
US 20220044412A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0044412 A1

Yang et al . (43) Pub . Date : Feb. 10 , 2022

(54) IDENTIFYING IMAGE SEGMENTATION
QUALITY USING NEURAL NETWORKS

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US)

(52) U.S. CI .
CPC G06T 7/12 (2017.01) ; G06T 7/13

(2017.01) ; G06K 9/6256 (2013.01) ; GOOT
2207/20081 (2013.01) ; G06T 7760 (2013.01) ;

G06T 2207/10004 (2013.01) ; GO6N 3/08
(2013.01)

(72) Inventors : Dong Yang , Pocatello , ID (US) ;
Daguang Xu , Potomac , MD (US) ;
Fengze Liu , Baltimore , MD (US) ;
Yingda Xia , Baltimore , MD (US)

(57) ABSTRACT

(21) Appl . No .: 17 / 507,070

(22) Filed : Oct. 21 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 380,759 , filed on

Apr. 10 , 2019 , now abandoned .

Comparison logic compares boundaries of features of or
more images based , at least in part , on identifying bound
aries and indication logic coupled to the comparison logic to
indicate whether the boundaries differ by at least a first
threshold . The boundaries might comprise a first label mask
representing boundaries of objects in an image that are
boundaries in a segmentation determined from a segmenta
tion process and a second label mask from a shape evalu
ation process applied to the first label mask . The indication
logic might be configured to compare the first label mask
and the second label mask to determine a quality of the
segmentation . A neural network might perform the segmen
tation . Shape evaluation using the first label mask as an input
and the second label mask as an output might be performed
by a variational autoencoder . A graphical processing unit
(GPU) might be used for the segmentation and / or the
autoencoder .

Publication Classification
(51) Int . Ci .

G06T 7/12 (2006.01)
G06T 7/13 (2006.01)
G06K 9/62 (2006.01)
GOON 3/08 (2006.01)
G06T 7/60 (2006.01)

300

Computing
Entity 302

Images 304
Validation
Collection

Label Masks

Images

310 Trained
Segmenter

306

312
Segmentations of

Images in
Validation
Collection

Comparator

Tuning

Evaluation of 314
Quality

Patent Application Publication Feb. 10 , 2022 Sheet 1 of 12 US 2022/0044412 A1

104

Image
102

Background

Object 1 :
Pancreas 106 ??? ?? ??

??? ??? ? ??

Label Mask

Segment Dataset

FIG . 1

Patent Application Publication Feb. 10 , 2022 Sheet 2 of 12 US 2022/0044412 A1

200

Computing
Entity 202 W

maini
mo

AU
I

win members 1
comment

206 Training
Collection

210
Segmenter

Tuning

206
Label Masks

FIG . 2

Patent Application Publication Feb. 10 , 2022 Sheet 3 of 12 US 2022/0044412 A1

300

Computing
Entity 302

mer mini
more

AU

man
I monster comment Images 304

Validation
Collection

Label Masks

Images

310 Trained
Segmenter

306

312
Segmentations of

Images in
Validation
Collection

Comparator

Tuning

Evaluation of 314
Quality

FIG . 3

Patent Application Publication Feb. 10 , 2022 Sheet 4 of 12 US 2022/0044412 A1

400

Computing
Entity 402

man

1

I 1 mai }
1
} 1

men

-Training Feedback

Output Label
Masks 406

Autoencoder 408

Comparator 412

Ground Truth
Label Masks 404

FIG . 4

Patent Application Publication Feb. 10 , 2022 Sheet 5 of 12 US 2022/0044412 A1

500 502
Start Training

504 Apply Set of Ground Truth Label Masks as an
Input Label Mask Set to an Autoencoder for

Training Get Output Label Masks

506 Compare Input Label Masks
with Output Label Masks

508 Tune Autoencoder to Reduce
Difference Between Input Label
Masks and Output Label Masks

510

Apply Training Collection to
Segmenter

520 Provide
Feedback 512 Compare Output of Segmenter to

Label Masks of Segment Dataset

N
514

Is
Segmenter
Tuned ?

Y

516 Validate Segmenter with Validation
Collection

V
518

If Needed , Perform Further Training

522
End Training

FIG . 5

Patent Application Publication Feb. 10 , 2022 Sheet 6 of 12 US 2022/0044412 A1

600

Computing
Entity 602

he
1 Input Image

610
Autoencoder

606

620 622 624

Enc LR Dec Autoencoder
Output
630 Trained Segmenter

604

Label Mask
612

Comparator
608

Quality Indicator
(Alarm , Quality
Value , Etc.)

814

Output of Segmentation
Process

FIG . 6

Patent Application Publication Feb. 10 , 2022 Sheet 7 of 12 US 2022/0044412 A1

Autoencoder
702

704 712

706 710

708

Input
Layer X

Hidden
Layer

Latent
Repres
entation

Hidden
Layer

Output
Layer Y

Encoder

Decoder

FIG . 7

Patent Application Publication Feb. 10 , 2022 Sheet 8 of 12 US 2022/0044412 A1

Parallel Processing Unit (PPU) 800
Interconnect 7

802 I / O Unit
806

Front End Unit
810

Scheduler Unit
812

Hub
816 808 GPU Interconnect Work Distribution Unit

814

GPC (X)
818

10

820

XBar

1

Memory
(Y)
804

Memory Partition Unit (U)
822

* A VO MORO

FIG . 8

Patent Application Publication Feb. 10 , 2022 Sheet 9 of 12 US 2022/0044412 A1

To / From Xbar

General Processing
Cluster (GPC) 900

Pipeline Manager
902

PROP
904

MPC
910

111 Primitive
Engine
912

SM
914

Raster Engine
908

DPC (V)
906

NORO NO NO ORO one on N on

WDX
916

MMU 918

To / From Xbar To / From Xbar

FIG . 9

Patent Application Publication Feb. 10 , 2022 Sheet 10 of 12 US 2022/0044412 A1

To / From
Xbar

Memory Partition Unit
1000

Raster Operations Unit
1002 RE

L2 Cache
1004

To / From
Xbar

Memory Interface
1006

To / From
Memory

FIG . 10

Patent Application Publication Feb. 10 , 2022 Sheet 11 of 12 US 2022/0044412 A1

Streaming Multiprocessor 1100

Instruction Cache
1102

Scheduler Unit (K) 1104
1 Dispatch

1106 1

Register File
1108

Core
(L - 1)
1110

SFU
(M - 1)
1112

LSU
(N - 1)
1114

Interconnect Network
1116

Shared Memory / L1 Cache
1118

FIG . 11

Patent Application Publication Feb. 10 , 2022 Sheet 12 of 12 US 2022/0044412 A1

Computer System
1200

Main
Memory
1204

Network
Interface
1222

CPU
1202

Display
Devices
1206

Input
Devices
1208 Communication

Bus 1210
Interconnect

1218
Switch
1220

1216 PPU
1214

PPU
1214 1216

1216
PPU
1214

PPU
1214 1216

Parallel Processing
System
1212

FIG . 12

US 2022/0044412 Al Feb. 10 , 2022
1

IDENTIFYING IMAGE SEGMENTATION
QUALITY USING NEURAL NETWORKS

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser . No. 16 / 380,759 , filed Apr. 10 , 2019 , entitled
“ IDENTIFYING IMAGE SEGMENTATION QUALITY
USING NEURAL NETWORKS , ” the disclosure of which is
incorporated herein by reference in its entirety .

[0012] FIG . 8 illustrates an example of parallel processing
unit (“ PPU ”) , in accordance with an embodiment ;
[0013] FIG . 9 illustrates an example of a general process
ing cluster (“ GPC ”) , in accordance with one embodiment ;
[0014] FIG . 10 illustrates an example of a memory parti
tion unit , in accordance with one embodiment ;
[0015] FIG . 11 illustrates an example of a streaming
multi - processor , in accordance with one embodiment ; and
[0016] FIG . 12 illustrates a computer system in which the
various examples can be implemented , in accordance with
one embodiment .

BACKGROUND
DETAILED DESCRIPTION

[0002] In image processing , segmentation refers to iden
tifying boundaries of elements of an image , such as dividing
regions in an image according to boundaries of objects
depicted in the image . A segmentation process might use a
trained neural network for automated boundary detection .
Segmentation might be useful in processing medical images
as well as in other fields . An automated segmentation
process may fail , when encountering a rare image that does
not segment easily . Sometimes , additional training of the
neural network using additional training data might help
with some automated segmentation processes , but it still
may fail on the rare cases that might not have counterparts
in the training data . As a result , it can be hard to completely
prevent a segmentation process failure .
[0003] One solution is to also have an automated process
for quality assessment . An applied Bayesian neural network
might be used to capture an uncertainty of the segmentation
result and base the quality assessment based on the uncer
tainty . However , this also suffers from rare events since a
segmentation process might make a mistake and yet be
confident about that mistake on some rare events .

a

a

BRIEF DESCRIPTION OF THE DRAWINGS
a

[0017] Segmentation is a process of determining from an
image where boundaries of elements depicted in the image
are , and possible also labeling those objects . Humans can
often easily identify where one object in an image begins
and other objects end , however this can be a hard process for
a computer system to perform . Also , in some types of
images , even untrained humans can have a hard time dis
cerning boundaries of objects or the existence of objects in
an image . As one example , a computed tomography (" CT ")
scan might image parts of a human body and a professional
radiologist might spend significant time observing , identi
fying , and labeling boundaries of objects in the CT scan data
and so it would be beneficial to have an automated process
that can perform those tasks , albeit with some flag , indica
tion , or alarm in the rare cases where the automated seg
mentation process fails .
[0018] FIG . 1 illustrates an example of a segmentation , in
particular showing a segment dataset 102 comprising an
image 104 and a label mask 106 , in an embodiment . Each of
these items is represented as stored computer - readable data
in a memory and / or as computer - readable data in transmis
sion . In an embodiment , the image 104 is taken as a
two - dimensional slice of a three - dimensional CT scan of a
human body directed at an abdomen of a patient and the
label mask 106 is obtained via a user interface from a
professional radiologist manually inputting the determined
boundaries of the pancreas and adding a label to identify the
boundaries as being that of the pancreas . In more complex
images , in an embodiment , there are more than one bounded
element of the CT scan and corresponding labels , and
include multiple objects with incomplete boundaries and
other features .
[0019] In an embodiment , a “ segment dataset ” refers to a
data structure that comprises an image and its associated
label mask . In an embodiment , one goal of a segmentation
system is to be able to generate at least the boundaries of
objects in an image in computer - generated fashion so that a
human does not have to manually input the boundaries of
objects in images . A collection of segment datasets , in an
embodiment , comprises one or more segment datasets , each
of which would comprise an image and an associated label
mask . In a specific embodiment , a label mask comprises
boundaries of objects , object numbers uniquely identifying
closed boundaries in the label mask and a reference to the
background of the image , and names for objects .
[0020] In an embodiment , a collection of segment datasets
(X , Y) comprises a collection , X , of images , in computer
readable data form , along with a collection , Y , of corre
sponding label masks , where each label mask indicates
partial or full segmentation of its corresponding image . In
some embodiments , the collection includes labels for seg

[0004] Various techniques will be described with refer
ence to the drawings , in which :
[0005] FIG . 1 illustrates an example of a segmentation , in
accordance with an embodiment ;
[0006] FIG . 2 illustrates a diagram of a system for training
a neural network , in accordance with an embodiment , to
evaluate segmentations of input images ;
[0007] FIG . 3 illustrates a diagram of a system for vali
dating a neural network to be validated , in accordance with
an embodiment ;
[0008] FIG . 4 illustrates a diagram of a variational auto
encoder (VAE) to be trained on ground truth label masks , in
accordance with an embodiment ;
[0009] FIG . 5 illustrates a process for training a segmenter
on segmenting images to arrive at label mask for images and
for training a VAE on ground truth label masks for assessing
quality of the label masks output by the segmenter , in an
embodiment ;
[0010] FIG . 6 illustrates a diagram of a system for pro
cessing images , generating label masks for the images ,
applying the label masks to an autoencoder , comparing the
label masks with the outputs of the autoencoder , and taking
actions depending on the results of the comparisons , in
accordance with an embodiment ;
[0011] FIG . 7 illustrates an autoencoder that encodes an
input label mask to a latent representation and decodes the
latent representation to an output label mask , in accordance
with an embodiment ;

a

US 2022/0044412 A1 Feb. 10 , 2022
2

T

V

ments of the label mask , whereas in other embodiments , the
label mask includes segmentation boundaries without seg
ment labels . Where the label mask for an image is created by
a person examining the image , or by a known good process ,
it is often referred to as a “ ground truth ” or “ GT " label mask .
In an embodiment , collection (X , Y) comprises a training
subcollection (X YT) and a validation subcollection (Xy ,
Yy) . The training subcollection has label masks that are
ground truth label masks and those can be used to train a
neural network . In an embodiment , the neural network is
tested using the validation subcollection , which also has
label masks that are ground truth label masks ; the validation
subcollection can be used to validate Ithe training of the
neural network .
[0021] In an embodiment , as an example , if FO) refers to
a segmentation process , the quality of the segmentation
process is tested by comparing F (Xy) and Y , for various
segment datasets of the validation subcollection . In an
embodiment , an input to a trained neural network is an
image X and an output might be F (X) . Where the corre
sponding ground truth label mask , Y , is not known , F (X) is
usable as the label mask for image X.
[0022] Despite being trained , in an embodiment , the neu
ral network might nonetheless output a label mask F (X) that
is not a good segmentation of the image X , perhaps because
the contents of image X are rare or unexpected . In an
embodiment , by using a different process for determining an
estimate for Y , that determination can be compared with
F (X) to determine if the segmentation process F () worked
on image X If boundaries of objects in image X are correctly
identified , then the output of the separate process will be
close to F (X) , which is the output of the neural network that
is part of the trained segmenter . An alarm (e.g. , a notification
or a change in an interface) , in an embodiment , is provided
to a user of a system when there is a significant difference
between boundaries identified that is more than an accept
able threshold from the output of the trained segmenter .
[0023] In an embodiment , an image is processed with a
first neural network to determine a first segmentation of the
image (e.g. , a label mask indicating at least the boundaries
of some objects in the image) . The first segmentation , in an
embodiment , is the output of other than a neural network ,
but in many examples described her4lein , that first segmen
tation is an output of a neural network . The label mask is
passed through a second neural network that effectively
maps the label mask into a feature space . The output of that
second neural network , in an embodiment , is then be used to
predict or estimate the quality of the segmentation in that
label mask .
[0024] In an embodiment , the second neural network
comprises a variational autoencoder (“ VAE ”) that takes as it
input a label mask and outputs and output label mask . An
autoencoder is a neural network that comprises an encoder
that encodes its input data into a latent representation that is
a compressed form of the input data and also comprises a
decoder that decodes the latent representation and to the
original input data as close as possible , where training the
autoencoder involves reducing differences between the
encoder input and the decoder output . In a VAE , in the
learning process , the VAE makes strong assumptions con
cerning the distribution of variables in the latent represen
tation . In other embodiments , more generally , a type of fully
convolutional neural network is used where the VAE is
described herein as being used .

[0025] In an embodiment , the first segmentation produced
by the first neural network is compared to the second
segmentation produced by the VAE . In an embodiment , this
is done using a loss function . In another embodiment , this is
done using another method . In an embodiment , the second
neural network is trained using segmentations of images that
are known to be good . If the comparison shows that the first
and second segmentations are close , the first neural network
probably worked well . If they are significantly different ,
there was probably a problem . In such cases , where the
segmentation is part of a system with a user interface , a flag ,
alert , alarm , or the like could be output to alert a user that the
segmentation is suspect .
[0026] As for the strong assumptions concerning the dis
tribution of variables in the latent representation , in an
embodiment one approach is to project segmentation results
into a low - dimensional feature space , and then have the VAE
learn classifiers and / or regressors in the feature space to
predict the qualities of segmentation results . In an embodi
ment , the feature space uses shape features with strong prior
information shared among different data , to predict the
qualities of segmentation results given different segmenta
tion algorithms on different datasets .
[0027] In an embodiment , the shape feature of a segmen
tation result is captured using the value of loss function and
the segmentation result tested using a VAE that is trained
using only ground truth masks (i.e. , label masks that are
ground truth label masks) . As a result , bad segmentations
could be expected to result in bad shapes that become rare
events for VAE and will result in large loss values .
[0028] In the preceding and following description , various
techniques are described . For purposes of explanation , spe
cific configurations and details are set forth in order to
provide a thorough understanding of possible ways of imple
menting the techniques . However , it will also be apparent
that the techniques described below may be practiced in
different configurations without the specific details . Further
more , well - known features may be omitted or simplified to
avoid obscuring the techniques being described .
[0029] FIG . 2 illustrates a diagram of a system 200 in
which one or more arithmetic logic circuits at least partially
cause a neural network to be trained , in accordance with an
embodiment to evaluate segmentations of input images . In
an embodiment , a computing entity 202 , such as a computer
system or computer server , processes a training collection of
images and label masks and generates segmentations , such
as in the form of label masks . In an embodiment , the
computing entity 202 is , or includes , a computer system or
processing unit such as one or more of those described in
connection with FIGS . 8-12 . In an embodiment , the com
puting entity 202 is a distributed system comprising multiple
computer servers that collectively operate as a computing
entity that generates the segmentations . In an embodiment ,
the computing entity 202 is a server computer system , a
server cluster , a virtual computer system , a virtual server , a
virtual runtime environment , a container environment , a
serverless execution environment , or service hosting system .
In an embodiment , the computing entity 202 is , or includes ,
an application - specific integrated circuit (ASIC) microchip
that is designed for a specific use or application . In an
embodiment , the computing entity can include specialized
circuity for sparse activation ; low - precision computations ;
low - latency operations (e.g. , in a real - time operating system
(RTOS) computing environment) ; low - power hardware ; and

a

a

US 2022/0044412 A1 Feb. 10 , 2022
3

a

combinations thereof . In an embodiment , the computing
entity 202 has associated memory in a memory hierarchy
such that there are regions of faster memory (e.g. , registers
and Ll cache) as well as regions of slower memory (e.g. ,
main memory) .
[0030] In an embodiment , the computing entity 202 is
used in training a segmenter of a segmentation system and
includes storage for a training collection 204 and storage for
a set of training output label masks 206. In an embodiment ,
the computing entity 202 implements a segmenter 210 , such
as by executing program code having program instructions
that when execute , perform the role of a neural network that
can be trained on the training collection 204. In an embodi
ment of an operation of computing entity 202 , the training
collection 204 comprises a plurality of images and a corre
sponding ground truth label mask for each image , wherein
the ground truth label mask for an image in training collec
tion 204 represents a known good segmentation of that
image and possibly also labels for some or all segments of
the segmentation . In an embodiment , the segmenter 210 is
trained such that its output for a training image is a label
mask that approximates the ground truth label mask for that
image . Where the output training label mask does not match
the ground truth label mask well , training feedback can be
provided to the segmenter 210 to improve the output .
[0031] Various other elements in the figures can be imple
mented , in an embodiment , using one or more arithmetic
logic circuits , a computer system or computer server , or
processing unit such as one or more of those described in
connection with FIGS . 8-12 . For example , in an embodi
ment , elements of FIGS . 3-7 are implemented by a comput
ing entity having memory and that can execute program
instructions , such as a distributed system comprising mul
tiple computer servers that collectively operate as a com
puting entity that generates segmentations or performs train
ing , including , in embodiments , a server computer system , a
server cluster , a virtual computer system , a virtual server , a
virtual runtime environment , a container environment , a
serverless execution environment , a service hosting system ,
an application - specific integrated circuit (ASIC) microchip
that is designed for a specific use or application , and / or
specialized circuity for sparse activation ; low - precision
computations ; low - latency operations (e.g. , in a real - time
operating system (RTOS) computing environment) ; low
power hardware ; and combinations thereof . In an embodi
ment , data can be stored in associated memory in a memory
hierarchy such that there are regions of faster memory (e.g. ,
registers and L1 cache) as well as regions of slower memory
(e.g. , main memory) and elements can be implemented by
program code having program instructions that when
executed , perform the role of the element as described .
[0032] FIG . 3 illustrates a diagram of a system 300 in
which one or more arithmetic logic circuits at least partially
cause a trained neural network to be validated , in accordance
with an embodiment . In an embodiment shown , a computing
entity 302 implements a validation collection 304 of seg
ment datasets , where images of the validation collection 304
are applied to an input of a trained segmenter 310 , which
outputs segmentations of images of the validation collection
304. In an embodiment , a comparator 312 compares the
output segmentations of images to the label masks from the
validation collection 304 , wherein those label masks are
ground truth label masks , and outputs evaluations 314 of

quality of the output segmentations . These evaluations 314
can be used for fine tuning the trained segmenter .
[0033] FIG . 4 illustrates a diagram of a system 400 in an
embodiment in which one or more arithmetic logic circuits
at least partially cause a variational autoencoder (VAE) to be
trained on ground truth label masks 404. In an embodiment
shown , a computing entity 402 includes a VAE 408 that
takes the ground truth label masks 404 as its input and
outputs output label masks 406. In an embodiment , a com
parator 412 compares the ground truth label masks 404 and
the output label masks 406 to determine the training feed
back needed for the VAE 408. In an embodiment , the
training results in adjustment of weights and connections
between layers of the VAE 408 to optimize or minimize a
loss function .
[0034] FIG . 5 shows an illustrative example of a process
502 in an embodiment for training a segmenter on segment
ing images to arrive at label mask for images and for training
a VAE on ground truth label masks for assessing quality of
the label masks output by the segmenter . In an embodiment ,
the process begins with applying a set of training label
masks (step 504) that comprise ground truth label masks or
other label masks known to be good examples of segmen
tation . In an embodiment , the set of training label masks is
applied to an autoencoder , such as VAE 408 referenced
herein as the input to the autoencoder . As explained herein ,
in an embodiment , an autoencoder will encode its input into
a latent representation and then decode the latent represen
tation into an output of the autoencoder . Next , at step 506 ,
in an embodiment , the segmenter system in training com
pares the output label masks output by the autoencoder with
the input label masks input to the autoencoder . At step 508 ,
the autoencoder is tuned so as to reduce differences , as might
be measured by a loss function , between the input label
masks and the output label masks . Once this is done , in an
embodiment , the autoencoder takes in an input label mask
and outputs an output label mask .
[0035] Then , at step 510 , a training collection of segment
datasets (images and their corresponding label masks) in an
embodiment is applied to a segmenter . Since the label masks
are available for those segment datasets , a label mask for an
image can be compared (Step 512) with an output of the
segmenter . In an embodiment , the segmenter system in
training can then (Step 514) check whether there is sufficient
matching of a label mask in the training collection and the
output of the segmenter . A well - trained segmenter can be
expected to output a label mask for an image in a segment
dataset that is similar to the label mask of the segment
dataset , if the image is not an unusual image , so this
comparison is a valid test of whether the segmenter is
trained .
[0036] In an embodiment , if the segmenter is not suffi
ciently tuned , feedback can be provided (step 520) and the
process returns to step 510 for additional training . In an
embodiment , if the segmenter is sufficiently tuned , the
process can move to step 516 , wherein the validation col
lection is applied to the segmenter and if needed (step 518)
further training can be provided , and the training process
completes (step 522) .
[0037] FIG . 6 illustrates a diagram of a system 600 in an
embodiment in which one or more arithmetic logic circuits
at least partially process an input image , generate a label
mask for the input image , apply the label mask to an
autoencoder , compare the label mask with the output of the

a

US 2022/0044412 A1 Feb. 10 , 2022
4

a 9

a

autoencoder , and take an action depending on the results of
the comparison . In an embodiment shown , a computing
entity 602 , such as a computer system or computer server ,
includes a trained segmenter 604 , an autoencoder 606 , a
comparator 608 , storage for an input image 610 , storage for
a label mask 612 , and storage for a quality indicator 614. In
an embodiment , the autoencoder 606 comprises an encoder
620 , storage for a latent representation 622 , and a decoder
624. In an embodiment , the autoencoder 606 is a variational
autoencoder trained on shape features . In an embodiment ,
the computing entity 602 is usable with a plurality of
images , some of which may be three - dimensional images
and some of which may be two - dimensional images . In an
embodiment , the computing entity 602 is , or includes , a
computer system or processing unit such as one or more of
those described in connection with FIGS . 8-12 .
[0038] In an embodiment , system 600 operates according
to the processes described in FIG . 5 for training and then in
operation , the trained segmenter 604 takes in the input image
610 without requiring a ground truth as to the labels or
segmentation of objects in the input image 610. In an
embodiment , the train segmenter 604 outputs the label mask
612 as the output of system 600. In an embodiment , the label
mask 612 informs the user of objects present in the input
image 610 and boundaries of those objects . In an embodi
ment , the label mask 612 is applied to an input layer of the
autoencoder , which in turn outputs an autoencoder output
630 , which is in the form of a label mask . In an embodiment ,
the comparator 608 compares the autoencoder output 630
with the label mask 612 and outputs the quality indicator
614. In an embodiment , the quality indicator 614 can be an
alarm , a flag , a color , and / or a value that is shown to the user
as part of a user interface to indicate whether the label mask
612 is likely a good segmentation of the input image 610 .
For a poor segmentation , it is more likely that the input and
output of the autoencoder 606 will not closely match , but for
a good segmentation , it is more likely that they will . In an
embodiment , where the autoencoder 606 is trained on shape
features , the latent representation in the autoencoder 606 is likely to be representative of shape features .
[0039] In an embodiment , the comparator 608 comprises
logic , a general purpose ALUs , fixed function hardware ,
FPGA , or the like . While shown as a separate component in
FIG . 6 , in an embodiment , comparator 608 might be imple
mented in combination with the trained segmenter 604 and
the autoencoder 606. For example , a dedicated hardware
component might process input images to segment them and
form label masks , process the label masks through the
autoencoder , and compare the label masks with the autoen
coder output .
[0040] FIG . 7 illustrates a diagram of an autoencoder 702
in an embodiment in which one or more arithmetic logic
circuits at least partially encode an input label mask to a
latent representation and decode the latent representation to
an output label mask . In an embodiment shown , the auto
encoder 702 is a neural network comprising several layers ,
including an input layer 704 , coupled to a first hidden layer
706 , coupled to a latent layer 708 , coupled to a second
hidden layer 710 , that is in turn coupled to an output layer
712. In an embodiment , the autoencoder 702 is , or includes ,
a computer system or processing unit such as one or more of
those described in connection with FIGS . 8-12 .

Specific Example Implementation
[0041] In a specific example described in this section , a
system is described in various embodiments wherein a
variational autoencoder is trained with a set of known good
label masks (a label mask) and the variational autoencoder
is trained to encode each input label mask into a latent
representation and then decode an output label mask from
that latent representation , where the training seeks to reduce
losses from the encoding and decoding . The latent repre
sentation represents shape features .
[0042] The use of shape feature in a process of segmenting
objects often provides stable shapes among different cases ,
especially in volumetric images (i.e. , data corresponding to
voxel values for a three - dimensional image) . The shape
feature can provide strong prior information for judging the
quality of a segmentation result , i.e. , bad segmentation
results in a label mask tend to have bad shapes and vice
versa . As used herein , a “ prior ” such as a “ shape prior ” refers
to data that represents some assumptions made , such as a
machine learned prior notion of plausible shapes or other
wise determined prior notion of shapes .
[0043] Modelling the shape prior from the segmentation
mask space can be quicker and simpler computationally than
doing so in the image space and the shape prior can be
shared among different datasets while the features like
image intensity are affected by many factors . That means the
shape feature can deal with not only rare events , but also
different data distributions in the image space , which can
provide good generalization and potential in transfer learn
ing . In an embodiment , a VAE is used to pture the shape
feature . In an embodiment , the VAE is trained on the ground
truth label masks , and afterwards the value of the loss
function is coputed as the shape feature of a segmentation
result when it is tested with the VAE network . In an
embodiment , after the VAE is trained , bad segmentation
results with bad shapes would be rare events to the VAE
because it is trained using only the ground truth masks
known good label masks that are under the distribution of
normal shapes . Thus they will have larger loss value . In this
sense , the segmentation system uses the fact that the learning
process will perform badly on the rare events . Formally
speaking , the loss function , known as the variational lower
bound , can be optimized to approximate the function log
P (Y) during the training process . So after the training , the
value of the loss function given a segmentation result , Y , is
close to log PC?) and thus is a good definition for the shape
feature .
[0044] In an embodiment , the VAE - based quality check
ing system outputs to an alarm system to signal bad seg
mentations . In another embodiment , other steps are taken in
response to detection of bad segmentations . The qualities of
the segmentation results can be well predicted using these
systems . In an embodiment , to validate the effectiveness of
the alarm system , it is tested on multiple segmentation
processes . These segmentation processes can be trained on
one dataset and tested on several other datasets to simulate
when the rare events occur .
[0045] To define logic of part of the process , denote the
datasets as (X , Y) , where X is a set of images and Y is the
label mask of X , i.e. , the label masks that are known good
(ground truth) segmentations of the images in X. The
datasets (X , Y) can be divided into a training set (X , Y)
and a validation set (Xy , Yy) . Here , F () refers to a
segmentation process trained on X. In an embodiment , the

TY

US 2022/0044412 A1 Feb. 10 , 2022
5

Ey - YKA [Q (2 | Y) || P (z \ Y)] = Ey - yt log P (Y) -Ez - q [log
P (Yz)] + KA [Q (z \ Y) || P (z)] = Ey - yt log P (Y) -S (Y ; 0) (Eqn . 6)

:

a

performance of F on Xy is be evaluated using Yy , but as
explained herein , in an embodiment , the segmentation sys
tem can evaluate without needing Yy . Formally , the training
system tries to find a function L such that Equation 1 is
satisfied .

A (F (X) , Y) = L (F , X ; 0) (Eqn . 1)

[0046] In Equation 1 , A is a function used to calculate the
similarity of the segmentation result F (X) respect to the
ground truth Y , i.e. , the quality of F (X) . Failures can occur
when X a rare event . But to detect whether an image X is
within the distribution of training data is very hard because
of the complex structure of image space , and actually that is
what F is trained to learn . The properties of F can be encoded
by sampling the parameters of F and calculating the uncer
tainty of output , and the uncertainty does help predict the
quality , but the performance strongly relies on F. It requires
F to have Bayesian structure , but well - trained F need not be
so constrained . The uncertainty will mainly distribute on the boundary of segmentation prediction . Adding that constraint
changes Equation 1 to Equation 2 .

[0051] In Equation 6 , E - e [log P (Y12)] + KA [Q (Z?Y) || P (2)]
is denoted as S (Y ; 0) for brevity . As illustrated by Equation
6 , in an embodiment , the training process is actually learning
a function to best fit log P (Y) over the distribution of Y. In
an embodiment , after training the VAE , S (Y ; 0) becomes a
natural approximation for log P (Y) . As a result , S (Y ; 0) can
be used as a representative of the shape feature , in an
embodiment .
[0052] In an embodiment , a Dice Loss function is used
when training the VAE and that is useful for medical
segmentation tasks . In an embodiment , the final form of S is
as shown in Equation 7 .

S (Y ; 0) = (Eqn . 7)

218 (2) : Y |
Ex - Nu (Y) . (Y) 1812 + 1g (z)) ? - AKA [N (u (Y) , X (Y)) || N (0 , 1)]

A (F (X) , Y) = L (F , X ; 0) (Eqn . 2)

[0053] In an embodiment , the encoder u , E and decoder g
of Equation 7 are controlled by 0 , and à is a coefficient to
balance the two terms . The first term is the Dice's coefficient
between Y and g (2) , ranging from 0 to 1 and equal to 1 if
Y = g (z) . In an embodiment , S (Y ; 0) , the shape feature rep
resentative of Equation 7 , indicates that after the VAE is
trained using data with only normal shape , the predictive
mask ý tends to be more likely in the distribution of normal
shape if it can achieve less reconstruction error and is closer
to prior distribution in the latent space , since log P (ø) s8 (9 ; 0)
holds all the time . On the other hand , for cases with high
P (Ý) but low S (? ; 0) , it would introduce a large penalty to the
object function (see Equation 6) , and is less likely to occur
for a well - trained VAE .

a

Using Shape Feature for Predicting Quality

a

[0047] In an embodiment , by adding this constraint , the
information from F and X is used , but not in direct way . A
specific process might use a two - step method , where the first
step is to encode a segmentation result F (X) into a feature
space , and the second step to learn from the feature space to
predict the quality of F (X) . The shape feature can be
captured from F (X) , denoted here as S (F (X) ; 0) . In that case ,
Equation 2 becomes Equation 3 .

A (F (X) , Y) = L (S (F (X) ; 0) (Eqn . 3)

Shape Features with a Variational Autoencoder
[0048] In an embodiment , the shape feature is captured
from the VAE trained with the ground truth masks YEYT
the shape of the segmentation masks as the distribution of
the masks in volumetric form . Assuming the normal label Y
obeys a certain distribution P (Y) , for a predictive mask ? , its
quality should be related with P (Y = ?) . In an embodiment ,
the segmentation system estimates the function P (Y) .
Because a VAE is used , an estimation function Q (z) is found
that is minimizing a difference between Q (z) and P (z Y) ,
where z is the variable of the latent space that Y is encoding z
into , optimizing as in Equation 4 .

KA [Q (z) || P (z \ Y)] = Ez - @ [log Q (z) -log P (z \ Y)] (Eqn . 4)

[0049] In Equation 4 , KA is the Kullback - Leibler diver
gence . By replacing Q (z) with Q (z Y) and rearranging
terms , finally it would be deduced to the core equation of
VAE as in Equation 5 .

log P (Y) -KA [Q (z | 9) || P (z \ Y)] = Ez - Q [log P (Yz)] - KA [Q
(z \ Y) || P (z)] (Eqn . 5)

[0050] In Equation 5 , P (z) is the prior distribution chosen
for z , usually a Gaussian distribution , and Q (Z?Y) , P (Y | Z)
correspond to the encoder and the decoder , respectively , in
an embodiment . Once Y is given , log P (Y) is a constant . So
by optimizing the right - hand side of Equation 5 , the varia
tional lower bound of log P (Y) , this optimizes for KA [Q (z)
|| P (Z?Y)] . In an embodiment , a quantity of interest is P (Y) .
By exchanging the second term in the left - hand side of
Equation 5 with all terms in the right - hand side of Equation
(5) , this results in Equation 6 , showing the training process
as minimizing the quantity there .

[0054] In an embodiment , the shape feature is often good
enough for reliable quality assessment . One reason is that ,
for a segmentation result F (X) , the higher log P (F (X)) is , the
better shape F (X) is in and thus the higher L (F (X) , Y) is . In
an embodiment , formally , taking the shape feature captured
from the VAE , the segmentation system can predict the
quality of a segmentation by fitting a function L according
to Equation 8 .

L (F (X) , Y) = L (S (F (X) ; 0) ; 0) (Eqn . 8)

T

[0055] In an embodiment , the parameter 0 in Equation 8 is
learned by training the VAE , using labels in the training data
Y] , and is then fixed during the second step . In an embodi
ment , the function L is chosen to be a simple linear model ,
in which case the energy function the segmentation system
optimizes is as shown by Equation 9 .

E (S (F (X) ; 0) ; a , b) = llaS (F (X) ; 0) + b - L (F (X) , 7) | 12 (Eqn . 9)
a

[0056] In an embodiment , a linear regression model is
used and shows a strong linear correlation between the shape
features and the qualities of segmentation results . In Equa
tions 8 and 9 , L is the Dice's coefficient , as shown in
Equation 10 .

US 2022/0044412 Al Feb. 10 , 2022
6

(Eqn . 10) 2 | F (X) . Y | 22
A (F (X) , Y) = | F (X) | - - | Y | 2

Training Process
[0057] In an embodiment , in the first step of a training
process , the VAE is trained only using labels in training data .
Then , in an embodiment , in the second step of a training
process , 0 is fixed . In an embodiment , to learn a , b , one way
is to optimize the energy function of Equation 9 using the
segmentation results on the training data , as might be shown
in Equation 11 .

a

arg min || as (F (X) ; 6) + b - A (F (X) , Y) || 2 (Eqn . 11)
(X , Y) E (XT , YT)

T
9

[0058] In an embodiment , the segmentation process F that
the segmentation system uses to learn a , b is referred to
herein as the “ preparation process . ” In an embodiment , if F
is trained on X7 , the quality of F (X) is expected to always
be high , thus providing less information to regress a , b . To
overcome this , in an embodiment , the segmentation system
uses a jackknifing training strategy for F on X7 , wherein not
all of X , are used at the outset . In an embodiment , the
process includes first dividing X , into X , ' and X , and then
training two versions of F on X , \ X , ' and X ; \ X , respec
tively , say F , and F2 . In an embodiment , the optimizing
function is then changed to that of Equation 12 .

1

1 2

1

referenced herein used on other than medical images . The
public medical datasets for testing comprised the NIH
Pancreas - CT Dataset (NIH) , the Medical Segmentation
Decathlon (MSD) , and the Multi - atlas Labeling Challenge
(MLC) .
[0062] The NIH Pancreas - CT Dataset (NIH) includes 82
abdominal 3D CT scans (Roth et al . , 2015) from 53 male and
27 female subjects . The subjects were selected by a radi
ologist from patients without major abdominal pathologies
or pancreatic cancer lesions . The Medical Segmentation
Decathlon (MSD) collected 420 abdominal 3D CT scans
from Memorial Sloan Kettering Cancer Center (281 training
scans and 139 testing scans) . Each of the subjects had cancer
lesions within pancreas region . The Multi - atlas Labeling
Challenge (MLC) provides 50 (30 training , 20 testing)
abdomen CT scans randomly selected from a combination of
an ongoing colorectal cancer chemotherapy trial and a
retrospective ventral hernia study .
[0063] In an embodiment , example segmentation pro
cesses might include V - Net (Milletari et al . , 2016) , 3D
Coarse 2 Fine (Zhu et al . , 2018) , Deeplabv3 (Chen et al . ,
2018) , and 3D Coarse 2 Fine with Bayesian structure (Kwon
et al . , 2018) . The first two are based on 3D networks while
the Deeplab is 2D - based . In an embodiment , the 3D Coarse
2 Fine with Bayesian structure is employed to compare with
uncertainty based method and is denoted as Bayesian neural
network (BNN) afterwards .
[0064] For data pre - processing , since the voxel size varies
from case to case , which would affect the shape of pancreas
and prediction of segmentation , the tests included a step of
resampling the voxel size of all CT scans and annotation
masks to 1 mm cubed voxels . For training the VAE , a simple
alignment is applied on the annotation mask . A cube bound
ing box , large enough to contain the whole pancreas region ,
is used and is centered at the pancreas centroid . The volume
and the label mask are cropped out and resized to a fixed size
of 128 by 128 by 128 voxels . A simple alignment works for
these test cases , because the human pose is usually fixed
when taking CT scan , e.g. , so the organ is not expected to
rotate or deform heavily . For a segmentation prediction , the
test also crops and resizes the predictive foreground to 128
by 128 by 128 voxels and feeds it into the VAE to capture
the shape feature , similar to what is shown in FIG . 6. As used
herein , " annotation masks " can refer to , or be used instead
of , a label mask that contains ground truth details . Ground
truth details might be derived from manual input after
examination of an image .
[0065] In an embodiment , during the training process ,
rotations along the x , y , and z axes for -10 , 0 , and 10 degrees
respectively , along with random translations for smaller than
5 voxels on the annotation mask is used as data augmenta
tion . This kind of mild disturbance can enhance the data
distribution , while maintaining the alignment properties of
the annotation mask . In an embodiment , a suitable dimen
sion for latent space that contains the latent representation in
the VAE might be 128. VAEs with latent spaces of different
dimension may have different capabilities when it comes to
quality assessment . In an embodiment , the hyper parameter
à in the object function of the VAE is set to = 2 - S to balance
the small value of Dice Loss and large KL Divergence . In a
test embodiment , the network was trained by an SGD
optimizer with batch size 4 and the learning rate for training
the VAE was fixed to 0.1 . In an embodiment , the framework
and other baseline models can be constructed using Tensor

Arg min ? ? l | as (Fk (X) ;) + b - A (F (X) , Y) || 20 : (Eqn . 12)

k = 1,2 (X , Y) = (xX , Y *)

T

-

[0059] In an embodiment , using the above process , the
segmentation system can solve the problem above by simu
lating the performance of F on the testing set . In an embodi
ment , an accurate way is to do “ leave - one - out ” training for
F , but if the time consumption is not acceptable , two - fold
split , wherein X , is divided into two equal sized subsamples ,
one for training and one for validation , can be effective
enough . In an embodiment , when the training is done , the
trained segmenter can be tested using a segmentation algo
rithm F and data Xto predict the quality using the quality
metric of Equation 13 .

Q = aS (F (X) ; 0) + b (Eqn . 13)

[0060] As has now been described , in an embodiment , a
segmentation system obtains reliable predictions for the
qualities of segmentation results . In an embodiment , an
alarm system can be used when the segmentation processes
are tested on other datasets , with good quality assessment
capability and transferability compared with uncertainty
based methods , direct regression methods , and other meth
ods .
[0061] Tests were performed on images taken from public
medical datasets comprising 3D labdominal CT images in
portal venous phase with a pancreas region fully annotated
in each image . The CT scans have resolutions of 512x512xh
voxels with varying voxel sizes . In an embodiment , other
images are used instead , or in addition , and the processes

US 2022/0044412 A1 Feb. 10 , 2022
7

a

Flow and the experiments run on an nVidia Tesla V100
GPU . In one example , the first training step was done in
20000 iterations and completed in around five hours .
[0066] In an embodiment , after training , the segmentation
system can be used for segmentation and the output of a
trained segmenter provided to a VAE for quality assessment .
The VAE can predict the qualities of the segmentation
results without requiring the use of ground truth masks . The
shape feature is useful in predicting the qualities of the
segmentation results . To capture the shape feature , in an
embodiment , the VAE is trained using only ground truth
masks and relying on that rare events will achieve larger
value for loss function , and successfully detect the out - of
distribution shape according to the value for loss function in
the testing time .
[0067] As explained above , the segmentation system in an
embodiment comprises a trained segmenter that takes in an
image and determines a segmentation , which can be output
as a label mask . In an embodiment , an autoencoder trained
on shape features takes that label mask as its input and
outputs a resulting label mask that is formed when the
autoencoder encodes the label mask to a latent representa
tion and then decodes that latent representation . In an
embodiment , there is less loss in the autoencoding process
when there is a good segmentation and more loss when there
is a bad segmentation , where the quality of the segmentation
represents how well boundaries of objects in an image are
correctly identified . In an embodiment , a comparator checks
whether boundaries between objects in an image are cor
rectly identified by the output of the autoencoder to its input .
If boundaries of objects in an image are correctly identified ,
those boundaries will be close to the output of the autoen
coder . An alarm (e.g. , notification or change in an interface)
might be provided to a user of the system when there is a
significant difference between boundaries identified more
than an acceptable threshold from the output of the autoen
coder .
[0068] In a particular embodiment , an image is processed
with a first neural network to determine a first segmentation
of the image (i.e. , output that indicates the boundaries of
objects in the image) , while in other embodiments other than
a neural network is used for segmentation . In an embodi
ment , the segmentation is passed through a variational auto
encoder (VAE) to obtain a second segmentation . In an
embodiment , the first segmentation and second segmenta
tion are compared , which might be done using a loss
function . If the comparison shows that the first and second
segmentations are close , the segmenter probably worked
well . If they are significantly different , there was probably a
problem . In an embodiment , the autoencoder is trained using
segmentations of images that are known to be good seg
mentations . Other embodiments may be apparent upon
reading the descriptions herein .
[0069] FIG . 8 illustrates a parallel processing unit (“ PPU ”)
800 , in accordance with one embodiment . In an embodi
ment , the PPU 800 is configured with machine - readable
code that , if executed by the PPU , causes the PPU to perform
some or all of processes and techniques described through
out this disclosure . In an embodiment , the PPU 800 is a
multi - threaded processor that is implemented on one or
more integrated circuit devices and that utilizes multithread
ing as a latency - hiding technique designed to process com
puter - readable instructions (also referred to as machine
readable instructions or simply instructions) on multiple

threads in parallel . In an embodiment , a thread refers to a
thread of execution and is an instantiation of a set of
instructions configured to be executed by the PPU 800. In an
embodiment , the PPU 800 is a graphics processing unit
(" GPU ') configured to implement a graphics rendering
pipeline for processing three - dimensional (“ 3D ") graphics
data in order to generate two - dimensional (“ 2D ”) image data
for display on a display device such as a liquid crystal
display (LCD) device . In an embodiment , the PPU 800 is
utilized to perform computations such as linear algebra
operations and machine - learning operations . FIG . 8 illus
trates an example parallel processor for illustrative purposes
only and should be construed as a non - limiting example of
processor architectures contemplated within the scope of
this disclosure and that any suitable processor may be
employed to supplement and / or substitute for the same .
[0070] In an embodiment , one or more PPUs are config
ured to accelerate High Performance Computing (“ HPC ”) ,
data center , and machine learning applications . In an
embodiment , the PPU 800 is configured to accelerate deep
learning systems and applications including the following
non - limiting examples : autonomous vehicle platforms , deep
learning , high - accuracy speech , image , text recognition sys
tems , intelligent video analytics , molecular simulations ,
drug discovery , disease diagnosis , weather forecasting , big
data analytics , astronomy , molecular dynamics simulation ,
financial modeling , robotics , factory automation , real - time
language translation , online search optimizations , and per
sonalized user recommendations , and more .
[0071] In an embodiment , the PPU 800 includes an Input /
Output (“ I / O ”) unit 806 , a front - end unit 810 , a scheduler
unit 812 , a work distribution unit 814 , a hub 816 , a crossbar
(“ Xbar ”) 820 , one or more general processing clusters
(“ GPCs ”) 818 , and one or more partition units 822. In an
embodiment , the PPU 800 is connected to a host processor
or other PPUs 800 via one or more high - speed GPU inter
connects 808. In an embodiment , the PPU 800 is connected
to a host processor or other peripheral devices via an
interconnect 802. In an embodiment , the PPU 800 is con
nected to a local memory comprising one or more memory
devices 804. In an embodiment , the local memory comprises
one or more dynamic random access memory (“ DRAM ”)
devices . In an embodiment , the one or more DRAM devices
are configured and / or configurable as high - bandwidth
memory (“ HBM ”) subsystems , with multiple DRAM dies
stacked within each device .
[0072] The high - speed GPU interconnect 808 may refer to
a wire - based multi - lane communications link that is used by
systems to scale and include one or more PPUs 800 com
bined with one or more CPUs , supports cache coherence
between the PPUs 800 and CPUs , and CPU mastering . In an
embodiment , data and / or commands are transmitted by the
high - speed GPU interconnect 808 through the hub 816
to / from other units of the PPU 800 such as one or more copy
engines , video encoders , video decoders , power manage
ment units , and other components which may not be explic
itly illustrated in FIG . 8 .
[0073] In an embodiment , the I / O unit 806 is configured to
transmit and receive communications (e.g. , commands ,
data) from a host processor (not illustrated in FIG . 8) over
the system bus 802. In an embodiment , the I / O unit 806
communicates with the host processor directly via the sys
tem bus 802 or through one or more intermediate devices
such as a memory bridge . In an embodiment , the I / O unit

a

US 2022/0044412 A1 Feb. 10 , 2022
8

a

806 may communicate with one or more other processors ,
such as one or more of the PPUs 800 via the system bus 802 .
In an embodiment , the I / O unit 806 implements a Peripheral
Component Interconnect Express (“ PCIe ”) interface for
communications over a PCIe bus . In an embodiment , the I / O
unit 806 implements interfaces for communicating with
external devices .
[0074] In an embodiment , the I / O unit 806 decodes pack
ets received via the system bus 802. In an embodiment , at
least some packets represent commands configured to cause
the PPU 800 to perform various operations . In an embodi
ment , the I / O unit 806 transmits the decoded commands to
various other units of the PPU 800 as specified by the
commands . In an embodiment , commands are transmitted to
the front - end unit 810 and / or transmitted to the hub 816 or
other units of the PPU 800 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc. (not explicitly illustrated in FIG . 8) . In an
embodiment , the I / O unit 806 is configured to route com
munications between and among the various logical units of
the PPU 800 .
[0075] In an embodiment , a program executed by the host
processor encodes a command stream in a buffer that pro
vides workloads to the PPU 800 for processing . In an
embodiment , a workload comprises instructions and data to
be processed by those instructions . In an embodiment , the
buffer is a region in a memory that is accessible (e.g. ,
read / write) by both the host processor and the PPU 800 — the
host interface unit may be configured to access the buffer in
a system memory connected to the system bus 802 via
memory requests transmitted over the system bus 802 by the
I / O unit 806. In an embodiment , the host processor writes
the command stream to the buffer and then transmits a
pointer to the start of the command stream to the PPU 800
such that the front - end unit 810 receives pointers to one or
more command streams and manages the one or more
streams , reading commands from the streams and forward
ing commands to the various units of the PPU 800 .
[0076] In an embodiment , the front - end unit 810 is
coupled to scheduler unit 812 that configures the various
GPCs 818 to process tasks defined by the one or more
streams . In an embodiment , the scheduler unit 812 is con
figured to track state information related to the various tasks
managed by the scheduler unit 812 where the state infor
mation may indicate which GPC 818 a task is assigned to ,
whether the task is active or inactive , a priority level
associated with the task , and so forth . In an embodiment , the
scheduler unit 812 manages the execution of a plurality of
tasks on the one or more GPCs 818 .
[0077] In an embodiment , the scheduler unit 812 is
coupled to a work distribution unit 814 that is configured to
dispatch tasks for execution on the GPCs 818. In an embodi
ment , the work distribution unit 814 tracks a number of
scheduled tasks received from the scheduler unit 812 and the
work distribution unit 814 manages a pending task pool and
an active task pool for each of the GPCs 818. In an
embodiment , the pending task pool comprises a number of
slots (e.g. , 32 slots) that contain tasks assigned to be
processed by a particular GPC 818 ; the active task pool may
comprise a number of slots (e.g. , 4 slots) for tasks that are
actively being processed by the GPCs 818 such that as a
GPC 818 completes the execution of a task , that task is
evicted from the active task pool for the GPC 818 and one
of the other tasks from the pending task pool is selected and

scheduled for execution on the GPC 818. In an embodiment ,
if an active task is idle on the GPC 818 , such as while
waiting for a data dependency to be resolved , then the active
task is evicted from the GPC 818 and returned to the pending
task pool while another task in the pending task pool is
selected and scheduled for execution on the GPC 818 .
[0078] In an embodiment , the work distribution unit 814
communicates with the one or more GPCs 818 via Xbar 820 .
In an embodiment , the Xbar 820 is an interconnect network
that couples many of the units of the PPU 800 to other units
of the PPU 800 and can be configured to couple the work
distribution unit 814 to a particular GPC 818. Although not
shown explicitly , one or more other units of the PPU 800
may also be connected to the Xbar 820 via the hub 816 .
[0079] The tasks are managed by the scheduler unit 812
and dispatched to a GPC 818 by the work distribution unit
814. The GPC 818 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 818 , routed to a different GPC 818 via the
Xbar 820 , or stored in the memory 804. The results can be
written to the memory 804 via the partition units 822 , which
implement a memory interface for reading and writing data
to / from the memory 804. The results can be transmitted to
another PPU 804 or CPU via the high - speed GPU intercon
nect 808. In an embodiment , the PPU 800 includes a number
U of partition units 822 that is equal to the number of
separate and distinct memory devices 804 coupled to the
PPU 800. A partition unit 822 will be described in more
detail below in conjunction with FIG . 10 .
[0080] In an embodiment , a host processor executes a
driver kernel that implements an application programming
interface (“ API ”) that enables one or more applications
executing on the host processor to schedule operations for
execution on the PPU 800. In an embodiment , multiple
compute applications are simultaneously executed by the
PPU 800 and the PPU 800 provides isolation , quality of
service (“ QoS ”) , and independent address spaces for the
multiple compute applications . In an embodiment , an appli
cation generates instructions (e.g. , in the form of API calls)
that cause the driver kernel to generate one or more tasks for
execution by the PPU 800 and the driver kernel outputs tasks
to one or more streams being processed by the PPU 800. In
an embodiment , each task comprises one or more groups of
related threads , which may be referred to as a warp . In an
embodiment , a warp comprises a plurality of related threads
(e.g. , 32 threads) that can be executed in parallel . In an
embodiment , cooperating threads can refer to a plurality of
threads including instructions to perform the task and that
exchange data through shared memory . Threads and coop
erating threads are described in more detail , in accordance
with one embodiment , in conjunction with FIG . 10A .
[0081] FIG . 9 illustrates a GPC 900 such as the GPC
illustrated of the PPU 800 of FIG . 8 , in accordance with one
embodiment . In an embodiment , each GPC 900 includes a
number of hardware units for processing tasks and each
GPC 900 includes a pipeline manager 902 , a pre - raster
operations unit (“ PROP ”) 904 , a raster engine 908 , a work
distribution crossbar (“ WDX ”) 916 , a memory management
unit (“ MMU ”) 918 , one or more Data Processing Clusters
(“ DPCs ”) 906 , and any suitable combination of parts . It will
be appreciated that the GPC 900 of FIG . 9 may include other
hardware units in lieu of or in addition to the units shown in
FIG . 9 .

US 2022/0044412 A1 Feb. 10 , 2022
9

a

[0082] In an embodiment , the operation of the GPC 900 is
controlled by the pipeline manager 902. The pipeline man
ager 902 manages the configuration of the one or more DPCs
906 for processing tasks allocated to the GPC 900. In an
embodiment , the pipeline manager 902 configures at least
one of the one or more DPCs 906 to implement at least a
portion of a graphics rendering pipeline . In an embodiment ,
a DPC 906 is configured to execute a vertex shader program
on the programmable streaming multiprocessor (“ SM ”) 914 .
The pipeline manager 902 is configured to route packets
received from a work distribution to the appropriate logical
units within the GPC 900 , in an embodiment , and some
packets may be routed to fixed function hardware units in the
PROP 904 and / or raster engine 908 while other packets may
be routed to the DPCs 906 for processing by the primitive
engine 912 or the SM 914. In an embodiment , the pipeline
manager 902 configures at least one of the one or more
DPCs 906 to implement a neural network model and / or a
computing pipeline .
[0083] The PROP unit 904 is configured , in an embodi
ment , to route data generated by the raster engine 908 and
the DPCs 906 to a Raster Operations (“ ROP ”) unit in the
memory partition unit , described in more detail above . In an
embodiment , the PROP unit 904 is configured to perform
optimizations for color blending , organize pixel data , per
form address translations , and more . The raster engine 908
includes a number of fixed function hardware units config
ured to perform various raster operations , in an embodiment ,
and the raster engine 908 includes a setup engine , a coarse
raster engine , a culling engine , a clipping engine , a fine
raster engine , a tile coalescing engine , and any suitable
combination thereof . The setup engine , in an embodiment ,
receives transformed vertices and generates plane equations
associated with the geometric primitive defined by the
vertices ; the plane equations are transmitted to the coarse
raster engine to generate coverage information (e.g. , an x , y
coverage mask for a tile) for the primitive ; the output of the
coarse raster engine is transmitted to the culling engine
where fragments associated with the primitive that fail a
z - test are culled , and transmitted to a clipping engine where
fragments lying outside a viewing frustum are clipped . In an
embodiment , the fragments that survive clipping and culling
are passed to the fine raster engine to generate attributes for
the pixel fragments based on the plane equations generated
by the setup engine . In an embodiment , the output of the
raster engine 908 comprises fragments to be processed by
any suitable entity such as by a fragment shader imple
mented within a DPC 906 .
[0084] In an embodiment , each DPC 906 included in the
GPC 900 comprises an M - Pipe Controller (“ MPC ”) 910 ; a
primitive engine 912 ; one or more SMS 914 ; and any
suitable combination thereof . In an embodiment , the MPC
910 controls the operation of the DPC 906 , routing packets
received from the pipeline manager 902 to the appropriate
units in the DPC 906. In an embodiment , packets associated
with a vertex are routed to the primitive engine 912 , which
is configured to fetch vertex attributes associated with the
vertex from memory ; in contrast , packets associated with a
shader program may be transmitted to the SM 914 .
[0085] In an embodiment , the SM 914 comprises a pro
grammable streaming processor that is configured to process
tasks represented by a number of threads . In an embodiment ,
the SM 914 is multi - threaded and configured to execute a
plurality of threads (e.g. , 32 threads) from a particular group

of threads concurrently and implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (e.g. , a warp) is configured to process
a different set of data based on the same set of instructions .
In an embodiment , all threads in the group of threads
execute the same instructions . In an embodiment , the SM
914 implements a SIMT (Single - Instruction , Multiple
Thread) architecture wherein each thread in a group of
threads is configured to process a different set of data based
on the same set of instructions , but where individual threads
in the group of threads are allowed to diverge during
execution . In an embodiment , a program counter , call stack ,
and execution state is maintained for each warp , enabling
concurrency between warps and serial execution within
warps when threads within the warp diverge . In another
embodiment , a program counter , call stack , and execution
state is maintained for each individual thread , enabling equal
concurrency between all threads , within and between warps .
In an embodiment , execution state is maintained for each
individual thread and threads executing the same instruc
tions may be converged and executed in parallel for better
efficiency . In an embodiment , the SM 914 is described in
more detail below .
[0086] In an embodiment , the MMU 918 provides an
interface between the GPC 900 and the memory partition
unit and the MMU 918 provides translation of virtual
addresses into physical addresses , memory protection , and
arbitration of memory requests . In an embodiment , the
MMU 918 provides one or more translation lookaside
buffers (“ TLBs ”) for performing translation of virtual
addresses into physical addresses in memory .
[0087] FIG . 10 illustrates a memory partition unit of a
PPU , in accordance with one embodiment . In an embodi
ment , the memory partition unit 1000 includes a Raster
Operations (“ ROP ”) unit 1002 ; a level two (“ L2 ") cache
1004 ; a memory interface 1006 ; and any suitable combina
tion thereof . The memory interface 1006 is coupled to the
memory . Memory interface 1006 may implement 32 , 64 ,
128 , 1024 - bit data buses , or the like , for high - speed data
transfer . In an embodiment , the PPU incorporates U memory
interfaces 1006 , one memory interface 1006 per pair of
partition units 1000 , where each pair of partition units 1000
is connected to a corresponding memory device . For
example , PPU may be connected to up to Y memory devices ,
such as high bandwidth memory stacks or graphics double
data - rate , version 5 , synchronous dynamic random access
memory (" GDDR5 SDRAM ”) .
[0088] In an embodiment , the memory interface 1006
implements an HBM2 memory interface and Y equals half
U. In an embodiment , the HBM2 memory stacks are located
on the same physical package as the PPU , providing sub
stantial power and area savings compared with conventional
GDDR5 SDRAM systems . In an embodiment , each HBM2
stack includes four memory dies and Y equals 4 , with HBM2
stack including two 128 - bit channels per die for a total of 8
channels and a data bus width of 1024 bits .
[0089] In an embodiment , the memory supports Single
Error Correcting Double - Error Detecting (“ SECDED ")
Error Correction Code (“ ECC ”) to protect data . ECC pro
vides higher reliability for compute applications that are
sensitive to data corruption . Reliability is especially impor
tant in large - scale cluster computing environments where
PPUs process very large datasets and / or run applications for
extended periods .

a

a

US 2022/0044412 A1 Feb. 10 , 2022
10

a

[0090] In an embodiment , the PPU implements a multi
level memory hierarchy . In an embodiment , the memory
partition unit 1000 supports a unified memory to provide a
single unified virtual address space for CPU and PPU
memory , enabling data sharing between virtual memory
systems . In an embodiment the frequency of accesses by a
PPU to memory located on other processors is traced to
ensure that memory pages are moved to the physical
memory of the PPU that is accessing the pages more
frequently . In an embodiment , the high - speed GPU inter
connect 808 supports address translation services allowing
the PPU to directly access a CPU's page tables and provid
ing full access to CPU memory by the PPU .
[0091] In an embodiment , copy engines transfer data
between multiple PPUs or between PPUs and CPUs . In an
embodiment , the copy engines can generate page faults for
addresses that are not mapped into the page tables and the
memory partition unit 1000 then services the page faults ,
mapping the addresses into the page table , after which the
copy engine performs the transfer . In an embodiment ,
memory is pinned (i.e. , non - pageable) for multiple copy
engine operations between multiple processors , substan
tially reducing the available memory . In an embodiment ,
with hardware page faulting , addresses can be passed to the
copy engines without regard as to whether the memory
pages are resident , and the copy process is transparent .
[0092] Data from the memory of FIG . 8 or other system
memory is fetched by the memory partition unit 1000 and
stored in the L2 cache 1004 , which is located on - chip and is
shared between the various GPCs , in accordance with one
embodiment . Each memory partition unit 1000 , in an
embodiment , includes at least a portion of the L2 cache 960
associated with a corresponding memory device . In an
embodiment , lower level caches are implemented in various
units within the GPCs . In an embodiment , each of the SMS
1040 may implement a level one (“ L1 ”) cache wherein the
L1 cache is private memory that is dedicated to a particular
SM 1040 and data from the L2 cache 1004 is fetched and
stored in each of the Ll caches for processing in the
functional units of the SMs 1040. In an embodiment , the L2
cache 1004 is coupled to the memory interface 1006 and the
Xbar 820 .
[0093] The ROP unit 1002 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and more , in an embodiment . The ROP unit $$ 50 ,
in an embodiment , implements depth testing in conjunction
with the raster engine 1025 , receiving a depth for a sample
location associated with a pixel fragment from the culling
engine of the raster engine 1025. In an embodiment , the
depth is tested against a corresponding depth in a depth
buffer for a sample location associated with the fragment . In
an embodiment , if the fragment passes the depth test for the
sample location , then the ROP unit 1002 updates the depth
buffer and transmits a result of the depth test to the raster
engine 1025. It will be appreciated that the number of
partition units 1000 may be different than the number of
GPCs and , therefore , each ROP unit 1002 can , in an embodi
ment , be coupled to each of the GPCs . In an embodiment ,
the ROP unit 1002 tracks packets received from the different
GPCs and determines which that a result generated by the
ROP unit 1002 is routed to through the Xbar .
[0094] FIG . 11 illustrates a streaming multi - processor
such as the streaming multi - processor of FIG . 9 , in accor
dance with one embodiment . In an embodiment , the SM

1100 includes : an instruction cache 1102 ; one or more
scheduler units 1104 ; a register file 1108 ; one or more
processing cores 1110 ; one or more special function units
(“ SFUs ”) 1112 ; one or more load / store units (“ LSUs ”) 1114 ;
an interconnect network 1116 ; a shared memory / L1 cache
1118 ; and any suitable combination thereof . In an embodi
ment , the work distribution unit dispatches tasks for execu
tion on the GPCs of the PPU and each task is allocated to a
particular DPC within a GPC and , if the task is associated
with a shader program , the task is allocated to an SM 1100 .
In an embodiment , the scheduler unit 1104 receives the tasks
from the work distribution unit and manages instruction
scheduling for one or more thread blocks assigned to the SM
1100. In an embodiment , the scheduler unit 1104 schedules
thread blocks for execution as warps of parallel threads ,
wherein each thread block is allocated at least one warp . In
an embodiment , each warp executes threads . In an embodi
ment , the scheduler unit 1104 manages a plurality of differ
ent thread blocks , allocating the warps to the different thread
blocks and then dispatching instructions from the plurality
of different cooperative groups to the various functional
units (e.g. , cores 1110 , SFUs 1112 , and LSUs 1114) during
each clock cycle .
[0095] Cooperative Groups may refer to a programming
model for organizing groups of communicating threads that
allows developers to express the granularity at which threads
are communicating , enabling the expression of richer , more
efficient parallel decompositions . In an embodiment , coop
erative launch APIs support synchronization amongst thread
blocks for the execution of parallel algorithms . In an
embodiment , applications of conventional programming
models provide a single , simple construct for synchronizing
cooperating threads : a barrier across all threads of a thread
block (e.g. , the syncthreads () function) . However , program
mers would often like to define groups of threads at smaller
than thread block granularities and synchronize within the
defined groups to enable greater performance , design flex
ibility , and software reuse in the form of collective group
wide function interfaces . Cooperative Groups enables pro
grammers to define groups of threads explicitly at sub - block
(i.e. , as small as a single thread) and multi - block granulari
ties , and to perform collective operations such as synchro
nization on the threads in a cooperative group . The pro
gramming model supports clean composition across
software boundaries , so that libraries and utility functions
can synchronize safely within their local context without
having to make assumptions about convergence . Coopera
tive Groups primitives enable new patterns of cooperative
parallelism , including producer - consumer parallelism ,
opportunistic parallelism , and global synchronization across
an entire grid of thread blocks .
[0096] In an embodiment , a dispatch unit 1106 is config
ured to transmit instructions to one or more of the functional
units and the scheduler unit 1104 includes two dispatch units
1106 that enable two different instructions from the same
warp to be dispatched during each clock cycle . In an
embodiment , each scheduler unit 1104 includes a single
dispatch unit 1106 or additional dispatch units 1106 .
[0097] Each SM 1100 , in an embodiment , includes a
register file 1108 that provides a set of registers for the
functional units of the SM 1100. In an embodiment , the
register file 1108 is divided between each of the functional
units such that each functional unit is allocated a dedicated
portion of the register file 1108. In an embodiment , the

a

US 2022/0044412 A1 Feb. 10 , 2022
11

a

register file 1108 is divided between the different warps
being executed by the SM 1100 and the register file 1108
provides temporary storage for operands connected to the
data paths of the functional units . In an embodiment , each
SM 1100 comprises a plurality of L processing cores 1110 .
In an embodiment , the SM 1100 includes a large number
(e.g. , 128 or more) of distinct processing cores 1110. Each
core 1110 , in an embodiment , includes a fully - pipelined ,
single - precision , double - precision , and / or mixed precision
processing unit that includes a floating point arithmetic logic
unit and an integer arithmetic logic unit . In an embodiment ,
the floating point arithmetic logic units implement the IEEE
754-2008 standard for floating point arithmetic . In an
embodiment , the cores 1110 include 64 single - precision
(32 - bit) floating point cores , 64 integer cores , 32 double
precision (64 - bit) floating point cores , and 8 tensor cores .
[0098] Tensor cores are configured to perform matrix
operations in accordance with an embodiment . In an
embodiment , one or more tensor cores are included in the
cores 1110. In an embodiment , the tensor cores are config
ured to perform deep learning matrix arithmetic , such as
convolution operations for neural network training and
inferencing . In an embodiment , each tensor core operates on
a 4x4 matrix and performs a matrix multiply and accumulate
operation D = AXB + C , where A , B , C , and D are 4x4 matri
ces .

Each SM 1100 includes an interconnect network 1116 that
connects each of the functional units to the register file 1108
and the LSU 1114 to the register file 1108 , shared memory /
L1 cache 1118 in an embodiment . In an embodiment , the
interconnect network 1116 is a crossbar that can be config
ured to connect any of the functional units to any of the
registers in the register file 1108 and connect the LSUs 1114
to the register file and memory locations in shared memory /
L1 cache 1118 .
[0102] The shared memory / L1 cache 1118 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 1100 and the primitive engine and
between threads in the SM 1100 in an embodiment . In an
embodiment , the shared memory / L1 cache 1118 comprises
128 KB of storage capacity and is in the path from the SM
1100 to the partition unit . The shared memory / L1 cache
1118 , in an embodiment , is used to cache reads and writes .
One or more of the shared memory / L1 cache 1118 , L2 cache ,
and memory are backing stores .
[0103] Combining data cache and shared memory func
tionality into a single memory block provides improved
performance for both types of memory accesses , in an
embodiment . The capacity , in an embodiment , is used or is
usable as a cache by programs that do not use shared
memory , such as if shared memory is configured to use half
of the capacity , texture and load / store operations can use the
remaining capacity . Integration within the shared memory
L1 cache 1118 enables the shared memory / L1 cache 1118 to
function as a high - throughput conduit for streaming data
while simultaneously providing high - bandwidth and low
latency access to frequently reused data , in accordance with
an embodiment . When configured for general purpose par
allel computation , a simpler configuration can be used
compared with graphics processing . In an embodiment ,
fixed function graphics processing units are bypassed , cre
ating a much simpler programming model . In the general
purpose parallel computation configuration , the work distri
bution unit assigns and distributes blocks of threads directly
to the DPCs , in an embodiment . The threads in a block
execute the same program , using a unique thread ID in the
calculation to ensure each thread generates unique results ,
using the SM 1100 to execute the program and perform
calculations , shared memory / L1 cache 1118 to communicate
between threads , and the LSU 1114 to read and write global
memory through the shared memory / L1 cache 1118 and the
memory partition unit , in accordance with one embodiment .
In an embodiment , when configured for general purpose
parallel computation , the SM 1100 writes commands that the
scheduler unit can use to launch new work on the DPCs .
[0104] In an embodiment , the PPU is included in or
coupled to a desktop computer , a laptop computer , a tablet
computer , servers , supercomputers , a smart - phone (e.g. , a
wireless , hand - held device) , personal digital assistant
(“ PDA ”) , a digital camera , a vehicle , a head mounted
display , a hand - held electronic device , and more . In an
embodiment , the PPU is embodied on a single semiconduc
tor substrate . In an embodiment , the PPU is included in a
system - on - a - chip (“ SOC ”) along with one or more other
devices such as additional PPUs , the memory , a reduced
instruction set computer (“ RISC ”) CPU , a memory manage
ment unit (“ MMU ”) , a digital - to - analog converter (“ DAC ”) ,
and the like .
[0105] In an embodiment , the PPU may be included on a
graphics card that includes one or more memory devices .

[0099] In an embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices and the accumula
tion matrices C and D are 16 - bit floating point or 32 - bit
floating point matrices . In an embodiment , the tensor cores
operate on 16 - bit floating point input data with 32 - bit
floating point accumulation . In an embodiment , the 16 - bit
floating point multiply requires 64 operations and results in
a full precision product that is then accumulated using 32 - bit
floating point addition with the other intermediate products
for a 4'4x4 matrix multiply . Tensor cores are used to
perform much larger two - dimensional or higher dimensional
matrix operations , built up from these smaller elements , in
an embodiment . In an embodiment , an API , such as CUDA
9 C ++ API , exposes specialized matrix load , matrix multiply
and accumulate , and matrix store operations to efficiently
use tensor cores from a CUDA - C ++ program . In an embodi
ment , at the CUDA level , the warp - level interface assumes
16x16 size matrices spanning all 32 threads of the warp .
[0100] In an embodiment , each SM 1100 comprises M
SFUs 1112 that perform special functions (e.g. , attribute
evaluation , reciprocal square root , and the like) . In an
embodiment , the SFUs 1112 include a tree traversal unit
configured to traverse a hierarchical tree data structure . In an
embodiment , the SFUs 1112 include texture unit configured
to perform texture map filtering operations . In an embodi
ment , the texture units are configured to load texture maps
(e.g. , a 2D array of texels) from the memory and sample the
texture maps to produce sampled texture values for use in
shader programs executed by the SM 1100. In an embodi
ment , the texture maps are stored in the shared memory / L1
cache . The texture units implement texture operations such
as filtering operations using mip - maps (e.g. , texture maps of
varying levels of detail) , in accordance with one embodi
ment . In an embodiment , each SM 1100 includes two texture
units .
[0101] Each SM 1100 comprises NLSUS 1054 that imple
ment load and store operations between the shared memory /
L1 cache 1006 and the register file 1108 , in an embodiment .

a

US 2022/0044412 A1 Feb. 10 , 2022
12

The graphics card may be configured to interface with a
PCIe slot on a motherboard of a desktop computer . In yet
another embodiment , the PPU may be an integrate graphics
processing unit (“ IGPU ”) included in the chipset of the
motherboard .
[0106] FIG . 12 illustrates a computer system 1200 in
which the various architecture and / or functionality can be
implemented , in accordance with one embodiment . The
computer system 1200 , in an embodiment , is configured to
implement various processes and methods described
throughout this disclosure .
[0107] In an embodiment , the computer system 1200
comprises at least one central processing unit 1202 that is
connected to a communication bus 1210 implemented using
any suitable protocol , such as PCI (Peripheral Component
Interconnect) , PCI - Express , AGP (Accelerated Graphics
Port) , HyperTransport , or any other bus or point - to - point
communication protocol (s) .
[0108] In an embodiment , the computer system 1200
includes a main memory 1204 and control logic (e.g. ,
implemented as hardware , software , or a combination
thereof) and data are stored in the main memory 1204 which
may take the form of random access memory (“ RAM ”) . In
an embodiment , a network interface subsystem 1222 pro
vides an interface to other computing devices and networks
for receiving data from and transmitting data to other
systems from the computer system 1200 .
[0109] The computer system 1200 , in an embodiment ,
includes input devices 1208 , the parallel processing system
1212 , and display devices 1206 which can be implemented
using a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED (light emitting diode) , plasma display ,
or other suitable display technologies . In an embodiment ,
user input is received from input devices 1208 such as
keyboard , mouse , touchpad , microphone , and more . In an
embodiment , each of the foregoing modules can be situated
on a single semiconductor platform to form a processing
system .
[0110] In the present description , a single semiconductor
platform may refer to a sole unitary semiconductor - based
integrated circuit or chip . It should be noted that the term
single semiconductor platform may also refer to multi - chip
modules with increased connectivity which simulate on - chip
operation , and make substantial improvements over utilizing
a conventional central processing unit (“ CPU ”) and bus
implementation . Of course , the various modules may also be
situated separately or in various combinations of semicon
ductor platforms per the desires of the user .
[0111] In an embodiment , computer programs in the form
of machine - readable executable code or computer control
logic algorithms are stored in the main memory 1204 and / or
secondary storage . Computer programs , if executed by one
or more processors , enable the system 1200 to perform
various functions in accordance with one embodiment . The
memory 1204 , the storage , and / or any other storage are
possible examples of computer - readable media . Secondary
storage may refer to any suitable storage device or system
such as a hard disk drive and / or a removable storage drive ,
representing a floppy disk drive , a magnetic tape drive , a
compact disk drive , digital versatile disk (“ DVD ”) drive ,
recording device , universal serial bus (“ USB ") flash
memory .
[0112] In an embodiment , the architecture and / or func
tionality of the various previous figures are implemented in

the context of the central processor 1202 ; parallel processing
system 1212 ; an integrated circuit capable of at least a
portion of the capabilities of both the central processor 1202 ;
the parallel processing system 1212 ; a chipset (e.g. , a group
of integrated circuits designed to work and sold as a unit for
performing related functions , etc.) ; and any suitable combi
nation of integrated circuit .
[0113] In an embodiment , the architecture and / or func
tionality of the various previous figures is be implemented in
the context of a general computer system , a circuit board
system , a game console system dedicated for entertainment
purposes , an application - specific system , and more . In an
embodiment , the computer system 1200 may take the form
of a desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e.g. , a wireless ,
hand - held device) , personal digital assistant (" PDA ") , a
digital camera , a vehicle , a head mounted display , a hand
held electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .
[0114] In an embodiment , a parallel processing system
1212 includes a plurality of PPUs 1214 and associated
memories 1216. In an embodiment , the PPUs are connected
to a host processor or other peripheral devices via an
interconnect 1218 and a switch 1220 or multiplexer . In an
embodiment , the parallel processing system 1212 distributes
computational tasks across the PPUs 1214 which can be
parallelizable for example , as part of the distribution of
computational tasks across multiple GPU thread blocks . In
an embodiment , memory is shared and accessible (e.g. , for
read and / or write access) across some or all of the PPUS
1214 , although such shared memory may incur performance
penalties relative to the use of local memory and registers
resident to a PPU . In an embodiment , the operation of the
PPUs 1214 is synchronized through the use of a command
such as syncthreads () which requires all threads in a block
(e.g. , executed across multiple PPUs 1214) to reach a certain
point of execution of code before proceeding .
[0115] The specification and drawings are , accordingly , to
be regarded in an illustrative rather than a restrictive sense .
It will , however , be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims .
[0116] Other variations are within the spirit of the present
disclosure . Thus , while the disclosed techniques are suscep
tible to various modifications and alternative constructions ,
certain illustrated embodiments thereof are shown in the
drawings and have been described above in detail . It should
be understood , however , that there is no intention to limit the
invention to the specific form or forms disclosed , but on the
contrary , the intention is to cover all modifications , alterna
tive constructions , and equivalents falling within the spirit
and scope of the invention , as defined in the appended
claims .
[0117] The use of the terms “ a ” and “ an ” and “ the ” and
similar referents in the context of describing the disclosed
embodiments (especially in the context of the following
claims) are to be construed to cover both the singular and the
plural , unless otherwise indicated herein or clearly contra
dicted by context . The terms " comprising , ” “ having , ”
“ including , ” and “ containing ” are to be construed as open
ended terms (i.e. , meaning " including , but not limited to , ")
unless otherwise noted . The term " connected , ” when

US 2022/0044412 A1 Feb. 10 , 2022
13

a

unmodified and referring to physical connections , is to be
construed as partly or wholly contained within , attached to ,
or joined together , even if there is something intervening .
Recitation of ranges of values herein are merely intended to
serve as a shorthand method of referring individually to each
separate value falling within the range , unless otherwise
indicated herein and each separate value is incorporated into
the specification as if it were individually recited herein . The
use of the term “ set ” (e.g. , " a set of items ”) or “ subset ”
unless otherwise noted or contradicted by context , is to be
construed as a nonempty collection comprising one or more
members . Further , unless otherwise noted or contradicted by
context , the term “ subset ” of a corresponding set does not
necessarily denote a proper subset of the corresponding set ,
but the subset and the corresponding set may be equal .
[0118] Conjunctive language , such as phrases of the form
" at least one of A , B , and C , " or at least one of A , B and
C , ” unless specifically stated otherwise or otherwise clearly
contradicted by context , is otherwise understood with the
context as used in general to present that an item , term , etc. ,
may be either A or B or C , or any nonempty subset of the set
of A and B and C. For instance , in the illustrative example
of a set having three members , the conjunctive phrases " at
least one of A , B , and C ” and “ at least one of A , B and C ”
refer to any of the following sets : { A } , { B } , { C } , { A , B } ,
{ A , C } , { B , C } , { A , B , C } . Thus , such conjunctive language
is not generally intended to imply that certain embodiments
require at least one of A , at least one of B and at least one
of C each to be present . In addition , unless otherwise noted
or contradicted by context , the term “ plurality ” indicates a
state of being plural (e.g. , “ a plurality of items ” indicates
multiple items) . The number of items in a plurality is at least
two , but can be more when so indicated either explicitly or
by context . Further , unless stated otherwise or otherwise
clear from context , the phrase “ based on ” means “ based at
least in part on ” and not “ based solely on . ”
[0119] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context . In an
embodiment , a process such as those processes described
herein (or variations and / or combinations thereof) is per
formed under the control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g. , executable instructions , one or more computer
programs or one or more applications) executing collec
tively on one or more processors , by hardware or combina
tions thereof . In an embodiment , the code is stored on a
computer - readable storage medium , for example , in the
form of a computer program comprising a plurality of
instructions executable by one or more processors . In an
embodiment , a computer - readable storage medium is a
non - transitory computer - readable storage medium that
excludes transitory signals (e.g. , a propagating transient
electric or electromagnetic transmission) but includes non
transitory data storage circuitry (e.g. , buffers , cache , and
queues) within transceivers of transitory signals . In an
embodiment , code (e.g. , executable code or source code) is
stored on a set of one or more non - transitory computer
readable storage media having stored thereon executable
instructions (or other memory to store executable instruc
tions) that , when executed (i.e. , as a result of being executed)
by one or more processors of a computer system , cause the
computer system to perform operations described herein .
The set of non - transitory computer - readable storage media ,

in an embodiment , comprises multiple non - transitory com
puter - readable storage media and one or more of individual
non - transitory storage media of the multiple non - transitory
computer - readable storage media lack all of the code while
the multiple non - transitory computer- readable storage
media collectively store all of the code . In an embodiment ,
the executable instructions are executed such that different
instructions are executed by different processors for
example , a non - transitory computer - readable storage
medium store instructions and a main CPU execute some of
the instructions while a graphics processor unit executes
other instructions . In an embodiment , different components
of a computer system have separate processors and different
processors execute different subsets of the instructions .
[0120] Accordingly , in an embodiment , computer systems
are configured to implement one or more services that singly
or collectively perform operations of processes described
herein and such computer systems are configured with
applicable hardware and / or software that enable the perfor
mance of the operations . Further , a computer system that
implement an embodiment of the present disclosure is a
single device and , in another embodiment , is a distributed
computer system comprising multiple devices that operate
differently such that the distributed computer system per
forms the operations described herein and such that a single
device does not perform all operations .
[0121] The use of any and all examples , or exemplary
language (e.g. , “ such as ”) provided herein , is intended
merely to better illuminate embodiments of the invention
and does not pose a limitation on the scope of the invention
unless otherwise claimed . No language in the specification
should be construed as indicating any non - claimed element
as essential to the practice of the invention .
[0122] Embodiments of this disclosure are described
herein , including the best mode known to the inventors for
carrying out the invention . Variations of those embodiments
may become apparent to those of ordinary skill in the art
upon reading the foregoing description . The inventors
expect skilled artisans to employ such variations as appro
priate and the inventors intend for embodiments of the
present disclosure to be practiced otherwise than as specifi
cally described herein . Accordingly , the scope of the present
disclosure includes all modifications and equivalents of the
subject matter recited in the claims appended hereto as
permitted by applicable law . Moreover , any combination of
the above - described elements in all possible variations
thereof is encompassed by the scope of the present disclo
sure unless otherwise indicated herein or otherwise clearly
contradicted by context .
[0123] All references , including publications , patent appli
cations , and patents , cited herein are hereby incorporated by
reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by
reference and were set forth in its entirety herein .
[0124] In the description and claims , the terms " coupled ”
and “ connected , ” along with their derivatives , may be used .
It should be understood that these terms may be not intended
as synonyms for each other . Rather , in particular examples ,
“ connected ” or “ coupled ” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other . “ Coupled ” may also mean
that two or more elements are not in direct contact with each
other , but yet still co - operate or interact with each other .

US 2022/0044412 A1 Feb. 10 , 2022
14

to any

[0125] Unless specifically stated otherwise , it may be
appreciated that throughout the specification terms such as
" processing , " " computing , " " calculating , " " determining , " or
the like , refer to the action and / or processes of a computer
or computing system , or similar electronic computing
device , that manipulate and / or transform data represented as
physical , such as electronic , quantities within the computing
system's registers and / or memories into other data similarly
represented as physical quantities within the computing
system's memories , registers or other such information
storage , transmission or display devices .
[0126] In a similar manner , the term “ processor ” may refer ?

device or portion of a device that processes electronic
data from registers and / or memory and transform that elec
tronic data into other electronic data that may be stored in
registers and / or memory . As non - limiting examples , “ pro
cessor ” may be a Central Processing Unit (CPU) or a
Graphics Processing Unit (GPU) . A " computing platform ”
may comprise one or more processors . As used herein ,
" software ” processes may include , for example , software
and / or hardware entities that perform work over time , such
as tasks , threads , and intelligent agents . Also , each process
may refer to multiple processes , for carrying out instructions
in sequence or in parallel , continuously or intermittently .
The terms “ system ” and “ method ” are used herein inter
changeably insofar as the system may embody one or more
methods and the methods may be considered a system .
[0127] In the present document , references may be made
to obtaining , acquiring , receiving , or inputting analog or
digital data into a subsystem , computer system , or computer
implemented machine . The process of obtaining , acquiring ,
receiving , or inputting analog and digital data can be accom
plished in a variety of ways such as by receiving the data as
a parameter of a function call or a call to an application
programming interface . In some implementations , the pro
cess of obtaining , acquiring , receiving , or inputting analog
or digital data can be accomplished by transferring the data
via a serial or parallel interface . In another implementation ,
the process of obtaining , acquiring , receiving , or inputting
analog or digital data can be accomplished by transferring
the data via a computer network from the providing entity to
the acquiring entity . References may also be made to pro
viding , outputting , transmitting , sending , or presenting ana
log or digital data . In various examples , the process of
providing , outputting , transmitting , sending , or presenting
analog or digital data can be accomplished by transferring
the data as an input or output parameter of a function call ,
a parameter of an application programming interface or
interprocess communication mechanism .
[0128] Although the discussion above sets forth example
implementations of the described techniques , other archi
tectures may be used to implement the described function
ality , and are intended to be within the scope of this
disclosure . Furthermore , although specific distributions of
responsibilities are defined above for purposes of discussion ,
the various functions and responsibilities might be distrib
uted and divided in different ways , depending on circum
stances .

[0129] Furthermore , although the subject matter has been
described in language specific to structural features and / or
methodological acts , it is to be understood that the subject
matter defined in the appended claims is not necessarily

limited to the specific features or acts described . Rather , the
specific features and acts are disclosed as exemplary forms
of implementing the claims .
What is claimed is :
1. A processor , comprising : one or more circuits to cause

one or more output boundaries of one or more objects within
one or more images generated by one or more neural
networks to be compared to one or more input boundaries of
the one or more objects to the one or more neural networks .

2. The processor of claim 1 , wherein :
the one or more images is a medical image ; and
the one or more output boundaries represent a segmen

tation of the medical image .
3. The processor of claim 1 , wherein the one or more

neural networks includes a variational autoencoder trained
with ground truth boundary information .

4. The processor of claim 1 , wherein a comparison of the
one or more output boundaries to the one or more input
boundaries is a value used to train the one or more neural
networks .

5. The processor of claim 1 , wherein a comparison of the
one or more output boundaries to the one or more input
boundaries is used to produce an indication that the one or
more boundaries conforms to ground truth data .

6. The processor of claim 1 , wherein the one or more
output boundaries include a first label mask representing
boundaries of objects in an image that are boundaries in a
segmentation determined from a first segmentation process
and the one or more input boundaries include a second label
mask representing an output of a shape evaluation process
into which the first label mask was an input , and wherein
indication logic is configured to compare the first label mask
and the second label mask to determine a quality of the
segmentation .

7. The processor of claim 6 , wherein the one or more
neural networks include a first trained neural network that
performs the first segmentation process to output the first
label mask in response to obtaining a representation of the
image .

8. The processor of claim 7 , wherein the one or more
neural networks include a second trained neural network that
performs the shape evaluation process using the first label
mask as its input and outputs the second label mask .

9. The processor of claim 8 , wherein the second trained
neural network is an autoencoder with an internal layer that
maps its input to a latent representation in a feature space
where features in the feature space are shape features .

10. The processor of claim 9 , wherein the autoencoder is
a variational autoencoder .

11. The processor of claim 9 , further comprising logic for
training the second trained neural network using a training
subcollection of segment datasets , wherein a segment data
set of the training subcollection comprises a training image
and a corresponding training label mask .

12. The processor of claim 11 , wherein the logic for
training the second trained neural network further uses a
validation subcollection of segment datasets .

13. The processor of claim 1 , wherein the processor
comprises a graphical processing unit (“ GPU ”) .

14. A method , using a processor comprising one or more
circuits , comprising causing one or more output boundaries
of one or more objects within one or more images generated

a

a

US 2022/0044412 A1 Feb. 10 , 2022
15

a

a

a

by one or more neural networks to be compared to one or
more input boundaries of the one or more objects to the one
or more neural networks .

15. The method of claim 14 , further comprising :
generating a segmentation of the one or more images ,

wherein the segmentation represents a processor - deter
mined set of boundaries of objects depicted in the one
or more images ;

inputting the segmentation to a neural network previously
trained on a collection of training segmentations ;

comparing the segmentation to an output of the neural
network ; and

determining a score for the segmentation , wherein the
score is a function of differences between the segmen
tation and the output of the neural network .

16. The method of claim 15 , wherein the neural network
is a variational autoencoder that takes the segmentation as its
input , wherein the variational autoencoder maps features of
its input to a reduced feature space from which the segmen
tation can be approximately reproduced from features in the
reduced feature space .

17. The method of claim 16 , further comprising :
training the variational autoencoder with the collection of

training segmentations , wherein the collection of train
ing segmentations are represented by label masks that
are ground truth label masks of images in that segmen
tations of those label masks are previously determined
to be good segmentations of the images .

18. The method of claim 16 , further comprising :
training a segmenter to generate the segmentation of the

one or more images by applying a collection of seg
ment datasets to the segmenter , wherein each segment
dataset of the collection of segment datasets comprises
a training image and a corresponding training label
mask that is a ground truth label mask of the training
image in that the segmentation in the corresponding
training label mask had previously been determined to
be a good segmentation of the training image .

19. The method of claim 15 , further comprising perform
ing , using a first trained neural network , a first segmentation
process to output a first label mask in response to obtaining
a representation of the one or more images .

20. The method of claim 15 , further comprising perform
ing , using a second trained neural network , a shape evalu
ation process using a first label mask as an input and outputs
a second label mask .

21. The method of claim 20 , further comprising mapping
an input of the second trained neural network to a latent
representation in a feature space where features in the
feature space are shape features .

22. The method of claim 21 , wherein the second trained
neural network is a variational autoencoder .

23. A computer system comprising one or more proces
sors and memory storing executable instructions that , as a
result of being performed by the one or more processors ,
cause the computer system to cause one or more output
boundaries of one or more objects within one or more
images generated by one or more neural networks to be

compared to one or more input boundaries of the one or
more objects to the one or more neural networks .

24. The computer system of claim 23 , wherein the instruc
tions further cause the computer system to :

generate a segmentation of the one or more images ,
wherein the segmentation represents a processor - deter
mined set of boundaries of objects depicted in the one
or more images ;

input the segmentation as a VAE input to the VAE ;
compare the VAE input to a VAE output of the VAE ; and
determine a score for the segmentation , wherein the score

is a function of differences between the VAE input and
the VAE output .

25. The computer system of claim 24 , further comprising :
outputting the score ;
determining if the score is within a predetermined range ;

and
outputing an alarm signal if the score is within the

predetermined range .
26. The computer system of claim 23 , wherein :
the one or more images is a medical image ; and
the one or more output boundaries represent a segmen

tation of the medical image .
27. The computer system of claim 23 , wherein the one or

more neural networks includes a variational autoencoder
trained with ground truth boundary information .

28. The computer system of claim 23 , wherein a com
parison of the one or more output boundaries to the one or
more input boundaries is a value used to train the one or
more neural networks .

29. The computer system of claim 23 , wherein a com
parison of the one or more output boundaries to the one or
more input boundaries is used to produce an indication that
the one or more boundaries conforms to ground truth data .

30. A machine - readable medium having stored thereon a
set of instructions , which if performed by one or more
processors , cause one or more output boundaries of one or
more objects within one or more images generated by one or
more neural networks to be compared to one or more input
boundaries of the one or more objects to the one or more
neural networks .

31. The machine - readable medium of claim 30 , wherein :
the one or more images is a medical image ; and
the one or more output boundaries represent a segmen

tation of the medical image .
32. The machine - readable medium of claim 30 , wherein

the one or more neural networks includes a variational
autoencoder trained with ground truth boundary informa
tion .

33. The machine - readable medium of claim 30 , wherein
a comparison of the one or more output boundaries to the
one or more input boundaries is a value used to train the one
or more neural networks .

34. The machine - readable medium of claim 30 , wherein
a comparison of the one or more output boundaries to the
one or more input boundaries is used to produce an indica
tion that the one or more boundaries conforms to ground
truth data .

a

a

