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Description 

The  present  invention  relates  generally  to  digital  computers,  and  more  particularly  to  a  pipelined  central 
processing  unit.  The  invention  is  particularly  applicable  to  an  instruction  decoder  for  decoding  variable  length 

5  instructions  having  operation  codes  defining  operations  upon  operands  and  operand  specifiers  for  providing 
information  for  locating  the  operands. 

Pipelining  is  a  proven  method  for  enhancing  the  performance  of  the  central  processing  unit  (CPU)  in  a 
digital  computer.  In  a  pipelined  CPU,  multiple  functional  units  concurrently  execute  the  elementary  operations 
for  a  plurality  of  instructions.  In  the  pipeline,  data  is  shifted  from  each  stage  to  the  next  at  the  same  time  for 

10  all  of  the  stages.  At  the  time  of  the  shift,  it  is  desirable  for  each  stage  to  have  completed  its  elementary  oper- 
ation.  If  an  intermediate  stage  cannot  complete  its  assigned  task  at  the  time  of  the  shift,  at  least  the  preceding 
stages  must  be  stalled,  or  their  results  temporarily  stored,  until  the  intermediate  stage  is  ready  to  receive  more 
data.  As  a  consequence,  an  efficient  pipeline  design  is  balanced  so  that  the  overall  task  is  broken  down  into 
elementary  operations  having  both  about  the  same  minimum  processing  time  as  well  as  about  the  same  fre- 

15  quency  of  causing  stalls.  In  other  words,  no  one  operation  should  dominate  the  processing  time  while  others 
are  relatively  insignificant. 

In  a  conventional  digital  computer,  however,  the  elementary  operations  are  to  some  extent  dictated  by  the 
"fetch-execute"  cycle  and  its  separate  steps  of  instruction  fetching,  instruction  decoding,  operand  fetching, 
execution,  and  result  store.  As  a  result  of  the  fetch-execute  cycle,  each  step  concerns  data  for  a  respective 

20  instruction,  and  it  is  desirable  for  each  step  to  be  completed  in  the  typical  case  in  the  single  clock  cycle  used 
for  a  memory  access  operation.  Consequently,  in  a  pipelined  central  processing  unit,  it  is  desirable  to  process 
instructions  at  a  rate  of  one  instruction  per  clock  cycle. 

For  computer  architectures  permitting  a  variety  of  "variable  length"  instructions,  the  instruction  decoding 
stage  of  a  pipelined  central  processor  has  required  more  than  one  clock  cycle  to  decode  a  typical  instruction. 

25  Such  a  "variable  length"  instruction  preferably  has  operand  specifiers  for  specifying  addressing  modes  inde- 
pendent  from  an  operation  code  specifying  the  operation  to  be  performed  on  the  operands. 

The  goal  of  processing  instructions  at  a  rate  of  one  instruction  per  clock  cycle  has  been  a  major  factor  in 
defining  recent  computer  architectures  having  a  "reduced  instruction  set"  in  which  the  instruction  formats  and 
operand  selections  are  restricted.  For  new  systems  and  applications  it  is  possible  to  freely  select  or  change 

30  the  computer  architecture,  but  for  existing  systems  and  applications  it  is  desirable  to  provide  improved  proc- 
essors  capable  of  processing  variable  length  instructions  of  existing  architectures  at  a  rate  of  one  per  clock 
cycle. 

Simultaneous  decoding  of  the  operation  code  and  two  operand  specifiers  so  that  a  two-operand  instruc- 
tion  can  be  executed  in  one  machine  cycle  of  a  pipelined  processor  is  known  from  SYSTEMS  &  COMPUTERS 

35  IN  JAPAN,  no.  3,  May  1985,  WASHINGTON,  US  pages  19-28;  MATSUMOTO  ETAL:'  A  high-performance 
architecture  for  variable  length  instructions'. 

Simultaneous  decoding  of  multiple  specifiers  in  variable-length  instructions  causes  a  peculiar  problem  of 
an  intra-instruction  read  conflict  that  occurs  when  ever  an  instruction  includes  an  autoincrement  or  an  auto- 
decrement  specifier  which  references  either  directly  or  indirectly  a  register  specified  by  a  previously  occurring 

40  specifier  for  the  current  instruction.  An  example  of  such  an  intra-instruction  conflict  is: 
ADDL  RO,  (RO)+,R1 

In  this  case  it  is  assumed  that  the  addition  specified  by  the  ADDL  opcode  will  result  in  the  regster  R1  containing 
twice  the  initial  value  of  the  register  RO,  and  the  final  value  of  RO  will  be  one  plus  its  initial  value  due  to  the 
auto  increment  mode  of  the  (R0)+  specifier.  In  other  words,  it  is  assumed  that  the  operands  are  evaluated  se- 

45  quentially,  even  if  the  instruction  unit  evaluates  all  of  them  at  the  same  time. 
According  to  the  present  invention  as  claimed  in  claim  1  there  is  provided  a  method  of  preprocessing,  after 

decoding  for  execution  in  a  pipelined  processor,  instructions  having  an  operation  code,  a  first  register  specifier 
and  a  following  second  specifier,  the  method  being  characterised  by: 

detecting  whether  for  each  of  the  instructions  the  preprocessing  of  the  second  specifier  changes  the 
50  value  of  the  register  specified  by  the  first  register  specifier; 

decoding  the  specifiers  sequentially  for  instructions  in  which  the  detecting  indicates  that  the  prepro- 
cessing  of  the  second  specifier  modifies  the  value  of  the  register  specified  by  the  first  register  specifier;  and 

decoding  the  first  register  specifier  and  the  second  specifier  simultaneously  for  instructions  in  which 
the  detecting  indicates  that  the  preprocessing  of  the  second  specifier  does  not  modify  the  value  of  the  register 

55  specified  by  the  first  register  specifier. 
The  invention  as  claimed  in  claim  8  also  extends  to  a  data  processing  unit  for  a  pipelined  processor  for 

preprocessing,  for  execution,  instructions  having  an  operation  code,  a  first  register  specifier  and  a  following 
second  specifier,  characterised  by  means  for  detecting  whether  for  each  of  the  instructions  the  preprocessing 
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of  the  second  specifier  changes  the  value  of  the  register  specified  by  the  first  register  specifier,  means  for 
decoding  the  specifiers  sequentially  for  instructions  in  which  the  detecting  indicates  that  the  preprocessing  of 
the  second  specifier  modifies  the  value  of  the  register  specified  by  the  first  register  specifier,  and  means  for 
decoding  the  first  register  specifier  and  the  second  specifier  simultaneously  for  instructions  in  which  the  de- 

5  tecting  indicates  that  the  preprocessing  of  the  second  specifier  does  not  modify  the  value  of  the  register  spe- 
cified  by  the  first  register  specifier. 

In  one  particular  form  the  invention  provides  a  data  processing  unit  for  processing  variable  length  instruc- 
tions  having  respective  operation  codes  and  respective  sequences  of  multiple  specifiers,  the  operation  codes 
defining  operations  upon  operands  including  source  operands  which  are  read  during  an  operation  and  destin- 

10  ation  operands  that  are  changed  by  an  operation,  the  specifiers  providing  information  for  locating  the  operands, 
the  specifiers  having  operand  addressing  modes  independent  from  the  operation  codes,  the  data  procesing 
unit  comprising,  in  combination: 

a)  instruction  buffer  means  for  receiving  an  operation  code  and  a  respective  sequence  of  multiple  speci- 
fiers  to  be  simultaneously  decoded, 

15  b)  instruction  decoding  means  connected  to  the  instruction  buffer  means  for  simultaneously  decoding  a 
first  operand  specifier  in  the  respective  sequence  of  multiple  specifiers  to  obtain  information  for  locating 
a  first  source  operand,  a  second  operand  specifier  in  the  respective  sequence  of  multiple  specifiers  to 
obtain  information  for  locating  a  second  source  operand,  and  a  third  operand  specifier  in  the  respective 
sequence  of  multiple  specifiers  to  obtain  information  for  locating  a  destination  operand, 

20  c)  operand  fetching  means  responsive  to  the  information  obtained  by  the  instruction  decoding  means  for 
fetching  the  first  and  second  operands,  and 
d)  execution  means  for  performing  the  operation  indicated  by  the  operation  code  received  in  the  instruction 
buffer  means  upon  the  source  operands  fetched  by  the  operand  fetching  means  and  changing  the  destin- 
ation  operand  at  the  location  specified  by  the  information  provided  by  the  instruction  decoding  means, 

25  wherein  the  instruction  decoding  means  includes  means  for  detecting  during  decoding  whether  each 
of  the  instructions  includes  a  first  register  specifier  followed  by  a  second  specifier  for  which  the  preprocessing 
of  the  second  specifier  changes  the  value  of  the  register  specified  by  the  first  register  specifier,  and  means 
responsive  to  the  means  for  detecting  for  decoding  the  first  register  and  the  second  specifier  sequentially. 

To  avoid  stalls  during  the  preprocessing  of  instructions  by  the  instruction  unit,  register  pointers  rather  than 
30  register  data  are  usually  passed  to  the  execution  unit  because  register  data  is  not  always  available  at  the  time 

of  instruction  decoding.  If  an  intra-instruction  read  conflict  exists,  however,  the  operand  value  specified  by 
the  conflicting  register  specifier  is  the  initial  value  of  the  register  being  incremented  or  decremented,  and  this 
initial  value  will  have  been  changed  by  the  time  that  the  execution  unit  executes  the  instruction. 

Preferably,  the  proper  initial  value  is  obtained  prior  to  the  incrementing  or  decrementing  of  the  conflicting 
35  register  by  putting  the  instruction  decoder  into  a  special  IRC  mode  in  which  only  one  specifier  is  decoded  per 

cycle,  and  if  a  specifier  being  decoded  is  a  register  specifier,  the  content  of  the  specified  register  is  transmitted 
to  the  execution  unit. 

Preferably  the  general  purpose  registers  are  in  the  execution  unit  and  a  duplicate  set  of  the  general  purpose 
registers  are  included  in  the  instruction  unit.  When  the  execution  unit  modifies  a  register  the  new  data  is  sent 

40  to  both  sets  of  registers.  Similarly  when  the  instruction  decode  unit  evaluates  a  register  modifying  specifier 
both  sets  of  registers  are  updated. 

In  the  event  of  an  exception  or  interrupt,  the  queues  must  be  flushed  of  information  about  instructions 
which  have  been  decoded  but  not  yet  executed.  If  any  of  these  decoded  but  not  yet  executed  instructions  con- 
tain  a  specifier  having  an  autoincrement  or  autodecrement  mode,  the  register  having  been  modified  must  be 

45  returned  to  its  original  state.  Preferably  this  is  done  by  storing  in  a  queue  (the  RLOG  queue)  information  about 
the  changes  having  been  made  to  the  general  purpose  registers  when  the  registers  have  been  modified  by 
an  autoincrement  or  autodecrement. 

The  restoration  of  the  general  purpose  registers,  however,  is  complicated  by  the  need  to  handle  intra-in- 
struction  read  conflicts.  According  to  the  preferred  method,  once  an  intra-instruction  read  conflict  is  detected, 

so  the  autoincrement  and  autodecrement  specifiers  modify  only  the  instruction  unit  general  purpose  registers  and 
the  register  specifiers  are  passed  as  data,  instead  of  pointers,  to  the  execution  unit.  The  instruction  unit  general 
purpose  registers  but  not  the  execution  unit  general  purpose  registers  are  modified  during  evaluation  of  the 
autoincrement  and  autodecrement  specifiers.  When  the  instruction  having  the  intra-instruction  register  conflict 
is  fully  decoded,  decoding  of  the  next  instruction  is  temporarily  inhibited  until  the  current  instruction  is  retired 

55  and  the  execution  unit  general  purpose  registers  are  updated. 
Other  objects  and  advantages  of  the  invention  will  become  apparent  upon  reading  the  following  detailed 

description  and  upon  reference  to  the  drawings  in  which: 
FIG.  1  is  a  block  diagram  of  a  digital  computer  system  having  a  central  pipelined  processing  unit  which 
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employs  the  present  invention; 
FIG.  2  is  a  diagram  showing  various  steps  performed  to  process  an  instruction  and  which  may  be  per- 
formed  in  parallel  for  different  instructions  by  a  pipelined  instruction  processor  according  to  FIG.  1  ; 
FIG.  3  is  a  diagram  showing  the  preferred  format  of  a  variable  length  instruction; 

5  FIG.  4  is  a  diagram  of  a  particularvariable  length  instruction  for  performing  an  addition  between  longwords; 
FIG.  5  is  a  table  showing  the  decoding  of  the  mode  information  in  the  first  byte  of  a  specifier; 
FIG.  6  is  a  schematic  diagram  showing  an  instruction  buffer  and  operand  unit  connected  to  an  instruction 
decoder  capable  of  simultaneously  decoding  multiple  specifiers; 
FIG.  7  is  a  diagram  showing  the  format  for  a  general  purpose  specifier  bus  interconnecting  the  instruction 

10  decoder  and  the  operand  unit  of  FIG.  6; 
FIG.  8  is  a  diagram  of  an  expansion  bus  for  transferring  short  literal  information  from  the  instruction  de- 
coder  to  the  operand  unit  of  FIG.  6; 
FIG.  9  is  a  diagram  of  the  format  for  a  transfer  bus  for  transferring  register  and  other  operand  information 
from  the  instruction  decoder  to  the  operand  unit  of  FIG.  6;  FIG.  10  is  a  flowchart  of  the  preferred  procedure 

15  performed  by  the  instruction  decoder  of  FIG.  6  to  decode  a  variable  length  instruction  in  the  format  of  FIG. 
3; 
FIG.  11  is  a  flowchart  of  the  procedure  performed  by  the  instruction  decoder  of  FIG.  6  to  decode  up  to 
three  specifiers  simultaneously; 
FIG.  12  is  a  block  diagram  of  the  instruction  decoder  of  FIG.  6; 

20  FIG.  13  is  a  schematic  diagram  of  shift  count  logic  that  is  used  to  determine  the  number  of  specifiers  and 
the  number  of  bytes  decoded  when  a  maximum  of  one  operand  should  be  decoded  for  a  branch  instruction 
having  a  byte  displacement; 
FIG.  14  is  a  schematic  diagram  of  shift  count  logic  that  is  used  when  at  most  one  specifier  should  be  de- 
coded  for  a  branch  instruction  having  a  word  displacement; 

25  FIG.  15  is  a  schematic  diagram  of  shift  count  logic  that  is  used  when  at  most  one  specifier  should  be  de- 
coded,  and  that  specifier  is  to  be  implied  from  the  access  type  of  the  instruction  and  pre-processed; 
FIG.  16  is  a  schematic  diagram  of  shift  count  logic  that  is  used  when  at  most  two  specifiers  should  be 
decoded  for  a  branch  instruction  having  a  byte  displacement; 
FIG.  1  7  is  a  schematic  diagram  of  shift  count  logic  that  is  used  when  at  most  two  operands  should  be  de- 

30  coded  for  a  branch  instruction  having  a  word  displacement; 
FIG.  18  is  a  schematic  diagram  of  shift  count  logic  that  is  used  for  decoding  at  most  two  specifiers,  and 
the  second  specifier  is  to  be  implied  from  the  access  type  of  the  instruction  and  pre-processed; 
FIG.  1  9  is  a  schematic  diagram  of  shift  count  logic  that  is  used  for  simultaneously  decoding  at  most  three 
specifiers  for  a  branch  instruction  having  a  byte  displacement; 

35  FIG.  20  is  a  schematic  diagram  of  shift  count  logic  that  is  used  for  simultaneously  decoding  at  most  three 
specifiers  for  a  branch  instruction  having  a  word  displacement; 
FIG.  21  is  a  diagram  depicting  four  primary  sequences  or  cases  in  which  specifiers  are  ordered  or  arranged 
in  the  instruction  buffer  during  simultaneous  decoding  of  up  to  three  specifiers  disposed  at  various  levels 
in  the  primary  sequences; 

40  FIG.  22  is  a  truth  table  defining  the  four  primary  cases; 
FIG.  23  is  a  schematic  diagram  of  combinational  logic  that  has  been  optimized  to  detect  the  four  primary 
cases  shown  in  FIG.  21  ; 
FIG.  24  is  a  table  illustrating  how  the  number  of  specifiers  being  decoded  can  be  determined  for  the  four 
primary  cases; 

45  FIG.  25  is  a  schematic  diagram  of  shift  count  logic  capable  of  determining  the  actual  number  of  specifiers 
and  the  number  of  bytes  in  the  instruction  decoder  that  should  be  simultaneously  decoded  in  a  single  de- 
coding  cycle; 
FIG.  26  is  a  schematic  diagram  of  a  three  input  priority  encoder  used  in  the  shift  count  logic  of  FIG.  25; 
FIG.  27  is  a  schematic  diagram  of  a  multiplexer  incorporating  priority  logic; 

so  FIG.  28  is  a  table  showing  values  of  the  number  of  specifiers  actually  decoded  when  decoding  to  various 
levels  when  neither  an  immediate  nor  an  absolute  addressing  mode  is  employed; 
FIGS.  29  to  32  are  truth  tables  showing  how  the  shift  count  is  determined  when  decoding  to  various  levels 
when  neither  an  immediate  nor  an  absolute  addressing  mode  is  employed; 
FIGS.  33  to  38  are  truth  tables  showing  how  the  number  of  specifiers  actually  decoded  and  the  shift  count 

55  are  determined  when  decoding  to  various  levels  when  an  immediate  or  absolute  addressing  mode  is  em- 
ployed; 
FIGS.  39  to  40  are  schematic  diagrams  of  logic  for  determining  register  specifier  and  short  literal  informa- 
tion  for  bytes  1  to  8  in  the  instruction  buffer; 

4 



EP  0  381  469  B1 

FIG.  42  is  a  schematic  diagram  of  logic  for  determining  information  about  specifiers  decoded  at  various 
levels; 
FIG.  43  is  a  schematic  diagram  of  shift  count  logic  in  which  the  logic  of  FIG.  25  is  duplicated  for  the  general 
addressing  modes  and  for  the  immediate  and  absolute  addressing  modes; 

5  FIG.  44  shows  how  the  specifier  information  for  the  immediate  and  absolute  addressing  modes  is  used  in 
accordance  with  the  shift  count  logic  of  FIG.  38; 
FIG.  45  is  a  schematic  diagram  of  a  modification  to  the  shift  count  logic  of  FIG.  43  to  reduce  the  length 
of  the  critical  path  in  the  instruction  decoder  of  FIG.  12; 
FIG.  46  is  a  detailed  schematic  diagram  showing  the  logic  used  in  FIG.  45  for  obtaining  information  about 

10  a  first  specifier  that  has  an  immediate  or  absolute  addressing  mode; 
FIG.  47  is  a  schematic  diagram  of  absolute  and  immediate  specifier  selector  logic  used  in  FIG.  45  to  de- 
termine  the  specifier  number  associated  with  an  absolute  or  immediate  mode  specifier  in  the  instruction 
buffer; 
FIG.  48  is  a  schematic  diagram  of  an  R1  tree  that  is  selected  when  the  decoding  of  one  specifier  is  re- 

15  quested; 
FIG.  49  is  a  schematic  diagram  of  an  R2  tree  that  is  selected  when  the  decoding  of  two  specifiers  is  re- 
quested; 
FIG.  50  is  a  schematic  diagram  of  an  R2R  tree  that  is  selected  when  the  decoding  of  two  specifiers  is 
requested  and  only  when  byte  1  in  the  instruction  buffer  is  neither  a  register  specifier  nor  a  short  literal, 

20  and  the  second  specifier  should  not  be  a  short  literal; 
FIG.  51  is  a  schematic  diagram  of  an  R3  tree  that  is  selected  when  the  decoding  of  three  specifiers  is  re- 
quested  and  only  when  bytes  1  and  2  in  the  instruction  buffer  are  register  or  short  literal  specifiers; 
FIG.  52  is  a  schematic  diagram  of  an  R3XR  tree  that  is  selected  when  the  decoding  of  three  specifiers  is 
requested  and  a  third  specifier  is  to  be  decoded  only  when  the  third  specifier  is  a  register  specifier; 

25  FIG.  53  shows  how  a  register  valid  signal,  a  short  literal  valid  signal,  and  short  literal  data  or  a  register 
number  are  combined  together  to  obtain  eight  bits  of  register  or  short  literal  data; 
FIG.  54  is  a  schematic  diagram  of  a  circuit  for  obtaining  the  register  or  short  literal  data  associated  with  a 
second  specifier  being  decoded; 
FIG.  55  is  a  diagram  showing  how  a  register  valid  signal  and  a  register  number  are  combined  to  obtain 

30  register  data; 
FIG.  56  is  a  schematic  diagram  of  a  circuit  for  obtaining  the  register  data  associated  with  a  third  specifier 
being  decoded; 
FIG.  57  is  a  schematic  diagram  of  validation  logic  for  transmitting  a  first  source  operand  from  the  instruc- 
tion  decoder  to  the  operand  unit; 

35  FIG.  58  is  a  schematic  diagram  of  a  validation  and  selection  circuit  for  obtaining  and  transmitting  a  second 
source  operand  from  the  instruction  decoder  to  the  operand  unit; 
FIG.  59  is  a  schematic  diagram  of  validation  and  selection  logic  for  obtaining  and  transmitting  a  destination 
specifier  from  the  instruction  decoder  to  the  operand  unit; 
FIG.  60  is  a  schematic  diagram  of  validation  and  selection  logic  for  obtaining  and  transmitting  short  literal 

40  data  from  the  instruction  decoder  to  the  operand  unit; 
FIG.  61  is  a  schematic  diagram  of  validation  and  selection  logic  for  obtaining  and  transmitting  a  complex 
specifier  or  branch  displacement  information  from  the  instruction  decoder  to  the  operand  unit; 
FIG.  62  is  a  schematic  diagram  of  a  circuit  for  detecting  and  decoding  a  complex  specifier  having  an  ex- 
tended  immediate  mode; 

45  FIG.  63  is  a  schematic  diagram  of  a  decoder  for  detecting  a  complex  specifier  having  an  autoincrement 
or  autodecrement  mode; 
FIG.  64  is  a  schematic  diagram  illustrating  how  an  intra-instruction  read  conflict  is  detected  by  inspecting 
a  read  register  mask; 
FIG.  65  is  a  schematic  diagram  illustrating  how  an  intra-instruction  read  conflict  is  detected  by  inspecting 

so  an  IRC  mask; 
FIG.  66  is  a  schematic  diagram  of  a  circuit  for  generating  an  IRC  mask  including  information  about  two 
specifiers  currently  being  decoded  and  any  number  of  previous  specifiers  having  been  decoded  for  the 
same  instruction; 
FIG.  67  is  a  schematic  diagram  of  a  circuit  which  inspects  the  IRC  mask  generated  by  the  circuit  in  FIG. 

55  66  and  which  also  detects  an  implied  intra-instruction  read  conflict; 
FIG.  68  is  a  schematic  diagram  of  the  circuits  in  the  instruction  unit  and  the  execution  unit  which  update 
respective  sets  of  general  purpose  registers  in  the  instruction  unit  and  in  the  execution  unit  in  response 
to  an  intra-instruction  read  conflict  detected  by  the  instruction  decoder; 
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FIG.  69  is  a  flowchart  defining  the  control  logic  shown  in  FIG.  68  for  the  operand  processing  unit;  and 
FIG.  70  is  a  flowchart  defining  the  control  logic  in  FIG.  68  for  the  execution  unit. 
While  the  invention  is  susceptible  to  various  modifications  and  alternative  forms,  specific  embodiments 

thereof  have  been  shown  by  way  of  example  in  the  drawings  and  will  be  described  in  detail  herein.  It  should 
5  be  understood,  however,  that  it  is  not  intended  to  limit  the  invention  to  the  particular  forms  disclosed,  but  on 

the  contrary,  the  intention  is  to  cover  all  modifications,  equivalents,  and  alternatives  falling  within  the  scope 
of  the  invention  as  defined  by  the  appended  claims. 

Turning  now  to  the  drawings  and  referring  first  to  FIG.  1,  there  is  shown  a  portion  of  a  digital  computer 
system  which  includes  a  main  memory  10,  a  memory-CPU  interface  unit  11  ,  and  at  least  one  CPU  comprising 

10  an  instruction  unit  12  and  an  execution  unit  13.  It  should  be  understood  that  additional  CPUs  could  be  used 
in  such  a  system  by  sharing  the  main  memory  10. 

Both  data  and  instructions  for  processing  the  data  are  stored  in  addressable  storage  locations  within  the 
main  memory  10.  An  instruction  includes  an  operation  code  (opcode)  that  specifies,  in  coded  form,  an  oper- 
ation  to  be  performed  by  the  CPU,  and  operand  specifiers  that  provide  information  for  locating  operands.  The 

15  execution  of  an  individual  instruction  is  broken  down  into  multiple  smaller  tasks.  These  tasks  are  performed 
by  dedicated,  separate,  independent  functional  units  that  are  optimized  for  that  purpose. 

Although  each  instruction  ultimately  performs  a  different  operation,  many  of  the  smaller  tasks  into  which 
each  instruction  is  broken  are  common  to  all  instructions.  Generally,  the  following  steps  are  performed  during 
the  execution  of  an  instruction:  instruction  fetch,  instruction  decode,  operand  fetch,  execution,  and  result  store. 

20  Thus,  by  the  use  of  dedicated  hardware  stages,  the  steps  can  be  overlapped  in  a  pipelined  operation,  thereby 
increasing  the  total  instruction  throughput. 

The  data  path  through  the  pipeline  includes  a  respective  set  of  registers  for  transferring  the  results  of  each 
pipeline  stage  to  the  next  pipeline  stage.  These  transfer  registers  are  clocked  in  response  to  a  common  system 
clock.  For  example,  during  a  first  clock  cycle,  the  first  instruction  is  fetched  by  hardware  dedicated  to  instruction 

25  fetch.  During  the  second  clock  cycle,  the  fetched  instruction  is  transferred  and  decoded  by  instruction  decode 
hardware,  but,  at  the  same  time,  the  next  instruction  is  fetched  by  the  instruction  fetch  hardware.  During  the 
third  clock  cycle,  each  instruction  is  shifted  to  the  next  stage  of  the  pipeline  and  a  new  instruction  is  fetched. 
Thus,  after  the  pipeline  is  filled,  an  instruction  will  be  completely  executed  at  the  end  of  each  clock  cycle. 

This  process  is  analogous  to  an  assembly  line  in  a  manufacturing  environment.  Each  worker  is  dedicated 
30  to  performing  a  single  task  on  every  product  that  passes  through  his  or  her  work  stage.  As  each  task  is  per- 

formed  the  product  comes  closer  to  completion.  At  the  final  stage,  each  time  the  worker  performs  his  assigned 
task  a  completed  product  rolls  off  the  assembly  line. 

In  the  particular  system  illustrated  in  FIG.  1,  the  interface  unit  11  includes  a  main  cache  14  which  on  an 
average  basis  enables  the  instruction  and  execution  units  12  and  13  to  process  data  at  a  faster  rate  than  the 

35  access  time  of  the  main  memory  10.  This  cache  14  includes  means  for  storing  selected  predefined  blocks  of 
data  elements,  means  for  receiving  requests  from  the  instruction  unit  12  via  a  translation  buffer  15  to  access 
a  specified  data  element,  means  for  checking  whether  the  data  element  is  in  a  block  stored  in  the  cache,  and 
means  operative  when  data  for  the  block  including  the  specified  data  element  is  not  so  stored  for  reading  the 
specified  block  of  data  from  the  main  memory  10  and  storing  that  block  of  data  in  the  cache  14.  In  other  words, 

40  the  cache  provides  a  "window"  into  the  main  memory,  and  contains  data  likely  to  be  needed  by  the  instruction 
and  execution  units.  In  general,  since  the  cache  14  will  be  accessed  at  a  much  higher  rate  than  the  main  mem- 
ory  10,  the  main  memory  can  have  a  proportionally  slower  access  time  than  the  cache  without  substantially 
degrading  the  average  performance  of  the  data  processing  system.  Therefore,  the  main  memory  10  can  be 
comprised  of  slower  and  less  expensive  memory  elements. 

45  The  translation  buffer  1  5  is  a  high  speed  associative  memory  which  stores  the  most  recently  used  virtual- 
to-physical  address  translations.  In  a  virtual  memory  system,  a  reference  to  a  single  virtual  address  can  cause 
several  memory  references  before  the  desired  information  is  made  available.  However,  where  the  translation 
buffer  15  is  used,  translation  is  reduced  to  simply  finding  a  "hit"  in  the  translation  buffer  15. 

An  I/O  bus  16  is  connected  to  the  main  memory  10  and  the  main  cache  14  for  transmitting  commands 
so  and  input  data  to  the  system  and  receiving  output  data  from  the  system. 

The  instruction  unit  12  includes  a  program  counter  17  and  an  instruction  cache  18for  fetching  instructions 
from  the  main  cache  14.  The  program  counter  17  preferably  addresses  virtual  memory  locations  rather  than 
the  physical  memory  locations  of  the  main  memory  10  and  the  cache  14.  Thus,  the  virtual  address  of  the  pro- 
gram  counter  17  must  be  translated  into  the  physical  address  of  the  main  memory  10  before  instructions  can 

55  be  retrieved.  Accordingly,  the  contents  of  the  program  counter  17  are  transferred  to  the  interface  unit  11  where 
the  translation  buffer  15  performs  the  address  conversion.  The  instruction  is  retrieved  from  its  physical  mem- 
ory  location  in  the  cache  14  using  the  converted  address.  The  cache  14  delivers  the  instruction  over  data  return 
lines  to  the  instruction  cache  18.  The  organization  and  operation  of  the  cache  14  and  the  translation  buffer 
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15  are  further  described  in  Chapter  11  of  Levy  and  Eckhouse,  Jr.,  Computer  Programming  and  Architecture, 
The  VAX-11,  Digital  Equipment  Corporation,  pp.  351-368  (1980). 

Most  of  the  time,  the  instruction  cache  has  prestored  in  it  instructions  at  the  addresses  specified  by  the 
program  counter  17,  and  the  addressed  instructions  are  available  immediately  for  transfer  into  an  instruction 

5  buffer  19.  From  the  buffer  19,  the  addressed  instructions  are  fed  to  an  instruction  decoder  20  which  decodes 
both  the  op-codes  and  the  specifiers.  An  operand  processing  unit  (OPU)  21  fetches  the  specified  operands 
and  supplies  them  to  the  execution  unit  13. 

The  OPU  21  also  produces  virtual  addresses.  In  particular,  the  OPU  21  produces  virtual  addresses  for 
memory  source  (read)  and  destination  (write)  operands.  For  the  memory  read  operands,  the  OPU  21  delivers 

10  these  virtual  addresses  to  the  interface  unit  11  where  they  are  translated  to  physical  addresses.  The  physical 
memory  locations  of  the  cache  14  are  then  accessed  to  fetch  the  operands  for  the  memory  source  operands. 

In  each  instruction,  the  first  byte  contains  the  opcode,  and  the  following  bytes  are  the  operand  specifiers 
to  be  decoded.  The  first  byte  of  each  specifier  indicates  the  addressing  mode  for  that  specifier.  This  byte  is 
usually  broken  in  halves,  with  one  half  specifying  the  addressing  mode  and  the  other  half  specifying  a  register 

15  to  be  used  for  addressing.  The  instructions  preferably  have  a  variable  length,  and  various  types  of  specifiers 
can  be  used  with  the  same  opcode,  as  disclosed  in  Strecker  et  al.,  U.S.  Patent  4,241  ,397  issued  December 
23,  1980. 

The  first  step  in  processing  the  instructions  is  to  decode  the  "opcode"  portion  of  the  instruction.  The  first 
portion  of  each  instruction  consists  of  its  opcode  which  specifies  the  operation  to  be  performed  in  the  instruc- 

20  tion,  and  the  number  and  type  of  specifiers  to  be  used.  Decoding  is  done  using  a  table-look-up  technique  in 
the  instruction  decoder  20,  to  find  the  data  context  (byte,  word,  etc.),  data  type  (address,  integer,  etc.)  and 
accessing  mode  (read,  write,  modify,  etc.)  for  each  specifier.  Also,  the  decoder  determines  where  source- 
operand  and  destination-operand  specifiers  occur  in  the  instruction  and  passes  these  specifiers  to  the  OPU 
21  for  pre-processing  prior  to  execution  of  the  instruction.  Later  the  execution  unit  performs  the  specified  op- 

25  eration  by  executing  prestored  microcode,  beginning  a  starting  address  obtained  from  a  "fork  RAM"  that  is  ad- 
dressed  with  the  instruction  opcode. 

After  an  instruction  has  been  decoded,  the  OPU  21  parses  the  operand  specifiers  and  computes  their  ef- 
fective  addresses;  this  process  involves  reading  general  purpose  registers  (GPRs)  and  possibly  modifying  the 
GPR  contents  by  autoincrementing  or  autodecrement  ing.  The  operands  are  then  fetched  from  those  effective 

30  addresses  and  passed  on  to  the  execution  unit  13,  which  executes  the  instruction  and  writes  the  result  into 
the  destination  identified  by  the  destination  pointer  for  that  instruction. 

Each  time  an  instruction  is  passed  to  the  execution  unit,  the  instruction  unit  sends  a  microcode  dispatch 
address  and  a  set  of  pointers  for  (1)  the  locations  in  the  execution-unit  registerf  ile  where  the  source  operands 
can  be  found,  and  (2)  the  location  where  the  results  are  to  be  stored.  Within  the  execution  unit,  a  set  of  queues 

35  23  includes  a  fork  queue  for  storing  the  microcode  dispatch  address,  a  source  pointer  queue  for  storing  the 
source-operand  locations,  and  a  destination  pointer  queue  for  storing  the  destination  location.  Each  of  these 
queues  is  a  FIFO  buffer  capable  of  holding  the  data  for  multiple  instructions. 

The  execution  unit  13  also  includes  a  source  list  24,  which  is  stored  in  a  multi-ported  register  file  that  also 
contains  a  copy  of  the  GPRs.  Thus  entries  in  the  source  pointer  queue  will  either  point  to  GPR  locations  for 

40  register  operands,  or  point  to  the  source  list  for  memory  and  literal  operands.  Both  the  interface  unit  11  and 
the  instruction  unit  12  write  entries  in  the  source  list  24,  and  the  execution  unit  13  reads  operands  out  of  the 
source  list  as  needed  to  execute  the  instructions.  For  executing  instructions,  the  execution  unit  13  includes 
an  instruction  issue  unit  28,  a  microcode  execution  unit  25  an  arithmetic  and  logic  unit  (ALU)  26,  and  a  retire 
unit  27. 

45  The  present  invention  is  particularly  useful  with  pipelined  processors.  As  discussed  above,  in  a  pipelined 
processor  the  processor's  instruction  fetch  hardware  may  be  fetching  one  instruction  while  other  hardware  is 
decoding  the  operation  code  of  a  second  instruction,  fetching  the  operands  of  a  third  instruction,  executing  a 
fourth  instruction,  and  storing  the  processed  data  of  a  fifth  instruction.  FIG.  2  illustrates  a  pipeline  for  a  typical 
instruction  such  as: 

50  ADDL3  RO,BA12(R1),R2. 
This  is  a  longword  addition  using  the  displacement  mode  of  addressing. 

In  the  first  stage  of  the  pipelined  execution  of  this  instruction,  the  program  count  (PC)  of  the  instruction 
is  created;  this  is  usually  accomplished  either  by  incrementing  the  program  counter  from  the  previous  instruc- 
tion,  or  by  using  the  target  address  of  a  branch  instruction.  The  PC  is  then  used  to  access  the  instruction  cache 

55  1  8  in  the  second  stage  of  the  pipeline. 
In  the  third  stage  of  the  pipeline,  the  instruction  data  is  available  from  the  cache  18  for  use  by  the  instruc- 

tion  decoder  20,  or  to  be  loaded  into  the  instruction  buffer  19.  The  instruction  decoder  20  decodes  the  opcode 
and  the  three  specifiers  in  a  single  cycle,  as  will  be  described  in  more  detail  below.  The  RO  and  R2  numbers 
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are  passed  to  the  ALU  unit  27,  and  the  R1  number  along  with  the  byte  displacement  is  sent  to  the  OPU  21  at 
the  end  of  the  decode  cycle. 

In  stage  4,  the  operand  unit  21  reads  the  contents  of  its  GPR  register  file  at  location  R1  ,  adds  that  value 
to  the  specified  displacement  (12),  and  sends  the  resulting  address  to  the  translation  buffer  15  in  the  interface 

5  unit  11,  along  with  an  OP  READ  request,  at  the  end  of  the  address  generation  stage. 
In  stage  5,  the  interface  unit  1  1  selects  the  address  generated  in  stage  4  for  execution.  Using  the  translation 

buffer  15,  the  interface  unit  11  translates  the  virtual  address  to  a  physical  address  during  the  address  trans- 
lation  stage.  The  physical  address  is  then  used  to  address  the  cache  14,  which  is  read  in  stage  6  of  the  pipeline. 

In  stage  7  of  the  pipeline,  the  instruction  is  issued  to  the  ALU  26  which  adds  the  two  operands  and  sends 
10  the  result  to  the  retire  unit  27.  During  stage  4,  the  register  numbers  for  R1  and  R2,  and  a  pointer  to  the  source 

list  location  for  the  memory  data,  were  sent  to  the  execution  unit  and  stored  in  the  pointer  queues.  Then  during 
the  cache  read  stage,  the  execution  unit  started  to  look  for  the  two  source  operands  in  the  source  list.  In  this 
particular  example  it  finds  only  the  register  data  in  RO,  but  at  the  end  of  this  stage  the  memory  data  arrives 
and  is  substituted  for  the  invalidated  read-out  of  the  register  file.  Thus  both  operands  are  available  in  the  in- 

15  struction  execution  stage. 
In  the  retire  stage  8  of  the  pipeline,  the  result  data  is  paired  with  the  next  entry  in  the  retire  queue.  Although 

several  functional  execution  units  can  be  busy  at  the  same  time,  only  one  instruction  can  be  retired  in  a  single 
cycle. 

In  the  last  stage  9  of  the  illustrative  pipeline,  the  data  is  written  into  the  GPR  portion  of  the  register  files 
20  in  both  the  execution  unit  13  and  the  instruction  unit  12. 

FIG.  3  depicts  a  typical  instruction  30  that  can  be  processed  by  the  central  processing  unit  (CPU)  shown 
in  FIG.  1  .  This  instruction  corresponds  to  the  VAX  variable-length  instruction  architecture  as  described  in  Levy 
&  Eckhouse,  Jr.  cited  above.  The  instruction  30  includes  an  operation  code  31  consisting  of  either  one  or  two 
bytes.  If  the  first  byte  32  has  a  value  of  FD  hexadecimal,  then  it  is  recognized  as  a  double-byte  operation  code. 

25  Otherwise,  the  instruction  decoder  (20  in  FIG.  1)  recognizes  the  operation  code  as  including  only  a  single  byte. 
The  instruction  30  may  further  include  up  to  six  specifiers  following  the  operation  code. 

The  operation  code  indicates  how  many  specifiers  are  included  in  the  instruction.  The  specifiers  used  in 
connection  with  any  given  operation  code  may  have  various  attributes  and  different  lengths.  The  attributes  of 
a  particular  specifier  are  determined  at  least  in  part  by  an  addressing  mode  in  the  first  byte  of  the  specifier. 

30  However,  the  permissible  attributes  of  the  specifier  are  some  times  limited  by  the  operation  code.  Further,  for 
a  particular  kind  of  addressing  mode  known  as  "immediate  addressing,"  the  length  of  the  specifier  information 
is  determined  by  a  "data  type"  specified  by  the  specifier. 

A  specific  variable  length  instruction  is  shown  in  FIG.  4.  In  assembler  notation,  this  instruction  is  written 
as  "ADDL3  R0,#4,LA203(R2)".  In  machine  code,  the  instruction  includes  eight  bytes  generally  designated  35. 

35  The  first  byte  is  an  operation  code  of  23  hexadecimal  which  corresponds  to  the  assembler  mnemonic  "ADDL3." 
The  operation  code  indicates  that  a  first  longword  operand  is  to  be  added  to  a  second  longword  operand  and 
the  longword  result  is  to  be  stored  at  a  destination. 

Following  the  operation  code  is  a  "register  specifier"  having  a  value  of  50  hexadecimal.  The  hexadecimal 
digit  of  5  denotes  that  the  specifier  is  a  register  specifier,  and  the  hexadecimal  digit  0  indicates  that  the  spe- 

40  cified  register  is  the  R0  general  purpose  register  in  the  CPU.  The  register  specifier  therefore  specifies  that 
the  first  source  operand  is  the  content  of  the  general  purpose  register  R0. 

Following  the  register  specifier  is  a  "short  literal  specifier"  having  a  value  of  04  hexadecimal.  The  short 
literal  specifier  specifies  a  value  of  four  for  the  second  source  operand. 

Following  the  short  literal  specifier  is  the  first  byte  of  a  "complex  specifier"  that  specifies  the  destination 
45  of  the  addition  operation.  The  hexadecimal  digit  E  indicates  a  "longword  displacement"  addressing  mode  in 

which  the  following  four  bytes  are  to  be  interpreted  as  a  thirty-two-bit  address  displacement  to  be  added  to 
the  value  of  the  content  of  a  base  register  to  obtain  an  address  specified  by  the  complex  specifier.  The  hex- 
adecimal  digit  2  indicates  that  the  general  purpose  register  R2  is  to  be  used  as  the  base  register.  The  complex 
specifier  therefore  specifies  that  the  sum  or  result  of  the  longword  addition  indicated  by  the  operand  code  is 

so  to  be  stored  in  memory  at  an  address  computed  by  adding  the  value  of  203  hexadecimal  to  the  content  of  the 
general  purpose  register  R2. 

Turning  now  to  FIG.  5,  there  is  shown  a  decoding  table  for  decoding  the  first  byte  of  an  operand  specifier 
which  is  not  a  branch  displacement.  If  the  two  most  significant  bits  of  the  first  byte  of  the  operand  specifier 
are  both  zero,  then  the  operand  specifier  consists  of  the  single  first  byte,  and  the  six  least  significant  bits  of 

55  this  byte  are  interpreted  or  decoded  as  specifying  a  six-bit  value  referred  to  as  a  "short  literal." 
If  the  first  two  most  significant  bits  of  the  first  byte  of  an  operand  specifier  are  not  zero,  and  assuming 

that  the  byte  is  not  part  of  a  branch  displacement,  then  the  byte  is  decoded  as  a  particular  one  of  twelve  possible 
register  addressing  modes  relating  to  a  specified  one  of  sixteen  general  purpose  registers  R0  to  R15  in  the 
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CPU.  The  most  significant  four  bits  of  the  byte  (constituting  a  register  mode  field)  are  decoded  to  indicate  the 
addressing  mode,  and  the  four  least  significant  bits  (constituting  a  general  purpose  register  address  field)  are 
used  to  address  a  particular  one  of  the  sixteen  general  purpose  registers. 

If  the  register  mode  field  has  a  hexadecimal  value  of  four,  then  an  "index  mode"  is  specified  in  which  the 
5  value  of  the  content  of  the  general  purpose  register  addressed  by  the  register  address  field  is  multiplied  by 

the  size  in  bytes  of  the  operand  (e.g.,  by  1,  2,  4,  8  or  16  for  respective  byte,  word,  longword,  quadword  or  oc- 
taword  data  types)  and  the  sum  is  included  as  a  term  in  the  address  computation  performed  for  an  immediately 
following  complex  specifier;  the  next  byte  must  have  a  register  mode  field  with  a  value  of  6  to  F  hexadecimal, 
and  a  register  address  field  which  addresses  a  base  register  for  the  complex  specifier. 

10  If  the  register  mode  field  has  a  hexadecimal  value  of  five,  then  the  specifier  is  a  "register  specif  ier"  in  which 
the  operand  value  is  found  in  the  general  purpose  register  indicated  by  the  register  address  field  or,  if  the  spe- 
cifier  is  for  the  destination  of  the  instruction,  then  the  specifier  specifies  that  the  result  is  to  be  stored  in  the 
general  purpose  register  indicated  by  the  register  address  field. 

For  each  of  register  modes  6,  7  and  8,  the  designated  register  contains  the  memory  address  for  the  op- 
15  erand.  For  a  source  operand,  the  operand  value  is  read  from  this  memory  address,  and  for  a  destination  op- 

erand,  the  result  is  written  to  this  memory  address.  In  mode  6  the  designated  register  contains  the  address  of 
the  operand.  In  register  mode  7  the  content  of  the  designated  general  purpose  register  is  first  decremented 
before  computation  of  the  address;  in  mode  8  the  content  of  the  designated  general  purpose  register  is  incre- 
mented  after  the  register  is  used  to  compute  the  address.  Register  mode  9  is  similar  to  register  mode  8,  except 

20  that  the  content  of  the  designated  general  purpose  register  specifies  the  address  in  memory  at  which  the  op- 
erand  address  will  be  found  rather  than  the  operand  itself. 

Modes  10  through  15  are  various  kinds  of  "displacement  modes."  In  a  displacement  mode  a  displacement 
value,  which  may  comprise  a  byte,  word,  or  longword  in  modes  10,  12  and  14  respectively,  is  added  to  the 
content  of  the  designated  general  purpose  register  to  obtain  the  operand  address.  The  operand  is  determined 

25  in  a  similar  fashion  in  modes  11,13  and  15  except  that  the  sum  of  the  displacement  value  and  the  content  of 
the  general  purpose  register  identifies  a  memory  address  at  which  the  address  of  the  operand  can  be  found. 

In  modes  8  through  15,  the  register  address  field  of  the  first  byte  of  the  operand  specifier  can  designate 
any  of  the  general  purpose  registers,  including  register  R15  which  is  the  program  counter.  For  modes  8  and 
9,  if  the  program  counter  is  addressed,  the  value  of  the  program  counter  itself  is  incremented  which  causes 

30  program  execution  to  jump  over  operand  data  or  an  operand  address  disposed  in  the  instruction  stream.  The 
instruction  decoded  therefore  must  recognize  these  special  cases  of  modes  8  and  9  in  which  the  program  coun- 
ter  is  addressed.  In  mode  8,  this  special  case  is  known  as  an  "immediate"  addressing  mode,  and  for  mode  9 
it  is  known  as  an  "absolute"  addressing  mode.  Specifically,  when  modes  8  and  9  are  decoded  for  any  of  the 
general  purpose  registers  0  through  14,  the  next  specifier  or  the  next  operation  code  appears  immediately  fol- 

35  lowing  the  byte  designating  the  mode  and  the  general  purpose  register.  For  the  immediate  mode,  however,  a 
number  of  bytes  of  the  immediate  data  appear  and  the  number  of  bytes  is  determined  by  the  specifier's  data- 
type. 

Turning  now  to  FIG.  6,  the  data  paths  to  and  from  the  instruction  decoder  20  are  shown  in  greater  detail. 
In  order  to  simultaneously  decode  a  number  of  operand  specifiers,  the  instruction  buffer  19  is  linked  to  the 

40  instruction  decoder  20  by  a  data  path  generally  designated  40  for  conveying  the  values  of  up  to  nine  bytes  of 
an  instruction  being  decoded.  Associated  with  each  byte,  however,  is  a  parity  bit  for  detecting  any  single  bit 
errors  in  the  byte,  and  also  a  valid  data  flag  (l_VALID)  for  indicating  whether  the  instruction  buffer  has  in  fact 
been  filled  with  data  from  the  instruction  cache  (18  in  FIG.  1)  as  requested  by  the  program  counter  (17  in  FIG. 
1).  The  instruction  decoder  decodes  a  variable  number  of  specifiers  depending  upon  the  amount  of  valid  data 

45  in  the  instruction  buffer  19.  Specifically,  the  instruction  decoder  inspects  the  valid  data  flags  to  determine  the 
number  of  specifiers  that  can  be  decoded  and  decodes  them  in  a  single  cycle.  In  accordance  with  the  number 
of  specifiers  that  are  actually  decoded,  the  instruction  decoder  determines  the  number  of  bytes  that  are  de- 
coded  in  order  to  remove  these  bytes  from  the  instruction  buffer  19.  As  shown  in  FIG.  6,  there  is  associated 
with  the  instruction  buffer  19  means  for  shifting  a  selected  number  of  bytes  into  and  out  of  the  instruction  buffer 

so  19.  This  shifting  means  includes  a  shifter  21  which  is  arranged  with  a  merge  multiplexer  22  to  either  re-circulate 
or  shift  data  from  the  instruction  buffer  19.  The  instruction  buffer  operates  as  a  data  latch  to  receive  data  in 
response  to  clocking  by  the  system  clock  of  the  central  processing  unit.  The  instruction  decoder  transmits  a 
number  to  the  shifter  21  to  specify  the  number  of  bytes  to  be  shifted  out  of  the  instruction  buffer  at  the  end 
of  each  cycle. 

55  The  instruction  buffer  19  is  large  enough  to  hold  at  least  three  specifiers  of  the  kind  which  are  typically 
found  in  an  instruction.  The  instruction  decoder  20  is  somewhat  simplified  if  the  byte  0  position  of  the  instruc- 
tion  buffer  holds  the  opcode  while  the  other  bytes  of  the  instruction  are  shifted  into  and  out  of  the  instruction 
buffer  19.  In  effect,  the  instruction  buffer  holds  the  opcode  in  byte  0  and  functions  as  a  first-in,  first-out  buffer 
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for  byte  positions  1  to  8.  The  instruction  decode  is  also  simplified  under  the  assumption  that  only  the  specifiers 
for  a  single  instruction  are  decoded  during  each  cycle  of  the  system  clock.  Therefore,  at  the  end  of  a  cycle  in 
which  all  of  the  specifiers  for  an  instruction  will  have  been  decoded,  the  instruction  decoder  transmits  a  "shift 
op"  signal  to  the  shifter  21  in  order  to  shift  the  opcode  out  of  the  byte  0  position  of  the  instruction  buffer  so 

5  that  the  next  opcode  may  be  received  in  the  byte  0  position. 
The  instruction  cache  (1  8  in  FIG.  1)  preferably  is  arranged  to  receive  and  transmit  instruction  data  in  blocks 

of  multiple  bytes  of  data  and  the  block  size  is  preferably  a  power  of  two  so  that  the  blocks  have  memory  ad- 
dresses  specified  by  a  certain  number  of  most  significant  bits  in  the  address  provided  by  the  program  counter 
(17  in  FIG.  1).  Therefore,  the  address  of  the  operation  codes  from  the  instruction  buffer  will  occur  at  various 

10  positions  within  the  block.  To  load  byte  0  of  the  instruction  buffer  with  the  operation  code  which  may  occur  at 
any  byte  position  within  a  block  of  instruction  data  from  the  cache,  a  rotator  23A  is  disposed  in  the  data  path 
from  the  instruction  cache  18  to  the  instruction  buffer  19.  The  rotator  23A  as  well  as  the  shifter  21  A,  are  com- 
prised  of  cross-bar  switches. 

In  order  to  load  the  byte  0  position  of  the  instruction  buffer  with  an  opcode  in  the  instruction  stream  from 
15  the  instruction  cache,  the  merge  multiplexer  22  has  a  select  input  for  selecting  the  number  of  bytes  from  the 

rotator  be  merged  with  a  select  number  of  bytes  from  the  shifter  21.  In  particular,  the  merge  multiplexer  has 
data  inputs  AO  to  A8,  and  in  response  to  a  particular  "number  to  shift"  m,  the  multiplexer  22  enables  inputs 
AO  A8-m  to  receive  data  from  the  shifter,  and  enables  inputs  B8-m+1  to  receive  data  from  the  rotator. 
As  shown,  this  multiplexing  function  can  be  provided  by  a  multiplexer  22  having  individual  select  inputs  S0- 

20  S8  for  selecting  either  the  respective  A  or  the  respective  B  input,  and  by  enabling  the  individual  select  lines 
S0-S8  by  control  logic  24A  responsive  to  the  NO.  TO  SHIFT  signal  and  the  number  of  valid  entries  (IBUF  VALID 
COUNT)  in  the  instruction  buffer  19,  as  determined  by  logic  26A  responsive  to  valid  data  flags  in  the  instruction 
buffer.  The  control  logic  24A  is  also  responsive  to  the  SHIFT  OP  signal  so  that  when  the  SHIFT  OP  signal  is 
asserted,  the  total  number  of  bytes  to  be  shifted  includes  the  opcode,  and  when  the  SHIFT  OP  signal  is  not 

25  asserted,  the  opcode  from  the  instruction  buffer  is  transmitted  to  the  AO  input  of  the  merge  multiplexer  22  re- 
gardless  of  the  number  to  shift. 

As  shown  in  FIG.  6,  the  data  path  from  the  instruction  cache  includes  eight  parallel  busses,  one  bus  being 
provided  for  each  byte  of  instruction  data.  The  rotator  is  responsive  to  a  "rotate  value"  provided  by  rotator  con- 
trol  logic  26A.  The  rotator  control  logic  26  is  responsive  to  the  NO.  TO  SHIFT  and  the  IBUF  VALID  COUNT, 

30  which  together  indicate  where  the  first  incoming  byte  of  new  instruction  data  is  to  be  placed  in  the  instruction 
buffer  19,  and  a  value  IBEX  VALID  COUNT  which  is  supplied  by  the  instruction  cache  and  associated  buffering 
between  the  cache  and  the  rotator  23A  and  which  indicates  from  where  the  first  incoming  byte  of  new  instruc- 
tion  data  is  obtained. 

It  should  be  noted  that  when  the  instruction  buffer  is  first  loaded  and  at  certain  times  thereafter,  it  is  pos- 
35  sible  that  some  of  the  data  received  by  the  rotator  23A  is  invalid  for  the  purpose  of  transfer  to  the  instruction 

buffer  19.  In  particular,  if  eight  bytes  of  data  are  read  from  the  instruction  cache  and  transferred  directly  to 
the  rotator  23A  and  an  opcode  to  be  loaded  appears  at  a  middle  byte  position  within  the  block,  then  instruction 
data  at  addresses  higher  than  the  opcode  will  be  valid  for  transfer,  and  addresses  lower  than  the  opcode  will 
be  invalid  for  transfer.  Therefore,  it  is  possible  that  the  opcode  and  bytes  immediately  following  it  may  be  valid, 

40  and  the  other  bytes  may  be  invalid.  As  a  consequence,  a  valid  data  flag  indicates  whether  the  byte  position 
associated  with  it  and  all  lower  numbered  byte  positions,  up  to  the  initially  loaded  opcode,  are  valid. 

Once  an  opcode  has  been  loaded  into  the  byte  0  position  of  the  instruction  buffer  19,  the  instruction  de- 
coder  20  examines  it  and  transmits  a  corresponding  microprogram  "fork  address"  to  a  fork  queue  in  the  queues 
(23  in  Fig.  1).  The  instruction  decoder  also  examines  the  other  bytes  in  the  instruction  buffer  to  determine 

45  whether  it  is  possible  to  simultaneously  decode  up  to  three  operand  specifiers.  The  instruction  decoder  further 
separates  the  source  operands  from  the  destination  operands.  In  particular,  in  a  single  cycle  of  the  system 
clock,  the  instruction  decoder  may  decode  up  to  two  source  operands  and  one  destination  operand.  Flags  in- 
dicating  whether  source  operands  or  a  destination  operand  are  decoded  for  each  cycle  are  transmitted  from 
the  instruction  decoder  20  to  the  operand  unit  21  over  a  transfer  bus  (TR).  The  instruction  decoder  20  may 

so  simultaneously  decode  up  to  three  register  specifiers  per  cycle.  When  a  register  specifier  is  decoded,  its  reg- 
ister  address  is  placed  on  the  transfer  bus  TR  and  sent  to  the  source  list  queue  (23  in  FIG.  1)  via  a  transfer 
unit  30  in  the  operand  unit  21. 

The  instruction  decoder  20  may  decode  one  short  literal  specifier  per  cycle.  According  to  the  VAX  instruc- 
tion  architecture,  the  short  literal  specifier  must  be  a  source  operand  specifier.  When  the  instruction  decoder 

55  decodes  a  short  literal  specifier,  the  short  literal  data  is  transmitted  over  a  bus  (EX)  to  an  expansion  unit  31 
in  the  operand  unit  21.  The  expansion  unit  31  expands  the  six  bits  of  the  short  literal  to  the  size  required  by 
the  data  type  of  the  specifier  as  called  for  by  the  instruction  opcode,  and  that  expansion  is  placed  in  the  mini- 
mum  number  of  32-bit  long  words  sufficient  to  hold  the  expansion.  In  other  words,  one  32-bit  longword  is  need- 
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ed  for  a  byte,  word,  longword  or  single  precision  floating-point  datatype;  two  32-bit  longwords  are  needed  for 
a  quadword  or  a  double-precision  floating  point  datatype,  and  four  32-bit  longwords  are  required  for  an  octa- 
word  data  type.  The  32-bit  longwords  are  transmitted  to  the  source  list  (24  in  FIG.  1),  and  a  source  list  pointer 
corresponding  to  the  operand  is  placed  in  the  source  list  pointer  queue  (23  in  FIG.  1). 

5  The  instruction  decoder  20  may  decode  one  complex  specifier  per  cycle.  The  complex  specifier  data  is 
transmitted  by  the  instruction  decoder  20  over  a  general  purpose  bus  (GP)  to  a  general  purpose  unit  32  in  the 
operand  unit  21.  The  general  purpose  unit  32  operates  in  a  similar  fashion  to  a  conventional  operand  unit  which 
shifts  the  content  of  the  index  register  by  a  selected  number  of  binary  positions  corresponding  to  the  data  type 
of  the  specifier,  and  adds  the  shifted  value  to  the  content  of  the  base  register  and  any  displacement  for  the 

10  complex  specifier.  If  the  specifier  has  an  "address"  access  type,  the  computed  value  is  placed  in  the  source 
list  and  a  corresponding  source  list  pointer  is  sent  to  the  source  list  queue  (23  in  FIG.  1).  Otherwise,  if  the  com- 
plex  specifier  specifies  a  source  operand,  memory  is  addressed  by  the  computed  value  to  obtain  the  source 
operand,  or  in  the  case  of  the  deferred  mode,  to  obtain  the  address  of  the  source  operand.  The  source  operand 
is  then  placed  in  the  source  list  (24  in  FIG.  1)  and  a  corresponding  source  list  pointer  is  placed  in  the  source 

15  list  pointer  queue  (23  in  FIG.  1).  If  the  complex  specif  ier  specif  ies  a  destination  operand,  the  computed  value 
is  placed  in  the  destination  queue  (23  in  FIG.  1). 

Once  all  of  the  specifiers  for  the  instruction  have  been  decoded,  the  instruction  decoder  20  transmits  the 
"shift  op"  signal  to  the  shifter  21  . 

Turning  now  to  FIG.  7,  the  format  for  the  GP  bus  is  shown  in  greater  detail.  The  GP  bus  transmits  a  single 
20  bit  "valid  data  flag"  (VDF)  to  indicate  to  the  general  purpose  unit  32  whether  a  complex  specifier  has  been  de- 

coded  during  the  previous  cycle  of  the  system  clock.  A  single  bit  "index  register  flag"  (IRF)  is  also  transmitted 
to  indicate  whether  the  complex  specifier  references  an  index  register.  Any  referenced  index  register  is  des- 
ignated  by  a  four-bit  index  register  number  transmitted  over  the  GP  bus.  The  GP  bus  also  conveys  four  bits 
indicating  the  specifier  mode  of  the  complex  specifier,  four  bits  indicating  the  base  register  number,  and  thirty- 

25  two  bits  including  any  displacement  specified  by  the  complex  specifier. 
The  GP  bus  also  transmits  a  three-bit  specifier  number  indicating  the  position  of  the  complex  specifier  in  the 

sequence  of  the  specifiers  for  the  current  instruction.  The  specifier  number  permits  the  general  purpose  unit  32  to 
select  access  and  data  type  for  the  specified  operand  from  a  decode  of  the  opcode  byte.  Therefore,  it  is  possible 
for  the  general  purpose  unit  32  to  operate  somewhat  independently  of  the  expansion  unit  31  and  transfer  unit  30 

30  of  FIG.  6.  In  particular,  the  general  purpose  unit  32  provides  an  independent  stall  signal  (OPU_STALL)  which  indi- 
cates  whether  the  general  purpose  unit  32  requires  more  than  one  cycle  to  determine  the  operand. 

Turning  now  to  FIG.  8,  there  is  shown  the  format  for  the  expansion  bus  (EX).  The  expansion  bus  conveys 
a  single  bit  valid  data  flag,  the  six  bits  of  the  short  literal  data,  and  a  three-bit  specifier  number.  The  specifier 
number  indicates  the  position  of  the  short  literal  specifier  in  the  sequence  of  specifiers  following  the  current 

35  instruction,  and  is  used  by  the  expansion  unit  31  to  select  the  relevant  datatype  from  a  decode  of  the  opcode 
byte.  Therefore,  the  expansion  unit  31  may  also  operate  rather  independently  and  provides  a  respective  stall 
signal  (SL_STALL)  which  indicates  whether  the  expansion  unit  requires  more  than  one  cycle  to  process  a  short 
literal  specifier. 

Turning  now  to  FIG.  9,  there  is  shown  the  format  for  the  transfer  bus  (TR).  The  TR  bus  includes  a  first 
40  source  bus  35,  a  second  source  bus  36  and  a  destination  bus  37,  each  of  which  conveys  a  respective  valid 

data  flag  (VDF),  a  register  flag  (RGF)  and  a  register  number.  The  register  flag  is  set  when  a  corresponding 
register  specifier  has  been  decoded.  Also,  whenever  a  complex  or  short  literal  specifier  is  decoded,  then  a 
respective  one  of  the  valid  data  flags  in  the  first  source,  second  source  or  destination  buses  is  set  and  the 
associated  register  flag  is  cleared  in  order  to  reserve  a  space  in  the  data  path  to  the  source  list  point  queue 

45  or  the  destination  queue  for  the  source  or  destination  operand. 
Turning  now  to  FIG.  10,  there  is  shown  a  flowchart  of  the  operations  performed  during  a  single  cycle  of 

the  system  clock  for  decoding  an  instruction.  In  a  first  step  41  ,  a  double-byte  opcode  flag  is  inspected  to  de- 
termine  whether  the  first  byte  of  a  double-byte  operation  code  was  detected  during  the  previous  cycle.  If  not, 
then  in  step  42  the  instruction  decoder  checks  whether  the  byte  0  position  of  the  instruction  buffer  includes 

so  the  first  byte  of  a  double-byte  opcode.  Fora  VAX  instruction,  the  first  byte  of  a  double-byte  opcode  has  a  value 
of  FD  hexadecimal.  If  this  value  is  detected,  then  in  step  43  the  double-byte  opcode  flag  is  set  for  the  benefit 
of  the  next  cycle  and  the  SHIFT  OP  signal  is  sent  to  the  shifter  (21  of  FIG.  6)  with  a  NO.  TO  SHIFT  equal  to 
one  to  shift  the  first  opcode  byte  out  of  the  instruction  buffer  and  to  receive  the  second  byte  of  the  opcode  in 
the  byte  0  position. 

55  When  byte  0  does  not  indicate  a  double-byte  opcode,  then  in  step  44  up  to  three  specifiers  are  decoded 
simultaneously.  The  preferred  method  of  simultaneous  decoding  is  described  further  below  in  connection  with 
FIG.  11  .  After  decoding  the  specifiers,  in  step  45  the  decoder  determines  whether  all  of  the  specifiers  for  the 
opcode  have  been  decoded.  For  this  purpose,  the  decoder  has  a  register  which  stores  the  total  number  of  spe- 
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cif  iers  that  were  decoded  in  previous  cycles  for  the  current  operation  code.  The  value  in  this  register  is  referred 
to  as  the  "specifiers  completed."  Therefore,  in  step  45  the  decoder  determines  whether  all  of  the  specifiers 
are  decoded  for  the  operation  code  by  comparing  the  number  of  specifiers  for  the  operation  code  (referred  to 
as  the  specifier  count)  to  the  sum  of  the  "specifiers  completed"  and  the  number  of  specifiers  having  been  de- 

5  coded  in  step  44. 
If  all  of  the  specif  iers  are  decoded  for  the  operation  code,  then  in  step  46  the  decoder  determines  the  num- 

ber  of  bytes  to  shift  as  equal  to  one  plus  the  specifier  bytes  decoded  in  step  44.  The  additional  one  is  for  shifting 
a  new  operation  code  into  the  instruction  buffer.  To  do  this,  the  instruction  decoder  asserts  the  "shift  op"  signal. 
The  double-byte  opcode  flag  is  cleared  at  this  time  and  also  the  "specifiers  completed"  is  set  to  zero  to  begin 

10  decoding  of  the  next  instruction  during  the  next  cycle. 
If  in  step  45  it  was  determined  that  there  are  additional  specifiers  to  be  decoded  for  the  operation  code, 

then  in  step  47  the  shifter  (21  in  FIG.  6)  is  sent  a  "number  to  shift"  equal  to  the  number  of  specifier  bytes  having 
been  decoded  in  step  44.  Also,  the  "specifiers  completed"  is  increased  by  the  number  of  specif  iers  having  been 
decoded  in  step  44.  This  completes  the  decoding  during  the  present  cycle. 

15  Turning  now  to  FIG.  11,  there  is  shown  a  flowchart  of  a  method  of  decoding  up  to  three  specifiers  simul- 
taneously.  In  a  first  step  51  ,  the  decoder  determines  whether  an  "extended  immediate"  addressing  mode  was 
detected  during  a  previous  cycle  so  that  the  next  four  bytes  in  the  instruction  buffer  are  properly  interpreted 
as  extended  immediate  data.  This  decision  is  critical  because  there  is  no  restriction  on  the  values  that  the  ex- 
tended  immediate  data  may  assume,  so  that  they  could  possibly  assume  values  that  are  characteristic  of  reg- 

20  ister  or  short  literal  specifiers  or  various  other  addressing  modes.  If  the  instruction  buffer  may  contain  such 
extended  immediate  data,  then  in  step  52  the  decoder  determines  whether  bytes  1  to  4  contain  valid  data.  If 
not,  then  in  step  53  the  instruction  decoder  determines  a  shift  count  (SC)  and  a  number  of  the  specifiers  de- 
coded  (N)  indicating  respectively  the  number  of  specifier  bytes  and  the  number  of  specifiers  decoded  this  cy- 
cle.  Since  these  parameters  are  set  to  zero,  the  instruction  decoder  in  effect  stalls  during  the  current  cycle. 

25  If  in  step  52  it  was  determined  that  bytes  1  to  4  are  valid,  then  they  can  be  decoded.  In  step  54,  the  shift 
count  (SC)  for  the  specifier  bytes  is  set  equal  to  four  and  the  number  of  specifiers  decoded  (N)  is  set  equal  to 
zero.  Then,  in  step  55  the  longword  count  is  decremented  to  indicate  that  a  longword  of  extended  immediate 
data  has  been  decoded.  In  step  56,  the  longword  count  is  compared  to  zero  to  determine  whether  additional 
longwords  of  extended  immediate  data  need  to  be  decoded.  If  so,  decoding  is  finished  for  the  present  cycle. 

30  Otherwise,  in  step  57  the  decoding  of  the  extended  immediate  specifier  is  finished,  and  an  extended  immediate 
flag  (X8F)  is  cleared.  This  flag,  for  example,  inhibits  the  SHIFT  OP  signal  when  extended  immediate  data  is 
being  decoded;  this  is  done  as  a  matter  of  convenience  so  that  the  value  of  the  number  of  specifiers  decoded 
(N)  need  not  be  adjusted  when  the  extended  immediate  mode  is  first  detected. 

Returning  to  step  51,  if  the  decoder  is  not  expecting  extended  immediate  data,  then  in  step  58  the  "access 
35  type"  of  the  opcode  is  inspected  to  determine  whether  the  data  in  the  instruction  buffer  is  to  be  interpreted  as 

a  branch  displacement.  In  step  59  the  instruction  decoder  checks  the  access  type  of  the  next  specifier  to  de- 
termine  whether  it  is  an  "implied"  specifier. 

Since  the  instruction  decoder  has  the  capability  of  decoding  multiple  specifiers,  it  is  very  advantageous 
for  it  to  create  operands  for  implied  specifiers,  rather  than  having  the  execution  unit  execute  microcode  se- 

40  quences  to  implement  the  implied  specifiers.  This  is  particularly  advantageous  when  the  stack  pointer  is  an 
implied  specifier  that  must  be  incremented  or  decremented.  In  this  case,  a  base  register  number  of  E  hexa- 
decimal  and  a  specifier  mode  of  seven  or  eight  is  asserted  on  the  GP  bus  to  cause  the  stack  pointer  to  be 
automatically  incremented  or  decremented  by  the  general  purpose  unit  (32  in  FIG.  6).  Stack  operations  (e.g., 
PUSH)  can  be  implemented  using  an  implied  stack  pointer  operand,  and  they  become  similar  to  a  move  in- 

45  struction  and  can  be  executed  in  a  single  cycle.  A  complete  list  of  VAX  instructions  having  such  stack  register 
implied  operands  is  included  in  Appendix  I.  For  these  instructions,  it  is  preferable  for  the  stack  pointer  to  be 
asserted  on  the  GP  bus  rather  than  have  the  execution  unit  cause  the  incrementing  and  decrementing  of  the 
stack  pointer. 

In  step  60  the  instruction  decoder  determines  the  maximum  number  of  specifiers,  up  to  three,  that  should 
so  be  decoded  during  the  present  cycle  assuming  that  valid  data  is  present  in  the  instruction  buffer.  Once  the 

number  of  specifiers  to  request  has  been  determined,  in  step  61  the  instruction  decoder  determines  an  initial 
number  of  specifiers  to  decode  and  a  shift  count  for  the  present  cycle.  These  initial  values  are  used  by  an 
"intra-instruction  read  conflict"  detector  which  may  change  the  initial  values  if  such  a  conflict  is  detected. 

An  intra-instruction  read  conflict  occurs  whenever  an  instruction  includes  an  autoincrement  or  an  auto- 
55  decrement  specifier  which  references  either  directly  or  indirectly  a  register  specified  by  a  previously  occurring 

specifier  for  the  current  instruction.  To  avoid  stalls  during  the  preprocessing  of  instructions  by  the  instruction 
unit  (12  in  FIG.  1),  register  pointers  rather  than  register  data  are  usually  passed  to  the  execution  unit  because 
register  data  is  not  always  available  at  the  time  of  instruction  decoding.  This  also  permits  up  to  three  register 
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numbers  to  be  passed  simultaneously  over  twelve  data  lines  rather  than  ninety-six  lines  that  would  be  required 
for  passing  the  contents  of  the  three  registers.  If  an  intra-instruction  read  conflict  exists,  however,  the  operand 
value  specified  by  the  conflicting  register  specifier  is  the  initial  value  of  the  register  being  incremented  or  de- 
cremented,  and  this  initial  value  will  have  been  changed  by  the  time  that  the  execution  unit  executes  the  in- 

5  struction.  Preferably,  the  proper  initial  value  is  obtained  prior  to  the  incrementing  or  decrementing  of  the  con- 
flicting  register  by  putting  the  instruction  decoder  into  a  special  IRC  mode  in  which  only  one  specifier  is  de- 
coded  per  cycle,  and  if  a  specifier  being  decoded  is  a  register  specifier,  the  content  of  the  specified  register 
is  transmitted  over  the  GP  bus  to  the  general  purpose  unit  in  order  to  obtain  the  content  of  the  specified  register 
and  transmit  it  to  the  execution  unit. 

10  As  shown  in  the  flowchart  of  FIG.  11,  the  intra-instruction  read  conflict  is  detected  in  step  62  taking  into 
consideration  the  initial  number  of  specifiers  that  could  be  decoded  during  the  present  cycle.  If  an  intra-in- 
struction  read  conflict  would  exist  for  the  initial  number  of  specifiers  determined  in  step  61,  then  in  step  63 
the  number  (N)  of  specifiers  being  decoded  this  cycle  and  the  shift  count  (SC)  are  selected  under  the  assump- 
tion  that  only  one  specifier  should  be  requested.  Also,  if  a  register  specifier  is  decoded,  the  register  specifier 

15  is  transmitted  over  the  GP  bus  to  the  general  purpose  unit  (32  in  FIG.  6)  instead  of  being  transmitted  as  a  reg- 
ister  number  over  the  TR  bus  to  the  transfer  unit  (30  in  FIG.  6).  If  an  intra-instruction  read  conflict  is  not  detected 
in  step  62  or  has  been  resolved  in  step  63,  then  in  step  64  the  instruction  decoder  determines  whether  any 
specifier  being  decoded  has  an  "extended  immediate"  mode.  If  so,  then  in  step  65  the  "longword  count"  used 
above  in  steps  55  and  56  is  set  in  accordance  with  the  data  type  of  the  extended  immediate  specifier.  If  the 

20  data  type  is  a  quadword,  then  the  first  four  bytes  of  the  extended  immediate  data  quadword  will  be  decoded 
during  the  present  cycle,  and  the  last  four  bytes  of  quadword  data  need  to  be  decoded  during  a  subsequent 
cycle.  Therefore,  the  longword  count  is  set  to  one  to  indicate  that  one  additional  longword  of  extended  immedi- 
ate  data  needs  to  be  decoded.  If  the  data  type  of  the  extended  immediate  specifier  is  an  octaword,  then  the 
longword  count  is  set  to  three  to  indicate  that  three  additional  longwords  of  extended  immediate  data  need  to 

25  be  decoded  during  subsequent  cycles.  Also,  in  step  65  the  "shift  op"  signal  is  inhibited.  So  that  the  number  of 
specifiers  N  to  decode  need  not  be  changed  when  the  extended  immediate  mode  is  detected  in  step  64,  the 
"shift  op"  signal  is  inhibited  until  the  last  longword  of  extended  immediate  data  is  decoded.  Otherwise,  the  op- 
eration  code  for  the  present  instruction  would  be  shifted  out  of  the  instruction  buffer  if  the  extended  immediate 
specifier  were  the  last  specif  ier  for  the  current  instruction. 

30  Once  the  number  of  specifiers  to  decode  and  the  shift  count  have  been  determined,  then  in  step  66  the 
flags  and  the  specifier  information  for  the  GP,  SL  and  TR  buses  (FIGS.  7  to  9)  are  determined.  Finally,  in  step 
67  the  specifier  information  is  placed  onto  the  GP,  SL  and  TR  buses.  This  completes  the  decoding  procedure 
for  the  current  cycle. 

Turning  now  to  FIG.  12,  there  is  shown  a  block  diagram  of  a  preferred  embodiment  of  the  instruction  de- 
35  coder  20.  In  order  to  detect  a  double-byte  opcode,  there  is  provided  an  extended  opcode  decoder  101  which 

asserts  an  EXT  signal  when  byte  0  in  the  instruction  buffer  has  a  value  of  FD  hexadecimal.  The  EXT  signal 
is  used  to  set  the  double-byte  opcode  flag  which  is  indicated  by  a  flip-flop  1  02.  Gates  1  03  and  1  04  are  provided 
to  initially  clear  the  double-byte  opcode  flag  when  all  of  the  specifiers  for  the  instruction  have  been  decoded 
and  also  when  the  instruction  buffer  is  initially  loaded. 

40  To  decode  the  operation  code,  combinational  logic  105  receives  the  double-byte  opcode  flag  and  the  con- 
tent  of  byte  0  of  the  instruction  buffer.  For  each  operation  code,  the  decode  logic  generates  a  "spec  count" 
indicating  the  number  of  specifiers  following  the  operation  code,  and  the  access  type  and  data  type  for  each 
specifier.  Since  the  decoder  20  can  decode  up  to  three  specifiers,  only  the  access  and  data  type  for  the  next 
three  specifiers  to  be  decoded  are  pertinent.  In  order  to  select  the  pertinent  access  and  data  type  information, 

45  there  is  provided  a  multiplexer  106  receiving  the  access  and  data  type  for  each  of  the  six  possible  specifiers 
for  each  operation  code  and  selecting  the  information  for  the  next  three  specifiers.  The  positions  to  select  is 
controlled  by  the  number  of  specifiers  completed  which  is  indicated  by  a  register  107. 

The  "spec  count"  or  number  of  specif  iers  in  the  current  opcode  is  sent  from  the  decode  logic  1  05  to  a  three- 
bit  binary  subtractor  1  08  which  subtracts  the  number  of  specif  iers  completed  from  the  spec  count  to  determine 

so  the  number  of  specifiers  remaining  to  be  decoded.  The  number  of  specifiers  remaining  to  be  decoded  is  com- 
pared  in  a  comparator  1  09  to  the  number  N  of  specifiers  actually  decoded  to  determine  whether  all  of  the  spe- 
cifiers  for  the  current  instruction  will  be  decoded  by  the  end  of  the  current  cycle.  However,  if  the  last  specifier 
has  an  extended  immediate  mode,  the  comparator  109  will  assert  an  active  signal  even  though  the  extended 
immediate  specifier  has  only  been  partially  decoded.  The  extended  immediate  mode  is  detected  by  an  extend- 

55  ed  immediate  detector  110  which  generates  a  signal  for  inhibiting  the  "shift  op"  signal.  This  inhibiting  signal  is 
combined  with  the  output  from  the  comparator  109  in  an  AND  gate  111  to  generate  a  signal  which  causes  the 
"shift  op"  signal  to  be  asserted  and  which  also  clears  the  double-byte  flag.  So  that  the  register  107  will  indicate 
the  proper  number  of  specifiers  completed  at  the  beginning  of  the  next  cycle,  it  has  a  data  input  receiving  the 
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output  of  a  three-bit  binary  adder  113  which  receives  the  data  output  of  the  register  107  and  combines  it  with 
the  number  of  specifiers  actually  decoded  during  the  current  cycle. 

In  order  to  determine  the  number  of  specifiers  to  request  during  the  current  cycle,  the  instruction  decoder 
20  includes  request  logic  114  which  receives  from  the  multiplexer  106  the  attributes  of  the  next  three  specifiers 

5  and  also  receives  information  from  a  mode  decoder  115  which  decodes  the  modes  of  the  first  four  bytes  fol- 
lowing  the  operation  code  in  the  instruction  buffer.  The  mode  decoder  performs  a  simple  decode  of  bytes  1 
to  4  of  the  instruction  decoder  according  to  the  table  shown  in  FIG.  5,  and  provides  respective  binary  outputs 
indicating  whether  each  of  bytes  1  to  4  could  possibly  be  a  register  specifier,  a  short  literal  specifier,  an  index 
register,  a  complex  specifier,  a  complex  specifier  having  an  absolute  addressing  mode  (i.e.,  the  byte  has  a 

10  value  of  9F  hexadecimal),  or  a  complex  specifier  having  an  immediate  mode  (i.e.,  the  respective  byte  has  a 
value  of  8F  hexadecimal).  The  mode  decoder  115  also  recognizes  the  sequence  of  bytes  1  to  4  as  belonging 
to  a  particular  one  of  four  primary  cases.  These  cases  are  further  shown  and  described  below  in  connection 
with  FIG.  21. 

In  addition  to  determining  the  number  of  specifiers  which  may  possibly  be  decoded  during  the  present  cy- 
15  cle,  the  request  logic  determines  whether  the  first  three  bytes  in  the  instruction  buffer  represent  a  permissible 

sequence  of  specif  ier  modes.  If  the  sequence  is  impermissible,  the  request  logic  generates  an  addressing  fault 
signal  which  is  combined  in  an  OR  gate  116  with  other  fault  signals  such  as  parity  error  signals  in  order  to  stall 
the  instruction  decoder.  The  output  of  the  OR  gate  is  fed  to  a  flip-flop  117  to  provide  a  decoder  fault  signal 
which  may  interrupt  the  execution  of  the  current  program  when  the  fault  is  recognized  by  the  execution  unit.  The 

20  decoder  remains  stalled  by  the  flip-flop  117  until  the  flip-flop  is  cleared  by  a  RESTART  signal.  Another  OR  gate  118 
combines  the  decoder  fault  signal  with  the  output  of  the  OR  gate  116  and  any  stall  signal  (OPU_STALL)  from  the 
operand  unit  21  to  provide  a  signal  for  stalling  the  instruction  decoder.  The  output  of  the  OR  gate  116  and  the 
decoder  fault  signal  are  also  used  to  inhibit  an  AND  gate  119  which  determines  whether  an  instruction  has  been 
completely  decoded.  The  output  of  the  AND  gate  119  is  latched  in  a  register  120  to  provide  a  signal  indicating 

25  the  transmission  of  a  new  valid  fork  address  to  the  fork  queue  (in  the  queues  23  in  FIG.  1)  for  transmission  to 
the  instruction  issue  unit  and  microcode  execution  unit  (25  and  28  in  FIG.  1). 

The  request  logic  114  generates  the  addressing  fault  signal,  for  example,  when  it  detects  a  byte  having 
an  index  mode  which  is  immediately  followed  in  the  instruction  buffer  by  a  byte  having  a  register  mode,  a  short 
literal  mode  or  an  index  mode.  In  other  words,  an  addressing  fault  is  generated  whenever  a  byte  having  an 

30  index  mode  is  not  followed  by  a  complex  specifier.  An  addressing  fault  also  occurs  when  a  specifier  to  be  de- 
coded  has  a  "write"  access  type  but  the  specifier  also  has  a  short  literal  mode. 

The  request  logic  encodes  information  about  the  architecture  of  the  instructions  being  decoded  in  order 
to  select  predetermined  decoding  cases  that  depend  in  a  complex  way  upon  the  attributes  of  the  next  three 
specifiers  and  the  possible  modes  of  bytes  1  to  3  in  the  instruction  decoder.  The  request  logic  114  also  limits 

35  the  number  of  specifiers  requested  to  the  number  of  specifiers  needed  when  the  number  of  specifiers  remain- 
ing  is  less  than  three,  and  further  selects  zero  specifiers  when  there  isadecoderstall.  The  number  of  specif  iers 
needed  is  obtained  from  the  number  of  specifiers  remaining  by  two  OR  gates  121,  122.  The  request  logic  also 
requests  zero  specifiers  whenever  there  is  an  addressing  fault. 

Shown  in  Appendix  II  is  a  truth  table  of  the  request  logic  for  decoding  VAX  instructions.  The  table  includes 
40  the  following  rows:  N  (the  number  of  specifiers  needed);  SP3,  SP2,  SP1  (the  access  types  of  the  next  three 

specifiers  for  the  instruction  as  defined  on  page  371  of  Levy  &  Eckhouse,  Jr.,  cited  above,  and  further  including 
implied  read  and  implied  write  specifiers);  R4,  S4,  14,  R3,  S3,  13,  R2,  S2,  12,  R1,  S1,  11  (designating  whether 
the  respective  bytes  1  to  4  in  the  instruction  buffer  have  a  register,  short  literal  or  index  mode);  REQ.  (the  case 
to  request);  and  RAF  (indicating  an  addressing  fault). 

45  The  initial  number  of  specifiers  to  decode  (N')  and  the  initial  number  of  specifier  bytes  to  decode  (SC) 
are  determined  by  shift  count  logic  123  which  receives  the  mode  information,  an  IRC_CYCLE  signal,  the  GP 
and  SL  stall  signals,  the  bytes  and  valid  flags  from  the  instruction  buffer,  and  the  data  types  of  the  next  three 
specifiers.  The  shift  count  logic  consists  of  a  number  of  logic  trees  for  the  various  cases.  These  cases  include 
cases  for  requesting  one,  two  or  three  specifiers  for  a  branch  byte  (R1BB,  R2BB,  R3BB)  or  a  branch  word 

so  instruction  (R1  BW,  R2BW,  R3BW).  The  shift  count  logic  further  includes  a  case  for  requesting  one  specifier 
of  an  instruction  having  an  implied  specifier  (R1  1),  and  requesting  two  specif  iers  for  an  instruction  having  an 
implied  specifier  (R2I).  The  shift  count  logic  further  includes  five  cases  for  requesting  from  one  to  three  spe- 
cifiers  which  are  not  branch  displacements  or  implied  specifiers.  These  cases  include  a  single  case  (R1)  for 
requesting  one  specifier,  two  cases  (R2,  R2R)  for  requesting  two  specifiers,  and  two  cases  (R3,  R3XR)  for 

55  requesting  three  specifiers. 
The  R2R  tree  is  requested  only  when  the  first  byte  is  neither  a  register  specifier  nor  a  short  literal,  and 

the  second  specifier  should  not  be  a  short  literal.  This  special  case  is  provided  to  permit  the  request  logic  to 
generate  an  addressing  fault  signal  (RAF)  during  the  next  cycle  when  the  short  literal  appears  in  the  first  byte. 
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In  other  words,  the  request  logic  selects  the  R2R  tree  when  two  specifiers  are  needed  and  the  second  specifier 
has  a  write  or  modify  access  type.  This  simplifies  the  request  logic  since  it  permits  the  request  logic  which 
generates  the  addressing  fault  signal  to  only  look  at  the  mode  of  the  first  byte.  In  a  similar  fashion,  the  R3XR 
tree  will  decode  three  specifiers  only  when  the  last  specifier  is  a  register.  When  three  specifiers  are  needed, 

5  the  request  logic  requests  the  R3  tree  only  when  the  first  two  bytes  are  register  or  short  literal  specifiers,  and 
otherwise  selects  the  R3XR  tree. 

Each  of  these  logic  trees  generates  an  initial  number  of  specifiers  decoded  (N')  and  a  shift  count  of  the 
specifier  bytes  decoded  (SC).  The  request  logic  114  operates  multiplexers  124  and  125  to  select  N'  and  SC 
from  the  requested  logic  tree.  N'  is  used  by  an  intra-instruction  read  conflict  detector  126  to  determine  whether 

10  such  an  intra-instruction  read  conflict  would  occur.  If  so,  a  signal  IRC  is  asserted.  The  IRC  signal  and  an  X8F 
signal  operate  a  third  multiplexer  126A  to  select  the  N  and  SC  indicating  the  number  of  specif  iers  and  specifier 
bytes  actually  decoded.  The  extended  immediate  signal  X8F  has  priority,  in  which  case  N  is  zero  and  SC  is 
either  zero  or  four  in  order  to  decode  four  bytes  of  extended  immediate  data.  The  IRC  signal  has  second  priority, 
in  which  case  N  and  SC  will  be  selected  from  the  logic  trees  for  decoding  at  most  one  specifier.  In  other  words, 

15  when  an  intra-instruction  read  conflict  is  detected,  only  one  specifier  is  decoded  for  each  cycle  of  the  system 
clock.  If  the  tree  initially  selected  requests  three  specifiers  for  a  byte  branch  instruction,  for  example,  then  when 
an  intra-instruction  read  conflict  is  detected,  the  R1  tree  is  selected,  then  the  R1  tree  is  again  selected,  and 
finally  the  R1BB  tree  is  selected,  instead  of  the  R3BB  tree. 

The  actual  number  of  bytes  to  be  shifted  by  the  shifter  (21  in  FIG.  6)  is  obtained  by  selectively  adding  one 
20  to  the  specifier  byte  shift  count  SC  in  an  adder  127. 

The  final  steps  in  the  decoding  procedure  are  performed  by  output  selection  and  validation  logic  128  which 
determines  the  locations  in  the  instruction  buffer  of  the  data  for  the  specifiers  being  decoded  in  the  current 
cycle.  For  the  TR  bus,  the  information  for  the  first  source  operand  is  obtained  from  byte  1  of  the  instruction 
buffer.  A  multiplexer  129  obtains  information  fora  second  source  specifierfrom  the  instruction  buffer,  and  sim- 

25  ilarly  a  multiplexer  130  obtains  information  for  any  destination  specifier.  In  a  similar  fashion,  a  multiplexer  131 
obtains  any  short  literal  data  from  the  instruction  buffer.  Information  about  a  general  purpose  specifier  is  ob- 
tained  by  a  shifter  132  from  successive  bytes  in  the  instruction  buffer.  In  order  to  pre-process  implied  speci- 
fiers,  a  final  multiplexer  133  selects  the  stack  pointer  (SP)  as  the  base  register  and  in  addition  selects  either 
a  mode  of  eight  or  a  mode  of  nine  for  an  implied  read  or  an  implied  write,  respectively. 

30  Turning  now  to  FIG.  13,  there  is  shown  a  schematic  diagram  of  the  shift  count  logic  for  the  R1  BB  tree. 
This  logic  tree  is  selected,  for  example,  to  decode  the  byte  displacement  of  a  branch  instruction  (such  as  the 
BRB  instruction  in  the  VAX  architecture).  Agate  141  asserts  that  N'  and  SC  are  both  equal  to  one  when  byte 
1  in  the  instruction  decoder  is  valid,  and  otherwise  both  N'  and  SC  are  zero.  Byte  1  in  the  instruction  buffer 
is  valid  when  its  valid  data  flag  (l_VALID[1])  is  set  and  the  general  purpose  unit  (32  in  FIG.  6)  is  not  stalled. 

35  Turning  now  to  FIG.  14,  there  is  shown  a  schematic  diagram  of  the  R1BW  logic  tree.  This  logic  tree  is  se- 
lected  to  decode  the  word  displacement  of  a  branch  instruction  (such  as  the  BRW  instruction  in  the  VAX  ar- 
chitecture).  N'  is  one  and  SC  is  two  if  byte  2  in  the  instruction  buffer  is  valid,  and  otherwise  both  N'  and  SC 
are  zero.  The  validity  of  byte  2  in  the  instruction  buffer  is  determined  by  a  gate  142  in  accordance  with  the 
valid  data  flag  (l_VALID[2])  and  the  GP_STALL  signal. 

40  Turning  now  to  FIG.  15,  there  is  shown  a  schematic  diagram  of  the  shift  count  logic  for  the  R1I  tree  for 
decoding  one  implied  specifier.  This  tree  is  selected,  for  example,  when  decoding  a  return  from  subroutine 
instruction.  The  shift  count  is  zero  because  there  are  no  explicit  specifiers  in  the  instruction  buffer  to  decode. 
The  number  of  specifiers  decoded  N'  is  zero  if  the  general  purpose  unit  is  stalled,  and  otherwise  N'  is  one. 
Therefore,  the  R1I  logic  tree  includes  a  single  inverter  143  which  inverts  the  GP_STALL  signal. 

45  Turning  now  to  FIG.  16,  there  is  shown  a  schematic  diagram  of  the  R2BB  logic  tree  which  is  selected  when 
a  second  specifier  to  decode  is  a  byte  displacement  for  a  branch  instruction.  When  this  logic  tree  is  selected, 
byte  1  must  be  a  register  or  short  literal,  and  byte  2  is  the  displacement.  Neither  of  these  bytes  can  be  decoded 
if  byte  1  is  a  short  literal  and  there  is  a  short  literal  stall.  Otherwise,  both  of  the  bytes  can  be  decoded  if  byte 
2  is  valid  and  there  is  no  stall.  If  only  the  general  purpose  unit  is  stalled  and  the  first  byte  is  valid,  then  only 

so  the  first  byte  can  be  decoded.  These  decisions  are  made  by  two  gates  144  and  145,  and  a  multiplexer  146. 
Turning  now  to  FIG.  17,  there  is  shown  a  schematic  diagram  of  the  R2BW  logic  tree  which  is  used  for  de- 

coding  two  specifiers,  the  first  of  which  must  be  a  register  specifier  and  the  second  of  which  is  a  word  dis- 
placement.  All  three  of  the  bytes  are  decoded  if  the  third  byte  is  valid  and  the  general  purpose  unit  is  not  stalled, 
as  detected  by  a  gate  147.  Otherwise,  the  register  specifier  can  be  decoded  if  it  is  valid.  An  OR  gate  148  and 

55  a  multiplexer  149  are  provided  to  give  the  correct  values  of  N'  and  SC  in  these  instances. 
Turning  now  to  FIG.  18,  there  is  shown  a  schematic  diagram  of  the  R2I  logic  tree.  This  tree  is  selected 

when  the  first  byte  is  a  register  or  short  literal  specifier,  and  a  second  specifier  is  to  be  implied.  N'  and  SC 
are  both  zero  if  the  first  byte  cannot  be  decoded,  as  detected  by  gates  150  and  151.  Otherwise,  SC  is  one 
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and  N'  is  at  least  one.  N'  is  two  when  the  implied  specifier  can  be  sent  to  the  general  purpose  unit;  in  other 
words,  when  the  GP_STALL  signal  is  not  asserted.  The  correct  value  of  N  in  these  instances  is  determined  by 
gates  152  and  153. 

Turning  now  to  FIG.  19,  there  is  shown  a  schematic  diagram  of  the  R3BB  logic  tree  which  is  used  when 
5  byte  1  is  a  register  or  short  literal  specifier,  byte  2  is  a  register  specifier,  and  byte  3  is  a  byte  displacement. 

Since  all  of  the  specifiers  are  one  byte  in  length,  N'  is  equal  to  SC.  N'  is  equal  to  three  only  if  the  third  byte 
is  valid  and  the  general  purpose  unit  is  not  stalled.  Otherwise,  N'  equals  two  if  the  second  byte  is  valid  and  it 
is  not  true  that  byte  1  is  a  short  literal  and  the  expansion  unit  (31  in  FIG.  6)  is  stalled.  The  values  of  N'  and  SC 
in  these  instances  are  determined  by  gates  154,  155,  156,  157  and  158. 

10  Turning  now  to  FIG.  20,  there  is  shown  a  schematic  diagram  of  the  R3BW  logic  tree  which  is  used  when 
byte  1  is  a  register  or  short  literal,  byte  2  is  a  register,  and  bytes  3  and  4  are  a  word  displacement.  Under  these 
circumstances,  N'  and  SC  are  zero  if  and  only  if  byte  1  is  a  short  literal  and  the  expansion  unit  is  stalled,  or  if 
byte  1  is  invalid.  (Recall  that  if  byte  1  is  invalid,  so  is  byte  2  and  byte  4.)  N'  equals  three  and  SC  equals  four 
if  bytes  1  ,  2  and  4  are  all  valid  and  there  are  no  stalls.  Otherwise,  N'  equals  two  and  SC  equals  two  if  byte  4 

15  is  invalid  or  if  the  general  purpose  unit  is  stalled;  N'  and  SC  are  both  equal  to  one  if  byte  2  is  valid.  The  values 
of  N'  and  SC  in  these  instances  is  determined  by  gates  159,  160,  161,  162,  163  and  164. 

The  request  logic  (114  in  FIG.  12)  and  the  extended  immediate  detector  (110  in  FIG.  12)  dispose  of  the 
cases  where  branch  displacements  or  extended  immediate  data  occur  in  the  instruction  buffer.  Aside  from 
these  cases,  it  has  been  found  that  legal  sequences  of  three  specifiers  in  the  instruction  buffer  beginning  in 

20  byte  1  ,  where  at  most  one  of  the  specifiers  is  a  complex  specifier,  will  fall  into  one  of  four  primary  cases  as 
shown  in  FIG.  21.  For  the  purpose  of  illustration,  complex  specifiers  having  a  longword  displacement  are 
shown. 

The  four  primary  cases  are  identified  by  binary  subscripts  which  indicate  the  binary  values  of  a  CASE 
selection  signal  generated  by  the  mode  decoder(115  in  FIG.  12).  InCASE^  the  complex  specifier  base  register 

25  begins  in  byte  1,  in  CASE0i  the  complex  specifier  base  register  begins  in  byte  2,  in  CASE00  the  complex  spe- 
cifier  base  register  begins  in  byte  3,  and  in  CASE10  the  complex  specifier  base  register  begins  in  byte  4.  It  is 
possible,  however,  that  all  three  specifiers  are  register  specifiers,  or  one  specifier  is  a  short  literal  and  the 
other  is  a  register  specifier,  which  fall  into  CASE00.  It  should  be  noted  that  in  any  case,  three  specifiers  cannot 
be  simultaneously  decoded  when  the  third  specifier  is  a  short  literal.  Whenever  three  specifiers  are  simulta- 

30  neously  decoded,  the  third  specifier  is  a  destination  specifier.  Also,  at  most  one  short  literal  and  at  most  one 
complex  specifier  can  be  decoded  per  cycle,  due  to  the  fact  that  any  short  literal  specifier  must  be  processed 
by  the  expansion  unit  and  any  complex  specifier  must  be  processed  by  the  general  purpose  unit,  and  each  of 
these  units  can  process  only  one  such  specifier  per  cycle. 

The  four  primary  cases  shown  in  FIG.  21  can  be  distinguished  based  upon  whether  bytes  1  ,  2  and  3  have 
35  short  literal,  register  or  index  modes.  This  is  illustrated  by  the  truth  table  in  FIG.  22.  In  CASE00,  byte  1  has  a 

short  literal  or  register  mode,  byte  2  has  a  short  literal,  register  or  index  mode,  and  byte  3  does  not  have  an 
index  mode.  In  CASE0i,  byte  1  has  a  short  literal,  register  or  index  mode,  byte  2  has  neither  a  short  literal, 
register  nor  index  mode,  and  byte  3  can  have  any  mode.  In  CASE10,  byte  1  has  a  short  literal  or  register  mode, 
byte  2  has  a  short  literal  or  register  mode,  and  byte  3  has  an  index  mode.  In  CASE^,  byte  1  has  neither  a  short 

40  literal,  register  nor  index  mode,  and  bytes  2  and  3  can  have  any  modes. 
Turning  now  to  FIG.  23,  there  is  shown  a  schematic  diagram  of  optimized  logic  for  decoding  the  four  cases. 

A  three-input  NOR  gate  171  determines  whether  byte  1  has  neither  a  short  literal,  register  nor  index  mode.  If 
so,  then  OR  gates  172  and  173  indicate  CASE^.  Otherwise,  CASE[0]  is  asserted  only  when  byte  2  has  neither 
a  short  literal,  register  nor  index  mode,  as  detected  by  a  three-input  NOR  gate  1  74.  Also,  CASE[1]  is  asserted 

45  only  when  byte  1  has  a  register  or  a  short  literal  mode  as  detected  by  an  OR  gate  1  75,  byte  2  also  has  either 
a  register  or  a  short  literal  mode  as  detected  by  an  OR  gate  176,  and  byte  3  has  an  index  mode  as  detected 
by  a  three-input  AND  gate  177. 

In  orderto  decode  a  register  or  short  literal  specif  ierfollowing  a  complex  specifier,  it  is  necessary  to  decode 
to  variable  length  levels  in  the  instruction  buffer.  These  levels  are  identified  in  FIG.  21  so  that  signals  which 

so  appear  later  in  the  decoding  logic  can  be  identified  with  the  particular  levels  to  which  the  signals  relate.  Level 
1  refers  to  the  decoding  of  a  complex  specifier  which  begins  with  a  base  register  in  byte  1  .  The  level  of  a  short 
literal  or  register  specifier  immediately  following  a  complex  specifier  is  identified  by  the  suffix  A  following  the 
level  of  the  complex  specifier.  Sometimes  it  is  possible  to  decode  two  specifiers  following  a  complex  specifier 
when  the  last  specifier  is  a  register  specifier.  The  level  of  the  last  is  identified  by  the  suffix  B  following  the 

55  level  of  the  complex  specifier.  As  shown  in  FIG.  21  ,  for  example,  in  CASE  ̂ a  short  literal  or  register  specifier 
could  be  decoded  at  level  1  A  which  could  occur  at  any  of  bytes  2  to  6  depending  upon  the  length  of  the  complex 
specifier  having  a  base  register  identified  in  byte  1.  Similarly,  a  register  specifier  could  possibly  be  decoded 
at  level  1B  which  could  occur  at  byte  3  to  7  depending  upon  the  length  of  the  complex  specifier. 
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In  CASE0i,  the  complex  specifier  is  decoded  to  level  2.  The  length  of  the  complex  specifier  is  determined 
by  the  mode  of  the  specifier,  and  if  the  specifier  has  an  immediate  mode,  it  is  also  dependent  upon  the  data 
type  associated  with  the  position  of  the  complex  specifier  in  the  sequence  of  specif  iers  for  the  instruction  being 
decoded. 

5  A  particularly  troublesome  problem  with  decoding  specifiers  following  a  complex  specifier  having  an  im- 
mediate  mode  is  that  the  position  of  the  complex  specifier  in  the  sequence  of  specifiers  for  the  instruction  is 
dependent  upon  whether  an  index  register  is  specified  in  the  byte  prior  to  the  byte  specifying  the  base  register. 
For  CASE0i,  for  example,  if  byte  1  does  not  have  an  index  mode,  then  the  data  type  for  the  complex  specifier 
beginning  in  byte  2  is  the  second  data  type  selected  by  the  shifter  106,  but  if  the  first  byte  has  an  index  mode, 

10  then  the  data  type  for  the  complex  specifier  having  the  base  register  identified  in  byte  2  will  be  the  first  data 
type  selected  by  the  shifter.  Therefore,  the  length  of  the  complex  specifier  in  CASE0i,  as  well  as  CASE00,  will 
be  dependent  upon  whether  there  is  an  index  designation  preceding  the  base  designation.  Therefore,  the  de- 
coding  logic  must  sometimes  distinguish  whether  an  index  designation  precedes  the  base  designation  in  order 
to  decode  to  levels  2,  2A  or  2B. 

15  When  an  index  register  precedes  the  base,  these  levels  will  be  identified  as  21,  2IAand  2IB.  When  a  com- 
plex  specifier  does  not  have  an  absolute  or  immediate  mode,  the  information  about  the  specifiers  at  the  21, 
2IA  and  2IB  levels  will  be  the  same  as  the  information  for  the  specifiers  at  the  2,  2A  and  2B  levels. 

In  CASEqo,  byte  3  may  include  a  register  specif  ier  which  will  be  the  third  specifier  in  the  sequence  or  could 
be  the  base  designation  for  a  complex  specifier  which  is  also  the  third  specifier  if  byte  2  does  not  have  an 

20  index  mode,  or  is  the  second  specifier  if  byte  2  does  have  an  index  mode.  Therefore,  byte  3  could  be  a  register 
specifier  when  decoding  to  level  3,  but  cannot  be  a  register  specif  ier  when  decoding  to  level  31.  Also,  a  register 
specifier  at  the  3IA  level  could  be  decoded  following  the  complex  specifier  having  its  base  specified  in  byte 
3. 

In  CASE10,  byte  3  always  has  an  index  mode  so  that  decoding  to  level  41  must  occur  to  decode  the  complex 
25  specifier  which  has  the  third  data  type  selected  by  the  shifter  106  in  FIG.  12. 

In  summary,  the  position  of  each  complex  specifier  for  the  four  primary  cases  is  identified  by  a  number 
indicating  the  byte  position  of  its  base  register  designation  in  the  instruction  buffer.  This  number  is  followed 
by  the  suffix  I  if  the  complex  specifier  has  associated  with  it  an  index  register  designation.  If  a  short  literal  or 
register  specifier  can  possibly  be  simultaneously  decoded  immediately  following  the  complex  specifier,  its  pos- 

30  ition  is  identified  by  the  level  of  the  preceding  complex  specifier  and  the  suffix  A.  If  another  specifier  can  pos- 
sibly  be  decoded  after  a  complex  specifier,  its  position  is  identified  by  the  level  of  the  preceding  base  specif  ier 
and  the  suffix  B. 

Turning  now  to  FIG.  24,  there  is  a  truth  table  which  shows  how  the  number  of  specifiers  initially  being  de- 
coded  (N')  is  determined  for  the  four  primary  cases  and  the  various  levels  of  decoding  depicted  in  FIG.  21. 

35  CASEqo  and  CASE0i  are  further  subdivided  into  two  sub-cases  in  which  an  index  register  is  or  is  not  designated 
for  the  complex  specifier.  In  order  to  decode  to  any  particular  level  for  which  the  number  of  specifiers  is  greater 
than  one,  it  must  not  be  possible  to  decode  to  any  deeper  level  that  is  permitted  in  the  table.  In  other  words, 
in  addition  to  determining  the  primary  case  and  taking  into  consideration  whether  there  is  an  index  register  in 
the  subcases,  the  logic  in  the  instruction  decoder  decodes  as  many  specifiers  as  possible  (depending  for  ex- 

40  ample  on  the  validity  of  the  data  in  the  instruction  buffer)  up  to  the  requested  number,  which  corresponds  to 
the  deepest  permitted  level  in  FIG.  24  for  the  applicable  case  and  subcase.  Also,  it  is  apparent  that  a  byte  spec- 
ifying  an  index  register  is  decoded  only  if  it  is  possible  to  further  decode  the  complex  specifier  following  it. 

Turning  now  to  FIG.  25,  there  is  shown  a  schematic  diagram  of  a  logic  tree  for  determining  the  initial  N' 
and  SC  for  the  general  case  of  three  specifiers  in  the  absence  of  implied  specifiers  and  branch  displacements 

45  in  the  instruction  buffer.  The  CASE  is  used  to  control  the  select  inputs  of  a  multiplexer  181.  In  addition,  for 
each  case  there  is  provided  a  respective  multiplexer  1  82,  183,  184,  185,  which  has  inputs  receiving  the  value 
of  N'  and  SC  corresponding  to  each  of  the  levels  permitted  for  decoding  as  shown  in  FIG.  24.  The  multiplexers 
1  82  to  1  85  also  have  a  zero  input  for  the  case  of  N'  equals  zero  and  SC  equals  zero. 

For  CASEqo  and  CASE01,  the  respective  multiplexers  182  and  183  have  eight  inputs  and  a  most  significant 
so  select  input  S2  controlled  by  INDEX[2]  and  INDEX[1],  respectively,  which  indicate  whether  byte  2  and  byte  1 

in  the  instruction  buffer  have  an  index  mode.  Therefore,  the  multiplexers  182  to  185  in  combination  with  the 
multiplexer  181  decode  a  total  of  six  different  cases  and  four  possible  combinations  for  each  case.  If  the  com- 
plex  specifiers  do  not  have  an  immediate  mode,  then  the  four  combinations  correspond  to  either  zero,  one, 
two  or  three  specifiers  being  decoded.  In  general,  however,  the  number  of  specifiers  being  decoded  at  levels 

55  after  a  complex  specif  ier  depends  upon  whether  the  complex  specifier  has  an  extended  immediate  mode.  This 
is  done  to  simplify  encoding  logic  which  operates  the  select  inputs  SO  and  S1  of  the  multiplexers  182  to  185. 

If  a  complex  specifier  is  found  to  have  an  extended  immediate  mode,  the  encoding  logic  still  believes  that 
it  is  possible  to  decode  to  the  levels  after  the  complex  specifier,  but  the  number  of  specifiers  to  decode  N'  is 
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set  equal  to  the  specifier  position  of  the  complex  specifier.  Similarly,  the  shift  count  SC  for  the  levels  after 
the  complex  specif  ier  will  be  set  to  the  value  of  the  shift  count  for  the  complex  specifier.  Therefore,  even  though 
the  encoding  logic  selects  the  level  after  the  complex  specifier  for  decoding,  the  values  of  N'  and  SCfor  those 
deeper  levels  will  be  the  same  as  if  decoding  were  not  permitted  after  the  complex  specifier  having  the  ex- 

5  tended  immediate  mode.  Of  course,  if  the  complex  specifier  has  an  extended  immediate  mode,  the  data  at 
the  deeper  levels  represents  extended  immediate  data  and  cannot  be  decoded  as  a  register  or  short  literal 
specifier  even  though  the  mode  decoder  (115  in  FIG.  12)  may  believe  that  the  extended  immediate  data  are 
short  literal  or  register  specifiers.  As  noted  above,  extended  immediate  data,  as  well  as  branch  displacements, 
may  look  like  short  literal  or  register  specifiers  since  branch  displacements  and  extended  immediate  data  are 

10  not  restricted  in  the  values  they  may  assume. 
In  FIG.  25,  the  shift  counts  for  the  various  cases  and  combinations  are  prefixed  with  GPS  to  designate 

information  about  any  specifier  appearing  at  the  indicated  level,  RSL  to  identify  information  about  any  register 
or  short  literal  specifier  appearing  at  the  indicated  level,  and  REG  to  indicate  information  about  any  register 
specif  ier  occurring  at  the  indicated  level. 

15  In  order  to  determine  the  level  to  which  decoding  is  permitted,  pertinent  validity  data  are  fed  to  a  respective 
encoder  186,  187,  188  and  189,  which  controls  the  select  inputs  S1  and  SO  of  the  respective  multiplexer.  For 
CASEqo  and  CASE0i,  respective  multiplexer  190  and  multiplexer  191  controlled  by  the  respective  index  mode 
signal  INDEX[2]  or  INDEX[1],  selects  three  respective  valid  signals  for  the  sub-cases  shown  in  the  table  of 
FIG.  24. 

20  Turning  now  to  FIG.  26,  there  is  shown  a  schematic  diagram  for  the  encoder  186.  If  the  inputs  P0,  P1  and 
P2  are  all  active,  then  both  of  the  select  outputs  S1  and  SO  are  active.  A  three-input  AND  gate  192  detects  the 
coincidence  of  all  three  inputs  and  OR  gates  193  and  194  become  active  to  assert  the  select  signals.  If  inputs 
P0  and  P1  are  both  asserted  but  P2  is  inactive,  then  a  two-input  AND  gate  1  95  activates  only  the  OR  gate  1  94 
so  that  only  the  output  S1  is  asserted.  If  P0  is  asserted  but  P1  is  not,  then  a  gate  196  activates  the  OR  gate 

25  193  and  the  OR  gate  194  is  inactive,  so  that  only  the  output  SO  is  asserted.  If  all  three  inputs  P0,  P1  and  P2 
are  inactive,  then  neither  of  the  outputs  S1  and  SO  are  asserted. 

In  order  to  eliminate  the  delay  through  the  encoders  186  to  189  and  the  multiplexers  190  and  191,  the 
encoding  logic  should  be  incorporated  into  the  multiplexers  182  to  185.  This  is  shown  in  FIG.  27  for  CASE00. 
The  prioritizing  multiplexer  182'  corresponding  to  multiplexer  182  in  FIG.  25  includes  six  gates  197,  198,  199, 

30  200,  201  and  202,  and  the  outputs  of  these  gates  are  summed  by  an  OR  gate  203.  It  should  be  noted  that 
each  gate  in  FIG.  27  corresponds  to  a  gate  for  each  bit  of  each  of  the  output  signals  N'  and  SC,  and  in  many 
cases  the  gates  are  eliminated  because  they  have  binary  inputs  which  are  the  binary  constants  zero  or  one. 

For  implementing  the  logic  of  FIG.  25,  it  is  also  necessary  to  provide  logic  which  determines  the  specifier 
information  such  as  the  valid  signals,  numbers  and  shift  counts  defined  in  FIG.  25  for  the  various  decoding 

35  levels.  The  specifier  information  for  a  complex  specifier  or  a  specifier  decoded  at  a  level  after  a  complex  spe- 
cifier  will  be  dependent  upon  whether  the  complex  specifier  has  an  absolute  or  immediate  addressing  mode. 
For  the  sake  of  defining  the  specifier  information,  the  absolute  and  immediate  modes  will  be  treated  as  a  spe- 
cial  case  which  will  be  indicated  by  an  apostrophe  after  the  symbolic  notation  for  the  specifier  information. 
Shown  in  FIG.  28,  for  example,  are  the  number  specifiers  decoded  in  the  usual  case,  i.e.,  where  the  respective 

40  complex  specifier  does  not  have  an  absolute  or  immediate  addressing  mode.  In  this  case,  the  number  of  spe- 
cif  iers  has  a  value  of  two  at  level  1  A  and  level  2IA,  and  a  value  of  three  at  levels  1  B,  2A,  2IB  and  3IA. 

Turning  now  to  FIGS.  29  to  38,  there  are  shown  truth  tables  defining  the  shift  counts  and  the  number  of 
specifiers  for  the  other  levels  and  combinations.  FIGS.  29  to  32  provide  the  information  for  the  usual  case  when 
the  respective  complex  specifier  has  neither  an  immediate  nor  absolute  mode,  and  FIGS.  33  to  38  are  truth 

45  tables  for  the  cases  when  the  respective  complex  specifier  has  an  immediate  or  absolute  mode.  As  is  well 
known,  logic  for  implementing  the  truth  tables  may  consist  of  two  levels  of  gates,  such  as  a  first  level  performing 
an  AND  function  and  a  second  level  performing  an  OR  function. 

Turning  now  to  FIGS.  39  to  41,  there  is  shown  logic  for  determining  valid  signals  which  are  used  in  the 
logic  of  FIG.  42  to  provide  the  valid  signals  to  the  priority  logic  of  FIG.  25.  The  signal  REG_VALID[i]  indicates 

so  whetherthe  ith  byte  of  data  in  the  instruction  buffer  represents  a  valid  register  specifier.  The  signal  SL_VALID[i] 
indicates  whether  the  ith  byte  of  data  in  the  instruction  buffer  may  represent  a  valid  short  literal  specifier  for 
which  decoding  is  not  prohibited  by  a  stall  of  the  expansion  unit  (30  in  FIG.  6).  The  signal  RSL_VALID[i]  rep- 
resents  whether  the  ith  byte  of  data  in  the  instruction  buffer  can  represent  a  valid  register,  or  a  short  literal 
specifier  for  which  decoding  is  not  prohibited  by  a  stall  of  the  expansion  unit.  The  case  of  i  equals  one  is  treated 

55  as  a  special  case  and  the  signals  are  determined  with  the  logic  of  FIG.  39.  The  first  data  byte  in  the  instruction 
register  can  be  decoded  when  it  has  a  register  mode,  when  it  is  a  valid  byte  of  data,  and  so  long  as  the  decoder 
is  not  operating  during  a  intra-instruction  read  conflict  cycle  when  the  general  purpose  unit  is  stalled.  As  noted 
above,  when  an  intra-instruction  read  conflict  is  detected,  a  register  specifier  is  processed  by  the  general  pur- 
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pose  unit  (32  in  FIG.  6)  instead  of  the  transfer  unit  (30  in  FIG.  6).  These  logical  conditions  are  determined  by 
gates  206  and  207.  If  the  first  byte  has  a  short  literal  mode,  then  it  is  considered  valid  if  its  corresponding  valid 
data  flag  (l_VALID[1])  is  active  and  the  expansion  unit  is  not  stalled.  These  conditions  are  detected  by  a  gate 
208.  An  OR  gate  209  provides  a  signal  (RSL1_VALID)  indicating  whether  the  first  byte  is  considered  either  a 

5  valid  register  specifier  or  a  valid  short  literal  specifier. 
FIG.  40  shows  a  schematic  diagram  of  a  circuit  for  determining  whether  byte  2  in  the  instruction  buffer  is 

considered  a  valid  register  or  short  literal  specifier.  It  is  considered  a  valid  register  specifier  when  byte  2  has 
a  register  mode  and  the  valid  data  flag  for  byte  2  is  set.  This  is  detected  by  a  gate  211  .  Byte  2  in  the  instruction 
buffer  is  considered  a  valid  short  literal  specifier  if  its  valid  data  flag  is  set,  it  has  a  short  literal  mode,  byte  1 

10  does  not  have  a  short  literal  mode,  and  the  expansion  unit  is  not  stalled.  These  conditions  are  detected  by  a 
gate  212.  An  OR  gate  21  3  determines  whether  byte  2  in  the  instruction  buffer  is  either  a  valid  register  specifier 
or  a  valid  short  literal  specifier. 

FIG.  41  shows  a  schematic  diagram  of  logic  circuitry  for  determining  whether  bytes  3  to  8  in  the  instruction 
buffer  could  possibly  be  considered  valid  register  or  short  literal  specifiers.  (These  signals  are  further  qualified 

15  by  the  circuitry  in  FIG.  42  before  being  used  in  the  logic  tree  of  FIG.  25.)  Byte  i  in  the  instruction  buffer  is  pos- 
sibly  a  valid  register  specifier  if  it  has  a  register  mode  and  the  valid  data  flag  corresponding  to  the  byte  is  set. 
This  is  detected  by  a  gate  214.  Byte  i  in  the  instruction  buffer  can  possibly  be  a  valid  short  literal  specifier  so 
long  as  the  corresponding  valid  data  flag  is  set,  it  has  a  short  literal  mode,  the  expansion  unit  is  not  stalled, 
and  neither  byte  1  nor  byte  2  is  a  valid  short  literal  specifier.  In  other  words,  byte  i  in  the  instruction  buffer 

20  cannot  be  considered  a  valid  short  literal  specifier  if  it  is  not  possible  to  decode  byte  i  in  the  current  cycle.  These 
conditions  are  detected  by  gates  215  and  216.  An  OR  gate  217  determines  whether  byte  i  in  the  instruction 
buffer  can  be  considered  either  a  valid  register  specifier  or  a  valid  short  literal  specifier. 

Turning  now  to  FIG.  42,  there  is  shown  a  schematic  diagram  of  a  circuit  which  determines  whether  a  com- 
plex  specifier  is  considered  valid  and  also  determines  whether  bytes  following  a  complex  specifier  can  be  con- 

25  sidered  valid  register  or  short  literal  specifiers.  In  general,  a  complex  specifier  is  considered  valid  if  the  general 
purpose  unit  is  not  stalled  and  the  last  byte  of  the  complex  specifier  has  its  corresponding  valid  data  flag  set. 
An  exception  to  this  is  that  the  signal  for  indicating  a  valid  complex  specifier  at  level  3  will  also  indicate  whether 
byte  3  is  a  valid  register  specifier.  This  is  done  to  decode  CASE00  when  byte  3  is  a  register  specifier.  The  special 
case  is  accounted  for  by  an  OR  gate  221.  Otherwise,  the  coincidence  of  the  corresponding  valid  data  flag  being 

30  set  and  the  absence  of  the  general  purpose  unit  being  stalled  is  detected  by  respective  gates  222,  223,  224, 
225,  etc.,  226.  In  order  to  determine  the  validation  condition  for  the  last  byte  in  the  complex  specifier,  the  shift 
count  (GPSi_SC)  for  the  complex  specifier  is  fed  to  the  select  input  of  a  multiplexer  227  which  selects  the  re- 
spective  one  of  the  gates  222,  223,  221,  225  226. 

In  a  similar  fashion,  the  shift  count  for  the  complex  specifier  is  fed  to  the  select  input  of  a  multiplexer  228 
35  functioning  as  a  shifter  to  select  the  register  validation  or  short  literal  validation  signal  from  FIG.  41  correspond- 

ing  to  the  byte  position  following  the  complex  specifier,  and  also  the  register  validation  signal  corresponding 
to  the  second  byte  following  the  complex  specifier.  The  multiplexer  228  also  selects  the  short  literal  data  and 
register  addresses  contained  in  these  bytes  following  the  complex  specifier  to  provide  data  about  the  register 
or  short  literal  specifiers  which  are  ultimately  fed  to  the  TR  and  XL  buses  by  the  circuits  shown  in  FIGS.  54, 

40  56  and  58,  as  further  described  below.  The  format  for  the  register  and  short  literal  data  is  shown  in  FIG.  53, 
and  the  format  of  the  register  addresses  is  shown  in  FIG.  55. 

Turning  now  to  FIG.  43,  there  is  shown  a  schematic  diagram  of  shift  count  logic  that  could  be  used  for 
determining  the  initial  number  of  specifiers  N'  and  the  shift  count  SC  for  simultaneously  decoding  up  to  three 
specifiers  in  a  single  cycle,  including  complex  specifiers  having  an  immediate  or  absolute  addressing  mode. 

45  Logic  231  provides  specifier  information  in  the  usual  case,  incorporating  the  logic  of  FIGS.  28  to  32  and  39  to 
42.  Separate  logic  232  determines  the  specifier  information  for  the  immediate  or  absolute  case  according  to 
FIGS.  33  to  42.  The  priority  logic  and  multiplexers  of  FIG.  25  are  duplicated  to  provide  logic  233  for  determining 
N'  and  SC  for  each  of  the  four  primary  cases  for  the  usual  situation  in  which  the  complex  specifier  has  neither 
an  immediate  nor  absolute  addressing  mode,  and  to  provide  logic  234  for  determining  N'  and  SC  for  the  four 

so  primary  cases  assuming  that  the  complex  specifier  has  an  immediate  or  absolute  addressing  mode.  A  multi- 
plexer  235  is  provided  to  select  the  particular  one  of  eight  possible  cases.  A  primary  case  is  selected  in  the 
same  manner  as  before,  but  the  selection  of  an  output  from  either  the  logic  233  or  the  logic  234  is  determined 
by  a  respective  OR  gate  236,  237,  238,  239,  which  determines  whether  the  complex  specifier  in  the  particular 
primary  case  has  an  immediate  or  absolute  addressing  mode. 

55  A  disadvantage  of  the  VAX  architecture  is  that  the  specifier  information  for  a  complex  specifier  having  an 
immediate  or  absolute  addressing  mode  is  a  function  of  the  data  type  of  the  complex  specifier.  The  data  type 
is  the  last  piece  of  information  to  be  received  by  the  shift  count  logic  of  FIG.  43  due  to  the  fact  that  the  delay 
through  the  decode  logic  and  multiplexer  (105  and  106  in  FIG.  12)  is  much  greater  than  the  delay  through  the 
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mode  decoder  (115  in  FIG.  12).  The  so-called  critical  path  through  the  shift  count  logic  of  FIG.  43  is  therefore 
determined  by  the  signal  path  of  the  data  type  information.  This  critical  path  is  illustrated  in  FIG.  44.  In  the 
GPS'  specifier  information  logic  232,  the  data  type  determines  the  shift  count  for  the  complex  specifier  GPS/ 
which  is  fed  to  the  control  inputs  of  the  multiplexer  or  shifter  227,  228  to  select  up  to  three  valid  signals  V  which 

5  are  fed  to  a  priority  encoder  186,  187,  188  or  189  which  then  controls  a  respective  multiplexer  182,  183,  184 
or  1  85  to  select  a  particular  one  of  four  functions  Fj  to  obtain  a  result  Gj.  As  shown  in  FIG.  44,  the  information 
for  a  complex  specifier  having  an  absolute  or  immediate  mode  is  dependent  upon  the  position  of  the  complex 
specifier  in  the  sequence  of  specifiers  for  the  instruction.  The  multiplexer  (106  in  FIG.  12)  selects  the  data 
types  for  the  next  three  specifiers  to  be  decoded.  In  FIG.  44,  the  index  j  identifies  the  particular  one  of  three 

10  data  types  provided  by  the  shifter  (106  in  FIG.  12)  to  the  GPS'  specifier  information  logic  232.  This  index  j  is 
different  from  the  byte  number  of  the  base  register  designation  of  the  complex  specifier  in  the  instruction  buffer 
whenever  there  is  an  index  specifier  associated  with  the  complex  specifier. 

Compare,  for  example,  FIG.  33  to  FIG.  35.  The  specifier  information  in  FIG.  33  is  for  the  case  in  which  an 
index  register  is  not  specified,  and  the  specif  ier  information  in  FIG.  35  is  for  the  case  in  which  an  index  register 

15  is  specified.  The  truth  tables  in  FIGS.  33  and  35  are  identical  except  for  the  fact  that  in  FIG.  33  the  mode  of 
the  complex  specifier  is  indicated  by  bit  4  in  byte  1  of  the  instruction  buffer,  while  in  FIG.  35  the  mode  of  the 
complex  specifier  is  indicated  by  bit  4  of  byte  2  in  the  instruction  buffer. 

As  shown  in  FIG.  44,  the  logic  for  determining  the  specifier  information  in  the  case  of  a  complex  specifier 
having  an  immediate  or  absolute  mode  can  be  simplified  by  first  determining  the  mode  of  the  complex  specifier 

20  in  accordance  with  whether  an  index  register  is  specified.  This  selection  is  performed  by  a  multiplexer  233. 
Upon  further  inspection  of  the  truth  tables  in  FIG.  33  and  FIG.  35,  it  is  evident  that  there  are  only  four  different 
combinations  of  the  data  types  which  result  in  different  information  for  the  complex  specifier  having  an  im- 
mediate  or  absolute  addressing  mode.  These  four  different  combinations  determine  whether  the  displacement 
following  the  complex  specifier  has  one,  two,  four  or  more  bytes  of  displacement  or  immediate  data  following 

25  the  base  register  specification.  These  four  combinations  can  be  detected  by  the  gates  234,  235,  236  and  237 
shown  in  FIG.  44. 

Preferably,  the  circuit  of  FIG.  43  is  modified  as  shown  in  FIG.  45  to  reduce  the  critical  path  of  the  data 
type  information  used  in  the  case  of  a  complex  specifier  having  an  immediate  or  absolute  mode.  To  determine 
N'  and  SC  for  the  case  where  any  complex  specifier  has  neither  an  absolute  nor  an  immediate  addressing 

30  mode,  there  is  provided  specifier  information  logic  241  and  tree  logic  242  corresponding  to  FIG.  25. 
Specifier  selector  logic  243,  as  further  described  below  in  FIG.  47,  is  used  to  determine  whether  any  of 

the  next  three  specifiers  to  be  decoded  is  a  complex  specifier  having  an  absolute  or  immediate  addressing 
mode,  and  to  identify  the  first  such  specifier.  The  specifier  selector  logic  controls  a  multiplexer  244  which  se- 
lects  N'  and  SC  from  the  tree  logic  242  in  the  absence  of  a  complex  specifier  having  an  absolute  or  immediate 

35  mode,  and  otherwise  selects  values  of  N'  and  SC  that  are  determined  for  the  first  complex  specifier  having 
an  absolute  or  immediate  mode.  As  shown  in  FIG.  45,  for  example,  the  input  00  selects  N'  and  SC  when  no 
specifier  has  an  absolute  or  immediate  mode,  input  01  selects  N'  and  SC  computed  assuming  that  the  first 
specifier  has  an  absolute  or  immediate  mode,  input  1  0  receives  N'  and  SC  computed  assuming  that  the  second 
specifier  has  an  absolute  or  immediate  mode,  and  input  11  selects  N'  and  SC  computed  assuming  that  the 

40  third  specifier  has  an  absolute  or  immediate  mode. 
For  each  of  the  possible  positions  of  one  complex  specifier  in  a  series  of  three  specifiers,  there  is  provided 

a  respective  multiplexer  245,  246,  247  that  selects  values  of  N'  and  SC  that  are  computed  for  each  of  the  four 
combinations  of  mode  information  and  whether  or  not  an  index  register  is  designated  for  the  complex  specifier. 

A  comparison  of  FIG.  44  to  FIG.  45  shows  that  the  critical  path  has  been  reduced  by  pushing  the  encoding 
45  logic  (186  to  189)  in  front  of  the  lower  level  of  multiplexers  and  shifters  (227,  228).  This  is  shown  more  clearly 

in  FIG.  46  which  is  an  expansion  of  the  specif  ier  information  logic  for  the  multiplexer  245  in  FIG.  45.  The  GPS' 
specifier  information  logic  249  includes  a  multiplicity  of  encoders  251  to  256  receiving  validity  signals  corre- 
sponding  to  the  signals  received  by  the  circuitry  in  FIG.  25  for  the  corresponding  cases  and  sub-cases.  Also 
shown  in  the  specifier  information  logic  249  are  respective  gates  257  to  261  corresponding  to  gates  222  to 

so  226  shown  in  FIG.  42.  The  encoders  251  to  256  control  respective  four-input  multiplexers  262  to  267  which 
select  N  and  SC  values  corresponding  to  the  values  in  the  truth  tables  of  FIG.  33  and  FIG.  35,  respectively, 
for  the  cases  of  byte,  word  or  longword  displacement  or  immediate  data  following  the  base  of  the  complex  spe- 
cifier.  Separate  two-input  multiplexers  268,  269  select  the  N  and  SC  values  for  the  extended  immediate  modes. 

By  using  the  preferred  circuit  of  FIG.  45,  the  critical  path  has  been  reduced  to  the  delay  of  the  data  type 
55  information  through  the  gates  234  to  237  shown  in  FIG.  44  and  the  two  levels  of  multiplexers  shown  in  FIG. 

45.  The  delay  through  the  gates  234  to  237  in  FIG.  44  could  be  eliminated  by  using  the  decode  logic  (105  in 
FIG.  12)  to  provide  data  type  information  in  encoded  form  corresponding  to  the  outputs  of  the  OR  gates  234 
and  235  in  FIG.  44,  and  feeding  these  two  encoded  bits  to  the  select  inputs  Si  and  S0  of  the  respective  mul- 

20 



EP  0  381  469  B1 

tiplexers  245,  246,  247. 
Turning  now  to  FIG.  47,  there  is  shown  the  specifier  selector  logic  243  previously  used  in  FIG.  45.  The 

first  specifier  is  recognized  as  having  an  absolute  or  immediate  mode  if  byte  1  in  the  instruction  buffer  has 
an  absolute  or  immediate  mode,  or  if  byte  1  designates  an  index  register  and  byte  2  has  an  absolute  mode, 

5  or  if  byte  1  designates  an  index  register  and  byte  2  has  an  immediate  mode.  These  conditions  are  detected 
by  gates  271,272  and  273. 

If  byte  1  has  neither  a  register  mode  nor  a  short  literal  mode,  as  detected  by  gate  274,  then  it  is  immaterial 
whether  the  second  specifier  has  an  absolute  or  immediate  mode,  since  the  first  specifier  is  either  invalid  or 
complex  and  therefore  any  second  complex  specifier  will  not  be  decoded.  Otherwise,  specifier  information  for 

10  a  second  specifier  having  an  absolute  or  immediate  mode  is  selected  when  byte  2  has  an  immediate  mode, 
byte  2  designates  an  index  and  byte  3  has  an  absolute  mode,  or  byte  2  designates  an  index  and  byte  3  des- 
ignates  an  immediate  mode.  These  conditions  are  detected  by  gates  275  to  279.  In  a  similar  fashion,  it  is  per- 
tinent  that  the  third  specifier  has  an  absolute  or  immediate  mode  only  if  both  byte  1  and  byte  2  have  a  register 
or  short  literal  mode,  as  detected  by  gates  274  and  280.  Subject  to  this  constraint,  the  complex  or  immediate 

15  specifier  information  for  the  third  specifier  is  selected  if  byte  3  has  an  absolute  or  immediate  mode,  or  byte  3 
designates  an  index  and  byte  4  has  an  absolute  mode  or  byte  3  designates  an  index  and  byte  4  has  an  im- 
mediate  mode.  These  conditions  are  detected  by  gates  281  to  285.  For  operating  the  multiplexer  244  in  FIG. 
45,  the  logic  of  FIG.  47  includes  two  OR  gates  286,  287  for  encoding  the  select  signals. 

As  introduced  above  in  connection  with  FIG.  12,  the  shift  count  logic  123  includes  a  number  of  trees  used 
20  for  decoding  up  to  one,  two  or  three  specifiers.  The  trees  for  the  general  cases  R1  ,  R2,  R2R,  R3  and  R3XR 

are  certain  sub-sets  of  the  logic  shown  in  FIG.  45  for  the  general  case. 
Shown  in  FIG.  48  is  the  logic  for  the  R1  tree.  The  general  case  has  been  simplified  considerably  since 

only  the  specifier  information  for  the  first  specif  ier  is  pertinent.  The  pertinent  validity  information,  for  example, 
includes  only  the  fact  of  whether  a  register  or  short  literal  specifier  at  level  1  is  valid,  or  if  a  complex  specifier 

25  at  level  21  or  level  1  is  valid.  There  is  no  need  to  arbitrate  among  the  priority  of  these  validity  signals  since  the 
pertinent  information  is  selected  by  the  primary  case,  and  whether  byte  1  specifies  an  index  registerand  wheth- 
er  the  first  specifier  is  a  complex  specifier  having  an  absolute  or  immediate  mode. 

The  R1  logic  tree  includes  a  two-input  multiplexer  291  at  the  top  of  the  tree,  an  eight-input  multiplexer  292 
for  selecting  information  about  any  first  complex  specifier,  and  a  multiplexer  293  selecting  information  in  ac- 

30  cordance  with  each  of  the  four  primary  cases.  As  indicated  by  a  gate  294,  when  byte  1  is  a  valid  register  or 
short  literal  specifier,  N'  is  equal  to  one  and  SC  is  equal  to  one  for  CASE00,  CASE0i  and  CASE10.  When  byte 
1  designates  an  index,  then  a  complex  specifier  beginning  in  byte  2  is  decoded  when  it  is  valid,  as  detected 
by  a  gate  295  and  a  multiplexer  296.  For  CASE^,  a  gate  296  selects  N  equals  one  and  the  shift  count  for  a 
complex  specifier  beginning  in  byte  1  when  this  complex  specifier  is  valid. 

35  Turning  now  to  FIG.  49,  there  is  shown  the  shift  count  logic  of  the  R2  tree.  At  the  top  of  the  tree  is  a  mul- 
tiplexer  300  which  selects  a  simplified  version  301  of  the  general  tree  of  FIG.  25  when  neither  the  first  nor  the 
second  specifier  is  selected  as  having  an  absolute  or  immediate  mode,  or  the  output  of  a  multiplexer  302  when 
the  first  specifier  is  found  to  have  a  complex  or  immed  iate  mode,  or  the  output  of  another  multiplexer  303  when 
the  first  specifier  is  either  a  register  or  short  literal  specifier  and  the  second  is  a  complex  specifier  having  an 

40  absolute  or  immediate  mode.  It  should  be  apparent  from  comparison  of  FIG.  49  to  FIG.  45  that  the  R2  tree  is 
merely  a  simplification  of  the  tree  for  the  general  case  under  the  assumption  that  the  encoding  logic  need  only 
arbitrate  the  validation  signals  for  the  first  two  specifiers. 

Turning  to  FIG.  50,  there  is  shown  a  diagram  of  the  R2R  tree  which  is  used  only  when  byte  1  is  neither  a 
register  specifier  nor  a  short  literal,  and  the  second  specifier  is  not  to  be  decoded  when  it  is  a  short  literal.  The 

45  R2R  tree,  for  example,  is  requested  by  the  request  logic  (114  in  FIG.  12)  when  the  second  specifier  being  re- 
quested  has  a  "write"  access  type,  in  which  case  an  addressing  fault  occurs  if  the  second  specifier  is  a  short 
literal  specifier.  This  simplifies  the  detection  of  the  addressing  fault  since  it  can  be  detected  during  the  next 
cycle  when  the  short  literal  specifier  will  become  the  first  specifier  being  decoded,  and  the  addressing  fault 
can  then  be  detected  based  upon  the  mode  of  only  the  first  specifier. 

so  Since  it  is  assumed  that  the  first  byte  is  neither  a  register  specif  ier  nor  a  short  literal  and  only  two  specifiers 
are  being  requested,  the  R2R  tree  has  a  multiplexer  311  at  the  top  of  the  tree  that  selects  information  from  a 
multiplexer  312  when  the  first  specifier  has  an  absolute  or  immediate  mode,  and  selects  the  output  of  another 
multiplexer  313  when  the  first  specifier  does  not  have  an  absolute  or  immediate  mode.  The  GPS'  specifier 
information  logic  249  arbitrates  between  a  valid  signal  for  the  first  specifier  and  a  register  valid  signal  for  the 

55  byte  following  the  complex  specifier.  In  a  similar  fashion,  a  multiplexer  314  has  its  inputs  wired  to  arbitrate 
between  the  valid  signal  for  the  specifier  decoded  at  the  21  level  and  the  register  valid  signal  for  the  following 
byte  at  the  2IA  level,  and  another  multiplexer  315  is  wired  to  arbitrate  the  valid  signal  for  the  complex  specif  ier 
at  level  1  and  a  register  valid  signal  for  the  byte  at  level  1A. 
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Turning  now  to  FIG.  51  ,  there  is  shown  a  schematic  diagram  for  the  R3  tree  which  is  used  only  when  the 
first  two  bytes  are  register  or  short  literal  specifiers.  As  will  become  apparent  from  FIG.  52,  the  general  case 
of  three  specifiers  being  requested  has  been  broken  down  into  the  R3  case  in  which  the  third  specifier  is  com- 
plex,  and  the  R3XR  case  in  which  a  third  specifier  is  decoded  only  when  it  is  a  register  specifier. 

5  A  schematic  diagram  of  the  R3  tree  is  shown  in  FIG.  51  .  At  the  top  of  the  tree  there  is  a  multiplexer  321 
which  is  controlled  by  the  SEL_SPEC3  signal  indicating  whether  the  third  specifier  has  an  absolute  or  immedi- 
ate  mode.  If  the  third  specifier  has  an  absolute  or  immediate  mode,  then  the  multiplexer  321  selects  N'  and 
SC  from  the  multiplexer  247  previously  introduced  in  FIG.  45.  Otherwise,  N'and  SC  are  obtained  from  another 
multiplexer  322  controlled  by  the  CASE[1]  signal.  The  multiplexer  322  selects  N'  and  SC  from  a  multiplexer 

10  323  for  CASEqo  or  from  a  multiplexer  324  for  CASE10.  The  multiplexer  323  is  controlled  by  an  encoder  325, 
and  the  multiplexer  324  is  controlled  by  an  encoder  326. 

Turning  now  to  FIG.  52,  there  is  shown  a  schematic  diagram  of  the  R3XR  tree  which  simultaneously  de- 
codes  three  specifiers  only  when  the  third  specifier  is  a  register  specifier.  At  the  top  of  the  tree  is  a  multiplexer 
331  which  selects  the  output  of  the  multiplexer  246  (see  FIG.  49)  when  the  second  specifier  has  an  absolute 

15  or  immediate  mode,  the  multiplexer  245  (see  FIG.  45)  when  the  first  specifier  has  an  output  of  the  immediate 
or  complex  mode,  and  otherwise  selects  the  output  of  a  multiplexer  332  which  selects  N'  and  SC  computed 
for  each  of  the  four  primary  cases  with  the  restriction  that  the  third  specifier  must  be  a  register  specifier  in 
order  to  be  considered  valid.  The  R3XR  tree  therefore  has  additional  multiplexers  333  to  336  corresponding 
to  multiplexers  1  82  to  1  85  of  FIG.  25,  encoders  337,  338  and  339  corresponding  to  the  encoders  1  86,  1  87  and 

20  189  of  FIG.  25,  and  multiplexers  340  and  341  corresponding  to  multiplexers  190  and  191  of  FIG.  25.  The  mul- 
tiplexer  335  in  FIG.  2  has  its  select  inputs  wired  so  as  to  arbitrate  between  the  register  or  short  literal  valid 
signals  for  byte  1  and  byte  2  in  the  instruction  buffer. 

Once  the  number  of  specifiers  N  being  decoded  has  been  selected  by  the  multiplexers  124,  125  and  126 
(FIG.  12)  from  a  shift  count  logic  tree,  the  location  in  the  instruction  buffer  of  the  data  for  the  specifiers  be- 

25  comes  known,  and  therefore  the  specifier  data  can  be  selected  for  transmission  to  the  GP,  SL  or  TR  buses. 
The  specifier  information  for  a  complex  specifier  is  most  readily  determined  because  its  position  is  given  by 
the  primary  case.  For  the  SL  and  TR  buses,  however,  it  is  desirable  to  determine  any  register  or  short  literal 
specifier  data  associated  with  the  second  and  third  specifiers  being  decoded.  Any  register  or  short  literal  data 
for  the  first  specifier,  of  course,  is  found  in  byte  1  in  the  instruction  buffer. 

30  The  format  of  the  register  or  short  literal  data  in  a  byte  in  the  instruction  buffer  was  introduced  in  FIG.  5 
and  is  reproduced  in  FIG.  53  in  order  to  define  the  various  signals  that  are  used  for  obtaining  any  register  or 
short  literal  data  associated  with  any  second  or  third  specifiers  being  decoded.  The  data  about  a  register  or 
short  literal  specifier  (RSLDATA[i]),  for  example,  comprises  eight  bits.  It  will  be  assumed  that  the  most  signif- 
icant  bit  of  RSLDATA  indicates  whether  byte  i  in  the  instruction  buffer  could  be  a  valid  register  specifier;  in 

35  other  words,  it  is  the  REG_VALID[i]  signal.  It  will  be  assumed  that  the  second  most  significant  bit  of  RSLDATA 
indicates  whether  byte  [could  be  a  valid  short  literal  specifier;  in  other  words,  it  is  the  SL_VALID[i]  signal.  The 
next  two  most  significant  bits  are  the  two  most  significant  bits  of  any  short  literal  data  in  the  byte.  The  four 
least  significant  bits  comprise  the  rest  of  the  short  literal  data  or  the  register  address  (REGN[i]). 

Turning  now  to  FIG.  54,  there  is  shown  a  schematic  diagram  of  the  output  selection  logic  (128  in  FIG.  12) 
40  that  selects  any  register  or  short  literal  data  in  any  second  specifier  being  decoded.  Referring  momentarily 

back  to  FIG.  21  ,  in  CASE00  any  such  register  or  short  literal  data  resides  in  byte  2  in  the  instruction  buffer;  in 
CASE0i  any  such  register  or  short  literal  data  resides  at  level  2IA;  in  CASE10  any  such  register  or  short  literal 
data  resides  in  byte  2;  and  in  CASE  ̂ any  such  register  or  short  literal  data  resides  at  level  1  A.  Returning  to 
FIG.  54,  a  multiplexer  351  selects  the  particular  case,  and  in  CASE00  and  CASE10  obtains  the  register  or  short 

45  literal  data  from  byte  2  in  the  instruction  buffer. 
For  CASE0i,  another  multiplexer  352  determines  whether  the  first  specifier  is  a  complex  specifier  having 

an  absolute  or  immediate  mode,  and  also  determines  whether  the  second  specifier  is  a  complex  specifier.  If 
byte  1  in  the  instruction  buffer  does  not  designate  an  index  register,  then  a  pair  of  gates  353,  354  provide  select 
inputs  to  the  multiplexer  352  to  select  data  having  a  value  of  zero  to  designate  that  the  second  specifier  cannot 

so  be  a  valid  register  or  short  literal  specifier.  Otherwise,  if  byte  1  in  the  instruction  buffer  designates  an  index 
register,  then  the  register  or  short  literal  data  is  obtained  at  one  of  three  places  depending  upon  whether  the 
mode  of  the  complex  specifier  having  its  base  in  byte  2  has  an  immediate  or  an  absolute  mode.  If  it  has  neither 
an  immediate  nor  an  absolute  mode,  then  the  register  or  short  literal  data  is  obtained  at  the  2IA  level.  If  the 
complex  specifier  has  an  absolute  mode,  then  the  register  or  short  literal  data  is  obtained  from  byte  7  in  the 

55  instruction  buffer.  Otherwise,  when  the  complex  specifier  has  an  immediate  mode,  the  register  or  short  literal 
data  is  obtained  at  a  location  selected  by  a  multiplexer  355  depending  upon  the  data  type  of  the  complex  spe- 
cifier. 

For  CASEn,  the  register  or  short  literal  data  is  obtained  in  a  similar  fashion  by  multiplexers  356  and  357, 
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but  in  CASEn  the  first  specifier  is  necessarily  a  complex  specifier  having  its  base  in  byte  1  of  the  instruction 
buffer. 

Turning  now  to  FIG.  55,  there  is  shown  the  format  for  obtaining  register  data  from  the  instruction  buffer. 
The  register  data  is  used  by  the  logic  in  FIG.  56  to  obtain  any  register  data  about  any  third  specifier  being  de- 

5  coded.  A  multiplexer  361  selects  the  data  in  accordance  with  the  primary  case.  A  second  level  of  multiplexers 
362  to  364  and  a  pair  of  gates  365  and  366  operate  in  a  similar  fashion  to  the  multiplexers  352  and  356  and 
the  gates  353  and  354  (FIG.  54).  A  third  level  of  multiplexers  367,  368,  369,  370  select  the  register  data  in  ac- 
cordance  with  the  data  type  of  the  second  or  first  specifier  when  the  register  data  for  the  third  specifier  follows 
a  complex  specifier  having  an  immediate  or  absolute  addressing  mode. 

10  Turning  now  to  FIG.  57,  there  is  shown  the  output  and  selection  logic  (128  in  FIG.  12)  associated  with  the 
first  source  specifier  transmitted  over  the  TR  bus.  In  order  to  obtain  the  valid  data  flag  (VDF)  associated  with 
the  first  source  specifier,  a  multiplexer  381  is  controlled  by  the  number  N  of  specifiers  decoded  in  order  to 
clear  the  flag  if  no  specifiers  are  decoded,  and  to  set  the  flag  if  two  or  three  specifiers  are  decoded.  If  only 
one  specifier  is  decoded,  it  is  possible  that  it  is  a  destination  rather  than  a  source  specifier,  and  a  gate  382 

15  clears  the  valid  data  flag  if  the  first  specifier  has  an  access  type  of  a  branch  byte,  branch  word,  write  or  implied 
write. 

The  register  flag  (RGF)  for  the  first  source  operand  is  set  by  a  gate  383  if  at  least  one  specifier  is  decoded, 
and  one  specifier  was  not  requested  for  a  branch  displacement  or  an  implied  operand  as  detected  by  a  gate 
20  384,  and  byte  1  in  the  instruction  buffer  can  represent  a  valid  register  specifier  and  an  intra-instruction  read 

20  conflict  was  not  detected,  as  determined  by  a  gate  385.  The  gate  384  in  particular  determines  whether  byte  1 
is  a  branch  displacement  or  would  represent  the  next  opcode  in  the  case  of  one  implied  specifier  being  re- 
quested.  If  byte  1  of  the  instruction  buffer  could  possibly  represent  a  valid  register  which  is  not  a  destination 
specifier,  then  a  gate  386  generates  a  signal  (IRC_REG)  which  insures  that  the  register  specifier  will  be  proc- 
essed  by  the  general  purpose  unit  in  the  event  of  an  intra-instruction  read  conflict.  The  IRC_REG  signal  is  fed 

25  to  a  circuit  in  FIG.  61  ,  which  is  further  described  below.  The  valid  data  flag,  register  flag  and  also  the  register 
number  are  latched  in  a  latch  or  register  387  after  being  transmitted  over  the  a  portion  390  of  the  TR  bus  to 
the  transfer  unit  (30  of  FIG.  6). 

Turning  now  to  FIG.  58,  there  is  shown  the  validation  logic  for  the  second  source  operand  which  is  trans- 
mitted  over  the  TR  bus.  The  valid  data  flag  for  the  second  source  operand  is  selected  by  a  multiplexer  391 

30  controlled  by  the  number  N  of  specifiers  actually  decoded.  The  valid  data  flag  is  cleared  if  zero  or  one  speci- 
fiers  are  actually  decoded  and  is  set  if  three  specifiers  are  decoded.  If  two  specifiers  are  decoded,  it  is  possible 
that  the  second  specif  ier  specif  ies  a  destination  operand  and  in  this  case  the  valid  data  flag  is  cleared.  The  second 
specifier  is  not  a  destination  specifier  if  the  first  specifier  has  an  access  type  of  ASRC  and  the  second  specifier 
does  not  have  an  access  type  of  WRITE,  as  detected  by  a  gate  392,  the  first  specif  ier  has  an  access  type  of  V_READ 

35  and  the  second  specifier  has  an  access  type  of  READ,  as  detected  by  a  gate  393,  or  the  first  specifier  has  an  access 
type  of  READ  and  the  second  specifier  has  an  access  type  of  neither  WRITE,  IMP_WRITE,  nor  is  a  write  branch 
displacement,  as  detected  by  gates  394,  395  and  396. 

The  register  flag  for  the  second  source  operand  is  set  when  at  least  two  specifiers  have  been  decoded, 
the  second  specifier  is  neither  a  branch  displacement  nor  an  implied  specifier  as  detected  by  a  gate  397,  and 

40  the  second  specifier  may  represent  a  valid  register  specifier,  as  determined  by  a  gate  398.  The  valid  data  flag, 
the  register  flag  and  the  register  address  for  the  second  specifier  are  transmitted  over  a  portion  400  of  the  TR 
bus  and  received  in  a  latch  399  for  use  in  the  transmit  unit  (30  of  FIG.  6)  during  the  next  cycle. 

Turning  now  to  FIG.  59,  there  is  shown  the  validation  and  multiplexing  logic  for  selecting  the  destination 
operand.  The  destination  operand  could  be  specified  by  either  the  first,  second  or  third  specifier.  The  position 

45  of  the  destination  specifier  is  primarily  determined  by  the  number  of  specifiers  decoded,  and  therefore  the 
valid  data  flag,  register  flag  and  register  address  for  the  destination  operand  are  selected  by  respective  mul- 
tiplexers  401  ,  402  and  403  that  are  controlled  by  the  number  N  of  specif  iers  actually  decoded  during  the  current 
cycle.  If  no  specifiers  are  decoded  during  the  current  cycle,  then,  of  course,  no  destination  operand  is  available 
and  the  valid  data  flag  is  cleared.  If  one  specifier  is  decoded,  then  it  is  a  destination  specifier  and  the  valid 

so  data  flag  is  set  if  the  access  type  of  the  first  specifier  decoded  during  the  current  cycle  is  either  MODIFY, 
WRITE,  IMP_WRITEorV_MODIFY,  as  detected  byagate404.  If  two  specifiers  are  decoded,  then  the  second 
specifier  specifies  a  valid  destination  operand  when  the  access  type  of  the  second  specifier  being  decoded 
is  V_MODIFY,  WRITE,  MODIFY,  IMP_WRITE  or  the  first  specifier  being  decoded  has  an  access  type  of 
WRITE,  MODIFY  or  V_MODIFY,  as  detected  by  a  gate  405.  If  three  specifiers  are  decoded,  then  the  third  spe- 

55  cif  ier  is  a  destination  operand  for  these  same  conditions  detected  by  gate  405  and,  in  addition,  so  long  as  the 
third  specifier  is  not  a  branch  displacement,  as  detected  by  gates  406  and  407. 

If  only  one  specifier  is  decoded,  then  it  specifies  a  valid  register  destination  if  byte  1  in  the  instruction 
buffer  is  a  valid  register  specifier  and  the  access  type  of  the  first  specifier  is  MODIFY,  V_MODIFY  or  WRITE, 

23 



EP  0  381  469  B1 

as  detected  by  gates  408  and  409.  If  two  specifiers  are  decoded,  then  the  register  flag  is  set  if  gate  409  is 
active  or  if  the  second  specifier  is  a  valid  register  specifier  specifying  a  destination  operand,  as  detected  by 
gates  410,  411  and  412.  If  three  specifiers  are  decoded,  then  the  register  flag  is  set  if  gate  411  is  active  or  the 
third  specifier  is  a  valid  register  specifier,  as  determined  by  gate  413. 

5  If  one  specifier  is  decoded,  then  any  register  number  is  obtained  from  byte  1  in  the  instruction  buffer.  If 
two  specifiers  are  decoded,  then  if  the  first  is  a  valid  register  destination  specifier,  as  detected  by  gate  409, 
then  the  register  number  is  still  obtained  from  byte  1  in  the  instruction  buffer;  otherwise,  it  is  the  register  number 
of  the  second  specifier  as  selected  by  a  multiplexer  414.  In  a  similar  fashion,  if  three  specifiers  are  decoded, 
then  if  the  second  specifier  is  a  valid  register  destination  specifier,  the  register  number  for  the  destination  op- 

10  erand  is  the  register  number  of  the  second  specifier;  otherwise,  it  is  the  register  number  of  the  third  specifier, 
as  selected  by  a  multiplexer  41  5. 

The  valid  data  flag,  register  flag  and  any  register  number  for  the  destination  operand  are  transmitted  over 
a  portion  420  of  the  TR  bus  and  are  received  in  a  latch  or  register  416  for  use  by  the  transfer  unit  (30  in  FIG. 
6)  during  the  next  cycle. 

15  Turning  now  to  FIG.  60,  there  is  shown  a  schematic  diagram  of  the  validation  logic  associated  with  the 
transmission  of  short  literal  information  over  the  EX  bus  430.  A  valid  data  flag  for  the  short  literal  is  obtained 
by  combining  the  number  of  specifiers  decoded  with  the  short  literal  valid  signals  for  byte  1  of  the  instruction 
decoder  and  the  second  specifier.  In  particular,  if  byte  1  in  the  instruction  decoder  is  a  valid  short  literal  spe- 
cifier,  then  the  valid  data  flag  is  set  if  N  is  at  least  two  as  determined  by  a  gate  421  .  If  byte  1  in  the  instruction 

20  buffer  is  a  valid  short  literal  specifier  but  N  is  1  ,  then  the  valid  data  flag  is  set  only  if  neither  a  branch  displace- 
ment  nor  an  implied  specifier  is  requested,  as  determined  by  the  gate  384  and  a  gate  422.  In  addition,  the 
valid  data  flag  is  set  if  N  is  two  or  three,  the  second  specifier  is  a  valid  short  literal,  and  the  second  specifier 
is  neither  a  branch  displacement  nor  an  implied  specifier,  as  detected  by  the  gate  397  and  a  gate  423.  The 
outputs  of  the  gates  421  ,  422  and  423  are  combined  in  an  OR  gate  424  to  provide  the  valid  data  flag. 

25  If  byte  1  in  the  instruction  buffer  is  a  valid  short  literal,  then  the  short  literal  data  is  obtained  from  byte  1  , 
and  otherwise  it  is  obtained  from  the  short  literal  data  for  the  second  specifier,  as  selected  by  a  multiplexer 
425.  The  specifier  number  for  the  short  literal  is  either  the  number  of  specifiers  previously  completed  or  de- 
coded,  in  the  event  that  the  short  literal  specifier  is  the  first  specifier  decoded  in  the  current  cycle,  or  is  one 
greater  than  this,  if  the  short  literal  is  the  second  specifier  decoded  in  the  current  cycle.  This  computation  is 

30  performed  by  a  three-bit  binary  adder  426  and  an  inverter  427.  The  valid  data  flag,  short  literal  data  and  spe- 
cifier  number  for  the  short  literal  operand  are  transmitted  over  the  EX  bus  430  and  are  latched  in  a  latch  or 
register  428  for  use  by  the  EX  unit  during  the  next  cycle. 

Turning  now  to  FIG.  61,  there  is  shown  the  validation  and  selection  logic  for  transmitting  operand  data 
over  the  GP  bus.  Request  signals  from  the  request  logic  (114  in  FIG.  12)  determine  whether  a  branch  displace- 

35  ment  or  an  implied  specifier  are  placed  on  the  GP  bus  470.  A  branch  displacement  is  placed  on  the  GP  bus  if 
one  specifier  is  decoded  and  the  R1  BB  or  the  R1  BW  tree  was  selected,  two  specifiers  were  decoded  and  the 
R2BB  or  the  R2BW  tree  was  selected,  or  three  specifiers  were  decoded  and  the  R3BB  or  the  R3BW  tree  was 
selected,  as  determined  by  gates  431  to  437.  After  transmission  over  the  GP  bus  470,  a  latch  or  register  438 
latches  a  branch  displacement  signal  from  the  gate  437  as  well  as  the  IRC_REG  signal  from  FIG.  57  in  order 

40  to  provide  special  control  signals  to  the  operand  processing  unit  (21  in  FIG.  6).  In  the  case  of  a  branch  dis- 
placement,  the  operand  processing  unit  adds  the  branch  displacement  to  the  address  of  the  next  opcode  being 
shifted  into  the  byte  0  position  of  the  instruction  buffer  in  order  to  obtain  the  target  address  for  the  branch  in- 
struction.  In  response  to  the  IRC_REG  control  signal,  the  operand  processing  unit  obtains  the  number  of  the 
register  specified  by  the  base  which  is  transmitted  over  the  GP  bus  470. 

45  An  implied  specifier  is  transmitted  over  the  GP  bus  470  when  the  R1I  tree  is  selected  and  one  specifier 
is  decoded,  or  the  R2I  tree  is  selected  and  two  specifiers  are  decoded,  as  determined  by  gates  439,  440  and 
441. 

Amultiplexer442  determines  whethera  complex  specif  iercan  be  decoded  assuming  that  a  branch,  implied 
or  extended  immediate  operand  is  not  being  decoded.  The  multiplexer  442  considers  the  four  primary  cases 

so  as  well  as  whether  byte  1  or  byte  2  of  the  instruction  buffer  specifies  an  index  register.  Gates  443  and  444 
combine  the  case  with  the  index  signals  to  detect  whether  the  possible  complex  specif  ier  is  the  first  or  second 
specifier  or  is  the  third  specifier  for  CASE10  or  CASE00.  For  CASE0i  or  CASE0il,  the  number  of  specifiers  de- 
coded  must  be  greater  or  equal  to  one  in  order  for  a  complex  specifier  to  be  decoded.  An  OR  gate  445  deter- 
mines  whether  N  is  greater  or  equal  to  one.  For  CASE0i  or  CASE00I,  a  complex  specifier  can  possibly  be  de- 

55  coded  if  N  is  greater  or  equal  to  two.  For  CASE10,  a  complex  specifier  can  possibly  be  decoded  if  N  equals 
three,  as  detected  by  an  AND  gate  446.  For  CASE00  (without  an  index  register),  a  complex  specifier  is  decoded 
so  long  as  byte  3  in  the  instruction  buffer  does  not  designate  a  register  specifier,  as  detected  by  a  gate  447. 

An  index  register  is  possibly  designated  if  byte  1  in  the  instruction  buffer  designates  an  index  register,  byte 
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2  in  the  instruction  buffer  designates  an  index  register,  and  CASE0i  or  CASE  ̂ are  not  present,  or  CASE10  is 
present,  as  detected  by  gates  448,  449  and  450. 

The  valid  data  flag  for  the  GP  bus  is  set  when  the  IRC_REG  signal  is  asserted,  an  implied  specifier  has 
been  decoded,  a  branch  displacement  has  been  decoded,  extended  immediate  data  has  been  decoded,  or  it 

5  is  possible  to  decode  a  complex  specifier,  as  determined  by  an  OR  gate  451  .  The  index  register  flag  for  the 
GP  bus  is  set  if  it  is  possible  to  decode  a  complex  specifier,  it  is  possible  to  obtain  the  index  specification,  and 
so  long  as  neither  a  branch  displacement,  an  implied  specifier,  nor  extended  immediate  data  has  been  decod- 
ed,  as  detected  by  gates  452  and  453. 

When  an  implied  specifier  is  decoded,  either  a  value  of  7E  hexadecimal  or  8E  hexadecimal  is  transmitted  over 
10  the  GP  bus  as  the  mode  and  base  information.  For  this  purpose,  there  is  provided  a  multiplexer  454  which  selects 

7E  when  an  implied  specifier  is  requested  and  the  access  type  of  the  requested  implied  specifier  is  IMP_WRITE, 
and  is  8E  when  an  implied  specifier  is  requested  and  the  access  type  of  that  specifier  is  not  IMP_WRITE.  The  ac- 
cess  type  of  the  requested  specifier  is  selected  by  a  multiplexer  455,  and  an  OR  gate  456  determines  whether 
an  implied  specifier  is  requested. 

15  Except  for  the  case  of  an  implied  specifier,  the  specifier  information  on  the  GP  bus  is  obtained  from  a  mul- 
tiplexer  457  which  essentially  functions  as  a  shifter  and  obtains  the  index,  mode  and  base,  and  displacement 
at  consecutive  byte  positions  in  the  instruction  buffer.  The  multiplexer  457  provides  a  selected  one  of  five  pos- 
sible  offsets  between  the  instruction  buffer  and  the  GP  bus  470.  When  one  specifier  is  requested  for  a  branch 
instruction,  byte  0  of  the  displacement  is  obtained  from  byte  1  of  the  instruction  buffer.  When  two  specifiers 

20  are  requested  for  a  branch  instruction,  then  byte  Oof  the  displacement  is  obtained  from  byte  2  of  the  instruction 
buffer.  When  three  specifiers  are  requested  for  a  branch  instruction,  byte  0  of  the  displacement  is  obtained 
from  byte  3  of  the  instruction  buffer.  When  an  intra-instruction  read  conflict  is  detected  and  a  register  is  trans- 
mitted  over  the  GP  bus  470,  byte  Oof  the  displacement  is  aligned  with  byte  2  of  the  instruction  buffer.  In  CASE^, 
byte  0  of  the  displacement  is  also  aligned  with  byte  2  of  the  instruction  buffer.  In  CASE0i,  byte  0  of  the  dis- 

25  placement  is  aligned  with  byte  3  of  the  instruction  buffer.  In  CASE00,  byte  0  of  the  displacement  is  aligned  with 
byte  4  of  the  instruction  buffer.  Finally,  in  CASE10,  byte  0  of  the  displacement  is  aligned  with  byte  5  of  the  in- 
struction  buffer. 

The  shifting  of  the  multiplexer  457  is  conveniently  controlled  by  an  input  Sm  which  aligns  byte  0  of  the  dis- 
placement  with  byte  1  of  the  instruction  buffer  by  a  shift  of  minus  one  byte  positions,  and  otherwise  shifts  in 

30  the  other  direction  by  a  number  of  byte  positions  selected  by  the  inputs  S0  and  The  input  Sm  is  asserted 
when  one  specifier  is  requested  and  it  is  a  branch  displacement.  Therefore,  the  number  of  byte  positions  to 
shift  is  readily  determined  from  the  primary  case  by  an  exclusive  OR  gate  458  and  NOR  gates  459  and  460. 
An  intra-instruction  read  conflict  or  a  request  for  a  branch  displacement  selects  the  same  number  of  byte  pos- 
itions  to  shift  as  CASE^.  An  OR  gate  461  determines  whether  a  branch  displacement  was  requested.  Finally, 

35  an  OR  gate  463  determines  whether  three  specifiers  were  requested  for  a  branch  instruction. 
The  specifier  number  for  a  complex  specifier  on  the  GP  bus  is  determined  by  the  primary  case  and  whether 

byte  1  or  byte  2  in  the  instruction  buffer  designates  an  index  register.  This  is  done  by  determining  which  of  up 
to  three  specifiers  currently  being  decoded  is  a  complex  specifier.  X̂  and  X0  designate  whether  the  complex 
specifier  is  the  first,  second  or  third  specifier  currently  being  decoded.  X̂  is  determined  by  an  OR  gate  462 

40  combining  the  outputs  of  the  gate  444  and  the  gate  449.  Xq  is  determined  by  gates  464,  465  and  466.  The 
two-bit  binary  number  specified  by  X̂ X0  is  added  to  the  number  of  specifiers  completed  in  an  adder  467  to 
determine  the  specifier  number  for  any  complex  specifier  being  decoded.  The  valid  data  flag,  index  register 
flag,  index,  mode,  base,  displacement  and  specifier  number  are  transmitted  over  the  GP  bus  470  and  are  latch- 
ed  in  a  latch  orregister468foruse  by  the  general  purpose  unit  (32  in  FIG.  6)  during  the  next  cycle  of  the  system 

45  clock. 
Turning  now  to  FIG.  62,  there  is  shown  a  schematic  diagram  of  the  extended  immediate  detector  110  that 

was  introduced  in  FIG.  12  and  which  performs  steps  51  to  57  and  64  and  65  of  the  decoding  procedure  of  FIG. 
11. 

In  order  to  detect  a  complex  specifier  having  an  extended  immediate  mode,  a  multiplexer  481  determines 
so  whetherthe  first  complex  specifier  in  the  instruction  buffer  has  an  immediate  mode,  by  selecting  the  immediate 

mode  signal  of  the  base  position  for  the  primary  case.  Any  immediate  mode  is  an  extended  immediate  when 
bit  1  of  the  data  type  for  the  complex  specifier  is  set.  The  data  type  for  the  complex  specifier  is  selected  by  a 
multiplexer  482,  controlled  by  gates  483  and  484  in  response  to  the  primary  case  and  whether  byte  1  and  byte 
2  in  the  instruction  buffer  designate  index  registers.  A  gate  485  combines  the  outputs  of  the  multiplexers  481 

55  and  482  to  assert  a  signal  when  the  first  complex  specifier  found  in  the  instruction  buffer  has  an  extended 
mode.  In  addition,  the  gate  485  is  inhibited  by  the  X8F  signal  so  that  it  will  not  respond  to  any  extended  im- 
mediate  data  in  the  instruction  buffer. 

Even  though  one  or  more  of  the  next  three  specifiers  to  be  decoded  has  an  extended  immediate  mode,  it 
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is  possible  that  it  will  not  be  decoded  during  the  current  cycle.  This  depends  upon  the  number  N  of  specifiers 
decoded  during  the  current  cycle,  and  also  the  specifier  position  of  the  complex  specifier  which  is  a  function 
of  the  primary  case  and  whether  byte  1  or  byte  2  in  the  instruction  buffer  specif  ies  an  index  register.  These 
conditions  are  resolved  by  gates  486  to  491. 

5  When  the  output  of  the  gate  491  asserts  that  a  complex  specifier  having  an  extended  immediate  mode  is 
being  decoded  during  the  current  cycle,  a  binary  counter  492  is  loaded  with  a  longword  count  in  accordance 
with  the  data  type  of  the  complex  specifier,  corresponding  to  steps  64  and  65  in  FIG.  11.  The  longword  count 
is  set  to  three  if  the  data  type  is  an  octaword,  and  otherwise  is  one  for  the  case  of  a  quadword.  An  octaword 
data  type  is  detected  by  a  multiplexer  493  which  is  controlled  by  gates  483  and  484.  Agate  494  asserts  the 

10  X8F  signal  whenever  the  binary  counter  492  has  a  value  other  than  zero.  Whenever  this  occurs,  the  binary 
counter  492  is  decremented  so  long  as  the  valid  data  flag  for  byte  4  in  the  instruction  buffer  indicates  that  the 
extended  immediate  data  is  valid,  the  general  purpose  unit  is  not  stalled  and  the  decoder  is  not  stalled.  These 
conditions  are  detected  by  gates  495  and  496.  The  RX8F  shift  count  is  four  when  the  binary  counter  492  is 
decremented,  and  otherwise  it  is  zero.  The  RX8F  value  for  N  is  always  zero.  The  extended  immediate  detector 

15  110  enables  the  "shift  op"  signal  when  the  immediate  mode  is  not  first  detected,  when  the  binary  counter  does 
not  have  a  value  of  two  or  more,  and  when  the  binary  counter  does  not  have  a  value  of  one  or  the  binary  counter 
will  be  decremented.  In  other  words,  shifting  of  the  operation  code  is  disabled  beginning  when  the  extended 
immediate  mode  is  detected  and  until  the  longword  count  is  one  and  the  binary  counter  is  decremented  to  zero. 
These  conditions  are  detected  by  gates  497  and  498. 

20  Turning  now  to  FIG.  63,  there  is  shown  a  schematic  diagram  of  a  decoder  for  detecting  an  autoincrement 
or  autodecrement  mode.  The  autodecrement  mode  occurs  when  the  register  mode  field  (see  FIG.  5)  has  a  value 
of  seven,  as  detected  by  a  gate  501  .  An  autoincrement  occurs  when  the  register  mode  field  has  a  value  of  eight 
or  nine,  as  detected  by  a  gate  502.  The  outputs  of  gates  501  and  502  are  combined  in  an  OR  gate  503  to  provide 
a  signal  indicating  an  autoincrement  or  autodecrement  mode. 

25  It  is  important  for  the  decoder  to  detect  an  autoincrement  or  autodecrement  mode  in  order  to  detect  intra- 
instruction  read  conflicts.  Since  the  instruction  decoder  20  is  capable  of  simultaneously  decoding  a  register 
specifier  and  an  autoincrement  or  autodecrement  specifier,  there  arises  a  possibility  that  the  register  specifier 
and  the  autoincrement  or  autodecrement  specifier  may  reference  the  same  register.  Therefore,  it  is  important 
to  distinguish  whether  the  value  of  the  register  specifier  should  be  the  initial  value  of  the  referenced  register 

30  or  the  value  after  modification  by  the  autoincrement  or  autodecrement.  In  a  decoder  which  decodes  a  single 
specifier  per  cycle,  the  possibility  does  not  arise  because  the  register  specifier  will  reference  the  initial  value 
if  the  register  specifier  is  decoded  before  the  autoincrement  or  autodecrement  specifier,  and  will  reference 
the  modified  value  if  the  register  specifier  occurs  after  the  autoincrement  or  autodecrement  specifier. 

For  the  instruction  decoder  20  as  described  above,  it  is  desirable  to  pass  register  numbers  over  the  TR 
35  bus  when  register  specifiers  are  decoded,  and  to  pre-process  the  autoincrement  or  autodecrement  specifiers 

in  the  GP  unit  before  the  actual  values  of  the  register  specifiers  are  obtained  by  the  execution  unit.  Therefore, 
when  the  decoder  as  described  above  would  simultaneously  decode  a  register  specifier  and  an  autoincrement 
or  autodecrement  specifier  which  both  reference  the  same  register,  the  execution  unit  would  naturally  use  the 
modified  value  of  the  referenced  register  for  the  register  specifier.  This  natural  mode  of  operation,  however, 

40  would  cause  an  invalid  result  when  the  register  specifier  occurs  before  the  autoincrement  or  autodecrement 
specifier  in  the  sequence  of  specifiers  following  the  operation  code  for  the  instruction.  For  the  instruction  de- 
coder  20,  this  possible  incorrect  result  is  avoided  by  treating  it  as  a  special  case  referred  to  as  an  "intra-in- 
struction  read  conflict."  In  other  words,  there  is  said  to  be  an  intra-instruction  read  conflict  whenever  an  au- 
toincrement  or  autodecrement  specifier  specifies  a  base  register  which  is  referenced  by  a  previous  register 

45  specifier  in  the  specifier  sequence  for  the  same  instruction. 
A  register  specifier  references  at  least  the  register  designated  by  the  register  address  field  of  the  specifier 

(see  FIG.  5).  If  the  register  specifier  has  a  quadword  data  type,  the  register  specifier  will  in  addition  reference 
the  register  having  a  register  number  or  address  of  one  plus  the  register  number  (n)  indicated  in  the  register 
address  field  of  the  register  specifier.  A  register  specifier  having  an  octaword  data  type  will  reference  registers 

so  having  register  numbers  n,  n+1,  n+2  and  n+3. 
The  instruction  decoder  20  preferably  uses  two  different  methods  of  detecting  intra-instruction  read  con- 

flicts.  The  first  method  is  to  generate  a  "read  register  mask"  identifying  the  registers  that  are  referenced  by 
source  register  specifiers  during  previous  decoding  cycles  for  the  current  instruction  being  decoded.  The  sec- 
ond  method  is  to  generate  an  "IRC  mask"  which  indicates  for  each  data  type  combination  whether  an  intra- 

55  instruction  read  conflict  could  occur.  This  second  method  is  used  to  determine  intra-instruction  read  conflicts 
between  a  register  specifier  and  an  autoincrement  or  autodecrement  specifier  being  decoded  simultaneously 
during  the  same  cycle. 

The  use  of  a  read  register  mask  for  detecting  an  intra-instruction  read  conflict  is  illustrated  in  FIG.  64.  In 
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order  to  determine  whether  there  is  a  conflict  between  a  source  register  specif  ier  and  a  subsequently  occurring 
autoincrement  or  autodecrement  specifier  included  in  the  same  instruction,  a  read  register  mask  is  generated 
having  a  respective  bit  position  for  each  of  the  sixteen  general  purpose  registers  in  the  CPU.  Amultiplexer511 
selects  the  bit  position  of  the  read  register  mask  corresponding  to  the  base  register  number  of  the  complex 

5  specifier.  The  selected  bit  of  the  read  register  mask  is  further  qualified  by  the  auto  signal  defined  in  FIG.  63 
and  a  base  valid  signal  which  are  combined  in  a  gate  512  in  order  to  enable  the  multiplexer  511.  The  output 
of  the  multiplexer  511  therefore  provides  a  signal  IRC  indicating  the  presence  of  an  intra-instruction  read  con- 
flict. 

In  order  to  generate  the  read  register  mask,  the  source  register  number  n  is  fed  to  a  decoder  513  which 
10  causes  a  bit  to  be  set  in  the  read  register  mask  at  a  position  corresponding  to  the  read  register  number.  Bits 

in  other  bit  positions  may  need  to  be  set  depending  upon  the  data  type  of  the  source  register  specifier.  These 
positions  occur  at  n+1,  n+2  and  n+3  as  determined  by  an  adder  circuit  514.  Bits  are  selectively  set  at  these 
other  bit  positions  by  respective  decoders  515,  516  and  517.  Each  of  the  decoders  generates  a  respective 
mask,  and  the  masks  are  logically  OR'd  by  a  set  of  sixteen  four-input  OR  gates  generally  designated  518  to 

15  provide  the  read  register  mask. 
Since  bits  in  the  read  register  mask  are  set  at  the  n+2  and  n+3  bit  positions  only  for  an  octaword  data  type, 

the  octaword  data  type  is  decoded  by  a  gate  519  which  supplies  enable  signals  to  the  decoders  516  and  517. 
In  a  similar  fashion,  the  decoder  515  is  enabled  by  an  OR  gate  520  for  the  octaword  and  the  quadword  data 
types.  Agate  521  qualifies  with  the  valid  data  flag  and  register  flag  associated  with  the  source  register  number. 

20  These  flags  also  enable  the  gate  519  which  detects  the  octaword  data  type. 
As  shown  in  FIG.  64,  the  read  register  mask  is  conveniently  used  for  detecting  an  intra-instruction  read 

conflict  when  the  base  register  number  occurs  during  a  cycle  subsequent  to  the  cycle  in  which  the  source  reg- 
ister  specifier  is  decoded.  If  the  base  register  is  decoded  during  the  same  cycle  as  the  source  register  specifier, 
the  circuit  of  FIG.  64  has  an  excessive  delay  from  the  time  that  the  source  data  type  is  available  from  the  de- 

25  code  logic  (105  in  FIG.  12)  to  the  time  that  the  intra-instruction  read  conflict  is  detected  by  the  multiplexer  511. 
In  FIG.  65  there  is  shown  an  intra-instruction  read  conflict  detection  circuit  which  has  a  multiplexer  531 

controlled  by  the  data  type  of  the  source  register  specifier  in  order  to  eliminate  the  delay  between  the  time 
that  the  data  type  is  available  and  the  intra-instruction  read  conflict  is  detected.  The  multiplexer  531  selects 
a  respective  bit  position  of  an  IRC  mask  corresponding  to  whether  the  data  type  designates  a  longword,  quad- 

30  word  or  octaword. 
In  order  to  generate  the  IRC  mask,  a  comparator  532  compares  the  source  register  number  to  the  base 

register  number  to  determine  whether  there  is  a  possible  conflict  if  the  data  type  specifies  a  longword.  Agate 
533  qualifies  the  output  of  the  comparator  532  is  qualified  by  the  automatic  mode  signal  for  the  base  register 
and  a  register  flag  for  the  source  specifier. 

35  In  order  to  determine  the  IRC  mask  bits  for  the  possible  quadword  and  octaword  data  types,  the  source 
register  number  n  is  fed  to  an  adder  534  providing  values  of  n+1  ,  n+2  and  n+3  to  respective  comparators  535, 
536  and  537.  A  possible  conflict  occurs  for  a  quadword  data  type  if  a  match  is  indicated  by  either  of  the  com- 
parators  532  and  535,  as  detected  by  an  OR  gate  538.  A  possible  conflict  may  occur  for  an  octaword  data  type 
if  a  match  is  indicated  by  any  of  the  comparators  532,  535,  536  or  537,  as  detected  by  an  OR  gate  539.  The 

40  outputs  of  the  gates  538,  539  are  qualified  by  the  register  flag  and  the  AUTO  signal  gates  540  and  541  . 
Turning  now  to  FIG.  66,  there  is  shown  circuitry  for  generating  a  nine-bit  IRC  mask  for  detecting  an  intra- 

register  conflict  with  up  to  two  source  register  specifiers  decoded  simultaneously  during  a  current  cycle,  and 
any  number  of  source  specifiers  decoded  during  previous  cycles  for  the  current  instruction.  The  circuit  in  FIG. 
66  includes  a  read  register  mask  generator  and  a  composite  IRC  detector  similar  to  the  circuits  shown  in  FIG. 

45  64  for  detecting  an  intra-instruction  read  conflict  during  the  present  cycle  between  a  complex  specifier  decod- 
ed  during  the  current  cycle  and  any  numberof  source  and  index  register  specif  iers  decoded  during  any  previous 
cycles  for  the  same  instruction. 

In  order  to  generate  the  read  register  mask,  latched  values  of  the  first  source  register  number,  valid  data 
flag,  register  flag,  and  first  specifier  data  type  for  the  previous  decoding  cycle  are  fed  to  a  read  register  mask 

so  generator  551  .  In  a  similar  fashion,  latched  values  of  the  second  source  register  number,  valid  data  flag,  register 
flag  and  data  type  for  the  second  specifier  determined  during  the  previous  decoding  cycle  are  fed  to  a  read 
register  mask  generator  552.  Aset  of  sixteen  three-input  OR  gates  generally  designated  555  combine  the  read 
register  masks  generated  for  the  two  source  register  numbers  with  a  previously-generated  read  register  mask 
from  a  latch  or  register  554  to  obtain  a  read  register  mask  for  the  current  decoding  cycle.  This  read  register 

55  mask  is  qualified  by  the  "new  fork"  signal  in  a  gate  556  to  provide  the  data  input  to  the  register  554.  The  register 
554  therefore  accumulates  the  read  register  information  for  previous  decoding  cycles  for  the  current  instruction, 
and  the  gate  556  in  effect  clears  the  register  554  at  the  end  of  decoding  for  the  current  instruction. 

In  order  to  determine  whether  there  is  a  conflict  between  any  autoincrement  or  autodecrement  mode  com- 
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plex  specifier  decoded  during  the  present  cycle  and  any  source  specifiers  decoded  during  a  previous  cycle 
for  the  same  instruction,  the  output  of  the  gate  556  is  fed  to  a  multiplexer  557  which  selects  a  particular  bit 
from  the  composite  mask  corresponding  to  the  number  of  the  base  register  for  the  complex  specifier.  This  base 
register  number  is  selected  from  the  register  address  field  in  byte  1,  2,  3  or  4  in  the  instruction  buffer  by  a 

5  multiplexer  558  controlled  by  the  primary  case.  In  a  similarfashion,  an  autoincrement  or  autodecrement  mode 
signal  for  the  base  register  number  is  selected  by  a  multiplexer  559  controlled  by  the  primary  case. 

The  composite  IRC  from  the  multiplexer  557  is  logically  OR'd  into  every  position  of  the  nine-bit  IRC  mask. 
Otherwise,  the  IRC  mask  indicates  a  possible  conflict  between  up  to  two  source  register  specifiers  and  an 
autoincrement  or  autodecrement  mode  complex  specifier  simultaneously  decoded  during  the  current  cycle. 

10  The  adder  and  comparators  shown  in  FIG.  65  are  replicated  five  times  to  provide  respective  comparators  561 
to  564  for  each  possible  combination  of  source  register  and  base  register  that  can  be  simultaneously  decoded 
during  the  present  cycle.  Each  one  of  these  comparators  provides  four  output  bits. 

The  outputs  from  the  comparators  561  to  563  are  selected  by  a  multiplexer  566  controlled  by  the  primary 
case  to  obtain  the  comparator  signals  for  a  possible  base  register  and  a  first  preceding  register  specifier.  An- 

15  other  multiplexer  567  is  controlled  by  the  CASE[0]  signal  to  provide  comparator  signals  between  a  possible 
base  register  and  a  second  preceding  register  specifier.  The  comparator  signals  selected  by  the  multiplexer 
566  are  further  qualified  in  a  gate  568  which  inhibits  the  comparator  signals  when  the  first  specifier  being  de- 
coded  is  a  complex  specifier,  as  detected  by  a  gate  569,  and  when  the  first  specifier  is  not  a  register  specifier. 
In  a  similarfashion,  a  gate  570  enables  the  comparatorsignals  forthe  second  specif  ier  when  the  third  specifier 

20  is  complex,  as  detected  by  gates  571  to  573,  the  second  specifier  has  a  register  mode,  and  the  complex  spe- 
cifier  has  an  autoincrement  or  autodecrement  mode. 

The  qualified  specifier  signals  from  the  gates  568  and  570  are  combined  by  first  and  second  levels  of  OR 
gates  574  to  584  to  generate  the  nine-bit  IRC  mask. 

Turning  now  to  FIG.  67,  there  is  shown  a  schematic  diagram  of  the  IRC  detector  26  introduced  in  FIG.  12. 
25  The  IRC  mask  is  received  in  a  first  set  of  multiplexers  591  ,  592  and  593  to  select  three  bits  corresponding  to 

the  data  type  of  the  first  specifier  being  decoded.  Afourth  multiplexer  594  is  controlled  by  the  data  type  of  the 
second  specifier  being  decoded  to  select  a  particular  one  of  the  nine  bits  of  the  IRC  mask.  The  selected  bit  of 
the  IRC  mask,  however,  does  not  necessarily  indicate  the  presence  of  an  intra-instruction  read  conflict  due 
to  the  fact  that  the  detected  mode  might  actually  be  a  branch  displacement,  or  there  could  be  an  implied  spe- 

30  cif  ier.  In  these  cases,  the  output  of  the  multiplexer  594  is  inhibited  by  gates  595  and  596.  Gate  596  is  also 
inhibited  if  an  intra-register  conflict  was  detected  during  a  previous  decoding  cycle  for  the  same  instruction. 
This  is  done  so  that  the  IRC  detector  may  signal  the  operand  processing  unit  when  the  IRC  is  first  detected 
during  the  decoding  of  an  instruction. 

It  is  still  possible  that  the  output  of  the  gate  596  might  not  signal  an  intra-instruction  read  conflict  due  to 
35  the  fact  that  the  auto  mode  complex  specifier  might  not  be  decoded  during  the  present  cycle.  Whether  an  auto 

mode  specifier  is  actually  decoded  depends  upon  the  initial  number  N'  of  specifiers  being  decoded  during  the 
present  cycle,  the  primary  case,  and  whether  byte  1  or  byte  2  in  the  instruction  buffer  designates  an  index 
register.  These  conditions  are  detected  by  AND  gates  597  to  601  and  an  OR  gate  602.  The  OR  gate  602  also 
receives  an  implied  IRC  signal  which  is  asserted  whenever  an  implied  specifier  is  decoded  that  conflicts  with 

40  a  previous  register  specifier  or  index  register  designation.  An  implied  intra-instruction  read  conflict,  for  exam- 
ple,  occurs  for  the  instruction  "PUSHL  SP"  since  such  an  instruction  should  be  interpreted  as  first  obtaining 
the  initial  value  of  the  stack  pointer,  then  autodecrementing  the  stack  pointer,  and  then  pushing  the  initial  value 
of  the  stack  pointer  onto  the  stack  at  an  address  given  by  the  decremented  value  of  the  stack  pointer.  Therefore, 
the  first  explicit  specifier  is  a  source  register  specifier  which  conflicts  with  the  following  implied  autodecrement 

45  of  the  same  register. 
In  order  to  detect  an  intra-instruction  read  conflict  between  a  source  register  specifier  and  an  implied  au- 

toincrement  or  autodecrement  specifier,  the  register  number  in  byte  1  of  the  instruction  buffer  operates  the 
select  input  of  a  decoder  603  which  is  enabled  by  the  register  mode  of  byte  1.  Forthe  implied  specifiers  shown 
in  Appendix  I,  the  implied  specifier  is  always  an  autoincrement  or  autodecrement  of  the  stack  pointer  which 

so  has  a  register  number  of  fourteen.  Therefore,  decoder  outputs  14,  13,  12  and  11  correspond  to  the  comparator 
signals  P[1],  P[2],  P[3]  and  P[4]  of  FIG.  65.  OR  gates  604  and  605  provide  the  quadword  and  octaword  bits  of 
the  implied  register  mask.  The  appropriate  bit  of  the  implied  IRC  mask  is  selected  by  a  multiplexer  606.  The 
selection  from  the  multiplexer  606  is  further  qualified  in  a  gate  607  by  the  R2I  request  signal  and  N'[1]  indicating 
that  the  implied  specifier  will  be  decoded. 

55  it  is  also  possible  that  an  implied  specifier  currently  being  decoded  will  conflict  with  a  source  register  spe- 
cif  ier  having  been  decoded  during  a  previous  decoding  cycle  for  the  same  instruction.  Such  a  conflict  is  de- 
tected  by  a  gate  608  which  selects  bit  14  of  the  read  register  mask  from  gate  556  in  FIG.  66  when  one  implied 
specifier  was  requested  and  one  will  be  decoded,  and  by  gate  609  when  two  specifiers  including  an  implied 
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specifier  have  been  requested  and  two  specifiers  will  be  decoded.  The  various  possible  sources  of  conflict 
detected  by  the  gates  607,  608  and  609  are  combined  by  an  OR  gate  610  to  detect  an  implied  intra-instruction 
read  conflict. 

Once  an  expressed  or  implied  intra-instruction  read  conflict  is  signaled  by  the  gate  602,  then  the  instruc- 
5  tion  is  decoded  by  decoding  only  one  specifier  during  each  decoding  cycle.  Only  one  specifier  will  be  decoded 

during  the  current  cycle,  and  if  there  are  any  remaining  specifiers  to  be  decoded  for  the  instruction,  a  latch 
611  is  set  to  signal  that  only  one  specifier  will  be  decoded  during  each  subsequent  decoding  cycle  until  the 
instruction  is  completely  decoded.  The  end  of  decoding  forthe  instruction  is  indicated  by  the  "all  specs  com- 
pleted"  signal  from  FIG.  12.  In  addition,  the  latch  611  is  not  set  when  the  instruction  buffer  is  being  initially 

10  loaded  or  when  there  is  a  decoder  fault.  Setting  of  the  latch  6ii  in  these  cases  is  inhibited  by  a  gate  612. 
Once  the  latch  611  is  set,  a  gate  613  assures  that  it  remains  set  until  the  end  of  decoding  for  the  current 

cycle.  Another  gate  614  assures  that  the  state  of  the  latch  611  will  not  change  in  the  event  of  a  decoder  fault. 
The  outputs  of  the  gates  612,  613  and  614  are  combined  in  an  OR  gate  615  and  applied  to  the  data  input  of 
the  latch  611.  An  OR  gate  616  combines  the  output  of  the  latch  611  with  an  IRC_DETECTED  signal  from  the 

15  gate  602  to  provide  the  IRC  signal  which  operates  the  multiplexer  126  in  FIG.  12. 
Turning  now  to  FIG.  68,  there  is  shown  a  schematic  diagram  of  the  circuits  in  the  instruction  unit  12  and 

the  execution  unit  13  which  update  general  purpose  registers  651  in  the  instruction  unit  and  a  corresponding 
set  of  general  purpose  registers  652  in  the  execution  unit  in  response  to  an  intra-instruction  read  conflict  de- 
tected  by  the  instruction  decoder  (20  in  FIG.  1).  As  shown  in  FIG.  68,  the  data  paths  between  the  instruction 

20  unit  12  and  the  execution  unit  13  include  the  source  list  24  and  a  number  of  queues  23.  These  queues  23  more 
specifically  include  a  fork  queue  653  receiving  the  fork  or  microcode  entry  address  for  the  instruction  just  hav- 
ing  been  decoded,  a  source  pointer  queue  655  for  receiving  register  numbers  or  source  list  pointers  to  the 
source  operands  having  been  decoded  by  the  instruction  decoder,  a  destination  pointer  queue  656  for  receiving 
the  register  number  or  address  of  a  destination  operand  having  been  decoded  by  the  instruction  decoder,  and 

25  a  register  scoreboard  queue  657. 
The  register  scoreboard  queue  657  detects  inter-instruction  read  conflicts  between  register  source  oper- 

ands  of  previous  pre-processed  but  not  yet  executed  instructions  and  autoincrement  or  autodecrement  spe- 
cifiers  of  the  current  instruction.  The  register  scoreboard  queue  657  also  detects  inter-instruction  conflicts  be- 
tween  register  destination  operands  of  previous  pre-processed  but  not  yet  executed  instructions  and  register 

30  source  operands  of  the  current  instruction.  To  detect  any  inter-instruction  read  conflict,  the  register  scoreboard 
queue  receives  the  composite  register  read  mask  generated  by  the  set  of  gates  555  in  FIG.  66  when  the  "new 
fork"  signal  is  asserted.  To  detect  any  inter-instruction  write  conflict,  the  register  scoreboard  queue  also  re- 
ceives  a  composite  register  write  mask  that  is  generated  in  a  similar  fashion  to  the  composite  register  read 
mask  except  that  the  mask  generator  is  responsive  to  the  destination  register  information.  The  register  score- 

35  board  queue  657  further  includes  a  set  of  OR  gates  for  forming  the  logical  OR  of  all  of  the  masks  in  the  queue 
to  form  composite  register  read  and  write  masks. 

The  composite  register  read  mask  is  compared  to  the  base  register  number  of  any  complex  specifier  having 
an  autoincrement  or  autodecrement  mode  to  detect  an  inter-instruction  register  read  conflict.  In  a  similarfash- 
ion,  any  source  register  numbers  are  compared  to  the  composite  write  register  mask  to  detect  any  inter-instruc- 

40  tion  write  conflicts.  In  either  case,  the  register  scoreboard  queue  657  signals  the  presence  of  any  inter-instruc- 
tion  register  conflict. 

The  instruction  unit  12  and  the  execution  unit  13  include  the  duplicate  sets  of  general  purpose  registers 
651  and  652  so  that  the  specifiers  can  be  evaluated  by  the  instruction  unit  before  they  are  needed  by  the  exe- 
cution  unit.  When  the  execution  unit  modifies  a  general  purpose  register,  the  new  data  are  sent  to  both  the 

45  execution  unit  general  purpose  registers  652  and  the  instruction  unit  general  purpose  registers  651  .  In  the  typ- 
ical  case,  when  the  instruction  unit  modifies  a  base  register  in  response  to  evaluation  of  an  autoincrement  or 
autodecrement  specifier,  both  the  instruction  unit  general  purpose  registers  651  and  the  execution  unit  general 
purpose  registers  652  are  updated. 

In  the  event  of  an  exception  or  interrupt,  the  queues  23  must  be  flushed  of  information  about  instructions 
so  which  have  been  decoded  but  not  yet  executed.  If  any  of  these  decoded  but  not  yet  executed  instructions  con- 

tain  a  complex  specifier  having  an  autoincrement  or  autodecrement  mode,  the  register  having  been  modified 
must  be  returned  to  its  original  state.  Therefore,  it  is  desirable  for  the  instruction  unit  or  the  execution  unit  to 
store  information  about  the  changes  having  been  made  to  the  general  purpose  registers  when  the  registers 
have  been  modified  by  an  autoincrement  or  autodecrement.  For  storing  this  information,  the  execution  unit  13 

55  of  FIG.  68  is  provided  with  an  RLOG  queue  658  for  storing  respective  register  numbers  and  the  amount  that 
they  are  modified  by. 

As  shown  in  FIG.  68,  the  RLOG  queue  is  full  when  it  stores  sixteen  entries.  Once  an  instruction  having 
an  autoincrement  or  autodecrement  specifier  is  retired,  its  corresponding  entry  must  be  removed  from  the 
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RLOG  queue  658.  Also,  since  an  instruction  can  have  multiple  specifiers,  each  of  which  could  be  an  autoincre- 
ment  or  autodecrement  specifier,  it  is  necessary  to  permit  more  than  one  entry  in  the  RLOG  queue  to  be  as- 
sociated  with  each  instruction.  For  this  purpose,  the  instruction  unit  1  2  includes  a  modulo  six  counter  that  gen- 
erates  a  three-bit  tag  (OPU  TAG)  which  is  appended  to  the  fork  for  the  instruction.  A  modulo  six  counter  659, 

5  for  example,  is  provided  by  a  three-bit  binary  counter  having  its  clock  enabled  by  the  "new  fork"  signal,  and 
having  a  gate  660  for  resetting  the  counter  in  response  to  the  "new  fork"  signal  when  the  tag  has  a  value  of 
five.  The  tag  points  to  one  of  six  three-bit  RLOG  counters  661  located  in  the  execution  unit  13. 

The  RLOG  queue  658  has  a  four-bit  insert  pointer  counter  662  that  is  incremented  as  entries  are  added 
to  the  RLOG  queue  658.  Also,  as  an  entry  is  added,  the  respective  RLOG  counter  is  incremented.  When  an 

10  instruction  is  retired,  the  RLOG  counter  corresponding  to  the  tag  of  the  retired  instruction  (the  execution  unit 
tag)  is  reset.  This  is  done,  for  example,  by  a  decoder  663  which  has  outputs  connected  to  respective  reset  inputs 
of  the  RLOG  counters  661,  and  which  is  enabled  by  a  retire  signal  from  the  retire  unit  27.  In  a  similarfashion, 
an  encoder  664  has  outputs  tied  to  respective  clock  enable  inputs  of  the  RLOG  counters  661  ,  and  has  a  select 
input  receiving  the  OPU  tag  and  an  enable  input  enabled  by  a  MODIFY  signal.  The  MODIFY  signal  enables  a 

15  decoder  665  decoding  the  insert  pointer  from  the  insert  pointer  counter  662  to  enable  data  enable  inputs  of 
respective  ones  of  the  sixteen  data  registers  in  the  RLOG  queue  658. 

The  number  of  valid  entries  in  the  RLOG  queue  is  obtained  by  summing  all  of  the  values  of  the  RLOG  coun- 
ters  661  in  an  adder  666.  The  most  significant  bit  (Q4)  of  the  sum  indicates  that  there  are  sixteen  entries  in 
the  RLOG  queue  658,  and  therefore  signals  that  the  RLOG  queue  is  about  to  overflow.  Overflow  is  prevented 

20  by  stalling  the  operand  processing  unit  when  the  Q4  signal  is  active.  The  output  bits  of  the  adder  666  are  com- 
bined  in  an  NOR  gate  667  to  provide  a  signal  indicating  that  the  RLOG  queue  is  empty. 

When  an  execution  or  interrupt  occur,  the  RLOG  entries  are  unwound  from  the  RLOG  queue.  This  is  done 
by  accessing  all  of  the  valid  entries  in  the  RLOG  queue.  The  entries  can  be  successively  obtained  by  a  mul- 
tiplexer  668  having  a  select  input  receiving  the  insert  pointer  counter,  and  successively  decrementing  the  insert 

25  pointer  counter.  It  is  desirable  in  many  instances,  however,  to  only  discard  orflush  the  instruction  and  execution 
unit  of  data  corresponding  to  a  certain  number  of  instructions  that  were  just  decoded.  This  is  typically  done  to 
permit  instructions  following  a  branch  instruction  before  the  branch  of  the  branch  instruction  is  actually  deter- 
mined  by  the  execution  unit.  If  it  is  found  that  the  program  execution  should  have  branched,  or  any  prediction 
for  the  branch  is  found  to  be  erroneous,  the  results  of  decoding  the  instructions  following  the  branch  must  be 

30  flushed  from  the  queues  23  and  any  general  purpose  registers  having  been  modified  by  autoincrement  or  au- 
todecrement  specifiers  in  the  instructions  following  the  branch  instruction  must  be  returned  to  their  original 
values.  For  this  purpose,  only  a  certain  number  of  entries  in  the  RLOG  queue  658  are  obtained  from  the  mul- 
tiplexer  668  while  decrementing  the  insert  pointer  counter  662. 

In  order  to  determine  the  particular  number  of  entries  to  be  removed  from  the  RLOG  queue  658,  there  is 
35  provided  a  flush  counter  669  which  is  set  to  the  value  of  the  execution  unit  tag  plus  a  "number  to  keep"  which 

specifies  the  number  of  instructions  which  have  been  correctly  decoded  and  for  which  their  results  should  be 
left  in  the  queues  23.  The  computation  is  performed  by  an  adder  670,  and  the  number  of  entries  to  keep  is  fed 
to  the  adder  through  a  set  of  gates  671  which  are  disabled  when  the  queues  23  are  to  be  entirely  flushed.  During 
the  flushing  process,  a  multiplexer  672  supplies  the  value  of  the  flush  counter  to  the  select  input  of  the  decoder 

40  664.  Therefore,  only  the  RLOG  counters  661  corresponding  to  the  instructions  having  information  to  be  flushed 
and  registers  to  be  restored  are  accessed  for  flushing.  In  addition,  the  select  input  of  the  decoder  664  is  fed 
to  a  multiplexer  673  for  selecting  the  value  of  the  respective  counter;  this  value  indicates  how  many  entries 
are  to  be  removed  from  the  RLOG  queue  658.  The  process  of  flushing  and  restoring  the  registers  can  be  done 
sequentially  by  testing  whether  the  value  of  the  selected  RLOG  counter  is  equal  to  zero,  as  determined  by  a 

45  NOR  gate  674,  and  by  detecting  that  the  flushing  is  complete  when  the  value  of  the  flush  counter  is  equal  to 
the  value  of  the  OPU  tag,  as  indicated  by  a  comparator  675.  The  particular  steps  in  the  flushing  procedure  are 
performed  by  a  sequential  state  machine  676  in  the  execution  unit.  As  is  conventional,  the  sequential  state 
machine  includes  combinational  logic  and  a  set  of  registers  for  holding  the  sequential  state  between  cycles  of 
the  system  clock.  In  a  similarfashion,  the  instruction  unit  includes  a  sequential  state  machine  677  for  updating 

so  the  instruction  unit  general  purpose  registers  651  during  the  flushing  procedure. 
The  restoration  of  the  general  purpose  registers  is  complicated  by  the  need  to  handle  intra-instruction  read 

conflicts.  According  to  the  preferred  method,  once  an  intra-instruction  read  conflict  is  detected,  the  autoincre- 
ment  and  autodecrement  specif  iers  modify  only  the  instruction  unit  general  purpose  registers  651  and  the  reg- 
ister  specifiers  are  passed  as  data,  instead  of  pointers,  to  the  execution  unit.  The  instruction  unit  general  pur- 

55  pose  registers  651,  but  not  the  execution  unit  general  purpose  registers  652,  are  modified  during  evaluation 
of  the  autoincrement  and  autodecrement  specifiers.  When  the  instruction  having  the  intra-instruction  register 
conflict  is  fully  decoded,  decoding  of  the  next  instruction  is  temporarily  inhibited  until  the  current  instruction 
is  retired  and  the  execution  unit  general  purpose  registers  652  are  updated.  For  this  purpose,  the  numbers  of 

30 



EP  0  381  469  B1 

the  registers  having  been  modified  afterthe  intra-instruction  conflict  is  detected  are  stored  in  a  "delayed  update 
queue"  678.  Once  the  instruction  is  retired,  the  values  of  the  registers  having  their  numbers  stored  in  the  de- 
layed  update  queue  678  are  transmitted  to  the  execution  unit  general  purpose  registers  652.  An  AND  gate  679 
determines  that  the  current  instruction  has  been  retired  by  qualifying  the  retire  signal  from  the  retire  unit  27 

5  with  a  signal  indicating  that  the  register  scoreboard  queue  657  is  empty. 
A  flush  may  occur  during  the  decoding  of  an  instruction  having  an  intra-instruction  conflict.  In  order  that 

the  flushing  procedure  need  not  take  into  consideration  the  intra-instruction  conflict,  when  the  instruction  unit 
general  purpose  registers  651  are  being  modified  but  the  execution  unit  general  purpose  registers  652  are  not, 
a  modification  value  of  zero  is  stored  in  the  RLOG  queue  658  each  time  that  an  instruction  unit  general  purpose 

10  register  651  is  modified.  Therefore,  if  a  flush  occurs,  the  instruction  unit  general  purpose  registers  651  are 
restored  to  their  initial  unmodified  values  by  being  replaced  with  the  unmodified  values  stored  in  the  execution 
unit  general  purpose  registers  652. 

Turning  now  to  FIG.  69,  there  is  shown  a  flowchart  of  the  control  procedure  executed  by  the  sequential 
state  machine  677  in  the  instruction  unit.  Preferably,  this  sequential  state  machine,  as  well  as  the  instruction 

15  unit  general  purpose  registers  651,  are  part  of  the  operand  unit  (21  in  FIG.  1).  In  a  first  step  681  of  the  control 
procedure,  execution  branches  to  step  682  when  there  is  an  interrupt,  exception  or  flush.  In  step  682,  the  in- 
struction  unit  general  purpose  registers  651  are  restored  with  any  values  received  from  the  execution  unit,  and 
the  control  sequence  for  the  current  cycle  is  finished. 

If  an  interrupt,  exception  or  flush  is  not  pending,  then  in  step  683  the  instruction  unit  sequential  state  ma- 
20  chine  677  checks  the  inter-instruction  conflict  signal  from  the  register  scoreboard  queue  657  and  stalls  the 

operand  processing  unit  in  step  684  when  there  is  an  inter-instruction  conflict. 
If  there  is  not  an  inter-instruction  conflict,  then  in  step  685  the  sequential  state  machine  677  checks  the 

latch  680  to  determine  whether  there  is  an  intra-instruction  conflict  pending.  If  there  is  an  intra-instruction  con- 
flict,  then  in  step  686  the  OPU  tests  whether  the  current  specifier  is  a  register  specifier.  If  so,  then  in  step  687 

25  the  source  list  24  is  loaded  with  the  unmodified  value  of  any  source  register  and  the  source  pointer  queue  654 
is  loaded  with  a  pointer  to  that  unmodified  value.  If  the  specifier  is  not  a  register  specifier,  then  in  step  688 
the  OPU  tests  whether  the  current  specifier  is  an  autoincrement  or  autodecrement  mode  specifier.  If  so,  then 
in  step  689  the  instruction  unit  general  purpose  register  651  corresponding  to  the  base  register  number  is  modi- 
fied,  but  a  zero  modification  value  is  transmitted  to  the  RLOG  queue  658  and  the  execution  unit  general  pur- 

30  pose  registers  652.  The  number  of  the  base  register  having  been  modified  is  stored  in  the  delayed  update 
queue  678.  If  the  current  specifier  is  neither  a  register  specifier  nor  an  auto  mode  specifier,  then  in  step  690 
the  OPU  evaluates  the  specifier  in  the  usual  fashion  as  described  above  in  connection  with  FIGS.  1  and  2. 

In  step  691  ,  the  sequential  state  machine  677  checks  the  "new  fork"  signal  to  determine  whether  the  current 
instruction  has  been  entirely  decoded.  If  so,  then  in  step  692  an  instruction  decoder  stall  flag  is  set  in  order 

35  to  stall  the  instruction  decoder  until  the  current  instruction  has  been  retired  and  the  execution  unit  general  pur- 
pose  registers  are  updated. 

Once  the  current  instruction  is  retired,  the  intra-instruction  conflict  will  no  longer  be  detected  in  step  685. 
Then  in  step  693  the  sequential  state  machine  677  checks  whether  the  delayed  update  queue  is  empty.  If  not, 
then  it  contains  the  numbers  of  the  execution  unit  general  purpose  registers  652  that  must  be  updated.  In  step 

40  694,  the  next  register  number  in  the  delayed  update  queue  is  obtained  and  the  content  of  that  register  in  the 
instruction  unit  general  purpose  registers  651  is  transmitted  to  the  corresponding  execution  unit  general  pur- 
pose  register  652.  In  step  695,  the  sequential  state  machine  677  checks  whether  the  content  of  the  last  general 
purpose  register  having  been  modified  is  being  transmitted  to  the  corresponding  execution  unit  general  pur- 
pose  register  652.  If  so,  then  the  execution  unit  general  purpose  registers  will  all  be  restored  at  the  end  of  the 

45  current  cycle  and  therefore  in  step  696  the  flag  stalling  the  instruction  decoder  is  cleared. 
If  the  delayed  update  queue  is  empty  in  step  693,  then  the  operand  processing  unit  operates  in  its  normal 

fashion.  In  step  697,  any  source  register  numbers  are  loaded  directly  into  the  source  list  queue  655.  In  step 
698,  the  instruction  unit  general  purpose  register  designated  by  the  base  of  any  complex  specifier  having  an 
autoincrement  or  autodecrement  mode  is  modified,  and  the  modification  is  transmitted  to  the  RLOG  queue 

so  658  and  the  general  purpose  registers  652  in  the  execution  unit  13. 
Turning  now  to  FIG.  70,  there  is  shown  a  flowchart  of  the  control  procedure  of  the  sequential  state  machine 

676  in  the  execution  unit.  In  a  first  step  711  ,  the  sequential  state  machine  676  checks  whether  there  is  an  in- 
terrupt  or  exception.  If  so,  then  in  step  712  the  flush  counter  is  set  to  the  value  of  the  execution  unit  tag.  In  a 
similar  fashion,  if  a  flush  request  is  detected  in  step  713,  then  in  step  714  the  flush  counter  669  is  set  to  the 

55  value  of  the  execution  unit  tag  plus  the  number  of  decoded  but  not  yet  executed  instructions  to  keep. 
After  step  712  or  714,  the  sequential  state  machine  676  checks  the  output  of  the  gate  667  in  order  to  test 

in  step  715  whether  the  RLOG  queue  is  empty.  If  so,  then  the  current  cycle  of  the  control  procedure  in  FIG. 
70  is  finished.  Otherwise,  at  least  one  of  the  execution  unit  general  purpose  registers  652  has  to  be  restored 
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to  a  previous  value.  In  step  716,  the  sequential  state  machine  676  checks  the  output  of  the  gate  674  to  deter- 
mine  whether  the  RLOG  counter  addressed  by  the  flush  tag  from  the  flush  counter  669  is  equal  to  zero.  If  so, 
then  the  RLOG  queue  does  not  have  any  modification  entries  forthe  instruction  corresponding  to  the  selected 
RLOG  counter.  Therefore,  in  step  717,  the  sequential  state  machine  676  checks  the  output  of  the  comparator 

5  675  to  determine  whether  the  flush  tag  is  equal  to  the  OPU  tag,  and  if  so,  all  of  the  execution  unit  general  pur- 
pose  registers  652  have  been  restored  to  their  previous  values  before  the  processing  of  the  instructions  being 
flushed.  Otherwise,  in  step  718,  the  flush  counter  is  incremented  and  execution  branches  back  to  step  716  to 
inspect  the  content  of  the  next  RLOG  counter. 

If  in  step  716  it  is  found  that  the  value  of  the  RLOG  counter  is  not  equal  to  zero,  then  there  is  at  least  one 
10  corresponding  entry  in  the  RLOG  queue.  In  step  719  the  RLOG  counter  is  decremented  and  in  step  720  the 

RLOG  queue  is  read  at  the  entry  just  before  the  entry  indicated  by  the  insert  pointer,  and  the  insert  pointer  is 
decremented.  Next,  in  step  721,  the  value  of  the  execution  unit  general  purpose  register  addressed  by  the  reg- 
ister  number  from  the  RLOG  queue  is  read,  and  the  modification  read  from  the  RLOG  queue  is  added  to  that 
value  of  the  execution  unit  register  and  the  sum  is  stored  back  in  the  addressed  execution  unit  general  purpose 

15  register.  The  sum  and  the  register  number  are  also  transmitted  to  the  instruction  unit  general  purpose  registers 
651  for  restoration  of  the  corresponding  general  purpose  register  in  the  instruction  unit.  Execution  then  branch- 
es  back  to  step  715  to  determine  whether  any  additional  general  purpose  registers  must  be  restored. 

If  there  is  neither  an  interrupt,  exception  or  flush,  in  step  722  the  execution  unit  checks  whether  it  is  re- 
ceiving  register  modification  information  sent  by  the  instruction  unit  (this  is  done  in  steps  687  or  703  of  FIG. 

20  69).  If  register  modification  information  is  received,  then  in  step  723  the  register  modification  information  is 
inserted  in  the  RLOG  queue,  and  the  RLOG  counter  selected  by  the  OPU  tag  is  incremented.  In  step  724  the 
modification  value  is  tested  to  determine  if  it  is  zero.  If  so,  then  the  execution  unit  cycle  is  finished.  Otherwise, 
in  step  725  the  execution  unit  general  purpose  register  addressed  by  the  OPU  tag  is  modified  in  accordance 
with  the  modification  information,  and  the  control  procedure  performed  by  the  sequential  state  machine  676 

25  is  finished. 
In  view  of  the  above,  there  has  been  described  an  instruction  decoder  capable  of  simultaneously  decoding 

two  source  specifiers  and  one  destination  specifier.  All  three  of  the  specifiers  can  be  register  specifiers.  Any 
one  of  these  specifiers  can  be  a  complex  specifier  designating  an  index  register,  a  base  register  and  a  dis- 
placement. 

30  Simultaneous  decoding  of  multiple  specifiers  causes  a  peculiar  problem  of  intra-instruction  read  conflicts. 
Circuitry  for  detecting  an  intra-instruction  read  conflict  has  been  disclosed  as  well  as  an  efficient  method  for 
handling  interrupts,  exceptions  and  flushes  that  may  occur  during  the  processing  of  an  instruction  having  an 
intra-instruction  read  conflict. 

35  APPENDIX  I 

VAX  Instructions  Having  Implied  Specifiers  That  Should  Be  Pre-Processed 

Copyright©  1989  Digital  Equipment  Corporation 
40  Note:  Arguments  are  in  the  form  of  a  "name"  followed  by  a  period,  a  letter  designating  the  specif  ier  access 

type  and  a  letter  designating  the  specifier  data  type.  The  access  types  include  address  (a),  branch 
displacement  (b),  read  (r),  and  write  (w).  The  data  types  include  byte  (b),  long  (I),  word  (w),  and  quad 
(q).  Implied  operands,  that  is,  locations  accessed  by  the  instruction  but  not  specified  in  the  instruc- 
tion,  are  enclosed  in  brackets.  Implied  operations  that  should  be  pre-processed  are  underlined. 
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MNEMONIC DESCRIPTION ARGUMENTS 

BSBB 

BSBW 

J S B  

PSHAB 

PUSHAD 

PUSHAF 

PUSHAL 

Branch   t o  
s u b r o u t i n e  
w i t h   b y t e  
d i s p l a c e m e n t  

B ranch   t o  
s u b r o u t i n e  
w i t h   w o r d  
d i s p l a c e m e n t  

Jump  t o  
s u b r o u t i n e  

Push  a d d r e s s  
of  b y t e  

Push  a d d r e s s  
of  d o u b l e  

Push  a d d r e s s  
of  f l o a t i n g  

Push  a d d r e s s  
of  l o n g  

d i s p l . b b ,   [ - ( S P )   .wl]  ,  [ N e x t _ P C ]  

d i s p l . b w ,   [ - ( S P )   .wl]  ,  [ N e x t _ P C ]  

d s t . a b ,  

s r c . a b ,  

s r c . a q ,  

s r c .   al  , 

s r c .   al  , 

- (SP)   .wl]  ,  [ N e x t _ P C ]  

- (SP)   . w l ]  

- (SP)   . w l ]  

- (SP)   . w l ]  

- (SP)   . w l ]  

APPENDIX  I  -  CONTINUED 

Copyright©  1989  Digital  Equipment  Corporation 

MNEMONIC 

PUSHAQ 

PUSHAW 

PUSHL 

RE  I  

RSB 

SVPCTX 

DESCRIPTION 

Push  a d d r e s s  
of  q u a d  

Push   a d d r e s s  
of  w o r d  

Push   l o n g  

R e t u r n   f r o m  
i n t e r r u p t   o r  
e x c e p t i o n  

R e t u r n   f r o m  
s u b r o u t i n e  

Save   p r o c e s s  
c o n t e x t  

ARGUMENTS 

s r c . a q ,   [ - ( S P )   . w l ]  

s r c .   aw,  [ - ( S P )   . w l ]  

s r c . r l ,   [ - ( S P )   . w l ]  

[  ( S P ) + . r l 1   ,  [  ( S P ) + . r l ]  

[  ( S P + . r l ]  

[  ( S P ) + . r l ]   ,  r  ( S P ) + . r l ]  
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APPENDIX  II 

Request  Logic  -  Truth  Table 

5  Copyright©  1989  Digital  Equipment  Corporation 
Note: 
N  =  Number  of  Specifiers  Needed 
SP3  =  Access  Type  of  Third  Specifier  Being  Decoded 
SP2  =  Access  Type  of  Second  Specifier  Being  Decoded 

10  SP1  =  Access  Type  of  First  Specifier  Being  Decoded 
R4  =  REG[4] 
S4  =  SL[4] 
14  =  INDEX[4] 
R3  =  REG[3] 

15  S3  =  SL[3] 
13  =  INDEX[3] 
R2  =  REG[2] 
S2  =  SL[2] 
12  =  INDEX[2] 

20  R1  =  REG[1] 
S1  =  SL[1] 
11  =  INDEX[1] 
REQ.  =  Request 

(Addressing  Fault  when  REQ.  =  X) 
25 
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N  SP3  SP2  SP1 
0  X  X  X 
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X X X   Z Z l   Z Z l   l Z Z   1 
X X X   Z l Z   Z Z l   1 Z Z   1 
X X X   l z z   Z Z l   l Z Z   1 
X X X   X X X   Z l Z   l Z Z   1 
X X X   X X X   1 Z Z   1 Z Z   3BB 
X X X   X X X   X X X   0 0 0   2R 
X X X   X X X   0 0 0   Z Z l   2R 
X X X   X X X   Z Z l   Z Z l   X 
X X X   X X X   Z 1 Z   Z Z l   X 
X X X   X X X   l Z Z   Z Z l   X 
X X X   X X X   0 0 0   Z I Z   2 
X X X   0 0 0   Z Z l   Z l Z   2 
X X X   Z Z l   Z Z l   Z l Z   1 
X X X   Z l Z   Z Z l   Z I Z   1 
X X X   l Z Z   Z Z l   Z I Z   1 
X X X   X X X   Z l Z   Z I Z   1 
X X X   X X X   l Z Z   Z I Z   3BW 
X X X   X X X   0 0 0   l Z Z   2 
X X X   0 0 0   Z Z l   l Z Z   2 
X X X   Z Z l   Z Z l   l Z Z   1 
X X X   Z I Z   Z Z l   l Z Z   1 
X X X   1 Z Z   Z Z l   l Z Z   1 

13 



EP  0  381  469  B1 

M W 

10 

15 

20 VR 

25 

30 

35 W VR 

40 

45 

50 

55 

X X X   X X X   Z l Z   1 Z Z   1 
X X X   X X X   1 Z Z   1 Z Z   3BW 
X X X   X X X   X X X   0 0 0   2R 
X X X   X X X   0 0 0   Z Z l   2R 
X X X   X X X   Z Z l   Z Z l   X 
X X X   X X X   Z I Z   Z Z l   x 
X X X   X X X   1 Z Z   Z Z l   X 
X X X   X X X   0 0 0   Z l Z   2 
X X X   0 0 0   Z Z l   Z l Z   2 
X X X   Z Z l   Z Z l   Z l Z   1 
X X X   Z I Z   Z Z l   Z l Z   1 
X X X   1 Z Z   Z Z l   Z I Z   1 
X X X   X X X   Z I Z   Z l Z   1 
X X X   X X X   1 Z Z   Z I Z   2 
X X X   X X X   0 0 0   1 Z Z   2 
X X X   0 0 0   Z Z l   1 Z Z   2 
X X X   Z Z l   Z Z l   1 Z Z   1 
X X X   Z l Z   Z Z l   l z z   1 
X X X   1 Z Z   Z Z l   l z z   1 
X X X   X X X   Z I Z   1 Z Z   1 
X X X   X X X   1 Z Z   l z z   2 
X X X   X X X   X X X   0 0 0   2R 
X X X   X X X   0 0 0   Z Z l   2R 
X X X   X X X   Z Z l   Z Z l   X 
X X X   X X X   Z l Z   Z Z l   X 
X X X   X X X   1 Z Z   Z Z l   X 
X X X   X X X   0 0 0   Z l Z   2 
X X X   0 0 0   Z Z l   Z I Z   2 
X X X   Z Z l   Z Z l   Z l Z   1 
X X X   Z I Z   Z Z l   Z I Z   1 
x x x   l z z   Z Z l   Z I Z   1 
X X X   X X X   Z l Z   Z I Z   1 
X X X   X X X   1 Z Z   Z I Z   2 
X X X   X X X   0 0 0   1 Z Z   2 
X X X   0 0 0   Z Z l   l Z Z   2 
X X X   Z Z l   Z Z l   1 Z Z   1 
X X X   Z I Z   Z Z l   1 Z Z   1 
x x x   l z z   Z Z l   1 Z Z   1 
X X X   X X X   Z l Z   1 Z Z   1 
X X X   X X X   1 Z Z   1 Z Z   2 
X X X   X X X   X X X   0 0 0   3RR 
X X X   X X X   0 0 0   Z Z l   3RR 
X X X   X X X   Z Z l   Z Z l   X 
X X X   X X X   Z l Z   Z Z l   x 
x x x   x x x   l z z   Z Z l   X 
X X X   X X X   0 0 0   Z  l Z   3XR 
X X X   0 0 0   Z Z l   Z l Z   3XR 
X X X   Z Z l   Z Z l   Z l Z   1 
X X X   Z l Z   Z Z l   Z l Z   l  
X X X   1 Z Z   Z Z l   Z I Z   1 
X X X   X X X   Z l Z   Z l Z   1 
X X   X  0 0 0   l Z Z   Z l Z   3 
0 0 0   Z Z l   l Z Z   Z l Z   3 
Z Z l   Z Z l   1 Z Z   Z l Z   2* 
Z I Z   Z Z l   1 Z Z   Z I Z   2* 
l z z   Z Z l   1 Z Z   Z l Z   2* 
X X X   Z I Z   1 Z Z   Z l Z   2* 
X X X   l Z Z   l Z Z   Z l Z   3 
X X X   X  X X   0 0 0   l Z Z   3XR 
X X X   0 0 0   Z Z l   1 Z Z   3XR 
X X X   Z Z l   Z Z l   1 Z Z   1 
X X X   Z l Z   Z Z l   1 Z Z   1 
X X X   l Z Z   Z Z l   1 Z Z   1 
X X X   X X X   Z I Z   1 Z Z   1 
X X X   0 0 0   1 Z Z   l Z Z   3 
0 0 0   Z Z l   1 Z Z   1 Z Z   3 
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Z Z l   Z Z l   l z z   l z z   2* 
Z l Z   Z Z l   l Z Z   1 Z Z   2* 
l z z   Z Z l   l z z   l z z   2* 
x x x   z i z   l z z   l z z   2* 
X X X   l Z Z   l Z Z   l Z Z   3 
X X X   X X X   X X X   0 0 0   2R 
X X X   X X X   0 0 0   Z Z l   2R 
X X X   X X X   Z Z l   Z Z l   X 
X X X   X X X   Z I Z   Z Z l   X 
x x x   x x x   l z z   Z Z l   X 
X X X   X X X   0 0 0   Z I Z   2 
X X X   0 0 0   Z Z l   Z I Z   2 
X X X   Z Z l   Z Z l   Z I Z   1 
x x x   Z l Z   Z Z l   Z I Z   1 
x x x   l z z   Z Z l   Z I Z   1 
x x x   X X X   Z I Z   Z I Z   1 
X X X   X X X   l Z Z   Z l Z   3BB 
X X X   X X X   0 0 0   1 Z Z   2 
X X X   0 0 0   Z Z l   l Z Z   2 
x x x   Z Z l   Z Z l   l Z Z   1 
x x x   Z l Z   Z Z l   l Z Z   1 
x x x   l Z Z   Z Z l   l Z Z   1 
x x x   X X X   Z l Z   l Z Z   1 
X X X   X X X   l Z Z   l Z Z   3BB 
X X X   X X X   X X X   0 0 0   2R 
X X X   X X X   0 0 0   Z Z l   2R 
x x x   X X X   Z Z l   Z Z l   X 
x x x   X X X   Z I Z   Z Z l   x 
x x x   x x x   1 Z Z   Z Z l   x 
X X X   X X X   0 0 0   Z I Z   2 
X X X   0 0 0   Z Z l   Z I Z   2 
X X X   Z Z l   Z Z l   Z l Z   1 
X X X   Z l Z   Z Z l   Z I Z   1 
x x x   l z z   Z Z l   Z I Z   1 
x x x   x x x   Z I Z   Z l Z   1 
X X X   X X X   l Z Z   Z l Z   3BB 
X X X   X X X   0 0 0   l Z Z   2 
X X X   0 0 0   Z Z l   l Z Z   2 
X X X   Z Z l   Z Z l   l Z Z   1 
X X X   Z l Z   Z Z l   l Z Z   1 
x x x   l z z   Z Z l   l Z Z   1 
X X X   X X X   Z I Z   l  Z Z   1 
X X X   X X X   1 Z Z   l Z Z   3BB 
X X X   X X X   X X X   X X X   IBB 
X X X   X X X   X X X   X X X   1BW 
X X X   X X X   X X X   X X X   11 
X X X   X X X   X X X   X X X   11 

>iaims 

I.  A  method  of  preprocessing,  after  decoding  for  execution  in  a  pipelined  processor,  instructions  having  an 
operation  code,  a  first  register  specifier  and  a  following  second  specifier,  the  method  characterised  by: 
detecting  whether  for  each  of  the  instructions  the  preprocessing  of  the  second  specif  ier  changes  the  value 
of  the  register  specified  by  the  first  register  specifier; 
decoding  the  specifiers  sequentially  for  instructions  in  which  the  detecting  indicates  that  the  preprocess- 
ing  of  the  second  specif  ier  modifies  the  value  of  the  register  specified  by  the  first  register  specif  ier;  and 
decoding  the  first  register  specifier  and  the  second  specifier  simultaneously  for  instructions  in  which  the 
detecting  indicates  that  the  preprocessing  of  the  second  specif  ier  does  not  modify  the  value  of  the  register 
specified  by  the  first  register  specifier. 

!.  A  method  as  claimed  in  Claim  1,  further  comprising  passing  register  pointers  to  an  execution  unit  (13)  for 
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the  register  specifiers  that  are  decoded  simultaneously,  and  passing  register  values  to  the  execution  unit 
for  the  register  specifiers  that  are  decoded  sequentially. 

3.  A  method  as  claimed  in  Claim  1  or  2,  including  maintaining,  during  instruction  decoding  and  execution, 
5  a  first  set  of  values  for  a  plurality  of  registers  (651)  in  an  instruction  decoding  unit  and  a  second  set  of 

values  forthe  registers  (652)  in  the  instruction  execution  unit: 
for  instructions  in  which  the  detecting  indicates  that  the  preprocessing  of  the  second  specifier  modifies 
the  value  of  only  those  registers  different  from  the  register  specified  by  the  first  register  specifier,  de- 
coding  the  first  register  specifier  and  the  second  specifier  simultaneously;  and 

10  for  instructions  in  which  the  detecting  indicates  that  the  preprocessing  of  the  second  specifier  modifies 
the  value  of  the  register  specified  by  the  first  register  specifier,  decoding  the  specifiers  sequentially. 

4.  A  method  as  claimed  in  Claim  3,  further  comprising  inhibiting  the  decoding  of  instructions  following  the 
instructions  in  which  the  detecting  indicates  that  the  preprocessing  of  the  second  specifier  modifies  the 

15  value  of  the  register  specified  by  the  first  register  specifier,  the  inhibition  being  maintained  until  the  value 
of  the  specified  register  in  the  instruction  execution  unit  is  modified. 

5.  A  method  as  claimed  in  Claim  3  or  4,  further  comprising  returning  the  register  values  in  the  instruction 
decoding  unit  to  the  initial  unmodified  values  by  replacing  their  values  with  the  respective  register  values 

20  in  the  instruction  execution  unit. 

6.  A  method  as  claimed  in  Claim  3,  4  or  5,  further  comprising  passing  register  pointers  from  the  instruction 
decoding  unit  to  the  execution  unit  forthe  register  specifiers  that  are  decoded  simultaneously,  and  passing 
register  values  from  the  instruction  decoding  unit  to  the  instruction  execution  unit  for  the  register  speci- 

25  f  iers  that  are  decoded  sequentially. 

7.  A  method  as  claimed  in  any  of  Claims  3  to  6,  further  comprising  modifying  the  register  values  specified 
by  the  second  specifier  in  both  the  instruction  decoding  unit  and  the  instruction  execution  unit  prior  to 
execution  of  the  instruction  including  the  first  and  second  specifiers  when  the  specifiers  in  the  instruction 

30  are  decoded  simultaneously;  and 
modifying  the  specified  register  value  in  the  instruction  decoding  unit  prior  to  execution  of  the  instruction 
including  the  first  and  second  specifiers,  and  modifying  the  value  of  the  specified  register  in  the  instruc- 
tion  execution  unit  after  execution  of  the  instruction  included  in  the  first  and  second  specifiers  when  the 
specifiers  in  the  instruction  are  decoded  sequentially. 

35 
8.  A  data  processing  unit  for  a  pipelined  processor  for  preprocessing,  for  execution,  instructions  having  an 

operation  code,  a  first  register  specifier  and  a  following  second  specifier,  characterised  by  means  (110) 
for  detecting  whether  for  each  of  the  instructions  the  preprocessing  of  the  second  specifier  changes  the 
value  of  the  register  specified  by  the  first  register  specifier,  means  (20)  for  decoding  the  specifiers  se- 

40  quentially  for  instructions  in  which  the  detecting  indicates  that  the  preprocessing  of  the  second  specifier 
modifies  the  value  of  the  register  specified  by  the  first  register  specifier,  and  means  (20)  for  decoding 
the  first  register  specifier  and  the  second  specifier  simultaneously  for  instructions  in  which  the  detecting 
indicates  that  the  preprocessing  of  the  second  specif  ier  does  not  modify  the  value  of  the  register  specif  ied 
by  the  first  register  specifier. 

45 
9.  A  data  processing  unit  as  claimed  in  Claim  8,  further  comprising  means  for  passing  register  pointers  to 

execution  means  (13)  for  the  register  specifiers  that  are  decoded  simultaneously,  and  passing  register 
values  to  the  execution  means  for  the  register  specifiers  that  are  decoded  sequentially. 

so  10.  A  unit  as  claimed  in  Claim  8  or  9,  including  means  (11  8)  for  inhibiting  the  decoding  of  instructions  following 
detection  indicating  modification  of  the  value  of  the  register  specified  by  the  first  register  specifier  by  the 
detecting  means. 

11.  A  pipeline  processor  comprising  an  instruction  decoding  unit  (12),  a  processing  unit  as  claimed  in  any  of 
55  Claims  8  to  10  and  an  execution  unit  (13)  for  processing  instructions  having  an  operation  code,  a  first 

register  specifier  and  a  following  second  specifier. 

12.  A  processor  as  claimed  in  Claim  11,  including  means  for  returning  the  register  values  in  the  instruction 
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decoding  unit  to  the  unmodified  values  by  replacing  their  values  with  those  from  the  respective  values  in 
the  instruction  execution  unit. 

13.  A  processor  as  claimed  in  11  or  12,  including  means  for  passing  register  pointers  from  the  instruction  de- 
coding  unit  to  the  execution  unit  for  the  register  specifiers  that  are  decoded  simultaneously,  and  for  pass- 
ing  register  values  from  the  instruction  decoding  unit  to  the  execution  unit  for  the  register  specifiers  that 
are  decoded  sequentially. 

14.  A  processor  as  claimed  in  Claim  11,  12  or  13,  including  means  for  modifying  the  register  values  specified 
by  the  second  specifier  in  both  the  instruction  decoding  unit  and  the  execution  unit  prior  to  execution  of 
the  instruction  including  the  first  and  second  specifiers,  and  means  for  modifying  the  specified  register 
value  in  the  instruction  decoding  unit  prior  to  execution  of  the  instruction  including  the  first  and  second 
specifiers  and  for  modifying  the  value  of  the  specified  register  in  the  execution  unit  after  execution  of 
the  instruction  including  the  first  and  second  specifiers. 

Patentanspruche 

1.  Verfahren  zum  Vorverarbeiten  von  Befehlen,  die  einen  Operationscode,  einen  ersten  Register-Spezif  i- 
ziererund  einen  folgenden  zweiten  Spezifiziererenthalten,  fur  die  Abarbeitung  in  einem  Pipeline-Prozes- 
sor  nach  ihrer  Decodierung,  wobei  das  Verfahren  gekennzeichnet  ist  durch: 
Erfassen  fur  jeden  der  Befehle,  ob  die  Vorverarbeitung  des  zweiten  Spezifizierers  den  Wert  des  durch 
den  ersten  Register-Spezifiziererspezifizierten  Registers  andert; 
sequentielles  Decodieren  der  Spezifiziererfur  Befehle,  bei  denen  die  Erfassung  angibt,  dali  die  Vorver- 
arbeitung  des  zweiten  Spezifizierers  den  Wert  des  durch  den  ersten  Register-Spezif  iziererspezif  izierten 
Registers  abwandelt;  und 
simultanes  Decodieren  des  ersten  Register-Spezif  izierers  und  des  zweiten  Spezifizierers  fur  Befehle,  bei 
denen  die  Erfassung  angibt,  dali  die  Vorverarbeitung  des  zweiten  Spezifizierers  den  Wert  des  durch  den 
ersten  Register-Spezif  izierer  spezif  izierten  Registers  nicht  abwandelt. 

2.  Verfahren  nach  Anspruch  1,  dasfernerdas  Weiterleiten  von  Registerzeigern  an  eine  Abarbeitungseinheit 
(13)  fur  die  simultan  decodierten  Register-Spezif  izierer  sowie  das  Weiterleiten  von  Registerwerten  an  die 
Abarbeitungseinheit  fur  die  sequentiell  decodierten  Register-Spezif  izierer  umfalit. 

3.  Verfahren  nach  Anspruch  1  oder2,  umfassend:  Halten  eines  ersten  Satzes  von  Werten  fur  mehrere  Re- 
gister  (651)  in  einer  Befehlsdecodiereinheit  und  eines  zweiten  Satzes  von  Werten  fur  die  Register  (652) 
in  der  Befehlsabarbeitungseinheit  wahrend  des  Decodierens  und  Abarbeitens  von  Befehlen; 
simultanes  Decodieren  des  ersten  Register-Spezif  izierers  und  des  zweiten  Spezifizierers  fur  Befehle,  bei 
denen  die  Erfassung  angibt,  dali  die  Vorverarbeitung  des  zweiten  Spezifizierers  nur  den  Wert  derjenigen 
Register  abwandelt,  die  von  dem  durch  den  ersten  Register-Spezifizierer  spezifizierten  Register  ver- 
schieden  sind;  und 
sequentielles  Decodieren  der  Spezifiziererfur  Befehle,  bei  denen  die  Erfassung  angibt,  dali  die  Vorver- 
arbeitung  des  zweiten  Spezifizierers  den  Wert  des  durch  den  ersten  Register-Spezif  iziererspezif  izierten 
Registers  abwandelt. 

4.  Verfahren  nach  Anspruch  3,  das  ferner  die  Sperrung  des  Decodierens  von  Befehlen  umfalit,  welche  den 
Befehlen  folgen,  bei  denen  die  Erfassung  angibt,  dali  die  Vorverarbeitung  des  zweiten  Spezifizierers  den 
Wert  des  durch  den  ersten  Register-Spezifizierer  spezifizierten  Registers  abwandelt,  wobei  die  Sperrung 
so  lange  beibehalten  wird,  bis  der  Wert  des  spezifizierten  Registers  in  der  Befehlsabarbeitungseinheit 
abgewandelt  wird. 

5.  Verfahren  nach  Anspruch  3  oder  4,  das  ferner  das  Zuruckf  uhren  der  Registerwerte  in  der  Befehlsdeco- 
diereinheit  zu  den  anfangs  nicht  abgewandelten  Werten  enthalt,  indem  ihre  Werte  durch  die  jeweiligen 
Registerwerte  in  der  Befehlsabarbeitungseinheit  ersetzt  werden. 

6.  Verfahren  nach  Anspruch  3,  4  oder  5,  das  ferner  das  Weiterleiten  von  Registerzeigern  von  der  Befehls- 
decodiereinheit  zur  Abarbeitungseinheit  fur  die  simultan  decodierten  Register-Spezifizierer  sowie  das 
Weiterleiten  von  Registerwerten  von  der  Befehlsdecodiereinheit  zur  Befehlsabarbeitungseinheit  fur  die 
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sequentiell  decodierten  Register-Spezifizierer  umfalit. 

7.  Verfahren  nach  irgendeinem  der  Anspruche  3  bis  6,  ferner  umfassend:  Abwandeln  der  durch  den  zweiten 
Spezif  izierer  spezifizierten  Registerwerte  sowohl  in  der  Befehlsdecodiereinheit  als  auch  in  der  Befehls- 

5  abarbeitungseinheit  vor  der  Abarbeitung  des  den  ersten  und  den  zweiten  Spezif  izierer  enthaltenden  Be- 
fehls,  wenn  die  Spezif  izierer  im  Befehl  simultan  decodiert  werden;  und 
Abwandeln  des  spezifizierten  Registerwertes  in  der  Befehlsdecodiereinheit  vor  der  Abarbeitung  des  den 
ersten  und  den  zweiten  Spezif  izierer  enthaltenden  Befehls  sowie  Abwandeln  des  Wertes  des  spezifizier- 
ten  Registers  in  der  Befehlsabarbeitungseinheit  nach  der  Abarbeitung  des  den  ersten  und  den  zweiten 

10  Spezif  izierer  enthaltenden  Befehls,  wenn  die  Spezif  izierer  im  Befehl  sequentiell  decodiert  werden. 

8.  Datenverarbeitungseinheit  fur  einen  Pipeline-Prozessor  fur  eine  der  Abarbeitung  dienende  Vorverarbei- 
tung  von  Befehlen,  die  einen  Operationscode,  einen  ersten  Register-Spezifizierer  und  einen  folgenden 
zweiten  Spezif  izierer  enthalten,  gekennzeichnet  durch  eine  Einrichtung  (110)  zur  Erfassung  furjedender 

15  Befehle,  ob  die  Vorverarbeitung  des  zweiten  Spezifizierers  den  Wert  des  durch  den  ersten  Register-Spe- 
zif  izierer  spezif  izierten  Registers  andert,  eine  Einrichtung  (20)  zum  sequentiellen  Decodieren  der  Spe- 
zif  iziererf  ur  Befehle,  bei  denen  die  Erfassung  angibt,  dali  die  Vorverarbeitung  des  zweiten  Spezifizierers 
den  Wert  des  durch  den  ersten  Register-Spezifizierer  spezifizierten  Registers  abwandelt,  und  eine  Ein- 
richtung  (20)  zum  simultanen  Decodieren  des  ersten  Register-Spezif  izierers  und  des  zweiten  Spezif  izie- 

20  rers  fur  Befehle,  bei  denen  die  Erfassung  angibt,  dali  die  Vorverarbeitung  des  zweiten  Spezifizierers  den 
Wert  des  durch  den  ersten  Register-Spezifizierer  spezifizierten  Registers  nicht  abwandelt. 

9.  Datenverarbeitungseinheit  nach  Anspruch  8,  die  ferner  versehen  ist  mit  einer  Einrichtung  zum  Weiterlei- 
ten  von  Registerzeigern  zur  Abarbeitungseinrichtung  (13)  fur  die  simultan  decodierten  Register-Spezif  i- 

25  zierer  sowie  zum  Weiterleiten  von  Registerwerten  zur  Abarbeitungseinrichtung  fur  die  sequentiell  deco- 
dierten  Register-Spezifizierer. 

10.  Einheit  nach  Anspruch  8  oder  9,  mit  einer  Einrichtung  fur  die  Sperrung  des  Decodierens  von  Befehlen, 
die  der  Erfassung  durch  die  Erfassungseinrichtung  folgen,  welche  die  Abwandlung  des  Wertes  des  durch 

30  den  ersten  Register-Spezifizierer  spezifizierten  Registers  angibt. 

11.  Pipeline-Prozessor,  mit  einer  Befehlsdecodiereinheit  (12),  einer  Verarbeitungseinheit  nach  irgendeinem 
der  Anspruche  8  bis  10  und  einer  Abarbeitungseinheit  (13)  zurVerarbeitung  von  Befehlen,  die  einen  Ope- 
rationscode,  einen  ersten  Register-Spezifizierer  und  einen  folgenden  zweiten  Spezif  izierer  enthalten. 

35 
12.  Prozessor  nach  Anspruch  11,  mit  einer  Einrichtung  zum  Zuruckfuhren  der  Registerwerte  in  der  Befehls- 

decodiereinheit  zu  den  nicht  abgewandelten  Werten,  indem  ihre  Werte  durch  die  jeweiligen  Werte  der  Be- 
fehlsabarbeitungseinheit  ersetzt  werden. 

40  13.  Prozessor  nach  Anspruch  11  oder  12,  mit  einer  Einrichtung  zum  Weiterleiten  von  Registerzeigern  von 
der  Befehlsdecodiereinheit  zur  Abarbeitungseinheit  fur  die  simultan  decodierten  Register-Spezifizierer 
und  zum  Weiterleiten  von  Registerwerten  von  der  Befehlsdecodiereinheit  zur  Abarbeitungseinheit  fur  die 
sequentiell  decodierten  Register-Spezifizierer. 

45  14.  Prozessor  nach  Anspruch  11,  12  oder  13,  mit  einer  Einrichtung  zum  Abwandeln  der  vom  zweiten  Spezi- 
f  izierer  spezifizierten  Registerwerte  sowohl  in  der  Befehlsdecodiereinheit  als  auch  in  der  Abarbeitungs- 
einheit  vor  der  Abarbeitung  des  die  ersten  und  zweiten  Spezif  izierer  enthaltenden  Befehls  und  einer  Ein- 
richtung  zum  Abwandeln  des  spezifizierten  Registerwertes  in  der  Befehlsdecodiereinheit  vor  der  Abar- 
beitung  des  die  ersten  und  zweiten  Spezif  izierer  enthaltenden  Befehls  sowie  zum  Abwandeln  des  Wertes 

so  des  spezifizierten  Registers  in  der  Abarbeitungseinheit  nach  der  Abarbeitung  des  die  ersten  und  zweiten 
Spezif  izierer  enthaltenden  Befehls. 

Revendications 
55 

1.  Methode  de  pretraitement,  apres  decodage  en  vue  de  I'execution  dans  un  processeura  chevauchement, 
d'instructions  comportant  un  code  d'operation,  un  premier  specif  icateur  de  registre  et  un  second  speci- 
f  icateur  suivant,  la  methode  etant  caracterisee  par  : 
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I'operation  qui  consiste  a  determiner  si,  pourchacune  des  instructions,  le  pretraitement  du  second 
specif  icateur  modif  ie  la  valeur  du  registre  specif  ie  par  le  premier  specif  icateur  de  registre; 

le  decodage  sequentiel  des  specif  icateurs  pour  les  instructions  dans  lesquelles  la  detection  indi- 
queque  le  pretraitement  du  second  specif  icateur  modif  ie  la  valeur  du  registre  specif  ie  parle  premier  spe- 
cif  icateur  de  registre;  et 

le  decodage  simultane  du  premier  specif  icateur  de  registre  etdu  second  specif  icateur  pour  les  ins- 
tructions  dans  lesquelles  la  detection  indique  que  le  pretraitement  du  second  specificateur  ne  modifie 
pas  la  valeur  du  registre  specif  ie  par  le  premier  specificateur  de  registre. 

Methode  telle  que  definie  dans  la  revendication  1,  comprenant  egalement  la  transmission  de  pointeurs 
de  registres  a  une  unite  d'execution  (13)  pour  les  specif  icateurs  de  registres  qui  sont  decodes  simulta- 
nement,  et  la  transmission  de  valeurs  de  registres  a  I'unite  d'execution  pour  les  specificateurs  de  registres 
qui  sont  decodes  sequentiellement. 

Methode  telle  que  definie  dans  la  revendication  1  ou  2,  comprenant  le  maintien,  pendant  le  decodage  et 
I'execution  des  instructions,  d'un  premier  groupe  de  valeurs  pour  plusieurs  registres  (651)  dans  une  unite 
de  decodage  d'instructions,  et  d'un  second  groupe  de  valeurs  pour  les  registres  (652)  dans  I'unite  d'exe- 
cution  d'instructions  : 

pour  les  instructions  dans  lesquelles  la  detection  indique  que  le  pretraitement  du  second  specifi- 
cateur  modifie  uniquement  la  valeur  des  registres  differents  du  registre  specif  ie  par  le  premier  specif  i- 
cateurde  registre,  le  decodage  simultane  du  premierspecificateurde  registre  etdu  second  specificateur; 
et 

pour  les  instructions  dans  lesquelles  la  detection  indique  que  le  pretraitement  du  second  specif  i- 
cateur  modifie  la  valeur  du  registre  specif  ie  parle  premierspecificateurde  registre,  le  decodage  sequen- 
tiel  des  specificateurs. 

Methode  telle  que  definie  dans  la  revendication  3,  comprenant  egalement  I'interdiction  du  decodage  d'ins- 
tructions  suivant  les  instructions  dans  lesquelles  la  detection  indique  que  le  pretraitement  du  second  spe- 
cificateur  modifie  la  valeur  du  registre  specif  ie  parle  premierspecificateurde  registre,  I'interdiction  etant 
maintenue  tant  que  la  valeur  du  registre  specif  ie  dans  I'unite  d'execution  d'instructions  n'est  pas  modif  iee. 

Methode  telle  que  definie  dans  la  revendication  3  ou  4,  comprenant  egalement  I'operation  qui  consiste  a 
ramener  les  valeurs  de  registres  de  I'unite  de  decodage  d'instructions  aux  valeurs  non  modif  iees  initiales 
en  remplacant  leurs  valeurs  par  les  valeurs  de  registres  respectives  de  I'unite  d'execution  d'instructions. 

Methode  telle  que  definie  dans  la  revendication  3,  4  ou  5,  comprenant  egalement  la  transmission  de  poin- 
teurs  de  registres  de  I'unite  de  decodage  d'instructions  a  I'unite  d'execution  pour  les  specificateurs  de 
registres  qui  sont  decodes  simultanement,  et  la  transmission  de  valeurs  de  registres  de  I'unite  de  deco- 
dage  d'instructions  a  I'unite  d'execution  d'instructions  pour  les  specificateurs  de  registres  qui  sont  de- 
codes  sequentiellement. 

Methode  telle  que  definie  dans  I'une  quelconque  des  revendications  3  a  6,  comprenant  egalement  la  mo- 
dification  des  valeurs  de  registres  specif  ies  parle  second  specificateur  a  la  fois  dans  I'unite  de  decodage 
d'instructions  et  dans  I'unite  d'execution  d'instructions  avant  I'execution  de  I'instruction  comportant  les 
premier  et  second  specificateurs  lorsque  les  specificateurs  de  I'instruction  sont  decodes  simultanement; 
et 

la  modification  de  la  valeur  de  registre  specif  ie  dans  I'unite  de  decodage  d'instructions  avant  I'exe- 
cution  de  I'instruction  comportant  les  premier  et  second  specificateurs,  et  la  modification  de  la  valeur  du 
registre  specifie  dans  I'unite  d'execution  d'instructions  apres  I'execution  de  I'instruction  contenue  dans 
les  premier  et  second  specificateurs  lorsque  les  specificateurs  de  I'instruction  sont  decodes  sequentiel- 
lement. 

Unite  de  traitement  de  donnees  pour  un  processeur  a  chevauchement  destinee  a  effectuer  le  pretraite- 
ment,  en  vue  de  leur  execution,  d'instructions  comportant  un  code  d'operation,  un  premier  specif  icateur 
de  registre  et  un  second  specificateur  suivant,  caracterisee  par  des  moyens  (110)  destines  a  detecter  si, 
pourchacune  des  instructions,  le  pretraitement  du  second  specificateur  modifie  la  valeur  du  registre  spe- 
cif  ie  par  le  premier  specificateur  de  registre,  par  des  moyens  (20)  destines  a  decoder  les  specificateurs 
sequentiellement  pour  les  instructions  dans  lesquelles  la  detection  indique  que  le  pretraitement  du  second 
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specificateur  modifie  la  valeur  du  registre  specifie  par  le  premier  specificateur  de  registre,  et  par  des 
moyens  (20)  destines  a  decoder  simultanement  le  premier  specificateur  de  registre  et  le  second  speci- 
ficateur  pour  les  instructions  dans  lesquelles  la  detection  indique  que  le  pretraitement  du  second  speci- 
ficateur  ne  modifie  pas  la  valeur  du  registre  specifie  par  le  premier  specificateur  de  registre. 

Unite  de  traitement  de  donnees  telle  que  definie  dans  la  revendication  8,  comprenant  egalement  des 
moyens  destines  a  transmettre  des  pointeurs  de  registres  a  des  moyens  d'execution  (13)  pour  les  spe- 
cificateurs  de  registres  qui  sont  decodes  simultanement,  et  a  transmettre  des  valeurs  de  registres  aux 
moyens  d'execution  pour  les  specificateurs  de  registres  qui  sont  decodes  sequentiellement. 

Unite  telle  que  definie  dans  la  revendication  8  ou  9,  comprenant  des  moyens  (118)  destines  a  interdire  le 
decodage  d'instructions  apres  une  detection  indiquant  une  modification  de  la  valeur  du  registre  specifie 
par  le  premier  specificateur  de  registre,  par  les  moyens  de  detection. 

Processeur  a  chevauchement  comprenant  une  unite  de  decodage  d'instructions  (12),  une  unite  de  trai- 
tement  telle  que  definie  dans  I'une  quelconque  des  revendications  8  a  10  et  une  unite  d'execution  (13) 
pour  traiter  des  instructions  comportant  un  code  d'operation,  un  premier  specificateur  de  registre  et  un 
second  specificateur  suivant. 

Processeur  tel  que  defini  dans  la  revendication  11,  comprenant  des  moyens  destines  a  ramener  les  va- 
leurs  de  registres  de  I'unite  de  decodage  d'instructions  aux  valeurs  non  modif  iees  en  remplacant  leurs 
valeurs  parcelles  provenant  des  valeurs  respectives  de  I'unite  d'execution  d'instructions. 

Processeur  tel  quedefinidans  la  revendication  11  ou  12,  comprenant  des  moyens  destines  a  transmettre 
des  pointeurs  de  registres  de  I'unite  de  decodage  d'instructions  a  I'unite  d'execution  pour  les  specifica- 
teurs  de  registres  qui  sont  decodes  simultanement,  et  des  valeurs  de  registres  de  I'unite  de  decodage 
d'instructions  a  I'unite  d'execution  pour  les  specificateurs  de  registres  qui  sont  decodes  sequentiellement. 

Processeur  tel  quedefinidans  la  revendication  11,  12ou  13,  comprenant  des  moyens  destines  a  modif  ier 
les  valeurs  de  registres  specifies  par  le  second  specificateur  a  la  fois  dans  I'unite  de  decodage  d'instruc- 
tions  et  dans  I'unite  d'execution  avant  I'execution  de  I'instruction  comportant  les  premier  et  second  spe- 
cificateurs,  et  des  moyens  destines  a  modifier  la  valeur  de  registre  specifie  dans  I'unite  de  decodage 
d'instructions  avant  I'execution  de  I'instruction  comportant  les  premier  et  second  specificateurs  et  a  mo- 
difier  la  valeur  du  registre  specifie  dans  I'unite  d'execution  apres  I'execution  de  I'instruction  comportant 
les  premier  et  second  specificateurs. 
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