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ing taking into account sensor noise, sensor availability,
obstacle heights, and distance of obstacles from the sensor.
System and method can include determining surface planes
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and classifying point cloud points according to whether or
not the points fall on surface planes, among other factors.
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FIG. 4
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FIG. 5
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FIG. 6
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FIG. 13
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FIG. 14A
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FIG. 15
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SYSTEM AND METHOD FOR FREE SPACE
ESTIMATION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This utility patent application claims the benefit of
U.S. Provisional Patent Application Ser. No. 62/879,391
filed Jul. 26, 2019, entitled System and Method for Free
Space Estimation (Attorney Docket #AA027), which is
incorporated herein by reference in its entirety.

BACKGROUND

[0002] Vehicles travel on surfaces that are determined by
their human operators to include free, unobstructed space.
Humans use a complicated set of criteria to determine
whether or not to traverse a path in or on a vehicle.
Considerations can include how high an obstacle is, how
much of the obstacle can be seen by the human, areas around
the vehicle that the human cannot visualize, and how accu-
rate the human’s visioning system is at detecting obstruc-
tions given any number of factors such as, but not limited to,
ambient lighting, weather, and windshield issues.

[0003] Navigating obstructions in an autonomous vehicle
can require evaluating electronically some of the same
complicated criteria routinely encountered by a human
vehicle operator. Unobstructed (free) space must be quickly
determined from available sensor data for the autonomous
vehicle to continuously proceed along a navigation path.
Previously, free space has been estimated from stereo cam-
era data, from a sequence of images in a video acquired by
a camera system, and from millimeter wave radar data,
among other ways.

[0004] What is needed is an efficient system that com-
putes, from sensor data, the probability that the path is
obstructed. The sensor collecting the sensor data can be
mounted upon the autonomous vehicle, for example. What
is needed is a system that takes into account the realities of
road travel and sensor limitations.

SUMMARY

[0005] The system and method of the present teachings for
assigning free space probabilities in point cloud data asso-
ciated with an autonomous vehicle traveling on a surface
includes taking into account sensor noise, sensor availabil-
ity, obstacle heights, and distance of obstacles from the
sensor. The method of the present teachings can include, but
is not limited to including, receiving the point cloud data
from a sensor. The sensor can include a sensor beam, and the
sensor beam can project at least from the sensor to the
surface. In some configurations, the sensor can scan the area
surrounding the autonomous vehicle, collecting data in a
cone from the surface spanning a pre-selected angle. The
method can include segmenting the point cloud data into
segments of a first pre-selected size, and locating planes,
plane points in the planes, and non-plane points associated
with at least one of the plane points within the point cloud
data. The method can include determining normals to the
plane points and determining the non-plane points associ-
ated with the plane points. The method can include choosing
at least one of the planes as a surface plane according to
pre-selected criteria based at least on the normals and the
location of the sensor, classifying each of the plane points as
an obstacle point based at least on the associated non-plane
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points, and determining obstacle height associated with the
obstacle points based at least on the non-plane points. The
method can include creating a grid from the surface planes.
The grid can include a pre-selected number of cells and a
perimeter. The method can include computing a measure-
ment significance for each of the cells based at least on the
obstacle heights in the cells, and determining a blind dis-
tance from the sensor based at least on an intersection
between the sensor beam and the surface plane. For each cell
along each line between the blind distance and the perimeter,
the method can include computing an initial probability of
obstacles occupying the cell along the line. The initial
probability can be based at least on availability of the sensor,
the obstacle points in the cell, and a position of the cell along
the line with respect to the sensor. For each cell along each
line between the blind distance and the perimeter, the
method can include computing a noise factor based at least
on a first distance between the sensor and a closest of the
obstacles along the line in the cell, a second distance
between the sensor and the cell along the line, the measure-
ment significance for the cell along the line, the initial
probability for the cell along the line, and a default prob-
ability. For each cell along each line between the blind
distance and the perimeter, the method can include comput-
ing a current probability of the obstacles occupying the cell
along the line. The current probability can be based at least
on the initial probability for the cell and the noise factor for
the cell.

[0006] The first pre-selected size can optionally include a
shape about the size of 40 mx40 mx2 m. The pre-selected
criteria can optionally include choosing the surface plane
when the normals of the at least one plane do not face the
sensor. The pre-selected number of cells can optionally
include 400x400. Computing the initial probability can
optionally include (a) if the sensor is unavailable and the cell
is a near cell, the near cell being near the blind distance, the
initial probability of the cell can optionally equal 1.0, (b) if
the sensor is unavailable and the cell is between the near cell
and the perimeter, the initial probability of the cell can
optionally equal 0.5, (¢) if the sensor is available and there
is at least one of the obstacle points in the cell, or if one of
the cells along the line that was previously encountered
included at least one of the obstacle points, the initial
probability of the cell can optionally equal 0.5, and (d) if the
sensor is available and there are none of the obstacle points
in the cell and none of the cells previously encountered
along the line included at least one of the obstacle points, the
initial probability of the cell can optionally equal 0.3. The
noise factor can optionally equal ((measurement signifi-
cance/(0v2m))+0.5-the initial probability of the cell)*exp
(-0.5%((d-Z,)/c)*), where d—the second distance, Z~the
first distance, and 0=Z7%0.001. Computing the current
probability can optionally equal the sum of the noise factor
of the cell and the initial probability of the cell. The at least
one plane can optionally include the non-plane points up to
a first pre-selected distance from the at least one plane. The
first pre-selected distance can optionally include 2 m.

[0007] The system of the present teachings for assigning
free space probabilities from point cloud data can include,
but is not limited to including, a sensor having a sensor
beam. The sensor beam can project at least from the sensor
to the surface. The system can include a segment processor
receiving the point cloud data from the sensor. The segment
processor segmenting the point cloud data into segments of
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a first pre-selected size. The system can include a plane
processor locating, within the point cloud data, planes, plane
points in the planes, and non-plane points associated with at
least one of the plane points. The system can include a
normals processor determining normals to plane points and
determining the non-plane points associated with the plane
points. The normal processor can choose at least one of the
planes as a surface plane according to pre-selected criteria
based at least on the normals and the location of the sensor.
The normals processor can classify each of the plane points
as an obstacle point based at least on the associated non-
plane points. The normals processor can determine obstacle
height associated with the obstacle points based at least on
the non-plane points. The system can include a grid proces-
sor creating a grid from the surface planes. The grid can
include a pre-selected number of cells and a perimeter. The
system can include a line sweep processor that can include
a measurement significance processor. The measurement
significance processor can compute a measurement signifi-
cance for each of the cells based at least on the obstacle
heights in the cells, The line sweep processor can include an
initial probabilities processor determining a blind distance
from the sensor based at least on an intersection between the
sensor beam and the surface plane. For each cell along each
line between the blind distance and the perimeter, the initial
probabilities processor can include computing an initial
probability of obstacles occupying the cell along the line.
The initial probability can be based at least on the avail-
ability of the sensor, the obstacle points in the cell, and a
position of the cell along the line with respect to the sensor.
The line sweep processor can include a noise factor proces-
sor. For each cell along each line between the blind distance
and the perimeter, the noise factor processor can compute a
noise factor based at least on a first distance between the
sensor and a closest of the obstacles along the line in the cell,
a second distance between the sensor and the cell along the
line, the measurement significance for the cell along the line,
the initial probability for the cell along the line, and a default
probability. The line sweep processor can include a current
probabilities processor. For each cell along each line
between the blind distance and the perimeter, the current
probabilities processor can compute a current probability of
the obstacle points occupying the cell along the line. The
current probability can be based at least on the initial
probability for the cell and the noise factor for the cell.

[0008] In some configurations, the method for assigning
free space probabilities in sensor data for an autonomous
vehicle can include, but is not limited to including, deter-
mining at least one surface plane in the sensor data, where
the at least one surface plane can be associated with a
surface where the autonomous vehicle is traveling. The
method can include determining obstacles, if any, and
heights of the obstacles, if any, in the sensor data associated
with the at least one surface plane, and determining a blind
distance from the autonomous vehicle based at least on a
dimension of the autonomous vehicle. The method can
include creating a grid on the at least one surface plane,
where the grid can include a pre-selected number of cells
and a perimeter. For each cell along each line on the at least
one surface plane between the blind distance and the perim-
eter, the method can include computing an initial probability
of the obstacles occupying the cell along the line. The initial
probability can be based at least on availability of the sensor
data, the obstacles in the cell, and a position of the cell along
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the line with respect to the autonomous vehicle. For each
cell along each line between the blind distance and the
perimeter, the method can include computing a noise factor
based at least on a first distance between the autonomous
vehicle and a closest of the obstacles along the line in the
cell, a second distance between the autonomous vehicle and
the cell along the line, the obstacle heights for the cell along
the line, the initial probability for the cell along the line, and
a default probability. For each cell along each line between
the blind distance and the perimeter, the method can include
computing a current probability of the obstacles occupying
the cell along the line, the current probability being based at
least on the initial probability for the cell and the noise factor
for the cell.

[0009] The pre-selected number of cells can optionally
include 400x400. Computing the initial probability can
optionally include (a) if the sensor data are unavailable and
the cell is a near cell, the near cell being near the blind
distance, the initial probability of the cell can optionally
equal 1.0, (b) if the sensor data are unavailable and the cell
is between the near cell and the perimeter, the initial
probability of the cell can optionally equal 0.5, (c) if the
sensor data are available and there is at least one of the
obstacles in the cell, or if one of the cells along the line that
was previously encountered included at least one of the
obstacles, the initial probability of the cell can optionally
equal 0.5, and (d) if the sensor data are available and there
are none of the obstacles in the cell and none of the cells
previously encountered along the line included at least one
of obstacles, the initial probability of the cell can optionally
equal 0.3. Computing the noise factor can optionally equal
((0.09%28.2*%2 the obstacle heights in the cell/(o
v27))+0.5—the initial probability of the cell)*exp(-0.5*((d-
Z)/c)?), wherein d=the second distance, Z,~the first dis-
tance, and 0=77%0.001. Computing the current probability
can optionally equal the sum of the noise factor of the cell
and the initial probability of the cell. The at least one surface
plane can optionally include non-plane points up to a first
pre-selected distance from the at least one surface plane. The
first pre-selected distance can optionally include 2 m. The
method can optionally include determining the obstacle
heights based at least on the non-plane points.

[0010] In another configuration, free space estimation
from LIDAR data, where the LIDAR data includes rings,
can include, but is not limited to including, receiving
LIDAR data, and filtering a pre-selected number of points in
each ring. Filtering can include identifying a median value
in each pre-selected number of points and retaining points
that are within a pre-selected range from the median. Among
the retained points can be discontinuities in which the
Cartesian distance between the points is greater than a
pre-selected value. Points that are between the discontinui-
ties are labeled as good points if they have passed the
median filter. Good points can be expected to have low
sensor noise. Where the number of good points between
discontinuities is greater than a pre-selected value, then
those good points are retained. Discontinuities, or break
points, can be found at the edges of features, so that when
there is a sudden change in the distance between points, an
edge could be found.

[0011] At this point, each of the filtered points can be
associated with a LIDAR ring. The filtered point data can be
divided sections of 64 points each. A random section is
selected, and two points from the random section can be
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chosen. The two points can be intelligently chosen based on
how the points were labeled in the filtering process, i.e. good
points and break points. For example, two points between
the same two discontinuities can be chosen. A third point is
chosen from an adjacent ring, and a plane is formed from the
three points. The plane is evaluated with respect to certain
pre-selected criteria according to an algorithm that can
eliminate planes that are not significant, or are not interest-
ing. All points on the adjacent LIDAR ring (the LIDAR ring
corresponding to third point) that are within the azimuth
range of first two points are evaluated as candidates to be
included in the first growth stage. The plane equation is
calculated with the updated set of points. Then the points are
evaluated again to grow this plane along the points data
structure axes that correspond to LIDAR rings and azimuth
angles respectively. At each growth stage, the orientation
and residual error of the plane are checked. Residual error is
calculated as a plane is fitted to a set of points, and
orientation is the angle check between the gravity vector and
the normal vector of the plane. Growth on each side is done
until the residual error for the new set of points along a
direction, for example, growing towards an outward ring
would check the residual error of the new set of points being
added from that ring, is above the threshold set, or until the
edge of the point cloud is reached. When growing stops, the
orientation and residual error are checked again, and the
planes are classified as either valid (orientation angle with
respect to the gravity vector and residual error within a
pre-selected threshold range) or invalid. If valid, in some
configurations, the plane can be assigned a score. Additional
checks are completed to filter the planes further. For
example, the number of times the process outline herein
occurs can be compared to a desired maximum that can be
configured. The planes can be tested against ground plane
criteria according to, for example, but not limited to, a
scoring algorithm that can be used to assess the quality of the
planes.

[0012] The final set of planes is used to compare LIDAR
data against to determine if the LIDAR data represent
ground data or obstacle data. The planes are transformed to
the frame of reference of the autonomous vehicle, referred
to herein as the baselink frame, and a new plane equation is
created. The optimum situation is if there is a plane in all
directions, i.e. in front of the autonomous vehicle, behind the
autonomous vehicle, to the left of the autonomous vehicle
and to the right of the autonomous vehicle. If any plane is
missing, a plane from a previous time when synchronized
LIDAR data and corresponding ground planes were received
may be used until the plane becomes stale. If a plane is stale,
then no points are fitted in the direction of the stale plane. If
there is no plane in any direction, a default X/Y plane can be
used. In some configurations, if a plane has not been
detected for a period of seven iterations, a default plane in
which z+d=0 can be used.

[0013] Now that the ground planes are ready for compari-
son, the LIDAR points that don’t fall within a pre-selected
boundary, or that are above a certain height, are filtered from
the LIDAR data. The remaining points are transformed to
the autonomous vehicle frame of reference, and points that
are located in the blind spot of the LIDAR are filtered out.
The transformed points are classified according to whether
or not they are within one of the previously-determined
ground planes. If the points fall on the ground planes, they
are marked as free space, otherwise, classified as an
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obstacle. The points are located on a grid map. If there is
already an obstacle at that location, the heights of the
obstacles are added together and the number of obstacles at
the location is incremented. For each location on the grid
mayp, the probability of occupancy for each cell in the grid
map depends upon distance of the cell to the sensor, LIDAR
noise, measurement significance, whether the cell is on an
obstacle, the presence of a measurement, free space and if
the LIDAR is blocked. The probability of occupancy as
computed herein follows a Gaussian probability. Logodds of
the location’s being occupied is computed over the prob-
ability of occupancy. The logodds increases when the
obstacle is closer to the autonomous vehicle and decreases
as the obstacle is farther away from the autonomous vehicle.
Beyond the LIDAR range, the logodds are marked as
infinite.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The present teachings will be more readily under-
stood by reference to the following description, taken with
the accompanying drawings, in which:

[0015] FIGS. 1A-1C are flowcharts of the process of the
present teachings;

[0016] FIG. 2 is a schematic block diagram of the system
of the present teachings; and

[0017] FIG. 3 is a pictorial diagram of sensor configura-
tion of the present teachings;

[0018] FIG. 4 is a pictorial diagram of segmented point
cloud data of the present teachings;

[0019] FIG. 5 is a pictorial diagram of planes within the
segmented data of the present teachings;

[0020] FIG. 6 is a pictorial diagram of normals of the
present teachings;

[0021] FIG. 7 is a pictorial diagram of obstacle points of
the present teachings;

[0022] FIG. 8 is a pictorial diagram of the obstacle grid,
blind radius, and sensor beam of the present teachings;
[0023] FIG. 9 is a pictorial diagram of initial probabilities
of the present teachings;

[0024] FIG. 9A is a pictorial diagram of probabilities
when the sensor is unavailable;

[0025] FIG. 9B is a pictorial diagram of probabilities
when the sensor is available;

[0026] FIG. 9C is a pictorial diagram of probabilities
when the sensor is available and a cell includes an obstacle;
[0027] FIG. 10 is a pictorial diagram of current probabili-
ties of the present teachings;

[0028] FIGS. 11A and 11B are flowcharts of the method of
the present teachings;

[0029] FIG. 12A is a photographic representation of
LIDAR rings around an autonomous vehicle;

[0030] FIG. 12B is a pictorial representation of steps of the
method of the present teachings;

[0031] FIG. 13 is a photographic representation of point
choices on a LIDAR ring;

[0032] FIG. 14A is a photographic representation of point
choices on adjacent LIDAR rings;

[0033] FIG. 14B is a pictorial representation of further
steps of the method of the present teachings;

[0034] FIG. 15 is a photographic representation of phase
one of plane growing of the present teachings;

[0035] FIG. 16 is a photographic representation of phase
two of plane growing of the present teachings;
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[0036] FIG. 17 is a pictorial representation of a pattern of
LIDAR ring arcs formed by a ground plane discovered by
the method of the present teachings;

[0037] FIG. 18 is a pictorial representation of grid map
updating of the present teachings; and

[0038] FIG. 19 is a schematic block diagram of a second
configuration of the system of the present teachings.

DETAILED DESCRIPTION

[0039] The system and method of the present teachings
can estimate the free space surrounding an autonomous
vehicle in real time.

[0040] Referring now to FIGS. 1A-1C, free space can be
estimated from sensor data by sweeping 360 from the sensor,
which is placed at the center of a grid, to the perimeter of the
grid. Probabilities are calculated and each cell is associated
with a logodds of the occupied probability. Logodds can be
forced to zero for all cells that fall within a blind radius and
do not have a probability of being occupied. The blind radius
is the area around the sensor that is blocked by the autono-
mous vehicle. During the sweep, if a cell has already been
visited, new computations can replace previous computa-
tions. For each cell, an initial probability can be assigned to
each cell based on initially-known information, such as, for
example, but not limited to, whether the sensor beam was
blocked or the sensor data were unavailable for any reason,
and whether an obstacle can be found in the cell. For each
cell that is visited outside of the blind radius, a noise factor
can be computed. The noise factor recognizes that sensor
noise can increase based at least on the distance between the
sensor and any obstacles encountered. For each cell, the
initial probability and the noise factor can be combined to
produce a current probability for the cell, and the grid can be
populated with the logodds probabilities. One advantage of
drawing a line between the sensor and the perimeter of the
grid is that it is possible to see what the sensor detects with
a single beam. Another advantage is, if there are no valid
returns along the line, it can be assumed that the sensor was
blocked or for some other reason unavailable along that line.
[0041] Continuing to refer to FIGS. 1A-1C, method 150
for assigning free space probabilities in point cloud data,
where the point cloud data can be associated with an
autonomous vehicle traveling on a surface, the method can
include, but is not limited to including, receiving 151 the
point cloud data from a sensor. The sensor can include a
sensor beam, and the sensor beam can project at least from
the sensor to the surface. Method 150 can include segment-
ing 153 the point cloud data into segments of a first
pre-selected size, and locating 155 planes, plane points in
the planes, and non-plane points associated with at least one
of the plane points within the point cloud data. Method 150
can include determining 157 normals to plane points and
determining the non-plane points associated with the plane
points, and choosing 159 at least one of the planes as a
surface plane according to pre-selected criteria based at least
on the normals and the location of the sensor. Method 150
can include classifying 161 each of the plane points as an
obstacle point based at least on the associated non-plane
points, determining 163 obstacle height associated with the
obstacle points based at least on the non-plane points, and
creating 165 a grid from the surface planes. The grid can
include a pre-selected number of cells and a perimeter.
Method 150 can include computing 167 a measurement
significance for each of the cells based at least on the
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obstacle heights in the cells, and determining 169 a blind
distance from the sensor based at least on an intersection
between the sensor beam and the surface plane. The mea-
surement significance can optionally include a value ranging
between about 0.09 and 1.0 that can be calculated based on
the sum of all obstacle heights in that cell. The higher the
total height, the larger is the significance of the measure-
ment. In some configurations, measurement significance=0.
09*%(28.2*the sum of the obstacle heights in the cell). In
some configurations, measurement significance can be
restricted to a range of between 0.0.09 and 1.0. If 171 there
are more lines to process, and if 173 there are more cells in
a line, and if 175 the cell doesn’t have a current probability,
method 150 can include computing 179 an initial probability
of obstacles occupying the cell along the line. If 175 the cell
has a current probability, method 150 can include deleting
177 the current probability. The initial probability can be
based at least on availability of the sensor, the obstacle
points in the cell, and a position of the cell along the line
with respect to the sensor. For each cell along each line
between the blind distance and the perimeter, method 150
can include computing 181 a noise factor for the cell. The
noise factor can be based at least on a first distance between
the sensor and a closest of the obstacles along the line in the
cell, a second distance between the sensor and the cell along
the line, the measurement significance for the cell along the
line, the initial probability for the cell along the line, and a
default probability. The default probability can include, but
is not limited to including, a value of 0.5.
[0042] For each cell along each line between the blind
distance and the perimeter, method 150 can include com-
puting 183 a current probability of the obstacles occupying
the cell along the line. The current probability can be based
at least one the initial probability for the cell and the noise
factor for the cell. The first pre-selected size can optionally
include about 40 mx40 mx2 m. The pre-selected criteria can
optionally include choosing the surface plane when the
normals of the at least one plane do not face the sensor. The
pre-selected number of cells can optionally include 400x
400. Computing the initial probability can optionally include
(a) if the sensor is unavailable and the cell is a near cell, the
near cell being near the blind distance, the initial probability
of the cell=0.9, (b) if the sensor is unavailable and the cell
is between the near cell and the perimeter, the initial
probability of the cell=0.5, (c) if the sensor is available and
there is at least one of the obstacle points in the cell, or if one
of the cells along the line that was previously encountered
included at least one of the obstacle points, the initial
probability of the cell=0.5, and (d) if the sensor is available
and there are none of the obstacle points in the cell and none
of the cells previously encountered along the line included
at least one of the obstacle points, the initial probability of
the cell=0.3. Computing the noise factor can optionally
include computing:
((measurement significance/(ov2m))+0.5—the initial

probability of the cell)*exp(-0.5%((d-Z,)/0)?) (€8]
wherein
d=the second distance,
Z~the first distance, and 0=Z7,7*0.001.
[0043] For example, if Z,=10 meters, d=7 meters, and the
initial probability=0.3. In this case, 0=0.1, the exp value ~0,
making the noise factor ~0. On the other hand, if the distance
between the sensor and the observation is closer to the
distance between the sensor and the cell, the noise factor will
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be non-zero. For example, if Z,=10 meters, d=9.9 meters, the
measurement significance=0.09, and the initial probabil-
ity=0.3, then, 0=0.1, and the exp value 0.6065. The noise
factor=((0.09/(0.1*%y/2m))+0.5-0.3)*0.6065=0.339, making
sensor noise more important in determining the occupancy
probability of the cell. Computing the current probability
can optionally include adding the noise factor of the cell to
the initial probability of the cell. The at least one plane can
optionally include the non-plane points up to a first pre-
selected distance from the at least one plane. The first
pre-selected distance can optionally include about 2 m.

[0044] Referring now primarily to FIG. 2, system 100 for
assigning free space probabilities in point cloud data 117,
where point cloud data 117 can be associated with autono-
mous vehicle 203 (FIG. 3) traveling on surface 205 (FIG. 3),
system 100 can include, but is not limited to including,
sensor 125 having sensor beam 201 (FIG. 3) that can project
at least from sensor 125 to surface 205 (FIG. 3). System 100
can include LIDAR free space estimator 101 that can
include, but is not limited to including, segment processor
103 that can receive point cloud data 117 from sensor 125
and segment point cloud data 117 (FIG. 4) into segments 115
(FIG. 4) of a first pre-selected size x/y/z (FIG. 4). LIDAR
free space estimator 101 can include plane processor 105
that can locate, within point cloud segments 115 (FIG. 5),
planes 121 (FIG. 5), plane points 131 (FIG. 5) in planes 121
(FIG. 5), and non-plane points 133 (FIG. 5) associated with
at least one of plane points 131 (FIG. 5). LIDAR free space
estimator 101 can include normals processor 107 that can
determine normals 123 (FIG. 6) to plane points 131 (FIG. 6)
and can determine non-plane points 135 (FIG. 6) associated
with plane points 131 (FIG. 6). Normals processor 107 can
choose at least one of planes 121 (FIG. 6) as surface plane
122 (FIG. 7) according to pre-selected criteria based at least
on normals 123 (FIG. 6) and the location of sensor 125.
Normals processor 107 can classify each of plane points 131
as obstacle point 124 based at least on associated non-plane
points 135 (FIG. 7), and normals processor 107 can deter-
mine obstacle height 139 (FIG. 7) associated with obstacle
points 124 (FIG. 7) based at least on non-plane points 135
(FIG. 7). LIDAR free space estimator 101 can include grid
processor 109 that can create grid 119 (FIG. 8) from surface
planes 122 (FIG. 7). Grid 119 (FIG. 8) can include a
pre-selected number of cells 137 (FIG. 8) and perimeter 138
(FIG. 8). LIDAR free space estimator 101 can include line
sweep processor 111 that can include measurement signifi-
cance processor 113. Measurement significance processor
113 can compute a measurement significance for each of
cells 137 (FIG. 8) based at least on obstacle heights 139
(FIG. 7) in cells 137 (FIG. 8).

[0045] Continuing to refer primarily to FIG. 2, line sweep
processor 111 can include initial probabilities processor 116
that can determine blind distance 211 (FIGS. 3, 9) from
sensor 125 based at least on an intersection between sensor
beam 201 (FIG. 3) and surface plane 205 (FIG. 3). Initial
probabilities processor 116 can, for each cell 137 (FIG. 9)
along each line 223 (FIG. 9) between blind distance 211
(FIG. 9) and perimeter 138 (FIG. 9), compute initial prob-
ability 225 (FIG. 9) of obstacles occupying cell 137 (FIG. 9)
along line 223 (FIG. 9). Initial probability 225 (FIG. 9) can
be based at least on availability of sensor 125, obstacle
points 124 (FIG. 9), if any, in cell 137 (FIG. 9), and a
position of cell 137 (FIG. 9) along line 223 (FIG. 9) with
respect to sensor 125. Line sweep processor 111 can include
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noise factor processor 118 that can, for each cell 137 (FIG.
9) along each line 223 (FIG. 9) between blind distance 211
(FIG. 9) and perimeter 138 (FIG. 9), compute noise factor
227 (FIG. 10) based at least on first distance 229 (FIG. 10)
between sensor 125 (FIG. 10) and closest of obstacle points
124 (FIG. 10) along line 223 (FIG. 10) in cell 137 (FIG. 10),
second distance 231 (FIG. 10) between sensor 125 (FIG. 10)
and cell 137 (FIG. 10) along line 223 (FIG. 10), the
measurement significance for cell 137 (FIG. 10) along line
223 (FIG. 10), initial probability 225 (FIG. 10) for cell 137
(FI1G. 10) along line 223 (FIG. 10), and a default probability.
Line sweep processor 111 can include current probabilities
processor 119 that can, for each cell 137 (FIG. 10) along
each line 223 (FIG. 10) between blind distance 211 (FIG. 10)
and perimeter 138 (FIG. 10), compute current probability
239 (FIG. 10) of obstacle points 124 (FIG. 10) occupying
cell 137 (FIG. 10) along line 223 (FIG. 10). Current prob-
ability 239 (FIG. 10) can be based at least on initial
probability 225 (FIG. 10) for cell 137 (FIG. 10) and noise
factor 227 (FIG. 10) for cell 137 (FIG. 10). Segment 115
(FIG. 4) can optionally include a shape in which x=40 m,
y=40, and z=2 m, for example. Surface planes 122 (FIG. 7)
can optionally be chosen because their normals 123 (FIG. 6)
do not face sensor 125 (FIG. 6). Surface planes 122 (FIG. 8)
can optionally include 400 cells in an x-direction and 400
cells in a y-direction.

[0046] Referring now to FIG. 9A, when sensor 126
becomes unavailable, initial probability 225A in cell 243
along line 223 A that is nearest blind distance 211 can be set
to 1.0. Cell 241 within blind distance 211 can have a
probability set to O because the autonomous vehicle is
occupying the cell. Line 223A is the line a sensor beam
would traverse if sensor 126 were not blocked or otherwise
unavailable. When sensor 126 becomes unavailable, initial
probability 225B in cells 245 along line 223A that fall
between cell 243 and perimeter 138 can be set to 0.5.
[0047] Referring now to FIG. 9B, if sensor 125 is avail-
able, initial probability 225B can be set to 0.5 if there is at
least one of obstacle points 124 in cell 247.

[0048] Referring now to FIG. 9C, if sensor 125 is avail-
able, initial probability 225B for cell 249 can be set to 0.5
if one of the cells along line 223, for example, cell 247, that
was previously encountered during the traversal of line 223
included at least one of obstacle points 124. If sensor 125 is
available and there are none of obstacle points 124 in cell
252, for example, and none of the cells that were previously
encountered along line 223 included at least one of obstacle
points 124, initial probability 225C of cell 252 can be set to
0.3.

[0049] Referring now to FIG. 10, noise factor 227 can
depend upon the sum of all obstacle heights 139 (FIG. 7) in
cell 137, for example. Noise factor 227 can depend upon the
square of first distance Z, 229, and the difference between
first distance Z, 229 and second distance d 231, and upon
initial probability 225. Current probability 239 can be com-
puted as the sum of initial probability 225 and noise factor
227.

[0050] Referring now to FIGS. 11A and 11B, in another
configuration, free space estimation using point cloud data
can include locating ground planes from the point cloud
data, marking points from the point cloud as free space if
they are located on a ground plane, and saving obstructed
and free space designations in an occupancy grid as logodds
data. Method 250 for performing these functions can
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include, but is not limited to including, receiving 251 point
cloud data from a sensor, filtering 253 data over the data
median in one dimension, creating 255 planes and growing
planes to outliers, choosing 257 significant planes, eliminat-
ing 259 planes that do not meet threshold score for ground
planes, and transforming 261 planes to baselink coordinates.
If 263 there are not planes representing points in front of; to
the left of, to the right of, and behind the autonomous
vehicle, method 250 can include using 265 a previously-
used plane that had been available in the immediate previous
time step until the previously-used plane had been used in
this way for a pre-selected number of iterations. When the
previously-used plane has been used up to the pre-selected
number of iterations, a default plane can be used. If 263
there are planes representing points in front of; to the left of,
to the right of, and behind the autonomous vehicle, method
250 can include filtering 267 point cloud data that are not of
interest, transforming 269 point cloud points that survive the
filter to baselink coordinates, and filtering 271 transformed
points that are too close to the autonomous vehicle. If 273
a transformed and filtered point is located in a ground plane,
method 250 can include labeling 275 the point as free space,
otherwise, the point is labeled as an obstacle. Method 250
can include labeling 277 each cell on a grid map as free or
occupied, depending upon point markings, calculating 279
logodds in an occupancy grid, and setting 281 logodds to o
when the cell is beyond the point where the sensor is
occluded.

[0051] Referring now to FIG. 12A, point cloud data can be
received as 1D string 303 of points along each LIDAR ring
301 surrounding autonomous vehicle 203. In some configu-
rations, three 1D arrays can be used to store X, y, and z
points. All points along a LIDAR ring can be stored in order
of azimuth angle, and the LIDAR rings can be stored
consecutively in a row major fashion. Each of the rings can
be divided into segments of a pre-selected size, for example,
but not limited to, 64 points.

[0052] Referring now to FIG. 12B, 1D string 303 can be
filtered according to a process that can include, but is not
limited to including, filtering 1D string 303 around the
median of the points of 1D string 303 in each LIDAR data
ring. Filtering can include locating points with measured
values close to the median and eliminating the rest of the
points for this part of the analysis. In some configurations,
values that are close to the median are less than 0.1 m from
the median. The points that have passed the median filter can
be termed a first class of points. Along the median can be
found discontinuities in the point data. Discontinuities can
be identified in any suitable way, for example, but not
limited to calculating the Cartesian distance between points,
comparing the distance to a first pre-selected threshold, and
identifying discontinuities 309A/309B (FIG. 12B) or edges
of the data as a second class of points when the distance
between the points is greater than the first pre-selected
threshold. In some configurations, discontinuities arise when

abs(D2-D1)>0.08%2* 4

[0053] where

[0054] Pl1=last good point

[0055] P3=point being tested

[0056] P2/P3=consecutive points

[0057] DIl=distance between P2 and sensor
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[0058] D2=distance between P3 and sensor
[0059] 2=# of points since last good point
[0060] A=(D1+D2)/2
[0061] The points between discontinuities 309A/309B

(FIG. 12B) can be counted and labeled as a third class of
points if the number of points exceeds a second pre-selected
threshold. In some configurations, the second pre-selected
threshold can include eight points. Points lying between
other pairs of discontinuities can be discarded.

[0062] Referring now to FIG. 13, significant planes are
expected to fit the terrain around the autonomous vehicle.
They have relatively low residual error, are large enough,
and are generally representative of the ground points around
the autonomous vehicle. In some configurations, a residual
error threshold can include 0.1. To determine significant
planes, points can be chosen, such as first point 305A and
second point 305B, from points on the same ring. In some
configurations, first point/second point 305A/B can be
selected at random from the third class of points lying
between adjacent discontinuities 309A/309B. Other criteria
can be used to increase the probability that the points belong
to a significant plane.

[0063] Referring now to FIGS. 14A and 14B, third point
305C can be selected from adjacent ring 301B. Third point
305C can have an azimuth angle o that can lie between the
azimuth angles ., and a, of first point 305A and second
point 305B. First/second/third points 305A/B/C form a
plane having a defining equation that can be evaluated for its
relationship to a gravity vector. In some configurations,
evaluating the plane can include checking the orientation of
the plane by choosing planes having a normal vector no
more than 60° with respect to the gravity vector provided by,
for example, but not limited to, an inertial measurement
sensor located on the autonomous vehicle. As the planes are
grown and points are added, the orientation angle can be
scaled down to 20°.

[0064] Referring now to FIG. 15, all points remaining
from previous filter steps stated herein can be evaluated for
their inclusion in polygon 313 A. The edges of polygon 313A
can be defined by first/second points 305A/305B and rings
301A/B.

[0065] Referring now to FIG. 16, the plane can be grown
in four directions and vertically, forming polygon 313B.
Growing the plane can include evaluating points in all four
directions away from the autonomous vehicle towards rings
and along azimuth angles that are farther and farther from
originally-chosen polygon 313A of points. The plane can be
grown as described herein, and the plane equation can be
updated based on the newly-included points, and evaluated
for orientation with respect to the gravity vector. Each
direction can grow independently until the residual error for
that side breaks the threshold or if the side reaches edge 323
of'the point cloud. At that time, orientation and residual error
checks can be made and, if passed, the plane can be
classified as preliminarily significant. Additional checks like
number of points, number of growth cycles, and number of
vertical growth cycles etc. can be performed to assist in
further filtering. If a plane has experienced ten lateral growth
cycles or two vertical growth cycles and the plane is not
deemed significant, plane growth for that plane can be
terminated.

[0066] Referring now to FIG. 17, data from rings 353 can
be assessed as described herein to form planes 351. From the
set of significant planes, surface planes can be identified by
subjecting the planes to a scoring function such as, for
example, but not limited to:
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Residual Score=

100 if, residual_error< 0.001

—10000# residual_error

910
9+ (—]
9
— 1000 = residual_error 820
f + (T] if, 0.01 < residual_error< 0.1

—200 % residual_error+ 100

if, 0.001 < residual_error< 0.01

if, 0.1 < residual_error

100 if, num_vGrowth> 4

Growth Score = .
10 % num_vGrowth+ 60 if, num_vGrowth< 4

arctan(0.7 = planeArea) = 180
+

Area Score = 10
Fd
100 if, angle < 15
Angle Score =4 —20 x angle
— +200 if, angle> 15

Final Score = Residual Score + Growth Score + Area Score + Angle Score

The scoring function can be used to assess the quality of the
planes, higher scores indicate more likely candidates, and
planes that don’t meet a pre-selected threshold are discarded.

[0067] Referring now to FIG. 18, points in the ground
planes can be classified as obstacle or free space, and the
odds of occupancy at particular locations can be determined.
Ground planes can include planes to the right, left, front, and
rear of the autonomous vehicle. Each plane is defined by a
plane equation and by the type of plane it is. The coordinates
of the planes are relative to the location of the sensor and
must be transformed to the coordinate system of the autono-
mous vehicle, the baseline frame of reference. The ground
planes each have an equation of the form ax+by +cz+d=0,
where the coefficients are a, b, ¢, and d. To transform the
ground plane equations to the baselink frame of reference,
rotation and translation are required. One matrix can provide
the transformation:

ryorp o his | h 2
[Rltl=|r21 hp 3|k

131 F32 733 | I3
From the coefficients, a unity vector can be created:

a b c 3

, ,
2 2 2
\/a2+b2+02 \/a2+b2+02 \/a2+b2+02

i =

And d can be normalized:

d 4
Gnomm = @

%/a2+b2+02
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Transformed plane coefficients a, b, and ¢ are:

a’ )

Plane coefficient d can be transformed as follows:

—dporm * By Zix ©
d = [R|tlsuq| —drom * 8y | =| d,
—norm * il d,

And d and d' can be solved for in the following equation:
a’*d +b"d cd 4d'=0 @
Therefore the transformed plane equation is:
ax+b'y+c'z+d'=0 (®)

In the case in which ground planes are not found in all
directions, a previously-used plane in the corresponding
direction can be reused, unless the previously-used plane has
become stale. A stale count can be maintained for each plane
and a previously-used plane can be re-used if it has not
exceeded its stale count and if a new plane is not available
in its direction. An X/Y plane, in which plane coefficients
a=0, b=0, c=1, z+d=0, where d is obtained from the trans-
lation in z between LIDAR and baselink frame, is appended
to the list of planes in front, left, right and back by default.
This is performed as a fail-safe condition for instances when
no ground planes are detected.

[0068] Referring now to FIG. 18, the original point cloud
data can be filtered according to, for example, x distance 327
and y distance 325 from the autonomous vehicle, and height
329 above the surface. These parameters and their thresholds
can be adjusted based upon the application and the girth and
height of the autonomous vehicle. In some configurations,
the x distance can include 12.8 m and the y distance can
include 12.8 m. The z distance 329 can include a height
above which the autonomous vehicle is no longer concerned
with whatever obstacle might be present, for example, the
height of the point is high enough so that the autonomous
vehicle would not encounter the obstacle that the point
represents. Whatever points lie in the circumscribed area
between blind area 331 and boundaries 325/327, and up to
height 329, are transformed from the sensor frame of ref-
erence to the baselink frame of reference: x,;, y,; Z,;- This
transformation is obtained by multiplying LIDAR point
(x,y,z) with a transformation matrix [RIt] encompassing
rotation and translation between the two frames of reference
according to equation (2). Therefore (x,, V., Z,)=[Rlt]
*(x,y,Z). A Euclidean distance from the autonomous vehicle
for each point is computed. If the point satisfies the required
boundary requirements, it is plugged into equation (7) for
each of the ground planes and checked for satisfying the
following inequality:

—threshold=a;, +b "y, +c'z, +d's+threshold ()]

If the above condition is satisfied, then the point X, y,;, Z,;
is said to represent free space on gridmap 333. Otherwise,
the point X,;, V., Z,; i1s said to represent an obstacle on
gridmap 333. Gridmap 333 of x,, y,; locations can be
updated based on the results of executing equation (9). In
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particular, if the condition is satisfied, the values at point x,,,
V,; on gridmap 333 remain unchanged. If the condition is not
satisfied, the number of obstacles at point X,;, y,; on gridmap
333 is updated by 1, and the height of the obstacles is
updated by the value of 7z,,. In some configurations, the
threshold can include a range of 4-10 in (0.102 m-0.0.254
m). In some configurations, the threshold can include 8 in
(0.203 m).

[0069] Continuing to refer to FIG. 18, for each cell 334 in
gridmap 333, a logodds that the cell is occupied can be
computed based on a Gaussian probability, pMapCell,
related to the characteristics of the point with respect to, for
example, but not limited to, the distance between cell 334
and sensor 336, noise from sensor 336 (possibly as com-
puted by equation (1)), whether the cell includes a measure-
ment, the significance of the measurement, whether the cell
includes an obstacle, the distance between the obstacle and
the autonomous vehicle, whether the cell includes free
space, and whether the laser is blocked. Significance of
measurement is calculated as a product of height of obstacle
at that cell, base significance and height normalizer. Base
significance and height normalizer are empirically calcu-
lated constants. Therefore, the higher the height of obstacle,
the higher is the significance of the measurement. The
logodds can be computed according to equation (10):

pMapCell ] (10)

LogOdds = log ———
€ g(l — pMapCell

In some configurations, the pMapCell calculation is different
for cells based on pre-selected conditions. For each cell
along line 561 joining the position of the autonomous
vehicle and end cell 565 of a gridmap, when there are no
valid returns from the LIDAR sensor along line 561 joining
the position of the autonomous vehicle and end position 565,
something must be blocking the sensor. Therefore, the travel
path for the autonomous vehicle should be blocked for
safety. For cells that are 0.2 m surrounding the blind
distance, pMapCell=PBlocked=0.9. This pMapCell value
results in a maximum allowed probability of occupancy. For
other cells, pMapCell=PUnknown=0.5. This value results in
maximum uncertainty of occupancy. When there are no
obstacles found along the line, this means that that line has
free space, i.e. pMapCell=PMin=0.3, the minimum allowed
probability of occupancy. When the autonomous vehicle
encounters a cell that contains an obstacle:

pMapCell=pOccR+noiseFactor

[0070] where pOccR=POnObstacle=0.5,
[0071] noiseFactor=((measurementSignificance/
(noiseStdDev*Root of 2P1))+POnObstacle—-pOccR)
*gausianNoiseExponential

[0072] noiseStdDev=square of z_t*LidarNoise
[0073] LidarNoise is an empirical constant
[0074] gausianNoiseExponential=pow(EXP, (-0.

S5*pow(((d2Cell-z_t)/noiseStdDev), 2)))

[0075] z_t=euclidean distance to the obstacle from
autonomous vehicle

[0076] d2cell=euclidean distance to the cell from
autonomous vehicle

[0077] measurementSignificance=BaseSignificance™
(HeightNormalizer*Total_Obstacle_Height)
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When the autonomous vehicle encounters a cell in advance
of or beyond a cell containing an obstacle:

pMapCell=pOccR+noiseFactor

[0078] where pOccR=PMin=0.5,
[0079] noiseFactor=((measurementSignificance/
(noiseStdDev*Root of 2P1))+POnObstacle-pOccR)
*gausianNoiseExponential

[0080] noiseStdDev=square of z_t*LidarNoise
[0081] LidarNoise is an empirical constant
[0082] gausianNoiseExponential=pow(EXP, (-0.

S5*pow(((d2Cell-z_t)/noiseStdDev), 2)))
[0083] z_t=euclidean distance to the obstacle from
autonomous vehicle
[0084] d2cell=euclidean distance to the cell from
autonomous vehicle
[0085] measurementSignificance=BaseSignificance
When the autonomous vehicle encounters a cell that is
beyond the last obstacle, or when the cell is beyond the last
measurement available from LIDAR, for example, beyond
boundary 328, or at point x_,,,, V., 330,

pMapCell=1.0 (results in infinite logodds)

In some configurations, BaseSignificance and HeightNor-
malizer can be empirically determined.

In some configurations, BaseSignificance=0.09 and Height-
Normalizer=28.2.

[0086] Referring now to FIG. 19, system 600 for deter-
mining free space in a navigation path for an autonomous
vehicle can include, but is not limited to including, ground
plane processor 603 determining ground planes from point
cloud data received from a sensor, each of the ground planes
being associated with a ground plane equation, the sensor
having a sensor frame of reference. System 600 can include
plane transform processor 605 transforming the ground
plane equation from the sensor frame of reference to a
vehicle frame of reference associated with the autonomous
vehicle, point transform processor 607 transforming points
in the point cloud data from the sensor frame of reference to
the vehicle frame of reference, point label processor 609
labeling points in the point cloud data as free space if the
transformed points satisfy the transformed ground plane
equation, and probability processor 611 providing occu-
pancy grid data to augment an occupancy grid based at least
on the labeled points. System 600 can optionally include
executable code including computer instructions substitut-
ing a default plane when none of the ground planes can be
determined, removing the points from the point cloud data
if the points exceed a pre-selected distance from the autono-
mous vehicle, removing the points from the point cloud data
if the points exceed a pre-selected height based at least on a
vehicle height of the autonomous vehicle, and removing the
points from the point cloud data if the points are within a
pre-selected distance from the autonomous vehicle.

[0087] Continuing to refer to FIG. 19, ground plane pro-
cessor 603 can optionally include, but is not limited to
including, median processor 613 computing a median of at
least two rings of the point cloud data, point cloud filter 615
filtering the point cloud data based at least on a distance of
the points in the point cloud data from the median, plane
creation processor 617 creating planes from the filtered point
cloud data, each of the created planes having at least one
azimuth angle. Ground plane processor 603 can include
plane growth processor 619 growing the created planes from
the point cloud data extending away from the autonomous
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vehicle along the at least one azimuth angle, and selection
processor 621 choosing the ground planes from the grown
planes based at least on an orientation and residual error of
each of the created planes. Plane creation processor 617 can
include, but is not limited to including, executable code
including computer instructions selecting a first point and a
second point from a first ring of sensor data, the first point
and the second point lying within boundaries formed by
discontinuities in the point cloud data on the first ring, the
first point having a first azimuth angle and the second point
having a second azimuth angle, selecting a third point from
a second ring of sensor data, the second ring being adjacent
to the first ring, the third point having a third azimuth angle
between the first azimuth angle and the second azimuth
angle, and creating one of the planes including the first point,
the second point, and the third point.

[0088] Continuing to refer to FIG. 19, plane transform
processor 605 can optionally include executable code
including computer instructions computing a unity vector
from coefficients of the ground plane equation, the ground
plane equation including ax+by+cz+d=0, the coefficients
including a, b, and ¢, a constant including d, normalizing the
d constant, transforming the a, b, ¢ coefficients of the ground
plane equation based on a rotation/translation matrix and the
unity vector, and transforming the normalized d constant
based on the normalized d constant, the rotation/translation
matrix, the unity vector, and the transformed a, b, ¢ coeffi-
cients. Plane transform processor 605 can optionally include
executable code including computer instructions computing
a unity vector from coefficients of the ground plane equa-
tion, the ground plane equation including ax+by+cz+d=0,
the coefficients including a, b, and ¢, a constant including d
according to

a b ¢

2 > 2 > 2 >
Vv +c2 Va2+2+c2 V@ +p2+c2

i=

normalizing the d constant according to

d
Y i a2
at+b +c

rorm =

transforming the a, b, ¢ coefficients of the ground plane
equation based on a rotation/translation matrix and the unity
vector according to

and transforming the normalized d constant based on the
normalized d constant, the rotation/translation matrix, the
unity vector, and the transformed a, b, ¢ coefficients accord-
ing to
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[0089] Continuing to refer to FIG. 19, point label proces-
sor 609 can optionally include executable code including
computer instructions plugging each of the transformed
point cloud points into the transformed ground plane equa-
tions, individually labeling the transformed point cloud
points as free space if the transformed point cloud points
satisfy the transformed ground plane equation: —threshold
=a'x+b'y+c'z+d'<+threshold. Probability processor 611 can
optionally include executable code including the computer
instructions updating locations on a grid map corresponding
to the transformed point cloud points based at least on results
from the transformed ground plane equation, and computing
a probability that a cell in the occupancy grid includes an
obstacle based at least on the grid map. Probability processor
611 can optionally include executable code including the
computer instructions updating locations on a grid map
corresponding to the transformed point cloud points based at
least on results from the transformed ground plane equation,
and computing a probability that a cell in the occupancy grid
includes an obstacle based at least on the grid map, sensor
noise, and a height of the obstacle. Probability processor 611
can optionally include executable code including the com-
puter instructions updating locations on a grid map corre-
sponding to the transformed point cloud points based at least
on results from the transformed ground plane equation, and
computing a probability that a cell in the occupancy grid
includes an obstacle according to

pMapCell
LogOdds = IOg(l - pMapCell]’
where
[0090] pMapCell=0.9 when a distance from the autono-

mous vehicle to the cell falls in a blind spot of the
sensor,

[0091] pMapCell=0.3 when a line between the cell and
the autonomous vehicle includes none of the obstacles,

[0092] pMapCell=0.5 for all other cells,

[0093] pMapCell=pOccR+noiseFactor when the cell
spatially coincident with the autonomous vehicle
includes the obstacle,

[0094] where pOccR=POnObstacle=0.5,

[0095] noiseFactor=((measurementSignificance/
(noiseStdDev*Root  of  2Pi))+POnObstacle—
pOccR)*gausianNoiseExponential,

[0096] noiseStdDev=square of z_t*LidarNoise,

[0097] gausianNoiseExponential=pow(EXP, (-0.
S5*pow(((d2Cell-z_t)/noiseStdDev), 2))),

[0098] z_t=Euclidean distance to the obstacle from
the autonomous vehicle,

[0099] d2cell=Euclidean distance to the cell from
the autonomous vehicle,

[0100] measurementSignificance=
BaseSignificance* (HeightNormalizer*Total_Ob-
stacle_Height),
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[0101] LidarNoise, BaseSignificance, and Height-
Normalizer include values based at least on a
configuration of the autonomous vehicle and the
sensor,

[0102] pMapCell=pOccR+noiseFactor when the cell
falls spatially before or beyond the autonomous vehicle
along the line includes the obstacle,

[0103] where pOccR=PMin=0.5,

[0104] noiseFactor=((measurementSignificance/
(noiseStdDev¥*Root  of  2Pi))+POnObstacle—
pOccR)*gausianNoiseExponential

[0105] noiseStdDev=square of z_t*LidarNoise
[0106] LidarNoise is an empirical constant
[0107] gausianNoiseExponential=pow(EXP, (-0.

S*pow(((d2Cell-z_t)/noiseStdDev), 2)))

[0108] z_t=euclidean distance to the obstacle from the
autonomous vehicle,

[0109] d2cell=euclidean distance to the cell from the
autonomous vehicle,

[0110] measurementSignificance=BaseSignificance,
LidarNoise, BaseSignificance, and HeightNormalizer
include the values, and

[0111] pMapCell=1.0 when the cell falls spatially along
the line beyond a last of the obstacles or beyond a last
of the point cloud data.

BaseSignificance can optionally equal 0.09. HeightNormal-
izer can optionally equal 28.2.

[0112] Configurations of the present teachings are directed
to computer systems for accomplishing the methods dis-
cussed in the description herein, and to computer readable
media containing programs for accomplishing these meth-
ods. The raw data and results can be stored for future
retrieval and processing, printed, displayed, transferred to
another computer, and/or transferred elsewhere. Communi-
cations links can be wired or wireless, for example, using
cellular communication systems, military communications
systems, and satellite communications systems. Parts of the
system can operate on a computer having a variable number
of CPUs. Other alternative computer platforms can be used.
[0113] The present configuration is also directed to soft-
ware for accomplishing the methods discussed herein, and
computer readable media storing software for accomplish-
ing these methods. The various modules described herein
can be accomplished on the same CPU, or can be accom-
plished on different computers. In compliance with the
statute, the present configuration has been described in
language more or less specific as to structural and methodi-
cal features. It is to be understood, however, that the present
configuration is not limited to the specific features shown
and described, since the means herein disclosed comprise
preferred forms of putting the present configuration into
effect.

[0114] Methods can be, in whole or in part, implemented
electronically. Signals representing actions taken by ele-
ments of the system and other disclosed configurations can
travel over at least one live communications network. Con-
trol and data information can be electronically executed and
stored on at least one computer-readable medium. The
system can be implemented to execute on at least one
computer node in at least one live communications network.
Common forms of at least one computer-readable medium
can include, for example, but not be limited to, a floppy disk,
a flexible disk, a hard disk, magnetic tape, or any other
magnetic medium, a compact disk read only memory or any
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other optical medium, punched cards, paper tape, or any
other physical medium with patterns of holes, a random
access memory, a programmable read only memory, and
erasable programmable read only memory (EPROM), a
Flash EPROM, or any other memory chip or cartridge, or
any other medium from which a computer can read. Further,
the at least one computer readable medium can contain
graphs in any form, subject to appropriate licenses where
necessary, including, but not limited to, Graphic Interchange
Format (GIF), Joint Photographic Experts Group (JPEG),
Portable Network Graphics (PNG), Scalable Vector Graph-
ics (SVG), and Tagged Image File Format (TIFF).

[0115] While the present teachings have been described
above in terms of specific configurations, it is to be under-
stood that they are not limited to these disclosed configu-
rations. Many modifications and other configurations will
come to mind to those skilled in the art to which this
pertains, and which are intended to be and are covered by
both this disclosure and the appended claims. It is intended
that the scope of the present teachings should be determined
by proper interpretation and construction of the appended
claims and their legal equivalents, as understood by those of
skill in the art relying upon the disclosure in this specifica-
tion and the attached drawings.

What is claimed is:

1. A method for assigning free space probabilities in point
cloud data, the point cloud data associated with an autono-
mous vehicle traveling on a surface, the method comprising:

receiving the point cloud data from a sensor, the sensor

having a sensor beam, the sensor beam projecting at
least from the sensor to the surface;

segmenting the point cloud data into segments of a first

pre-selected size;

locating planes, plane points in the planes, and non-plane

points associated with at least one of the plane points
within the point cloud data;
determining normals to the plane points and determining
the non-plane points associated with the plane points;

choosing at least one of the planes as a surface plane
according to pre-selected criteria based at least on the
normals and a location of the sensor;

classifying each of the plane points as an obstacle point

based at least on the associated non-plane points;
determining obstacle height associated with the obstacle
points based at least on the non-plane points;

creating a grid from the surface planes, the grid having a

pre-selected number of cells and a perimeter;
computing a measurement significance for each of the
cells based at least on the obstacle heights in the cells;
determining a blind distance from the sensor based at least
on an intersection between the sensor beam and the
surface plane;

for each of the cells along each line between the blind

distance and the perimeter, computing an initial prob-
ability of obstacles occupying the cell along the line,
the initial probability being based at least on availabil-
ity of the sensor, the obstacle points in the cell, and a
position of the cell along the line with respect to the
sensor;

for each of the cells along each line between the blind

distance and the perimeter, computing a noise factor
based at least on a first distance between the sensor and
a closest of the obstacles along the line in the cell, a
second distance between the sensor and the cell along
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the line, the measurement significance for the cell along
the line, the initial probability for the cell along the line,
and a default probability; and

for each of the cells along each line between the blind

distance and the perimeter, computing a current prob-
ability of the obstacles occupying the cell along the
line, the current probability being based at least on the
initial probability for the cell and the noise factor for
the cell.

2. The method as in claim 1 wherein the first pre-selected
size comprises about 40 mx40 mx2 m.

3. The method as in claim 1 wherein the pre-selected
criteria comprise choosing the surface plane when the nor-
mals of the planes do not face the sensor.

4. The method as in claim 1 wherein the pre-selected
number of cells comprises 400x400.

5. The method as in claim 1 wherein computing the initial
probability comprises:

if the sensor is unavailable and the cell is a near cell, the

near cell being near the blind distance, the initial
probability of the cell=1.0;

if the sensor is unavailable and the cell is between the near

cell and the perimeter, the initial probability of the
cell=0.5;

if the sensor is available and there is at least one of the

obstacle points in the cell, or if one of the cells along
the line that was previously encountered included at
least one of the obstacle points, the initial probability of
the cell=0.5; and

if the sensor is available and there are none of the obstacle

points in the cell and none of the cells previously
encountered along the line included at least one of the
obstacle points, the initial probability of the cell=0.3.

6. The method as in claim 1 wherein computing the noise
factor comprises:

((measurement significance/(ov/2m))+0.5—the initial
probability of the cell)*exp(~=0.5*((d-Z,)/0)?),

wherein

d=the second distance,

Z.~the first distance, and

0=7,2%0.001.

7. The method as in claim 1 wherein computing the
current probability comprises:

the noise factor of the cell+the initial probability of the
cell.

8. The method as in claim 1 wherein each of the planes
comprises the non-plane points up to a first pre-selected
distance from the planes.

9. The method as in claim 8 wherein the first pre-selected
distance comprises 2 m.

10. A system for assigning free space probabilities in point
cloud data, the point cloud data associated with an autono-
mous vehicle traveling on a surface, the system comprising:

a sensor having a sensor beam, the sensor beam projecting
at least from the sensor to the surface;

a segment processor receiving the point cloud data from
the sensor, the segment processor segmenting the point
cloud data into segments of a first pre-selected size;

a plane processor locating, within the point cloud data,
planes, plane points in the planes, and non-plane points
associated with at least one of the plane points;

a normals processor determining normals to the plane
points and determining the non-plane points associated
with the plane points, the normals processor choosing
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at least one of the planes as a surface plane according
to pre-selected criteria based at least on the normals and
a location of the sensor, the normals processor classi-
fying each of the plane points as an obstacle point based
at least on the associated non-plane points, the normals
processor determining obstacle height associated with
the obstacle points based at least on the non-plane
points;

a grid processor creating a grid from the surface planes,
the grid having a pre-selected number of cells and a
perimeter;

a line sweep processor including a measurement signifi-
cance processor computing a measurement significance
for each of the cells based at least on the obstacle
heights in the cells, the line sweep processor including
an initial probabilities processor determining a blind

distance from the sensor based at least on an inter-
section between the sensor beam and the surface
plane, the initial probabilities processor including for
each of the cells along each line between the blind
distance and the perimeter, computing an initial
probability of obstacles occupying the cell along the
line, the initial probability being based at least on
availability of the sensor, the obstacle points in the
cell, and a position of the cell along the line with
respect to the sensor;

a noise factor processor including for each of the cells
along each line between the blind distance and the
perimeter, computing a noise factor based at least on
a first distance between the sensor and a closest of
the obstacles along the line in the cell, a second
distance between the sensor and the cell along the
line, the measurement significance for the cell along
the line, the initial probability for the cell along the
line, and a default probability; and

a current probabilities processor including for each of
the cells along each line between the blind distance
and the perimeter, computing a current probability of
the obstacle points occupying the cell along the line,
the current probability being based at least on the
initial probability for the cell and the noise factor for
the cell.

11. A method for assigning free space probabilities in
sensor data, the sensor data associated with an autonomous
vehicle traveling on a surface, the method comprising:

determining at least one surface plane in the sensor data,
the at least one surface plane being associated with the
surface;

determining obstacles, if any, and heights of the obstacles,
if any, in the sensor data associated with the at least one
surface plane;

determining a blind distance from the autonomous vehicle
based at least on a dimension of the autonomous
vehicle;

creating a grid on the at least one surface plane, the grid
having a pre-selected number of cells and a perimeter;

for each of the cells along each line on the at least one
surface plane between the blind distance and the perim-
eter, computing an initial probability of the obstacles
occupying the cell along the line, the initial probability
being based at least on availability of the sensor data,
the obstacles in the cell, and a position of the cell along
the line with respect to the autonomous vehicle;
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for each of the cells along each line between the blind
distance and the perimeter, computing a noise factor
based at least on a first distance between the autono-
mous vehicle and a closest of the obstacles along the
line in the cell, a second distance between the autono-
mous vehicle and the cell along the line, the obstacle
heights for the cell along the line, the initial probability
for the cell along the line, and a default probability; and

for each of the cells along each line between the blind
distance and the perimeter, computing a current prob-
ability of the obstacles occupying the cell along the
line, the current probability being based at least on the
initial probability for the cell and the noise factor for
the cell.

12. The method as in claim 11 wherein the pre-selected
number of cells comprises 400x400.

13. The method as in claim 11 wherein computing the
initial probability comprises:

if the sensor data are unavailable and the cell is a near cell,

the near cell being near the blind distance, the initial
probability of the cell=1.0;

if the sensor data are unavailable and the cell is between

the near cell and the perimeter, the initial probability of
the cell=0.5;

if the sensor data are available and there is at least one of

the obstacles in the cell, or if one of the cells along the
line that was previously encountered included at least
one of the obstacles, the initial probability of the
cell=0.5; and

if the sensor data are available and there are none of the

obstacles in the cell and none of the cells previously
encountered along the line included at least one of
obstacles, the initial probability of the cell=0.3.

14. The method as in claim 11 wherein computing the
noise factor comprises:

((0.09%28.2*% the obstacle heights in the cell/(c
V/27))+0.5-the initial probability of the cell)
*exp(~0.5*((d-Z)/0)?)

wherein

d=the second distance,

Z.~the first distance, and

0=7,2%0.001.

15. The method as in claim 11 wherein computing the
current probability comprises:

the noise factor of the cell+the initial probability of the

cell.

16. The method as in claim 11 wherein the at least one
surface plane comprises non-plane points up to a first
pre-selected distance from the at least one surface plane.

17. The method as in claim 16 wherein the first pre-
selected distance comprises 2 m.

18. The method as in claim 16 further comprising:

determining the obstacle heights based at least on the

non-plane points.
19. A method for determining free space in a navigation
path for an autonomous vehicle, the method comprising:
determining ground planes from point cloud data received
from a sensor, each of the ground planes being asso-
ciated with a ground plane equation, the sensor having
a sensor frame of reference;

transforming the ground plane equation from the sensor
frame of reference to a vehicle frame of reference
associated with the autonomous vehicle;
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transforming points in the point cloud data from the
sensor frame of reference to the vehicle frame of
reference;
labeling points in the point cloud data as free space if the
transformed points satisfy the transformed ground
plane equation; and
providing occupancy grid data to augment an occupancy
grid based at least on the labeled points.
20. The method as in claim 19 wherein determining the
ground planes comprises:
computing a median of at least two rings of the point
cloud data;
filtering the point cloud data based at least on a distance
of the points in the point cloud data from the median;
creating planes from the filtered point cloud data, each of
the created planes having at least one azimuth angle;
growing the created planes from the point cloud data
extending away from the autonomous vehicle along the
at least one azimuth angle; and
choosing the ground planes from the grown planes based
at least on an orientation and residual error of each of
the created planes.
21. The method as in claim 20 wherein creating the planes
comprises:
selecting a first point and a second point from a first ring
of sensor data, the first point and the second point lying
within boundaries formed by discontinuities in the
point cloud data on the first ring, the first point having
a first azimuth angle and the second point having a
second azimuth angle;
selecting a third point from a second ring of sensor data,
the second ring being adjacent to the first ring, the third
point having a third azimuth angle between the first
azimuth angle and the second azimuth angle; and
creating one of the planes including the first point, the
second point, and the third point.
22. The method as in claim 19 further comprising:
substituting a default plane when none of the ground
planes can be determined.
23. The method as in claim 19 further comprising:
removing the points from the point cloud data if the points
exceed a pre-selected distance from the autonomous
vehicle.
24. The method as in claim 19 further comprising:
removing the points from the point cloud data if the points
exceed a pre-selected height based at least on a vehicle
height of the autonomous vehicle.
25. The method as in claim 19 further comprising:
removing the points from the point cloud data if the points
are within a pre-selected distance from the autonomous
vehicle.
26. The method as in claim 19 wherein transforming the
ground planes comprises:
computing a unity vector from coefficients of the ground
plane equation, the ground plane equation including
ax+by+cz+d=0, the coeflicients including a, b, and c, a
constant including d;
normalizing the d constant;
transforming the a, b, ¢ coefficients of the ground plane
equation based on a rotation/translation matrix and the
unity vector; and
transforming the normalized d constant based on the
normalized d constant, the rotation/translation matrix,
the unity vector, and the transformed a, b, ¢ coeflicients.
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27. The method as in claim 19 wherein transforming the
ground planes comprises:
computing a unity vector from coefficients of the ground
plane equation, the ground plane equation including
ax+by+cz+d=0, the coefficients including a, b, and c, a
constant including d;

a b ¢
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transforming the a, b, ¢ coefficients of the ground plane
equation based on a rotation/translation matrix and the
unity vector; and

transforming the normalized d constant based on the
normalized d constant, the rotation/translation matrix,
the unity vector, and the transformed a, b, ¢ coefficients
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28. The method as in claim 27 wherein labeling points
comprises:

plugging each of the transformed point cloud points into
the transformed ground plane equations;

individually labeling the transformed point cloud points
as free space if the transformed point cloud points
satisty the transformed ground plane equation:

—threshold=a %+ y+c’z+d's+threshold.

29. The method as in claim 28 wherein providing occu-
pancy grid data comprises:

updating locations on a grid map corresponding to the
transformed point cloud points based at least on results
from the transformed ground plane equation; and

computing a probability that a cell in the occupancy grid
includes the obstacle based at least on the grid map.

30. The method as in claim 28 wherein providing occu-

pancy grid data comprises:

updating locations on a grid map corresponding to the
transformed point cloud points based at least on results
from the transformed ground plane equation; and
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computing a probability that a cell in the occupancy grid
includes an obstacle based at least on the grid map,
sensor noise, and a height of the obstacle.

31. The method as in claim 28 wherein providing occu-

pancy grid data comprises:

updating locations on a grid map corresponding to the
transformed point cloud points based at least on results
from the transformed ground plane equation; and

computing a probability that a cell in the occupancy grid
includes an obstacle according to

pMapCell
LogOdds = log(i]
1 — pMapCell

Where
pMapCell=0.9 when a distance from the autonomous
vehicle to the cell falls in a blind spot of the sensor,
pMapCell=0.3 when a line between the cell and the
autonomous vehicle includes none of the obstacles,
pMapCell=0.5 for all other cells,
pMapCell=pOccR+noiseFactor when the cell spatially
coincident with the autonomous vehicle includes the
obstacle,
where pOccR=POnObstacle=0.5,
noiseFactor=((measurementSignificance/
(noiseStdDev*Root of 2Pi))+POnObstacle-
pOccR)*gausianNoiseExponential,
noiseStdDev=square of z_t*LidarNoise,
gausianNoiseExponential=pow(EXP, (-0.5%*pow
(((d2Cell-z_t)/mnoiseStdDev), 2))),
z_t=Fuclidean distance to the obstacle from the
autonomous vehicle,
d2cell=Euclidean distance to the cell from the
autonomous vehicle,
measurementSignificance=BaseSignificance*®
(HeightNormalizer*Total_Obstacle_Height),
LidarNoise, BaseSignificance, and HeightNor-
malizer include values based at least on a con-
figuration of the autonomous vehicle and the
sensor,
pMapCell=pOccR+noiseFactor when the cell falls spa-
tially before or beyond the autonomous vehicle along
the line includes the obstacle,
where pOccR=PMin=0.5,
noiseFactor=((measurementSignificance/
(noiseStdDev*Root of 2Pi))+POnObstacle-
pOccR)*gausianNoiseExponential
noiseStdDev=square of z_t*LidarNoise
LidarNoise is an empirical constant
gausianNoiseExponential=pow(EXP, (-0.5%*pow
(((d2Cell-z_t)/noiseStdDev), 2)))
z_t=euclidean distance to the obstacle from the
autonomous vehicle,
d2cell=euclidean distance to the cell from the
autonomous vehicle,
measurementSignificance=BaseSignificance,
LidarNoise, BaseSignificance, and HeightNor-
malizer include the values, and
pMapCell=1.0 when the cell falls spatially along the
line beyond a last of the obstacles or beyond a last of
the point cloud data.
32. The method as in claim 31 wherein BaseSignificance
comprises 0.09.
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33. The method as in claim 31 wherein HeightNormalizer
comprises 28.2.

34. A system for determining free space in a navigation

path for an autonomous vehicle, the system comprising:

a ground plane processor determining ground planes from
point cloud data received from a sensor, each of the
ground planes being associated with a ground plane
equation, the sensor having a sensor frame of reference;

a plane transform processor transforming the ground
plane equation from the sensor frame of reference to a
vehicle frame of reference associated with the autono-
mous vehicle;

a point transform processor transforming points in the
point cloud data from the sensor frame of reference to
the vehicle frame of reference;

a point label processor labeling points in the point cloud
data as free space if the transformed points satisfy the
transformed ground plane equation; and

a probability processor providing occupancy grid data to
augment an occupancy grid based at least on the
labeled points.

35. The system as in claim 34 wherein the ground plane

processor comprises:

a median processor computing a median of at least two
rings of the point cloud data;

a point cloud filter filtering the point cloud data based at
least on a distance of the points in the point cloud data
from the median;

a plane creation processor creating planes from the fil-
tered point cloud data, each of the created planes
having at least one azimuth angle;

aplane growth processor growing the created planes from
the point cloud data extending away from the autono-
mous vehicle along the at least one azimuth angle; and

a selection processor choosing the ground planes from the
grown planes based at least on an orientation and
residual error of each of the created planes.

36. The system as in claim 35 wherein the plane creation

processor comprises:
executable code including computer instructions
selecting a first point and a second point from a first
ring of sensor data, the first point and the second
point lying within boundaries formed by disconti-
nuities in the point cloud data on the first ring, the
first point having a first azimuth angle and the second
point having a second azimuth angle;

selecting a third point from a second ring of sensor
data, the second ring being adjacent to the first ring,
the third point having a third azimuth angle between
the first azimuth angle and the second azimuth angle;
and

creating one of the planes including the first point, the
second point, and the third point.

37. The system as in claim 34 further comprising:

executable code including computer instructions substi-
tuting a default plane when none of the ground planes
can be determined.

38. The system as in claim 34 further comprising:

executable code including computer instructions remov-
ing the points from the point cloud data if the points
exceed a pre-selected distance from the autonomous
vehicle.
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39. The system as in claim 34 further comprising:

executable code including computer instructions remov-
ing the points from the point cloud data if the points
exceed a pre-selected height based at least on a vehicle
height of the autonomous vehicle.

40. The system as in claim 34 further comprising:

executable code including computer instructions remov-
ing the points from the point cloud data if the points are
within a pre-selected distance from the autonomous
vehicle.

41. The system as in claim 34 wherein transforming the
ground planes comprises:

executable code including computer instructions

computing a unity vector from coefficients of the
ground plane equation, the ground plane equation
including ax+by+cz+d=0, the coefficients including
a, b, and c, a constant including d;

normalizing the d constant;

transforming the a, b, ¢ coeflicients of the ground plane
equation based on a rotation/translation matrix and
the unity vector; and

transforming the normalized d constant based on the
normalized d constant, the rotation/translation
matrix, the unity vector, and the transformed a, b, ¢
coeflicients.

42. The system as in claim 34 wherein transforming the
ground planes comprises:

executable code including computer instructions

computing a unity vector from coefficients of the
ground plane equation, the ground plane equation
including ax+by+cz+d=0, the coefficients including
a, b, and c, a constant including d;

a b ¢
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transforming the a, b, ¢ coeflicients of the ground plane
equation based on a rotation/translation matrix and
the unity vector; and
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transforming the normalized d constant based on the
normalized d constant, the rotation/translation
matrix, the unity vector, and the transformed a, b, ¢
coefficients,
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43. The system as in claim 34 wherein the point label
processor comprises:
executable code including computer instructions
plugging each of the transformed point cloud points
into the transformed ground plane equations;
individually labeling the transformed point cloud
points as free space if the transformed point cloud
points satisfy the transformed ground plane equa-
tion:

—threshold=a %+ y+c’z+d's+threshold.

44. The system as in claim 43 wherein the probability
processor comprises:
the executable code including the computer instructions
updating locations on a grid map corresponding to the
transformed point cloud points based at least on
results from the transformed ground plane equation;
and
computing a probability that a cell in the occupancy
grid includes an obstacle based at least on the grid
map.
45. The system as in claim 43 wherein the probability
processor comprises:
the executable code including the computer instructions
updating locations on a grid map corresponding to the
transformed point cloud points based at least on
results from the transformed ground plane equation;
and
computing a probability that a cell in the occupancy
grid includes an obstacle based at least on the grid
map, sensor noise, and a height of the obstacle.
46. The system as in claim 43 wherein the probability
processor comprises:
the executable code including the computer instructions
updating locations on a grid map corresponding to the
transformed point cloud points based at least on
results from the transformed ground plane equation;
and
computing a probability that a cell in the occupancy
grid includes an obstacle according to

pMapCell
LogOdds = log( 7]
1 — pMapCell
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Where
pMapCell=0.9 when a distance from the autonomous
vehicle to the cell falls in a blind spot of the sensor,
pMapCell=0.3 when a line between the cell and the
autonomous vehicle includes none of the obstacles,
pMapCell=0.5 for all other cells,
pMapCell=pOccR+noiseFactor when the cell spatially
coincident with the autonomous vehicle includes the
obstacle,
where pOccR=POnObstacle=0.5,
noiseFactor=((measurementSignificance/
(noiseStdDev*Root of 2Pi))+POnObstacle-
pOccR)*gausianNoiseExponential,
noiseStdDev=square of z_t*LidarNoise,
gausianNoiseExponential=pow(EXP, (-0.5%*pow
(((d2Cell-z_t)/mnoiseStdDev), 2))),
z_t=Fuclidean distance to the obstacle from the
autonomous vehicle,
d2cell=Euclidean distance to the cell from the
autonomous vehicle,
measurementSignificance=BaseSignificance*®
(HeightNormalizer*Total_Obstacle_Height),
LidarNoise, BaseSignificance, and HeightNor-
malizer include values based at least on a con-
figuration of the autonomous vehicle and the
sensor,
pMapCell=pOccR+noiseFactor when the cell falls spa-
tially before or beyond the autonomous vehicle along
the line includes the obstacle,
where pOccR=PMin=0.5,
noiseFactor=((measurementSignificance/
(noiseStdDev*Root of 2Pi))+POnObstacle-
pOccR)*gausianNoiseExponential
noiseStdDev=square of z_t*LidarNoise
LidarNoise is an empirical constant
gausianNoiseExponential=pow(EXP, (-0.5%*pow
(((d2Cell-z_t)/noiseStdDev), 2)))
z_t=euclidean distance to the obstacle from the
autonomous vehicle,
d2cell=euclidean distance to the cell from the
autonomous vehicle,
measurementSignificance=BaseSignificance,
LidarNoise, BaseSignificance, and HeightNor-
malizer include the values, and
pMapCell=1.0 when the cell falls spatially along the
line beyond a last of the obstacles or beyond a last of
the point cloud data.
47. The system as in claim 46 wherein BaseSignificance
comprises 0.09.
48. The system as in claim 46 wherein HeightNormalizer
comprises 28.2.



