 

22. The method of claim 21 , wherein the second trained 
neural network is a variational autoencoder . 

23. A computer system comprising one or more proces 
sors and memory storing executable instructions that , as a 
result of being performed by the one or more processors , 
cause the computer system to cause one or more output 
boundaries of one or more objects within one or more 
images generated by one or more neural networks to be 

compared to one or more input boundaries of the one or 
more objects to the one or more neural networks . 

24. The computer system of claim 23 , wherein the instruc 
tions further cause the computer system to : 

generate a segmentation of the one or more images , 
wherein the segmentation represents a processor - deter 
mined set of boundaries of objects depicted in the one 
or more images ; 

input the segmentation as a VAE input to the VAE ; 
compare the VAE input to a VAE output of the VAE ; and 
determine a score for the segmentation , wherein the score 

is a function of differences between the VAE input and 
the VAE output . 

25. The computer system of claim 24 , further comprising : 
outputting the score ; 
determining if the score is within a predetermined range ; 

and 
outputing an alarm signal if the score is within the 

predetermined range . 
26. The computer system of claim 23 , wherein : 
the one or more images is a medical image ; and 
the one or more output boundaries represent a segmen 

tation of the medical image . 
27. The computer system of claim 23 , wherein the one or 

more neural networks includes a variational autoencoder 
trained with ground truth boundary information . 

28. The computer system of claim 23 , wherein a com 
parison of the one or more output boundaries to the one or 
more input boundaries is a value used to train the one or 
more neural networks . 

29. The computer system of claim 23 , wherein a com 
parison of the one or more output boundaries to the one or 
more input boundaries is used to produce an indication that 
the one or more boundaries conforms to ground truth data . 

30. A machine - readable medium having stored thereon a 
set of instructions , which if performed by one or more 
processors , cause one or more output boundaries of one or 
more objects within one or more images generated by one or 
more neural networks to be compared to one or more input 
boundaries of the one or more objects to the one or more 
neural networks . 

31. The machine - readable medium of claim 30 , wherein : 
the one or more images is a medical image ; and 
the one or more output boundaries represent a segmen 

tation of the medical image . 
32. The machine - readable medium of claim 30 , wherein 

the one or more neural networks includes a variational 
autoencoder trained with ground truth boundary informa 
tion . 

33. The machine - readable medium of claim 30 , wherein 
a comparison of the one or more output boundaries to the 
one or more input boundaries is a value used to train the one 
or more neural networks . 

34. The machine - readable medium of claim 30 , wherein 
a comparison of the one or more output boundaries to the 
one or more input boundaries is used to produce an indica 
tion that the one or more boundaries conforms to ground 
truth data . 
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