
19

Europaisches Patentamt

European Patent Office

Office europeen des brevets © Publication number: 0 381 4 6 9 B 1

12 EUROPEAN PATENT S P E C I F I C A T I O N

@ Date of publication of patent specification
13.12.95 Bulletin 95/50

© int. ci.6 : G06F 9/30, G06F 9 /38

(2j) Application number : 90300994.2

(22) Date of filing : 31.01.90

(54) Method and data processing unit for pipeline processing of register and register modifying specifiers
within the same instruction

(30) Priority : 03.02.89 US 306833 @ Proprietor : DIGITAL EQUIPMENT
CORPORATION
111 Powdermill Road

(43) Date of publication of application : Maynard Massachusetts 01754-1418 (US)
08.08.90 Bulletin 90/32

@ Inventor : Fite, David B.
(45) Publication of the grant of the patent : 145 Indian Meadows

13.12.95 Bulletin 95/50 Northboro, Massachusetts 01532 (US)
Inventor : Firstenberg, Mark A.
Bldg. 9-6 Apple Ridge Road

@) Designated Contracting States : Maynard, Massachusetts 01754 (US)
AT BE CH DE DK ES FR GB GR IT LI LU NL SE Inventor : Herman, Lawrence O.

29 Elm Street
Hudson, Massachusetts, 01749 (US)

© References cited : Inventor : Murray, John E.
EP-A- 0 193 654 9 Ticonderoga Road
EP-A- 0 269 980 Acton, Massachusetts 01720 (US)
SYSTEMS & COMPUTERS IN JAPAN, no. 3, Inventor : Salett, Ronald M.
May 1985, WASHINGTON, US pages 19-28; 27 Flanagan Drive
MATSUMOTO ET AL.: 'A high-performance Framingham, Massachusetts 01701 (US)
architecture for variable length instructions"
COMPUTER DESIGN, vol. 24, no. 3, March
1985, LITTLETON, MASSACHUSETTS, US @ Representative : Hale, Peter et al
pages 173 - 181; FOSSUM ET AL: 'New VAX Kilburn & Strode
squeezes mainframe power into mini pack- 30 John Street
age' London WC1N 2DD (GB)

CO

00
CO

Note : Within nine months from the publication of the mention of the grant of the European patent, any
person may give notice to the European Patent Office of opposition to the European patent granted.

Q_ Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been
LU filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Jouve, 18, rue Saint-Denis, 75001 PARIS

EP 0 381 469 B1

Description

The present invention relates generally to digital computers, and more particularly to a pipelined central
processing unit. The invention is particularly applicable to an instruction decoder for decoding variable length

5 instructions having operation codes defining operations upon operands and operand specifiers for providing
information for locating the operands.

Pipelining is a proven method for enhancing the performance of the central processing unit (CPU) in a
digital computer. In a pipelined CPU, multiple functional units concurrently execute the elementary operations
for a plurality of instructions. In the pipeline, data is shifted from each stage to the next at the same time for

10 all of the stages. At the time of the shift, it is desirable for each stage to have completed its elementary oper-
ation. If an intermediate stage cannot complete its assigned task at the time of the shift, at least the preceding
stages must be stalled, or their results temporarily stored, until the intermediate stage is ready to receive more
data. As a consequence, an efficient pipeline design is balanced so that the overall task is broken down into
elementary operations having both about the same minimum processing time as well as about the same fre-

15 quency of causing stalls. In other words, no one operation should dominate the processing time while others
are relatively insignificant.

In a conventional digital computer, however, the elementary operations are to some extent dictated by the
"fetch-execute" cycle and its separate steps of instruction fetching, instruction decoding, operand fetching,
execution, and result store. As a result of the fetch-execute cycle, each step concerns data for a respective

20 instruction, and it is desirable for each step to be completed in the typical case in the single clock cycle used
for a memory access operation. Consequently, in a pipelined central processing unit, it is desirable to process
instructions at a rate of one instruction per clock cycle.

For computer architectures permitting a variety of "variable length" instructions, the instruction decoding
stage of a pipelined central processor has required more than one clock cycle to decode a typical instruction.

25 Such a "variable length" instruction preferably has operand specifiers for specifying addressing modes inde-
pendent from an operation code specifying the operation to be performed on the operands.

The goal of processing instructions at a rate of one instruction per clock cycle has been a major factor in
defining recent computer architectures having a "reduced instruction set" in which the instruction formats and
operand selections are restricted. For new systems and applications it is possible to freely select or change

30 the computer architecture, but for existing systems and applications it is desirable to provide improved proc-
essors capable of processing variable length instructions of existing architectures at a rate of one per clock
cycle.

Simultaneous decoding of the operation code and two operand specifiers so that a two-operand instruc-
tion can be executed in one machine cycle of a pipelined processor is known from SYSTEMS & COMPUTERS

35 IN JAPAN, no. 3, May 1985, WASHINGTON, US pages 19-28; MATSUMOTO ETAL:' A high-performance
architecture for variable length instructions'.

Simultaneous decoding of multiple specifiers in variable-length instructions causes a peculiar problem of
an intra-instruction read conflict that occurs when ever an instruction includes an autoincrement or an auto-
decrement specifier which references either directly or indirectly a register specified by a previously occurring

40 specifier for the current instruction. An example of such an intra-instruction conflict is:
ADDL RO, (RO)+,R1

In this case it is assumed that the addition specified by the ADDL opcode will result in the regster R1 containing
twice the initial value of the register RO, and the final value of RO will be one plus its initial value due to the
auto increment mode of the (R0)+ specifier. In other words, it is assumed that the operands are evaluated se-

45 quentially, even if the instruction unit evaluates all of them at the same time.
According to the present invention as claimed in claim 1 there is provided a method of preprocessing, after

decoding for execution in a pipelined processor, instructions having an operation code, a first register specifier
and a following second specifier, the method being characterised by:

detecting whether for each of the instructions the preprocessing of the second specifier changes the
50 value of the register specified by the first register specifier;

decoding the specifiers sequentially for instructions in which the detecting indicates that the prepro-
cessing of the second specifier modifies the value of the register specified by the first register specifier; and

decoding the first register specifier and the second specifier simultaneously for instructions in which
the detecting indicates that the preprocessing of the second specifier does not modify the value of the register

55 specified by the first register specifier.
The invention as claimed in claim 8 also extends to a data processing unit for a pipelined processor for

preprocessing, for execution, instructions having an operation code, a first register specifier and a following
second specifier, characterised by means for detecting whether for each of the instructions the preprocessing

2

EP 0 381 469 B1

of the second specifier changes the value of the register specified by the first register specifier, means for
decoding the specifiers sequentially for instructions in which the detecting indicates that the preprocessing of
the second specifier modifies the value of the register specified by the first register specifier, and means for
decoding the first register specifier and the second specifier simultaneously for instructions in which the de-

5 tecting indicates that the preprocessing of the second specifier does not modify the value of the register spe-
cified by the first register specifier.

In one particular form the invention provides a data processing unit for processing variable length instruc-
tions having respective operation codes and respective sequences of multiple specifiers, the operation codes
defining operations upon operands including source operands which are read during an operation and destin-

10 ation operands that are changed by an operation, the specifiers providing information for locating the operands,
the specifiers having operand addressing modes independent from the operation codes, the data procesing
unit comprising, in combination:

a) instruction buffer means for receiving an operation code and a respective sequence of multiple speci-
fiers to be simultaneously decoded,

15 b) instruction decoding means connected to the instruction buffer means for simultaneously decoding a
first operand specifier in the respective sequence of multiple specifiers to obtain information for locating
a first source operand, a second operand specifier in the respective sequence of multiple specifiers to
obtain information for locating a second source operand, and a third operand specifier in the respective
sequence of multiple specifiers to obtain information for locating a destination operand,

20 c) operand fetching means responsive to the information obtained by the instruction decoding means for
fetching the first and second operands, and
d) execution means for performing the operation indicated by the operation code received in the instruction
buffer means upon the source operands fetched by the operand fetching means and changing the destin-
ation operand at the location specified by the information provided by the instruction decoding means,

25 wherein the instruction decoding means includes means for detecting during decoding whether each
of the instructions includes a first register specifier followed by a second specifier for which the preprocessing
of the second specifier changes the value of the register specified by the first register specifier, and means
responsive to the means for detecting for decoding the first register and the second specifier sequentially.

To avoid stalls during the preprocessing of instructions by the instruction unit, register pointers rather than
30 register data are usually passed to the execution unit because register data is not always available at the time

of instruction decoding. If an intra-instruction read conflict exists, however, the operand value specified by
the conflicting register specifier is the initial value of the register being incremented or decremented, and this
initial value will have been changed by the time that the execution unit executes the instruction.

Preferably, the proper initial value is obtained prior to the incrementing or decrementing of the conflicting
35 register by putting the instruction decoder into a special IRC mode in which only one specifier is decoded per

cycle, and if a specifier being decoded is a register specifier, the content of the specified register is transmitted
to the execution unit.

Preferably the general purpose registers are in the execution unit and a duplicate set of the general purpose
registers are included in the instruction unit. When the execution unit modifies a register the new data is sent

40 to both sets of registers. Similarly when the instruction decode unit evaluates a register modifying specifier
both sets of registers are updated.

In the event of an exception or interrupt, the queues must be flushed of information about instructions
which have been decoded but not yet executed. If any of these decoded but not yet executed instructions con-
tain a specifier having an autoincrement or autodecrement mode, the register having been modified must be

45 returned to its original state. Preferably this is done by storing in a queue (the RLOG queue) information about
the changes having been made to the general purpose registers when the registers have been modified by
an autoincrement or autodecrement.

The restoration of the general purpose registers, however, is complicated by the need to handle intra-in-
struction read conflicts. According to the preferred method, once an intra-instruction read conflict is detected,

so the autoincrement and autodecrement specifiers modify only the instruction unit general purpose registers and
the register specifiers are passed as data, instead of pointers, to the execution unit. The instruction unit general
purpose registers but not the execution unit general purpose registers are modified during evaluation of the
autoincrement and autodecrement specifiers. When the instruction having the intra-instruction register conflict
is fully decoded, decoding of the next instruction is temporarily inhibited until the current instruction is retired

55 and the execution unit general purpose registers are updated.
Other objects and advantages of the invention will become apparent upon reading the following detailed

description and upon reference to the drawings in which:
FIG. 1 is a block diagram of a digital computer system having a central pipelined processing unit which

3

EP 0 381 469 B1

employs the present invention;
FIG. 2 is a diagram showing various steps performed to process an instruction and which may be per-
formed in parallel for different instructions by a pipelined instruction processor according to FIG. 1 ;
FIG. 3 is a diagram showing the preferred format of a variable length instruction;

5 FIG. 4 is a diagram of a particularvariable length instruction for performing an addition between longwords;
FIG. 5 is a table showing the decoding of the mode information in the first byte of a specifier;
FIG. 6 is a schematic diagram showing an instruction buffer and operand unit connected to an instruction
decoder capable of simultaneously decoding multiple specifiers;
FIG. 7 is a diagram showing the format for a general purpose specifier bus interconnecting the instruction

10 decoder and the operand unit of FIG. 6;
FIG. 8 is a diagram of an expansion bus for transferring short literal information from the instruction de-
coder to the operand unit of FIG. 6;
FIG. 9 is a diagram of the format for a transfer bus for transferring register and other operand information
from the instruction decoder to the operand unit of FIG. 6; FIG. 10 is a flowchart of the preferred procedure

15 performed by the instruction decoder of FIG. 6 to decode a variable length instruction in the format of FIG.
3;
FIG. 11 is a flowchart of the procedure performed by the instruction decoder of FIG. 6 to decode up to
three specifiers simultaneously;
FIG. 12 is a block diagram of the instruction decoder of FIG. 6;

20 FIG. 13 is a schematic diagram of shift count logic that is used to determine the number of specifiers and
the number of bytes decoded when a maximum of one operand should be decoded for a branch instruction
having a byte displacement;
FIG. 14 is a schematic diagram of shift count logic that is used when at most one specifier should be de-
coded for a branch instruction having a word displacement;

25 FIG. 15 is a schematic diagram of shift count logic that is used when at most one specifier should be de-
coded, and that specifier is to be implied from the access type of the instruction and pre-processed;
FIG. 16 is a schematic diagram of shift count logic that is used when at most two specifiers should be
decoded for a branch instruction having a byte displacement;
FIG. 1 7 is a schematic diagram of shift count logic that is used when at most two operands should be de-

30 coded for a branch instruction having a word displacement;
FIG. 18 is a schematic diagram of shift count logic that is used for decoding at most two specifiers, and
the second specifier is to be implied from the access type of the instruction and pre-processed;
FIG. 1 9 is a schematic diagram of shift count logic that is used for simultaneously decoding at most three
specifiers for a branch instruction having a byte displacement;

35 FIG. 20 is a schematic diagram of shift count logic that is used for simultaneously decoding at most three
specifiers for a branch instruction having a word displacement;
FIG. 21 is a diagram depicting four primary sequences or cases in which specifiers are ordered or arranged
in the instruction buffer during simultaneous decoding of up to three specifiers disposed at various levels
in the primary sequences;

40 FIG. 22 is a truth table defining the four primary cases;
FIG. 23 is a schematic diagram of combinational logic that has been optimized to detect the four primary
cases shown in FIG. 21 ;
FIG. 24 is a table illustrating how the number of specifiers being decoded can be determined for the four
primary cases;

45 FIG. 25 is a schematic diagram of shift count logic capable of determining the actual number of specifiers
and the number of bytes in the instruction decoder that should be simultaneously decoded in a single de-
coding cycle;
FIG. 26 is a schematic diagram of a three input priority encoder used in the shift count logic of FIG. 25;
FIG. 27 is a schematic diagram of a multiplexer incorporating priority logic;

so FIG. 28 is a table showing values of the number of specifiers actually decoded when decoding to various
levels when neither an immediate nor an absolute addressing mode is employed;
FIGS. 29 to 32 are truth tables showing how the shift count is determined when decoding to various levels
when neither an immediate nor an absolute addressing mode is employed;
FIGS. 33 to 38 are truth tables showing how the number of specifiers actually decoded and the shift count

55 are determined when decoding to various levels when an immediate or absolute addressing mode is em-
ployed;
FIGS. 39 to 40 are schematic diagrams of logic for determining register specifier and short literal informa-
tion for bytes 1 to 8 in the instruction buffer;

4

EP 0 381 469 B1

FIG. 42 is a schematic diagram of logic for determining information about specifiers decoded at various
levels;
FIG. 43 is a schematic diagram of shift count logic in which the logic of FIG. 25 is duplicated for the general
addressing modes and for the immediate and absolute addressing modes;

5 FIG. 44 shows how the specifier information for the immediate and absolute addressing modes is used in
accordance with the shift count logic of FIG. 38;
FIG. 45 is a schematic diagram of a modification to the shift count logic of FIG. 43 to reduce the length
of the critical path in the instruction decoder of FIG. 12;
FIG. 46 is a detailed schematic diagram showing the logic used in FIG. 45 for obtaining information about

10 a first specifier that has an immediate or absolute addressing mode;
FIG. 47 is a schematic diagram of absolute and immediate specifier selector logic used in FIG. 45 to de-
termine the specifier number associated with an absolute or immediate mode specifier in the instruction
buffer;
FIG. 48 is a schematic diagram of an R1 tree that is selected when the decoding of one specifier is re-

15 quested;
FIG. 49 is a schematic diagram of an R2 tree that is selected when the decoding of two specifiers is re-
quested;
FIG. 50 is a schematic diagram of an R2R tree that is selected when the decoding of two specifiers is
requested and only when byte 1 in the instruction buffer is neither a register specifier nor a short literal,

20 and the second specifier should not be a short literal;
FIG. 51 is a schematic diagram of an R3 tree that is selected when the decoding of three specifiers is re-
quested and only when bytes 1 and 2 in the instruction buffer are register or short literal specifiers;
FIG. 52 is a schematic diagram of an R3XR tree that is selected when the decoding of three specifiers is
requested and a third specifier is to be decoded only when the third specifier is a register specifier;

25 FIG. 53 shows how a register valid signal, a short literal valid signal, and short literal data or a register
number are combined together to obtain eight bits of register or short literal data;
FIG. 54 is a schematic diagram of a circuit for obtaining the register or short literal data associated with a
second specifier being decoded;
FIG. 55 is a diagram showing how a register valid signal and a register number are combined to obtain

30 register data;
FIG. 56 is a schematic diagram of a circuit for obtaining the register data associated with a third specifier
being decoded;
FIG. 57 is a schematic diagram of validation logic for transmitting a first source operand from the instruc-
tion decoder to the operand unit;

35 FIG. 58 is a schematic diagram of a validation and selection circuit for obtaining and transmitting a second
source operand from the instruction decoder to the operand unit;
FIG. 59 is a schematic diagram of validation and selection logic for obtaining and transmitting a destination
specifier from the instruction decoder to the operand unit;
FIG. 60 is a schematic diagram of validation and selection logic for obtaining and transmitting short literal

40 data from the instruction decoder to the operand unit;
FIG. 61 is a schematic diagram of validation and selection logic for obtaining and transmitting a complex
specifier or branch displacement information from the instruction decoder to the operand unit;
FIG. 62 is a schematic diagram of a circuit for detecting and decoding a complex specifier having an ex-
tended immediate mode;

45 FIG. 63 is a schematic diagram of a decoder for detecting a complex specifier having an autoincrement
or autodecrement mode;
FIG. 64 is a schematic diagram illustrating how an intra-instruction read conflict is detected by inspecting
a read register mask;
FIG. 65 is a schematic diagram illustrating how an intra-instruction read conflict is detected by inspecting

so an IRC mask;
FIG. 66 is a schematic diagram of a circuit for generating an IRC mask including information about two
specifiers currently being decoded and any number of previous specifiers having been decoded for the
same instruction;
FIG. 67 is a schematic diagram of a circuit which inspects the IRC mask generated by the circuit in FIG.

55 66 and which also detects an implied intra-instruction read conflict;
FIG. 68 is a schematic diagram of the circuits in the instruction unit and the execution unit which update
respective sets of general purpose registers in the instruction unit and in the execution unit in response
to an intra-instruction read conflict detected by the instruction decoder;

5

EP 0 381 469 B1

FIG. 69 is a flowchart defining the control logic shown in FIG. 68 for the operand processing unit; and
FIG. 70 is a flowchart defining the control logic in FIG. 68 for the execution unit.
While the invention is susceptible to various modifications and alternative forms, specific embodiments

thereof have been shown by way of example in the drawings and will be described in detail herein. It should
5 be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on

the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope
of the invention as defined by the appended claims.

Turning now to the drawings and referring first to FIG. 1, there is shown a portion of a digital computer
system which includes a main memory 10, a memory-CPU interface unit 11 , and at least one CPU comprising

10 an instruction unit 12 and an execution unit 13. It should be understood that additional CPUs could be used
in such a system by sharing the main memory 10.

Both data and instructions for processing the data are stored in addressable storage locations within the
main memory 10. An instruction includes an operation code (opcode) that specifies, in coded form, an oper-
ation to be performed by the CPU, and operand specifiers that provide information for locating operands. The

15 execution of an individual instruction is broken down into multiple smaller tasks. These tasks are performed
by dedicated, separate, independent functional units that are optimized for that purpose.

Although each instruction ultimately performs a different operation, many of the smaller tasks into which
each instruction is broken are common to all instructions. Generally, the following steps are performed during
the execution of an instruction: instruction fetch, instruction decode, operand fetch, execution, and result store.

20 Thus, by the use of dedicated hardware stages, the steps can be overlapped in a pipelined operation, thereby
increasing the total instruction throughput.

The data path through the pipeline includes a respective set of registers for transferring the results of each
pipeline stage to the next pipeline stage. These transfer registers are clocked in response to a common system
clock. For example, during a first clock cycle, the first instruction is fetched by hardware dedicated to instruction

25 fetch. During the second clock cycle, the fetched instruction is transferred and decoded by instruction decode
hardware, but, at the same time, the next instruction is fetched by the instruction fetch hardware. During the
third clock cycle, each instruction is shifted to the next stage of the pipeline and a new instruction is fetched.
Thus, after the pipeline is filled, an instruction will be completely executed at the end of each clock cycle.

This process is analogous to an assembly line in a manufacturing environment. Each worker is dedicated
30 to performing a single task on every product that passes through his or her work stage. As each task is per-

formed the product comes closer to completion. At the final stage, each time the worker performs his assigned
task a completed product rolls off the assembly line.

In the particular system illustrated in FIG. 1, the interface unit 11 includes a main cache 14 which on an
average basis enables the instruction and execution units 12 and 13 to process data at a faster rate than the

35 access time of the main memory 10. This cache 14 includes means for storing selected predefined blocks of
data elements, means for receiving requests from the instruction unit 12 via a translation buffer 15 to access
a specified data element, means for checking whether the data element is in a block stored in the cache, and
means operative when data for the block including the specified data element is not so stored for reading the
specified block of data from the main memory 10 and storing that block of data in the cache 14. In other words,

40 the cache provides a "window" into the main memory, and contains data likely to be needed by the instruction
and execution units. In general, since the cache 14 will be accessed at a much higher rate than the main mem-
ory 10, the main memory can have a proportionally slower access time than the cache without substantially
degrading the average performance of the data processing system. Therefore, the main memory 10 can be
comprised of slower and less expensive memory elements.

45 The translation buffer 1 5 is a high speed associative memory which stores the most recently used virtual-
to-physical address translations. In a virtual memory system, a reference to a single virtual address can cause
several memory references before the desired information is made available. However, where the translation
buffer 15 is used, translation is reduced to simply finding a "hit" in the translation buffer 15.

An I/O bus 16 is connected to the main memory 10 and the main cache 14 for transmitting commands
so and input data to the system and receiving output data from the system.

The instruction unit 12 includes a program counter 17 and an instruction cache 18for fetching instructions
from the main cache 14. The program counter 17 preferably addresses virtual memory locations rather than
the physical memory locations of the main memory 10 and the cache 14. Thus, the virtual address of the pro-
gram counter 17 must be translated into the physical address of the main memory 10 before instructions can

55 be retrieved. Accordingly, the contents of the program counter 17 are transferred to the interface unit 11 where
the translation buffer 15 performs the address conversion. The instruction is retrieved from its physical mem-
ory location in the cache 14 using the converted address. The cache 14 delivers the instruction over data return
lines to the instruction cache 18. The organization and operation of the cache 14 and the translation buffer

6

EP 0 381 469 B1

15 are further described in Chapter 11 of Levy and Eckhouse, Jr., Computer Programming and Architecture,
The VAX-11, Digital Equipment Corporation, pp. 351-368 (1980).

Most of the time, the instruction cache has prestored in it instructions at the addresses specified by the
program counter 17, and the addressed instructions are available immediately for transfer into an instruction

5 buffer 19. From the buffer 19, the addressed instructions are fed to an instruction decoder 20 which decodes
both the op-codes and the specifiers. An operand processing unit (OPU) 21 fetches the specified operands
and supplies them to the execution unit 13.

The OPU 21 also produces virtual addresses. In particular, the OPU 21 produces virtual addresses for
memory source (read) and destination (write) operands. For the memory read operands, the OPU 21 delivers

10 these virtual addresses to the interface unit 11 where they are translated to physical addresses. The physical
memory locations of the cache 14 are then accessed to fetch the operands for the memory source operands.

In each instruction, the first byte contains the opcode, and the following bytes are the operand specifiers
to be decoded. The first byte of each specifier indicates the addressing mode for that specifier. This byte is
usually broken in halves, with one half specifying the addressing mode and the other half specifying a register

15 to be used for addressing. The instructions preferably have a variable length, and various types of specifiers
can be used with the same opcode, as disclosed in Strecker et al., U.S. Patent 4,241 ,397 issued December
23, 1980.

The first step in processing the instructions is to decode the "opcode" portion of the instruction. The first
portion of each instruction consists of its opcode which specifies the operation to be performed in the instruc-

20 tion, and the number and type of specifiers to be used. Decoding is done using a table-look-up technique in
the instruction decoder 20, to find the data context (byte, word, etc.), data type (address, integer, etc.) and
accessing mode (read, write, modify, etc.) for each specifier. Also, the decoder determines where source-
operand and destination-operand specifiers occur in the instruction and passes these specifiers to the OPU
21 for pre-processing prior to execution of the instruction. Later the execution unit performs the specified op-

25 eration by executing prestored microcode, beginning a starting address obtained from a "fork RAM" that is ad-
dressed with the instruction opcode.

After an instruction has been decoded, the OPU 21 parses the operand specifiers and computes their ef-
fective addresses; this process involves reading general purpose registers (GPRs) and possibly modifying the
GPR contents by autoincrementing or autodecrement ing. The operands are then fetched from those effective

30 addresses and passed on to the execution unit 13, which executes the instruction and writes the result into
the destination identified by the destination pointer for that instruction.

Each time an instruction is passed to the execution unit, the instruction unit sends a microcode dispatch
address and a set of pointers for (1) the locations in the execution-unit registerf ile where the source operands
can be found, and (2) the location where the results are to be stored. Within the execution unit, a set of queues

35 23 includes a fork queue for storing the microcode dispatch address, a source pointer queue for storing the
source-operand locations, and a destination pointer queue for storing the destination location. Each of these
queues is a FIFO buffer capable of holding the data for multiple instructions.

The execution unit 13 also includes a source list 24, which is stored in a multi-ported register file that also
contains a copy of the GPRs. Thus entries in the source pointer queue will either point to GPR locations for

40 register operands, or point to the source list for memory and literal operands. Both the interface unit 11 and
the instruction unit 12 write entries in the source list 24, and the execution unit 13 reads operands out of the
source list as needed to execute the instructions. For executing instructions, the execution unit 13 includes
an instruction issue unit 28, a microcode execution unit 25 an arithmetic and logic unit (ALU) 26, and a retire
unit 27.

45 The present invention is particularly useful with pipelined processors. As discussed above, in a pipelined
processor the processor's instruction fetch hardware may be fetching one instruction while other hardware is
decoding the operation code of a second instruction, fetching the operands of a third instruction, executing a
fourth instruction, and storing the processed data of a fifth instruction. FIG. 2 illustrates a pipeline for a typical
instruction such as:

50 ADDL3 RO,BA12(R1),R2.
This is a longword addition using the displacement mode of addressing.

In the first stage of the pipelined execution of this instruction, the program count (PC) of the instruction
is created; this is usually accomplished either by incrementing the program counter from the previous instruc-
tion, or by using the target address of a branch instruction. The PC is then used to access the instruction cache

55 1 8 in the second stage of the pipeline.
In the third stage of the pipeline, the instruction data is available from the cache 18 for use by the instruc-

tion decoder 20, or to be loaded into the instruction buffer 19. The instruction decoder 20 decodes the opcode
and the three specifiers in a single cycle, as will be described in more detail below. The RO and R2 numbers

7

EP 0 381 469 B1

are passed to the ALU unit 27, and the R1 number along with the byte displacement is sent to the OPU 21 at
the end of the decode cycle.

In stage 4, the operand unit 21 reads the contents of its GPR register file at location R1 , adds that value
to the specified displacement (12), and sends the resulting address to the translation buffer 15 in the interface

5 unit 11, along with an OP READ request, at the end of the address generation stage.
In stage 5, the interface unit 1 1 selects the address generated in stage 4 for execution. Using the translation

buffer 15, the interface unit 11 translates the virtual address to a physical address during the address trans-
lation stage. The physical address is then used to address the cache 14, which is read in stage 6 of the pipeline.

In stage 7 of the pipeline, the instruction is issued to the ALU 26 which adds the two operands and sends
10 the result to the retire unit 27. During stage 4, the register numbers for R1 and R2, and a pointer to the source

list location for the memory data, were sent to the execution unit and stored in the pointer queues. Then during
the cache read stage, the execution unit started to look for the two source operands in the source list. In this
particular example it finds only the register data in RO, but at the end of this stage the memory data arrives
and is substituted for the invalidated read-out of the register file. Thus both operands are available in the in-

15 struction execution stage.
In the retire stage 8 of the pipeline, the result data is paired with the next entry in the retire queue. Although

several functional execution units can be busy at the same time, only one instruction can be retired in a single
cycle.

In the last stage 9 of the illustrative pipeline, the data is written into the GPR portion of the register files
20 in both the execution unit 13 and the instruction unit 12.

FIG. 3 depicts a typical instruction 30 that can be processed by the central processing unit (CPU) shown
in FIG. 1 . This instruction corresponds to the VAX variable-length instruction architecture as described in Levy
& Eckhouse, Jr. cited above. The instruction 30 includes an operation code 31 consisting of either one or two
bytes. If the first byte 32 has a value of FD hexadecimal, then it is recognized as a double-byte operation code.

25 Otherwise, the instruction decoder (20 in FIG. 1) recognizes the operation code as including only a single byte.
The instruction 30 may further include up to six specifiers following the operation code.

The operation code indicates how many specifiers are included in the instruction. The specifiers used in
connection with any given operation code may have various attributes and different lengths. The attributes of
a particular specifier are determined at least in part by an addressing mode in the first byte of the specifier.

30 However, the permissible attributes of the specifier are some times limited by the operation code. Further, for
a particular kind of addressing mode known as "immediate addressing," the length of the specifier information
is determined by a "data type" specified by the specifier.

A specific variable length instruction is shown in FIG. 4. In assembler notation, this instruction is written
as "ADDL3 R0,#4,LA203(R2)". In machine code, the instruction includes eight bytes generally designated 35.

35 The first byte is an operation code of 23 hexadecimal which corresponds to the assembler mnemonic "ADDL3."
The operation code indicates that a first longword operand is to be added to a second longword operand and
the longword result is to be stored at a destination.

Following the operation code is a "register specifier" having a value of 50 hexadecimal. The hexadecimal
digit of 5 denotes that the specifier is a register specifier, and the hexadecimal digit 0 indicates that the spe-

40 cified register is the R0 general purpose register in the CPU. The register specifier therefore specifies that
the first source operand is the content of the general purpose register R0.

Following the register specifier is a "short literal specifier" having a value of 04 hexadecimal. The short
literal specifier specifies a value of four for the second source operand.

Following the short literal specifier is the first byte of a "complex specifier" that specifies the destination
45 of the addition operation. The hexadecimal digit E indicates a "longword displacement" addressing mode in

which the following four bytes are to be interpreted as a thirty-two-bit address displacement to be added to
the value of the content of a base register to obtain an address specified by the complex specifier. The hex-
adecimal digit 2 indicates that the general purpose register R2 is to be used as the base register. The complex
specifier therefore specifies that the sum or result of the longword addition indicated by the operand code is

so to be stored in memory at an address computed by adding the value of 203 hexadecimal to the content of the
general purpose register R2.

Turning now to FIG. 5, there is shown a decoding table for decoding the first byte of an operand specifier
which is not a branch displacement. If the two most significant bits of the first byte of the operand specifier
are both zero, then the operand specifier consists of the single first byte, and the six least significant bits of

55 this byte are interpreted or decoded as specifying a six-bit value referred to as a "short literal."
If the first two most significant bits of the first byte of an operand specifier are not zero, and assuming

that the byte is not part of a branch displacement, then the byte is decoded as a particular one of twelve possible
register addressing modes relating to a specified one of sixteen general purpose registers R0 to R15 in the

8

EP 0 381 469 B1

CPU. The most significant four bits of the byte (constituting a register mode field) are decoded to indicate the
addressing mode, and the four least significant bits (constituting a general purpose register address field) are
used to address a particular one of the sixteen general purpose registers.

If the register mode field has a hexadecimal value of four, then an "index mode" is specified in which the
5 value of the content of the general purpose register addressed by the register address field is multiplied by

the size in bytes of the operand (e.g., by 1, 2, 4, 8 or 16 for respective byte, word, longword, quadword or oc-
taword data types) and the sum is included as a term in the address computation performed for an immediately
following complex specifier; the next byte must have a register mode field with a value of 6 to F hexadecimal,
and a register address field which addresses a base register for the complex specifier.

10 If the register mode field has a hexadecimal value of five, then the specifier is a "register specif ier" in which
the operand value is found in the general purpose register indicated by the register address field or, if the spe-
cifier is for the destination of the instruction, then the specifier specifies that the result is to be stored in the
general purpose register indicated by the register address field.

For each of register modes 6, 7 and 8, the designated register contains the memory address for the op-
15 erand. For a source operand, the operand value is read from this memory address, and for a destination op-

erand, the result is written to this memory address. In mode 6 the designated register contains the address of
the operand. In register mode 7 the content of the designated general purpose register is first decremented
before computation of the address; in mode 8 the content of the designated general purpose register is incre-
mented after the register is used to compute the address. Register mode 9 is similar to register mode 8, except

20 that the content of the designated general purpose register specifies the address in memory at which the op-
erand address will be found rather than the operand itself.

Modes 10 through 15 are various kinds of "displacement modes." In a displacement mode a displacement
value, which may comprise a byte, word, or longword in modes 10, 12 and 14 respectively, is added to the
content of the designated general purpose register to obtain the operand address. The operand is determined

25 in a similar fashion in modes 11,13 and 15 except that the sum of the displacement value and the content of
the general purpose register identifies a memory address at which the address of the operand can be found.

In modes 8 through 15, the register address field of the first byte of the operand specifier can designate
any of the general purpose registers, including register R15 which is the program counter. For modes 8 and
9, if the program counter is addressed, the value of the program counter itself is incremented which causes

30 program execution to jump over operand data or an operand address disposed in the instruction stream. The
instruction decoded therefore must recognize these special cases of modes 8 and 9 in which the program coun-
ter is addressed. In mode 8, this special case is known as an "immediate" addressing mode, and for mode 9
it is known as an "absolute" addressing mode. Specifically, when modes 8 and 9 are decoded for any of the
general purpose registers 0 through 14, the next specifier or the next operation code appears immediately fol-

35 lowing the byte designating the mode and the general purpose register. For the immediate mode, however, a
number of bytes of the immediate data appear and the number of bytes is determined by the specifier's data-
type.

Turning now to FIG. 6, the data paths to and from the instruction decoder 20 are shown in greater detail.
In order to simultaneously decode a number of operand specifiers, the instruction buffer 19 is linked to the

40 instruction decoder 20 by a data path generally designated 40 for conveying the values of up to nine bytes of
an instruction being decoded. Associated with each byte, however, is a parity bit for detecting any single bit
errors in the byte, and also a valid data flag (l_VALID) for indicating whether the instruction buffer has in fact
been filled with data from the instruction cache (18 in FIG. 1) as requested by the program counter (17 in FIG.
1). The instruction decoder decodes a variable number of specifiers depending upon the amount of valid data

45 in the instruction buffer 19. Specifically, the instruction decoder inspects the valid data flags to determine the
number of specifiers that can be decoded and decodes them in a single cycle. In accordance with the number
of specifiers that are actually decoded, the instruction decoder determines the number of bytes that are de-
coded in order to remove these bytes from the instruction buffer 19. As shown in FIG. 6, there is associated
with the instruction buffer 19 means for shifting a selected number of bytes into and out of the instruction buffer

so 19. This shifting means includes a shifter 21 which is arranged with a merge multiplexer 22 to either re-circulate
or shift data from the instruction buffer 19. The instruction buffer operates as a data latch to receive data in
response to clocking by the system clock of the central processing unit. The instruction decoder transmits a
number to the shifter 21 to specify the number of bytes to be shifted out of the instruction buffer at the end
of each cycle.

55 The instruction buffer 19 is large enough to hold at least three specifiers of the kind which are typically
found in an instruction. The instruction decoder 20 is somewhat simplified if the byte 0 position of the instruc-
tion buffer holds the opcode while the other bytes of the instruction are shifted into and out of the instruction
buffer 19. In effect, the instruction buffer holds the opcode in byte 0 and functions as a first-in, first-out buffer

9

EP 0 381 469 B1

for byte positions 1 to 8. The instruction decode is also simplified under the assumption that only the specifiers
for a single instruction are decoded during each cycle of the system clock. Therefore, at the end of a cycle in
which all of the specifiers for an instruction will have been decoded, the instruction decoder transmits a "shift
op" signal to the shifter 21 in order to shift the opcode out of the byte 0 position of the instruction buffer so

5 that the next opcode may be received in the byte 0 position.
The instruction cache (1 8 in FIG. 1) preferably is arranged to receive and transmit instruction data in blocks

of multiple bytes of data and the block size is preferably a power of two so that the blocks have memory ad-
dresses specified by a certain number of most significant bits in the address provided by the program counter
(17 in FIG. 1). Therefore, the address of the operation codes from the instruction buffer will occur at various

10 positions within the block. To load byte 0 of the instruction buffer with the operation code which may occur at
any byte position within a block of instruction data from the cache, a rotator 23A is disposed in the data path
from the instruction cache 18 to the instruction buffer 19. The rotator 23A as well as the shifter 21 A, are com-
prised of cross-bar switches.

In order to load the byte 0 position of the instruction buffer with an opcode in the instruction stream from
15 the instruction cache, the merge multiplexer 22 has a select input for selecting the number of bytes from the

rotator be merged with a select number of bytes from the shifter 21. In particular, the merge multiplexer has
data inputs AO to A8, and in response to a particular "number to shift" m, the multiplexer 22 enables inputs
AO A8-m to receive data from the shifter, and enables inputs B8-m+1 to receive data from the rotator.
As shown, this multiplexing function can be provided by a multiplexer 22 having individual select inputs S0-

20 S8 for selecting either the respective A or the respective B input, and by enabling the individual select lines
S0-S8 by control logic 24A responsive to the NO. TO SHIFT signal and the number of valid entries (IBUF VALID
COUNT) in the instruction buffer 19, as determined by logic 26A responsive to valid data flags in the instruction
buffer. The control logic 24A is also responsive to the SHIFT OP signal so that when the SHIFT OP signal is
asserted, the total number of bytes to be shifted includes the opcode, and when the SHIFT OP signal is not

25 asserted, the opcode from the instruction buffer is transmitted to the AO input of the merge multiplexer 22 re-
gardless of the number to shift.

As shown in FIG. 6, the data path from the instruction cache includes eight parallel busses, one bus being
provided for each byte of instruction data. The rotator is responsive to a "rotate value" provided by rotator con-
trol logic 26A. The rotator control logic 26 is responsive to the NO. TO SHIFT and the IBUF VALID COUNT,

30 which together indicate where the first incoming byte of new instruction data is to be placed in the instruction
buffer 19, and a value IBEX VALID COUNT which is supplied by the instruction cache and associated buffering
between the cache and the rotator 23A and which indicates from where the first incoming byte of new instruc-
tion data is obtained.

It should be noted that when the instruction buffer is first loaded and at certain times thereafter, it is pos-
35 sible that some of the data received by the rotator 23A is invalid for the purpose of transfer to the instruction

buffer 19. In particular, if eight bytes of data are read from the instruction cache and transferred directly to
the rotator 23A and an opcode to be loaded appears at a middle byte position within the block, then instruction
data at addresses higher than the opcode will be valid for transfer, and addresses lower than the opcode will
be invalid for transfer. Therefore, it is possible that the opcode and bytes immediately following it may be valid,

40 and the other bytes may be invalid. As a consequence, a valid data flag indicates whether the byte position
associated with it and all lower numbered byte positions, up to the initially loaded opcode, are valid.

Once an opcode has been loaded into the byte 0 position of the instruction buffer 19, the instruction de-
coder 20 examines it and transmits a corresponding microprogram "fork address" to a fork queue in the queues
(23 in Fig. 1). The instruction decoder also examines the other bytes in the instruction buffer to determine

45 whether it is possible to simultaneously decode up to three operand specifiers. The instruction decoder further
separates the source operands from the destination operands. In particular, in a single cycle of the system
clock, the instruction decoder may decode up to two source operands and one destination operand. Flags in-
dicating whether source operands or a destination operand are decoded for each cycle are transmitted from
the instruction decoder 20 to the operand unit 21 over a transfer bus (TR). The instruction decoder 20 may

so simultaneously decode up to three register specifiers per cycle. When a register specifier is decoded, its reg-
ister address is placed on the transfer bus TR and sent to the source list queue (23 in FIG. 1) via a transfer
unit 30 in the operand unit 21.

The instruction decoder 20 may decode one short literal specifier per cycle. According to the VAX instruc-
tion architecture, the short literal specifier must be a source operand specifier. When the instruction decoder

55 decodes a short literal specifier, the short literal data is transmitted over a bus (EX) to an expansion unit 31
in the operand unit 21. The expansion unit 31 expands the six bits of the short literal to the size required by
the data type of the specifier as called for by the instruction opcode, and that expansion is placed in the mini-
mum number of 32-bit long words sufficient to hold the expansion. In other words, one 32-bit longword is need-

10

EP 0 381 469 B1

ed for a byte, word, longword or single precision floating-point datatype; two 32-bit longwords are needed for
a quadword or a double-precision floating point datatype, and four 32-bit longwords are required for an octa-
word data type. The 32-bit longwords are transmitted to the source list (24 in FIG. 1), and a source list pointer
corresponding to the operand is placed in the source list pointer queue (23 in FIG. 1).

5 The instruction decoder 20 may decode one complex specifier per cycle. The complex specifier data is
transmitted by the instruction decoder 20 over a general purpose bus (GP) to a general purpose unit 32 in the
operand unit 21. The general purpose unit 32 operates in a similar fashion to a conventional operand unit which
shifts the content of the index register by a selected number of binary positions corresponding to the data type
of the specifier, and adds the shifted value to the content of the base register and any displacement for the

10 complex specifier. If the specifier has an "address" access type, the computed value is placed in the source
list and a corresponding source list pointer is sent to the source list queue (23 in FIG. 1). Otherwise, if the com-
plex specifier specifies a source operand, memory is addressed by the computed value to obtain the source
operand, or in the case of the deferred mode, to obtain the address of the source operand. The source operand
is then placed in the source list (24 in FIG. 1) and a corresponding source list pointer is placed in the source

15 list pointer queue (23 in FIG. 1). If the complex specif ier specif ies a destination operand, the computed value
is placed in the destination queue (23 in FIG. 1).

Once all of the specifiers for the instruction have been decoded, the instruction decoder 20 transmits the
"shift op" signal to the shifter 21 .

Turning now to FIG. 7, the format for the GP bus is shown in greater detail. The GP bus transmits a single
20 bit "valid data flag" (VDF) to indicate to the general purpose unit 32 whether a complex specifier has been de-

coded during the previous cycle of the system clock. A single bit "index register flag" (IRF) is also transmitted
to indicate whether the complex specifier references an index register. Any referenced index register is des-
ignated by a four-bit index register number transmitted over the GP bus. The GP bus also conveys four bits
indicating the specifier mode of the complex specifier, four bits indicating the base register number, and thirty-

25 two bits including any displacement specified by the complex specifier.
The GP bus also transmits a three-bit specifier number indicating the position of the complex specifier in the

sequence of the specifiers for the current instruction. The specifier number permits the general purpose unit 32 to
select access and data type for the specified operand from a decode of the opcode byte. Therefore, it is possible
for the general purpose unit 32 to operate somewhat independently of the expansion unit 31 and transfer unit 30

30 of FIG. 6. In particular, the general purpose unit 32 provides an independent stall signal (OPU_STALL) which indi-
cates whether the general purpose unit 32 requires more than one cycle to determine the operand.

Turning now to FIG. 8, there is shown the format for the expansion bus (EX). The expansion bus conveys
a single bit valid data flag, the six bits of the short literal data, and a three-bit specifier number. The specifier
number indicates the position of the short literal specifier in the sequence of specifiers following the current

35 instruction, and is used by the expansion unit 31 to select the relevant datatype from a decode of the opcode
byte. Therefore, the expansion unit 31 may also operate rather independently and provides a respective stall
signal (SL_STALL) which indicates whether the expansion unit requires more than one cycle to process a short
literal specifier.

Turning now to FIG. 9, there is shown the format for the transfer bus (TR). The TR bus includes a first
40 source bus 35, a second source bus 36 and a destination bus 37, each of which conveys a respective valid

data flag (VDF), a register flag (RGF) and a register number. The register flag is set when a corresponding
register specifier has been decoded. Also, whenever a complex or short literal specifier is decoded, then a
respective one of the valid data flags in the first source, second source or destination buses is set and the
associated register flag is cleared in order to reserve a space in the data path to the source list point queue

45 or the destination queue for the source or destination operand.
Turning now to FIG. 10, there is shown a flowchart of the operations performed during a single cycle of

the system clock for decoding an instruction. In a first step 41 , a double-byte opcode flag is inspected to de-
termine whether the first byte of a double-byte operation code was detected during the previous cycle. If not,
then in step 42 the instruction decoder checks whether the byte 0 position of the instruction buffer includes

so the first byte of a double-byte opcode. Fora VAX instruction, the first byte of a double-byte opcode has a value
of FD hexadecimal. If this value is detected, then in step 43 the double-byte opcode flag is set for the benefit
of the next cycle and the SHIFT OP signal is sent to the shifter (21 of FIG. 6) with a NO. TO SHIFT equal to
one to shift the first opcode byte out of the instruction buffer and to receive the second byte of the opcode in
the byte 0 position.

55 When byte 0 does not indicate a double-byte opcode, then in step 44 up to three specifiers are decoded
simultaneously. The preferred method of simultaneous decoding is described further below in connection with
FIG. 11 . After decoding the specifiers, in step 45 the decoder determines whether all of the specifiers for the
opcode have been decoded. For this purpose, the decoder has a register which stores the total number of spe-

11

EP 0 381 469 B1

cif iers that were decoded in previous cycles for the current operation code. The value in this register is referred
to as the "specifiers completed." Therefore, in step 45 the decoder determines whether all of the specifiers
are decoded for the operation code by comparing the number of specifiers for the operation code (referred to
as the specifier count) to the sum of the "specifiers completed" and the number of specifiers having been de-

5 coded in step 44.
If all of the specif iers are decoded for the operation code, then in step 46 the decoder determines the num-

ber of bytes to shift as equal to one plus the specifier bytes decoded in step 44. The additional one is for shifting
a new operation code into the instruction buffer. To do this, the instruction decoder asserts the "shift op" signal.
The double-byte opcode flag is cleared at this time and also the "specifiers completed" is set to zero to begin

10 decoding of the next instruction during the next cycle.
If in step 45 it was determined that there are additional specifiers to be decoded for the operation code,

then in step 47 the shifter (21 in FIG. 6) is sent a "number to shift" equal to the number of specifier bytes having
been decoded in step 44. Also, the "specifiers completed" is increased by the number of specif iers having been
decoded in step 44. This completes the decoding during the present cycle.

15 Turning now to FIG. 11, there is shown a flowchart of a method of decoding up to three specifiers simul-
taneously. In a first step 51 , the decoder determines whether an "extended immediate" addressing mode was
detected during a previous cycle so that the next four bytes in the instruction buffer are properly interpreted
as extended immediate data. This decision is critical because there is no restriction on the values that the ex-
tended immediate data may assume, so that they could possibly assume values that are characteristic of reg-

20 ister or short literal specifiers or various other addressing modes. If the instruction buffer may contain such
extended immediate data, then in step 52 the decoder determines whether bytes 1 to 4 contain valid data. If
not, then in step 53 the instruction decoder determines a shift count (SC) and a number of the specifiers de-
coded (N) indicating respectively the number of specifier bytes and the number of specifiers decoded this cy-
cle. Since these parameters are set to zero, the instruction decoder in effect stalls during the current cycle.

25 If in step 52 it was determined that bytes 1 to 4 are valid, then they can be decoded. In step 54, the shift
count (SC) for the specifier bytes is set equal to four and the number of specifiers decoded (N) is set equal to
zero. Then, in step 55 the longword count is decremented to indicate that a longword of extended immediate
data has been decoded. In step 56, the longword count is compared to zero to determine whether additional
longwords of extended immediate data need to be decoded. If so, decoding is finished for the present cycle.

30 Otherwise, in step 57 the decoding of the extended immediate specifier is finished, and an extended immediate
flag (X8F) is cleared. This flag, for example, inhibits the SHIFT OP signal when extended immediate data is
being decoded; this is done as a matter of convenience so that the value of the number of specifiers decoded
(N) need not be adjusted when the extended immediate mode is first detected.

Returning to step 51, if the decoder is not expecting extended immediate data, then in step 58 the "access
35 type" of the opcode is inspected to determine whether the data in the instruction buffer is to be interpreted as

a branch displacement. In step 59 the instruction decoder checks the access type of the next specifier to de-
termine whether it is an "implied" specifier.

Since the instruction decoder has the capability of decoding multiple specifiers, it is very advantageous
for it to create operands for implied specifiers, rather than having the execution unit execute microcode se-

40 quences to implement the implied specifiers. This is particularly advantageous when the stack pointer is an
implied specifier that must be incremented or decremented. In this case, a base register number of E hexa-
decimal and a specifier mode of seven or eight is asserted on the GP bus to cause the stack pointer to be
automatically incremented or decremented by the general purpose unit (32 in FIG. 6). Stack operations (e.g.,
PUSH) can be implemented using an implied stack pointer operand, and they become similar to a move in-

45 struction and can be executed in a single cycle. A complete list of VAX instructions having such stack register
implied operands is included in Appendix I. For these instructions, it is preferable for the stack pointer to be
asserted on the GP bus rather than have the execution unit cause the incrementing and decrementing of the
stack pointer.

In step 60 the instruction decoder determines the maximum number of specifiers, up to three, that should
so be decoded during the present cycle assuming that valid data is present in the instruction buffer. Once the

number of specifiers to request has been determined, in step 61 the instruction decoder determines an initial
number of specifiers to decode and a shift count for the present cycle. These initial values are used by an
"intra-instruction read conflict" detector which may change the initial values if such a conflict is detected.

An intra-instruction read conflict occurs whenever an instruction includes an autoincrement or an auto-
55 decrement specifier which references either directly or indirectly a register specified by a previously occurring

specifier for the current instruction. To avoid stalls during the preprocessing of instructions by the instruction
unit (12 in FIG. 1), register pointers rather than register data are usually passed to the execution unit because
register data is not always available at the time of instruction decoding. This also permits up to three register

12

EP 0 381 469 B1

numbers to be passed simultaneously over twelve data lines rather than ninety-six lines that would be required
for passing the contents of the three registers. If an intra-instruction read conflict exists, however, the operand
value specified by the conflicting register specifier is the initial value of the register being incremented or de-
cremented, and this initial value will have been changed by the time that the execution unit executes the in-

5 struction. Preferably, the proper initial value is obtained prior to the incrementing or decrementing of the con-
flicting register by putting the instruction decoder into a special IRC mode in which only one specifier is de-
coded per cycle, and if a specifier being decoded is a register specifier, the content of the specified register
is transmitted over the GP bus to the general purpose unit in order to obtain the content of the specified register
and transmit it to the execution unit.

10 As shown in the flowchart of FIG. 11, the intra-instruction read conflict is detected in step 62 taking into
consideration the initial number of specifiers that could be decoded during the present cycle. If an intra-in-
struction read conflict would exist for the initial number of specifiers determined in step 61, then in step 63
the number (N) of specifiers being decoded this cycle and the shift count (SC) are selected under the assump-
tion that only one specifier should be requested. Also, if a register specifier is decoded, the register specifier

15 is transmitted over the GP bus to the general purpose unit (32 in FIG. 6) instead of being transmitted as a reg-
ister number over the TR bus to the transfer unit (30 in FIG. 6). If an intra-instruction read conflict is not detected
in step 62 or has been resolved in step 63, then in step 64 the instruction decoder determines whether any
specifier being decoded has an "extended immediate" mode. If so, then in step 65 the "longword count" used
above in steps 55 and 56 is set in accordance with the data type of the extended immediate specifier. If the

20 data type is a quadword, then the first four bytes of the extended immediate data quadword will be decoded
during the present cycle, and the last four bytes of quadword data need to be decoded during a subsequent
cycle. Therefore, the longword count is set to one to indicate that one additional longword of extended immedi-
ate data needs to be decoded. If the data type of the extended immediate specifier is an octaword, then the
longword count is set to three to indicate that three additional longwords of extended immediate data need to

25 be decoded during subsequent cycles. Also, in step 65 the "shift op" signal is inhibited. So that the number of
specifiers N to decode need not be changed when the extended immediate mode is detected in step 64, the
"shift op" signal is inhibited until the last longword of extended immediate data is decoded. Otherwise, the op-
eration code for the present instruction would be shifted out of the instruction buffer if the extended immediate
specifier were the last specif ier for the current instruction.

30 Once the number of specifiers to decode and the shift count have been determined, then in step 66 the
flags and the specifier information for the GP, SL and TR buses (FIGS. 7 to 9) are determined. Finally, in step
67 the specifier information is placed onto the GP, SL and TR buses. This completes the decoding procedure
for the current cycle.

Turning now to FIG. 12, there is shown a block diagram of a preferred embodiment of the instruction de-
35 coder 20. In order to detect a double-byte opcode, there is provided an extended opcode decoder 101 which

asserts an EXT signal when byte 0 in the instruction buffer has a value of FD hexadecimal. The EXT signal
is used to set the double-byte opcode flag which is indicated by a flip-flop 1 02. Gates 1 03 and 1 04 are provided
to initially clear the double-byte opcode flag when all of the specifiers for the instruction have been decoded
and also when the instruction buffer is initially loaded.

40 To decode the operation code, combinational logic 105 receives the double-byte opcode flag and the con-
tent of byte 0 of the instruction buffer. For each operation code, the decode logic generates a "spec count"
indicating the number of specifiers following the operation code, and the access type and data type for each
specifier. Since the decoder 20 can decode up to three specifiers, only the access and data type for the next
three specifiers to be decoded are pertinent. In order to select the pertinent access and data type information,

45 there is provided a multiplexer 106 receiving the access and data type for each of the six possible specifiers
for each operation code and selecting the information for the next three specifiers. The positions to select is
controlled by the number of specifiers completed which is indicated by a register 107.

The "spec count" or number of specif iers in the current opcode is sent from the decode logic 1 05 to a three-
bit binary subtractor 1 08 which subtracts the number of specif iers completed from the spec count to determine

so the number of specifiers remaining to be decoded. The number of specifiers remaining to be decoded is com-
pared in a comparator 1 09 to the number N of specifiers actually decoded to determine whether all of the spe-
cifiers for the current instruction will be decoded by the end of the current cycle. However, if the last specifier
has an extended immediate mode, the comparator 109 will assert an active signal even though the extended
immediate specifier has only been partially decoded. The extended immediate mode is detected by an extend-

55 ed immediate detector 110 which generates a signal for inhibiting the "shift op" signal. This inhibiting signal is
combined with the output from the comparator 109 in an AND gate 111 to generate a signal which causes the
"shift op" signal to be asserted and which also clears the double-byte flag. So that the register 107 will indicate
the proper number of specifiers completed at the beginning of the next cycle, it has a data input receiving the

13

EP 0 381 469 B1

output of a three-bit binary adder 113 which receives the data output of the register 107 and combines it with
the number of specifiers actually decoded during the current cycle.

In order to determine the number of specifiers to request during the current cycle, the instruction decoder
20 includes request logic 114 which receives from the multiplexer 106 the attributes of the next three specifiers

5 and also receives information from a mode decoder 115 which decodes the modes of the first four bytes fol-
lowing the operation code in the instruction buffer. The mode decoder performs a simple decode of bytes 1
to 4 of the instruction decoder according to the table shown in FIG. 5, and provides respective binary outputs
indicating whether each of bytes 1 to 4 could possibly be a register specifier, a short literal specifier, an index
register, a complex specifier, a complex specifier having an absolute addressing mode (i.e., the byte has a

10 value of 9F hexadecimal), or a complex specifier having an immediate mode (i.e., the respective byte has a
value of 8F hexadecimal). The mode decoder 115 also recognizes the sequence of bytes 1 to 4 as belonging
to a particular one of four primary cases. These cases are further shown and described below in connection
with FIG. 21.

In addition to determining the number of specifiers which may possibly be decoded during the present cy-
15 cle, the request logic determines whether the first three bytes in the instruction buffer represent a permissible

sequence of specif ier modes. If the sequence is impermissible, the request logic generates an addressing fault
signal which is combined in an OR gate 116 with other fault signals such as parity error signals in order to stall
the instruction decoder. The output of the OR gate is fed to a flip-flop 117 to provide a decoder fault signal
which may interrupt the execution of the current program when the fault is recognized by the execution unit. The

20 decoder remains stalled by the flip-flop 117 until the flip-flop is cleared by a RESTART signal. Another OR gate 118
combines the decoder fault signal with the output of the OR gate 116 and any stall signal (OPU_STALL) from the
operand unit 21 to provide a signal for stalling the instruction decoder. The output of the OR gate 116 and the
decoder fault signal are also used to inhibit an AND gate 119 which determines whether an instruction has been
completely decoded. The output of the AND gate 119 is latched in a register 120 to provide a signal indicating

25 the transmission of a new valid fork address to the fork queue (in the queues 23 in FIG. 1) for transmission to
the instruction issue unit and microcode execution unit (25 and 28 in FIG. 1).

The request logic 114 generates the addressing fault signal, for example, when it detects a byte having
an index mode which is immediately followed in the instruction buffer by a byte having a register mode, a short
literal mode or an index mode. In other words, an addressing fault is generated whenever a byte having an

30 index mode is not followed by a complex specifier. An addressing fault also occurs when a specifier to be de-
coded has a "write" access type but the specifier also has a short literal mode.

The request logic encodes information about the architecture of the instructions being decoded in order
to select predetermined decoding cases that depend in a complex way upon the attributes of the next three
specifiers and the possible modes of bytes 1 to 3 in the instruction decoder. The request logic 114 also limits

35 the number of specifiers requested to the number of specifiers needed when the number of specifiers remain-
ing is less than three, and further selects zero specifiers when there isadecoderstall. The number of specif iers
needed is obtained from the number of specifiers remaining by two OR gates 121, 122. The request logic also
requests zero specifiers whenever there is an addressing fault.

Shown in Appendix II is a truth table of the request logic for decoding VAX instructions. The table includes
40 the following rows: N (the number of specifiers needed); SP3, SP2, SP1 (the access types of the next three

specifiers for the instruction as defined on page 371 of Levy & Eckhouse, Jr., cited above, and further including
implied read and implied write specifiers); R4, S4, 14, R3, S3, 13, R2, S2, 12, R1, S1, 11 (designating whether
the respective bytes 1 to 4 in the instruction buffer have a register, short literal or index mode); REQ. (the case
to request); and RAF (indicating an addressing fault).

45 The initial number of specifiers to decode (N') and the initial number of specifier bytes to decode (SC)
are determined by shift count logic 123 which receives the mode information, an IRC_CYCLE signal, the GP
and SL stall signals, the bytes and valid flags from the instruction buffer, and the data types of the next three
specifiers. The shift count logic consists of a number of logic trees for the various cases. These cases include
cases for requesting one, two or three specifiers for a branch byte (R1BB, R2BB, R3BB) or a branch word

so instruction (R1 BW, R2BW, R3BW). The shift count logic further includes a case for requesting one specifier
of an instruction having an implied specifier (R1 1), and requesting two specif iers for an instruction having an
implied specifier (R2I). The shift count logic further includes five cases for requesting from one to three spe-
cifiers which are not branch displacements or implied specifiers. These cases include a single case (R1) for
requesting one specifier, two cases (R2, R2R) for requesting two specifiers, and two cases (R3, R3XR) for

55 requesting three specifiers.
The R2R tree is requested only when the first byte is neither a register specifier nor a short literal, and

the second specifier should not be a short literal. This special case is provided to permit the request logic to
generate an addressing fault signal (RAF) during the next cycle when the short literal appears in the first byte.

14

EP 0 381 469 B1

In other words, the request logic selects the R2R tree when two specifiers are needed and the second specifier
has a write or modify access type. This simplifies the request logic since it permits the request logic which
generates the addressing fault signal to only look at the mode of the first byte. In a similar fashion, the R3XR
tree will decode three specifiers only when the last specifier is a register. When three specifiers are needed,

5 the request logic requests the R3 tree only when the first two bytes are register or short literal specifiers, and
otherwise selects the R3XR tree.

Each of these logic trees generates an initial number of specifiers decoded (N') and a shift count of the
specifier bytes decoded (SC). The request logic 114 operates multiplexers 124 and 125 to select N' and SC
from the requested logic tree. N' is used by an intra-instruction read conflict detector 126 to determine whether

10 such an intra-instruction read conflict would occur. If so, a signal IRC is asserted. The IRC signal and an X8F
signal operate a third multiplexer 126A to select the N and SC indicating the number of specif iers and specifier
bytes actually decoded. The extended immediate signal X8F has priority, in which case N is zero and SC is
either zero or four in order to decode four bytes of extended immediate data. The IRC signal has second priority,
in which case N and SC will be selected from the logic trees for decoding at most one specifier. In other words,

15 when an intra-instruction read conflict is detected, only one specifier is decoded for each cycle of the system
clock. If the tree initially selected requests three specifiers for a byte branch instruction, for example, then when
an intra-instruction read conflict is detected, the R1 tree is selected, then the R1 tree is again selected, and
finally the R1BB tree is selected, instead of the R3BB tree.

The actual number of bytes to be shifted by the shifter (21 in FIG. 6) is obtained by selectively adding one
20 to the specifier byte shift count SC in an adder 127.

The final steps in the decoding procedure are performed by output selection and validation logic 128 which
determines the locations in the instruction buffer of the data for the specifiers being decoded in the current
cycle. For the TR bus, the information for the first source operand is obtained from byte 1 of the instruction
buffer. A multiplexer 129 obtains information fora second source specifierfrom the instruction buffer, and sim-

25 ilarly a multiplexer 130 obtains information for any destination specifier. In a similar fashion, a multiplexer 131
obtains any short literal data from the instruction buffer. Information about a general purpose specifier is ob-
tained by a shifter 132 from successive bytes in the instruction buffer. In order to pre-process implied speci-
fiers, a final multiplexer 133 selects the stack pointer (SP) as the base register and in addition selects either
a mode of eight or a mode of nine for an implied read or an implied write, respectively.

30 Turning now to FIG. 13, there is shown a schematic diagram of the shift count logic for the R1 BB tree.
This logic tree is selected, for example, to decode the byte displacement of a branch instruction (such as the
BRB instruction in the VAX architecture). Agate 141 asserts that N' and SC are both equal to one when byte
1 in the instruction decoder is valid, and otherwise both N' and SC are zero. Byte 1 in the instruction buffer
is valid when its valid data flag (l_VALID[1]) is set and the general purpose unit (32 in FIG. 6) is not stalled.

35 Turning now to FIG. 14, there is shown a schematic diagram of the R1BW logic tree. This logic tree is se-
lected to decode the word displacement of a branch instruction (such as the BRW instruction in the VAX ar-
chitecture). N' is one and SC is two if byte 2 in the instruction buffer is valid, and otherwise both N' and SC
are zero. The validity of byte 2 in the instruction buffer is determined by a gate 142 in accordance with the
valid data flag (l_VALID[2]) and the GP_STALL signal.

40 Turning now to FIG. 15, there is shown a schematic diagram of the shift count logic for the R1I tree for
decoding one implied specifier. This tree is selected, for example, when decoding a return from subroutine
instruction. The shift count is zero because there are no explicit specifiers in the instruction buffer to decode.
The number of specifiers decoded N' is zero if the general purpose unit is stalled, and otherwise N' is one.
Therefore, the R1I logic tree includes a single inverter 143 which inverts the GP_STALL signal.

45 Turning now to FIG. 16, there is shown a schematic diagram of the R2BB logic tree which is selected when
a second specifier to decode is a byte displacement for a branch instruction. When this logic tree is selected,
byte 1 must be a register or short literal, and byte 2 is the displacement. Neither of these bytes can be decoded
if byte 1 is a short literal and there is a short literal stall. Otherwise, both of the bytes can be decoded if byte
2 is valid and there is no stall. If only the general purpose unit is stalled and the first byte is valid, then only

so the first byte can be decoded. These decisions are made by two gates 144 and 145, and a multiplexer 146.
Turning now to FIG. 17, there is shown a schematic diagram of the R2BW logic tree which is used for de-

coding two specifiers, the first of which must be a register specifier and the second of which is a word dis-
placement. All three of the bytes are decoded if the third byte is valid and the general purpose unit is not stalled,
as detected by a gate 147. Otherwise, the register specifier can be decoded if it is valid. An OR gate 148 and

55 a multiplexer 149 are provided to give the correct values of N' and SC in these instances.
Turning now to FIG. 18, there is shown a schematic diagram of the R2I logic tree. This tree is selected

when the first byte is a register or short literal specifier, and a second specifier is to be implied. N' and SC
are both zero if the first byte cannot be decoded, as detected by gates 150 and 151. Otherwise, SC is one

15

EP 0 381 469 B1

and N' is at least one. N' is two when the implied specifier can be sent to the general purpose unit; in other
words, when the GP_STALL signal is not asserted. The correct value of N in these instances is determined by
gates 152 and 153.

Turning now to FIG. 19, there is shown a schematic diagram of the R3BB logic tree which is used when
5 byte 1 is a register or short literal specifier, byte 2 is a register specifier, and byte 3 is a byte displacement.

Since all of the specifiers are one byte in length, N' is equal to SC. N' is equal to three only if the third byte
is valid and the general purpose unit is not stalled. Otherwise, N' equals two if the second byte is valid and it
is not true that byte 1 is a short literal and the expansion unit (31 in FIG. 6) is stalled. The values of N' and SC
in these instances are determined by gates 154, 155, 156, 157 and 158.

10 Turning now to FIG. 20, there is shown a schematic diagram of the R3BW logic tree which is used when
byte 1 is a register or short literal, byte 2 is a register, and bytes 3 and 4 are a word displacement. Under these
circumstances, N' and SC are zero if and only if byte 1 is a short literal and the expansion unit is stalled, or if
byte 1 is invalid. (Recall that if byte 1 is invalid, so is byte 2 and byte 4.) N' equals three and SC equals four
if bytes 1 , 2 and 4 are all valid and there are no stalls. Otherwise, N' equals two and SC equals two if byte 4

15 is invalid or if the general purpose unit is stalled; N' and SC are both equal to one if byte 2 is valid. The values
of N' and SC in these instances is determined by gates 159, 160, 161, 162, 163 and 164.

The request logic (114 in FIG. 12) and the extended immediate detector (110 in FIG. 12) dispose of the
cases where branch displacements or extended immediate data occur in the instruction buffer. Aside from
these cases, it has been found that legal sequences of three specifiers in the instruction buffer beginning in

20 byte 1 , where at most one of the specifiers is a complex specifier, will fall into one of four primary cases as
shown in FIG. 21. For the purpose of illustration, complex specifiers having a longword displacement are
shown.

The four primary cases are identified by binary subscripts which indicate the binary values of a CASE
selection signal generated by the mode decoder(115 in FIG. 12). InCASE^ the complex specifier base register

25 begins in byte 1, in CASE0i the complex specifier base register begins in byte 2, in CASE00 the complex spe-
cifier base register begins in byte 3, and in CASE10 the complex specifier base register begins in byte 4. It is
possible, however, that all three specifiers are register specifiers, or one specifier is a short literal and the
other is a register specifier, which fall into CASE00. It should be noted that in any case, three specifiers cannot
be simultaneously decoded when the third specifier is a short literal. Whenever three specifiers are simulta-

30 neously decoded, the third specifier is a destination specifier. Also, at most one short literal and at most one
complex specifier can be decoded per cycle, due to the fact that any short literal specifier must be processed
by the expansion unit and any complex specifier must be processed by the general purpose unit, and each of
these units can process only one such specifier per cycle.

The four primary cases shown in FIG. 21 can be distinguished based upon whether bytes 1 , 2 and 3 have
35 short literal, register or index modes. This is illustrated by the truth table in FIG. 22. In CASE00, byte 1 has a

short literal or register mode, byte 2 has a short literal, register or index mode, and byte 3 does not have an
index mode. In CASE0i, byte 1 has a short literal, register or index mode, byte 2 has neither a short literal,
register nor index mode, and byte 3 can have any mode. In CASE10, byte 1 has a short literal or register mode,
byte 2 has a short literal or register mode, and byte 3 has an index mode. In CASE^, byte 1 has neither a short

40 literal, register nor index mode, and bytes 2 and 3 can have any modes.
Turning now to FIG. 23, there is shown a schematic diagram of optimized logic for decoding the four cases.

A three-input NOR gate 171 determines whether byte 1 has neither a short literal, register nor index mode. If
so, then OR gates 172 and 173 indicate CASE^. Otherwise, CASE[0] is asserted only when byte 2 has neither
a short literal, register nor index mode, as detected by a three-input NOR gate 1 74. Also, CASE[1] is asserted

45 only when byte 1 has a register or a short literal mode as detected by an OR gate 1 75, byte 2 also has either
a register or a short literal mode as detected by an OR gate 176, and byte 3 has an index mode as detected
by a three-input AND gate 177.

In orderto decode a register or short literal specif ierfollowing a complex specifier, it is necessary to decode
to variable length levels in the instruction buffer. These levels are identified in FIG. 21 so that signals which

so appear later in the decoding logic can be identified with the particular levels to which the signals relate. Level
1 refers to the decoding of a complex specifier which begins with a base register in byte 1 . The level of a short
literal or register specifier immediately following a complex specifier is identified by the suffix A following the
level of the complex specifier. Sometimes it is possible to decode two specifiers following a complex specifier
when the last specifier is a register specifier. The level of the last is identified by the suffix B following the

55 level of the complex specifier. As shown in FIG. 21 , for example, in CASE ̂ a short literal or register specifier
could be decoded at level 1 A which could occur at any of bytes 2 to 6 depending upon the length of the complex
specifier having a base register identified in byte 1. Similarly, a register specifier could possibly be decoded
at level 1B which could occur at byte 3 to 7 depending upon the length of the complex specifier.

16

EP 0 381 469 B1

In CASE0i, the complex specifier is decoded to level 2. The length of the complex specifier is determined
by the mode of the specifier, and if the specifier has an immediate mode, it is also dependent upon the data
type associated with the position of the complex specifier in the sequence of specif iers for the instruction being
decoded.

5 A particularly troublesome problem with decoding specifiers following a complex specifier having an im-
mediate mode is that the position of the complex specifier in the sequence of specifiers for the instruction is
dependent upon whether an index register is specified in the byte prior to the byte specifying the base register.
For CASE0i, for example, if byte 1 does not have an index mode, then the data type for the complex specifier
beginning in byte 2 is the second data type selected by the shifter 106, but if the first byte has an index mode,

10 then the data type for the complex specifier having the base register identified in byte 2 will be the first data
type selected by the shifter. Therefore, the length of the complex specifier in CASE0i, as well as CASE00, will
be dependent upon whether there is an index designation preceding the base designation. Therefore, the de-
coding logic must sometimes distinguish whether an index designation precedes the base designation in order
to decode to levels 2, 2A or 2B.

15 When an index register precedes the base, these levels will be identified as 21, 2IAand 2IB. When a com-
plex specifier does not have an absolute or immediate mode, the information about the specifiers at the 21,
2IA and 2IB levels will be the same as the information for the specifiers at the 2, 2A and 2B levels.

In CASEqo, byte 3 may include a register specif ier which will be the third specifier in the sequence or could
be the base designation for a complex specifier which is also the third specifier if byte 2 does not have an

20 index mode, or is the second specifier if byte 2 does have an index mode. Therefore, byte 3 could be a register
specifier when decoding to level 3, but cannot be a register specif ier when decoding to level 31. Also, a register
specifier at the 3IA level could be decoded following the complex specifier having its base specified in byte
3.

In CASE10, byte 3 always has an index mode so that decoding to level 41 must occur to decode the complex
25 specifier which has the third data type selected by the shifter 106 in FIG. 12.

In summary, the position of each complex specifier for the four primary cases is identified by a number
indicating the byte position of its base register designation in the instruction buffer. This number is followed
by the suffix I if the complex specifier has associated with it an index register designation. If a short literal or
register specifier can possibly be simultaneously decoded immediately following the complex specifier, its pos-

30 ition is identified by the level of the preceding complex specifier and the suffix A. If another specifier can pos-
sibly be decoded after a complex specifier, its position is identified by the level of the preceding base specif ier
and the suffix B.

Turning now to FIG. 24, there is a truth table which shows how the number of specifiers initially being de-
coded (N') is determined for the four primary cases and the various levels of decoding depicted in FIG. 21.

35 CASEqo and CASE0i are further subdivided into two sub-cases in which an index register is or is not designated
for the complex specifier. In order to decode to any particular level for which the number of specifiers is greater
than one, it must not be possible to decode to any deeper level that is permitted in the table. In other words,
in addition to determining the primary case and taking into consideration whether there is an index register in
the subcases, the logic in the instruction decoder decodes as many specifiers as possible (depending for ex-

40 ample on the validity of the data in the instruction buffer) up to the requested number, which corresponds to
the deepest permitted level in FIG. 24 for the applicable case and subcase. Also, it is apparent that a byte spec-
ifying an index register is decoded only if it is possible to further decode the complex specifier following it.

Turning now to FIG. 25, there is shown a schematic diagram of a logic tree for determining the initial N'
and SC for the general case of three specifiers in the absence of implied specifiers and branch displacements

45 in the instruction buffer. The CASE is used to control the select inputs of a multiplexer 181. In addition, for
each case there is provided a respective multiplexer 1 82, 183, 184, 185, which has inputs receiving the value
of N' and SC corresponding to each of the levels permitted for decoding as shown in FIG. 24. The multiplexers
1 82 to 1 85 also have a zero input for the case of N' equals zero and SC equals zero.

For CASEqo and CASE01, the respective multiplexers 182 and 183 have eight inputs and a most significant
so select input S2 controlled by INDEX[2] and INDEX[1], respectively, which indicate whether byte 2 and byte 1

in the instruction buffer have an index mode. Therefore, the multiplexers 182 to 185 in combination with the
multiplexer 181 decode a total of six different cases and four possible combinations for each case. If the com-
plex specifiers do not have an immediate mode, then the four combinations correspond to either zero, one,
two or three specifiers being decoded. In general, however, the number of specifiers being decoded at levels

55 after a complex specif ier depends upon whether the complex specifier has an extended immediate mode. This
is done to simplify encoding logic which operates the select inputs SO and S1 of the multiplexers 182 to 185.

If a complex specifier is found to have an extended immediate mode, the encoding logic still believes that
it is possible to decode to the levels after the complex specifier, but the number of specifiers to decode N' is

17

EP 0 381 469 B1

set equal to the specifier position of the complex specifier. Similarly, the shift count SC for the levels after
the complex specif ier will be set to the value of the shift count for the complex specifier. Therefore, even though
the encoding logic selects the level after the complex specifier for decoding, the values of N' and SCfor those
deeper levels will be the same as if decoding were not permitted after the complex specifier having the ex-

5 tended immediate mode. Of course, if the complex specifier has an extended immediate mode, the data at
the deeper levels represents extended immediate data and cannot be decoded as a register or short literal
specifier even though the mode decoder (115 in FIG. 12) may believe that the extended immediate data are
short literal or register specifiers. As noted above, extended immediate data, as well as branch displacements,
may look like short literal or register specifiers since branch displacements and extended immediate data are

10 not restricted in the values they may assume.
In FIG. 25, the shift counts for the various cases and combinations are prefixed with GPS to designate

information about any specifier appearing at the indicated level, RSL to identify information about any register
or short literal specifier appearing at the indicated level, and REG to indicate information about any register
specif ier occurring at the indicated level.

15 In order to determine the level to which decoding is permitted, pertinent validity data are fed to a respective
encoder 186, 187, 188 and 189, which controls the select inputs S1 and SO of the respective multiplexer. For
CASEqo and CASE0i, respective multiplexer 190 and multiplexer 191 controlled by the respective index mode
signal INDEX[2] or INDEX[1], selects three respective valid signals for the sub-cases shown in the table of
FIG. 24.

20 Turning now to FIG. 26, there is shown a schematic diagram for the encoder 186. If the inputs P0, P1 and
P2 are all active, then both of the select outputs S1 and SO are active. A three-input AND gate 192 detects the
coincidence of all three inputs and OR gates 193 and 194 become active to assert the select signals. If inputs
P0 and P1 are both asserted but P2 is inactive, then a two-input AND gate 1 95 activates only the OR gate 1 94
so that only the output S1 is asserted. If P0 is asserted but P1 is not, then a gate 196 activates the OR gate

25 193 and the OR gate 194 is inactive, so that only the output SO is asserted. If all three inputs P0, P1 and P2
are inactive, then neither of the outputs S1 and SO are asserted.

In order to eliminate the delay through the encoders 186 to 189 and the multiplexers 190 and 191, the
encoding logic should be incorporated into the multiplexers 182 to 185. This is shown in FIG. 27 for CASE00.
The prioritizing multiplexer 182' corresponding to multiplexer 182 in FIG. 25 includes six gates 197, 198, 199,

30 200, 201 and 202, and the outputs of these gates are summed by an OR gate 203. It should be noted that
each gate in FIG. 27 corresponds to a gate for each bit of each of the output signals N' and SC, and in many
cases the gates are eliminated because they have binary inputs which are the binary constants zero or one.

For implementing the logic of FIG. 25, it is also necessary to provide logic which determines the specifier
information such as the valid signals, numbers and shift counts defined in FIG. 25 for the various decoding

35 levels. The specifier information for a complex specifier or a specifier decoded at a level after a complex spe-
cifier will be dependent upon whether the complex specifier has an absolute or immediate addressing mode.
For the sake of defining the specifier information, the absolute and immediate modes will be treated as a spe-
cial case which will be indicated by an apostrophe after the symbolic notation for the specifier information.
Shown in FIG. 28, for example, are the number specifiers decoded in the usual case, i.e., where the respective

40 complex specifier does not have an absolute or immediate addressing mode. In this case, the number of spe-
cif iers has a value of two at level 1 A and level 2IA, and a value of three at levels 1 B, 2A, 2IB and 3IA.

Turning now to FIGS. 29 to 38, there are shown truth tables defining the shift counts and the number of
specifiers for the other levels and combinations. FIGS. 29 to 32 provide the information for the usual case when
the respective complex specifier has neither an immediate nor absolute mode, and FIGS. 33 to 38 are truth

45 tables for the cases when the respective complex specifier has an immediate or absolute mode. As is well
known, logic for implementing the truth tables may consist of two levels of gates, such as a first level performing
an AND function and a second level performing an OR function.

Turning now to FIGS. 39 to 41, there is shown logic for determining valid signals which are used in the
logic of FIG. 42 to provide the valid signals to the priority logic of FIG. 25. The signal REG_VALID[i] indicates

so whetherthe ith byte of data in the instruction buffer represents a valid register specifier. The signal SL_VALID[i]
indicates whether the ith byte of data in the instruction buffer may represent a valid short literal specifier for
which decoding is not prohibited by a stall of the expansion unit (30 in FIG. 6). The signal RSL_VALID[i] rep-
resents whether the ith byte of data in the instruction buffer can represent a valid register, or a short literal
specifier for which decoding is not prohibited by a stall of the expansion unit. The case of i equals one is treated

55 as a special case and the signals are determined with the logic of FIG. 39. The first data byte in the instruction
register can be decoded when it has a register mode, when it is a valid byte of data, and so long as the decoder
is not operating during a intra-instruction read conflict cycle when the general purpose unit is stalled. As noted
above, when an intra-instruction read conflict is detected, a register specifier is processed by the general pur-

18

EP 0 381 469 B1

pose unit (32 in FIG. 6) instead of the transfer unit (30 in FIG. 6). These logical conditions are determined by
gates 206 and 207. If the first byte has a short literal mode, then it is considered valid if its corresponding valid
data flag (l_VALID[1]) is active and the expansion unit is not stalled. These conditions are detected by a gate
208. An OR gate 209 provides a signal (RSL1_VALID) indicating whether the first byte is considered either a

5 valid register specifier or a valid short literal specifier.
FIG. 40 shows a schematic diagram of a circuit for determining whether byte 2 in the instruction buffer is

considered a valid register or short literal specifier. It is considered a valid register specifier when byte 2 has
a register mode and the valid data flag for byte 2 is set. This is detected by a gate 211 . Byte 2 in the instruction
buffer is considered a valid short literal specifier if its valid data flag is set, it has a short literal mode, byte 1

10 does not have a short literal mode, and the expansion unit is not stalled. These conditions are detected by a
gate 212. An OR gate 21 3 determines whether byte 2 in the instruction buffer is either a valid register specifier
or a valid short literal specifier.

FIG. 41 shows a schematic diagram of logic circuitry for determining whether bytes 3 to 8 in the instruction
buffer could possibly be considered valid register or short literal specifiers. (These signals are further qualified

15 by the circuitry in FIG. 42 before being used in the logic tree of FIG. 25.) Byte i in the instruction buffer is pos-
sibly a valid register specifier if it has a register mode and the valid data flag corresponding to the byte is set.
This is detected by a gate 214. Byte i in the instruction buffer can possibly be a valid short literal specifier so
long as the corresponding valid data flag is set, it has a short literal mode, the expansion unit is not stalled,
and neither byte 1 nor byte 2 is a valid short literal specifier. In other words, byte i in the instruction buffer

20 cannot be considered a valid short literal specifier if it is not possible to decode byte i in the current cycle. These
conditions are detected by gates 215 and 216. An OR gate 217 determines whether byte i in the instruction
buffer can be considered either a valid register specifier or a valid short literal specifier.

Turning now to FIG. 42, there is shown a schematic diagram of a circuit which determines whether a com-
plex specifier is considered valid and also determines whether bytes following a complex specifier can be con-

25 sidered valid register or short literal specifiers. In general, a complex specifier is considered valid if the general
purpose unit is not stalled and the last byte of the complex specifier has its corresponding valid data flag set.
An exception to this is that the signal for indicating a valid complex specifier at level 3 will also indicate whether
byte 3 is a valid register specifier. This is done to decode CASE00 when byte 3 is a register specifier. The special
case is accounted for by an OR gate 221. Otherwise, the coincidence of the corresponding valid data flag being

30 set and the absence of the general purpose unit being stalled is detected by respective gates 222, 223, 224,
225, etc., 226. In order to determine the validation condition for the last byte in the complex specifier, the shift
count (GPSi_SC) for the complex specifier is fed to the select input of a multiplexer 227 which selects the re-
spective one of the gates 222, 223, 221, 225 226.

In a similar fashion, the shift count for the complex specifier is fed to the select input of a multiplexer 228
35 functioning as a shifter to select the register validation or short literal validation signal from FIG. 41 correspond-

ing to the byte position following the complex specifier, and also the register validation signal corresponding
to the second byte following the complex specifier. The multiplexer 228 also selects the short literal data and
register addresses contained in these bytes following the complex specifier to provide data about the register
or short literal specifiers which are ultimately fed to the TR and XL buses by the circuits shown in FIGS. 54,

40 56 and 58, as further described below. The format for the register and short literal data is shown in FIG. 53,
and the format of the register addresses is shown in FIG. 55.

Turning now to FIG. 43, there is shown a schematic diagram of shift count logic that could be used for
determining the initial number of specifiers N' and the shift count SC for simultaneously decoding up to three
specifiers in a single cycle, including complex specifiers having an immediate or absolute addressing mode.

45 Logic 231 provides specifier information in the usual case, incorporating the logic of FIGS. 28 to 32 and 39 to
42. Separate logic 232 determines the specifier information for the immediate or absolute case according to
FIGS. 33 to 42. The priority logic and multiplexers of FIG. 25 are duplicated to provide logic 233 for determining
N' and SC for each of the four primary cases for the usual situation in which the complex specifier has neither
an immediate nor absolute addressing mode, and to provide logic 234 for determining N' and SC for the four

so primary cases assuming that the complex specifier has an immediate or absolute addressing mode. A multi-
plexer 235 is provided to select the particular one of eight possible cases. A primary case is selected in the
same manner as before, but the selection of an output from either the logic 233 or the logic 234 is determined
by a respective OR gate 236, 237, 238, 239, which determines whether the complex specifier in the particular
primary case has an immediate or absolute addressing mode.

55 A disadvantage of the VAX architecture is that the specifier information for a complex specifier having an
immediate or absolute addressing mode is a function of the data type of the complex specifier. The data type
is the last piece of information to be received by the shift count logic of FIG. 43 due to the fact that the delay
through the decode logic and multiplexer (105 and 106 in FIG. 12) is much greater than the delay through the

19

EP 0 381 469 B1

mode decoder (115 in FIG. 12). The so-called critical path through the shift count logic of FIG. 43 is therefore
determined by the signal path of the data type information. This critical path is illustrated in FIG. 44. In the
GPS' specifier information logic 232, the data type determines the shift count for the complex specifier GPS/
which is fed to the control inputs of the multiplexer or shifter 227, 228 to select up to three valid signals V which

5 are fed to a priority encoder 186, 187, 188 or 189 which then controls a respective multiplexer 182, 183, 184
or 1 85 to select a particular one of four functions Fj to obtain a result Gj. As shown in FIG. 44, the information
for a complex specifier having an absolute or immediate mode is dependent upon the position of the complex
specifier in the sequence of specifiers for the instruction. The multiplexer (106 in FIG. 12) selects the data
types for the next three specifiers to be decoded. In FIG. 44, the index j identifies the particular one of three

10 data types provided by the shifter (106 in FIG. 12) to the GPS' specifier information logic 232. This index j is
different from the byte number of the base register designation of the complex specifier in the instruction buffer
whenever there is an index specifier associated with the complex specifier.

Compare, for example, FIG. 33 to FIG. 35. The specifier information in FIG. 33 is for the case in which an
index register is not specified, and the specif ier information in FIG. 35 is for the case in which an index register

15 is specified. The truth tables in FIGS. 33 and 35 are identical except for the fact that in FIG. 33 the mode of
the complex specifier is indicated by bit 4 in byte 1 of the instruction buffer, while in FIG. 35 the mode of the
complex specifier is indicated by bit 4 of byte 2 in the instruction buffer.

As shown in FIG. 44, the logic for determining the specifier information in the case of a complex specifier
having an immediate or absolute mode can be simplified by first determining the mode of the complex specifier

20 in accordance with whether an index register is specified. This selection is performed by a multiplexer 233.
Upon further inspection of the truth tables in FIG. 33 and FIG. 35, it is evident that there are only four different
combinations of the data types which result in different information for the complex specifier having an im-
mediate or absolute addressing mode. These four different combinations determine whether the displacement
following the complex specifier has one, two, four or more bytes of displacement or immediate data following

25 the base register specification. These four combinations can be detected by the gates 234, 235, 236 and 237
shown in FIG. 44.

Preferably, the circuit of FIG. 43 is modified as shown in FIG. 45 to reduce the critical path of the data
type information used in the case of a complex specifier having an immediate or absolute mode. To determine
N' and SC for the case where any complex specifier has neither an absolute nor an immediate addressing

30 mode, there is provided specifier information logic 241 and tree logic 242 corresponding to FIG. 25.
Specifier selector logic 243, as further described below in FIG. 47, is used to determine whether any of

the next three specifiers to be decoded is a complex specifier having an absolute or immediate addressing
mode, and to identify the first such specifier. The specifier selector logic controls a multiplexer 244 which se-
lects N' and SC from the tree logic 242 in the absence of a complex specifier having an absolute or immediate

35 mode, and otherwise selects values of N' and SC that are determined for the first complex specifier having
an absolute or immediate mode. As shown in FIG. 45, for example, the input 00 selects N' and SC when no
specifier has an absolute or immediate mode, input 01 selects N' and SC computed assuming that the first
specifier has an absolute or immediate mode, input 1 0 receives N' and SC computed assuming that the second
specifier has an absolute or immediate mode, and input 11 selects N' and SC computed assuming that the

40 third specifier has an absolute or immediate mode.
For each of the possible positions of one complex specifier in a series of three specifiers, there is provided

a respective multiplexer 245, 246, 247 that selects values of N' and SC that are computed for each of the four
combinations of mode information and whether or not an index register is designated for the complex specifier.

A comparison of FIG. 44 to FIG. 45 shows that the critical path has been reduced by pushing the encoding
45 logic (186 to 189) in front of the lower level of multiplexers and shifters (227, 228). This is shown more clearly

in FIG. 46 which is an expansion of the specif ier information logic for the multiplexer 245 in FIG. 45. The GPS'
specifier information logic 249 includes a multiplicity of encoders 251 to 256 receiving validity signals corre-
sponding to the signals received by the circuitry in FIG. 25 for the corresponding cases and sub-cases. Also
shown in the specifier information logic 249 are respective gates 257 to 261 corresponding to gates 222 to

so 226 shown in FIG. 42. The encoders 251 to 256 control respective four-input multiplexers 262 to 267 which
select N and SC values corresponding to the values in the truth tables of FIG. 33 and FIG. 35, respectively,
for the cases of byte, word or longword displacement or immediate data following the base of the complex spe-
cifier. Separate two-input multiplexers 268, 269 select the N and SC values for the extended immediate modes.

By using the preferred circuit of FIG. 45, the critical path has been reduced to the delay of the data type
55 information through the gates 234 to 237 shown in FIG. 44 and the two levels of multiplexers shown in FIG.

45. The delay through the gates 234 to 237 in FIG. 44 could be eliminated by using the decode logic (105 in
FIG. 12) to provide data type information in encoded form corresponding to the outputs of the OR gates 234
and 235 in FIG. 44, and feeding these two encoded bits to the select inputs Si and S0 of the respective mul-

20

EP 0 381 469 B1

tiplexers 245, 246, 247.
Turning now to FIG. 47, there is shown the specifier selector logic 243 previously used in FIG. 45. The

first specifier is recognized as having an absolute or immediate mode if byte 1 in the instruction buffer has
an absolute or immediate mode, or if byte 1 designates an index register and byte 2 has an absolute mode,

5 or if byte 1 designates an index register and byte 2 has an immediate mode. These conditions are detected
by gates 271,272 and 273.

If byte 1 has neither a register mode nor a short literal mode, as detected by gate 274, then it is immaterial
whether the second specifier has an absolute or immediate mode, since the first specifier is either invalid or
complex and therefore any second complex specifier will not be decoded. Otherwise, specifier information for

10 a second specifier having an absolute or immediate mode is selected when byte 2 has an immediate mode,
byte 2 designates an index and byte 3 has an absolute mode, or byte 2 designates an index and byte 3 des-
ignates an immediate mode. These conditions are detected by gates 275 to 279. In a similar fashion, it is per-
tinent that the third specifier has an absolute or immediate mode only if both byte 1 and byte 2 have a register
or short literal mode, as detected by gates 274 and 280. Subject to this constraint, the complex or immediate

15 specifier information for the third specifier is selected if byte 3 has an absolute or immediate mode, or byte 3
designates an index and byte 4 has an absolute mode or byte 3 designates an index and byte 4 has an im-
mediate mode. These conditions are detected by gates 281 to 285. For operating the multiplexer 244 in FIG.
45, the logic of FIG. 47 includes two OR gates 286, 287 for encoding the select signals.

As introduced above in connection with FIG. 12, the shift count logic 123 includes a number of trees used
20 for decoding up to one, two or three specifiers. The trees for the general cases R1 , R2, R2R, R3 and R3XR

are certain sub-sets of the logic shown in FIG. 45 for the general case.
Shown in FIG. 48 is the logic for the R1 tree. The general case has been simplified considerably since

only the specifier information for the first specif ier is pertinent. The pertinent validity information, for example,
includes only the fact of whether a register or short literal specifier at level 1 is valid, or if a complex specifier

25 at level 21 or level 1 is valid. There is no need to arbitrate among the priority of these validity signals since the
pertinent information is selected by the primary case, and whether byte 1 specifies an index registerand wheth-
er the first specifier is a complex specifier having an absolute or immediate mode.

The R1 logic tree includes a two-input multiplexer 291 at the top of the tree, an eight-input multiplexer 292
for selecting information about any first complex specifier, and a multiplexer 293 selecting information in ac-

30 cordance with each of the four primary cases. As indicated by a gate 294, when byte 1 is a valid register or
short literal specifier, N' is equal to one and SC is equal to one for CASE00, CASE0i and CASE10. When byte
1 designates an index, then a complex specifier beginning in byte 2 is decoded when it is valid, as detected
by a gate 295 and a multiplexer 296. For CASE^, a gate 296 selects N equals one and the shift count for a
complex specifier beginning in byte 1 when this complex specifier is valid.

35 Turning now to FIG. 49, there is shown the shift count logic of the R2 tree. At the top of the tree is a mul-
tiplexer 300 which selects a simplified version 301 of the general tree of FIG. 25 when neither the first nor the
second specifier is selected as having an absolute or immediate mode, or the output of a multiplexer 302 when
the first specifier is found to have a complex or immed iate mode, or the output of another multiplexer 303 when
the first specifier is either a register or short literal specifier and the second is a complex specifier having an

40 absolute or immediate mode. It should be apparent from comparison of FIG. 49 to FIG. 45 that the R2 tree is
merely a simplification of the tree for the general case under the assumption that the encoding logic need only
arbitrate the validation signals for the first two specifiers.

Turning to FIG. 50, there is shown a diagram of the R2R tree which is used only when byte 1 is neither a
register specifier nor a short literal, and the second specifier is not to be decoded when it is a short literal. The

45 R2R tree, for example, is requested by the request logic (114 in FIG. 12) when the second specifier being re-
quested has a "write" access type, in which case an addressing fault occurs if the second specifier is a short
literal specifier. This simplifies the detection of the addressing fault since it can be detected during the next
cycle when the short literal specifier will become the first specifier being decoded, and the addressing fault
can then be detected based upon the mode of only the first specifier.

so Since it is assumed that the first byte is neither a register specif ier nor a short literal and only two specifiers
are being requested, the R2R tree has a multiplexer 311 at the top of the tree that selects information from a
multiplexer 312 when the first specifier has an absolute or immediate mode, and selects the output of another
multiplexer 313 when the first specifier does not have an absolute or immediate mode. The GPS' specifier
information logic 249 arbitrates between a valid signal for the first specifier and a register valid signal for the

55 byte following the complex specifier. In a similar fashion, a multiplexer 314 has its inputs wired to arbitrate
between the valid signal for the specifier decoded at the 21 level and the register valid signal for the following
byte at the 2IA level, and another multiplexer 315 is wired to arbitrate the valid signal for the complex specif ier
at level 1 and a register valid signal for the byte at level 1A.

21

EP 0 381 469 B1

Turning now to FIG. 51 , there is shown a schematic diagram for the R3 tree which is used only when the
first two bytes are register or short literal specifiers. As will become apparent from FIG. 52, the general case
of three specifiers being requested has been broken down into the R3 case in which the third specifier is com-
plex, and the R3XR case in which a third specifier is decoded only when it is a register specifier.

5 A schematic diagram of the R3 tree is shown in FIG. 51 . At the top of the tree there is a multiplexer 321
which is controlled by the SEL_SPEC3 signal indicating whether the third specifier has an absolute or immedi-
ate mode. If the third specifier has an absolute or immediate mode, then the multiplexer 321 selects N' and
SC from the multiplexer 247 previously introduced in FIG. 45. Otherwise, N'and SC are obtained from another
multiplexer 322 controlled by the CASE[1] signal. The multiplexer 322 selects N' and SC from a multiplexer

10 323 for CASEqo or from a multiplexer 324 for CASE10. The multiplexer 323 is controlled by an encoder 325,
and the multiplexer 324 is controlled by an encoder 326.

Turning now to FIG. 52, there is shown a schematic diagram of the R3XR tree which simultaneously de-
codes three specifiers only when the third specifier is a register specifier. At the top of the tree is a multiplexer
331 which selects the output of the multiplexer 246 (see FIG. 49) when the second specifier has an absolute

15 or immediate mode, the multiplexer 245 (see FIG. 45) when the first specifier has an output of the immediate
or complex mode, and otherwise selects the output of a multiplexer 332 which selects N' and SC computed
for each of the four primary cases with the restriction that the third specifier must be a register specifier in
order to be considered valid. The R3XR tree therefore has additional multiplexers 333 to 336 corresponding
to multiplexers 1 82 to 1 85 of FIG. 25, encoders 337, 338 and 339 corresponding to the encoders 1 86, 1 87 and

20 189 of FIG. 25, and multiplexers 340 and 341 corresponding to multiplexers 190 and 191 of FIG. 25. The mul-
tiplexer 335 in FIG. 2 has its select inputs wired so as to arbitrate between the register or short literal valid
signals for byte 1 and byte 2 in the instruction buffer.

Once the number of specifiers N being decoded has been selected by the multiplexers 124, 125 and 126
(FIG. 12) from a shift count logic tree, the location in the instruction buffer of the data for the specifiers be-

25 comes known, and therefore the specifier data can be selected for transmission to the GP, SL or TR buses.
The specifier information for a complex specifier is most readily determined because its position is given by
the primary case. For the SL and TR buses, however, it is desirable to determine any register or short literal
specifier data associated with the second and third specifiers being decoded. Any register or short literal data
for the first specifier, of course, is found in byte 1 in the instruction buffer.

30 The format of the register or short literal data in a byte in the instruction buffer was introduced in FIG. 5
and is reproduced in FIG. 53 in order to define the various signals that are used for obtaining any register or
short literal data associated with any second or third specifiers being decoded. The data about a register or
short literal specifier (RSLDATA[i]), for example, comprises eight bits. It will be assumed that the most signif-
icant bit of RSLDATA indicates whether byte i in the instruction buffer could be a valid register specifier; in

35 other words, it is the REG_VALID[i] signal. It will be assumed that the second most significant bit of RSLDATA
indicates whether byte [could be a valid short literal specifier; in other words, it is the SL_VALID[i] signal. The
next two most significant bits are the two most significant bits of any short literal data in the byte. The four
least significant bits comprise the rest of the short literal data or the register address (REGN[i]).

Turning now to FIG. 54, there is shown a schematic diagram of the output selection logic (128 in FIG. 12)
40 that selects any register or short literal data in any second specifier being decoded. Referring momentarily

back to FIG. 21 , in CASE00 any such register or short literal data resides in byte 2 in the instruction buffer; in
CASE0i any such register or short literal data resides at level 2IA; in CASE10 any such register or short literal
data resides in byte 2; and in CASE ̂ any such register or short literal data resides at level 1 A. Returning to
FIG. 54, a multiplexer 351 selects the particular case, and in CASE00 and CASE10 obtains the register or short

45 literal data from byte 2 in the instruction buffer.
For CASE0i, another multiplexer 352 determines whether the first specifier is a complex specifier having

an absolute or immediate mode, and also determines whether the second specifier is a complex specifier. If
byte 1 in the instruction buffer does not designate an index register, then a pair of gates 353, 354 provide select
inputs to the multiplexer 352 to select data having a value of zero to designate that the second specifier cannot

so be a valid register or short literal specifier. Otherwise, if byte 1 in the instruction buffer designates an index
register, then the register or short literal data is obtained at one of three places depending upon whether the
mode of the complex specifier having its base in byte 2 has an immediate or an absolute mode. If it has neither
an immediate nor an absolute mode, then the register or short literal data is obtained at the 2IA level. If the
complex specifier has an absolute mode, then the register or short literal data is obtained from byte 7 in the

55 instruction buffer. Otherwise, when the complex specifier has an immediate mode, the register or short literal
data is obtained at a location selected by a multiplexer 355 depending upon the data type of the complex spe-
cifier.

For CASEn, the register or short literal data is obtained in a similar fashion by multiplexers 356 and 357,

22

EP 0 381 469 B1

but in CASEn the first specifier is necessarily a complex specifier having its base in byte 1 of the instruction
buffer.

Turning now to FIG. 55, there is shown the format for obtaining register data from the instruction buffer.
The register data is used by the logic in FIG. 56 to obtain any register data about any third specifier being de-

5 coded. A multiplexer 361 selects the data in accordance with the primary case. A second level of multiplexers
362 to 364 and a pair of gates 365 and 366 operate in a similar fashion to the multiplexers 352 and 356 and
the gates 353 and 354 (FIG. 54). A third level of multiplexers 367, 368, 369, 370 select the register data in ac-
cordance with the data type of the second or first specifier when the register data for the third specifier follows
a complex specifier having an immediate or absolute addressing mode.

10 Turning now to FIG. 57, there is shown the output and selection logic (128 in FIG. 12) associated with the
first source specifier transmitted over the TR bus. In order to obtain the valid data flag (VDF) associated with
the first source specifier, a multiplexer 381 is controlled by the number N of specifiers decoded in order to
clear the flag if no specifiers are decoded, and to set the flag if two or three specifiers are decoded. If only
one specifier is decoded, it is possible that it is a destination rather than a source specifier, and a gate 382

15 clears the valid data flag if the first specifier has an access type of a branch byte, branch word, write or implied
write.

The register flag (RGF) for the first source operand is set by a gate 383 if at least one specifier is decoded,
and one specifier was not requested for a branch displacement or an implied operand as detected by a gate
20 384, and byte 1 in the instruction buffer can represent a valid register specifier and an intra-instruction read

20 conflict was not detected, as determined by a gate 385. The gate 384 in particular determines whether byte 1
is a branch displacement or would represent the next opcode in the case of one implied specifier being re-
quested. If byte 1 of the instruction buffer could possibly represent a valid register which is not a destination
specifier, then a gate 386 generates a signal (IRC_REG) which insures that the register specifier will be proc-
essed by the general purpose unit in the event of an intra-instruction read conflict. The IRC_REG signal is fed

25 to a circuit in FIG. 61 , which is further described below. The valid data flag, register flag and also the register
number are latched in a latch or register 387 after being transmitted over the a portion 390 of the TR bus to
the transfer unit (30 of FIG. 6).

Turning now to FIG. 58, there is shown the validation logic for the second source operand which is trans-
mitted over the TR bus. The valid data flag for the second source operand is selected by a multiplexer 391

30 controlled by the number N of specifiers actually decoded. The valid data flag is cleared if zero or one speci-
fiers are actually decoded and is set if three specifiers are decoded. If two specifiers are decoded, it is possible
that the second specif ier specif ies a destination operand and in this case the valid data flag is cleared. The second
specifier is not a destination specifier if the first specifier has an access type of ASRC and the second specifier
does not have an access type of WRITE, as detected by a gate 392, the first specif ier has an access type of V_READ

35 and the second specifier has an access type of READ, as detected by a gate 393, or the first specifier has an access
type of READ and the second specifier has an access type of neither WRITE, IMP_WRITE, nor is a write branch
displacement, as detected by gates 394, 395 and 396.

The register flag for the second source operand is set when at least two specifiers have been decoded,
the second specifier is neither a branch displacement nor an implied specifier as detected by a gate 397, and

40 the second specifier may represent a valid register specifier, as determined by a gate 398. The valid data flag,
the register flag and the register address for the second specifier are transmitted over a portion 400 of the TR
bus and received in a latch 399 for use in the transmit unit (30 of FIG. 6) during the next cycle.

Turning now to FIG. 59, there is shown the validation and multiplexing logic for selecting the destination
operand. The destination operand could be specified by either the first, second or third specifier. The position

45 of the destination specifier is primarily determined by the number of specifiers decoded, and therefore the
valid data flag, register flag and register address for the destination operand are selected by respective mul-
tiplexers 401 , 402 and 403 that are controlled by the number N of specif iers actually decoded during the current
cycle. If no specifiers are decoded during the current cycle, then, of course, no destination operand is available
and the valid data flag is cleared. If one specifier is decoded, then it is a destination specifier and the valid

so data flag is set if the access type of the first specifier decoded during the current cycle is either MODIFY,
WRITE, IMP_WRITEorV_MODIFY, as detected byagate404. If two specifiers are decoded, then the second
specifier specifies a valid destination operand when the access type of the second specifier being decoded
is V_MODIFY, WRITE, MODIFY, IMP_WRITE or the first specifier being decoded has an access type of
WRITE, MODIFY or V_MODIFY, as detected by a gate 405. If three specifiers are decoded, then the third spe-

55 cif ier is a destination operand for these same conditions detected by gate 405 and, in addition, so long as the
third specifier is not a branch displacement, as detected by gates 406 and 407.

If only one specifier is decoded, then it specifies a valid register destination if byte 1 in the instruction
buffer is a valid register specifier and the access type of the first specifier is MODIFY, V_MODIFY or WRITE,

23

EP 0 381 469 B1

as detected by gates 408 and 409. If two specifiers are decoded, then the register flag is set if gate 409 is
active or if the second specifier is a valid register specifier specifying a destination operand, as detected by
gates 410, 411 and 412. If three specifiers are decoded, then the register flag is set if gate 411 is active or the
third specifier is a valid register specifier, as determined by gate 413.

5 If one specifier is decoded, then any register number is obtained from byte 1 in the instruction buffer. If
two specifiers are decoded, then if the first is a valid register destination specifier, as detected by gate 409,
then the register number is still obtained from byte 1 in the instruction buffer; otherwise, it is the register number
of the second specifier as selected by a multiplexer 414. In a similar fashion, if three specifiers are decoded,
then if the second specifier is a valid register destination specifier, the register number for the destination op-

10 erand is the register number of the second specifier; otherwise, it is the register number of the third specifier,
as selected by a multiplexer 41 5.

The valid data flag, register flag and any register number for the destination operand are transmitted over
a portion 420 of the TR bus and are received in a latch or register 416 for use by the transfer unit (30 in FIG.
6) during the next cycle.

15 Turning now to FIG. 60, there is shown a schematic diagram of the validation logic associated with the
transmission of short literal information over the EX bus 430. A valid data flag for the short literal is obtained
by combining the number of specifiers decoded with the short literal valid signals for byte 1 of the instruction
decoder and the second specifier. In particular, if byte 1 in the instruction decoder is a valid short literal spe-
cifier, then the valid data flag is set if N is at least two as determined by a gate 421 . If byte 1 in the instruction

20 buffer is a valid short literal specifier but N is 1 , then the valid data flag is set only if neither a branch displace-
ment nor an implied specifier is requested, as determined by the gate 384 and a gate 422. In addition, the
valid data flag is set if N is two or three, the second specifier is a valid short literal, and the second specifier
is neither a branch displacement nor an implied specifier, as detected by the gate 397 and a gate 423. The
outputs of the gates 421 , 422 and 423 are combined in an OR gate 424 to provide the valid data flag.

25 If byte 1 in the instruction buffer is a valid short literal, then the short literal data is obtained from byte 1 ,
and otherwise it is obtained from the short literal data for the second specifier, as selected by a multiplexer
425. The specifier number for the short literal is either the number of specifiers previously completed or de-
coded, in the event that the short literal specifier is the first specifier decoded in the current cycle, or is one
greater than this, if the short literal is the second specifier decoded in the current cycle. This computation is

30 performed by a three-bit binary adder 426 and an inverter 427. The valid data flag, short literal data and spe-
cifier number for the short literal operand are transmitted over the EX bus 430 and are latched in a latch or
register 428 for use by the EX unit during the next cycle.

Turning now to FIG. 61, there is shown the validation and selection logic for transmitting operand data
over the GP bus. Request signals from the request logic (114 in FIG. 12) determine whether a branch displace-

35 ment or an implied specifier are placed on the GP bus 470. A branch displacement is placed on the GP bus if
one specifier is decoded and the R1 BB or the R1 BW tree was selected, two specifiers were decoded and the
R2BB or the R2BW tree was selected, or three specifiers were decoded and the R3BB or the R3BW tree was
selected, as determined by gates 431 to 437. After transmission over the GP bus 470, a latch or register 438
latches a branch displacement signal from the gate 437 as well as the IRC_REG signal from FIG. 57 in order

40 to provide special control signals to the operand processing unit (21 in FIG. 6). In the case of a branch dis-
placement, the operand processing unit adds the branch displacement to the address of the next opcode being
shifted into the byte 0 position of the instruction buffer in order to obtain the target address for the branch in-
struction. In response to the IRC_REG control signal, the operand processing unit obtains the number of the
register specified by the base which is transmitted over the GP bus 470.

45 An implied specifier is transmitted over the GP bus 470 when the R1I tree is selected and one specifier
is decoded, or the R2I tree is selected and two specifiers are decoded, as determined by gates 439, 440 and
441.

Amultiplexer442 determines whethera complex specif iercan be decoded assuming that a branch, implied
or extended immediate operand is not being decoded. The multiplexer 442 considers the four primary cases

so as well as whether byte 1 or byte 2 of the instruction buffer specifies an index register. Gates 443 and 444
combine the case with the index signals to detect whether the possible complex specif ier is the first or second
specifier or is the third specifier for CASE10 or CASE00. For CASE0i or CASE0il, the number of specifiers de-
coded must be greater or equal to one in order for a complex specifier to be decoded. An OR gate 445 deter-
mines whether N is greater or equal to one. For CASE0i or CASE00I, a complex specifier can possibly be de-

55 coded if N is greater or equal to two. For CASE10, a complex specifier can possibly be decoded if N equals
three, as detected by an AND gate 446. For CASE00 (without an index register), a complex specifier is decoded
so long as byte 3 in the instruction buffer does not designate a register specifier, as detected by a gate 447.

An index register is possibly designated if byte 1 in the instruction buffer designates an index register, byte

24

EP 0 381 469 B1

2 in the instruction buffer designates an index register, and CASE0i or CASE ̂ are not present, or CASE10 is
present, as detected by gates 448, 449 and 450.

The valid data flag for the GP bus is set when the IRC_REG signal is asserted, an implied specifier has
been decoded, a branch displacement has been decoded, extended immediate data has been decoded, or it

5 is possible to decode a complex specifier, as determined by an OR gate 451 . The index register flag for the
GP bus is set if it is possible to decode a complex specifier, it is possible to obtain the index specification, and
so long as neither a branch displacement, an implied specifier, nor extended immediate data has been decod-
ed, as detected by gates 452 and 453.

When an implied specifier is decoded, either a value of 7E hexadecimal or 8E hexadecimal is transmitted over
10 the GP bus as the mode and base information. For this purpose, there is provided a multiplexer 454 which selects

7E when an implied specifier is requested and the access type of the requested implied specifier is IMP_WRITE,
and is 8E when an implied specifier is requested and the access type of that specifier is not IMP_WRITE. The ac-
cess type of the requested specifier is selected by a multiplexer 455, and an OR gate 456 determines whether
an implied specifier is requested.

15 Except for the case of an implied specifier, the specifier information on the GP bus is obtained from a mul-
tiplexer 457 which essentially functions as a shifter and obtains the index, mode and base, and displacement
at consecutive byte positions in the instruction buffer. The multiplexer 457 provides a selected one of five pos-
sible offsets between the instruction buffer and the GP bus 470. When one specifier is requested for a branch
instruction, byte 0 of the displacement is obtained from byte 1 of the instruction buffer. When two specifiers

20 are requested for a branch instruction, then byte Oof the displacement is obtained from byte 2 of the instruction
buffer. When three specifiers are requested for a branch instruction, byte 0 of the displacement is obtained
from byte 3 of the instruction buffer. When an intra-instruction read conflict is detected and a register is trans-
mitted over the GP bus 470, byte Oof the displacement is aligned with byte 2 of the instruction buffer. In CASE^,
byte 0 of the displacement is also aligned with byte 2 of the instruction buffer. In CASE0i, byte 0 of the dis-

25 placement is aligned with byte 3 of the instruction buffer. In CASE00, byte 0 of the displacement is aligned with
byte 4 of the instruction buffer. Finally, in CASE10, byte 0 of the displacement is aligned with byte 5 of the in-
struction buffer.

The shifting of the multiplexer 457 is conveniently controlled by an input Sm which aligns byte 0 of the dis-
placement with byte 1 of the instruction buffer by a shift of minus one byte positions, and otherwise shifts in

30 the other direction by a number of byte positions selected by the inputs S0 and The input Sm is asserted
when one specifier is requested and it is a branch displacement. Therefore, the number of byte positions to
shift is readily determined from the primary case by an exclusive OR gate 458 and NOR gates 459 and 460.
An intra-instruction read conflict or a request for a branch displacement selects the same number of byte pos-
itions to shift as CASE^. An OR gate 461 determines whether a branch displacement was requested. Finally,

35 an OR gate 463 determines whether three specifiers were requested for a branch instruction.
The specifier number for a complex specifier on the GP bus is determined by the primary case and whether

byte 1 or byte 2 in the instruction buffer designates an index register. This is done by determining which of up
to three specifiers currently being decoded is a complex specifier. X̂ and X0 designate whether the complex
specifier is the first, second or third specifier currently being decoded. X̂ is determined by an OR gate 462

40 combining the outputs of the gate 444 and the gate 449. Xq is determined by gates 464, 465 and 466. The
two-bit binary number specified by X̂ X0 is added to the number of specifiers completed in an adder 467 to
determine the specifier number for any complex specifier being decoded. The valid data flag, index register
flag, index, mode, base, displacement and specifier number are transmitted over the GP bus 470 and are latch-
ed in a latch orregister468foruse by the general purpose unit (32 in FIG. 6) during the next cycle of the system

45 clock.
Turning now to FIG. 62, there is shown a schematic diagram of the extended immediate detector 110 that

was introduced in FIG. 12 and which performs steps 51 to 57 and 64 and 65 of the decoding procedure of FIG.
11.

In order to detect a complex specifier having an extended immediate mode, a multiplexer 481 determines
so whetherthe first complex specifier in the instruction buffer has an immediate mode, by selecting the immediate

mode signal of the base position for the primary case. Any immediate mode is an extended immediate when
bit 1 of the data type for the complex specifier is set. The data type for the complex specifier is selected by a
multiplexer 482, controlled by gates 483 and 484 in response to the primary case and whether byte 1 and byte
2 in the instruction buffer designate index registers. A gate 485 combines the outputs of the multiplexers 481

55 and 482 to assert a signal when the first complex specifier found in the instruction buffer has an extended
mode. In addition, the gate 485 is inhibited by the X8F signal so that it will not respond to any extended im-
mediate data in the instruction buffer.

Even though one or more of the next three specifiers to be decoded has an extended immediate mode, it

25

EP 0 381 469 B1

is possible that it will not be decoded during the current cycle. This depends upon the number N of specifiers
decoded during the current cycle, and also the specifier position of the complex specifier which is a function
of the primary case and whether byte 1 or byte 2 in the instruction buffer specif ies an index register. These
conditions are resolved by gates 486 to 491.

5 When the output of the gate 491 asserts that a complex specifier having an extended immediate mode is
being decoded during the current cycle, a binary counter 492 is loaded with a longword count in accordance
with the data type of the complex specifier, corresponding to steps 64 and 65 in FIG. 11. The longword count
is set to three if the data type is an octaword, and otherwise is one for the case of a quadword. An octaword
data type is detected by a multiplexer 493 which is controlled by gates 483 and 484. Agate 494 asserts the

10 X8F signal whenever the binary counter 492 has a value other than zero. Whenever this occurs, the binary
counter 492 is decremented so long as the valid data flag for byte 4 in the instruction buffer indicates that the
extended immediate data is valid, the general purpose unit is not stalled and the decoder is not stalled. These
conditions are detected by gates 495 and 496. The RX8F shift count is four when the binary counter 492 is
decremented, and otherwise it is zero. The RX8F value for N is always zero. The extended immediate detector

15 110 enables the "shift op" signal when the immediate mode is not first detected, when the binary counter does
not have a value of two or more, and when the binary counter does not have a value of one or the binary counter
will be decremented. In other words, shifting of the operation code is disabled beginning when the extended
immediate mode is detected and until the longword count is one and the binary counter is decremented to zero.
These conditions are detected by gates 497 and 498.

20 Turning now to FIG. 63, there is shown a schematic diagram of a decoder for detecting an autoincrement
or autodecrement mode. The autodecrement mode occurs when the register mode field (see FIG. 5) has a value
of seven, as detected by a gate 501 . An autoincrement occurs when the register mode field has a value of eight
or nine, as detected by a gate 502. The outputs of gates 501 and 502 are combined in an OR gate 503 to provide
a signal indicating an autoincrement or autodecrement mode.

25 It is important for the decoder to detect an autoincrement or autodecrement mode in order to detect intra-
instruction read conflicts. Since the instruction decoder 20 is capable of simultaneously decoding a register
specifier and an autoincrement or autodecrement specifier, there arises a possibility that the register specifier
and the autoincrement or autodecrement specifier may reference the same register. Therefore, it is important
to distinguish whether the value of the register specifier should be the initial value of the referenced register

30 or the value after modification by the autoincrement or autodecrement. In a decoder which decodes a single
specifier per cycle, the possibility does not arise because the register specifier will reference the initial value
if the register specifier is decoded before the autoincrement or autodecrement specifier, and will reference
the modified value if the register specifier occurs after the autoincrement or autodecrement specifier.

For the instruction decoder 20 as described above, it is desirable to pass register numbers over the TR
35 bus when register specifiers are decoded, and to pre-process the autoincrement or autodecrement specifiers

in the GP unit before the actual values of the register specifiers are obtained by the execution unit. Therefore,
when the decoder as described above would simultaneously decode a register specifier and an autoincrement
or autodecrement specifier which both reference the same register, the execution unit would naturally use the
modified value of the referenced register for the register specifier. This natural mode of operation, however,

40 would cause an invalid result when the register specifier occurs before the autoincrement or autodecrement
specifier in the sequence of specifiers following the operation code for the instruction. For the instruction de-
coder 20, this possible incorrect result is avoided by treating it as a special case referred to as an "intra-in-
struction read conflict." In other words, there is said to be an intra-instruction read conflict whenever an au-
toincrement or autodecrement specifier specifies a base register which is referenced by a previous register

45 specifier in the specifier sequence for the same instruction.
A register specifier references at least the register designated by the register address field of the specifier

(see FIG. 5). If the register specifier has a quadword data type, the register specifier will in addition reference
the register having a register number or address of one plus the register number (n) indicated in the register
address field of the register specifier. A register specifier having an octaword data type will reference registers

so having register numbers n, n+1, n+2 and n+3.
The instruction decoder 20 preferably uses two different methods of detecting intra-instruction read con-

flicts. The first method is to generate a "read register mask" identifying the registers that are referenced by
source register specifiers during previous decoding cycles for the current instruction being decoded. The sec-
ond method is to generate an "IRC mask" which indicates for each data type combination whether an intra-

55 instruction read conflict could occur. This second method is used to determine intra-instruction read conflicts
between a register specifier and an autoincrement or autodecrement specifier being decoded simultaneously
during the same cycle.

The use of a read register mask for detecting an intra-instruction read conflict is illustrated in FIG. 64. In

26

EP 0 381 469 B1

order to determine whether there is a conflict between a source register specif ier and a subsequently occurring
autoincrement or autodecrement specifier included in the same instruction, a read register mask is generated
having a respective bit position for each of the sixteen general purpose registers in the CPU. Amultiplexer511
selects the bit position of the read register mask corresponding to the base register number of the complex

5 specifier. The selected bit of the read register mask is further qualified by the auto signal defined in FIG. 63
and a base valid signal which are combined in a gate 512 in order to enable the multiplexer 511. The output
of the multiplexer 511 therefore provides a signal IRC indicating the presence of an intra-instruction read con-
flict.

In order to generate the read register mask, the source register number n is fed to a decoder 513 which
10 causes a bit to be set in the read register mask at a position corresponding to the read register number. Bits

in other bit positions may need to be set depending upon the data type of the source register specifier. These
positions occur at n+1, n+2 and n+3 as determined by an adder circuit 514. Bits are selectively set at these
other bit positions by respective decoders 515, 516 and 517. Each of the decoders generates a respective
mask, and the masks are logically OR'd by a set of sixteen four-input OR gates generally designated 518 to

15 provide the read register mask.
Since bits in the read register mask are set at the n+2 and n+3 bit positions only for an octaword data type,

the octaword data type is decoded by a gate 519 which supplies enable signals to the decoders 516 and 517.
In a similar fashion, the decoder 515 is enabled by an OR gate 520 for the octaword and the quadword data
types. Agate 521 qualifies with the valid data flag and register flag associated with the source register number.

20 These flags also enable the gate 519 which detects the octaword data type.
As shown in FIG. 64, the read register mask is conveniently used for detecting an intra-instruction read

conflict when the base register number occurs during a cycle subsequent to the cycle in which the source reg-
ister specifier is decoded. If the base register is decoded during the same cycle as the source register specifier,
the circuit of FIG. 64 has an excessive delay from the time that the source data type is available from the de-

25 code logic (105 in FIG. 12) to the time that the intra-instruction read conflict is detected by the multiplexer 511.
In FIG. 65 there is shown an intra-instruction read conflict detection circuit which has a multiplexer 531

controlled by the data type of the source register specifier in order to eliminate the delay between the time
that the data type is available and the intra-instruction read conflict is detected. The multiplexer 531 selects
a respective bit position of an IRC mask corresponding to whether the data type designates a longword, quad-

30 word or octaword.
In order to generate the IRC mask, a comparator 532 compares the source register number to the base

register number to determine whether there is a possible conflict if the data type specifies a longword. Agate
533 qualifies the output of the comparator 532 is qualified by the automatic mode signal for the base register
and a register flag for the source specifier.

35 In order to determine the IRC mask bits for the possible quadword and octaword data types, the source
register number n is fed to an adder 534 providing values of n+1 , n+2 and n+3 to respective comparators 535,
536 and 537. A possible conflict occurs for a quadword data type if a match is indicated by either of the com-
parators 532 and 535, as detected by an OR gate 538. A possible conflict may occur for an octaword data type
if a match is indicated by any of the comparators 532, 535, 536 or 537, as detected by an OR gate 539. The

40 outputs of the gates 538, 539 are qualified by the register flag and the AUTO signal gates 540 and 541 .
Turning now to FIG. 66, there is shown circuitry for generating a nine-bit IRC mask for detecting an intra-

register conflict with up to two source register specifiers decoded simultaneously during a current cycle, and
any number of source specifiers decoded during previous cycles for the current instruction. The circuit in FIG.
66 includes a read register mask generator and a composite IRC detector similar to the circuits shown in FIG.

45 64 for detecting an intra-instruction read conflict during the present cycle between a complex specifier decod-
ed during the current cycle and any numberof source and index register specif iers decoded during any previous
cycles for the same instruction.

In order to generate the read register mask, latched values of the first source register number, valid data
flag, register flag, and first specifier data type for the previous decoding cycle are fed to a read register mask

so generator 551 . In a similar fashion, latched values of the second source register number, valid data flag, register
flag and data type for the second specifier determined during the previous decoding cycle are fed to a read
register mask generator 552. Aset of sixteen three-input OR gates generally designated 555 combine the read
register masks generated for the two source register numbers with a previously-generated read register mask
from a latch or register 554 to obtain a read register mask for the current decoding cycle. This read register

55 mask is qualified by the "new fork" signal in a gate 556 to provide the data input to the register 554. The register
554 therefore accumulates the read register information for previous decoding cycles for the current instruction,
and the gate 556 in effect clears the register 554 at the end of decoding for the current instruction.

In order to determine whether there is a conflict between any autoincrement or autodecrement mode com-

27

EP 0 381 469 B1

plex specifier decoded during the present cycle and any source specifiers decoded during a previous cycle
for the same instruction, the output of the gate 556 is fed to a multiplexer 557 which selects a particular bit
from the composite mask corresponding to the number of the base register for the complex specifier. This base
register number is selected from the register address field in byte 1, 2, 3 or 4 in the instruction buffer by a

5 multiplexer 558 controlled by the primary case. In a similarfashion, an autoincrement or autodecrement mode
signal for the base register number is selected by a multiplexer 559 controlled by the primary case.

The composite IRC from the multiplexer 557 is logically OR'd into every position of the nine-bit IRC mask.
Otherwise, the IRC mask indicates a possible conflict between up to two source register specifiers and an
autoincrement or autodecrement mode complex specifier simultaneously decoded during the current cycle.

10 The adder and comparators shown in FIG. 65 are replicated five times to provide respective comparators 561
to 564 for each possible combination of source register and base register that can be simultaneously decoded
during the present cycle. Each one of these comparators provides four output bits.

The outputs from the comparators 561 to 563 are selected by a multiplexer 566 controlled by the primary
case to obtain the comparator signals for a possible base register and a first preceding register specifier. An-

15 other multiplexer 567 is controlled by the CASE[0] signal to provide comparator signals between a possible
base register and a second preceding register specifier. The comparator signals selected by the multiplexer
566 are further qualified in a gate 568 which inhibits the comparator signals when the first specifier being de-
coded is a complex specifier, as detected by a gate 569, and when the first specifier is not a register specifier.
In a similarfashion, a gate 570 enables the comparatorsignals forthe second specif ier when the third specifier

20 is complex, as detected by gates 571 to 573, the second specifier has a register mode, and the complex spe-
cifier has an autoincrement or autodecrement mode.

The qualified specifier signals from the gates 568 and 570 are combined by first and second levels of OR
gates 574 to 584 to generate the nine-bit IRC mask.

Turning now to FIG. 67, there is shown a schematic diagram of the IRC detector 26 introduced in FIG. 12.
25 The IRC mask is received in a first set of multiplexers 591 , 592 and 593 to select three bits corresponding to

the data type of the first specifier being decoded. Afourth multiplexer 594 is controlled by the data type of the
second specifier being decoded to select a particular one of the nine bits of the IRC mask. The selected bit of
the IRC mask, however, does not necessarily indicate the presence of an intra-instruction read conflict due
to the fact that the detected mode might actually be a branch displacement, or there could be an implied spe-

30 cif ier. In these cases, the output of the multiplexer 594 is inhibited by gates 595 and 596. Gate 596 is also
inhibited if an intra-register conflict was detected during a previous decoding cycle for the same instruction.
This is done so that the IRC detector may signal the operand processing unit when the IRC is first detected
during the decoding of an instruction.

It is still possible that the output of the gate 596 might not signal an intra-instruction read conflict due to
35 the fact that the auto mode complex specifier might not be decoded during the present cycle. Whether an auto

mode specifier is actually decoded depends upon the initial number N' of specifiers being decoded during the
present cycle, the primary case, and whether byte 1 or byte 2 in the instruction buffer designates an index
register. These conditions are detected by AND gates 597 to 601 and an OR gate 602. The OR gate 602 also
receives an implied IRC signal which is asserted whenever an implied specifier is decoded that conflicts with

40 a previous register specifier or index register designation. An implied intra-instruction read conflict, for exam-
ple, occurs for the instruction "PUSHL SP" since such an instruction should be interpreted as first obtaining
the initial value of the stack pointer, then autodecrementing the stack pointer, and then pushing the initial value
of the stack pointer onto the stack at an address given by the decremented value of the stack pointer. Therefore,
the first explicit specifier is a source register specifier which conflicts with the following implied autodecrement

45 of the same register.
In order to detect an intra-instruction read conflict between a source register specifier and an implied au-

toincrement or autodecrement specifier, the register number in byte 1 of the instruction buffer operates the
select input of a decoder 603 which is enabled by the register mode of byte 1. Forthe implied specifiers shown
in Appendix I, the implied specifier is always an autoincrement or autodecrement of the stack pointer which

so has a register number of fourteen. Therefore, decoder outputs 14, 13, 12 and 11 correspond to the comparator
signals P[1], P[2], P[3] and P[4] of FIG. 65. OR gates 604 and 605 provide the quadword and octaword bits of
the implied register mask. The appropriate bit of the implied IRC mask is selected by a multiplexer 606. The
selection from the multiplexer 606 is further qualified in a gate 607 by the R2I request signal and N'[1] indicating
that the implied specifier will be decoded.

55 it is also possible that an implied specifier currently being decoded will conflict with a source register spe-
cif ier having been decoded during a previous decoding cycle for the same instruction. Such a conflict is de-
tected by a gate 608 which selects bit 14 of the read register mask from gate 556 in FIG. 66 when one implied
specifier was requested and one will be decoded, and by gate 609 when two specifiers including an implied

28

EP 0 381 469 B1

specifier have been requested and two specifiers will be decoded. The various possible sources of conflict
detected by the gates 607, 608 and 609 are combined by an OR gate 610 to detect an implied intra-instruction
read conflict.

Once an expressed or implied intra-instruction read conflict is signaled by the gate 602, then the instruc-
5 tion is decoded by decoding only one specifier during each decoding cycle. Only one specifier will be decoded

during the current cycle, and if there are any remaining specifiers to be decoded for the instruction, a latch
611 is set to signal that only one specifier will be decoded during each subsequent decoding cycle until the
instruction is completely decoded. The end of decoding forthe instruction is indicated by the "all specs com-
pleted" signal from FIG. 12. In addition, the latch 611 is not set when the instruction buffer is being initially

10 loaded or when there is a decoder fault. Setting of the latch 6ii in these cases is inhibited by a gate 612.
Once the latch 611 is set, a gate 613 assures that it remains set until the end of decoding for the current

cycle. Another gate 614 assures that the state of the latch 611 will not change in the event of a decoder fault.
The outputs of the gates 612, 613 and 614 are combined in an OR gate 615 and applied to the data input of
the latch 611. An OR gate 616 combines the output of the latch 611 with an IRC_DETECTED signal from the

15 gate 602 to provide the IRC signal which operates the multiplexer 126 in FIG. 12.
Turning now to FIG. 68, there is shown a schematic diagram of the circuits in the instruction unit 12 and

the execution unit 13 which update general purpose registers 651 in the instruction unit and a corresponding
set of general purpose registers 652 in the execution unit in response to an intra-instruction read conflict de-
tected by the instruction decoder (20 in FIG. 1). As shown in FIG. 68, the data paths between the instruction

20 unit 12 and the execution unit 13 include the source list 24 and a number of queues 23. These queues 23 more
specifically include a fork queue 653 receiving the fork or microcode entry address for the instruction just hav-
ing been decoded, a source pointer queue 655 for receiving register numbers or source list pointers to the
source operands having been decoded by the instruction decoder, a destination pointer queue 656 for receiving
the register number or address of a destination operand having been decoded by the instruction decoder, and

25 a register scoreboard queue 657.
The register scoreboard queue 657 detects inter-instruction read conflicts between register source oper-

ands of previous pre-processed but not yet executed instructions and autoincrement or autodecrement spe-
cifiers of the current instruction. The register scoreboard queue 657 also detects inter-instruction conflicts be-
tween register destination operands of previous pre-processed but not yet executed instructions and register

30 source operands of the current instruction. To detect any inter-instruction read conflict, the register scoreboard
queue receives the composite register read mask generated by the set of gates 555 in FIG. 66 when the "new
fork" signal is asserted. To detect any inter-instruction write conflict, the register scoreboard queue also re-
ceives a composite register write mask that is generated in a similar fashion to the composite register read
mask except that the mask generator is responsive to the destination register information. The register score-

35 board queue 657 further includes a set of OR gates for forming the logical OR of all of the masks in the queue
to form composite register read and write masks.

The composite register read mask is compared to the base register number of any complex specifier having
an autoincrement or autodecrement mode to detect an inter-instruction register read conflict. In a similarfash-
ion, any source register numbers are compared to the composite write register mask to detect any inter-instruc-

40 tion write conflicts. In either case, the register scoreboard queue 657 signals the presence of any inter-instruc-
tion register conflict.

The instruction unit 12 and the execution unit 13 include the duplicate sets of general purpose registers
651 and 652 so that the specifiers can be evaluated by the instruction unit before they are needed by the exe-
cution unit. When the execution unit modifies a general purpose register, the new data are sent to both the

45 execution unit general purpose registers 652 and the instruction unit general purpose registers 651 . In the typ-
ical case, when the instruction unit modifies a base register in response to evaluation of an autoincrement or
autodecrement specifier, both the instruction unit general purpose registers 651 and the execution unit general
purpose registers 652 are updated.

In the event of an exception or interrupt, the queues 23 must be flushed of information about instructions
so which have been decoded but not yet executed. If any of these decoded but not yet executed instructions con-

tain a complex specifier having an autoincrement or autodecrement mode, the register having been modified
must be returned to its original state. Therefore, it is desirable for the instruction unit or the execution unit to
store information about the changes having been made to the general purpose registers when the registers
have been modified by an autoincrement or autodecrement. For storing this information, the execution unit 13

55 of FIG. 68 is provided with an RLOG queue 658 for storing respective register numbers and the amount that
they are modified by.

As shown in FIG. 68, the RLOG queue is full when it stores sixteen entries. Once an instruction having
an autoincrement or autodecrement specifier is retired, its corresponding entry must be removed from the

29

EP 0 381 469 B1

RLOG queue 658. Also, since an instruction can have multiple specifiers, each of which could be an autoincre-
ment or autodecrement specifier, it is necessary to permit more than one entry in the RLOG queue to be as-
sociated with each instruction. For this purpose, the instruction unit 1 2 includes a modulo six counter that gen-
erates a three-bit tag (OPU TAG) which is appended to the fork for the instruction. A modulo six counter 659,

5 for example, is provided by a three-bit binary counter having its clock enabled by the "new fork" signal, and
having a gate 660 for resetting the counter in response to the "new fork" signal when the tag has a value of
five. The tag points to one of six three-bit RLOG counters 661 located in the execution unit 13.

The RLOG queue 658 has a four-bit insert pointer counter 662 that is incremented as entries are added
to the RLOG queue 658. Also, as an entry is added, the respective RLOG counter is incremented. When an

10 instruction is retired, the RLOG counter corresponding to the tag of the retired instruction (the execution unit
tag) is reset. This is done, for example, by a decoder 663 which has outputs connected to respective reset inputs
of the RLOG counters 661, and which is enabled by a retire signal from the retire unit 27. In a similarfashion,
an encoder 664 has outputs tied to respective clock enable inputs of the RLOG counters 661 , and has a select
input receiving the OPU tag and an enable input enabled by a MODIFY signal. The MODIFY signal enables a

15 decoder 665 decoding the insert pointer from the insert pointer counter 662 to enable data enable inputs of
respective ones of the sixteen data registers in the RLOG queue 658.

The number of valid entries in the RLOG queue is obtained by summing all of the values of the RLOG coun-
ters 661 in an adder 666. The most significant bit (Q4) of the sum indicates that there are sixteen entries in
the RLOG queue 658, and therefore signals that the RLOG queue is about to overflow. Overflow is prevented

20 by stalling the operand processing unit when the Q4 signal is active. The output bits of the adder 666 are com-
bined in an NOR gate 667 to provide a signal indicating that the RLOG queue is empty.

When an execution or interrupt occur, the RLOG entries are unwound from the RLOG queue. This is done
by accessing all of the valid entries in the RLOG queue. The entries can be successively obtained by a mul-
tiplexer 668 having a select input receiving the insert pointer counter, and successively decrementing the insert

25 pointer counter. It is desirable in many instances, however, to only discard orflush the instruction and execution
unit of data corresponding to a certain number of instructions that were just decoded. This is typically done to
permit instructions following a branch instruction before the branch of the branch instruction is actually deter-
mined by the execution unit. If it is found that the program execution should have branched, or any prediction
for the branch is found to be erroneous, the results of decoding the instructions following the branch must be

30 flushed from the queues 23 and any general purpose registers having been modified by autoincrement or au-
todecrement specifiers in the instructions following the branch instruction must be returned to their original
values. For this purpose, only a certain number of entries in the RLOG queue 658 are obtained from the mul-
tiplexer 668 while decrementing the insert pointer counter 662.

In order to determine the particular number of entries to be removed from the RLOG queue 658, there is
35 provided a flush counter 669 which is set to the value of the execution unit tag plus a "number to keep" which

specifies the number of instructions which have been correctly decoded and for which their results should be
left in the queues 23. The computation is performed by an adder 670, and the number of entries to keep is fed
to the adder through a set of gates 671 which are disabled when the queues 23 are to be entirely flushed. During
the flushing process, a multiplexer 672 supplies the value of the flush counter to the select input of the decoder

40 664. Therefore, only the RLOG counters 661 corresponding to the instructions having information to be flushed
and registers to be restored are accessed for flushing. In addition, the select input of the decoder 664 is fed
to a multiplexer 673 for selecting the value of the respective counter; this value indicates how many entries
are to be removed from the RLOG queue 658. The process of flushing and restoring the registers can be done
sequentially by testing whether the value of the selected RLOG counter is equal to zero, as determined by a

45 NOR gate 674, and by detecting that the flushing is complete when the value of the flush counter is equal to
the value of the OPU tag, as indicated by a comparator 675. The particular steps in the flushing procedure are
performed by a sequential state machine 676 in the execution unit. As is conventional, the sequential state
machine includes combinational logic and a set of registers for holding the sequential state between cycles of
the system clock. In a similarfashion, the instruction unit includes a sequential state machine 677 for updating

so the instruction unit general purpose registers 651 during the flushing procedure.
The restoration of the general purpose registers is complicated by the need to handle intra-instruction read

conflicts. According to the preferred method, once an intra-instruction read conflict is detected, the autoincre-
ment and autodecrement specif iers modify only the instruction unit general purpose registers 651 and the reg-
ister specifiers are passed as data, instead of pointers, to the execution unit. The instruction unit general pur-

55 pose registers 651, but not the execution unit general purpose registers 652, are modified during evaluation
of the autoincrement and autodecrement specifiers. When the instruction having the intra-instruction register
conflict is fully decoded, decoding of the next instruction is temporarily inhibited until the current instruction
is retired and the execution unit general purpose registers 652 are updated. For this purpose, the numbers of

30

EP 0 381 469 B1

the registers having been modified afterthe intra-instruction conflict is detected are stored in a "delayed update
queue" 678. Once the instruction is retired, the values of the registers having their numbers stored in the de-
layed update queue 678 are transmitted to the execution unit general purpose registers 652. An AND gate 679
determines that the current instruction has been retired by qualifying the retire signal from the retire unit 27

5 with a signal indicating that the register scoreboard queue 657 is empty.
A flush may occur during the decoding of an instruction having an intra-instruction conflict. In order that

the flushing procedure need not take into consideration the intra-instruction conflict, when the instruction unit
general purpose registers 651 are being modified but the execution unit general purpose registers 652 are not,
a modification value of zero is stored in the RLOG queue 658 each time that an instruction unit general purpose

10 register 651 is modified. Therefore, if a flush occurs, the instruction unit general purpose registers 651 are
restored to their initial unmodified values by being replaced with the unmodified values stored in the execution
unit general purpose registers 652.

Turning now to FIG. 69, there is shown a flowchart of the control procedure executed by the sequential
state machine 677 in the instruction unit. Preferably, this sequential state machine, as well as the instruction

15 unit general purpose registers 651, are part of the operand unit (21 in FIG. 1). In a first step 681 of the control
procedure, execution branches to step 682 when there is an interrupt, exception or flush. In step 682, the in-
struction unit general purpose registers 651 are restored with any values received from the execution unit, and
the control sequence for the current cycle is finished.

If an interrupt, exception or flush is not pending, then in step 683 the instruction unit sequential state ma-
20 chine 677 checks the inter-instruction conflict signal from the register scoreboard queue 657 and stalls the

operand processing unit in step 684 when there is an inter-instruction conflict.
If there is not an inter-instruction conflict, then in step 685 the sequential state machine 677 checks the

latch 680 to determine whether there is an intra-instruction conflict pending. If there is an intra-instruction con-
flict, then in step 686 the OPU tests whether the current specifier is a register specifier. If so, then in step 687

25 the source list 24 is loaded with the unmodified value of any source register and the source pointer queue 654
is loaded with a pointer to that unmodified value. If the specifier is not a register specifier, then in step 688
the OPU tests whether the current specifier is an autoincrement or autodecrement mode specifier. If so, then
in step 689 the instruction unit general purpose register 651 corresponding to the base register number is modi-
fied, but a zero modification value is transmitted to the RLOG queue 658 and the execution unit general pur-

30 pose registers 652. The number of the base register having been modified is stored in the delayed update
queue 678. If the current specifier is neither a register specifier nor an auto mode specifier, then in step 690
the OPU evaluates the specifier in the usual fashion as described above in connection with FIGS. 1 and 2.

In step 691 , the sequential state machine 677 checks the "new fork" signal to determine whether the current
instruction has been entirely decoded. If so, then in step 692 an instruction decoder stall flag is set in order

35 to stall the instruction decoder until the current instruction has been retired and the execution unit general pur-
pose registers are updated.

Once the current instruction is retired, the intra-instruction conflict will no longer be detected in step 685.
Then in step 693 the sequential state machine 677 checks whether the delayed update queue is empty. If not,
then it contains the numbers of the execution unit general purpose registers 652 that must be updated. In step

40 694, the next register number in the delayed update queue is obtained and the content of that register in the
instruction unit general purpose registers 651 is transmitted to the corresponding execution unit general pur-
pose register 652. In step 695, the sequential state machine 677 checks whether the content of the last general
purpose register having been modified is being transmitted to the corresponding execution unit general pur-
pose register 652. If so, then the execution unit general purpose registers will all be restored at the end of the

45 current cycle and therefore in step 696 the flag stalling the instruction decoder is cleared.
If the delayed update queue is empty in step 693, then the operand processing unit operates in its normal

fashion. In step 697, any source register numbers are loaded directly into the source list queue 655. In step
698, the instruction unit general purpose register designated by the base of any complex specifier having an
autoincrement or autodecrement mode is modified, and the modification is transmitted to the RLOG queue

so 658 and the general purpose registers 652 in the execution unit 13.
Turning now to FIG. 70, there is shown a flowchart of the control procedure of the sequential state machine

676 in the execution unit. In a first step 711 , the sequential state machine 676 checks whether there is an in-
terrupt or exception. If so, then in step 712 the flush counter is set to the value of the execution unit tag. In a
similar fashion, if a flush request is detected in step 713, then in step 714 the flush counter 669 is set to the

55 value of the execution unit tag plus the number of decoded but not yet executed instructions to keep.
After step 712 or 714, the sequential state machine 676 checks the output of the gate 667 in order to test

in step 715 whether the RLOG queue is empty. If so, then the current cycle of the control procedure in FIG.
70 is finished. Otherwise, at least one of the execution unit general purpose registers 652 has to be restored

31

EP 0 381 469 B1

to a previous value. In step 716, the sequential state machine 676 checks the output of the gate 674 to deter-
mine whether the RLOG counter addressed by the flush tag from the flush counter 669 is equal to zero. If so,
then the RLOG queue does not have any modification entries forthe instruction corresponding to the selected
RLOG counter. Therefore, in step 717, the sequential state machine 676 checks the output of the comparator

5 675 to determine whether the flush tag is equal to the OPU tag, and if so, all of the execution unit general pur-
pose registers 652 have been restored to their previous values before the processing of the instructions being
flushed. Otherwise, in step 718, the flush counter is incremented and execution branches back to step 716 to
inspect the content of the next RLOG counter.

If in step 716 it is found that the value of the RLOG counter is not equal to zero, then there is at least one
10 corresponding entry in the RLOG queue. In step 719 the RLOG counter is decremented and in step 720 the

RLOG queue is read at the entry just before the entry indicated by the insert pointer, and the insert pointer is
decremented. Next, in step 721, the value of the execution unit general purpose register addressed by the reg-
ister number from the RLOG queue is read, and the modification read from the RLOG queue is added to that
value of the execution unit register and the sum is stored back in the addressed execution unit general purpose

15 register. The sum and the register number are also transmitted to the instruction unit general purpose registers
651 for restoration of the corresponding general purpose register in the instruction unit. Execution then branch-
es back to step 715 to determine whether any additional general purpose registers must be restored.

If there is neither an interrupt, exception or flush, in step 722 the execution unit checks whether it is re-
ceiving register modification information sent by the instruction unit (this is done in steps 687 or 703 of FIG.

20 69). If register modification information is received, then in step 723 the register modification information is
inserted in the RLOG queue, and the RLOG counter selected by the OPU tag is incremented. In step 724 the
modification value is tested to determine if it is zero. If so, then the execution unit cycle is finished. Otherwise,
in step 725 the execution unit general purpose register addressed by the OPU tag is modified in accordance
with the modification information, and the control procedure performed by the sequential state machine 676

25 is finished.
In view of the above, there has been described an instruction decoder capable of simultaneously decoding

two source specifiers and one destination specifier. All three of the specifiers can be register specifiers. Any
one of these specifiers can be a complex specifier designating an index register, a base register and a dis-
placement.

30 Simultaneous decoding of multiple specifiers causes a peculiar problem of intra-instruction read conflicts.
Circuitry for detecting an intra-instruction read conflict has been disclosed as well as an efficient method for
handling interrupts, exceptions and flushes that may occur during the processing of an instruction having an
intra-instruction read conflict.

35 APPENDIX I

VAX Instructions Having Implied Specifiers That Should Be Pre-Processed

Copyright© 1989 Digital Equipment Corporation
40 Note: Arguments are in the form of a "name" followed by a period, a letter designating the specif ier access

type and a letter designating the specifier data type. The access types include address (a), branch
displacement (b), read (r), and write (w). The data types include byte (b), long (I), word (w), and quad
(q). Implied operands, that is, locations accessed by the instruction but not specified in the instruc-
tion, are enclosed in brackets. Implied operations that should be pre-processed are underlined.

45

50

55

32

EP 0 381 469 B1

MNEMONIC DESCRIPTION ARGUMENTS

BSBB

BSBW

J S B

PSHAB

PUSHAD

PUSHAF

PUSHAL

Branch t o
s u b r o u t i n e
w i t h b y t e
d i s p l a c e m e n t

B ranch t o
s u b r o u t i n e
w i t h w o r d
d i s p l a c e m e n t

Jump t o
s u b r o u t i n e

Push a d d r e s s
of b y t e

Push a d d r e s s
of d o u b l e

Push a d d r e s s
of f l o a t i n g

Push a d d r e s s
of l o n g

d i s p l . b b , [- (S P) .wl] , [N e x t _ P C]

d i s p l . b w , [- (S P) .wl] , [N e x t _ P C]

d s t . a b ,

s r c . a b ,

s r c . a q ,

s r c . al ,

s r c . al ,

- (SP) .wl] , [N e x t _ P C]

- (SP) . w l]

- (SP) . w l]

- (SP) . w l]

- (SP) . w l]

APPENDIX I - CONTINUED

Copyright© 1989 Digital Equipment Corporation

MNEMONIC

PUSHAQ

PUSHAW

PUSHL

RE I

RSB

SVPCTX

DESCRIPTION

Push a d d r e s s
of q u a d

Push a d d r e s s
of w o r d

Push l o n g

R e t u r n f r o m
i n t e r r u p t o r
e x c e p t i o n

R e t u r n f r o m
s u b r o u t i n e

Save p r o c e s s
c o n t e x t

ARGUMENTS

s r c . a q , [- (S P) . w l]

s r c . aw, [- (S P) . w l]

s r c . r l , [- (S P) . w l]

[(S P) + . r l 1 , [(S P) + . r l]

[(S P + . r l]

[(S P) + . r l] , r (S P) + . r l]

33

EP 0 381 469 B1

APPENDIX II

Request Logic - Truth Table

5 Copyright© 1989 Digital Equipment Corporation
Note:
N = Number of Specifiers Needed
SP3 = Access Type of Third Specifier Being Decoded
SP2 = Access Type of Second Specifier Being Decoded

10 SP1 = Access Type of First Specifier Being Decoded
R4 = REG[4]
S4 = SL[4]
14 = INDEX[4]
R3 = REG[3]

15 S3 = SL[3]
13 = INDEX[3]
R2 = REG[2]
S2 = SL[2]
12 = INDEX[2]

20 R1 = REG[1]
S1 = SL[1]
11 = INDEX[1]
REQ. = Request

(Addressing Fault when REQ. = X)
25

30

35

40

45

50

55

34

EP 0 381 469 B1

N SP3 SP2 SP1
0 X X X

70

70

20

Z0

■SU

40

4t>

00

M

w

VR

VM

1 X X BB
1 X X BW
1 X X IR
1 X X IW
2 X A A

IR

X IW
50

R4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

S4 14
X X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

R3 S3 13
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X

R2 S2
X X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

X
0
z
2
1
X
X
X
0
z
z
1
X
X
X
0
z
z
1
X
X
X
0
z
z
1
X
X
X
0
z
z
1
X
X
X
0
z
z
1
X
X
X
X
X
X
X
0
z
z
1
X
X
X
0
z
z
1
X
X
X
0
z
z
1

X
0
z
1
z
X
X
X
0
z
1
z
X
X
X
0
z
1
z
X
X
X
0
z
1
z
X
X
X
0
z
1
z
X
X
X
0
z
1
z
X
X
X
X
X
X
X
0
z
1
z
X
X
X
0
z
1
z
X
X
X
0
z
1
z

12
X
X
0
1
z
z
X
X
X
0
1
z
z
X
X
X
0
1
z
z
X
X
X
0
1
z
z
X
X
X
0
1
z
z
X
X
X
0
1
z
z
X
X
X
X
X
X
X
0
1
z
z
X
X
X
0
1
z
z
X
X
X
0
1
z
z

R1 S1
X X
0
z
z
z
z
z
1
0
z
z
z
z
z
1
0
z
z
z
z
z
1
0
z
z
z
z
z
1
0
z
z
z
z
z
1
0
z
z
z
z
z
1
X
X
X
X
0
z
z
z
z
z
1
0
z
z
z
z
z
1
0
z
z
z
z

0
z
z
z
z
1
z
0
z
z
z
z
1
z
0
z
z
z
z
1
z
0
z
z
z
z
1
z
0
z
z
z
z
1
z
0
z
z
z
z
1
z
X
X
X
X
0
z
z
z
z
1
z
0
z
z
z
z
1
z
0
z
z
z
z

11
X
0
1
1
1
1
z
z
0
1
1
1
1
z
z
0
1
1
1
1
z
z
0
1
1
1
1
z
z
0
1
1
1
1
z
z
0
1
1
1
1
z
z
X
X
X
X
0
1
1
1
1
z
z
0
1
1
1
1
z
z
0
1
1
1
1

REQ.
0
1
1
X
X
X
X
X
1
1
X
X
X
1
1
1
1
X
X
X
X
1
1
1
X
X
X
X
1
1
1
X
X
X
X
1
1
1
X
X
X
X
1
IBB
1BW
I I
I I
1
1
X
X
X
X
X
1
1
X
X
X
X
X
1
1
X
X
X

35

EP 0 381 469 B1

W
10

15 VR

20

25

30

35

40

45

50

M

55

X X X X X X X X X Z l Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z 1 2
X X X X X X Z Z 1 Z Z 1 X
X X X X X X Z 1 Z Z Z 1 X
X X X X X X 1 Z Z Z Z 1 X
X X X X X X X X X Z 1 Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z 1 2R
X X X X X X Z Z 1 Z Z 1 X
X X X X X X Z 1 Z Z Z 1 X
X X X X X X 1 Z Z Z Z 1 X
X X X X X X X X X Z 1 Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z 1 2R
X X X X X X Z Z 1 Z Z 1 X
X X X X X X Z 1 Z Z Z 1 X
X X X X X X 1 Z Z Z Z 1 X
X X X X X X X X X Z 1 Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 1
x x x x x x o o o z z i l
X X X X X X Z Z I Z Z I x
X X X X X X Z 1 Z Z Z I X
X X X X X X 1 Z Z Z Z I X
X X X X X X 0 0 0 Z 1 Z 2
X X X 0 0 0 Z Z I Z 1 Z 2
X X X Z Z I Z Z I Z 1 Z 1
X X X Z 1 Z Z Z I Z 1 Z 1
x x x l z z Z Z I Z 1 Z 1
X X X X X X Z 1 Z Z 1 Z 1
x x x x x x l z z Z 1 Z 1
X X X X X X 0 0 0 l z z 2
X X X 0 0 0 Z Z I l z z 2
X X X Z Z I Z Z I l z z 1
X X X Z l Z Z Z I l z z 1
X X X 1 Z Z Z Z I l z z 1
X X X X X X Z l Z l z z 1
X X X x x x l z z l z z 1
x x x X X X X X X 0 0 0 2
x x x x x x o o o z z i 2
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X 1 Z Z . Z Z 1 X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z I Z l Z 2
X X X Z Z I Z Z I Z l Z l
X X X Z l Z Z Z I Z l Z 1
x x x l z z Z Z I Z l Z 1
X X X X X X Z l Z Z l Z 2
x x x x x x l z z Z l Z 2
x x x x x x o o o l z z 2
X X X 0 0 0 Z Z I 1 Z Z 2
X X X Z Z I Z Z I l z z 1
X X X Z l Z Z Z I l z z 1
x x x l z z z z i l z z 1
X X X X X X Z l Z l z z 2
x x x x x x l z z l z z 2
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z I 2R
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
x x x x x x l z z Z Z I X

36

1
>

1
1

X X X X X X 1 Z Z l z z 2 2 X W R X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z I 2R
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X 1 Z Z Z Z I X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z I Z l Z 2
X X X Z Z I Z Z I Z l Z 1
X X X Z l Z Z Z I Z l Z 1
x x x l z z Z Z I Z l Z 1
x x x X X X Z l Z Z l Z 1
X X X X X X l Z Z Z l Z 2
x x x X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z I l Z Z 2
X X X Z Z I Z Z I l Z Z 1
X X X Z l Z Z Z I l Z Z 1
x x x l z z Z Z I l Z Z 1
x x x X X X Z l Z l z z 1
x x x X X X l Z Z l Z Z 2 2 X VR R X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z I 2R
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
x x x X X X l Z Z Z Z I X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z I Z l Z 2
X X X Z Z I Z Z I Z l Z 1
X X X Z l Z Z Z I Z l Z 1
x x x l z z Z Z I Z l Z 1
X X X X X X Z l Z Z l Z 1
X X X X X X l Z Z Z l Z 2
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z I l Z Z 2
X X X Z Z I Z Z I l Z Z 1
X X X Z l Z Z Z I l Z Z 1
x x x l Z Z Z Z I l Z Z 1
x x x X X X Z l Z l z z 1
x x x x x x l z z l Z Z 2

2 X V M R X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z I 2R
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X l Z Z Z Z I X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z I Z l Z 2
X X X Z Z I Z Z I Z l Z 1
X X X Z l Z Z Z I Z l Z 1
x x x l z z Z Z I Z l Z 1
X X X X X X Z l Z Z l Z 1
X X X X X X 1 Z Z Z l Z 2
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z I 1 Z Z 2

37

EP 0 381 469 B1

TV

IK

1 rf

£5 £3

oa n

n w

VK

v f\

X X X Z Z I Z Z I l Z Z 1
X X X Z l Z Z Z I l Z Z 1
X X X l Z Z Z Z I 1 Z Z 1
X X X X X X Z l Z 1 Z Z 1
X X X X X X l z z l Z Z 2
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X l Z Z Z Z I X
X X X X X X X X X Z l Z 21
X X X X X X X X X l Z Z 21
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X l Z Z Z Z I X
X X X X X X X X X Z l Z 21
X X X X X X X X X 1 Z Z 2I
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X x x x l z z Z Z I X
X X X X X X X X X Z l Z 2BB
X X X X X X X X X l Z Z 2BB
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X l Z Z Z Z I X
x x x X X X X X X Z l Z X
X X X X X X X X X l Z Z 2BB
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
x x x x x x l z z Z Z I X
x x x X X X X X X Z l Z X
X X X X X X X X X l Z Z 2BW
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
x x x X X X Z l Z Z Z I X
x x x X X X l Z Z Z Z I X
X X X X X X X X X Z l Z X
X X X X X X X X X l Z Z 1
X X X X X X X X X 0 0 0 2
{ X X X X X 0 0 0 Z Z I 2
< X X X X X Z Z I Z Z I X
t x x X X X Z l Z Z Z I X
{ X X x x x l z z Z Z I X
{ X X X X X X X X Z l Z X
{ X X X X X 0 0 0 1 Z Z 2
{ X X O 0 O Z Z 1 l Z Z 2
{ X X Z Z I Z Z I l Z Z 1
{ X X Z l Z Z Z I l Z Z 1
{ X X l Z Z Z Z I l Z Z 1
{ X X X X X Z l Z l Z Z 2
{ X X X X X l Z Z 1 Z Z 2
C X X X X X X X X 0 0 0 2R
C X X X X X 0 0 0 Z Z I 2R
C X X X X X Z Z I Z Z I X
C X X X X X Z l Z Z Z I X
C X X X X X 1 Z Z Z Z I X
C X X X X X X X X Z l Z X

8

EP 0 381 469 B1

10

15

20

25

30

35

40

45

50

55

IR

BB VR

BB VM

2 X X BB
2 X X BW
2 X X IR
2 X X IW
3 A A A

IR IW

C X X X X X 0 0 0 1 Z Z 2
C X X 0 0 0 Z Z I 1 Z Z 2
C X X Z Z I Z Z I l z z 1
C X X Z l Z Z Z I 1 Z Z 1
C X X 1 Z Z Z Z I 1 Z Z 1
C X X X X X Z l Z 1 Z Z 1
C X X X X X l Z Z 1 Z Z 2
C X X X X X X X X 0 0 0 1
C X X X X X 0 0 0 Z Z I 1
I C X X X X X Z Z I Z Z I X
C X X X X X Z l Z Z Z I X
C X X X X X 1 Z Z Z Z I X
C X X X X X X X X Z l Z X
C X X X X X X X X 1 Z Z 2BB
C X X X X X X X X 0 0 0 1
C X X X X X 0 0 0 Z Z I 1
C X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X 1 Z Z Z Z I X
X X X X X X X X X Z l Z X
X X X X X X X X X 1 Z Z 2BB
X X X X X X X X X X X X IBB
X X X X X X X X X X X X 1BW
X X X X X X X X X X X X 11
x x x X X X X X X X X X 11
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
x x x x x x l z z Z Z I X
X X X X X X X X X Z l Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 1
X X X X X X 0 0 0 Z Z I 1
X X X X X X Z Z I Z Z I X
X X X X X X Z l Z Z Z I X
X X X X X X 1 Z Z Z Z I X
X X X X X X X X X Z l Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 1
x x x x x x o o o z z i l
X X X X X X Z Z I z z i x
X X X X X X Z l Z Z Z I x
X X X X X X 1 Z Z Z Z I x
X X X X X X X X X Z l Z X
X X X X X X X X X 1 Z Z X
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z I 2
X X X X X X Z Z I z z i x
X X X X X X Z l Z Z Z I x
x x x X X X 1 Z Z Z Z I x
X X X X X X X X X Z l Z x
x x x x x x x x x l z z x
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l x
X X X X X X Z l Z Z Z l x
x x x x x x 1 Z Z Z Z l x
x x x x x x x x x Z l Z x
X X X X X X X X X 1 Z Z X
x x x x x x x x x o o o l
X X X X X X 0 0 0 Z Z l 1
X X X X X X Z Z l Z Z l x
X X X X X X Z l Z Z Z l x
X X X X X X 1 Z Z Z Z l x
x x x X X X X X X Z l Z x

39

c
2
2
2
2
i

EP 0 381 469 B1

10

15

20

25

30

35

40

45

50

55

X X X Z l Z Z Z l Z l Z 1
X X X 1 Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 1
X X X X X X l Z Z Z l Z 1
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l l Z Z 1
X X X Z l Z Z Z l l z z 1
X X X l Z Z Z Z l l Z Z 1
X X X X X X Z l Z l Z Z 1
x x x x x x l z z l Z Z 1
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
X X X X X X l Z Z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
X X X l Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 2
X X X X X X l Z Z Z l Z 2
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l l Z Z 1
X X X Z l Z Z Z l l Z Z 1
X X X l Z Z Z Z l l z z 1
X X X X X X Z l Z l z z 2
X X X X X X l Z Z l Z Z 2
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
x x x x x x l z z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
X X X l Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 2
X X X X X X l Z Z Z l Z 2
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l l Z Z 1
X X X Z l Z Z Z l l Z Z 1
x x x l z z Z Z l l Z Z 1
X X X X X X Z l Z l Z Z 2
X X X X X X l z z l Z Z 2
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
X X X X X X l Z Z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
X X X 1 Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 2
X X X X X X 1 Z Z Z l Z 2
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l 1 Z Z 1
X X X Z l Z Z Z l 1 Z Z 1
X X X 1 Z Z Z Z l 1 Z Z 1

41

EP 0 381 469 B1

VR

10

15

VM
20

25

30

35 IR

40

45

50
W

55

X X X X X X Z l Z 1 Z Z 2
X X X X X X 1 Z Z 1 Z Z 2
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
X X X X X X 1 Z Z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
x x x l z z Z Z l Z l Z 1
x x x X X X Z l Z Z l Z 2
X X X x x x l z z Z l Z 2
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l 1 Z Z 2
X X X Z Z l Z Z l 1 Z Z 1
X X X Z l Z Z Z l 1 Z Z 1
X X X 1 Z Z Z Z l l Z Z 1
X X X X X X Z l Z 1 Z Z 2
X X X X X X l Z Z 1 Z Z 2
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
X X X X X X 1 Z Z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z - 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
X X X 1 Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 2
X X X X X X l Z Z Z l Z 2
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l 1 Z Z 2
X X X Z Z l Z Z l l z z 1
X X X Z l Z Z Z l l z z 1
X X X l Z Z Z Z l 1 Z Z 1
X X X X X X Z l Z 1 Z Z 2
X X X X X X 1 Z Z 1 Z Z 2
X X X X X X X X X 0 0 0 2
X X X X X X 0 0 0 Z Z l 2
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
x x x x x x l z z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
X X X 1 Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 2
X X X X X X l Z Z Z l Z 2
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l 1 Z Z 2
X X X Z Z l Z Z l 1 Z Z 1
X X X Z l Z Z Z l l z z 1
X X X 1 Z Z Z Z l 1 Z Z 1
X X X X X X Z l Z 1 Z Z 2
X X X X X X l Z Z 1 Z Z 2
X X X X X X X X X 0 0 0 3XR
X X X X X X 0 0 0 Z Z l 3XR
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l x
x x x x x x l z z Z Z l x
X X X X X X 0 0 0 Z l Z 3XR
X X X 0 0 0 Z Z l Z l Z 3XR

42

EP 0 381 469 B1

1U

70

ZU

ZD

BB M

JO

<H1

BW M

■»o

ou

JO

X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z 1
X X X 1 Z Z Z Z l Z l Z 1
X X X X X X Z l Z Z l Z 1
X X X 0 0 0 l Z Z Z l Z 3
0 0 0 Z Z l l Z Z Z l Z 3
Z Z l Z Z l l Z Z Z l Z 2*
Z l Z Z Z l l Z Z Z l Z 2*
l Z Z . Z Z l l Z Z Z l Z 2*
X X X Z l Z l Z Z Z l Z 2*
x x x l z z 1 Z Z Z l Z 3
X X X X X X 0 0 0 l Z Z 3XR
X X X 0 0 0 Z Z l l Z Z 3XR
X X X Z Z l Z Z l l Z Z 1
X X X Z l Z Z Z l l Z Z 1
X X X 1 Z Z Z Z l l Z Z 1
x x x o o o z i z l z z 3
0 0 0 Z Z l Z l Z l Z Z 3
Z Z l Z Z l Z l Z l Z Z 2*
Z l Z Z Z l Z l Z l z z 2*
l z z Z Z l Z l Z l Z Z 2*
X X X Z l Z Z l Z l Z Z 2*
X X X l Z Z Z l Z l Z Z 3
X X X 0 0 0 l Z Z l Z Z 3
o o o z z i l z z l z z 3
Z Z l Z Z l l z z l Z Z 2*
Z l Z Z Z l l Z Z l Z Z 2*
1 Z Z Z Z l l z z l Z Z 2*
X X X Z l Z l Z Z l Z Z 2*
X X X l Z Z l Z Z l Z Z 3
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z l 2R
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
x x x x x x l z z Z Z l X
X X X X X X 0 0 0 Z l Z 2
x x x o o o z z i z i z 2
x x x Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z I Z 1
x x x l Z Z Z Z l Z l Z 1
x x x X X X Z I Z Z I Z 1
X X X X X X l Z Z Z I Z 3BB
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l l Z Z 1
X X X Z l Z Z Z l 1 Z Z 1
X X X l z z Z Z l l Z Z 1
X X X X X X Z l Z l Z Z 1
X X X X X X 1 Z Z 1 Z Z 3BB
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z l 2R
X X X X X X Z Z l Z Z l X
X X X X X X Z 1 Z Z Z l X
X X X X X X l Z Z Z Z l X
X X X X X X 0 0 0 Z I Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z I Z 1
X X X l Z Z Z Z l Z I Z 1
X X X X X X Z l Z Z I Z 1
X X X X X X l Z Z Z I Z 3BW
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l l Z Z 1
X X X Z I Z Z Z l l Z Z 1
X X X 1 Z Z Z Z l l Z Z 1

13

EP 0 381 469 B1

M W

10

15

20 VR

25

30

35 W VR

40

45

50

55

X X X X X X Z l Z 1 Z Z 1
X X X X X X 1 Z Z 1 Z Z 3BW
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z l 2R
X X X X X X Z Z l Z Z l X
X X X X X X Z I Z Z Z l x
X X X X X X 1 Z Z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z l Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z I Z Z Z l Z l Z 1
X X X 1 Z Z Z Z l Z I Z 1
X X X X X X Z I Z Z l Z 1
X X X X X X 1 Z Z Z I Z 2
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l 1 Z Z 2
X X X Z Z l Z Z l 1 Z Z 1
X X X Z l Z Z Z l l z z 1
X X X 1 Z Z Z Z l l z z 1
X X X X X X Z I Z 1 Z Z 1
X X X X X X 1 Z Z l z z 2
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z l 2R
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l X
X X X X X X 1 Z Z Z Z l X
X X X X X X 0 0 0 Z l Z 2
X X X 0 0 0 Z Z l Z I Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z I Z Z Z l Z I Z 1
x x x l z z Z Z l Z I Z 1
X X X X X X Z l Z Z I Z 1
X X X X X X 1 Z Z Z I Z 2
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l 1 Z Z 1
X X X Z I Z Z Z l 1 Z Z 1
x x x l z z Z Z l 1 Z Z 1
X X X X X X Z l Z 1 Z Z 1
X X X X X X 1 Z Z 1 Z Z 2
X X X X X X X X X 0 0 0 3RR
X X X X X X 0 0 0 Z Z l 3RR
X X X X X X Z Z l Z Z l X
X X X X X X Z l Z Z Z l x
x x x x x x l z z Z Z l X
X X X X X X 0 0 0 Z l Z 3XR
X X X 0 0 0 Z Z l Z l Z 3XR
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z l Z l
X X X 1 Z Z Z Z l Z I Z 1
X X X X X X Z l Z Z l Z 1
X X X 0 0 0 l Z Z Z l Z 3
0 0 0 Z Z l l Z Z Z l Z 3
Z Z l Z Z l 1 Z Z Z l Z 2*
Z I Z Z Z l 1 Z Z Z I Z 2*
l z z Z Z l 1 Z Z Z l Z 2*
X X X Z I Z 1 Z Z Z l Z 2*
X X X l Z Z l Z Z Z l Z 3
X X X X X X 0 0 0 l Z Z 3XR
X X X 0 0 0 Z Z l 1 Z Z 3XR
X X X Z Z l Z Z l 1 Z Z 1
X X X Z l Z Z Z l 1 Z Z 1
X X X l Z Z Z Z l 1 Z Z 1
X X X X X X Z I Z 1 Z Z 1
X X X 0 0 0 1 Z Z l Z Z 3
0 0 0 Z Z l 1 Z Z 1 Z Z 3

44

EP 0 381 469 B1

BB VK

BB vn

1 X X BB
i X X BW
i X X IR
i X X IW

Z Z l Z Z l l z z l z z 2*
Z l Z Z Z l l Z Z 1 Z Z 2*
l z z Z Z l l z z l z z 2*
x x x z i z l z z l z z 2*
X X X l Z Z l Z Z l Z Z 3
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z l 2R
X X X X X X Z Z l Z Z l X
X X X X X X Z I Z Z Z l X
x x x x x x l z z Z Z l X
X X X X X X 0 0 0 Z I Z 2
X X X 0 0 0 Z Z l Z I Z 2
X X X Z Z l Z Z l Z I Z 1
x x x Z l Z Z Z l Z I Z 1
x x x l z z Z Z l Z I Z 1
x x x X X X Z I Z Z I Z 1
X X X X X X l Z Z Z l Z 3BB
X X X X X X 0 0 0 1 Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
x x x Z Z l Z Z l l Z Z 1
x x x Z l Z Z Z l l Z Z 1
x x x l Z Z Z Z l l Z Z 1
x x x X X X Z l Z l Z Z 1
X X X X X X l Z Z l Z Z 3BB
X X X X X X X X X 0 0 0 2R
X X X X X X 0 0 0 Z Z l 2R
x x x X X X Z Z l Z Z l X
x x x X X X Z I Z Z Z l x
x x x x x x 1 Z Z Z Z l x
X X X X X X 0 0 0 Z I Z 2
X X X 0 0 0 Z Z l Z I Z 2
X X X Z Z l Z Z l Z l Z 1
X X X Z l Z Z Z l Z I Z 1
x x x l z z Z Z l Z I Z 1
x x x x x x Z I Z Z l Z 1
X X X X X X l Z Z Z l Z 3BB
X X X X X X 0 0 0 l Z Z 2
X X X 0 0 0 Z Z l l Z Z 2
X X X Z Z l Z Z l l Z Z 1
X X X Z l Z Z Z l l Z Z 1
x x x l z z Z Z l l Z Z 1
X X X X X X Z I Z l Z Z 1
X X X X X X 1 Z Z l Z Z 3BB
X X X X X X X X X X X X IBB
X X X X X X X X X X X X 1BW
X X X X X X X X X X X X 11
X X X X X X X X X X X X 11

>iaims

I. A method of preprocessing, after decoding for execution in a pipelined processor, instructions having an
operation code, a first register specifier and a following second specifier, the method characterised by:
detecting whether for each of the instructions the preprocessing of the second specif ier changes the value
of the register specified by the first register specifier;
decoding the specifiers sequentially for instructions in which the detecting indicates that the preprocess-
ing of the second specif ier modifies the value of the register specified by the first register specif ier; and
decoding the first register specifier and the second specifier simultaneously for instructions in which the
detecting indicates that the preprocessing of the second specif ier does not modify the value of the register
specified by the first register specifier.

!. A method as claimed in Claim 1, further comprising passing register pointers to an execution unit (13) for

■5

EP 0 381 469 B1

the register specifiers that are decoded simultaneously, and passing register values to the execution unit
for the register specifiers that are decoded sequentially.

3. A method as claimed in Claim 1 or 2, including maintaining, during instruction decoding and execution,
5 a first set of values for a plurality of registers (651) in an instruction decoding unit and a second set of

values forthe registers (652) in the instruction execution unit:
for instructions in which the detecting indicates that the preprocessing of the second specifier modifies
the value of only those registers different from the register specified by the first register specifier, de-
coding the first register specifier and the second specifier simultaneously; and

10 for instructions in which the detecting indicates that the preprocessing of the second specifier modifies
the value of the register specified by the first register specifier, decoding the specifiers sequentially.

4. A method as claimed in Claim 3, further comprising inhibiting the decoding of instructions following the
instructions in which the detecting indicates that the preprocessing of the second specifier modifies the

15 value of the register specified by the first register specifier, the inhibition being maintained until the value
of the specified register in the instruction execution unit is modified.

5. A method as claimed in Claim 3 or 4, further comprising returning the register values in the instruction
decoding unit to the initial unmodified values by replacing their values with the respective register values

20 in the instruction execution unit.

6. A method as claimed in Claim 3, 4 or 5, further comprising passing register pointers from the instruction
decoding unit to the execution unit forthe register specifiers that are decoded simultaneously, and passing
register values from the instruction decoding unit to the instruction execution unit for the register speci-

25 f iers that are decoded sequentially.

7. A method as claimed in any of Claims 3 to 6, further comprising modifying the register values specified
by the second specifier in both the instruction decoding unit and the instruction execution unit prior to
execution of the instruction including the first and second specifiers when the specifiers in the instruction

30 are decoded simultaneously; and
modifying the specified register value in the instruction decoding unit prior to execution of the instruction
including the first and second specifiers, and modifying the value of the specified register in the instruc-
tion execution unit after execution of the instruction included in the first and second specifiers when the
specifiers in the instruction are decoded sequentially.

35
8. A data processing unit for a pipelined processor for preprocessing, for execution, instructions having an

operation code, a first register specifier and a following second specifier, characterised by means (110)
for detecting whether for each of the instructions the preprocessing of the second specifier changes the
value of the register specified by the first register specifier, means (20) for decoding the specifiers se-

40 quentially for instructions in which the detecting indicates that the preprocessing of the second specifier
modifies the value of the register specified by the first register specifier, and means (20) for decoding
the first register specifier and the second specifier simultaneously for instructions in which the detecting
indicates that the preprocessing of the second specif ier does not modify the value of the register specif ied
by the first register specifier.

45
9. A data processing unit as claimed in Claim 8, further comprising means for passing register pointers to

execution means (13) for the register specifiers that are decoded simultaneously, and passing register
values to the execution means for the register specifiers that are decoded sequentially.

so 10. A unit as claimed in Claim 8 or 9, including means (11 8) for inhibiting the decoding of instructions following
detection indicating modification of the value of the register specified by the first register specifier by the
detecting means.

11. A pipeline processor comprising an instruction decoding unit (12), a processing unit as claimed in any of
55 Claims 8 to 10 and an execution unit (13) for processing instructions having an operation code, a first

register specifier and a following second specifier.

12. A processor as claimed in Claim 11, including means for returning the register values in the instruction

46

EP 0 381 469 B1

decoding unit to the unmodified values by replacing their values with those from the respective values in
the instruction execution unit.

13. A processor as claimed in 11 or 12, including means for passing register pointers from the instruction de-
coding unit to the execution unit for the register specifiers that are decoded simultaneously, and for pass-
ing register values from the instruction decoding unit to the execution unit for the register specifiers that
are decoded sequentially.

14. A processor as claimed in Claim 11, 12 or 13, including means for modifying the register values specified
by the second specifier in both the instruction decoding unit and the execution unit prior to execution of
the instruction including the first and second specifiers, and means for modifying the specified register
value in the instruction decoding unit prior to execution of the instruction including the first and second
specifiers and for modifying the value of the specified register in the execution unit after execution of
the instruction including the first and second specifiers.

Patentanspruche

1. Verfahren zum Vorverarbeiten von Befehlen, die einen Operationscode, einen ersten Register-Spezif i-
ziererund einen folgenden zweiten Spezifiziererenthalten, fur die Abarbeitung in einem Pipeline-Prozes-
sor nach ihrer Decodierung, wobei das Verfahren gekennzeichnet ist durch:
Erfassen fur jeden der Befehle, ob die Vorverarbeitung des zweiten Spezifizierers den Wert des durch
den ersten Register-Spezifiziererspezifizierten Registers andert;
sequentielles Decodieren der Spezifiziererfur Befehle, bei denen die Erfassung angibt, dali die Vorver-
arbeitung des zweiten Spezifizierers den Wert des durch den ersten Register-Spezif iziererspezif izierten
Registers abwandelt; und
simultanes Decodieren des ersten Register-Spezif izierers und des zweiten Spezifizierers fur Befehle, bei
denen die Erfassung angibt, dali die Vorverarbeitung des zweiten Spezifizierers den Wert des durch den
ersten Register-Spezif izierer spezif izierten Registers nicht abwandelt.

2. Verfahren nach Anspruch 1, dasfernerdas Weiterleiten von Registerzeigern an eine Abarbeitungseinheit
(13) fur die simultan decodierten Register-Spezif izierer sowie das Weiterleiten von Registerwerten an die
Abarbeitungseinheit fur die sequentiell decodierten Register-Spezif izierer umfalit.

3. Verfahren nach Anspruch 1 oder2, umfassend: Halten eines ersten Satzes von Werten fur mehrere Re-
gister (651) in einer Befehlsdecodiereinheit und eines zweiten Satzes von Werten fur die Register (652)
in der Befehlsabarbeitungseinheit wahrend des Decodierens und Abarbeitens von Befehlen;
simultanes Decodieren des ersten Register-Spezif izierers und des zweiten Spezifizierers fur Befehle, bei
denen die Erfassung angibt, dali die Vorverarbeitung des zweiten Spezifizierers nur den Wert derjenigen
Register abwandelt, die von dem durch den ersten Register-Spezifizierer spezifizierten Register ver-
schieden sind; und
sequentielles Decodieren der Spezifiziererfur Befehle, bei denen die Erfassung angibt, dali die Vorver-
arbeitung des zweiten Spezifizierers den Wert des durch den ersten Register-Spezif iziererspezif izierten
Registers abwandelt.

4. Verfahren nach Anspruch 3, das ferner die Sperrung des Decodierens von Befehlen umfalit, welche den
Befehlen folgen, bei denen die Erfassung angibt, dali die Vorverarbeitung des zweiten Spezifizierers den
Wert des durch den ersten Register-Spezifizierer spezifizierten Registers abwandelt, wobei die Sperrung
so lange beibehalten wird, bis der Wert des spezifizierten Registers in der Befehlsabarbeitungseinheit
abgewandelt wird.

5. Verfahren nach Anspruch 3 oder 4, das ferner das Zuruckf uhren der Registerwerte in der Befehlsdeco-
diereinheit zu den anfangs nicht abgewandelten Werten enthalt, indem ihre Werte durch die jeweiligen
Registerwerte in der Befehlsabarbeitungseinheit ersetzt werden.

6. Verfahren nach Anspruch 3, 4 oder 5, das ferner das Weiterleiten von Registerzeigern von der Befehls-
decodiereinheit zur Abarbeitungseinheit fur die simultan decodierten Register-Spezifizierer sowie das
Weiterleiten von Registerwerten von der Befehlsdecodiereinheit zur Befehlsabarbeitungseinheit fur die

47

EP 0 381 469 B1

sequentiell decodierten Register-Spezifizierer umfalit.

7. Verfahren nach irgendeinem der Anspruche 3 bis 6, ferner umfassend: Abwandeln der durch den zweiten
Spezif izierer spezifizierten Registerwerte sowohl in der Befehlsdecodiereinheit als auch in der Befehls-

5 abarbeitungseinheit vor der Abarbeitung des den ersten und den zweiten Spezif izierer enthaltenden Be-
fehls, wenn die Spezif izierer im Befehl simultan decodiert werden; und
Abwandeln des spezifizierten Registerwertes in der Befehlsdecodiereinheit vor der Abarbeitung des den
ersten und den zweiten Spezif izierer enthaltenden Befehls sowie Abwandeln des Wertes des spezifizier-
ten Registers in der Befehlsabarbeitungseinheit nach der Abarbeitung des den ersten und den zweiten

10 Spezif izierer enthaltenden Befehls, wenn die Spezif izierer im Befehl sequentiell decodiert werden.

8. Datenverarbeitungseinheit fur einen Pipeline-Prozessor fur eine der Abarbeitung dienende Vorverarbei-
tung von Befehlen, die einen Operationscode, einen ersten Register-Spezifizierer und einen folgenden
zweiten Spezif izierer enthalten, gekennzeichnet durch eine Einrichtung (110) zur Erfassung furjedender

15 Befehle, ob die Vorverarbeitung des zweiten Spezifizierers den Wert des durch den ersten Register-Spe-
zif izierer spezif izierten Registers andert, eine Einrichtung (20) zum sequentiellen Decodieren der Spe-
zif iziererf ur Befehle, bei denen die Erfassung angibt, dali die Vorverarbeitung des zweiten Spezifizierers
den Wert des durch den ersten Register-Spezifizierer spezifizierten Registers abwandelt, und eine Ein-
richtung (20) zum simultanen Decodieren des ersten Register-Spezif izierers und des zweiten Spezif izie-

20 rers fur Befehle, bei denen die Erfassung angibt, dali die Vorverarbeitung des zweiten Spezifizierers den
Wert des durch den ersten Register-Spezifizierer spezifizierten Registers nicht abwandelt.

9. Datenverarbeitungseinheit nach Anspruch 8, die ferner versehen ist mit einer Einrichtung zum Weiterlei-
ten von Registerzeigern zur Abarbeitungseinrichtung (13) fur die simultan decodierten Register-Spezif i-

25 zierer sowie zum Weiterleiten von Registerwerten zur Abarbeitungseinrichtung fur die sequentiell deco-
dierten Register-Spezifizierer.

10. Einheit nach Anspruch 8 oder 9, mit einer Einrichtung fur die Sperrung des Decodierens von Befehlen,
die der Erfassung durch die Erfassungseinrichtung folgen, welche die Abwandlung des Wertes des durch

30 den ersten Register-Spezifizierer spezifizierten Registers angibt.

11. Pipeline-Prozessor, mit einer Befehlsdecodiereinheit (12), einer Verarbeitungseinheit nach irgendeinem
der Anspruche 8 bis 10 und einer Abarbeitungseinheit (13) zurVerarbeitung von Befehlen, die einen Ope-
rationscode, einen ersten Register-Spezifizierer und einen folgenden zweiten Spezif izierer enthalten.

35
12. Prozessor nach Anspruch 11, mit einer Einrichtung zum Zuruckfuhren der Registerwerte in der Befehls-

decodiereinheit zu den nicht abgewandelten Werten, indem ihre Werte durch die jeweiligen Werte der Be-
fehlsabarbeitungseinheit ersetzt werden.

40 13. Prozessor nach Anspruch 11 oder 12, mit einer Einrichtung zum Weiterleiten von Registerzeigern von
der Befehlsdecodiereinheit zur Abarbeitungseinheit fur die simultan decodierten Register-Spezifizierer
und zum Weiterleiten von Registerwerten von der Befehlsdecodiereinheit zur Abarbeitungseinheit fur die
sequentiell decodierten Register-Spezifizierer.

45 14. Prozessor nach Anspruch 11, 12 oder 13, mit einer Einrichtung zum Abwandeln der vom zweiten Spezi-
f izierer spezifizierten Registerwerte sowohl in der Befehlsdecodiereinheit als auch in der Abarbeitungs-
einheit vor der Abarbeitung des die ersten und zweiten Spezif izierer enthaltenden Befehls und einer Ein-
richtung zum Abwandeln des spezifizierten Registerwertes in der Befehlsdecodiereinheit vor der Abar-
beitung des die ersten und zweiten Spezif izierer enthaltenden Befehls sowie zum Abwandeln des Wertes

so des spezifizierten Registers in der Abarbeitungseinheit nach der Abarbeitung des die ersten und zweiten
Spezif izierer enthaltenden Befehls.

Revendications
55

1. Methode de pretraitement, apres decodage en vue de I'execution dans un processeura chevauchement,
d'instructions comportant un code d'operation, un premier specif icateur de registre et un second speci-
f icateur suivant, la methode etant caracterisee par :

48

EP 0 381 469 B1

I'operation qui consiste a determiner si, pourchacune des instructions, le pretraitement du second
specif icateur modif ie la valeur du registre specif ie par le premier specif icateur de registre;

le decodage sequentiel des specif icateurs pour les instructions dans lesquelles la detection indi-
queque le pretraitement du second specif icateur modif ie la valeur du registre specif ie parle premier spe-
cif icateur de registre; et

le decodage simultane du premier specif icateur de registre etdu second specif icateur pour les ins-
tructions dans lesquelles la detection indique que le pretraitement du second specificateur ne modifie
pas la valeur du registre specif ie par le premier specificateur de registre.

Methode telle que definie dans la revendication 1, comprenant egalement la transmission de pointeurs
de registres a une unite d'execution (13) pour les specif icateurs de registres qui sont decodes simulta-
nement, et la transmission de valeurs de registres a I'unite d'execution pour les specificateurs de registres
qui sont decodes sequentiellement.

Methode telle que definie dans la revendication 1 ou 2, comprenant le maintien, pendant le decodage et
I'execution des instructions, d'un premier groupe de valeurs pour plusieurs registres (651) dans une unite
de decodage d'instructions, et d'un second groupe de valeurs pour les registres (652) dans I'unite d'exe-
cution d'instructions :

pour les instructions dans lesquelles la detection indique que le pretraitement du second specifi-
cateur modifie uniquement la valeur des registres differents du registre specif ie par le premier specif i-
cateurde registre, le decodage simultane du premierspecificateurde registre etdu second specificateur;
et

pour les instructions dans lesquelles la detection indique que le pretraitement du second specif i-
cateur modifie la valeur du registre specif ie parle premierspecificateurde registre, le decodage sequen-
tiel des specificateurs.

Methode telle que definie dans la revendication 3, comprenant egalement I'interdiction du decodage d'ins-
tructions suivant les instructions dans lesquelles la detection indique que le pretraitement du second spe-
cificateur modifie la valeur du registre specif ie parle premierspecificateurde registre, I'interdiction etant
maintenue tant que la valeur du registre specif ie dans I'unite d'execution d'instructions n'est pas modif iee.

Methode telle que definie dans la revendication 3 ou 4, comprenant egalement I'operation qui consiste a
ramener les valeurs de registres de I'unite de decodage d'instructions aux valeurs non modif iees initiales
en remplacant leurs valeurs par les valeurs de registres respectives de I'unite d'execution d'instructions.

Methode telle que definie dans la revendication 3, 4 ou 5, comprenant egalement la transmission de poin-
teurs de registres de I'unite de decodage d'instructions a I'unite d'execution pour les specificateurs de
registres qui sont decodes simultanement, et la transmission de valeurs de registres de I'unite de deco-
dage d'instructions a I'unite d'execution d'instructions pour les specificateurs de registres qui sont de-
codes sequentiellement.

Methode telle que definie dans I'une quelconque des revendications 3 a 6, comprenant egalement la mo-
dification des valeurs de registres specif ies parle second specificateur a la fois dans I'unite de decodage
d'instructions et dans I'unite d'execution d'instructions avant I'execution de I'instruction comportant les
premier et second specificateurs lorsque les specificateurs de I'instruction sont decodes simultanement;
et

la modification de la valeur de registre specif ie dans I'unite de decodage d'instructions avant I'exe-
cution de I'instruction comportant les premier et second specificateurs, et la modification de la valeur du
registre specifie dans I'unite d'execution d'instructions apres I'execution de I'instruction contenue dans
les premier et second specificateurs lorsque les specificateurs de I'instruction sont decodes sequentiel-
lement.

Unite de traitement de donnees pour un processeur a chevauchement destinee a effectuer le pretraite-
ment, en vue de leur execution, d'instructions comportant un code d'operation, un premier specif icateur
de registre et un second specificateur suivant, caracterisee par des moyens (110) destines a detecter si,
pourchacune des instructions, le pretraitement du second specificateur modifie la valeur du registre spe-
cif ie par le premier specificateur de registre, par des moyens (20) destines a decoder les specificateurs
sequentiellement pour les instructions dans lesquelles la detection indique que le pretraitement du second

49

EP 0 381 469 B1

specificateur modifie la valeur du registre specifie par le premier specificateur de registre, et par des
moyens (20) destines a decoder simultanement le premier specificateur de registre et le second speci-
ficateur pour les instructions dans lesquelles la detection indique que le pretraitement du second speci-
ficateur ne modifie pas la valeur du registre specifie par le premier specificateur de registre.

Unite de traitement de donnees telle que definie dans la revendication 8, comprenant egalement des
moyens destines a transmettre des pointeurs de registres a des moyens d'execution (13) pour les spe-
cificateurs de registres qui sont decodes simultanement, et a transmettre des valeurs de registres aux
moyens d'execution pour les specificateurs de registres qui sont decodes sequentiellement.

Unite telle que definie dans la revendication 8 ou 9, comprenant des moyens (118) destines a interdire le
decodage d'instructions apres une detection indiquant une modification de la valeur du registre specifie
par le premier specificateur de registre, par les moyens de detection.

Processeur a chevauchement comprenant une unite de decodage d'instructions (12), une unite de trai-
tement telle que definie dans I'une quelconque des revendications 8 a 10 et une unite d'execution (13)
pour traiter des instructions comportant un code d'operation, un premier specificateur de registre et un
second specificateur suivant.

Processeur tel que defini dans la revendication 11, comprenant des moyens destines a ramener les va-
leurs de registres de I'unite de decodage d'instructions aux valeurs non modif iees en remplacant leurs
valeurs parcelles provenant des valeurs respectives de I'unite d'execution d'instructions.

Processeur tel quedefinidans la revendication 11 ou 12, comprenant des moyens destines a transmettre
des pointeurs de registres de I'unite de decodage d'instructions a I'unite d'execution pour les specifica-
teurs de registres qui sont decodes simultanement, et des valeurs de registres de I'unite de decodage
d'instructions a I'unite d'execution pour les specificateurs de registres qui sont decodes sequentiellement.

Processeur tel quedefinidans la revendication 11, 12ou 13, comprenant des moyens destines a modif ier
les valeurs de registres specifies par le second specificateur a la fois dans I'unite de decodage d'instruc-
tions et dans I'unite d'execution avant I'execution de I'instruction comportant les premier et second spe-
cificateurs, et des moyens destines a modifier la valeur de registre specifie dans I'unite de decodage
d'instructions avant I'execution de I'instruction comportant les premier et second specificateurs et a mo-
difier la valeur du registre specifie dans I'unite d'execution apres I'execution de I'instruction comportant
les premier et second specificateurs.

50

co
\

Z

N
i g
Z Q

1

EP 0 381 469 B1

POSSIBLE DOUBLE -BYTE
OPERATION CODE (FD)

OPERATION CODE

~H~32 ^

~ f
31

' " - - 3 3
POSSIBLE OPERAND SPECIFIER 1
ADDRESSING MODE/DISP.

POSSIBLE ADDITIONAL
SPECIFIER 1 INFORMATION

POSSIBLE OPERAND SPECIFIER 2
ADDRESSING MODE/DISP.

POSSIBLE ADDITIONAL
SPECIFIER 2 INFORMATION

30

POSSIBLE OPERAND SPECIFIER 6
ADDRESSING MODE

POSSIBLE ADDITIONAL
SPECIFIER 6 INFORMATION

F I G . 3

ADDL 3 R0, #4, LA203(R2)

I l ^ 3 5
23

50

04

03

02

00

00

OPERATION CODE

REGISTER SPECIFIER,
REGISTER 0

SHORT LITERAL
SPECIFIER, VALUE
OF 4

FIRST BYTE OF
COMPLEX SPECIFIER
SPECIFYING
REGISTER 2 AS
BASE REGISTER

\ DISPLACEMENT
| 0F 203HEX

F I G . 4

REGISTER REGISTER
MODE ADDRESS

FIELD FIELD
1 * si A »

0-3 | LITERAL
4 REG.
5 REG.

6 REG.

7 REG.
8 REG.
9 REG.
A REG.
B REG.
C REG.
D REG.
E REG.
F REG.

* y
FIRST BYTE OF

SPECIFIER

SHORT LITERAL SPECIFIER
INDEX REGISTER FOR COMPLEX SPECIFIER
REGISTER SPECIFIER

REGISTER DEFERRED
AUTODECREMENT
AUTOINCREMENT/ IMMEDIATE
AUTOINCREMENT DEFERRED/ABSOLUTE
BYTE DISPLACEMENT
BYTE DISPLACEMENT DEFERRED '

WORD DISPLACEMENT
WORD DISPLACEMENT DEFERRED
LONGWORD DISPLACEMENT
LONGWORD DISPLACEMENT DEFERRED

COMPLEX
SPECIFIERS

F I G . 5

53

UJ
rruj

b n 5 uj o rou i :

O

EP 0 381 469 B1

a w x
s ™

w d , s p l a c e m e n t i s p n c o i f i e r

BITS BITS

GP BUS F O R M A T

BITS BITS
3

BITS

F I G . 7

10 BITS

S H O R T
L I T E R A L

S P E C I F I E R
NO.

BITS B?TS

EX BUS F O R M A T

F I G . 8

n r R E G -
P f NO.

SOURCE 1 *\

TR BUS F O R M A T

18 BITS

REG-
j? j? NO.

3 6

F I G . 9

V R REG.
g j? NO.

DESTINATION 3 7

55

EP 0 381 469 B1

' 4 3

SET DOUBLE-BYTE OPCODE FLAG

OUTPUT ."SHIFT OP "AND,
OUTPUT "NO. TO SHIFT = I TO
SHIFT OUT FIRST OPCODE BYTE

DECODE UP TO THREE
SPECFIERS SIMULTANEOUSLY (END OF A

V CYCLE J

L
4 6

OUTPUT NO. TO SHIFT = |
NO. OF SPECIFIER BYTES DECODED +l

OUTPUT "SHIFT OP"
CLEAR DOUBLE -BYTE OPCODE FLAG
SET "SPECIFIERS COMPLETED" TO Qf

OUTPUT " NO. TO SHIFT" = NO. OF
SPECIFIER BYTES DECODED THIS
C Y C L E

INCREASE "SPECIFIERS COMPLETED"
BY NO. OF S P E C I F I E R S DECODED
THIS C Y C L E

4 7
f END OF \
I CYCLE J

(END OF A
I CYCLE J F I G . I O

56

OF SPECIFIERS
TO REQUEST THIS

C Y C L E

uc i crXMlNt IINI I I AL
NO. OF SPECIFIERS
TO DECODE THIS
CYCLE a S C

liLLAK
X 8 F
FLAG

r END A
l DECODE J

CO i3

)NE SPECIFIER RE"
3UESTED, PUT REG
IN GP BUS

3<4

IMMEDIATE > *
< D E C O D E D ^

Y ^ N O

>5 1

4 53

s c - ^ o

NO *" N — 0

(END >i
V DECODE J

DECODE.

>6

DETERMINE
rLAGS a
SPECIFIER INFO.
FOR GP.SLa TX
BUSES

at I LUN^WORD COUNT ~
IN ACCORDANCE WITH
»ATATYPE,SET X 8 F
"LAG TO INHIBIT'SHIFTOP"

3LACE
SPECIFIERS
ONTO G P . S L a
rx BUSES

(END A
VPECODEy

r I G . I I

k Jo . —
2 ? £

_l
O
Q

I L L

— LU— — — — — —
CL

I I
£ r

- uu— — — — — - ■_l I

CL ,1 7̂ ■

— ! T A 00 1

EP 0 381 469 B1

41

LVALID(I) — T
GR.STALL — t

F I G . 1 3

o"-

o " -

— 7) r i b b _ n '

S] R I B B . S C '

f l 4 2
r— * -v " a "

LVALID (2) - \ \ 0 -
GP_STALL — \ _ _ _ J

"O"-
F I G . I 4

I
V 7} R I B W . N

,Q„
L (3] R I B W . S C '

I43 »o"-
.} R I L N '

G P . S T A L L - | > " ^ l R l ^ '

F f 1 R I L S C '
F I G . 1 5

l_VALID(2) —
G P . S T A L L T -

S L (l) i f
S L . S T A L L - U

LVALID(I)

l_VALID(3)-
GP_STALL -

LVALID (I)

=73) ~ T " j = r j R 2 B B J M '

- o E ^ i
R 2 B B _ S C '

I 4 6
F I G . 1 6

I 4 7

- 0

R2BW_N'

' Q ' ^ j R 2 B W _ S C '

F I G . 1 7

• I 4 9

59

EP 0 381 469 B1

GP_STALL-

LVALID(I) - I5I

SL (I) — f
S L J S T A L L — I

I 5 3

"0" -

I 5 0

R2I .SC '

5 2

F I G . I 8

LVALID (2) _
SL(D-

S L . S T A L L -

LVALID(I) -

l_VALID(3) •
G P . S T A L L

Z ^ j R3BB_N*

d £ j R3BB.SC1

p l 5 6

57 F I G . 1 9

60

3 I r
^ :

(/) o
Q E

o u
UJ c

T 7 T

7

I I

9

-OJ

r s — i

. 1

V)
o

— LxJ I CXJ 0

-I r 1

I 1 1 1 L< — l£> yuj o

EP 0 381 469 B1

BYTE I BYTE 2 BYTE 3 CASE p o l m O N

DSrLr REG
N0T 0 0 BYTE 3

REG n t o INinFY INDEX IINUtX

REG N O t / r E G ^ 2 ? N ' T 0 I BYTE 2
INDEX \ INDEXy C A R E

REG REG
,NDEX ' 0 BYTE 4

N 0 < t l x)
™

S S S " BYTE I

F I G . 2 2

R E G (D -
S L (D -

REG(2j
S L (2) -

C A S E
DECODING
L O G I C

REG (I)
SL(I) •

I 7 2
V C A S E (I)

SL(2) —
INDEX0-

CASE(O)

F I G . 2 3

62

EP 0 381 469 B1

NO. OF SPECIFIERS INITIALLY BEING DECODED (N1)
\ . C A S E CASE 0 0 CASE 01 r A c r m , . C , M INDEX® INDEX(I) CASE 1 0 CASE 1 1
L E V E L \ =0 =| =0 =1

1 01 | 01 01 01 01

2 1 0 J N < ^ 10 j 01 1 0

2 A
< ^ j ^ >

' '
'

' °
^ ^ ^ ^ ^ ^ ^ ^

3 i a X "
^ C X ^ ^

F I G . 2 4

EP 0 381 469 B1

N D E X (2)

RSL2 -VALID ^ 0
GPS 3 -VALID —

~
-

RSLI - V A L I D — u ,
GPS3I ..VALID— r p '
RSL3IA-VALID — 1 • <

1 9 0

=^P | E N C O D E R
f 2
I861 0^0 = u , u ■ i

u 2 , 2
3 .GPS3-SC

0,0 '
1,1

2 .GPS3LSC
N3IA.RSL3IA.SC

INDEX(I) j
RSLI -VALID — . p S r GPS2.VALID — ^ 0
REG2A-VALID — ̂ -
G P S 2 I - V A L I D — u ,
R S L 2 A L V A L I D — p M . REG2BLVALID — 7

191

N2A, RSL2ASC =
0,0 =

I.GPS2L.SC =
N2IA,RSL2IA_SC =
N2IB,RSL2IB_SC •

RSLI - V A L I D
R S L 2 - V A L I D
GPS41_VALID P| E N C O D E R

3 PS I -VALID "
RSLIA-VALID -
REG IB-VALID -

189 J 0 , 0
I . G P S I - S C

YIA , RSLIA-SC :
SI IB , R E G I B . S C

> I 0 2

^ " 2

= > N ' , S C '

-181

G P S
F R E E

\ S P E C I F I E R S

iENERAL C A S E

4

EP 0 381 469 B1

p o -

Pl

P 2

c I 9 6

y

I 9 2 C 5

I 8 6

I 9 4

F I G . 2 6

■S|

s 0

INDEX(2)
RSLI.VALID

RSL2 VALID L I

GPS3_VAL I D Z ±

RSL LVALID

G P S 3 I A

RSL3IA VALID

N 3 I A , R S L 3 I A _ S C

MUX
OUT

F I G . 2 7

SPECIFIER N O s - NOT I MM. OR A B S .
N I A NIB N2A N2IA N2IB N 3 I A
(l) (0) (I) (0) (I) (0) (I) (0) (I) (0) (I) (0)

I 0 II II I 0 II I I

F I G . 2 8

65

O i-H f-t O <-t i-l CJ O O O f-l o o
CJ CO w
CO >-n 1^

I t - l i - H i - I O O i - l M f - H O O O i - I O
pa ' co ^
r-l ^ CM
rJ CM O O i-i r-1 i-t rJ CM I— 1 r-l i— 1 r-l O
CO w CO

C O O O O O O CO O O O O r-l
— - ' — '

O O O i— 1 O O IkO i— 1 i-t O r-l r-H
w CJ w

CO i-l t-t i-l r-l O i— 1 | i - l i - t i — l O O t - t f*s~\ iw < ~ n ;
<; cm /-n
r-l CM O O O r-l r-l (J CM O O r-l r-l r-l
CO Pi '->• v_> 2 co O O O O O C O O O O O O

— — — Ll_
O r-l r-l O i-l r-l O O O i - l O O
w -K ^"
^ CJ ^

CJ r-l O O r-l r-l O CO r-l r-l <— 1 r— 1 O r-l CJ
CO — ' ' CO

|^ CM ^ 1
r-l CM O O O O r-l CO CM O O O i-l r-l r-l
r/j w Ph <J
Ph -̂n O CM
CJ CO O O O O O C O O O O O O r J

w >~ ' CO
= = = = = = = = = = = = oj

r-l Q X O 1-1 O <-* CM Q X O r-l O r-l CO
w w <J

vO vO
W Q X O O r-l r-l Cd O X O O r-H r-l Cd
Q 9 5
2 Q O 1-1 1-1 rH r-l 23 Q O i— 1 I— 1 r— 1 i— 1 CO

• • • •
CO CJ CO CJ
CO Cd CO Cd
< q <: q
os o Q Q • Pi O Q Q • CJ
° s s a g & ° s s a | & wi

< 2 pi pi a . <j 2 Pi 2 Q m
w s -»» 2 td Cd W§ pi Cd Cd cm
Q g Q W Ch Ph • Q g Q W tn f*« - CO
O M Cd tb W W Oh O M Cd Cb Cd Cd Ph Ph
S3 2 W Q Q CO S 2 Cd Q Q CO O

- 2 Q --. M • Pi Q M
cox W Q cox W --. • Q co
Ph Cd (xi Ph Ph 0-i Cd h • 0< <
U Q Cd CJ CO CO Q UQ W CJ CO CO Q

Z Q Z r-l r-H 2 Z Q Z H M 2 fd r-l r-l Q Q O M H Q Q O £
H T o W Q U H • O Cd Q O CO
o o h h S z o o h h 2 z *
Z W D 5 H Q O z w o > j g q w 2 •< M » rJ 2 < CO 3 rJ

66

CO /-n Pi ^ 2 CO O O O O O C O O O O O O
— — — Ll_

O r-l i-l O r-l r-l O O O i - l O O
w -K
^ CJ

CJ r-l O O r-l r-l O CO r-l i— 1 i— 1 i— 1 O I— 1 CJ
CO — ' ' CO

|^ CM ^ 1
r-l CM O O O O r-l CO CM O O O r-l r-l r-l
r/j w P-i <J
CLi -̂n O CM
O CO O O O O O C O O O O O O t - J

w >~ ' CO
= = = = = = = = = = os

r-l Q X O 1-1 O r* CM Q X O r-l O r-l CO
w w <J

vO vO
WQ X O O r-l r-l (d Q X O O r-H r-l Cd
Q 9 5
SQ O 1-1 1-1 rH r-l 23 O O i— 1 I— 1 r— 1 i— 1 CO

• • • •
CO CJ CO CJ
CO Cc] CO [d
< q <: q
O i O Q Q - P i O Q O • CJ
° s § s s r3 ° s g a | [3 c / i i

< < 2 p i p i i a . <; 2 Pi pi o r-i
W S -»» 2 W W ^ fd S s. (d dl W n n
QZ Q fd U« fb • OS Q Cd Cn Ct. - co
O M Cd Cb Ld Cd Pm O M Cd Cb Cd Cd Ph Ph
S3 2 Cd Q Q CO S 2 Cd Q Q CO O

- 2 O M - P i Q - ^ ^ M
COX W Q CO X Cd --- • Q CO
Ph Cd Cb Ph Ph Ph Cd Cn • Ph Ph <
CJ Q Cd CJ CO CO Q UQ Cd CJ CO CO Q

Z Q Z M M 2 Z Q Z M M P i f d
r-l H Q Q O M M Q Q O S
H T o W Q U H . O C d Q O C O
O O H H « Z O C 3 H H 2 Z - K
« - - 2 - < e a » r J 2 <: cq 3 rJ

66

: i i r - : . . 1

r o

CD

Ll_
— n — 1 — 1 — 1 — 1 — 1 C\J

o o o r-t , o o r o
> ^
,H O O O r-« O ^

o ~ I
0 r-H I— 1 O r-H |-H C O O l O O r - H O O

> w |>" 1
> M ^ 1
| ^ _ | < - t r - I O O r - t <T r-l 1 O O O r-l O

) w CO w
1 « O,
, fs| O O r-l r-l r-H CJ fN r-H r-H r-H r-H O
) ~ ^
r o O O O O O f O O O O O i - H

s in /-n in
| Q X O r-H O r-H <T Q X O r-4 O r-H

|Q X O O r-H r-H WQ X O O r-l r-l
i Q

- O O O O r - l r - I O
M ~ 1 , Z r-l r-l r-l r-l O O r-l Ll_

Li .

CO w I II 1 1 1 1 1 1
-i— I O O r - I O O r - 1 ^ * - O r-l rH r-l O O rH r-i ^ <; w

Oi s_z fO O O O O O O

CJO rH O O rH rH O OO O rH rH O O rH WW CO —
- rH rH O rH O O rH - r H O O r H r H r H r H < <J w •— • CM
c/w to w dS <"*> pi ^ C O O O O O O O C O O O O O O O

co ~ to w
- r H r H r H O O O O - 1 - l r H O r H r H r H r H H— CM ^ CO ^ CO --v
CD w u ^

C O O O O O O O C O O O O O O O ' — '

w ~ N «
feO O rH O O O X WO O rH O O O X Sh w Ph w H >. ^ rH O O O rH rH X H rH O O O rH rH X
H ^ <; ^ <CM rH O O O rH X H CM rH O O O rH X Q ^ <; w Q

rH •""> CM ^ ~rH _ csj
w w 9 O O O O O r H Q ^ r O O O O O r H

^ § g 5 ?S : s § ^
WM C Q & r J O ' O CQ 5 3 rJ o1 o Q <J i i i i i u <; i i i , , o w w w w w o w w w w w S Pi H H H H H W 0Pi H h H H H W
- ^ ^ M M M 3 - M Q rH M M S
Pk|j 1̂ |̂ 1̂ |̂ 1̂

Q M Q Q Q J

^ rH rH rH M rH <j w M M M rH W <

68

- rH rH O rH O O rH - r H O O r H r H r H r H < <J w •— • CM
c/w to ^ Pi — . pi ^ C O O O O O O O C O O O O O O O

co ^ to w
- r H r H r H O O O O - 1 - l r H O r H r H r H r H rH — CM ^ CO ^ CO --v
CD w u ^

C O O O O O O O C O O O O O O O ' — '

10
U 3

- O O O O r - 4 i - I O . (>Q

CS| r-l r-l r-l r-l O O r-l

U O r-l O O O O O 1 1
to ^

pQ v — ' r-H ^ .-n CM CM rH r-l O r-l r-l O - O r H r H r H O O r H
CO >-> M ^ Pi CO O O r-H O O i-H CO rH r-H rH i-H i-H i-H r-l

. — . O O rH r-H O O r-H O r-H O O f-H rH O
C_J - CJ N-/
CO ^ CO ^ |r- 1 O O rH f— 1 t— 1 r-H | r H O r H O i - H r H O
- - *«r
<J n H<J r-s M CM rH rH rH rH rH rH H CM rH rH O i-H rH O CM CO >-r *
rJ ' — s t— 3 — \ COCO O O O O O O COCO O O rH O O rH
Ph ^ Ph ^

y— V — \
CJ w CJ CO /-> CO ^ |r- 1 rH O I— 1 I— 1 i— 1 1— 1 |l- 1 O O I— 1 I— 1 ■— 1 •— 1 - — - — N-r M «-N M «-N
[flv CO Ph <-n Ph ^ O CO O O O O O O CJ CO O O O O O O ■ — *

rH CM

Ph O O rH O O O X PH O O rH o o o X
>H — ' £H Eh H

1 - H O O O r H r H X rH O O O rH rH X

< CM rH O O O rH X <J CM rH O O O rH X Q ^ Q

CM ^ CO ^ >-»CM ^ CO
w w Q s r o o o o o r H o ^ r o o o o o r H QQ O Q S S

• H 3 21 5j H • h 3 z <: h CO >h O O E3 CJ CO >h O O O CJ u n pa 3 rJ o* o w « ph 3 rJ o* o O. 1 1 1 I I O. <£ I I I I I
g w w w w w o w u w w w £ Ph H H N H H W S Ph H H H H H W

o < j « d « ^ < s < : H o < : < : h
M M M H M S - M M M H H D

C O ^ . Q Q Q Q Q J C O ^ Q O P O Q ^

69

EP 0 381 469 B1

F I G
.

3 7

GPS' MODE MODE (3) DATA TYPE 3 GPS3 1 SC
(IMM. OR ABS.) DA (3) (2) (1) (0) (3) (2) T l) (0)

IMMEDIATE -BYTE 0 1 0 0 0 1 0 0

IMMEDIATE-WORD 0 0 0 1 0 1 0 1

IMMEDIATE -LONG 0 0 0 0 0 1 1 0

IMMEDIATE -QUAD 0 0 1 0 0 1 1 0

IMMEDIATE-OCTA 0 1 1 0 0 1 1 0

ABSOLUTE 1 X X X 0 1 1 0

GPS' MODE MODE (4) DATA TYPE (3) GPS4I ' SC
(IMM. OR ABS.) D4 (4) (2) (1) (0) < 3) < 2) < T) (0)

IMMEDIATE -BYTE 0 1 0 0 0 1 0 1

IMMEDIATE -WORD 0 0 0 1 0 1 1 0

IMMEDIATE -LONG 0 0 0 0 0 1 1 1

IMMEDIATE-QUAD 0 0 1 0 0 1 1 1

IMMEDIATE-OCTA 0 1 1 0 0 1 1 1

ABSOLUTE 1 X X X 0 1 1 1

F I G . 3 8

ro

EP 0 381 469 B1

REG (I)

IRC.CYCLE

GP_ STALL"

IJ/ALID (i r

SL (I)
SI STALL- 2 0 8

.REG_VALID (I)

_ R S L _ V A L I D (I)

-SL_VALID (I)

F I G . 3 9

REG (2).

I.VALID (2)-

SL (2)
SL (I)

SL_ STALL-

REG (I)-

I_VALID(D-

SLID —

SL.STALL —

SLI_VALID-

SL2_VALID"

�2I4

r ^ - ^ 2 1 7 ^

REG_VALID (2)

RSL_VALID(2)

* S L _ V A L I D (2)

F I G . 4 0

REG.VALID (i)

RSL_VALID(I)

SL_VALID(i)

2)6 (FOR 3 ^ . i ^ 8)

F I G . 4 I

15

71

EP 0 381 469 B1

GP_ STALL

GPSi.SC -

I _ V A L I D I D -

I _ V A L I D (2) -

I _ VALID (3) -

REG_VALID(3)

I J /ALID (4) —

I_VALID(8)

GPS LVALID

REG_VALID(2)-
I_DATA(2)
SL_VALID(2) —
RSL_VALID(2)-

3 *

REG_VALlD (3) -
I . D A T A 1 3)
S L _ V A L I D (3) _
RSL_VALID(3)-

REG_VALID(8)-
REGN (8)
NOT NEEDED
IN 8TH. P O S I T I O N

3 Q,

8

-vREGi AJ/ALID
- R S L D i A
— SLiA_VALID
■*RSLIA_VALID

2 2 7

I RSL DATA i A

, »REGiB.VALlD I __ _ .. n ^ - R E G N i B JREGDATAi B
J

- 2 2 8

F I G . 4 2

72

EP 0 381 469 B1

G P S
SPECIFIER
INFORMATION

(NOT IMM. OR ABS.

(FIGS. 2 8 - 3 2
AND 3 9 - 4 2)

-23I

GPS'
SPECIFIER
INFORMATION

(IMM. OR ABS.)
(F I G S . 3 3 - 4 2)

s 2 3 2

IMM{4)_
ABS (4)

IMM(I)
ABS(I)

2 3 9

SHIFT COUNT
LOGIC

GENERAL CASE

F I G . 4 3

73

in
CO

CO :

V) —
r=i t-

A v

— I

^ . 1

I I

f 5 3

5
*"7

LU CO

EP 0 381 469 B1

F I G
.

4 5

GPS
SPECIFIER

INFORMATION

GPS'
SPECIFIER
INFO.

24 1
N, SC FOR

-NO ABS. OR I MM.

SELICI) -
SEL I CO) ■

G I (S E L I = 0 0 2) :
G I (SEL I = 0 l 2) =
GI (SELI = I 0 2) =
G I CSEL l = f I2> =
G I K S E L I = 0 0 2) =
G I K S E L I = O l 2) =
GIKSEL I= I02) =
G IICSEL l=l 1 2> =

SEL2CI) -
SEL2CO) -

G 2 (S E L 2 = 0 0 2) =
G 2 (S E L 2 = 0 l 2) =
G 2 (S E L 2 = I 0 2) =
G2(SEL2=I l2> =
G2I(SEL2=002) =

G21(SEL2=0l2) =

G2KSEL2=I 02) =

G2I(SEL2=I l2)
=

SEL3C I) -
SEL3C0) -

G 3 (S E L 3 = 0 0 2) =
G3CSEL3=0l2) =
G3(SEL3=I 02) =
G3CSEL3=I l2) =

G 3 K S E L 3 = 0 0 2) =

G3KSEL3= 0 I 2) !
G3ICSEL3=I02) Z
G3I(SEL3=I l 2)

j j

N, SC FOR
FIRST SPECIFIER
" ABS. OR IMM.

N, SC FOR
SECOND
SPECIFIER

ABS. OR I MM.

N, SC FOR
THIRD

- SPECIFIER
ABS. OR I MM.

ABS. AND I MM
SPECIFIER
SELECTOR

LOGIC
(FIG. 4 7)

2 4 9
2 4 3 '

T

f5

EP 0 381 469 B1

F I G . 4 6 INDEX CI) — |

I.VALID (2) -
RSL.VALIDC3)
REG_VALID (4)

I r 2 5 7
I GP_ STALL - r q — S .

| LVALIDC5) - 4 _ _ y L f F
RSL.VALIDC6) * F
REG-VALIDC7) ^ p - ^ F

I -VALID (3) -

RSL-VALIDC4)
REG_VALID(5)

T O

U/ALID (6) .
RSL.VALIDC7).
REG_VALIDC8)-

2 5 8

1
251

PO
P, ENCODER

P 2

i l l

S E L I C I) - ^
SEL ICO) -1-

I

2 , 6 = a
3 , 7 - 3

1
LONG

1VGPSC3)
2 6 2

PO
P| ENCODER
P 2

3 .
0,0 =30
I 3=> I
2,4=5-2
3,5 * 3

L WORD

2 6 3
2 5 2

P I ENCODER

P_2
* 2 5 3 ~_

0,0 =>0T .BYTE
I 2 => I -L
2*,3 =>2 ;

1 ^

0,0 3 0

1,5 3 1

EXTENDED1
IMMEDIATE
1

k 2 6 8

Ij/ALID (4) - i
RSL.VALID (5)-
REG.VALID C6)-

NGPS (3)

RSL.VALD C 4) -
REG _VALID (5) -

P | ENCODER

f 2
■ - 2 5 4

0. 0 =$0
1 , 6 =» I
2,7 =>2

LONG

I

P| ENCODER
P 2

1 2 5 5

3 ' , 8 * l 3 > 2 6 5

?.9 xWOR WORD J0,0 =*cn WOR
1,4 I

J2,5 * 2
3,6 3 H > 2 6 6

www r
- q p r ^ u

— • P i ENCODER
— Ip2 H

2 5 6 .

0 0 , 0 ^ 0 " I 3=5 1
2,4 ^ 2

BYTE I

3,5 = > ^ > 2 6 7 I

» EXTENDED
J.O ^ I M M E D I A T E 0,0 =*0

1,8 =d 2 6 9

GPS' SPECIFIER INFORMATION

| 2 S , s

n ; s c f o r
FIRST

SPECIFIER
IMM. OR ABS.

2 4 5

2 4 9

76

EP 0 381 469 B1

ABS(D

IMM(I)

INDEX(I)"
ABS(2) '

IMM(2)-

REG(I)
SL(I]

INDEX(2)
ABS(3) -

IMM(3>

R E G (2)
SL(2)-

INDEX (3)
A B S (4) -

IMM (4)

2 4 3
ABS. AND IMM.
SPECIFIER S E L E C T O R
LOGIC

S E L _ S P E C I

S E L J S P E C 2

* S E L _ S P E C 3

F I G . 4 7

77

EP 0 381 469 B1

RSLI_VALID * r
I, I = o L

GPS ,
SPECIFIER INDEXl I
INFORMATION

G P S 2 I VALID r
l , G P S 2 I _ S C

GPSI VALID
j -

i . g p s i . s c

gps s p e c i f i e r '

^ 2 4 1

2 9 4

, - 2 9 3

- A S E

3 P S '
SPECIFIER
INFO.

I_VALID(6)

IELI (I)
JELI (0)

SEL I
SELI

i j / a l i d (3) * $ r 3 D =

I_VALID(4) t V S ^

I_VALID (6) -pg-
I_VALID(5) 7 ^ "
I_VALID(2) f j
I_VALID(3) Tgf
I_VALID(5) "L~

,3
1,6

GESTALlr

INDEXlIk

t

7 = ^

3

' w s c '

291

SEL_SPECI

-292

2 4 9

R I T R E E F I G . 4 8

78

:P 0 381 469 B1

r I G . 4 9

GPS
SPECIFER

INFORMATION

24 1

GPS'
SPECFIER
INFO.

SEL I C I)
SEL I (0)

R 2 _ G K S E L I = 0 0 2 >
R 2 J 3 I C S E L I = 0 l 2)
R2_GICSELI=I02>
R2JGI(SELI=I l2>
R2_GIKSELI=002>
R 2 J 3 I K S E L I = 0 l 2 >

R 2 J 3 I I (S E L I = I 0 2)
R2_GIKSELI=I l 2)

SEL2C I)
SEL2C0)

R 2 _ G 2 (S E L 2 = 0 0 2)
R 2 J 3 2 (S E L 2 = 0 I 2)
R 2 J 3 2 (S E L 2 = I 0 2)
R2J32(SEL2=I l 2)
R2_G2KSEL2=002)
R2_G2KSEL2»Ol2)
R2 G2KSEL2=I 0 2)
R2_G2KSEL2=I l 2)

SEE FIG. 2 5

rnUM Mvi. **(

2 4 9

R2 TREE

79

EP 0 381 469 B1

GPS2LVALID

GPS REG2IA_VALID

SPECFIER
INFORMATION

I , GPS2LSC

2, RSL2IA.SC

GPS I _VALID
REG I A_VALID

I tGPS L S C

2, RSLIAJ3C

(R2R TREE USED ONLY WHEN THE
BYTE I IS NEITHER A REGISTER NOR A
SHORT LITERAL, AND THE SECOND
SPECIFIER SHOULD NOT BE A SHORT

. LITERAO

24 1 2 4 9

GPS'SPECFER INFORMATION

GFLSTALL
LVALDC5)

REG.VALIDC6)

4 T Z H

LVALD(3) -H — J
R E G J / A L I D < 4) - - Z Z r - "

13MUDC2)- - I /
REGJ/ALID(3)

LVALIDC6)
REG_VALID(7)

LYALID (4)
REG_VALID(5)

REGJ/ALIDC4).

: ?)

s i S I

s i

a

2-INPUT
ENCODERS
& MUXES

(COMPARE
FIG. 4 7)

R2R TREE

F I G . 5 0

80

EP 0 381 469 B1

GPS SPECIFIER I
INFORMATION

RSLI .VALID
RSL2.VALID
GPS3_VALD

3t GPS3.SC

RSLI_VALID
RSL2.VALD
GPS4LVALD

3, GPS41SC

I
3 2 5

pO ENCODER

^ (3-INPUT)

(R3 TREE USED ONLY
WHEN BYTES I AND 2
ARE REG, OR SL.)

k 3 2 3

^ 3 2 6 ^

" * P O
- * P |
- * P 2

ENCODER
(3-INPUT)

O.O:

1. 1'
2,2 =

o ^ s a

i =
2

L 3 2 2

CASE(I)

h 3 2 4

24 1

GPS'SPECFER ^FORMATION

SEL3(I)
S E L 3 (0)

G 3 (S E L 3 = 0 0 2)
G 3 (S E L 3 ' 0 l 2)
G3(SEL3=I 0 2)
G3(SEL3=I 1 2)

GI3(SEL3«002)
GI3 (SEL3=0I2)
G13(SEL3=I 02>

GI3(SEL3=I 1 2)

R3

n;sc*

32 1

SEL.SPEC 3

R3
TREE

F I G . 5 1

2 4 7

2 4 9

81

EP 0 381 469 B1

INDEXC2) J -
RSU V A L D _ r <

R S L 2 3 / A L I D ^ 0

R S L I J / A L I D - ^ , GPS3U/ALID ~ p 1
R S L 3 I A J / A L D - J V ^ '

1.34

F I G . 5 2

INDEX(I)
RSL LVALID—
G P S 2 _ V A L I D ^

R E G 2 A J / A L I D - ^
GPS2LVALID

RSL2IA_VALID -^=)
REG 2JB_yALID-r^

REG I B_VALID-*J

3 3 9 '

RSL IJ/ALID
RSL2_VALD

GPS LVALID - J P o
R S L I A J / A L D - » P |
REGIB_VALID*P2

0 , 0 = ^ 0
l , G P S L S C = * I

N I A, RSL I A_SC=S 2
NIB, REG I B _ S C = ^ 3

R3XR TREE
(DECODES THREE
SPECFERS ONLY
WHEN THE THIRD

SPECFER IS A
REGISTER S P E C F E R)

3 3 6

82

EP 0 381 469 B1

F I G . 5 3

r-REG_VAL.DC.)
SL_VALID(D

0 0 SL
MODE

SL_DATA(D

REG. 4- REGNCD

-J"|^IJ)ATACD

RSL DATACD

3 5 3

DATATYPE I

RSLDATAC7)=3 0 1 S 0

RSL DATAC5) I

RSL DATAC4)=) 2

IMMC2)

INDEXCI)

ABSC2)

DATATYPE W - U

RSL DATAC6) =J 0^' S o

RSL DATAC4)=$ I

RSL DATA(3)^ 2

3 _

CASE

RSL DATA2IA 4 0

RSLDATAC7) 4 |

= $ 2

0=3 3 0=n

s o RSL
DATAC2)=fl

f (,) _ L
[C 0) 4 -

[s i

IMMC I) -

ABSC I) ■

RSL DATA I A 3 0
RSL DATAC6) I

RSL DATAC2)
— 1 = * h o

0 0

01

F I G . 5 4

83

EP 0 381 469 B1

F I G . 5 5

REG_VALID(D

,^r,r- I I REGNO) MODE REG.
d i t r _ - : : - h -) — iDATACD

REG DATA(i) 3 6 5

DATATYPE2 JC2) .

REG DATAC8) =>
REG DATAC6)*
REG DATAC5)*

DATATYPE 2

REG DATAC7) =*0

REG DATAC5) |
REG DATAC4) - ?

DATATYPE I

REG DATAC8) => o ' s 0
REG DATA(6)^ |
REG DATAC5) _> 2

DATATYPE I

REG DATAC7) * 0
REGDATA(5)a* I
REG DATAC4) ^ 2

3

IMMC3)

INDEXC2)

ABSC3) —
3 6 6

REG DATA3IA30
FTI REG DATA(8)=q

REG DATAC3) 4

INDEXCI)
IMMC2)

ABSC2)

REGDATA2A=d0
REG DATA(7)=a

4

REG DATA2B ^

REGDATA(8)_=}

S 2

IMM(I) j
ABS(I) p - J i

REG DATAIB=)0 S °

REG DATAC7)=j | I
2

3

3

CASE

CD(O)

* 0 0

10

1 1

S P 3
REG~DATA

3 6 1

F I G . 5 6

3 6 4

84

EP 0 381 469 B1

3RANCH_B|—
3RANCH_WI-

WRITEI
IMR_WRITEI

T R I BB_
REQUEST | g j f _ :

REG_VALID(I)-

R EGN(!)==- -_

I ft
SOURCE.

h 3 8 7
F I G . 5 7

ASRCI
W R I T E 2 _
V .READL

READ 2
READL

WRITE2 _
IMP_WRITE2-
BRANCH_B2"

f f
REQUEST^ I

S P 2 _ f "
REG DATA< =

B0URCE2

F I G . 5 8

85

EP 0 381 469 B1

MODIFY I - T _ r ^
WRITE I — \ \

IMR.WRITE I j r H _ ^ y
VjMODIFY I — '

V.M0DIFY2 — \
WRITE2 — j r 4 0

M0DFY2 — (— \
IMFLWRITE2 —) >

WRITE I —
MODIFY I —)

V.MODIFY I — 1 (4 0 6
BRANCH_B3 - H ^ N .

BRANCH.W3 - J y

MODIFY I r — K
V.M0DIFY I —) y \

WRITE I A
REGVALID(I)— J

M0DIFY2 I <
V.M0DIFY2 - j >

WRITE2 -™
r

SP2_REG_VALD —J

SP3_REG_VALJD

4 0 4

REGNO)

SP2jREGN

SP3.REGN

TR
DESTINATION

4 1 6

F I G . 5 9

4 1 5

86

EP 0 381 469 B1

REQUEST!

SP2_SL_VALID-

REQUEST<

SL_DATA\ I)

SP2_SL_DATA

4 3 0

^ 4 2 5

\ 7 ^ 4 2 7

- 4 2 6

S P E C S _ C O M P L E T E D =

S Y S . C L K -

VDF

SHORT
LITERAL

SPECIFIER
NO.

F I G . 6 0

I7

EP 0 381 469 B1

REQUEST

N f (l) -
[c c o -

R I BB •
RIBW

J R 2 B B -
" R2BW

, R 2 B B - r ~ X i
R 2 B W n L _ ^ T
R 3 B B - T ~ ^ T 7
R 3 B W - _ _ - / T

R I I
R2I

433 B3

X8F-

IMP. WRITE I -
IMP. WRITE2 _

••455
(CASE I I ORODT^W)'

(CASE 01 OR 0 0 1 ^ * 2) ,
(CASE I0;N=3),

(CASE 00;N=3)
REGC3)

CASE f C 15 T —
1(0) 1

INDEX(I) ; -
INDEX(2)

431 B l T ^ - i (4 3 7

IRC.REG
, 4 3 7 BRANCH

DISPLACEMENT

IRC

IRC.REG .
B l .
B2

B3"
4 6 1

RXB

]RC m o ~ l
DETECTEDnJ

SYS. CLK-b-

■ IMPLIED 4 3 8
SPECFIER

T

- ^ O P U
CONTROL
SIGNALS

f ,
4 7 0

4 4 7 -

4 4 8

^ 4 5 9 ^ 4 5 9
O

4 6 0

^ ^ 4 4 9

4 5 3

JPOSSBLET
BASE

LDATA(I)=H

4 5 0

U)ATA(2)=#
_DATA(3)=)

I_DATA(4)->

U)ATA(5)=>

U)ATA(6)=?

U)ATA(7)=>

IJ)ATA(8)*< e

4 5 7 > / V f

Sm

4 6 3

► INDEX
$ MODE
&BASE
>DISP(0)
>DISP(I)

>DISP(2)

>DISP(3)

1 \

9" — i
4 6 4

4 6 2

SPECS.COMPLETED;

4 6 6

Al

K
h - 4 6 7

4 6 5

F I G . 6 1

468 H

SYS. CLK - f>

VDF

IRF

SPEG
NO.

GP

B8

EP 0 381 469 B1

IMMC3) •
IMMC2) •

IMMC4) •
IMMCI) m

48 1
CASECI)

CASECO) —

3 S | S O

FIRST GP
/ IMM

DATATYPE I C I) * 0

DATATYPE2CD- I
DATATYPE3C l) -p 2

M 3 S " S 0

CASECO)-
INDEXC2)-
CASECI)
INDEXCI)

4 8 �

DATATYPE iv_y - i v s o
DATATYPE2C2) -* I

DATATYPE3C2)— 2

493«T 3 ^ -

4 8 5

■4 QUAD/
OCT.

J3
k X 8 F

LOADJBUF -

SYS.CLK-

VALDC4)—|
GP_STALL-i ' —

DECODER STALL "

IO

F I G . 6 2

FRST GP X8F

NCI) —
NCO)-±

NC I) -
CASECO) -

1 4 8 6

O i

NCI) — f
C A S E C I) - d

INDEX(2)-H 4 8 8

4 8 7

N C O) - f
CASECI)— j
CASECO) - T 4 8 9

NCO)_T
CASECO)— I
INDEXCI)— T

4 9 1

4 9 0

C
X T

>
DEC.

Do D| PL

3INARY COUNTER
Qq Q|

4 9 2

- X T t N D t D
IMMEDIATE DETECTOR

ENABLE
3HIFT.0P

19

EP 0 381 469 B1

F I G
.

6 3

M7C0

M6CD
M5CD

M4CD

SOURCE
REG. NO.

AUTOCD

F I G . 6 4

SOURCE s
D A T A T Y P E (2) _ r
SOURCE f f d _
DATATYPEC I) _j.. r-

VDF f -
RGF P -

SOURCE
REG. NO.

' IRC'

QUADWORD

. / 5 3 2

REG. MASK |5 EN

BASE REG. NO. J J
AUTO 1 \

BASE VALID -| J ~ ^ 5 • 2

BASE VALID .

5 3 4

BASE
REG. NO.

AUTO
RGF

I R C "

F I G . 6 5

/ IRC (2) (I) .
' MASK — ̂ r - '

54 | DATATYPE

30

EP 0 381 469 B1

F I G . 6 6

S0URECGE. NO-! !3READ REG- m S K \
VDF, R G F Z 3

DATATYPE l ^ 1 -
S O U R C E # 2 _ _ , "

REG. NO. —
VDF, RGF ^

D A T A T Y P E 2 ^ L

GENERATOR
5 5 1

READ REG.
MASK

GENERATOR

AUT0C3) :

AUT0C2) •

AUT0C4) :
AUTOC I) .

CASE j '

REGCD— <
S L C I) -

5 7 1
REGC2) - |

SLC2) -
5 7 2

(< » -
ICO)-

5 5 2

Q

D

SYS. CLKl

5 5 4

REG. READ
5 5 5 \ MASK

NEW FORK

5 5 7 > COMPOSITE
- . J R C

5 5 9

e g

o
5 6 9

*CMPL. FIRST

REGNC 1) 3
REGNC3)* COMPARATORSf

REGNC I)* [
REGNC2) ̂ COMPARATORS?

REGNC3)^ I
REGNC4)3cOMPARATORSf

CASE 6 CD-
CO)-

REGNC2)*
REGNC3)JC0fv1PARAT0RS

REGNC3)=}0 ,
REGNC2) =J I f
REGNC4) >̂ 2
R E G N C I) ^ 3 S | S o J ^

SELgNj

<-BASE REG
NO.

IRC_
MASK

REGNC2)*^
REGNC4)d COMPARATORS

91

<
f

s /• r\ 1 1

uj —
L-O

I L L S
_l Z CO
LU UJ — CO «

0.
^ r

LU >

P

,U_ n

p^roJI]
8 ° >

- u t *
CO LU

LUp»=! <r ■

mi —

o 1 —

CD CT

m \
, — ,

L_Q L

— J

— I f l

! 2 H

- — • CO — I

o

•o I

<-»i_--> CO 2 t r t u j CO
2 ± 3 CO H- ,
rn It uj

S2f3 CD
c o o

:P 0 381 469 B1

OPU
CYCLE

F I G . 6 9

r 6 8 Z

' ' I N T E R R U P T / ^
EXCEPTION, O R > —

NO

RESTORE OPU GPRS
WITH ANY VALUES

RECEIVED FROM THE
EXECUTION UNIT

END
3YCLE

6 8 3
6 8 4

f E S

/ " I N T E R S "
I N S T R U C T I O N ^
. C O N F L I C T ^ ^

^ ^ v ^ 6 8 5
*r INTRA - "^s .
INSTRUCTION > ■
.CONFLICT ̂

? ^ > ^ N O

T y e s
. A . , 6 8 6

' X R E G I S T E R \ .
S P E C I F I E R / " "

" V \ ? _ / y E S
J NO ^QQ . 6 8 8

/ A U T C X ^ r ' MODE > V
s S P E C I F I E R / f

> X y e s
1NO 6 9 0

s -

EVALUATE

SPECIFIER

END
CYCLE

. ^ 6 9 3

/ d e l a y e B ^ .
" u p d a t e QUEUE> — ■
S ^ M P T Y / Y E S 6 9 8 :

5 9 7

LOAD SOURCE REG.
NOS. INTO SOURCE"

LIST POINTER
QUEUES.

LOAD SOURCE LIST
WITH UNMODIFIED
REGISTER VALVE

& LOAD SOURCE I
POINTER QUEUE

WITH POINTER

1_
6 8 9 1_

1_
MODIFY UrU o r K
OF AUTO-BASE,

TRANSMIT
MODIFICATION
TO EXECUTION

UNIT GPR.

END CYCLE 9

MODIFY OPU GPR
OF AUTO-BASE,

TRANSMIT ZERO
MODIFICATION TO
EXECUTION UNIT
GPR, STORE NO. OF

AUTO-BASE IN DELAYED
UPDATE QUEUE.

1 L
COPY NEXT KEG.

IN DELAYED
UPDATE QUEUE
FROM OPU GPR
TO EXECUTION

UNIT GPR

S E T
INSTRUCTION

DECODER
STALL

- 6 9 2

END
CYCLE >

^ / \ / 6 9 5
/ l a s t \ ^ REG. IN \
QUEUE BEING /
^ C O P I E D / 6 9 6

^ l ^ Y E S /
. — — H

CLEAR
INSTRUCTION

DECODER
STALL

94

:P 0 381 469 B1

F I G . 7 0

CI
SET FLUSH
JOUNTER TO
IXECUTION UNIT
[AG

7 I 4

JET FLUSH COUNTER
ro EXECUTION UNIT A
TAG PLUS NO. TO «
KEEP

END
CYCLE

INSERT OPU REG
MODIFICATION INFO.
IN RLOG QUEUE,
INCREMENT RLOG
INSERT POINTER
COUNTER,
INCREMENT RLOG
30UNTER SELECTED
3Y OPU TAG

^ 7 2 3

MODIFY
EXECUTION UNIT
GPR ADDRESSED
BY OPU TAG

f END N
V CYCLE J

- o p u t a g P

S s v ! / n o

r I (

DECREMENT
RLOG COUNTER
AT FLUSH TAG

FLUSH
COUNTER

_ _
r 2 0

READ RLOG QUEUE
AT INSERT POINTER

-I , AND DECREMENT
INSERT POINTER

< S "

7 _ l

READ VALUE OF
EXECUTION UNIT GPR
ADDRESSED BY REG,
NO. FROM RLOG

QUEUE, ADD MODFICATION
READ FROM RLOG QUEUE
AND STORE SUM IN
ADDRESSED EXECUTION
UNIT GPR AND
SEND REG. NO. AND
SUM TO OPU FOR
RESTORATION OF

ADDRESSED OPU GPR

95

	bibliography
	description
	claims
	drawings

