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METHOD FOR MAPPING THE 
CONCENTRATION OF AN ANALYTE IN AN 

ENVIRONMENT 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a national phase entry under 35 
U.S.C. § 371 of International Patent Application PCT / 
FR2018 / 050741 , filed Mar. 27 , 2018 , designating the United 
States of America and published in French as International 
Patent Publication WO 2018/178561 Al on Oct. 4 , 2018 , 
which claims the benefit under Article 8 of the Patent 
Cooperation Treaty to French Patent Application Serial No. 
1752654 , filed Mar. 29 , 2017 . 

TECHNICAL FIELD 

[ 0002 ] The technical field of the disclosure is the mapping 
of analytes in the environment , and more particularly a 
mapping of polluting molecules or of noxious particles that 
are harmful to the environment . 

urban setting . The publication Berkowicz R. “ OSPM , a 
parameterised street pollution model ” , Environmental 
Monitoring and Assessment 65 : 323-331 , 2000 , ” also pres 
ents the assumptions on which the OSPM model is based , as 
well as an experimental validation of this model . The 
publication Silver J. D. “ Dynamic parameter estimation for 
a street canyon air quality model ” , Environmental Model 
ling & Software , vol . 47 , 2013-06-25 , describes a method , 
implementing a Kalman filter , for obtaining the parameters 
of a model of OSPM type . 
[ 0005 ] Certain models can be affected by a bias . The 
publication Costa M. “ Bias - correction of Kalman filter 
estimators associated to a linear state space model with 
estimated parameters ” , Journal of Statistical Planning and 
inference 176 ( 2016 ) 22-32 , tackles this problem by imple 
menting a Kalman filter , each iteration of which comprises 
an estimation of a bias . The question of the bias affecting a 
model is also dealt with in CN105373673 . 
[ 0006 ] Pollution models can be fitted against measure 
ments carried out locally , these measurements allowing an 
adjustment ; fitting measured observations against a theoreti 
cal model is referred to by the term " data assimilation ” . A 
data assimilation technique is , for example , described in the 
publication Nguyen C. “ Evaluation of Data assimilation 
Method at the Urban Scale With the Sirane Model ” . The 
publication describes tailoring a model of nitrogen dioxide 
dispersion in an urban setting by taking into account mea 
surements performed by 16 measurement stations distrib 
uted in a city . A similar technique is described in the 
publication Tilloy A. “ Blue - based NO2 data assimilation at 
urban scale ” , Journal of Geophysical research : Atmo 
spheres , Vol 118 , 2031-2040 . 
[ 0007 ] This disclosure is aimed at enhancing the schemes 
set out in the publications , in such a way as to improve the 
fit between the models and measurements performed by 
sensors distributed in the modelled environment . 

BACKGROUND 

[ 0003 ] The obtaining of mappings describing the spatial 
distribution of concentrations of noxious molecules or par 
ticles is a need that addresses an expectation of the popu 
lation and the authorities , in particular , in urban areas . 
Numerous models have been developed making it possible 
to establish mappings of atmospheric pollution and to fore 
cast their temporal evolutions . It is then possible to model 
the pollution of the air in an urban setting in a routine 
situation , or in an accidental situation , for example , follow 
ing a chemical or nuclear accident . The geographical cov 
erage may be limited to a few km² , or indeed to the scale of 
a country or continent in applications aimed at modelling the 
large - scale transport of pollutants . On the basis of data 
relating to sources of pollutant emissions , and by consider 
ing parameters linked with topographical or meteorological 
conditions , the models make it possible to establish the 
spatial distribution of concentrations of polluting molecules 
or particles in the environment , the latter forming the subject 
of a spatial meshing . 
[ 0004 ] The publication Berkowicz R. “ Modelling traffic 
pollution in streets ” , January 1997 , from the National Envi 
ronmental Research Institute , a Danish organization , 
describes , for example , a model of spatial dispersion of 
pollutants adapted to the specifics of urban settings . Indeed , 
in an urban setting , the particular topography formed of 
streets separated by buildings justifies a specific approach , 
taking account of the formation of air circulation vortices at 
street level , these vortices playing a determining role in the 
dispersion of atmospheric pollution . Such models are 
referred to by the terms “ Street Canyon Model ” or “ Street 
Model ” . The aforementioned publication describes a model 
for estimating pollution in an urban setting referred to by the 
acronym OSPM , standing for “ Operational Street Pollution 
Model ” , or equivalently , operational urban pollution model . 
According to this model , on the basis of the emission of a 
pollutant in a street , depending on the number of vehicles 
and an average emission per vehicle , the model takes into 
account the recirculation vortex formed in the street , the 
aerological turbulence resulting from road traffic , the ambi 
ent pollution , originating from other streets , as well as the 
wind circulating at canopy level , that is to say above the 

BRIEF SUMMARY 

[ 0008 ] A subject of the present disclosure is a method for 
estimating a mapping of the concentration of an analyte in 
an environment , on the basis of sensors distributed in the 
environment , 

[ 0009 ] each sensor generating a measurement of the 
analyte concentration at various measurement instants , 
the measurements carried out by each sensor at each 
measurement instant forming an observation vector , 
each term of which corresponds to a measurement 
arising from a sensor ; 

[ 0010 ] the environment forming the subject of a spatial 
mo ing defining a plurality of mesh cells , the concen 
tration or the quantity of the analyte at the level of each 
mesh cell , at each measurement instant , forming a 
vector , the so - called state vector , each term of which 
corresponds to a concentration or to a quantity of 
analyte in a mesh cell ; 

the method comprising the following steps : 
[ 0011 ] a ) on the basis of the measurements performed 

by each sensor , obtaining of a , so - called measured , 
observation vector at a measurement instant ; 

[ 0012 ] b ) obtaining of a state vector at the measurement 
instant and , on the basis of the state vector , estimation 
of an observation vector at the measurement instant ; 

[ 0013 ] c ) comparison of the estimation , obtained in step 
b ) , of the observation vector with the measured obser 
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vation vector resulting from step a ) , and , on the basis of 
the comparison , determination of a global bias at the 
measurement instant , the global bias being a scalar 
representative of the comparison between several terms 
respectively of the estimated observation vector and of 
the measured observation vector ; 

[ 0014 ] d ) correction of the state vector arising from step 
b ) as a function of the global bias obtained during step 
c ) , so as to obtain a so - called debiased state vector at 
the measurement instant ; 

[ 0015 ] e ) on the basis of the debiased state vector 
obtained during step d ) , debiased estimation of the 
observation vector at the measurement instant ; 

[ 0016 ] f ) comparison of the debiased estimation of the 
observation vector resulting from step e ) with the 
measured observation vector resulting from step a ) , 
and , on the basis of the comparison , determination of a 
local correction vector ; and 

[ 0017 ] g ) updating of the state vector at the measure 
ment instant , the latter being replaced with a sum of the 
debiased state vector resulting from step d ) with the 
local correction vector resulting from step f ) , the updat 
ing of the state vector making it possible to estimate the 
mapping of the concentration of the analyte in various 
mesh cells of the environment . 

[ 0018 ] The global bias determined during step c ) is pref 
erably a scalar , the latter being subtracted from each term of 
the state vector during step d ) . Step d ) is therefore a global 
correction step . 
[ 0019 ] The analyte can be a molecule or a particle , dis 
persed in a gas . It is generally an analyte considered to be 
harmful to the environment or the population . The environ 
ment can be a geographical area , such as an urban area , the 
air of which may be affected by pollution . 
[ 0020 ] The local correction vector is a vector whose terms 
may differ from one another , and are so quite generally . At 
least two terms of the local correction vector differ from one 
another . Step g ) is therefore a local correction step , the state 
vector being updated as a function of local variations of the 
analyte concentration . 
[ 0021 ] The method can comprise one of the following 
characteristics , taken in isolation or in combination : 

[ 0022 ] during step b ) , the observation vector is esti 
mated by applying a matrix , the so - called observation 
operator , to the state vector . This matrix makes it 
possible to interpolate the values of the state vector at 
each position respectively occupied by the various 
sensors . Each term of the state vector is associated with 
a mesh cell and with a sensor , the term being all the 
higher the closer the mesh cell is to the sensor . 

[ 0023 ] Step c ) , comprises the following sub - steps : 
[ 0024 ] ci ) ci ) establishment of comparisons , for 

example , in the form of a subtraction or of a ratio , 
between various terms of the observation vector 
estimated during step b ) and of the observation 
vector measured during step a ) ; 

[ 0025 ] cii ) calculation of an average or median value 
of each comparison resulting from sub - step ci ) ; and 

[ 0026 ] ciii ) obtaining of the global bias on the basis 
of the average or median value resulting from sub 
step cii ) . 

[ 0027 ] Step d ) comprises a subtraction of the global bias 
from various terms , and preferably from each term , of 
the state vector . 

[ 0028 ] During step e ) , the debiased estimation of the 
observation vector is obtained by applying a matrix , the 
so - called observation operator , to the debiased state 
vector . 

[ 0029 ] During step f ) , the correction vector is deter 
mined according to the following sub - steps : 
[ 0030 ] fi ) establishment of a comparison vector , 

resulting from a comparison , term by term , in the 
form of a subtraction or of a ratio , between the 
observation vector resulting from step a ) and the 
debiased estimation of the observation vector result 
ing from step e ) ; 

[ 0031 ] fii ) taking into account of a gain matrix , each 
term of which is associated with a mesh cell and with 
a sensor , the term being all the higher the closer the 
mesh cell is to the sensor ; and 

[ 0032 ] fiii ) application of the gain matrix to the 
comparison vector so as to form a correction vector . 

[ 0033 ] Subsequent to step g ) , the method comprises a 
step h ) of iterative updating of the state vector , with 
each iteration there being associated an iteration rank , 
step h ) comprising the following sub - steps : 
[ 0034 ] hi ) taking into account of a gain matrix cor 
responding to the rank of the iteration ; 

[ 0035 ] hii ) determination of a comparison vector , 
associated with the rank of the iteration , by compar 
ing the observation vector resulting from step a ) with 
a vector resulting from the application of a matrix , 
the so - called observation operator , to the state vector 
resulting from step g ) , or resulting from a previous 
iteration ; 

[ 0036 ] hiii ) application of the gain matrix taken into 
account during sub - step hi ) to the comparison vector 
determined during sub - step hii ) , in such a way as to 
obtain a local correction vector associated with the 
rank of the iteration ; 

[ 0037 ] hiv ) updating of the state vector , the latter 
being replaced with a sum of the state vector result 
ing from step g ) , or from a previous iteration , with 
the local correction vector resulting from sub - step 
hiii ) ; and 

[ 0038 ] hv ) repetition of sub - steps hi ) to hiv ) or stop 
ping of the iteration . 

[ 0039 ] During step h ) , in the course of each iteration , to 
each sensor can be allotted a neighbourhood extending 
according to a maximum distance , the terms of the gain 
matrix that are associated with the sensor being non 
zero for the mesh cells situated inside the neighbour 
hood , the terms of the gain matrix that are associated 
with the mesh cells situated outside the neighbourhood 
being zero or less than the terms of the gain matrix that 
are associated with the mesh cells inside the neigh 
bourhood . 

[ 0040 ] Each term of the gain matrix is associated with 
a mesh cell and with a sensor , the value of the term 
being all the higher the closer the mesh cell is to the 
sensor . 

[ 0041 ] Each term of the observation operator is associ 
ated with a mesh cell and with a sensor , the value of the 
term being all the higher the closer the mesh cell is to 
the sensor . 

[ 0042 ] During step b ) , the state vector is formed by 
using a model established on the basis of data relating 
to the road traffic in the environment , of the topography 
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are 

of the environment as well as of meteorological data 
relating to the environment , the model resulting in an 
analyte concentration at the level of each mesh cell . It 
is , in particular , a model of OSPM type described in the 
publications cited with regard to the prior art . 

[ 0043 ] According to one embodiment , the method com 
prises the following steps : 

[ 0044 ] taking into account of a , so - called later , state 
vector at a later instant following the measurement 
instant ; and 

[ 0045 ] establishment of a correction of the later state 
vector as a function of the state vector updated , at the 
measurement instant , during step g ) or during step h ) . 

[ 0046 ] The correction can consist in the addition , to the 
later state vector , of a difference between the updated state 
vector and the state vector at the measurement instant . 
[ 0047 ] Other advantages and characteristics will emerge 
more clearly from the following descriptions of particular 
embodiments of the disclosure , which descriptions are given 
by way of non - limiting examples and represented in the 
figures listed hereinbelow . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0048 ] FIG . 1A is the plan of an urban area under study , 
within which measurement sensors are distributed . 
[ 0049 ] FIG . 1B is a mapping of an analyte , in this instance 
nitrogen dioxide , this mapping being obtained by applica 
tion of a model of OSPM type . 
[ 0050 ] FIG . 2 shows the main steps of a method according 
to the disclosure . 
[ 0051 ] FIG . 3A represents the mapping of FIG . 1B after 
taking a global bias into account . 
[ 0052 ] FIG . 3B shows a two - dimensional representation 
of the positive terms of a local correction vector . 
[ 0053 ] FIG . 3C shows a two - dimensional representation 
of the negative terms of a local correction vector . 

art , by taking into account data linked with the urban traffic , 
meteorological parameters , such as the temperature and / or 
the speed of the winds , as well as the three - dimensional 
topography of the environment , for example , the geometry 
of the streets as well as the height of the buildings between 
each street . 
[ 0056 ] Represented in FIG . 1A , in the form of dots , 
simulated locations of sensors ( 10 ) , the index p being a 
strictly positive integer designating a sensor . In the example 
represented , each sensor is a nitrogen dioxide sensor , mea 
suring a concentration cp ( t ) of this analyte at each measure 
ment instant t . The measured concentrations co ( t ) form a 
vector C ( t ) , the so - called observation vector , at the mea 
surement instant , each term of which is a concentration 
measured by a sensor at the measurement instant . The 
dimension of the vector C ( t ) is ( N ,, 1 ) , where N , represents 
the number of sensors considered . The sensors are connected 
to a processor , for example , a microprocessor , the latter 
being programmed to execute instructions to implement the 
method described in this disclosure . 
[ 0057 ] On the basis of the state vector M ( t ) and of the 
observation vector C ( t ) , the method described hereinbelow 
is aimed at updating the state vector , in such a way as to 
increase the precision of the mapping of the urban area 
considered , by taking into account the measurements per 
formed by each sensor . Indeed , certain local features , not 
taken into account by the model , may have a local influence 
on the distribution of the analyte . This may , in particular , 
entail a bottleneck . This disclosure makes it possible to take 
them into account . The main steps of the method are 
represented in FIG . 2 . 
[ 0058 ] Preferably , the distance between two adjacent sen 
sors is less than 500 m , or indeed than 200 m . Indeed , the 
method described hereinbelow is all the more effective the 
higher the number of sensors . In terms of number of sensors 
per unit area , preferably , the number of sensors is greater 
than 2 or indeed 3 per km² . On the scale of a city , recourse 
to about ten or about twenty sensors is not sufficient to 
perform a sufficiently effective updating of the mapping . 
[ 0059 ] Step 100 : acquisition of the data . 
[ 0060 ] This entails obtaining the state vector M ( t ) on the 
basis of the modelled mapping and of the observation vector 
C ( t ) on the basis of the sensors . FIG . 1B corresponds to a 
two - dimensional representation of the state vector M ( t ) , 
which representation is obtained by establishing a corre 
spondence between each term of this vector and a two 
dimensional spatial coordinate Mm ( t ) corresponding to a 
mesh cell 20m . In this example , the observation vector C ( t ) 
is obtained by simulation on the basis of concentrations 
established , at the level of each sensor 10p , on the basis of 
the model . A bias is added , as is an error term , the latter 
according to a Gaussian law . 
[ 0061 ] Step 110 : estimation of the observation vector on 
the basis of the state vector . 
[ 0062 ] This entails estimating an observation vector , 
denoted ? ( t ) , on the basis of the state vector M ( t ) . The 
estimation of the observation vector can be obtained by 
applying a matrix H , the so - called observation operator , to 
the state vector M ( t ) , in the form of a matrix product . The 
matrix H makes it possible to spatially interpolate the 
measured data forming the observation vector C ( t ) so as to 
obtain , on the basis of the state vector , estimations Cp ( t ) of 
the nitrogen dioxide concentration at the level of each sensor 
107. The matrix H is of dimension ( Np , Nm ) . With each row 

DETAILED DESCRIPTION 

[ 0054 ] FIG . 1A represents a plan of an urban area in which 
a two - dimensional mapping of the concentration of an 
analyte is modelled according to a model known from the 
prior art , for example , the OSPM model mentioned previ 
ously . In this example , the analyte is a nitrogen dioxide 
molecule . In general , the analyte is chemical molecule or 
a particle whose dispersion in the environment one wishes to 
know , that is to say a spatial distribution of its concentration 
or of its quantity . It may , in particular , be an analyte arising 
from road traffic . FIG . 1B represents a mapping of nitrogen 
dioxide in the streets of the urban area represented in FIG . 
1A . In FIG . 1B , the grey levels correspond to a nitrogen 
dioxide concentration expressed in ppb . 
[ 0055 ] On the basis of the mapping modelled in FIG . 1B , 
it is possible to define a geographical meshing of the urban 
area , and to form , on the basis of the model , a vector , the 
so - called state vector M ( t ) , each term Mm ( t ) of which 
corresponds to a nitrogen dioxide concentration modelled at 
the level of a mesh cell 20m at an instant t , for example , at 
the level of each mesh cell centre . The index m is a strictly 
positive integer designating a mesh cell . The dimension of 
the state vector M ( t ) is ( Nm , 1 ) , where Nm represents the 
number of mesh cells considered . Each term of the state 
vector is obtained by the application of a predictive model , 
such as the OSPM model described with regard to the prior 
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and with each column of the matrix H are respectively 
associated a sensor 10 , and a mesh cell 20m . The estimation 
of the observation vector ? ( t ) is obtained according to the 
expression : ? ( t ) = HxM ( t ) , ( 1 ) where x designates the matrix 
product . 
[ 0063 ] The terms of the matrix H ( p , m ) depend on the 
relative position of a sensor 10 , with respect to the various 
mesh cells 20m . When the sensor 10 , coincides with the 
centre of a mesh cell 20m , the row H ( p , . ) of the matrix H 
corresponding to the sensor 10 , comprises only O's , except 
at the level of the column corresponding to the mesh cell . In 
a general manner , the matrix is such that on a row H?p , . ) 
corresponding to a sensor , the term of each column is all the 
higher when the column is associated with a mesh cell 
situated in proximity to the sensor . Preferably , the terms of 
the matrix H lie between 0 and 1 . 
[ 0064 ] Step 120 : comparison between the observation 
vector C ( t ) and its estimation ? ( t ) and calculation of a global 
bias . 
[ 0065 ] In the course of this step , each term of the obser 
vation vector C ( t ) is compared with the term , corresponding 
to the same sensor 10p , of the estimation of the observation vector ? ( t ) resulting from step 110. The comparison can take 
the form of a term - by - term subtraction or ratio . 
[ 0066 ] On the basis of the comparison , a global bias e ( t ) 
is calculated , the bias representing , at the measurement 
instant t , a global comparison between the observation 
vector C ( t ) and its estimation ? ( t ) . The global bias is a scalar 
quantity . It may , in particular , be determined on the basis of 
an average or of a median of a comparison , term by term , of 
the vectors C ( t ) and ? ( t ) . For example , 

[ 0072 ] Step 140 : Debiased estimation of the observation 
vector . 
[ 0073 ] In the course of step 140 , the debiased state vector 
M ' ( t ) , resulting from step 130 , is fitted against the measure 
ments arising from the sensors 107. Accordingly , a so - called debiased estimation , denoted ? ' ( t ) , of the observation vector 
is calculated by applying the observation operator H accord 
ing to the expression ? " ( t ) = HxM ' ( t ) ( 4 ) , in a manner analo 
gous to step 110 . 
[ 0074 ] Step 150 : Fitting of the debiased state vector M ' ( t ) 
to the measurements . 
[ 0075 ] In the course of step 150 , a term - by - term compari 
son is performed between the debiased estimation of the observation vector ? ' ( t ) , resulting from step 140 , with the 
observation vector C ( t ) established during step 100. The 
comparison can take the form of a subtraction or of a ratio . 
From this comparison is formed a local comparison vector 
comp ( t ) . The local comparison vector comp ( t ) is of dimen 
sion ( N ,, 1 ) . In contradistinction to the debiasing step ( steps 
120 and 130 ) , the comparison is a vector quantity . Thus , 
each term comp ( t ) of the local comparison vector is such 
that comp ( t ) = C " , ( t ) -? p ( t ) ( 5 ) , the index p representing the 
rank of each term , p lying between 1 and Ny . In contradis 
tinction to the bias vector E?t ) , the terms of the local 
comparison vector comp ( t ) may differ from one another , and 
are mutually independent . 
[ 0076 ] Step 160 : updating of the state vector . 
[ 0077 ] After having formed the subject of a debiasing , 
during step 140 , the state vector forms the subject of a 
second , so - called local , correction based on the local com 
parison vector comp ( t ) formed during step 150. A matrix , the 
so - called gain matrix K , makes it possible to perform a 
weighting of the correction to be made as a function of the 
distance of a mesh cell 20m with respect to each sensor 10p . 
The gain matrix is of dimension ( Nm , Np ) . With each row and with each column of the gain matrix are respectively 
associated a mesh cell 20m and a sensor 107. The terms of a 
row K m , . ) , corresponding to a mesh cell 20m , are all the 
higher the closer a sensor 10p , corresponding to a column , is 
to the mesh cell . The terms Kím , p ) of a gain matrix are 
preferably less than or equal to 1 . 
[ 0078 ] The updating of the state vector is performed 
according to the following expression : 

M * ( t ) = M ( t ) + Kxcomp ( t ) = M ( t ) + Kx ( C ( t ) -? " ( t ) ) ( 6 ) 

( 2 ) 
e ( t ) = ( 1 ) - ( 0 ) Np p = 1 

where Cy ( t ) and ?? ( t ) are respectively a term of rank p of the 
vectors C ( t ) and C ( t ) , corresponding to one and the same 
sensor 10p . 
[ 0067 ] Step 130 : debiasing of the state vector . 
[ 0068 ] In the course of this step , the state vector M ( t ) is 
corrected of the global bias e ( t ) , by subtracting the global 
bias from each term of the state vector . A so - called debiased 
state vector denoted M ' ( t ) is then obtained . 
[ 0069 ] Thus , M ' ( t ) = M ( t ) -E ( t ) ( 3 ) where E ( t ) is a bias 
vector , of dimension ( Nm , 1 ) , each term of which is equal to 
the global bias e ( t ) . The term debiased signifies unbiased . 
The term debiasing signifies removal of the bias . 
[ 0070 ] This step forms a first correction of the state vector , 
on the basis of a global bias calculated on the basis of the 
observations obtained by the sensors 10p . Such a bias may 
be due to emissions affecting the whole urban area under 
study , and originating , for example , from urban heating , or 
a diffuse pollution . The inventors have observed that taking 
a global bias such as this into account allowed an appre 
ciable improvement in the precision of the state vector M ( t ) . 
[ 0071 ] FIG . 3A shows a two - dimensional representation 
of the debiased state vector M ' ( t ) . In this example , the value 
of the bias rises to 9.2 ug / m² . To each point of this figure 
there corresponds a mesh cell 20m and a term of the M'm ( t ) 
debiased state vector . 

= M ( t ) + Kx ( C ( t ) -HxM ( t ) ) ( 6 ' ) 

M * ( t ) corresponds to the updated state vector , making it 
possible to obtain a more realistic mapping of the pollutant . 
[ 0079 ] This operation is equivalent to applying a local 
correction vector corr ( t ) to the debiased state vector M ' ( t ) so 
as to obtain a corrected ( or updated ) state vector M * ( t ) . The 
local correction vector is of dimension ( N , 1 ) and corre 
sponds to the application of the gain matrix to the local 
comparison vector comp ( t ) , according to the expression : 

corr ( t ) = Kx ( C ( t ) -? " ( t ) ) = Kxcomp ( t ) = Kx ( C ( t ) -HxM ( t ) ) ( 6 " ) 
[ 0080 ] In contradistinction to the debiasing step , the local 
correction vector is not uniform . 
[ 0081 ] In the course of this step , the correction of the state 
vector is not uniform , as during the debiasing , but differs 
from one term of the state vector to another . FIGS . 3B and 
3C illustrate this aspect , and represent respectively the 
positive and negative terms of the correction vector corr ( t ) 
at the various mesh cells of the mapping . It is observed that 
the correction is local , the correction being more significant 
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in certain parts than in others . It may be negative in certain 
parts , and positive in other parts . 
[ 0082 ] The method makes it possible , through a suffi 
ciently high density of sensors , to obtain a mapping taking 
account of local features of the traffic , for example , the 
occurrence of a bottleneck . The combination between the 
taking into account of a global bias , followed by a local 
correction step , makes it possible to improve the spatial 
resolution of the mapping arising from the updated state 
vector . In particular , it makes it possible to take account of 
local evolutions , affecting only a few mesh cells 20m . The 
mapping obtained is thus more reactive in regard to the 
occurrence of local features . 
[ 0083 ] According to one embodiment , forming the subject 
of step 170 the updating of the state vector K is performed 
iteratively , by modifying the gain matrix at each iteration . 
Let n be the rank of each iteration and let Kn be the gain 
matrix associated with each iteration , step 170 comprises an 
updating of the state vector resulting from step 160 , or from 
a previous iteration n - 1 in such a way that : 

Mn * ( t ) = Mn - 1 ( t ) + K , xcompn ( t ) ( 7 ) 

n , 

where : 
a is a term representing an error between the observations 
and the model . a is a predefined scalar and may , for 
example , be equal to 0.1 . 
[ 0092 ] Thus , with each sensor 10 , is associated a neigh 
bourhood Vn.p , whose extent depends on the maximum 
radius of influence Rmp associated with the sensor 10p . It is 
considered that the concentrations of the analyte in the mesh 
cells 20m that are situated in this neighbourhood are 
impacted by the measurement arising from the sensor 10p . 
The more the iteration rank increases , the more the maxi 
mum radius of influence Rn , corresponding to one or more 
sensors 10 , decreases . For example , it is assumed that the 
maximum radius of influence is identical at each sensor 
Rnp = R ,. During the first iteration ( n = 1 ) , Rn = 1 is fixed at 500 
metres . During the second and third iterations R = 2 and R = 3 
are fixed at 300 m and 100 m respectively . 
[ 0093 ] According to a variant , the neighbourhood V , 
associated with a sensor 10p , that is to say the mesh cells 20 , 
at the level of which the concentration may be influenced by 
a measurement performed by the sensor , is not circular , but 
exhibits a predetermined shape , taking account of the topog 
raphy , and , in particular , the presence of buildings around 
the sensor and / or of the dimensions of a street in which the 
sensor is placed . The neighbourhood of a sensor situated in 
a street may , for example , extend in a significant manner in 
a direction parallel to the axis of the street and in a lesser 
manner in a direction perpendicular to the axis of the street . 
[ 0094 ] According to one embodiment , on the basis of an 
updated state vector , whether it be the state vector M * ( t ) 
updated during step 160 or a state vector M , * ( t ) updated 
iteratively in the course of step 170 , the method can com 
prise a step 200 of forecasting the state vector at a later 
instant t + dt following the measurement instant t . Accord 
ingly , use is made of a state vector M ( t + dt ) provided by the 
model , in this instance the OSPM model . The time interval 
dt can be of the order of an hour . The state vector M ( t + dt ) 
can then be corrected using the state vector updated at the 
measurement instant t , according to the following expres 
sion : 

With compr ( t ) = C ( t ) -HxMn - 1 * ( t ) ( 8 ) , where : 

[ 0084 ] comp , ( t ) is a comparison vector associated with 
the iteration of rank n ; 

[ 0085 ] M , * ( t ) is the state vector updated in the course 
of the iteration of rank n ; 

[ 0086 ] C ( t ) is the previously defined measured obser 
vation vector ; and 

[ 0087 ] His the previously defined observation operator . 
[ 0088 ] Step 170 is repeated until an iteration criterion is 
attained . Such a criterion may be a predetermined number 
N , of iterations , or a sufficiently small disparity between two 
successive updates of the state vector M , * ( t ) , Mn + 1 * ( t ) . 
[ 0089 ] Each gain matrix K , can be determined in the 
course of each iteration n , as a function of a weight w , 
assigned to each iteration , the indices m and p representing 
respectively a row and a column of the gain matrix Kn . The 
weight is defined according to the following expression : 

?? 

M * ( t + dt ) = ( M ( t + dt ) -M ( t ) ) + M , * ( t ) ( 12 ) , or 

RAM where : ( 9 ) wm.p > 

+ Pm , p 

[ 0090 ] Rp is a maximum radius of influence associ 
ated with each sensor 10p ; for example , the radius of 
influence of a sensor disposed in the middle of a town 
square may be higher than the radius of influence of a 
sensor disposed in a narrow street ; and 

[ 0091 ] m.p is a distance between a sensor 10 , and a 
mesh cell 20m 

The value of each term K , ( m , p ) is then such that : 

M * ( t + dt ) = ( M ( t + dt ) -M ( t ) ) + M * ( t ) ( 12 ' ) 

[ 0095 ] Thus , the local correction performed on the model 
M ( t + dt ) depends on a variation between the state vectors at 
the respective measurement instants t and t + dt , and on the 
state vector updated at the measurement instant t , whether it 
be M . * ( t ) or M * ( t ) . It is observed that the correction of the 
later state vector does not require any new measurements , 
and is performed with respect to the state vector updated at 
the measurement instant . 
[ 0096 ] Although described with regard to nitrogen diox 
ide , the present disclosure will be able to be implemented 
with other analytes , and , in particular , with polluting mol 
ecules or particles . Moreover , in the above example , the state 
vector established is of OSPM type , but other models known 
to the person skilled in the art may be applied to form the 
state vectors at each measurement instant . 

1. A method for estimating a mapping of a concentration 
of an analyte in an environment , using sensors distributed in 
the environment : 

each sensor generating a measurement of an analyte 
concentration at various measurement instants , the 
measurements carried out by each sensor at each mea 

Kn ( m , p ) = 0 if i'm , p > Rnp ( 10 ) 

wimp ( 11 ) 
Kn ( m , p ) = if I'm , p < Rnp 102 - ? wm.p ) 
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surement instant forming an observation vector , each 
term of which corresponds to a measurement arising 
from a sensor of the sensors ; 

the environment being spatially meshed with a plurality of 
mesh cells , the analyte concentration at each mesh cell , 
at each measurement instant , forming a state vector , 
each term of which corresponding to an analyte con 
centration in a mesh cell ; 

the method comprising , using a processor : 
a ) obtaining a measured observation vector at a measure 
ment instant , using the measurements performed by 
each sensor ; 

b ) obtaining a state vector at the measurement instant and , 
using the state vector , estimating an observation vector 
at the measurement instant ; 

c ) comparing the estimation of the observation vector , 
obtained in b ) , with the measured observation vector 
resulting from a ) , and , on the basis of the comparison , 
determining a global bias at the measurement instant , 
the global bias being a scalar representative of a 
comparison between several terms of the estimated 
observation vector and of the measured observation 
vector respectively , 

d ) correcting the state vector obtained in b ) with the global 
bias obtained in step c ) , so as to obtain a debiased state 
vector at the measurement instant ; 

e ) on the basis of the debiased state vector obtained in d ) , 
obtaining a debiased estimation of observation vector at 
the measurement instant ; 

f ) comparing the debiased estimation of the observation 
vector resulting from e ) with the measured observation 
vector resulting from a ) , and , on the basis of the 
comparison , determining of a local correction vector ; 
and 

g ) updating the state vector at the measurement instant , 
the latter being replaced with a sum of the debiased 
state vector resulting from d ) and the local correction 
vector resulting from f ) , the updating of the state vector 
making it possible to estimate the mapping of the 
concentration of the analyte in various mesh cells . 

2. The method according to claim 1 , wherein b ) , the 
observation vector is estimated by applying an observation 
matrix to the state vector . 

3. The method according to claim 1 , wherein c ) com 
prises : 

ci ) establishing comparisons between various terms of the 
observation vector estimated in b ) and of the observa 
tion vector measured in a ) ; 

cii ) calculating an average or median value of each 
comparison resulting from ci ) ; and 

ciii ) obtaining the global bias on the basis of an average 
or a median value resulting from cii ) . 

4. The method according to claim 1 , wherein d ) comprises 
subtracting of the global bias from each term of the state 
vector . 

5. The method according to claim 1 , wherein in e ) , the 
debiased estimation of the observation vector is obtained by 
applying an observation matrix to the debiased state vector . 

6. The method according to claim 1 , wherein f ) comprises : 
fi ) establishing a comparison vector , resulting from a 
comparison , term by term , between the observation 
vector resulting from a ) and the debiased estimation of 
the observation vector resulting from e ) ; 

fii ) taking into account of a gain matrix ; and 

fiii ) applying the gain matrix to the comparison vector so 
as to form the correction vector . 

7. The method according to claim 2 , wherein , following 
g ) , the method further comprises : 

h ) iteratively updating the state vector , each iteration 
being associated to an iteration rank , the method further 
comprising : 
hi ) taking into account a gain matrix corresponding to 

the iteration rank ; 
hii ) determining a comparison vector , associated with 

the iteration rank , by comparing the observation 
vector resulting from a ) with a vector resulting from 
the application of the observation matrix to the state 
vector resulting from g ) , or to the state vector result 
ing from a previous iteration ; 

hiii ) applying the gain matrix of hi ) to the comparison 
vector determined in hii ) , so as to obtain a local 
correction vector associated with the iteration rank ; 

hiv ) updating the state vector , the latter being replaced 
with a sum of the state vector resulting from g ) , or 
from a previous iteration , with the local correction 
vector resulting from hiii ) ; and 

hv ) repeating hi ) to hiv ) or stopping of the iteration . 
8. The method according to claim 6 , wherein each term of 

the gain matrix is associated with a mesh cell and with a 
sensor , a value of the term being all the higher the closer the 
mesh cell is to the sensor . 

9. The method according to claim 7 , wherein each term of 
the gain matrix is associated with a mesh cell and with a 
sensor , a value of the term being all the higher the closer the 
mesh cell is to the sensor . 

10. The method according to claim 1 , wherein b ) com 
prises forming the state vector by using a model established 
on the basis of data relating to the road traffic in the 
environment , of the topography of the environment as well 
as of meteorological data relating to the environment , the 
model resulting in a concentration of the analyte at the level 
within each mesh cell . 

11. The method according to claim 1 , further comprising : 
taking into account of a later state vector with respect to 

a later instant following the measurement instant ; and 
correcting the later state vector as a function of the state 
vector updated , at the measurement instant , during g ) . 

12. The method according to claim 7 , comprising the 
following steps : 

taking into account of a later state vector with respect to 
a later instant following the measurement instant ; and 

correcting the later state vector as a function of the state 
vector updated , at the measurement instant , during step 
h ) . 

13. The method according to claim 2 , wherein each term 
of the observation matrix is associated with a mesh cell and 
with a sensor , a value of the term being all the higher the 
closer the mesh cell is to the sensor . 

14. The method according to claim 5 , wherein each term 
of the observation matrix is associated with a mesh cell and 
with a sensor , a value of the term being all the higher the 
closer the mesh cell is to the sensor . 

15. The method according to claim 7 , wherein each term 
of an observation matrix is associated with a mesh cell and 
with a sensor , a value of the term being all the higher the 
closer the mesh cell is to the sensor . 


