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Methods are provided for determining discriminant func-
tions of minimum risk quadratic classification systems,
wherein a discriminant function is represented by a geomet-
ric locus of a principal eigenaxis of a quadratic decision
boundary. A geometric locus of a principal eigenaxis is
determined by solving a system of fundamental locus equa-
tions of binary classification, subject to geometric and
statistical conditions for a minimum risk quadratic classifi-
cation system in statistical equilibrium. Feature vectors and
machine learning algorithms are used to determine discrimi-
nant functions and ensembles of discriminant functions of
minimum risk quadratic classification systems, wherein a
discriminant function of a minimum risk quadratic classifi-
cation system exhibits the minimum probability of error for
classifying given collections of feature vectors and unknown
feature vectors related to the collections.
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METHODS FOR USING FEATURE VECTORS
AND MACHINE LEARNING ALGORITHMS
TO DETERMINE DISCRIMINANT
FUNCTIONS OF MINIMUM RISK
QUADRATIC CLASSIFICATION SYSTEMS

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. provi-
sional application No. 62/556,185, filed Sep. 8, 2017.

FIELD OF THE INVENTION

[0002] This invention relates generally to learning
machines and statistical pattern recognition systems. More
particularly the invention relates to using feature vectors and
machine learning algorithms to determine discriminant
functions of minimum risk quadratic classification systems.
The invention is described in an article by applicant,
“Design of Data-Driven Mathematical Laws for Optimal
Statistical Classification Systems,” arXiv: 1612.03902v8:
submitted on 22 Sep. 2017.

BACKGROUND OF THE INVENTION

[0003] The design of statistical pattern recognition sys-
tems is important for a wide variety of statistical classifica-
tion problems including, but not limited to: seismic signal
analysis for geophysical exploration, radar signal analysis
for weather radar systems and military applications, analysis
of biomedical signals for medical and physiological appli-
cations, classification of objects in images, optical character
recognition, speech recognition, handwriting recognition,
face recognition, and fingerprint classification.

[0004] The statistical pattern recognition problem
involves classifying a pattern into one of several classes by
processing features associated with the pattern, wherein a
pattern is determined by numerical features that have been
extracted from a digital signal associated with one of the
problems similar to those outlined above. Numerical fea-
tures can be extracted from a variety of digital signals, e.g.,
seismic signals, radar signals, speech signals, biomedical
signals, images of objects, hyperspectral images or multi-
spectral images. For a given type of digital signal, thousands
of numerical features are available, wherein numerical fea-
tures are extracted by computer-implemented methods.
[0005] An important attribute of statistical pattern recog-
nition systems involves learning from a set of training
patterns, wherein a training pattern is represented by a
d-dimensional vector of numerical features. Given a set of
training patterns from each pattern class, the primary objec-
tive is to determine decision boundaries in a corresponding
feature space that separate patterns belonging to different
pattern classes. In the statistical decision theoretic approach,
the decision boundaries are determined by the probability
distributions of the feature vectors belonging to each cat-
egory, wherein the probability distributions determine the
structure of a discriminant function and the probability
distributions must be specified or learned.

[0006] In the discriminant analysis-based approach, a
parametric form of the decision boundary is specified, e.g.,
a linear or quadratic form, and the best decision boundary of
the specified form is found based on the classification of the
training patterns. For example, support vector machines
learn decision boundaries from training patterns, wherein
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the capacity of a linear or nonlinear decision boundary is
regulated by a geometric margin of separation between a
pair of margin hyperplanes.

[0007] The computer-implemented design of a discrimi-
nant function of a classification system involves two fun-
damental problems: (1) the design of numerical features of
the objects being classified for the different classes of
objects, and (2) the computer-implemented design of the
discriminant function of the classification system.

[0008] For M classes of feature vectors, the feature space
of a classification system is composed of M regions of
feature vectors, wherein each region contains feature vectors
that belong to one of the M classes. The design of a
computer-implemented discriminant function involves
designing a computer-implemented method that uses feature
vectors to determine discriminant functions which generate
decision boundaries that divide feature spaces into M suit-
able regions, wherein a suitable criterion is necessary to
determine the best possible partitioning for a given feature
space.

[0009] The no-free-lunch theorem for supervised learning
demonstrates that there is a cost associated with using
machine learning algorithms to determine discriminant
functions of classification systems. Criteria of performance
for a classification system must be chosen, and a class of
acceptable classification systems must be defined in terms of
constraints on design and costs. Finally, a classification
system can be determined within the specified class—which
is best in terms of the selected criteria—by an extremum of
an objective function of an optimization problem that sat-
isfies the criteria of performance and the constraints on the
design and costs.

[0010] Suppose that a theoretical model of a discriminant
function of a classification system can be devised from first
principles, wherein the structure and the properties of the
theoretical model satisfy certain geometric and statistical
criteria. The no-free-lunch theorem for supervised learning
suggests that the best parametric model of the classification
system matches the theoretical model, wherein the structure
and the properties of the parametric model are determined
by geometric and statistical criteria satisfied by the theoreti-
cal model.

[0011] What would be desired is to (1) devise a theoretical
model of a discriminant function of a binary classification
system, wherein the discriminant function of the binary
classification system exhibits certain geometric and statisti-
cal properties and is represented by a geometric and statis-
tical structure that satisfies certain geometric and statistical
criteria, and (2) devise a parametric model of a discriminant
function of a binary classification system that matches the
theoretical model, wherein the structure and the properties of
the parametric model satisty fundamental geometric and
statistical criteria of the theoretical model, wherein the
discriminant function is represented by a geometric and
statistical structure that matches the structure exhibited by
the theoretical model and also exhibits fundamental geo-
metric and statistical properties of the theoretical model, and
(3) discover or devise an algorithm for which criteria of
performance satisfy fundamental geometric and statistical
criteria of the theoretical model of a discriminant function of
a binary classification system, wherein a class of discrimi-
nant functions of binary classification systems are defined in



US 2020/0027027 Al

terms of an objective function of an optimization problem
that satisfies fundamental geometric and statistical condi-
tions and costs.

[0012] In particular, it would be advantageous to devise a
computer-implemented method for using feature vectors and
machine learning algorithms to determine a discriminant
function of a minimum risk quadratic classification system
that classifies the feature vectors into two classes, wherein
the feature vectors have been extracted from digital signals
such as seismic signals, radar signals, speech signals, bio-
medical signals, fingerprint images, hyperspectral images,
multispectral images or images of objects, and wherein the
minimum risk quadratic classification system exhibits the
minimum probability of error for classifying the feature
vectors into the two classes.

[0013] Further, it would be advantageous if discriminant
functions of minimum risk quadratic classification systems
can be combined additively, wherein M ensembles of M-1
discriminant functions of M-1 minimum risk quadratic
classification systems determine a discriminant function of
an M-class minimum risk quadratic classification system
that classifies feature vectors into M classes. It would also be
advantageous to devise a method that determines a fused
discriminant function of a fused minimum risk quadratic
classification system that classifies different types of feature
vectors into two classes, wherein different types of feature
vectors have different numbers of vector components and
may be extracted from different types of digital signals.
Further, it would be advantageous to extend the method to
M classes of feature vectors. Finally, it would be advanta-
geous to devise a method that uses a discriminant function
of' a minimum risk quadratic classification system to deter-
mine a classification error rate and a measure of overlap
between distributions of feature vectors for two classes of
feature vectors. A similar method could be used to determine
if distributions of two collections of feature vectors are
homogenous distributions.

SUMMARY OF THE INVENTION

[0014] The present invention involves the mathematical
discovery of a theoretical model and a parametric model of
a discriminant function of a minimum risk quadratic clas-
sification system that match each other. Both models are
both determined by a system of fundamental locus equations
of binary classification, subject to geometric and statistical
conditions for a minimum risk quadratic classification sys-
tem in statistical equilibrium.

[0015] An important aspect of both models involves the
general idea of a geometric locus. The general idea of a
curve or surface which at any point of it exhibits some
uniform property is expressed in geometry by the term locus.
Generally speaking, a geometric locus is a curve or surface
formed by points, wherein each point on the geometric locus
possesses some uniform property that is common to all
points on the locus—and no other points. Any given curve
or surface must pass through each point on a specified locus,
and each point on the specified locus must satisfy certain
geometric conditions. For example, a circle is a locus of
points, all of which are at the same distance (the radius) from
a fixed point (the center).

[0016] Any given geometric locus is determined by an
equation, wherein the locus of the equation is the location of
all those points whose coordinates are solutions of the
equation. Classic geometric locus problems involve alge-
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braic equations of conic sections or quadratic surfaces,
wherein the algebraic form of an equation is determined by
the geometric property and the Cartesian coordinate system
of'the locus. Finding the form of an equation for a geometric
locus is often a difficult problem. The central problem
involves identifying the geometric property exhibited by a
certain locus of points. The inverse problem involves finding
the form of an equation whose solution determines coordi-
nates of all of the points on a locus that has been defined
geometrically.

[0017] Another aspect of both models involves the idea of
an extreme point. Take a collection of feature vectors for any
two pattern classes that are drawn from any two statistical
distributions, wherein the distributions are either overlap-
ping or non-overlapping with each other. An extreme point
is defined to be a feature vector that exhibits a high vari-
ability of geometric location, wherein the feature vector is
located (1) relatively far from its distribution mean, (2)
relatively close to the mean of the other distribution, and (3)
relatively close to other extreme points. Accordingly, any
given extreme point exhibits a large covariance, wherein the
extreme point is located somewhere within an overlapping
region or near a tail region between two distributions.
[0018] Given the geometric and statistical properties
exhibited by the locus of an extreme point, it follows that a
collection of extreme vectors determine principal directions
of large covariance for a given collection of feature vectors,
wherein extreme vectors are discrete principal components
that specify directions for which the collection of feature
vectors is most variable or spread out.

[0019] Further, decision regions of minimum risk qua-
dratic classification systems are determined by distributions
of extreme points, wherein positions and potential locations
of extreme points determine regions of counter risk and risk
associated with making right and wrong decisions.

[0020] Furthermore, locus equations of quadratic decision
boundaries involve first and second degree coordinates,
wherein coordinates of extreme vectors that satisfy the
system of fundamental locus equations of binary classifica-
tion contain first and second degree coordinates. Second-
degree polynomial reproducing kernels and certain Gaussian
reproducing kernels replace extreme vectors with second-
order curves that contain first and second degree vector
components, wherein geometric loci of extreme points con-
tain first and second degree coordinates.

[0021] The theoretical model of the invention demon-
strates that a discriminant function of a minimum risk
quadratic classification system is represented by a certain
geometric and statistical structure, wherein the structure is
the principal eigenaxis of a decision boundary of a minimum
risk quadratic classification system. The principal eigenaxis
is expressed as a dual locus of likelihood components and
principal eigenaxis components and is determined by a
geometric locus of signed and scaled reproducing kernels of
extreme points, wherein likelihood components determine
likelihoods for extreme points and principle eigenaxis com-
ponents determine an intrinsic coordinate system of the
geometric locus of a quadratic decision boundary.

[0022] The theoretical model also demonstrates that a
minimum risk quadratic classification system seeks a point
of statistical equilibrium, wherein conditional probabilities
and critical minimum eigenenergies exhibited by the system
are symmetrically concentrated, and wherein opposing and
counteracting random forces and influences of the system
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are symmetrically balanced with each other, wherein the
total allowed eigenenergy and the expected risk exhibited by
the minimum risk quadratic classification system are mini-
mized and the minimum risk quadratic classification system
exhibits the minimum probability of error. However, the
theoretical model does not provide a constructive proof for
finding the point of statistical equilibrium that is sought by
a minimum risk quadratic classification system—nor does it
define its parametric form. Further, suitable models for
equilibrium points of minimum risk quadratic classification
systems cannot be found with analytical or numerical meth-
ods.

[0023] A discriminant function of a minimum risk qua-
dratic classification system of the invention is determined by
using feature vectors and machine learning algorithms of the
invention, wherein for a given machine learning algorithm
and a given collection of feature vectors, a discriminant
function of a minimum risk quadratic classification system
is determined by using the processors of a computer system
to find a satisfactory solution of a certain dual optimization
problem, wherein the discriminant function of the minimum
risk quadratic classification system satisfies a system of
fundamental locus equations of binary classification, subject
to geometric and statistical conditions for a minimum risk
quadratic classification system in statistical equilibrium.
[0024] One aspect of the principles of the invention pro-
vides a method for determining a discriminant function of a
minimum risk quadratic classification system that classifies
feature vectors into two classes, wherein the minimum risk
quadratic classification system exhibits the minimum prob-
ability of error for classifying a collection of feature vectors
that belong to the two classes and unknown feature vectors
related to the collection.

[0025] Another aspect provides a method for determining
a discriminant function of an M-class minimum risk qua-
dratic classification system that classifies feature vectors into
M classes, wherein the minimum risk quadratic classifica-
tion system exhibits the minimum probability of error for
classifying a collection of feature vectors that belong to the
M classes and unknown feature vectors related to the
collection of feature vectors. Yet another aspect provides a
method for using a discriminant function of a minimum risk
quadratic classification system to determine a classification
error rate and a measure of overlap between distributions of
feature vectors for two classes of feature vectors. Additional
aspects will become apparent in view of the following
descriptions.

[0026] The innovative concept of the invention is a novel
geometric and statistical structure that determines a dis-
criminant function of a minimum risk quadratic classifica-
tion system that classifies feature vectors into two classes
along with the geometric and statistical architecture of a
learning machine. The novel geometric and statistical struc-
ture is the principal eigenaxis of the decision boundary of the
minimum risk quadratic classification system, wherein the
principal eigenaxis determines an intrinsic coordinate sys-
tem and an eigenaxis of symmetry for the decision space of
the minimum risk quadratic classification system, wherein
all of the points on a quadratic decision boundary and
corresponding decision borders exclusively reference the
principal eigenaxis, and wherein likelihoods are symmetri-
cally distributed over the sides of the principal eigenaxis,
wherein likelihoods determine conditional likelihoods for
feature vectors—termed extreme vectors—that are located
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within overlapping regions or near tail regions of distribu-
tions of two given collections of feature vectors that belong
to the two classes.

[0027] The discriminant function of the minimum risk
quadratic classification system determines likely locations
of feature vectors according to vector projections of the
feature vectors along the eigenaxis of symmetry, wherein the
vector projection of a feature vector along the principal
eigenaxis accounts for the distance between the feature
vector and the average extreme vector of the collection of
feature vectors, and wherein the vector projection of the
feature vector along the eigenaxis of symmetry determines
a region of the decision space that the feature vector is
located within, wherein the region is related to one of the
two classes, and wherein the scalar projection of the feature
vector along the eigenaxis of symmetry determines a signed
magnitude related to one of the two classes.

[0028] The principal eigenaxis of the invention is deter-
mined by a geometric locus of signed and scaled reproduc-
ing kernels of extreme points, wherein reproducing kernels
replace feature vectors with curves that contain first and
second degree vector components, and wherein the geomet-
ric locus of the principal eigenaxis is expressed as a dual
locus of likelihood components and principal eigenaxis
components, wherein likelihood components on the dual
locus determine conditional likelihoods for extreme points
that belong to the two classes, and wherein principal
eigenaxis components on the dual locus determine the
intrinsic coordinate system and the corresponding eigenaxis
of symmetry for the decision space of the minimum risk
quadratic classification system.

[0029] The minimum risk quadratic classification system
is in statistical equilibrium, wherein the quadratic classifi-
cation system exhibits the minimum probability of classifi-
cation error for the given collection of feature vectors, in
accordance with the principal eigenaxis of the quadratic
decision boundary of the system, wherein conditional prob-
abilities and critical minimum eigenenergies exhibited by
the quadratic classification system are concentrated.

[0030] The geometric locus of signed and scaled repro-
ducing kernels of extreme points satisfies a computer-imple-
mented system of fundamental locus equations of binary
classification, subject to geometric and statistical conditions
for a minimum risk quadratic classification system in sta-
tistical equilibrium, wherein the principal eigenaxis of the
quadratic decision boundary is in statistical equilibrium,
wherein conditional probabilities and critical minimum
eigenenergies exhibited by the minimum risk quadratic
classification system are symmetrically concentrated within
the geometric locus of the principal eigenaxis, and wherein
counteracting and opposing components of conditional
probabilities and total allowed eigenenergies exhibited by
the minimum risk quadratic classification system are sym-
metrically balanced with each other within the geometric
locus, wherein corresponding counter risks and risks of the
minimum risk quadratic classification system are symmetri-
cally balanced with each other about the geometric center of
the geometric locus of the principal eigenaxis. Further, the
computer-implemented system matches a theoretical system
that has been devised.

[0031] The principal eigenaxis of the quadratic decision
boundary exhibits symmetrical dimensions and density,
wherein counteracting and opposing components of likeli-
hood components and principal eigenaxis components are
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symmetrically distributed over either side of the dual locus,
wherein conditional probabilities and critical minimum
eigenenergies exhibited by the minimum risk quadratic
classification system are symmetrically concentrated, and
wherein counteracting and opposing components of critical
minimum eigenenergies exhibited by all of the scaled
extreme vectors on the dual locus together with correspond-
ing counter risks and risks exhibited by the minimum risk
quadratic classification system are symmetrically balanced
with each other about the geometric center of the dual locus,
and wherein the center of total allowed eigenenergy and
minimum expected risk of the minimum risk quadratic
classification system is at the geometric center of the dual
locus of likelihood components and principal eigenaxis
components, wherein the minimum risk quadratic classifi-
cation system satisfies a state of statistical equilibrium,
wherein the total allowed eigenenergy and the expected risk
of the system are minimized, and wherein the minimum risk
quadratic classification system exhibits the minimum prob-
ability of error for classifying the given collection of feature
vectors and feature vectors related to the given collection.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] FIG. 1 illustrates symmetrical decision regions of a
minimum risk quadratic classification system that are delin-
eated by a hyperbolic decision boundary and hyperbolic
decision borders obtained by using the method for deter-
mining a discriminant function of a minimum quadratic
classification system that classifies feature vectors into two
classes in which distributions of two collections of feature
vectors have different mean vectors and different covariance
matrices and are overlapping with each other;

[0033] FIG. 2 illustrates symmetrical decision regions of a
minimum risk quadratic classification system that are delin-
eated by a parabolic decision boundary and parabolic deci-
sion borders obtained by using the method for determining
a discriminant function of a minimum risk quadratic clas-
sification system that classifies feature vectors into two
classes in which distributions of two collections of feature
vectors have different mean vectors and different covariance
matrices and are overlapping with each other;

[0034] FIG. 3 illustrates symmetrical decision regions of a
minimum risk quadratic classification system that are delin-
eated by a hyperbolic decision boundary and hyperbolic
decision borders obtained by using the method for deter-
mining a discriminant function of a minimum risk quadratic
classification system that classifies feature vectors into two
classes in which distributions of two collections of feature
vectors have similar mean vectors and similar covariance
matrices and are completely overlapping with each other;
[0035] FIG. 4 illustrates symmetrical decision regions of a
minimum risk quadratic classification system that are delin-
eated by a parabolic decision boundary and parabolic deci-
sion borders obtained by using the method for determining
a discriminant function of a minimum risk quadratic clas-
sification system that classifies feature vectors into two
classes in which distributions of two collections of feature
vectors have different mean vectors and similar covariance
matrices and are overlapping with each other;

[0036] FIG. 5 illustrates symmetrical decision regions of a
minimum risk quadratic classification system that are delin-
eated by an elliptic decision boundary and elliptic decision
borders obtained by using the method for determining a
discriminant function of a minimum risk quadratic classifi-
cation system that classifies feature vectors into two classes
in which distributions of two collections of feature vectors
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have different mean vectors and similar covariance matrices
and are not overlapping with each other;

[0037] FIG. 6 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for determining a discriminant function of a mini-
mum risk quadratic classification system that classifies fea-
ture vectors into two classes;

[0038] FIG. 7 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for determining a discriminant function of an
M-class minimum risk quadratic classification system that
classifies feature vectors into M classes;

[0039] FIG. 8 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for determining a fused discriminant function of a
fused M-class minimum risk quadratic classification system
that classifies two types of feature vectors into M classes;
[0040] FIG. 9 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for using a discriminant function of a minimum risk
quadratic classification system to determine a classification
error rate and a measure of overlap between distributions of
feature vectors for two classes of feature vectors;

[0041] FIG. 10 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for using a discriminant function of a minimum risk
quadratic classification system to determine if distributions
of two collections of feature vectors are homogenous dis-
tributions;

[0042] FIG. 11 illustrates hardware components that may
be used to implement discriminant functions of minimum
risk quadratic classification systems of the invention; and
[0043] FIG. 12 illustrates regions of counter risk and
regions of risk within decision regions of quadratic classi-
fication systems in which distributions of two collections of
feature vectors are overlapping with each other.

DETAILED DESCRIPTION OF THE
INVENTION

[0044] Before describing illustrative embodiments of the
invention, a detailed description of machine learning algo-
rithms of the invention is presented along with a detailed
description of the novel principal eigenaxis that determines
a discriminant function of a minimum risk quadratic clas-
sification system.

[0045] The method to determine a discriminant function of
a minimum risk quadratic classification system that classi-
fies feature vectors into two categories, designed in accor-
dance with the invention, uses machine learning algorithms
and labeled feature vectors to determine a geometric locus of
signed and scaled reproducing kernels of extreme points for
feature vectors x of dimension d belonging to either of two
classes A or B, wherein the geometric locus satisfies a
system of fundamental locus equations of binary classifica-
tion, subject to geometric and statistical conditions for a
quadratic classification system in statistical equilibrium.
[0046] The input to a machine learning algorithm of the
invention is a collection of N feature vectors x, with labels

Y:

Fpy)sx2y2s - YY)

wherein y,=+1 if x,£A and y,=1 if x,EB, and wherein the N
feature vectors are extracted from collections of digital
signals.
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[0047] Denote a minimum risk quadratic classification
system of the invention by

A
ksk + k0 20,
B

wherein A or B is the true category. The discriminant
function D(s)=k.k+x, of the minimum risk quadratic clas-
sification system is represented by a novel principal
eigenaxis that is expressed as a dual locus of likelihood
components and principal eigenaxis components and is
determined by a geometric locus of signed and scaled
reproducing kernels of extreme points:

4 L
K=K =K = ) Wik = D Wk
i=1 i=1

[0048] wherein k, and k,  are reproducing kernels of
respective extreme points X, ;» and X,,. located within over-
lapping regions or near tail regions of distributions of the N
feature vectors, and the preferred reproducing kernel k, is
either k =(s"x+1)? or k =exp(-y|ls—x|[*):0.01=y=0.1, wherein
preferred reproducing kernels k  of feature vectors x contain
first x, and second degree point x,” coordinates, which are
necessary to delineate quadratic curves and surfaces, and
wherein K, -K, determines an intrinsic coordinate system of
geometric loci of a quadratic decision boundary and corre-
sponding decision borders that jointly partition the decision
space of the minimum risk quadratic classification system
into symmetrical decision regions, wherein

1 d
[ - 72 ](Kl —K2)
o1

determines an eigenaxis of symmetry for the decision space,
and wherein the scale factors 1. and \,,. determine mag-
nitudes ||1ph ke, | as well as crmcal minimum
eigenenergies ||1p 1K I, 2and W2k, Ml s, > exhibited by
respectlve principal eigenaxis components Pk, and
P,k e O K =I5, and determine conditional likelihoods for
respective extreme points k. and k, . A machine learning
algorithm of the invention uses the collection of N labeled
feature vectors to find a satisfactory solution for the inequal-
ity constrained optimization problem:

minW(i)=|x|>2C2Z,_ Ne2,

st yk KHKo)21-8; i=1, . . . N, (1.1

wherein k is a dx1 geometric locus of signed and scaled
reproducing kernels of extreme points that determines the
principal eigenaxis of the decision boundary of a minimum
risk quadratic classification system, wherein k is expressed
as a dual locus of likelihood components and principal
eigenaxis components, and wherein k_ is a reproducing
kernel for the feature vector x,, ||| is the total allowed
eigenenergy exhibited by K, K, is a functional of k, C and &,
are regularization parameters, and y, are class membership
statistics: if X,€A, assign y,~+1, and if x,&B, assign y,=1.
The objective of the machine leaning algorithm is to find the
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dual locus of likelihood components and principal eigenaxis
components K that minimizes the total allowed eigenenergy
||ZIK||mm52, and the expected risk R, (Z||K||mm52) exhibited
by the minimum risk quadratic classification system

A
ksk + K9 20,
B

wherein the system of N inequalities:
ik K+Ko)21-8;, i=1,. . . N,

is satisfied in a suitable manner, and wherein the dual locus
of « satisfies a critical minimum eigenenergy constraint:

YOOl i,

wherein the total allowed eigenenergy ||ZIx||.,, >, exhibited
by the dual locus of Kk determines the minimum ecxpected risk
R, (K, )= ||ZIK||mm ? and the conditional probability
P(ZlK) ||ZIKmm exhibited by the minimum risk quadratic
classification system that classifies the collection of N
feature vectors into the two classes A and B. A satisfactory
solution for the primal optimization problem in Eq. (1.1) is
found by using Lagrange multipliers 1),=0 and the Lagran-
gian function:

Ly (k, ko, &, ) = (1.2)

N N
WP /24 C12) " 68 = 3 wityithor + ko) = 1+ &),

i=1 i=1

wherein the objective function and its constraints are com-
bined with each other, that is minimized with respect to the
primal variables k and x,, and is maximized with respect to
the dual variables ,. The Lagrange multipliers method
introduces a Wolfe dual geometric locus  that is symmetri-
cally and equivalently related to the primal geometric locus
k and finds extrema for the restriction of the primal geo-
metric locus k to a Wolfe dual principal eigenspace.
[0049] The fundamental unknowns associated with the
primal optimization problem in Eq. (1.1) are the scale
factors 1, of the principal eigenaxis components

N
{‘”‘ T }

on the geometric locus of a principal eigenaxis 1. Each scale
factor ), determines a conditional density and a correspond-
ing conditional likelihood for a reproducing kernel of an
extreme point on a dual locus of likelihood components, and
each scale factor 1), determines the magnitude and the
critical minimum eigenenergy exhibited by a scaled extreme
vector on a dual locus of principal eigenaxis components.
[0050] The Karush-Kuhn-Tucker (KKT) conditions on the
Lagrangian function Ly, in Eq. (1.2)

K_Ei:leiyikxizoa i=1,....N (1.3)
2 My ~0,i=1,... N, (1.4)
CE M- M0, i=1, .. N, 1.5
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$20,i=1, ... N, (1.6)

Wib’i(kxi'{""{o)_l"'%i]aoa i=1,....N 1.7

determine a system of fundamental locus equations of binary
classification, subject to geometric and statistical conditions
for a minimum risk quadratic classification system in sta-
tistical equilibrium, that are jointly satisfied by the geomet-
ric locus of the principal eigenaxis 1 and the geometric
locus of the principal eigenaxis K.

[0051] Because the primal optimization problem in Eq.
(1.1) is a convex optimization problem, the inequalities in
Eqgs (1.6) and (1.7) must only hold for certain values of the
primal and the dual variables. The KKT conditions in Eqs
(1.3)-(1.7) restrict the magnitudes and the eigenenergies of
the principal eigenaxis components on both w and x,
wherein the expected risk &RW(Z|||K||W %) and the total
allowed eigenenergy ||ZI K||mm exhibited by a minimum risk
quadratic classification system are Jomtly minimized. Sub-
stituting the expressions for k and { in Eqs (1.3) and (1.4)
into the Lagrangian functional Ly, of Eq. (1.2) and sim-
plifying the resulting expression determines the Lagrangian
dual problem:

Ul Ul ky +6;/C (1.8)
maxE() = )i = ) iy v

=1 ij=1

wherein 1 is subject to the constraints =, ,",y,=0, and
1,20, and wherein 9, is the Kronecker 3 defined as unity for
i=j and O otherwise.

[0052] Equation (l 8) is a quadratic programming problem
that can be written in vector notation by letting Qe el+XX7,
wherein Xe D X, wherein D,, is a NxN diagonal matrix of
training labels (class membership statistics) y;, and wherein
the Nixd matrix X is a matrix of labeled reproducing kernels
of N feature vectors:

f(:()’lkxyhkxz ----- .VNkXN)T-

[0053] The matrix version of the Lagrangian dual prob-
lem, which is also known as the Wolfe dual problem:

T 1.9
max=(¥) =17y - Yov 2

[0054] is subject to the constraints Zy=0 and 1,=0,
wherein the inequalities 1,20 only hold for certain values of
P,

[0055] Because Eq. (1.9) is a convex programming prob-
lem, the theorem for convex duality guarantees an equiva-
lence and a corresponding symmetry between the dual loci
of'y and k. Accordingly, the geometric locus of the principal
eigenaxis  determines a dual locus of likelihood compo-
nents and principal eigenaxis components, wherein the
expected risk R, (ZI|Y||.;,, >) exhibited by the dual locus
of 1 is symmetrically and equivalently related to the
expectedrisk R, (ZIK||mm 2 exhibited by the dual locus of
KR . (ZI||1p||mm H=R mln(Z|||K||mzn 2, and wherein the total
allowed eigenenergy ||ZI1p||mm s exhibited by the dual locus
of 1 is symmetrlcally and equlvalently related to the total
allowed elgenenergy ||ZIK||mm , exhibited by the dual locus
of : [|ZI,,,, —||Z|K||mm .

[0056] The Tocations and the scale factors of the principal
eigenaxis components on both ¢ and K are considerably
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affected by the rank and the eigenspectrum of the kernel
matrix Q, wherein a low rank kernel matrix Q determines an
unbalanced principal eigenaxis and an irregular quadratic
partition of a decision space. The kernel matrix Q has low
rank, wherein d<N for a collection of N feature vectors of
dimension d. These problems are solved by the following
regularization method.

[0057] ~ The regularized form of Q, wherein e<<1 and Q
2¢[+XX7, ensures that Q has full rank and a complete
eigenvector set, wherein QQ has a complete eigenspectrum.
The regularization constant C is related to the regularization
parameter & by

1
vk

For N feature vectors of dimension d, wherein d<N, all of
the regularization parameters {&;},_," in Eq. (1.1) and all of
its derivatives are set equal to a very small value: §=E<<1,
e.g. £=E=0.02. The regularization constant C is set equal to

-

For N feature vectors of dimension d, wherein N<d, all of
the regularization parameters {,},_,"in Eq. (1.1) and all of
its derivatives are set equal to zero: §,=5=0. The regulariza-
tion constant C is set equal to infinity: C=co.

[0058] The KKT conditions in Eqs (1.3) and (1.6) require
that the geometric locus of the principal eigenaxis k satisfy
the vector expression:

=2 Wbk, (1.10)

wherein 1,20 and reproducing kernels k,, of feature vectors
x, correlated with Wolfe dual principal eigenaxis compo-
nents

ky, o

o

that have non-zero magnitudes >0 are termed extreme
vectors.

[0059] Denote the scaled extreme vectors that belong to
class A and c?ass B by -k, . and 1,k , respectively,
wherein Yy 1 the scale factor for the extreme vector k,
and .. is the scale factor for the extreme vector k, . Let
there be 1, extreme vectors {1 1K, } _,"1that belong to class
A, and let there be 1, scaled extreme vectors {Waek,, oy
that belong to class B Let there be 1=1,+1, extreme Vectors
from class A and class B.

[0060] Using Eq. (1.10), the class membership statistics
and the assumptions outlined above, it follows that the
geometric locus of the principal eigenaxis k is determined
by the vector difference between a pair of sides, i.e., a pair
of directed line segments:

(1.11)

4 b
K= Z Yiimhe —Z Yok =Ky — K2,
=) =)
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wherein Kk, and K, denote the sides of k, wherein the side of
is K, is determined by the vector expression

4
K = Zi:l Yipmhe

and the side of k,. is determined by the vector expression

)
Ky = sk
2 E oy Pk

and wherein the geometric locus of the principal eigenaxis
K is determined by the vector difference of K, and .

[0061] All of the principal eigenaxis components

Wik and Yopky,

on the dual locus of

4 L
K= Z;:1 Yiimk = Z;:1 Yoy

determine an intrinsic coordinate system of geometric loci of
a quadratic decision boundary and corresponding decision
borders. FIG. 1-FIG. 5 illustrate various geometric loci of
quadratic decision boundaries and corresponding decision
borders.

[0062] FIG. 1 illustrates a hyperbolic decision boundary
and hyperbolic decision borders, wherein distributions of
two collections of feature vectors have different mean vec-
tors and different covariance matrices, wherein the distribu-
tions are overlapping with each other.

[0063] FIG. 2 illustrates a parabolic decision boundary
and parabolic decision borders, wherein distributions of two
collections of feature vectors have different mean vectors
and different covariance matrices, wherein the distributions
are overlapping with each other.

[0064] FIG. 3 illustrates a hyperbolic decision boundary
and hyperbolic decision borders, wherein distributions of
two collections of feature vectors have similar mean vectors
and similar covariance matrices, wherein the distributions
are completely overlapping with each other.

[0065] FIG. 4 illustrates a parabolic decision boundary
and parabolic decision borders, wherein distributions of two
collections of feature vectors have different mean vectors
and similar covariance matrices, wherein the distributions
are overlapping with each other.

[0066] FIG. 5 illustrates an elliptic decision boundary and
elliptic decision borders, wherein distributions of two col-
lections of feature vectors have different mean vectors and
similar covariance matrices, wherein the distributions are
not overlapping with each other.

[0067] The manner in which a discriminate function of the
invention partitions the feature space Z=7,+Z, of a mini-
mum risk quadratic classification system for a collection of
N feature vectors is determined by the KKT condition in Eq.
(1.7) and the KKT condition of complementary slackness.
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[0068] The KKT condition in Eq. (1.7) and the KKT
condition of complementary slackness determine a discrimi-
nant function

D(s)=kK+Kq (1.12)
that satisfies the set of constraints:

D(s)=0, D(s)=+1, and D(s)=1,
wherein D(s)=0 denotes a quadratic decision boundary that

partitions the Z, and Z, decision regions of a minimum risk
quadratic classification system

kK+K0 0

and wherein D(s)=+1 denotes the quadratic decision border
for the Z, decision region, and wherein D(s)=1 denotes the
quadratic decision border for the Z, decision region.
[0069] The KKT condition in Eq. (1.7) and the KKT
condition of complementary slackness also determines the
following system of locus equations that are satisfied by x,,
and x:

Pilke ko)~ 148,70, i=1, . . . ],

wherein K, satisfies the functional of x in the following
manner:

(1.13)
km] "

M\

1
Zyt(l &) [7

B

[0070] Using Eqgs (1.12) and (1.13), the discriminant func-
tion is rewritten as:

(1.14)

D(s) = K——ka*’(“' lZy‘(l—éi

[0071] Using Eq. (1.14) and letting D(s)=0, the discrimi-
nant function is rewritten as

(1.15)

1< 1¢
kek 7;@“ 7;”1 -£)=0,

wherein the constrained discriminant function D(s)=0 deter-
mines a quadratic decision boundary, and all of the points s
on the quadratic decision boundary D(s)=0 exclusively
reference the principal eigenaxis of k.

[0072] Using Eq. (1.14) and letting D(s)=+1, the discrimi-
nant function is rewritten as

(1.16)

1¢ 1
- T;kx‘.*w 7;”“ —&) =L,

wherein the constrained discriminant function D(s)=+1
determines a quadratic decision border, and all of the points
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s on the quadratic decision border D(s)=+1 exclusively
reference the principal eigenaxis of k.

[0073] Using Eq. (1.14) and letting D(s)=-1, the discrimi-
nant function is rewritten as

1< 1< (1.17)
kxx—ygkximY;yi(l—fn:—l,

wherein the constrained discriminant function D(s)=1 deter-
mines a quadratic decision border, and all of the points s on
the quadratic decision border D(s)=-1 exclusively reference
the principal eigenaxis of k.

[0074] Given Eqs (1.15) (1.17), it follows that a con-
strained discriminant function of the invention

1 1¢
D(s):kSK—T;kX‘_*K+Y;y;(l—fi):

D(s)=0, D(s)=+1,and D(s) = -1,

determines geometric loci of a quadratic decision boundary
D(s)=0 and corresponding decision borders D(s)=+1 and
D(s)=1 that jointly partition the decision space Z of a
minimum risk quadratic classification system

A
ksk + k020
B

into symmetrical decision regions 7, and Z,:7=7,+Z,:
Z,=7,—wherein balanced portions of the extreme points
X,;» and X, from class A and class B—account for right and
wrong decisions of the minimum risk quadratic classifica-
tion system.

[0075] Therefore, the geometric locus of the principal
eigenaxis Kk determines an eigenaxis of symmetry

I
(kx - 72‘.:1 K )(Kl —K2)

for the decision space of a minimum risk quadratic classi-
fication system, wherein a constrained discriminant function
delineates symmetrical decision regions Z, and Z,:Z =7, for
the minimum risk quadratic classification system

A
ksk + ko Z 0,
B

wherein the decision regions Z, and Z, are symmetrically
partitioned by the quadratic decision boundary of Eq. (1.15),
and wherein the span of the decision regions is regulated by
the constraints on the corresponding decision borders of Eqs
(1.16) (1.17).

[0076] FIG. 1-FIG. 5 illustrate various types of symmetri-
cal decision regions for minimum risk quadratic classifica-
tion systems.
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[0077] Substitution of the vector expressions for ¥ and K,
in Eqs (1.11) and (1.13) into the expression for the discrimi-
nant function in Eq. (1.12) determines an expression for a
discriminant function of a minimum risk quadratic classifi-
cation system that classifies feature vectors s into two
classes A and B:

D(s) = (1.18)

Lt I ISl
R o T R SN S ) S )

wherein feature vectors s belong to and are related to a
collection of N feature vectors {k_},_*, and wherein the
average extreme vector

1
72?:1 o

determines the average locus of the 1 extreme vectors

that belong to the collection of N feature vectors {k, },_,",
and wherein the average sign

1
TZley;(l = &)

accounts for class memberships of the principal eigenaxis
components on k; and k,. The average locus

1
72?:1 kxi*

determines the average risk R for the decision space Z=Z +
7, of the minimum risk quadratic classification system

A
ksk + ko 20,
B

wherein the vector transform

1
ks = 72?:1 o

determines the distance between a feature vector s and the
locus of average risk R. Let s denote an unknown feature
vector related to a collection of N feature vectors {x,},_,%
that are inputs to one of the machine learning algorithms of
the invention, wherein each feature vector x, has a label y,
wherein y,~+1 if x,£A and y,~-1 if x,€B, and wherein a
discriminant function of a minimum risk quadratic classifi-
cation system has been determined. Now take any given
unknown feature vector s.
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[0078] The discriminant function

1« 1« 1
D6 = (k= 7 X e Jo = (k= g D K e+ 1 30 -8

of Eq. (1.18) determines the likely location of the unknown
feature vector s, wherein the likely location of s is deter-
mined by the vector projection of

1Y ke

onto the dual locus of likelihood components and principal
eigenaxis components K;—K,:

e, - %Zle ke

s —K2||[ cos o],

wherein the component of

I
k=72
along the dual locus of k,-x,:

-

1
compﬁjz»(kx - 72(_:1 k‘i* ] =

cos 8

1
s 72?:1 o

determines the signed magnitude

cos 8

1
s 72?:1 o

along the axis of k;-k,, where 0 is the angle between the
transformed unknown feature vector

g ke

and K¥,-K,, and wherein the decision region that the
unknown feature vector s is located within is determined by
the sign of the expression:

Sig)‘[”Kl —K2||[

[0079] Therefore, the likely location of the unknown fea-
ture vector s is determined by the scalar value of

cosf

1 i
ks~ 721 ke

1 d
+ 72 yi(l —fi)]-
=1

llc1 = &2l coso,

1 i
ks - 721 k.
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along the axis of the dual locus k,-K,, wherein the scalar
value of the expression

1d
cosf + 72 yi(l =€)

i=1

llc1 = &2l

1 i
ks - 721 e

indicates the decision region Z, or Z, that the unknown
feature vector s is located within—along with the corre-
sponding class of s.

[0080] Thus, if:

cosf

[l&y —K2||[

1 i
ks - 721 s

1 {
+7; yil-€)=0,

then the unknown feature vector s is located within region 7,
and s€A, whereas if

cosf

1 i
+ 72 yill =€) <0,

i=1

(54 —Kzll[

1 i
s - 721 ke

then the unknown feature vectors s is located within region
Z, and s€EB.

[0081] The minimum risk quadratic classification system
of the invention decides which of the two classes A or B that
the unknown feature vector s belongs to according to the
sign of +1 or -1 that is output by the signum function:

(1.19)

1 d
+ 72 yi(l —é“;)]
=

sign(D(s)) 2

Sigl{llkl - Kzll[

and thereby classifies the unknown feature vector s.
[0082] Thus, the discriminant function of the invention in
Eq. (1.18) determines likely locations of each one of the
feature vectors x, that belong to a collection of N feature
vectors {x,},_," and any given unknown feature vectors s
related to the collection, wherein the feature vectors are
inputs to one of the machine learning algorithms of the
invention and a discriminant function of a minimum risk
quadratic classification system has been determined.
[0083] Further, the discriminant function identifies the
decision regions 7, and Z, related to the two classes A and
B that each one of the N feature vectors x, and the unknown
feature vectors s are located within, wherein the discriminant
function recognizes the classes of each one of the N feature
vectors X, and each one of the unknown feature vectors s, and
the minimum risk quadratic classification system of the
invention in Eq. (1.19) decides which of the two classes that
each one of the N feature vectors x, and each one of the
unknown feature vectors s belong to and thereby classifies
the collection of N feature vectors{x,},_,™ and any given
unknown feature vectors s.

[0084] Therefore, discriminant functions of the invention
exhibit a novel and useful property, wherein, for any given
collection of feature vectors that belong to two classes and

cosf

1 i
e, - 721 [
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are inputs to a machine learning algorithm of the invention,
the discriminant function that is determined by the machine
learning algorithm determines likely locations of each one of
the feature vectors that belong to the given collection of
feature vectors and any given unknown feature vectors
related to the collection, and identifies the decision regions
related to the two classes that each one of the feature vectors
and each one of the unknown feature vectors are located
within, wherein the discriminant function recognizes the
classes of the feature vectors and the unknown feature
vectors according to the signs related to the two classes.
[0085] The likelihood components and the corresponding
principal eigenaxis components

Wiy and gop ke,

on the dual locus of k,-K, are determined by the geometric
and the statistical structure of the geometric locus of signed
and scaled reproducing kernels of extreme points:

4 L
K=K = ) ke = D Uy
i=1 i=1

wherein the scale factors . and 1,,. of the geometric
locus determine magnitudes

[l e o

and [|yr2-ky

as well as critical minimum eigenenergies

2

ming

2

ming

”lpli*kxh-*

and [[frak

Xk

exhibited by respective principal eigenaxis components

Wik and gopke,,

on the dual locus of -k, and each scale factor  ;« or ,;«
determines a conditional density and a corresponding con-
ditional likelihood for a respective extreme point

e OF k"zi* .

[0086] Scale factors are determined by finding a satisfac-
tory solution for the Lagrangian dual optimization problem
in Eq. (1.9), wherein finding a geometric locus of signed and
scaled reproducing kernels of extreme points involves opti-
mizing a vector-valued cost function with respect to con-
straints on the scaled extreme vectors on the dual loci of
and k, wherein the constraints are specified by the KKT
conditions in Egs (1.3)-(1.7). The Wolfe dual geometric
locus of scaled extreme points on 1 is determined by the
largest eigenvector 1, of the kernel matrix Q associated
with the quadratic form v, “Qy,,.. in Eq. (1.9), wherein
}7y=0, ,.>0, and whereinp,, . is the principal eigenaxis of
an implicit quadratic decision boundary—associated with
the constrained quadratic form v, Qv —within the
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Wolfe dual principal eigenspace of iv, wherein the form of
the inner product statistics contained within the kernel
matrix Q determines an intrinsic coordinate system of the
intrinsic quadratic decision boundary.

[0087] Further, the intrinsic coordinate system of the
intrinsic quadratic decision boundary of Eq. (1.9) is an
inherent function of inner product statistics between feature
vectors k_ and k_, wherein reproducing kernels k. of feature
vectors X contain first x, and second degree x,* point coor-
dinates, wherein reproducing kernels that contain first and
second degree point coordinates are necessary to delineate
quadratic curves and surfaces of quadratic decision bound-
aries and corresponding decision borders.

[0088] The theorem for convex duality indicates that the
principal eigenaxis of ¢ satisfies a critical minimum eigene-
nergy constraint that is symmetrically and equivalently
related to the critical minimum eigenenergy constraint on
the principal eigenaxis of k, within the Wolfe dual principal
eigenspace of 1 and K:”le”min52§”Z|K”minczs wherein the
principal eigenaxis of \ satisfies a critical minimum eigene-
nergy constraint:

WX Yy OV s =Py I Wl b,

and the functional 17y-7Qy/2 in Eq. (1.9) is maximized
by the largest eigenvector ,,,. of Q, wherein the con-
strained quadratic form {7 Qy/2, wherein 1, "y=0 and
1,+>0, reaches its smallest possible value. It follows that the
principal eigenaxis components on 1 satisfy minimum
length constraints.

[0089] The principal eigenaxis components on 1 also
satisfy an equilibrium constraint. The KKT condition in Eq.
(1.4) requires that the magnitudes of the principal eigenaxis
components on the dual locus of  satisty the locus equa-
tion:

R (1.20)
wherein Eq. (1.20) determines the Wolf dual equilibrium
point:

T T P20 (1.21)
of' a minimum risk quadratic classification system, wherein
the critical minimum eigenenergies exhibited by the princi-
pal eigenaxis of ) are symmetrically concentrated.

[0090] Given Eq. (1.21), it follows that the integrated
lengths of the Wolfe dual principal eigenaxis components

correlated with each class balance each other, wherein the
principal eigenaxis of  is in statistical equilibrium:

DRI T (1.22)

[0091] Now, each scale factor = or \,;. is correlated
with a respective extreme vector k. and

Kok *

Therefore, let 1, +1,=1, express the principal eigenaxis of 1 in
terms of 1 scaled, unit extreme vectors:

(1.23)

b b
_ k"li* k"zi* _
Y= Y o + Yo s =1 + 42,
[l Il (|
=1 =1
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[0092] wherein {, and , denote the sides of the dual
locus of 1, wherein the side of 1, is determined by the
vector expression

h Ko

Y1 = lﬂri*k—,

o Ty

and wherein the side of v, is determined by the vector
expression

I3 k

0%
Y2 = lﬂz‘ P
iV Mg

[0093] The system of locus equations in Eqgs (1.20)-(1.23)
demonstrates that the principal eigenaxis of 1\ is determined
by a geometric locus of scaled, unit extreme vectors from
class A and class B, wherein all of the scaled, unit extreme
vectors on Y, and 1, are symmetrically distributed over
either side of the geometric locus of the principal eigenaxis
1, wherein a statistical fulcrum is placed directly under the
center of the principal eigenaxis of ).

[0094] Using Eq (1.22) and Eq. (1.23), it follows that the
length [, || of , is equal to the length ||| of ={|, [l
It also follows that the total allowed -eigenenergies
1Z1p ., > and [|Z1p,]],,, > exhibited by v, and v, are
symmetriccally balanced with each other about the geometric
center of the  principal eigenaxis of Y
||Z|wl||min52:||Z|w2||min52'

[0095] The equilibrium constraint on the geometric locus
of the principal eigenaxis ¢ in Eq. (1.20) ensures that the
critical minimum eigenenergies exhibited by all of the
principal eigenaxis components on ), and ), are symmetri-
cally concentrated within the principal eigenaxis of 1):

i kx L) ke ;
§ 1i § 2+
H Y —‘ H Yo —‘
ey M1, ey I,

[0096] Using Eq. (1.24), it follows that the principal
eigenaxis of 1\ satisfies a state of statistical equilibrium,
wherein all of the principal eigenaxis components on 1 are
equal or in correct proportions, relative to the center of 1,
wherein components of likelihood components and corre-
sponding principal eigenaxis components of class A—along
the axis of 1,—are symmetrically balanced with compo-
nents of likelihood components and corresponding principal
eigenaxis components of class B—along the axis of 1.

[0097] Therefore, the principal eigenaxis of ¢ determines
a point at which the critical minimum eigenenergies exhib-
ited by all of the scaled, unit extreme vectors from class A
and class B are symmetrically concentrated, wherein the
total allowed eigenenergy ||ZI||,.., > exhibited by the prin-
cipal eigenaxis of 1 is minimized within the Wolfe dual
principal eigenspace.

[0098] The scale factors are associated with the funda-
mental unknowns of the constrained optimization problem
in Eq. (1.1). Now, the geometric locus of the principal
eigenaxis 1 can be written as

(1.24)
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Il iy, licos G, (1.25)

ey
P e
max —

A :

may

ey M llcos 6 &,

ke My llcos B

| Moy leos Oy

>

e

My Ml llcos 6

wherein each scale factor 1, is correlated with scalar pro-
jections

e fleos i,

of a feature vector k_ onto a collection of N signed feature
vectors k. ’

[0099] Funher given a kernel matrix of all possible inner
products of reproducmg kernels of a collection of N feature

vectors {x 1., ™, the pointwise covariance statistic Covip (k)
of any given feature vector Kk,

o () = s, ||Z’jV:l s lleos B (1.26)

determines a unidirectional estimate of the joint Variations
between the random variables of each feature vector k,

the collection N feature vectors {x,},_," and the random
variables of the feature vector k_, along with a unidirectional
estimate of the joint variations between the random variables
of the mean feature vector X, Mk and the feature vector ky,
along the axis of the feature vector k..

[0100] Let i=1:1, where each extreme vector

X

is correlated with a principal eigenaxis component

k
Ky
Yy

]

on ;. Now take the extreme vector

X

that is correlated with the principal eigenaxis component

k
Pl Tl
Y e

[N
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Using Eqgs (1.25) and (1.26), it follows that the geometric
locus of the principal eigenaxis component

k
X

[

(278

on 1, is determined by the locus equation:

>
.
jzlwl_/

-1
Kok,

e (1.27)

maxy

kﬂi* kxlj* cos kah_*

L)
Zj:l Yot

wherein components of likelihood components and principal
eigenaxis components for class A—along the axis of the
extreme vector

kxlj* -

Lo oy  ||cos kah_* by

k

Xppk

—are symmetrically balanced with opposing components of
likelihood components and principal eigenaxis components
for class B—along the axis of the extreme vector

E ! ko)
comp— (W phy, ) —
j=1 ey L

E ” Wk, i)
comp_— (o ke, 4 )
=1 Ky %

wherein ). determines a scale factor for the extreme vector

L =/\;}zxd,”kxm

DN L

k

X

ey, 11

Accordingly, Eq. (1.27) determines a scale factor 1), ,. for a
correlated extreme vector

k

T
Let i=1:1,, where each extreme vector
Kxyie

is correlated with a principal eigenaxis component

k

.
Yo
" g I

on J,. Now take the extreme vector

k

Xk

that is correlated with the principal eigenaxis component

o
Yo 2
gl
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Using Eqgs (1.25) and (1.26), it follows that the geometric
locus of the principal eigenaxis component on

o
1//2'* — =
Mg 1

on 1, is determined by the locus equation:

2 oy (1.28)
I 123,

L
Yo = A oy Ky o

>
.
jzlwl_/

cos kazi* ky o

-1
Aonaxy |[Fxgse K o 008 B by

wherein components of likelihood components and principal
eigenaxis components for class B—along the axis of the
extreme vector

Xk

—are symmetrically balanced with opposing components of
likelihood components and principal eigenaxis components
for class A—along the axis of the extreme vector

4 R
ZFI Compzxz?(lﬂzj* kxzj* ) -

) -
ZFI ComPE;(lﬂlj* ke o),

wherein1),,. determines a scale factor for the extreme vector

Kyt Ve = A [y

o ”k"zi*

maxy

k

Xk

Mg, 11

Accordingly, Eq. (1.28) determines a scale factor 1),,. for a
correlated extreme vector

Xk

[0101] Given the pointwise covariance statistic in Eq.
(1.26), it follows that Eq. (1.27) and Eq. (1.28) determine the
manner in which the first and second order vector compo-
nents of a set of 1 scaled extreme vectors

{
ke

wherein the set belongs to a collection of N feature vectors
{x;},-,%, are distributed along the axes of respective extreme
vectors k. or
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Xk

wherein the first and second order vector components of
each scaled extreme vector

W kxj*

are symmetrically distributed according to: (1) a class label
+1 or -1; (2) a signed magnitude

|L
2o

(:050,(X1 L or ||kxj*
i

0080y sk

and (3) a symmetrically balanced distribution of 1 scaled
extreme vectors

{‘p"*kxk* }::1

along the axis of the scaled extreme vector

ke

wherein the symmetrically balanced distribution is specified
by the scale factor 1 ..

[0102] Accordingly, the geometric locus of each principal
eigenaxis component

Ky Kyr

- -

Y k—‘ OF ;% k—‘
[lexyll [l ol

on the geometric locus of the principal eigenaxis 1 deter-
mines the manner in which the first and second order vector
components of an extreme vector

ks .. or kxw

X1i

are symmetrically distributed over the axes of a set of 1
signed and scaled extreme vectors:

ksl

J=1

[0103] It follows that the geometric locus of each principal
eigenaxis component

ks k

» -~

Y T . or Yo T -
[l I eyl
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on the geometric locus of the principal eigenaxis 1 deter-
mines a conditional distribution of first and second degree
coordinates for a correlated extreme point k, _ or

Kgses
wherein
ke,
1i*
Y
el

determines a pointwise conditional density estimate

p(k"li* comp-» (@))

for the correlated extreme point

X%

wherein the component of the extreme vector

X

is symmetrically distributed over the geometric locus of the
principal eigenaxis K:

4

- .
Pllsy o | comp ey ) = Ay E O T
1 L%
L
-1 T
X > e eomp—— sy
2% g

J=1

and wherein

k

o
Yo
" eyl

determines a pointwise conditional density estimate

p(kxw

comp—s (ks ))

for the correlated extreme point

o
Xk
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wherein me component or the extreme vector

Xk

is symmetrically distributed over the axis of the geometric
locus of —x:

compy(key,)) =

4
ks ) Wby
=1
L
Koo ) ke
=1

[0104] Thus, each scale factor },,« or },,« determines a
conditional density and a corresponding conditional likeli-
hood for a correlated extreme point

p (k"zi*

(kxyn)
comp—— )=
7 22 szj* i

Compdjfﬁ (k,rz‘- )

15

k or k.

X Xk

[0105] Therefore, conditional densities and corresponding
conditional likelihoods

Yiik

for the

Xppk

extreme points are identically distributed over the principal
eigenaxis components on K,

4
K= Z Yipmke
=1

wherein

ik e

determines a conditional density and a corresponding con-
ditional likelihood for a correlated extreme point

Xy

and wherein K, a parameter vector for a class-conditional
probability density function
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«1)

plke

for a given set

{kﬂi* }‘lil

of extreme points

k

X

that belong to a collection of N feature vectors {x,},_:

K= P(kxh.* Kl),

wherein the area

[l e o :

under a scaled extreme vector

Yipm

determines a conditional probability that an extreme point

k

X

will be observed within a localized region of either region 7,
or region 7, within a decision space Z, and wherein the area
under the conditional density function

«1)

plke

determines the conditional probability

&)

P (kﬂi*
of observing the set

{k"li* }‘lil

or extreme points

X%

within localized regions of the decision space Z=7,,+7, of a
minimum risk quadratic classification system

A
ksk + k9 2 0.
B
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[0106] Likewise, conditional densities and corresponding
conditional likelihoods

Yok

for the

Xk

extreme points are identically distributed over the principal
eigenaxis components on K,

b
Ky = Z Yok s
inl

wherein

Yotk
determines a conditional density and a corresponding con-
ditional likelihood for a correlated extreme point

k

o
Xk

and wherein k, a parameter vector for a class-conditional
probability density function

P(kxzt.* Kz)

for a given set

{k"zi* }Z 1

of extreme points

k

Xk

that belong to a collection of N feature vectors {x,},_:

Ky = P(kxzt.* Kz),

wherein the area

[TZ5 :

under a scaled extreme vector

Yok, .
2i

determines a conditional probability that an extreme point

k

Xk
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will be observed within a localized region of either region 7,
or region 7, within a decision space Z, and wherein the area
under the conditional density function

P (k"zi* KZ)

determines the conditional probability

Plk

Xk

K2)

of observing the set

{kXZI* }‘lil

of extreme points

Xk

within localized regions of the decision space Z=7,+Z, of a
minimum risk quadratic classification system

A
ksk + ko Z 0.
B

[0107] The integral of a conditional density function
P(kxh.* Kl)

for class A
Pllsypu 1) = (Zil Yike o Jdk :Lp(kxli* 1 )dky

12 2
KkdKy = §||K1|| +C = lll” + €y,

fz
l
over the decision space Z=Z,+Z, of a minimum risk qua-

dratic classification system, determines the conditional prob-
ability

Plk

Xk

x2)

of observing a set

{k"li* }‘lil

of extreme points

X%
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within localized regions of the decision space 7=7,+7,,
wherein integrated conditional densities

2

ming

[[1:+ e

of extreme points

k

X

located within the decision region 7, determine costs

2

ming )

¢ (Zl i ey

for expected counter risks

i)
ming

R min(zl /728 ey

of making correct decisions, and integrated conditional
densities

2

ming

”lpli*kxh-*

of extreme points

Xppk

located within the decision region Z, determine costs

C (21 ik,

o
for expected risks

2

minc)

R 2 9150k,

of making decision errors.
[0108] Accordingly, all of the scaled extreme vectors

Yipmke
from class A possess critical minimum eigenenergies

2

ming

[[1:+ e

that determine either costs C,; for obtaining expected risks

of making decision errors or costs G5 for obtaining
expected counter risks of making correct decisions.

[0109] Therefore, the conditional probability function
P(k,,Ik;) for class A is given by the integral
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Pk (1.29)

X

K1) =fk1d/<1 =1Z 1 k11, + C1,
zZ

over the decision space Z=7,+7, of a minimum risk qua-
dratic classification system, wherein the integral of Eq.
(1.29) has a solution in terms of the critical minimum
eigenenergy [|Z1%,|lll,.., > exhibited by x, and an integration
constant C,. ‘

[0110] The integral of a conditional density function

P (k"zi* KZ)

for class B
K2)= L(Zfil Yo Ky )dkz =
Koo

[rie.,

over the decision space Z=Z,+Z, of a minimum risk qua-
dratic classification system, determines the conditional prob-
ability

Pk

Xk

1
atia = [radia = 5l 4 C = ol + €
zZ

Plk

Xk

K2)

of observing a set

{k"zi* }Z 1

of extreme points

k

Xk

within localized regions or the decision space Z=7,+7Z,
wherein integrated conditional densities

2

ming

[TZ5

of extreme points

Xk

located within the decision region 7, determine costs

C, (Zl 1[Zr -

o)
ming

for expected risks

R

(Zl N7 Koy

o)
ming

min

of making decision errors, and integrated conditional den-
sities
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2

ming

[TZ5

of extreme points

Xk

located on Z, determine costs

C (Zz | oy

i)
mine
for expected counter risks

2

mlnc)

ﬁmin(zz /2% Ky

of making correct decisions.
[0111] Accordingly, all of the scaled extreme vectors

Yotk
from class B possess critical minimum eigenenergies

2

ming

[TZ5

that determine either costs C,; for obtaining expected risks

of making decision errors or costs G5 for obtaining
expected counter risks of making correct decisions.
[0112] Therefore, the conditional probability function

Plk

Xopk Kz)

for class B is given by the integral

Plk (130)

Xk

2
k)= szdkz =121 k2llin, + C2s
z

over the decision space Z=Z,+Z, of a minimum risk qua-
dratic classification system, wherein the integral of Eq.
(1.30) has a solution in terms of the critical minimum
eigenenergy ||ZIK,||,.., > exhibited by Kk, and an integration
constant C,. ‘

[0113] Machine learning algorithms of the present inven-
tion find the right mix of principal eigenaxis components on
the dual loci of ¢ and x by accomplishing an elegant,
statistical balancing feat within the Wolfe dual principal
eigenspace of 1\ and k. The scale factors {1,.},_," of the
principal eigenaxis components on { play a fundamental
role in the statistical balancing feat.
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[0114] Using Eq. (1.27), the integrated lengths Z,_, ",
of the principal eigenaxis components on 1), satisfy the
identity:

4 (1.31)

4 4 b

-1 §
§ Y E/\maxd, Ky wlj*kxlj* - E ij*kxzj* ,
in1 =1 =

i=1

and, using Eq. (1.28), the integrated lengths =,_, ", . of the
principal eigenaxis components on 1), satisfy the identity:

A (1.32)

L L 4

-1 §
§ Y21t = Aa, kxzt-*[ 2T E wlj*kxlj*]-
i=1 1 1

i=1

[0115] Returning to Eq. (1.22), wherein the principal
eigenaxis of \ is in statistical equilibrium, it follows that the
RHS of Eq. (1.31) equals the RHS of Eq. (1.32):

4

4 L
-1
Nty E kxm[ Yk —szﬁkxzﬁ] =
1 J=1

i=1 /=

L

b b
-1
Noiny E by | D W2k o = D 1o o |
1 =

=1 7=

wherein components of all of the extreme vectors

k and k

X% X

from class A and class B are distributed over the axes of x,
and K, in the symmetrically balanced manner:

i b (1.33)
/\;}ud,z b (KL = K2) = /\;}uwz Koy (K2 = K1),
=1 =1

wherein components of extreme vectors

X%

along the axis of K, oppose components of extreme vectors

X%

along the axis of ik, oppose components of extreme vectors

Xk



US 2020/0027027 Al

along the axis of k, oppose components of extreme vectors

k

Xk

along the axis of k.
[0116] Using Eq. (1.33), it follows that components

[

KLy

of extreme vectors

X%

along the axis of |, wherein the axis of k, is determined by
distributions of conditional likelihoods of extreme points

k

o
X%

and opposing components

_”kﬁi*

costy, oy
i

of extreme vectors

X

along the axis of «,, wherein the axis of K, is determined by
distributions of conditional likelihoods of extreme points

Xppk?

are symmetrically balanced with components

||kX2‘_* cosf)

Kok,

of extreme vectors

Xk

along the axis of k,, wherein the axis of , is determined by
distributions of conditional likelihoods of extreme points

Xppk?

and opposing components

- ||k cosfy

Xk Lxye
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of extreme vectors k, along the axis of k;, wherein the axis
of k; is determined by distributions of conditional likeli-
hoods of extreme points

i Dl N
-1 -1 -
g A W11 comp o ) =2 Wall ) comp s k1) =
i=1 i=1

L
2

L
Koy a1 3 comp o gy ) = Ao ol 3 comp - (k)
i=1 i=1

wherein counteracting and opposing components of likeli-
hoods of extreme vectors

X

associated with counter risks and risks for class A, along the
axis of k—are symmetrically balanced with counteracting
and opposing components of likelihoods of extreme vectors

Xk

associated with counter risks and risks for class B, along the
axis of —K.

[0117] Now rewrite Eq. (1.33) as:

i b (1.34)
Rty D g K1+ A, > st =
i=1 i=1

iy b
Al ky Ky + 151 Ky, K
mazy xpp K2 ¥ Amaxy, xo K25
i=1 i=1

wherein components of all of the extreme vectors k,  and
k., from class A and class B, along the axes of k; and «,,
satisfy the locus equation:

4 L

— —
D comp (ke )+ 3 compa )
i=1 i=1

-1
Amaxd,

L 4 .
ll<i Il = E comp _ (ky . ) + E comp - (k) |Agmax,, 2l
- G i £ G i v
i= i=

wherein components of likelihoods of extreme vectors

k and k

X% X

associated with counter risks and risks for class A and class
B—along the axis of k,, are symmetrically balanced with
components of likelihoods of extreme vectors
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k and k

X% Xk

associated with counter risks and risks for class A and class
B—along the axis of «,. Therefore, machine learning algo-
rithms of the invention determine scale factors and 1. for
the geometric locus of signed and scaled reproducing ker-
nels of extreme points in Eq. (1.11)

K=K —Kp

4 b
= Z Wik — Z Yok
in1 i1

that satisfy suitable length constraints, wherein the principal
eigenaxis of 1 and the principal eigenaxis of K are both
formed by symmetrical distributions of likelihoods of
extreme vectors

k and k

X% Xk

from class A and class B, wherein components of likelihoods
of extreme vectors

k and k

X% Xk

associated with counter risks and risks for class A and class
B are symmetrically balanced with each other: along the axis
of ¢, and 1, of the principal eigenaxis of 1 and along the
axis of x; and . of the principal eigenaxis of k.

[0118] Given Egs (1.33) and (1.34), it follows that the
locus equation

(1.35)

Aok (Z ke + Z T ]{Kl -2}

determines the primal equilibrium point of a minimum risk
quadratic classification system—within a Wolfe dual prin-
cipal eigenspace—wherein the form of Eq. (1.35) is deter-
mined by geometric and statistical conditions that are sat-
isfied by the dual loci of 1 and k.
[0119] A discriminant function of the invention satisfies
the geometric locus of a quadratic decision boundary of a
minimum risk quadratic classification system in terms of the
critical minimum eigenenergy ||ZIK||mm , and the minimum
expected risk R, (ZI[,... 2) exhibited by a dual locus «,
wherein the total allowed elgenenergy 1211 ez, 2 and the
minimum expected risk SK,W(ZIHKHMM ) exhibited by the
dual locus of K determines the minimum expected risk
mzn(Z|||K||mzn ?y and the total allowed eigenenergy

||Z|||K||mzn exhibited by the minimum risk quadratic classi-
fication system
[0120] The KKT condition in Eq. (1.7) on the Lagrangian

function in Eq. (1.2) and the theorem of Karush, Kuhn, and
Tucker determine the manner in which a discriminant func-
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tion of the invention satisfies the geometric loci of the
quadratic decision boundary in Eq. (1.15) and the quadratic
decision borders in Eqs (1.16) and (1.17).

[0121] Accordingly, given a Wolfe dual geometric locus of
scaled unit extreme vectors

V= Z A

wherein {1,.>0,_," and ,_,4p,.y,~0, it follows that the 1
likelihood components and corresponding principal
eigenaxis components

t
Z Ko };:1

on the dual locus of k satisty the system of locus equations:
i il +x0) = 1+ 8] =0, i=1,... .1 (1.36)

within the primal principal eigenspace of the minimum risk
quadratic classification system, wherein either £,=E=0 or
£~<<l, e.g. £~E=0.02.

[0122] Take the set

{1 K }{11

i=

of'1, extreme vectors that belong to class A. Using Eq. (1.36)
and letting y,=+1, it follows that the total allowed eigenen-
ergy and the minimum expected risk exhibited by x, is are
both determined by the identity

HZ‘HKlummCz—HKl‘szu cos eKIKZEEizlllwli*(l_Ei_KO) (1.37)

wherein the constrained discriminant function kk+ix,=+1
satisfies the geometric locus of the quadratic decision border
in Eq. (1.16) in terms of the critical minimum eigenenergy
Z1<yll,.r,” and the minimum expected risk %K,
(VAllS 1||mm 2) exhibited by x,, and wherein the eigenenergy
functional ||ZI||K||,,M2 [, lILllsll cos O] is equivalent to
the functional 2, 11 P, ,+(1-E,-K,) within the primal princi-
pal eigenspace of the dual locus of K ,-x,, and wherein K,
and 1, are symmetrically and equivalently related to each
other within the Wolfe dual-principal eigenspace.

[0123] Take the set

{gor Koy }{21

i=

of'1, extreme vectors that belong to class B. Using Eq. (1.36)
and letting y,=1, it follows that the total allowed eigenenergy
and the minimum expected risk exhibited by Kk, are both
determined by the identity

1Zclhn,”= I 1| €08 B,y =i Py (1-E i), (1.38)

wherein the constrained discriminant function kx+i,=1
satisfies the geometric locus of the quadratic decision border
in Eq. (1.17) in terms of the critical minimum eigenenergy
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121l i, 2 and the minimum expected risk R,,,
(ZI||K2||mm 2) exhibited by x,, and wherein the eigenenergy
functional ||ZI||K2||mm =l<sllll, ]| cos O, is equivalent to the
functional 2,_ 2, a -E,+K): within the primal principal
eigenspace of the dual locus of k,-K,, and wherein K, and
1, are symmetrically and equivalently related to each other
within the Wolfe dual-principal eigenspace.

[0124] Summation over the complete system of locus
equations that are satisfied by

( ‘lil Y1 K e Jx = Z‘lil (1 =& —&o)

and by K,

(_ iil Yo kxzi* )K = ZZI Yo (1L =& — ko),

and using the equilibrium constraint on the dual locus of
in Eq. (1.22), wherein the principal eigenaxis of ¢y is in
statistical equilibrium produces the identity that determines
the total allowed eigenenergy ||ZI||K||mm and the minimum
expected risk R . (Zl|||,,,,, ) exhibited by the dual locus of
K:

min min,

(i —re= 3 e (=6 =)+ 2 e (L= = K0)

=30 -6,

wherein the constrained discriminant function kk+i,=0
satisfies the geometric locus of the quadratic decision
boundary in Eq. (1.15) in terms of the critical minimum
eigenenergy 1|1Z1x, K2||mm and the minimum expected risk

R, (Z|||K1—K2||mm 2) exhibited by the dual locus of k, and
wherein the eigenenergy functional ||Z|K1—K2||mm is equiva-
lent to the functional:

Z] llnn, = > wh— —& —Ko)+

g
lﬂz
Mg |

- .*i 1-¢&),
Zizl T

[0125] within the primal principal eigenspace of the dual
locus of k,-K,, and wherein the dual loci of k and 1) are
symmetrically and equivalently related to each other within
the Wolfe dual-principal eigenspace.
[0126] Given Eq. (1.39), it follows that the total minimum
eigenenergy |Z 1k, K2||mm and the minimum expected risk
Rl 2 =, 2) exhibited by the dual locus of k are
both determined by the integrated magnitudes ,. of the
principal eigenaxis components on the dual locus of

(6, =K2)K=Z i (1-E)=Z, e i,

(1 - & +x0)

i=

wherein regularization parameters §=E<<1 determine neg-
ligible constraints on the minimum expected risk K,
(Z|||K1—K2||mm %y and the total allowed eigenenergy ||Zl|«, -
Kol b, exhibited by the dual locus of K

[0127] Now, take any given collection {x,},_," of feature
vectors X; that are inputs to one of the machine learning
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algorithm of the invention, wherein each feature vector x;
has a label y, wherein y,=+1 if x,£A and y,=1 if x,EB.
[0128] The system of locus equations in Eqs (1.37)-(1.39)
determines the manner in which a constrained discriminant
function of the invention satisfies parametric, primary and
secondary integral equations of binary classification over the
decision space of a minimum risk quadratic classification
system of the invention. The primary integral equation is
devised first.

[0129] Using Eq. (1.11), Eq. (1.13), Eq. (1.22) and Eqgs
(1.37)-(1.39), it follows that the constrained discriminant
function

I I
D(s) =k =73 hurt D0 il =)
D(s)=0, D(s)=+1, and D(s) = —
satisfies the locus equations

HZ‘KiHmm =l lliall cos By #00)
1 1= 20 i, (1.40)

and

HZ\KzH =il | cos B +20)

1 2=l 2l ~ K2Hmznc » (1.41)

brain

over the decision regions 7, and Z, of the decision space Z
of the minimum risk quadratic classification system

A
ksk + K9 2 0,
B

wherein the parameters 3(¥)Z,_, ", ,» and —3(y)Z,_, P,

1
SRS wl-6)

are equalizer statistics.

[0130] Using Egs (1.40) and (1.41) along with the identity
in Eq. (1.31)

i _ i ly
TN S O ) Y T NP Y T Sy

and the identity in Eq. (1.32)

2 e =2k, 3 b (302 akny = 2 k)

it follows that the constrained discriminant function satisfies
the locus equation over the decision regions 7, and Z, of the
decision space Z of the minimum risk quadratic classifica-
tion system:

_ i
121811, = W llleos B, gy + 6, ST ki (142)

171 K21, = IRallallc0s By + Mk, S ey

wherein both the left-hand side and the right-hand side of
Eq. (1.42) satisfy half the total allowed eigenenergy ||ZIx, -
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K2||mm and half the minimum expected risk R, (Zl|k, -
K2||mm ) exhibited by the minimum risk quadratic classifi-
cation’ system

kok + Ko 0
[0131] Returning to the integral in Eq. (1.29):
P(kx“* )= fkldkl IZ k1l + Cis

wherein the above integral determines a conditional prob-
ability

Plk

X %

)

for class A, and to the integral in Eq. (1.30)
P(k,

X2

‘Kz)fszdKz:HZ‘Kzumincz"'Cza

wherein the above integral determines a conditional prob-
ability

P(kXZI*

)

for class B, it follows that the value for the integration
constant C, in Eq. (1.29) is: C,=—|l[|[lx,|| cos 0, .., and the
value for the integration constant C, in Eq. (1.30) is:
Co—iall ] cos 6,

[0132] Substituting the value for C, into Eq. (1.29), and
using Eq. (1.29) and Eq. (1.42), it follows that the condi-
tional probability

Plk

X

)

for class A, wherein the integral of the conditional density
function

)

plksy

for class A is given by the integral:

)= fz Pl
By D ey 1 = 52)

fkldkl +5(y)/\;axd,zl fox e (K1 = K2)

=1Z1 sl

ming

P (1.43)

X%

Kl)d/q +

— ltlliallcos B, o, +

xp e (KL= K2)

Sk, 2

1Z1 &1 - kol

ming

1
2
1
2

R, Z kL = k2l )
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over the decision space 7Z=7,+7, of the minimum risk
quadratic classification system, is determined by half the
total allowed eigenenergy 1/2||Z|K1—K2||mm2 and half the
minimum expected risk 1/25Kmm(ZI||K1—K2||mm ) that is
exhibited by the dual locus of k=K,-x,.

[0133] Substituting the value for C, into Eq. (1.30), and
using Eq. (1.30) and Eq. (1.42), it follows that the condi-
tional probability

p (km*

)

for class B, wherein the integral of the conditional density
function

)

p (k"zi*

for class B is given by the integral:

)= [l

_ L
S oty D ey (61 = 2)

= [dia w00, 302 oy 1=
—1ZIlE,

ming

- 2
Sy 27 Ky (1 = 52)

Pl (1.44)

K> )dk2 +

— Ikzlllksllcos By, +

1
§||Z|K1 = K22,
1 2

z){mm(ﬂ &1 = &2l s

over the decision space 7Z=7,+7, of the minimum risk
quadratic classification system, is determined by half the
total allowed eigenenergy 1/2||Z|K1—K2||mm2 and half the
minimum expected risk 1/2‘Kmm(ZI||K1—K2||mm %) that is
exhibited by the dual locus of k=K ,-K,

[0134] Given Egs (1.43) and (1. 44) 1t follows that the
integral of the conditional density function

)

plke

for class A and the integral of the conditional density
function

)

plkey

for class B are both constrained to satisfy half the total
allowed eigenenergy 1/2||Z|K1—K2||mm and half the minimum
expected risk 1A R mm(ZI||K1—K2||mm that is exhibited by the
minimum risk quadratic classification system

A
ksk + k9 2 0.
B
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Therefore, the conditional probability

)

p (k"zi*

of observing the set

{kﬂi* }‘lil

of 1, extreme points

k

Xppk

from class A within localized regions of the decision space
7=7.,+7, of the minimum risk quadratic classification sys-
tem is equal to the conditional probability

)

p (k"zi*

of observing the set

{k"zi* }Z 1

of 1, extreme portions

Xk

from class B within localized regions of the decision space
7=7.,+7, of the minimum risk quadratic classification sys-
tem, wherein

P(kxh_* )= Plk

)3

Xk

and wherein all of the extreme points belong to the collec-
tion of feature vectors {x,},_, that are inputs to a machine
learning algorithm of the invention.

[0135] Therefore, minimum risk quadratic classification
systems of the invention exhibit a novel property of com-
puter-implemented quadratic classification systems, wherein
for any given collection of feature vectors {x,},_," that are
inputs to one of the machine learning algorithms of the
invention: (1) the conditional probability, (2) the minimum
expected risk, and (3) the total allowed eigenenergy exhib-
ited by a minimum risk quadratic classification system for
class A is equal to (1) the conditional probability, (2) the
minimum expected risk, and (3) the total allowed eigenen-
ergy exhibited by the minimum risk quadratic classification
system for class B.

[0136] Using Eqs (1.43) and (1.44), it follows that the
constrained discriminant function of the invention

D(s) = K——Z kmk+lz yi(l =&

D(s)=0, D(s)=+1,and D(s) = —
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is the solution of the parametric, fundamental integral equa-
tion of binary classification:

1.45
fl(D(S))=fKldK1+fK1dK1+5(}’)/\m}wZ (k1 —K2) 14
Z

= f K2dKy +f K2dky +5(y)/\;mz (k1 —K2),
Z

over the decision space Z=Z,+Z, of the minimum risk
quadratic classification system

ksk + Ko <0

of the invention, wherein the decision space Z is spanned by
symmetrical decision regions Z,+7,=7:7 =7, and wherein
the conditional probability P(Z,Ix;) and the counter risk

R il Z 1, s ) and the eigenenergy ||Z, 1k, > of class
A: within the Z, " decision region, and the conditional prob-
ablhty P(Z, |K1) and the risk R, (Z[IKy s, ) and the
eigenenergy ||Z, |K1||mm of class A: within the Z, decision
region—are symmetrlcally balanced with—the condltlonal
probablhty P(Z,1x,) and the risk R, (Z 1[I, %) and the
elgenenergy 1Z51%)|,sr, 2 ©F class B: within the Z decision

min,

region, and the conditional probability P(Z, |K2) and the

counter risk X, (7, M1, %) and the elgenenergy
||Zle2||mm of class B: within the Z, decision region, and
wherein the conditional probablhty P(ZIK1 K,) and the
minimum expected risk SK,,M(ZIHK 1Ko, %y and the total
allowed eigenenergy ||ZIx, K2||mm exhibited by the mini-
mum risk quadratic classification system are jointly regu-
lated by the primal equilibrium point:

- t ‘
Ry (2111 Ko Z ’ | Foge ]{Kl —k2}=0

and the Wolfe dual equilibrium point:

b Ko o b k

K Yo 2 =0
G 2%
RS T Mg |

of the integral equation £, (D(s)).

[0137] Further, the novel principal eigenaxis of the inven-
tion that determines discriminant functions of the invention
along with minimum risk quadratic classification systems of
the invention—satisfies the law of cosines in the symmetri-
cally balanced manner that is outlined below.

[0138] Any given geometric locus of signed and scaled
reproducing kernels of extreme points:

4 L
K= Zi:l Pk = )7 Yok

=K1 — K2,
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wherein the geometric locus of a principal eigenaxis «
determines a dual locus of likelihood components and
principal eigenaxis components x=i,-K, that represents a
discriminant function D(s)=k k+i, of the invention, wherein
principal eigenaxis components and corresponding likeli-
hood components

Wik and Yopky,

on the dual locus of k-, determine conditional densities
and conditional likelihoods for respective extreme points

k and £

Xpp Xk 0

and wherein the geometric locus of the principal eigenaxis
determines an intrinsic coordinate system K-k, of a qua-
dratic decision boundary kx+ik,=0 and an eigenaxis of
symmetry

1
(kx - 72‘.:1 K )(Kl —K2)

for the decision space Z,+7,=7:7 =7, of a minimum risk
quadratic classification

A
ksk +koZ 0
B

of the invention, satisfies the law of cosines

el = Nt = 2l

= allin, + 2l — 2l llllczllcos 6, i,

in the symmetrically balanced manner:

2 2 2
5 KB, = K11, = o llallcos Oy = Izl = Izl llcos By

wherein 0 is the angle between k, and x,, and wherein the
dual locus of likelihood components and principal eigenaxis
components exhibits symmetrical dimensions and density,
wherein the total allowed eigenenergy ||k 2 exhibited by
the dual locus of components

1||mmC

K1)

P (ke

given class A is symmetrically balanced with the total
allowed eigenenergy ||K2||,m.nc2 exhibited by the dual locus of
components
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P (kxzt-* Kz)

given class B:
1 e, =l

wherein the length of side k,; equals the length of side K,
[ =l

and wherein components of likelihood components and
principal eigenaxis components of class A—along the axis
of k,—are symmetrically balanced with components of
likelihood components and principal eigenaxis components
of class B—along the axis of «,:

i —_— I3 —_—
lkull Y ! compe@ike ) =l Y2 compe ke,

wherein components of critical minimum eigenenergies
exhibited by scaled extreme vectors from class A and
corresponding counter risks and risks for class A—along the
axis of ¥, are symmetrically balanced with components of
critical minimum eigenenergies exhibited by scaled extreme
vectors from class B and corresponding counter risks and
risks for class B—along the axis of «,, and wherein the
opposing component of k,—along the axis of K, is sym-
metrically balanced with the opposing component of
k;—along the axis of k,:

[l dllT=leall cos Oy, 1=lillI= Il cos By 1

wherein opposing components of likelihood components
and principal eigenaxis components of class B—along the
axis of K, are symmetrically balanced with opposing com-
ponents of likelihood components and principal eigenaxis
components of class A—along the axis of «,:

I3 —_— i —_—
lkull Y ” | —compy-Workey) = lall ), —compe ke ),

wherein opposing components of critical minimum eigene-
nergies exhibited by scaled extreme vectors from class B and
corresponding counter risks and risks for class B—along the
axis of is, are symmetrically balanced with opposing com-
ponents of critical minimum eigenenergies exhibited by
scaled extreme vectors from class A and corresponding
counter risks and risks for class A—along the axis of x,, and
wherein opposing and counteracting random forces and
influences of the minimum risk quadratic classification
system of the invention are symmetrically balanced with
each other—about the geometric center of the dual locus «:

3 -_— [ -_—
Iill(Y! compe ek )= 32 compe (ke )) =

L —_— t —_—
lall(Y 2 compeWairhay) = D compe@inivkey, ).

—wherein the statistical fulcrum of « is located.

[0139] Accordingly, counteracting and opposing compo-
nents of critical minimum eigenenergies exhibited by all of
the scaled extreme vectors on the geometric locus of the
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principal eigenaxis k=K, —K, of the invention, along the axis
of' the principal eigenaxis K, and corresponding counter risks
and risks exhibited by the minimum risk quadratic classifi-
cation system

A
ksk + k020
B

of'the invention, are symmetrically balanced with each other
about the geometric center of the dual locus K, wherein the
statistical fulcrum of « is located. FIG. 12 illustrates regions
of counter risk and regions of risk within the decision
regions of a minimum risk quadratic classification system in
which distributions of feature vectors are overlapping with
each other.

[0140] Now, take the previous collection {x},_," of
labeled feature vectors x, that are inputs to one of the
machine learning algorithm of the invention, wherein each
feature vector x, has a label y, wherein y,=+1 if x,£A and
y—1 if k,EB.

[0141] Given that a constrained discriminant function of
the invention

1t I L
S I R R Y 99 U ST (B

D(s)=0, D(s)=+1, and D(s) = -1,

is the solution of the parametric, fundamental integral equa-
tion of binary classification in Eq. (1.45), and given that the
discriminant function is represented by a dual locus of
likelihood components and principal eigenaxis components
K=K, —K, that satisfies the law of cosines in the symmetri-
cally balanced manner outlined above, it follows that the
constrained discriminant function satisfies the parametric,
secondary integral equation of binary classification:

fz(D(S))ifkldkl—fszkz+5(}’)/\;¢lzx¢,2filkxm(/<1—K2)=
Z Zy -

-1 L)
L Kadky — f Kidky + 5(y)/\maxd,zi:1 Ky (K1 = £2),

2 Z

over the Z, and Z, decision regions of a minimum risk
quadratic classification system, wherein opposing and coun-
teracting random forces and influences of the minimum risk
quadratic classification system are symmetrically balanced
with each other—within the Z, and Z, decision regions—in
the following manners: (1) the eigenenergy ||Z, Ik Z and

1||mmC

the counter risk K ,,,.(Z,1%,]|,.., 2) and the conditional prob-
ability P(Z,1x,) of class A are scymmetrically balanced with
the opposing eigenenergy ||Z,1K,||,,,, > and the opposing risk
R, (Z K]l 2) and the opposing conditional probability
P(Z,Ix,) of class B: within the Z, decision region; (2) the

eigenenergy ||Z,,),,., > and the counter risk X,
(Z,1%,||,, ) and the conditional probability P(Z,lx,) of
class B is éymmetrically balanced with the opposing eigene-
nergy ||Z,1%,|l,..., > and the opposing risk R, . (Z,1%, || .. 2
and the opposingcconditional probability P(Z,lx,) of class A:
within the Z, decision region; (3) the eigenenergy

1Z, 1 2 and the counter risk ﬁmm(leKlﬂmmcz) and the

1||mmC
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conditional probability P(Z, Ik,) of class A and the opposing
eigenenergy ||Z,1%,|,.., > and the opposing risk R,
(Z,1Ks|lps ) and the opposing conditional probability
P(Z,1x,) of class B: within the 7, decision region—are
symmetrically balanced with the eigenenergy ||22I1<2||,m.nc2

and the counter risk K, (Z,1%||,.., 2) and the conditional
probability P(Z,l«,) of class B and ‘the opposing eigenen-
ergy |2,k l,.., > and the opposing risk R, (Z,1« |, >
and the opposincg conditional probability P(Z,l«, ) of class A:
within the Z, decision region, wherein the minimum risk
quadratic classification system satisfies a state of statistical
equilibrium, wherein the expected risk R, (ZI1¢; 15|, 2)
and the total allowed eigenenergy ||ZIic,~,||.,, > exhibited
by the minimum risk quadratic classification Csystem are
minimized, and wherein the minimum risk quadratic clas-
sification system exhibits the minimum probability of error
for feature vectors that belong to and are related to the given
collection {x,},_," of feature vectors.

[0142] Therefore, minimum risk quadratic classification
systems of the invention exhibit a novel and useful property,
wherein for any given collection of labeled feature vectors
that are inputs to a machine learning algorithm of the
invention, the minimum risk quadratic classification system
determined by the machine learning algorithm satisfies a
state of statistical equilibrium, wherein the expected risk and
the total allowed eigenenergy exhibited by the minimum risk
quadratic classification system are minimized, and the mini-
mum risk quadratic classification system exhibits the mini-
mum probability of error for classifying the collection of
feature vectors and feature vectors related to the collection
into two classes.

[0143] Further, discriminant functions of minimum risk
quadratic classification systems of the invention exhibit a
novel and useful property, wherein a discriminant function
D(s) of a minimum risk quadratic classification system is
determined by a linear combination of a collection of
extreme vectors k_, a collection of signed and scaled
extreme vectors Z

Wik and = o ks

a collection of signs y,=+1 or y,/=—1 associated with the
extreme vectors

e

and a collection of regularization parameters £,=5=0 or
g ~g<<l:

1 i L
D) = (k= 7 X o JOO i = D2 kg )+

1
7o =6,

wherein the collection of extreme vectors {k, },_,’ belong to
a collection of feature vectors {x,},_," that are inputs to one
of the machine learning algorithms of the invention, and
wherein the scales of the extreme vectors are determined by
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the machine learning algorithm used to determine the dis-
criminant function D(s) of the minimum risk quadratic
classification system sign(D(s)) that classifies the collection
of feature vectors {x,},_,” into two classes:

A
sign (D(s)) 2 ksk + ko 2 0,
B

wherein the output of the minimum risk quadratic classifi-
cation system sign(D(s)) is related to the two classes, and
wherein the minimum risk quadratic classification system
sign(D(s)) exhibits the minimum probability of error for
classifying feature vectors that belong to and are related to
the collection of feature vectors used to determine the
system sign(D(s)).

[0144] Therefore, a discriminant function D(s) of a mini-
mum risk quadratic classification system sign(D(s)) pro-
vides a scalable module that can be used to determine an
ensemble B=2,_, *'sign(D,(s)) of discriminant functions of
minimum risk quadratic classification systems, wherein the
ensemble of M-1 discriminant functions of M—-1 minimum
risk quadratic classification systems exhibits the minimum
probability of error for classifying feature vectors that
belong to and are related to M give collections of feature
vectors.

[0145] More specifically, discriminant functions of mini-
mum risk quadratic classification systems provide scalable
modules that are used to determine a discriminant function
of an M-class minimum risk quadratic classification system
that classifies feature vectors into M classes, wherein the
total allowed eigenenergy and the minimum expected risk
that is exhibited by the M-class minimum risk quadratic
classification system is determined by the total allowed
eigenenergy and the minimum expected risk that is exhibited
by M ensembles of M-1 discriminant functions of M-1
minimum  risk  quadratic  classification  systems
EM:ZileijlM'1sign(Dij(s)), wherein each minimum risk
quadratic classification system sign(D,(s)) of an ensemble
Eci:ijlM'lsign(Dy.(s)) for a given class c, exhibits a total
allowed eigenenergy and a minimum expected risk for a
given collection of feature vectors, and wherein the total
allowed eigenenergy and the expected risk that is exhibited
by the ensemble E_ is minimum for M given collections of
feature vectors, and wherein the total allowed eigenenergy
and the expected risk exhibited by the M-class minimum
risk quadratic classification system is minimum for the M
given collections of feature vectors.

[0146] It follows that discriminant functions of M-class
minimum risk quadratic classification systems that are deter-
mined by machine learning algorithms of the invention
exhibit the minimum probability of error for classifying
feature vectors that belong to M collections of feature
vectors and unknown feature vectors related to the M
collections of feature vectors.

[0147] It immediately follows that discriminant functions
of minimum risk quadratic classification systems of the
invention also provide scalable modules that are used to
determine a fused discriminant function of a fused minimum
quadratic classification system that classifies two types of
feature vectors into two classes, wherein each type of feature
vector has a different number of vector components. The
total allowed eigenenergy and the minimum expected risk
exhibited by the fused minimum risk quadratic classification
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system is determined by the total allowed eigenenergy and
the minimum expected risk that is exhibited by an ensemble
of a discriminant function of a minimum risk quadratic
classification system sign(D(s)) and a different discriminant
function of a different minimum risk quadratic classification

system sign( D (s)):E,=sign(D(s))+sign( D (s)), wherein the
total allowed eigenenergy and the expected risk exhibited by
the fused minimum risk quadratic classification system is
minimum for a given collection of feature vectors and a
given collection of different feature vectors.

[0148] Any given fused discriminant function of a fused
minimum  risk  quadratic  classification  system

E2=sign(D(s))+sign( D (s)) that is determined by a machine
learning algorithm of the invention exhibits the minimum
probability of error for classifying feature vectors that
belong to and are related to a collection of feature vectors as
well as different feature vectors that belong to and are related
to a collection of different feature vectors.

[0149] Discriminant functions of minimum risk quadratic
classification systems of the invention also provide scalable
modules that are used to determine a fused discriminant
function of a fused M-class minimum risk quadratic classi-
fication system that classifies two types of feature vectors
into M classes, wherein each type of feature vector has a
different number of vector components, and wherein the
total allowed eigenenergy and the minimum expected risk
exhibited by the fused M-class minimum risk quadratic
classification system is determined by the total allowed
eigenenergy and the minimum expected risk that is exhibited
by M ensembles of M-1 discriminant functions of M-1
minimum  risk  quadratic  classification  systems
EM:ZZ.ZIMZ].ZIM'lsign(Dij(s)) and M different ensembles of
M-1 different discriminant functions of M-1 different mini-

mum risk quadratic classification systems £ M:ZileijlM'
1sign( D l.j(s)):

-
For S M5 M sign(Dy(9) 43, M1 M sign( D
),

and wherein the total allowed eigenenergy and the expected
risk exhibited by the fused M-class minimum risk quadratic
classification system is minimum for M given collections of
feature vectors and M given collections of different feature
vectors.

[0150] Therefore, fused discriminant functions of fused
M-class minimum risk quadratic classification systems that
are determined by machine learning algorithms of the inven-
tion exhibit the minimum probability of error for classifying
feature vectors that belong to M collections of feature
vectors and unknown feature vectors related to the M
collections of feature vectors as well as different feature
vectors that belong to M collections of different feature
vectors and unknown different feature vectors related to the
M collections of different feature vectors.

[0151] Further, given that discriminant functions of the
invention determine likely locations of feature vectors that
belong to given collections of feature vectors and any given
unknown feature vectors related to a given collection,
wherein a given collection of feature vectors belong to two
classes, and given that discriminant functions of the inven-
tion identify decision regions related to two classes that
given collections of feature vectors and any given unknown
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feature vectors related to a given collection are located
within, and given that discriminant functions of the inven-
tion recognize classes of feature vectors that belong to given
collections of feature vectors and any given unknown fea-
ture vectors related to a given collection, wherein minimum
risk quadratic classification systems of the invention decide
which of two classes that given collections of feature vectors
and any given unknown feature vectors related to a given
collection belong to, and thereby classify given collections
of feature vectors and any given unknown feature vectors
related to a given collection, it follows that discriminant
functions of minimum risk quadratic classification systems
of the invention can be used to determine a classification
error rate and a measure of overlap between distributions of
feature vectors for two classes of feature vectors. Further,
discriminant functions of minimum quadratic classification
systems of the invention can be used to determine if distri-
butions of two collections of feature vectors are homog-
enous distributions.

Embodiment 1

[0152] The method to determine a discriminant function of
a minimum risk quadratic classification system that classi-
fies feature vectors into two classes, designed in accordance
with the invention, is fully described within the detailed
description of the invention. FIG. 6 is a flow diagram of
programmed instructions executed by the processor of FIG.
11 to implement the method for determining a discriminant
function of a minimum risk quadratic classification system
that classifies feature vectors into two classes. The process
of determining the discriminant function of a minimum risk
quadratic classification system comprises the following
steps:

[0153] Receive an Nxd data set of feature vectors within
a computer system wherein N is the number of feature
vectors, d is the number of vector components in each
feature vector, and each one of the N feature vectors is
labeled with information that identifies which of the two
classes each one of the N feature vectors belongs to.
[0154] Receive within unknown feature vectors related to
the data set with the computer system.

[0155] Choose a reproducing kernel and determine a ker-
nel matrix using the data set by calculating a matrix of all
possible inner products of signed reproducing kernels of the
N feature vectors, wherein each one of the reproducing
kernels of the N feature vectors has a sign of +1 or -1 that
identifies which of the two classes each one of the N feature
vectors belongs to, and calculate a regularized kernel matrix
from the kernel matrix.

[0156] Determine the scale factors of a geometric locus of
signed and scaled reproducing kernels of extreme points by
using the regularized kernel matrix to solve the dual opti-
mization problem in Eq. (1.9).

[0157] Determine the extreme vectors on the geometric
locus by identifying scale factors in the vector of scale
factors that exceed zero by a small threshold T e.g.: T=0.
0050.

[0158] Determine a sign vector of the signs associated
with the extreme vectors using the data set, and compute the
average sign using the sign vector.

[0159] Determine a locus of aggregate risk by calculating
a kernel matrix using the extreme vectors, and multiply the
kernel matrix by the sign vector.
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[0160] Determine the geometric locus using the N feature
vectors and feature vectors being classified to calculate a
matrix of inner products between the signed reproducing
kernels of the N feature vectors and the reproducing kernels
of the feature vectors, and multiply the matrix by the vector
of scale factors.

[0161] Determine the discriminant function of the mini-
mum risk quadratic classification system, wherein the mini-
mum risk quadratic classification system is determined by
computing the sign of the discriminant function, and classify
any given unknown feature vectors.

Embodiment 2

[0162] FIG. 7 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for determining a discriminant function of an
M-class minimum risk quadratic classification system that
classifies feature vectors into M classes.

[0163] A discriminant function of an M-class minimum
risk quadratic classification system that classifies feature
vectors into M classes is determined by using a machine
learning algorithm of the invention and M collections of N
feature vectors, wherein each feature vector in a given
collection belongs to the same class, to determine M
ensembles of M—-1 discriminant functions of M-1 minimum
risk quadratic classification systems, wherein the determi-
nation of each one of the M ensembles involves using the
machine algorithm to determine M-1 discriminant functions
of M-1 minimum risk quadratic classification systems for a
class c, of feature vectors, wherein the N feature vectors that
belong to the class c; have the sign +1 and all of the N feature
vectors that belong to all of the other M-1 classes have the
sign -1:

E =" sign(Dy(s)),

< J=

wherein the input of the machine learning algorithm for each
discriminant function of a minimum risk quadratic classifi-
cation system sign(D,(s)) is the collection of N feature
vectors that belongs to the class ¢, and a collection of N
feature vectors that belongs to one of the other M-1 classes,
and wherein the ensemble E_ for class c, is determined by
summing the M-1 discriminant functions of the M—1 mini-
mum risk quadratic classification systems Eci:ijlM'lsign
(D,(s)), wherein the discriminant function D,; (s) discrimi-
nates between feature vectors that belong to class i and class
j, and wherein the minimum risk quadratic classification
system sign(D,(s)) decides which of the two classes i or j
that a feature vector s belongs to: according to the sign of +1
or -1 that is output by the signum function sign(D,,,(s)), and
wherein the output of the minimum risk quadratic classifi-
cation system of the ensemble E_ is determined by the sum:
ijlM_lsign(Dij(s))

[0164] Therefore, the M ensembles of the M-1 discrimi-
nant functions of the M-1 minimum risk quadratic classi-
fication systems

Ep 2 M2 M sign(Dy(s))

determine the discriminant function of an M-class minimum
risk quadratic classification system that classifies a feature
vector s into the class ¢, associated with the ensemble E_ that
has the largest positive signed output, wherein each
ensemble E_ of M-1 discriminant functions of M-1 mini-
mum risk qlfadratic classification systems for a given class
¢, of feature vectors exhibits the minimum probability of
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error for classifying the feature vectors that belong to the M
collections of N feature vectors and unknown feature vectors
related to the M collections.

[0165] The discriminant function of the M-class minimum
risk quadratic classification system D, (s)

D, 2 ME M sign(Dy(s))

exhibits the minimum probability of error for classifying
feature vectors that belong to the M collections of N feature
vectors and unknown feature vectors related to the M
collections of N feature vectors, wherein the discriminant
function of the M-class minimum risk quadratic classifica-
tion system function determines likely locations of feature
vectors that belong to and are related to the M collections of
N feature vectors and identifies decision regions related to
the M classes that the feature vectors are located within,
wherein the discriminant function recognizes the classes of
the feature vectors, and wherein the M-class minimum risk
quadratic classification decides which of the M classes that
the feature vectors belong to, and thereby classifies the
feature vectors.

Embodiment 3

[0166] A fused discriminant function of a fused minimum
risk quadratic classification system that classifies two types
of feature vectors into two classes, wherein the types of
feature vectors have different numbers of vector compo-
nents, is determined by using a machine learning algorithm
of the invention and a collection of N feature vectors and a
collection of N different feature vectors to determine an
ensemble of a discriminant function of a minimum risk
quadratic classification system sign(D(s)) and a different
discriminant function of a different minimum risk quadratic
sign( D (s)):E,=sign(D(s))+sign(

classification  system

D (s)), wherein the discriminant function and the different
discriminant function are both determined by the process
that is described in EMBODIMENT 1.

[0167] The fused discriminant function of the fused mini-
mum risk quadratic classification system

D s)-sign(D(s)sign( D (s))

exhibits the minimum probability of error for classifying the
feature vectors that belong to the collection of N feature
vectors and unknown feature vectors related to the collection
of N feature vectors as well as the different feature vectors
that belong to the collection of N different feature vectors
and unknown different feature vectors related to the collec-
tion of N different feature vectors, wherein the fused dis-
criminant function determines likely locations of feature
vectors that belong to and are related to the collection of N
feature vectors as well as different feature vectors that
belong to and are related to the collection of N different
feature vectors and identifies decision regions related to the
two classes that the feature vectors and the different feature
vectors are located within, wherein the fused discriminant
function recognizes the classes of the feature vectors and the
different feature vectors, and wherein the fused minimum
risk quadratic classification decides which of the two classes
that the feature vectors and the different feature vectors
belong to, and thereby classifies the feature vectors and the
different feature vectors.
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Embodiment 4

[0168] FIG. 8 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for determining a fused discriminant function of a
fused M-class minimum risk quadratic classification system
that classifies two types of feature vectors into M classes,
wherein the types of feature vectors have different numbers
of vector components.

[0169] A fused discriminant function of a fused M-class
minimum risk quadratic classification system that classifies
two types of feature vectors into M classes is determined by
using a machine learning algorithm of the invention and M
collections of N feature vectors to determine M ensembles
of M-1 discriminant functions of M-1 minimum risk qua-
dratic classification systems EM:ZZ.ZIMZ].ZIM'lsign(Dij(s)) as
well as M collections of N different feature vectors to
determine M different ensembles of M-1 different discrimi-
nant functions of M-1 different minimum risk quadratic

classification systems FE,~%,_ *'sign(D (s)), wherein
the M ensembles and the M different ensembles are both
determined by the process that is described in EMBODI-
MENT 2. The fused discriminant function of the fused
M-class minimum risk quadratic classification system

BEM(S)

Diy () =Eu +E
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exhibits the minimum probability of error for classifying
feature vectors that belong to the M collections of N feature
vectors and unknown feature vectors related to the M
collections of N feature vectors as well as different feature
vectors that belong to the M collections of N different
feature vectors and unknown different feature vectors related
to the M collections of N different feature vectors, wherein
the fused discriminant function determines likely locations
of feature vectors that belong to and are related to the M
collections of N feature vectors as well as different feature
vectors that belong to and are related to the M collections of
N different feature vectors and identifies decision regions
related to the M classes that the feature vectors and the
different feature vectors are located within, wherein the
fused discriminant function recognizes the classes of the
feature vectors and the different feature vectors, and wherein
the fused M-class minimum risk quadratic classification
decides which of the M classes that the feature vectors and
the different feature vectors belong to, and thereby classifies
the feature vectors and the different feature vectors.

Embodiment 5

[0170] FIG. 9 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for using a discriminant function of a minimum risk
quadratic classification system to determine a classification
error rate and a measure of overlap between distributions of
feature vectors for two classes of feature vectors.

[0171] The process of using a discriminant function of a
minimum risk quadratic classification system to determine a
classification error rate and a measure of overlap between
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distributions of feature vectors for two classes of feature
vectors involves the following steps:

[0172] Receive an Nxd data set of feature vectors within
a computer system, wherein N is the number of feature
vectors, d is the number of vector components in each
feature vector, and each one of the N feature vectors is
labeled with information that identifies which of the two
classes each one of the N feature vectors belongs to.
[0173] Receive an Nxd test data set of test feature vectors
related to the data set within the computer system, wherein
N is a number of test feature vectors, d is a number of vector
components in each test feature vector, and each one of the
N test feature vectors is labeled with information that
identifies which of the two classes each one of the N test
feature vectors belongs to.

[0174] Determine the discriminant function of the mini-
mum risk quadratic classification system by performing the
steps outlined in EMBODIMENT 1.

[0175] Use the minimum risk quadratic classification sys-
tem to classity the N feature vectors.

[0176] Determine an in-sample classification error rate for
the two classes of feature vectors by calculating the average
number of wrong decisions of the minimum risk quadratic
classification system for classifying the N features vectors.
[0177] Use the minimum risk quadratic classification sys-
tem to classity the N test feature vectors.

[0178] Determine an out-of-sample classification error
rate for the two classes of test feature vectors by calculating
the average number of wrong decisions of the minimum risk
quadratic classification system for classifying the N test
feature vectors.

[0179] Determine the classification error rate for the two
classes of feature vectors by averaging the in-sample clas-
sification error rate and the out-of-sample classification error
rate.

[0180] Determine a measure of overlap between distribu-
tions of feature vectors for the two categories of feature
vectors using the N feature vectors and the extreme vectors
that have been identified, by calculating the ratio of the
number of the extreme vectors to the number of the N
feature vectors, wherein the ratio determines the measure of
overlap.

Embodiment 6

[0181] FIG. 10 is a flow diagram of programmed instruc-
tions executed by the processor of FIG. 11 to implement the
method for using a discriminant function of a minimum risk
quadratic classification system to determine if distributions
of two collections of feature vectors are homogenous dis-
tributions. The process of using a discriminant function of a
minimum risk quadratic classification system to determine if
distributions of two collections of feature vectors are
homogenous distributions involves the following steps:
[0182] Receive an Nxd data set of feature vectors within
a computer system, wherein N is the number of feature
vectors, d is the number of vector components in each
feature vector, and each one of the N feature vectors is
labeled with information that identifies which of the two
collections each one of the N feature vectors belongs to.
[0183] Determine the discriminant function of the mini-
mum risk quadratic classification system by performing the
steps outlined in EMBODIMENT 1.

[0184] Use the minimum risk quadratic classification sys-
tem to classity the N feature vectors.
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[0185] Determine an in-sample classification error rate for
the two collections of feature vectors by calculating the
average number of wrong decisions of the minimum risk
quadratic classification system for classifying the N features
vectors.

[0186] Determine a measure of overlap between distribu-
tions of feature vectors for the two collections of feature
vectors using the N feature vectors and the extreme vectors
that have been identified, by calculating the ratio of the
number of the extreme vectors to the number of the N
feature vectors, wherein the ratio determines the measure of
overlap.

[0187] Determine if the distributions of the two collections
of the N feature vectors are homogenous distributions by
using the in-sample classification error rate and the measure
of overlap, wherein the distributions of the two collections
of the N feature vectors are homogenous distributions if the
measure of overlap has an approximate value of one and the
in-sample classification error rate has an approximate value
of one half.

[0188] Machine learning algorithms of the invention
involve solving certain variants of the inequality constrained
optimization that is used by support vector machines,
wherein regularization parameters and reproducing kernels
have been defined.

[0189] Software for machine learning algorithms of the
invention can be obtained by using any of the software
packages that solve quadratic programming problems, or via
LIBSVM (A Library for Support Vector Machines), SVM-
light (an implementation of SVMs in C) or MATLAB SVM
toolboxes.

[0190] The machine learning methods of the invention
disclosed herein may be readily utilized in a wide variety of
applications, wherein feature vectors have been extracted
from outputs of sensors that include, but are not limited to
radar and hyperspectral or multispectral images, biometrics,
digital communication signals, text, images, digital wave-
forms, etc.

[0191] More specifically, the applications include, for
example and without limitation, general pattern recognition
(including image recognition, waveform recognition, object
detection, spectrum identification, and speech and handwrit-
ing recognition, data classification, (including text, image,
and waveform categorization), bioinformatics (including
automated diagnosis systems, biological modeling, and bio
imaging classification), etc.

[0192] One skilled in the art will recognize that any
suitable computer system may be used to execute the
machine learning methods disclosed herein. The computer
system may include, without limitation, a mainframe com-
puter system, a workstation, a personal computer system, a
personal digital assistant, or other device or apparatus hav-
ing at least one processor that executes instructions from a
memory medium.

[0193] The computer system may further include a display
device or monitor for displaying operations associated with
the learning machine and one or more memory mediums on
which computer programs or software components may be
stored. In addition, the memory medium may be entirely or
partially located in one or more associated computers or
computer systems which connect to the computer system
over a network, such as the Internet.

[0194] The machine learning method described herein
may also be executed in hardware, a combination of soft-
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ware and hardware, or in other suitable executable imple-
mentations. The learning machine methods implemented in
software may be executed by the processor of the computer
system or the processor or processors of the one or more
associated computer systems connected to the computer
system.

[0195] While the invention herein disclosed has been
described by means of specific embodiments, numerous
modifications and variations could be made by those skilled
in the art without departing from the scope of the invention
set forth in the claims.

What is claimed is:

1. A computer-implemented method of using feature
vectors and machine learning algorithms to determine a
discriminant function of a minimum risk quadratic classifi-
cation system that classifies said feature vectors into two
classes and using said discriminant function of said mini-
mum risk quadratic classification system to classify
unknown feature vectors related to said feature vectors, said
method comprising:

receiving an Nxd data set of feature vectors within a

computer system, wherein N is a number of feature
vectors, d is a number of vector components in each
feature vector, and each one of said N feature vectors
is labeled with information that identifies which of two
classes each one of said N feature vectors belongs to,
and wherein each said feature vector is defined by a
d-dimensional vector of numerical features, wherein
said numerical features are extracted from digital sig-
nals;

receiving within said computer system unknown feature

vectors related to said data set;

determining a kernel matrix using said data set, said

determination of said kernel matrix being performed by
using processors of said computer system to calculate
a matrix of all possible inner products of signed repro-
ducing kernels of said N feature vectors, wherein a
reproducing kernel of a feature vector replaces said
feature vector with a curve that contains first and
second degree vector components, and wherein each
one of said reproducing kernels of said N feature
vectors has a sign of +1 or -1 that identifies which of
said two classes each one of said N feature vectors
belongs to, and using said processors of said computer
system to calculate a regularized kernel matrix from
said kernel matrix;

determining scale factors of a geometric locus of signed

and scaled reproducing kernels of extreme points using
said regularized kernel matrix, wherein said extreme
points are located within overlapping regions or near
tail regions of distributions of said N feature vectors,
said determination of said scale factors being per-
formed by using said processors of said computer
system to determine a solution of a dual optimization
problem, wherein said scale factors and said geometric
locus satisfy a system of fundamental locus equations
of binary classification, subject to geometric and sta-
tistical conditions for a minimum risk quadratic clas-
sification system in statistical equilibrium, and wherein
said scale factors determine conditional densities for
said extreme points and also determine critical mini-
mum eigenenergies exhibited by scaled extreme vec-
tors on said geometric locus, wherein said critical
minimum eigenenergies determine conditional prob-
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abilities of said extreme points and also determine
corresponding counter risks and risks of a minimum
risk quadratic classification system, wherein said coun-
ter risks are associated with right decisions and said
risks are associated with wrong decisions of said mini-
mum risk quadratic classification system, and wherein
said geometric locus determines the principal eigenaxis
of the decision boundary of said minimum risk qua-
dratic classification system, wherein said principal
eigenaxis exhibits symmetrical dimensions and density,
wherein said conditional probabilities and said critical
minimum eigenenergies exhibited by said minimum
risk quadratic classification system are symmetrically
concentrated within said principal eigenaxis, and
wherein counteracting and opposing components of
said critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus together
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically balanced with each other
about the geometric center of said principal eigenaxis,
wherein the center of total allowed eigenenergy and
minimum expected risk of said minimum risk quadratic
classification system is located at the geometric center
of said geometric locus, and wherein said geometric
locus determines a primal representation of a dual locus
of likelihood components and principal eigenaxis com-
ponents, wherein said likelihood components and said
principal eigenaxis components are symmetrically dis-
tributed over either side of the axis of said dual locus,
wherein a statistical fulcrum is placed directly under
the center of said dual locus, and wherein said likeli-
hood components of said dual locus determine condi-
tional likelihoods for said extreme points, and wherein
said principal eigenaxis components of said dual locus
determine an intrinsic coordinate system of geometric
loci of a quadratic decision boundary and correspond-
ing decision borders that jointly partition the decision
space of said minimum risk quadratic classification
system into symmetrical decision regions;

determining said extreme vectors on said geometric locus
using the vector of said scale factors, said determina-
tion of said extreme vectors being performed by using
said processors of said computer system to identify said
scale factors that exceed zero by a small threshold, and
using said processors of said computer system to deter-
mine a sign vector of signs associated with said
extreme vectors using said data set, and compute the
average sign using said sign vector;

determining a locus of average risk for said minimum risk
quadratic classification system using said reproducing
kernels of said extreme vectors and said sign vector,
said determination of said locus of average risk being
performed by using said processors of said computer
system to calculate a kernel matrix of all possible inner
products of said reproducing kernels of said extreme
vectors and multiply said kernel matrix by said sign
vector;

determining said geometric locus, said determination of
said geometric locus being performed by using said
processors of said computer system to calculate a
matrix of inner products between said signed reproduc-
ing kernels of said N feature vectors and said repro-
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ducing kernels of said unknown feature vectors, and
multiply said matrix by said vector of scale factors;

determining the discriminant function of said minimum
quadratic classification system, using said locus of
aggregate risk and said average sign and said geometric
locus, said determination of said discriminant function
of said minimum risk quadratic classification system
being performed by using said processors of said
computer system to subtract said locus of aggregate
risk from sum of said geometric locus and said average
sign, wherein said discriminant function of said mini-
mum risk quadratic classification system satisfies said
system of fundamental locus equations of binary clas-
sification, and wherein said discriminant function of
said minimum risk quadratic classification system
determines likely locations of said N feature vectors
and also determines said geometric loci of said qua-
dratic decision boundary and said corresponding deci-
sion borders that jointly partition said extreme points
into said symmetrical decision regions, wherein said
symmetrical decision regions span said overlapping
regions or said tail regions of said distributions of said
N feature vectors, and wherein said discriminant func-
tion of said minimum risk quadratic classification sys-
tem satisfies said quadratic decision boundary in terms
of a critical minimum eigenenergy and said minimum
expected risk, wherein said counteracting and opposing
components of said critical minimum eigenenergies
exhibited by said scaled extreme vectors on said geo-
metric locus associated with said corresponding coun-
ter risks and risks exhibited by said minimum risk
quadratic classification system are symmetrically dis-
tributed over said axis of said dual locus, on equal sides
of said statistical fulcrum located at said geometric
center of said dual locus, wherein said counteracting
and opposing components of said critical minimum
eigenenergies together with said corresponding counter
risks and risks exhibited by said minimum risk qua-
dratic system are symmetrically balanced with each
other about said geometric center of said dual locus,
and wherein said statistical fulcrum is located at said
center of said total allowed eigenenergy and said mini-
mum expected risk of said minimum risk quadratic
classification system, wherein said minimum risk qua-
dratic classification system satisfies a state of statistical
equilibrium, wherein said total allowed eigenenergy
and said expected risk of said minimum risk quadratic
classification system are minimized, and wherein said
minimum risk quadratic classification system exhibits
the minimum probability of error for classifying said N
feature vectors that belong to said two classes and said
unknown feature vectors related to said data set;

determining which of said two classes said unknown
feature vectors belong to using said discriminant func-
tion of said minimum risk quadratic classification sys-
tem, said determination of said classes of said unknown
feature vectors being performed by using said proces-
sors of said computer system to apply said discriminant
function of said minimum risk quadratic classification
system to said unknown feature vectors, wherein said
discriminant function determines likely locations of
said unknown feature vectors and identifies said deci-
sion regions related to said two classes that said
unknown feature vectors are located within, wherein
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said discriminant function recognizes said classes of
said unknown feature vectors, and wherein said mini-
mum risk quadratic classification system decides which
of said two classes said unknown feature belong to and
thereby classifies said unknown feature vectors.
2. The method of claim 1, wherein the reproducing kernel
is a Gaussian reproducing kernel: k =exp(—y|s—x|]*):0.
01=y<0.1.
3. The method of claim 1, wherein the reproducing kernel
is a second-order polynomial reproducing kernel: k =(sx+
1)
4. A computer-implemented method of using feature
vectors and machine learning algorithms to determine a
fused discriminant function of a fused minimum risk qua-
dratic classification system that classifies two types of said
feature vectors into two classes, wherein said types of said
feature vectors have different numbers of vector compo-
nents, and using said fused discriminant function of said
fused minimum risk quadratic classification system to clas-
sify unknown feature vectors related to said two types of
said feature vectors, said method comprising:
receiving an Nxd data set of feature vectors within a
computer system, wherein N is a number of feature
vectors, d is a number of vector components in each
feature vector, and each one of said N feature vectors
is labeled with information that identifies which of two
classes each one of said N feature vectors belongs to,
and wherein each said feature vector is defined by a
d-dimensional vector of numerical features, wherein
said numerical features are extracted from digital sig-
nals;
receiving an Nxp different data set of different feature
vectors within said computer system, wherein N is a
number of different feature vectors, p is a number of
vector components in each different feature vector, and
each one of said N different feature vectors is labeled
with information that identifies which of said two
classes each one of said N different feature vectors
belongs to, and wherein each said different feature
vector is defined by a p-dimensional vector of numeri-
cal features, wherein said numerical features are
extracted from digital signals;
receiving within said computer system unknown feature
vectors related to said data set and unknown different
feature vectors related to said different data set;

determining a kernel matrix using said data set, said
determination of said kernel matrix being performed by
using processors of said computer system to calculate
a matrix of all possible inner products of signed repro-
ducing kernels of said N feature vectors, wherein a
reproducing kernel of a feature vector replaces said
feature vector with a curve that contains first and
second degree vector components, and wherein each
one of said reproducing kernels of said N feature
vectors has a sign of +1 or -1 that identifies which of
said two classes each one of said N feature vectors
belongs to, and using said processors of said computer
system to calculate a regularized kernel matrix from
said kernel matrix;

determining a different kernel matrix using said different

data set, said determination of said different kernel
matrix being performed by using processors of said
computer system to calculate a matrix of all possible
inner products of signed reproducing kernels of said N
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different feature vectors, wherein a reproducing kernel
of a different feature vector replaces said different
feature vector with a curve that contains first and
second degree vector components, and wherein each
one of said reproducing kernels of said N different
feature vectors has a sign of +1 or -1 that identifies
which of said two classes each one of said N different
feature vectors belongs to, and using said processors of
said computer system to calculate a regularized differ-
ent kernel matrix from said different kernel matrix;

determining a discriminant function of a minimum risk

quadratic classification system using said regularized
kernel matrix and said data set, said determination of
said discriminant function of said minimum risk qua-
dratic classification system comprising the steps of:

determining scale factors of a geometric locus of signed

and scaled reproducing kernels of extreme points using
said regularized kernel matrix, wherein said extreme
points are located within overlapping regions or near
tail regions of distributions of said N feature vectors,
said determination of said scale factors being per-
formed by using said processors of said computer
system to determine a solution of a dual optimization
problem, wherein said scale factors and said geometric
locus satisfy a system of fundamental locus equations
of binary classification, subject to geometric and sta-
tistical conditions for a minimum risk quadratic clas-
sification system in statistical equilibrium, and wherein
said scale factors determine conditional densities for
said extreme points and also determine critical mini-
mum eigenenergies exhibited by scaled extreme vec-
tors on said geometric locus, wherein said critical
minimum eigenenergies determine conditional prob-
abilities of said extreme points and also determine
corresponding counter risks and risks of a minimum
risk quadratic classification system, wherein said coun-
ter risks are associated with right decisions and said
risks are associated with wrong decisions of said mini-
mum risk quadratic classification system, and wherein
said geometric locus determines the principal eigenaxis
of the decision boundary of said minimum risk qua-
dratic classification system, wherein said principal
eigenaxis exhibits symmetrical dimensions and density,
wherein said conditional probabilities and said critical
minimum eigenenergies exhibited by said minimum
risk quadratic classification system are symmetrically
concentrated within said principal eigenaxis, and
wherein counteracting and opposing components of
said critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus together
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically balanced with each other
about the geometric center of said principal eigenaxis,
wherein the center of total allowed eigenenergy and
minimum expected risk of said minimum risk quadratic
classification system is located at the geometric center
of said geometric locus, and wherein said geometric
locus determines a primal representation of a dual locus
of likelihood components and principal eigenaxis com-
ponents, wherein said likelihood components and said
principal eigenaxis components are symmetrically dis-
tributed over either side of the axis of said dual locus,
wherein a statistical fulcrum is placed directly under
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the center of said dual locus, and wherein said likeli-
hood components of said dual locus determine condi-
tional likelihoods for said extreme points, and wherein
said principal eigenaxis components of said dual locus
determine an intrinsic coordinate system of geometric
loci of a quadratic decision boundary and correspond-
ing decision borders that jointly partition the decision
space of said minimum risk quadratic classification
system into symmetrical decision regions;

determining said extreme vectors on said geometric locus

using the vector of said scale factors, said determina-
tion of said extreme vectors being performed by using
said processors of said computer system to identify said
scale factors that exceed zero by a small threshold, and
using said processors of said computer system to deter-
mine a sign vector of signs associated with said
extreme vectors using said data set, and compute the
average sign using said sign vector;

determining a locus of average risk for said minimum risk

quadratic classification system using said reproducing
kernels of said extreme vectors and said sign vector,
said determination of said locus of average risk being
performed by using said processors of said computer
system to calculate a kernel matrix of all possible inner
products of said reproducing kernels of said extreme
vectors and multiply said kernel matrix by said sign
vector;

determining said geometric locus, said determination of

said geometric locus being performed by using said
processors of said computer system to calculate a
matrix of inner products between said signed reproduc-
ing kernels of said N feature vectors and said repro-
ducing kernels of said unknown feature vectors, and
multiply said matrix by said vector of scale factors;

determining the discriminant function of said minimum

risk quadratic classification system, using said locus of
aggregate risk and said average sign and said geometric
locus, said determination of said discriminant function
of said minimum risk quadratic classification system
being performed by using said processors of said
computer system to subtract said locus of aggregate
risk from sum of said geometric locus and said average
sign, wherein said discriminant function of said mini-
mum risk quadratic classification system satisfies said
system of fundamental locus equations of binary clas-
sification, and wherein said discriminant function of
said minimum risk quadratic classification system
determines likely locations of said N feature vectors
and also determines said geometric loci of said qua-
dratic decision boundary and said corresponding deci-
sion borders that jointly partition said extreme points
into said symmetrical decision regions, wherein said
symmetrical decision regions span said overlapping
regions or said tail regions of said distributions of said
N feature vectors, and wherein said discriminant func-
tion of said minimum risk quadratic classification sys-
tem satisfies said quadratic decision boundary in terms
of a critical minimum eigenenergy and said minimum
expected risk, wherein said counteracting and opposing
components of said critical minimum eigenenergies
exhibited by said scaled extreme vectors on said geo-
metric locus associated with said corresponding coun-
ter risks and risks exhibited by said quadratic classifi-
cation system are symmetrically distributed over said
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axis of said dual locus, on equal sides of said statistical
fulcrum located at said geometric center of said dual
locus, wherein said counteracting and opposing com-
ponents of said critical minimum eigenenergies
together with said corresponding counter risks and risks
exhibited by said minimum risk quadratic system are
symmetrically balanced with each other about said
geometric center of said dual locus, and wherein said
statistical fulcrum is located at said center of said total
allowed eigenenergy and said minimum expected risk
of said minimum risk quadratic classification system,
wherein said minimum risk quadratic classification
system satisfies a state of statistical equilibrium,
wherein said total allowed eigenenergy and said
expected risk of said minimum risk quadratic classifi-
cation system are minimized, and wherein said mini-
mum risk quadratic classification system exhibits the
minimum probability of error for classifying said N
feature vectors that belong to said two classes and said
unknown feature vectors related to said data set;

determining a different discriminant function of a differ-

ent minimum risk quadratic classification system using
said regularized different kernel matrix and said differ-
ent data set, said determination of said different dis-
criminant function of said different minimum risk qua-
dratic classification system being performed by using
said processors of said computer system to perform
said steps of determining said discriminant function of
said minimum risk quadratic classification system,
wherein said different minimum risk quadratic classi-
fication system exhibits the minimum probability of
error for classifying said N different feature vectors that
belong to said two classes and said unknown different
feature vectors related to said different data set;

determining a fused discriminant function of a fused

minimum risk quadratic classification system using
said discriminant function of said minimum risk qua-
dratic classification system and said different discrimi-
nant function of said different minimum risk quadratic
classification system, said determination of said fused
discriminant function of said fused minimum risk qua-
dratic classification system being performed by using
said processors of said computer system to sum said
discriminant function of said minimum risk quadratic
classification system and said different discriminant
function of said different minimum risk quadratic clas-
sification system; and

determining which of said two classes said unknown

feature vectors and said unknown different feature
vectors belong to using said fused discriminant func-
tion of said fused minimum risk quadratic classification
system, said determination of said classes of said
unknown feature vectors and said unknown different
feature vectors being performed by using said proces-
sors of said computer system to apply said fused
discriminant function of said fused minimum risk qua-
dratic classification system to said unknown feature
vectors and said unknown different feature vectors,
wherein said fused discriminant function determines
likely locations of said unknown feature vectors and
said unknown different feature vectors and identifies
said decision regions related to said two classes that
said unknown feature vectors and said unknown dif-
ferent feature vectors are located within, wherein said
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fused discriminant function recognizes said classes of
said unknown feature vectors and said unknown dif-
ferent feature vectors, and wherein said fused minimum
risk quadratic classification system decides which of
said two classes said unknown feature vectors and said
unknown different feature vectors belong to and
thereby classifies said unknown feature vectors and
said unknown different feature vectors.

5. The method of claim 4, wherein the reproducing kernel
is a Gaussian reproducing kernel: k =exp(-y[s—x|*):0.
01=y<0.1.

6. The method of claim 4, wherein the reproducing kernel
is a second-order polynomial reproducing kernel: k =(sx+
1)

7. A computer-implemented method of using feature
vectors and machine learning algorithms to determine a
discriminant function of an M-class minimum risk quadratic
classification system that classifies said feature vectors into
M classes and using said discriminant function of said
M-class minimum risk quadratic classification system to
classify unknown feature vectors related to said feature
vectors, said method comprising:

receiving M Nxd data sets of feature vectors within a

computer system, wherein M is a number of classes, N
is a number of feature vectors in each one of said M
data sets, d is a number of vector components in each
feature vector, and each one of said N feature vectors
in each one of said M data sets belongs to the same
class and is labeled with information that identifies said
class, and wherein each said feature vector is defined by
a d-dimensional vector of numerical features, wherein
said numerical features are extracted from digital sig-
nals;

receiving within said computer system unknown feature

vectors related to said M data sets;
determining M ensembles of M-1 discriminant functions
of M-1 minimum risk quadratic classification systems
using said M data sets, wherein the determination of
each one of said M ensembles comprises the steps of:

determining M-1 kernel matrices for a class of feature
vectors using said M data sets, said determination of
said M-1 kernel matrices being performed by using
processors of said computer system to calculate M-1
matrices, wherein each matrix contains all possible
inner products of signed reproducing kernels of feature
vectors that belong to said class and one of the other
M-1 classes, wherein a reproducing kernel of a feature
vector replaces said feature vector with a curve that
contains first and second degree vector components,
and wherein said N feature vectors that belong to said
class have the sign +1, and said N feature vectors that
belong to said other class have the sign -1, and wherein
said M~-1 matrices account for all of the other said M-1
classes, and calculating M-1 regularized kernel matri-
ces from said M-1 kernel matrices;

determining M-1 discriminant functions of M-1 mini-

mum risk quadratic classification systems using said
M-1 regularized kernel matrices, wherein the determi-
nation of each one of said M~-1 discriminant functions
of M-1 minimum risk quadratic classification systems
further comprises the steps of:

determining scale factors of a geometric locus of signed

and scaled reproducing kernels of extreme points using
one of said regularized kernel matrices, wherein said
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extreme points are located within overlapping regions
or near tail regions of distributions of feature vectors
that belong to said class and one of the other said M-1
classes, said determination of said scale factors being
performed by using said processors of said computer
system to determine a solution of a dual optimization
problem, wherein said scale factors and said geometric
locus satisfy a system of fundamental locus equations
of binary classification, subject to geometric and sta-
tistical conditions for a minimum risk quadratic clas-
sification system in statistical equilibrium, and wherein
said scale factors determine conditional densities for
said extreme points and also determine critical mini-
mum eigenenergies exhibited by scaled extreme vec-
tors on said geometric locus, wherein said critical
minimum eigenenergies determine conditional prob-
abilities of said extreme points and also determine
corresponding counter risks and risks of a minimum
risk quadratic classification system, wherein said coun-
ter risks are associated with right decisions and said
risks are associated with wrong decisions of said mini-
mum risk quadratic classification system, and wherein
said geometric locus determines the principal eigenaxis
of the decision boundary of said minimum risk qua-
dratic classification system, wherein said principal
eigenaxis exhibits symmetrical dimensions and density,
wherein said conditional probabilities and said critical
minimum eigenenergies exhibited by said minimum
risk quadratic classification system are symmetrically
concentrated within said principal eigenaxis, and
wherein counteracting and opposing components of
said critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus together
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically balanced with each other
about the geometric center of said principal eigenaxis,
wherein the center of total allowed eigenenergy and
minimum expected risk of said minimum risk quadratic
classification system is located at the geometric center
of said geometric locus, and wherein said geometric
locus determines a primal representation of a dual locus
of likelihood components and principal eigenaxis com-
ponents, wherein said likelihood components and said
principal eigenaxis components are symmetrically dis-
tributed over either side of the axis of said dual locus,
wherein a statistical fulcrum is placed directly under
the center of said dual locus, and wherein said likeli-
hood components of said dual locus determine condi-
tional likelihoods for said extreme points, and wherein
said principal eigenaxis components of said dual locus
determine an intrinsic coordinate system of geometric
loci of a quadratic decision boundary and correspond-
ing decision borders that jointly partition the decision
space of said minimum risk quadratic classification
system into symmetrical decision regions;

determining said extreme vectors on said geometric locus
using the vector of said scale factors, said determina-
tion of said extreme vectors being performed by using
said processors of said computer system to identify said
scale factors that exceed zero by a small threshold, and
using said processors of said computer system to deter-
mine a sign vector of signs associated with said
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extreme vectors using said data set, and compute the
average sign using said sign vector;

determining a locus of average risk for said quadratic

classification system using said reproducing kernels of
said extreme vectors and said sign vector, said deter-
mination of said locus of average risk being performed
by using said processors of said computer system to
calculate a kernel matrix of all possible inner products
of said reproducing kernels of said extreme vectors and
multiply said kernel matrix by said sign vector;

determining said geometric locus, said determination of

said geometric locus being performed by using said
processors of said computer system to calculate a
matrix of inner products between said signed reproduc-
ing kernels of said feature vectors that belong to said
class and said other class and said reproducing kernels
of said unknown feature vectors, and multiply said
matrix by said vector of scale factors;

determining the discriminant function of said minimum

quadratic classification system, using said locus of
aggregate risk and said average sign and said geometric
locus, said determination of said discriminant function
of said minimum risk quadratic classification system
being performed by using said processors of said
computer system to subtract said locus of aggregate
risk from sum of said geometric locus and said average
sign, wherein said discriminant function of said mini-
mum risk quadratic classification system satisfies said
system of fundamental locus equations of binary clas-
sification, and wherein said discriminant function of
said minimum risk quadratic classification system
determines likely locations of said N feature vectors
from said class and said N feature vectors from said
other class and also determines said geometric loci of
said quadratic decision boundary and said correspond-
ing decision borders that jointly partition said extreme
points into said symmetrical decision regions, wherein
said symmetrical decision regions span said overlap-
ping regions or said tail regions of said distributions of
said N feature vectors that belong to said class and said
N feature vectors that belong to said other class, and
wherein said discriminant function of said minimum
risk quadratic classification system satisfies said qua-
dratic decision boundary in terms of a critical minimum
eigenenergy and said minimum expected risk, wherein
said counteracting and opposing components of said
critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus asso-
ciated with said corresponding counter risks and risks
exhibited by said minimum risk quadratic classification
system are symmetrically distributed over said axis of
said dual locus, on equal sides of said statistical ful-
crum located at said geometric center of said dual
locus, wherein said counteracting and opposing com-
ponents of said critical minimum eigenenergies
together with said corresponding counter risks and risks
exhibited by said minimum risk quadratic system are
symmetrically balanced with each other about said
geometric center of said dual locus, and wherein said
statistical fulcrum is located at said center of said total
allowed eigenenergy and said minimum expected risk
of said minimum risk quadratic classification system,
wherein said minimum risk quadratic classification
system satisfies a state of statistical equilibrium,
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wherein said total allowed eigenenergy and said
expected risk of said minimum risk quadratic classifi-
cation system are minimized, and wherein said mini-
mum risk quadratic classification system exhibits the
minimum probability of error for classifying said N
feature vectors that belong to said class and said N
feature vectors that belong to said other class and said
unknown feature vectors related to said data set and
said other data set;

determining a discriminant function of an M-class mini-

mum risk quadratic classification system using said M
ensembles of M-1 discriminant functions of M-1
minimum risk quadratic classification systems, said
determination of said discriminant function of said
M-class minimum risk quadratic classification system
being performed by using said processors of said
computer system to sum said M ensembles of M-1
discriminant functions of M—1 minimum risk quadratic
classification systems;

determining which of said M classes said unknown fea-

ture vectors belong to using said discriminant function
of said M-class minimum risk quadratic classification
system, said determination of said classes of said
unknown feature vectors being performed by using said
processors of said computer system to apply said
discriminant function of said M-class minimum risk
quadratic classification system to said unknown feature
vectors, wherein said discriminant function determines
likely locations of said unknown feature vectors and
identifies said decision regions related to said M classes
that said unknown feature vectors are located within,
wherein said discriminant function recognizes said
classes of said unknown feature vectors, and wherein
said M-class minimum risk quadratic classification
system decides which of said M classes said unknown
feature vectors belong to and thereby classifies said
unknown feature vectors.

8. The method of claim 7, wherein the reproducing kernel
is a Gaussian reproducing kernel: k =exp (-v||s—x|*):0.
01=y<0.1.

9. The method of claim 7, wherein the reproducing kernel
is a second-order polynomial reproducing kernel: k =(sx+
1)

10. A computer-implemented method of using feature
vectors and machine learning algorithms to determine a
fused discriminant function of a fused M-class minimum
risk quadratic classification system that classifies two types
of said feature vectors into M classes, wherein said types of
said feature vectors have different numbers of vector com-
ponents, and using said fused discriminant function of said
fused M-class minimum risk quadratic classification system
to classify unknown feature vectors related to said two types
of said feature vectors, said method comprising:

receiving M Nxd data sets of feature vectors within a

computer system, wherein M is a number of classes, N
is a number of feature vectors in each one of said M
data sets, d is a number of vector components in each
feature vector, and each one of said N feature vectors
in each one of said M data sets belongs to the same
class and is labeled with information that identifies said
class, and wherein each said feature vector is defined by
a d-dimensional vector of numerical features, wherein
said numerical features are extracted from digital sig-
nals;
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receiving M Nxp different data sets of different feature

vectors within said computer system, wherein M is said
number of said classes, N is a number of different
feature vectors in each one of said M different data sets,
p is a number of vector components in each different
feature vector, and each one of said N different feature
vectors in each one of said M different data sets belongs
to the same class and is labeled with information that
identifies said class, and wherein each said different
feature vector is defined by a p-dimensional vector of
numerical features, wherein said numerical features are
extracted from digital signals;

receiving within said computer system unknown feature

vectors related to said M data sets and unknown
different feature vectors related to said M different data
sets;

determining M ensembles of M-1 discriminant functions

of M-1 minimum risk quadratic classification systems
using said M data sets, wherein the determination of
each one of said M ensembles comprises the steps of:

determining M-1 kernel matrices for a class of feature

vectors using said M data sets, said determination of
said M-1 kernel matrices being performed by using
processors of said computer system to calculate M-1
matrices, wherein each matrix contains all possible
inner products of signed reproducing kernels of feature
vectors that belong to said class and one of the other
M-1 classes, wherein a reproducing kernel of a feature
vector replaces said feature vector with a curve that
contains first and second degree vector components,
and wherein said N feature vectors that belong to said
class have the sign +1, and said N feature vectors that
belong to said other class have the sign -1, and said
M-1 matrices account for all of the other said M-1
classes, and calculating M-1 regularized kernel matri-
ces from said M-1 kernel matrices;

determining M-1 discriminant functions of M-1 mini-

mum risk quadratic classification systems using said
M-1 regularized kernel matrices, wherein the determi-
nation of each one of said M~-1 discriminant functions
of M-1 minimum risk quadratic classification systems
further comprises the steps of:

determining scale factors of a geometric locus of signed

and scaled reproducing kernels of extreme points using
one of said regularized kernel matrices, wherein said
extreme points are located within overlapping regions
or near tail regions of distributions of feature vectors
that belong to said class and one of the other said M-1
classes, said determination of said scale factors being
performed by using said processors of said computer
system to determine a solution of a dual optimization
problem, wherein said scale factors and said geometric
locus satisfy a system of fundamental locus equations
of binary classification, subject to geometric and sta-
tistical conditions for a minimum risk quadratic clas-
sification system in statistical equilibrium, and wherein
said scale factors determine conditional densities for
said extreme points and also determine critical mini-
mum eigenenergies exhibited by scaled extreme vec-
tors on said geometric locus, wherein said critical
minimum eigenenergies determine conditional prob-
abilities of said extreme points and also determine
corresponding counter risks and risks of a minimum
risk quadratic classification system, wherein said coun-
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ter risks are associated with right decisions and said
risks are associated with wrong decisions of said mini-
mum risk quadratic classification system, and wherein
said geometric locus determines the principal eigenaxis
of the decision boundary of said minimum risk qua-
dratic classification system, wherein said principal
eigenaxis exhibits symmetrical dimensions and density,
wherein said conditional probabilities and said critical
minimum eigenenergies exhibited by said minimum
risk quadratic classification system are symmetrically
concentrated within said principal eigenaxis, and
wherein counteracting and opposing components of
said critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus together
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically balanced with each other
about the geometric center of said principal eigenaxis,
wherein the center of total allowed eigenenergy and
minimum expected risk of said minimum risk quadratic
classification system is located at the geometric center
of said geometric locus, and wherein said geometric
locus determines a primal representation of a dual locus
of likelihood components and principal eigenaxis com-
ponents, wherein said likelihood components and said
principal eigenaxis components are symmetrically dis-
tributed over either side of the axis of said dual locus,
wherein a statistical fulcrum is placed directly under
the center of said dual locus, and wherein said likeli-
hood components of said dual locus determine condi-
tional likelihoods for said extreme points, and wherein
said principal eigenaxis components of said dual locus
determine an intrinsic coordinate system of geometric
loci of a quadratic decision boundary and correspond-
ing decision borders that jointly partition the decision
space of said minimum risk quadratic classification
system into symmetrical decision regions;
determining said extreme vectors on said geometric locus
using the vector of said scale factors, said determina-
tion of said extreme vectors being performed by using
said processors of said computer system to identify said
scale factors that exceed zero by a small threshold, and
using said processors of said computer system to deter-
mine a sign vector of signs associated with said
extreme vectors using said data set, and compute the
average sign using said sign vector;

determining a locus of average risk for said quadratic
classification system using said reproducing kernels of
said extreme vectors and said sign vector, said deter-
mination of said locus of average risk being performed
by using said processors of said computer system to
calculate a kernel matrix of all possible inner products
of said reproducing kernels of said extreme vectors and
multiply said kernel matrix by said sign vector;

determining said geometric locus, said determination of

said geometric locus being performed by using said
processors of said computer system to calculate a
matrix of inner products between said signed reproduc-
ing kernels of said feature vectors that belong to said
class and said other class and said reproducing kernels
of said unknown feature vectors, and multiply said
matrix by said vector of scale factors;

determining the discriminant function of said minimum

quadratic classification system, using said locus of
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aggregate risk and said average sign and said geometric
locus, said determination of said discriminant function
of said minimum risk quadratic classification system
being performed by using said processors of said
computer system to subtract said locus of aggregate
risk from sum of said geometric locus and said average
sign, wherein said discriminant function of said mini-
mum risk quadratic classification system satisfies said
system of fundamental locus equations of binary clas-
sification, and wherein said discriminant function of
said minimum risk quadratic classification system
determines likely locations of said N feature vectors
from said class and said N feature vectors from said
other class and also determines said geometric loci of
said quadratic decision boundary and said correspond-
ing decision borders that jointly partition said extreme
points into said symmetrical decision regions, wherein
said symmetrical decision regions span said overlap-
ping regions or said tail regions of said distributions of
said N feature vectors that belong to said class and said
N feature vectors that belong to said other class, and
wherein said discriminant function of said minimum
risk quadratic classification system satisfies said qua-
dratic decision boundary in terms of a critical minimum
eigenenergy and said minimum expected risk, wherein
said counteracting and opposing components of said
critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus asso-
ciated with said corresponding counter risks and risks
exhibited by said minimum risk quadratic classification
system are symmetrically distributed over said axis of
said dual locus, on equal sides of said statistical ful-
crum located at said geometric center of said dual
locus, wherein said counteracting and opposing com-
ponents of said critical minimum eigenenergies
together with said corresponding counter risks and risks
exhibited by said minimum risk quadratic system are
symmetrically balanced with each other about said
geometric center of said dual locus, and wherein said
statistical fulcrum is located at said center of said total
allowed eigenenergy and said minimum expected risk
of said minimum risk quadratic classification system,
wherein said minimum risk quadratic classification
system satisfies a state of statistical equilibrium,
wherein said total allowed eigenenergy and said
expected risk of said minimum risk quadratic classifi-
cation system are minimized, and wherein said mini-
mum risk quadratic classification system exhibits the
minimum probability of error for classifying said N
feature vectors that belong to said class and said N
feature vectors that belong to said other class and said
unknown feature vectors related to said data set and
said other data set;

determining M different ensembles of M-1 different

discriminant functions of M-1 different minimum risk
quadratic classification systems using said M different
data sets, said determination of said M different
ensembles of M-1 different discriminant functions of
M-1 different minimum risk quadratic classification
systems being performed by performing said steps of
determining M ensembles of M-1 discriminant func-
tions of M-1 minimum risk quadratic classification
systems;
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determining a fused discriminant function of a fused
M-class minimum risk quadratic classification system
using said M ensembles of M-1 discriminant functions
of M-1 minimum risk quadratic classification systems
and said M different ensembles of M-1 different dis-
criminant functions of M-1 different minimum risk
quadratic classification systems, said determination of
said fused discriminant function of said fused M-class
minimum risk quadratic classification system being
performed by using said processors of said computer
system to sum said M ensembles of M-1 discriminant
functions of M-1 minimum risk quadratic classifica-
tion systems and said M different ensembles of M-1
different discriminant functions of M-1 different mini-
mum risk quadratic classification systems;

determining which of said M classes said unknown fea-
ture vectors and said unknown different feature vectors
belong to using said fused discriminant function of said
fused M-class minimum risk quadratic classification
system, said determination of said classes of said
unknown feature vectors and said unknown different
feature vectors being performed by using said proces-
sors of said computer system to apply said fused
discriminant function of said fused M-class minimum
risk quadratic classification system to said unknown
feature vectors and said unknown different feature
vectors, wherein said fused discriminant function deter-
mines likely locations of said unknown feature vectors
and said unknown different feature vectors and identi-
fies said decision regions related to said M classes that
said unknown feature vectors and said unknown dif-
ferent feature vectors are located within, wherein said
fused discriminant function recognizes said classes of
said unknown feature vectors and said unknown dif-
ferent feature vectors, and wherein said fused M-class
minimum risk quadratic classification system decides
which of said M classes said unknown feature vectors
and said unknown different feature vectors belong to
and thereby classifies said unknown feature vectors and
said unknown different feature vectors.

11. The method of claim 10, wherein the reproducing
kernel is a Gaussian reproducing kernel: k —exp(-y||s—x|]*):
0.01=y=<0.1.

12. The method of claim 10, wherein the reproducing
kernel is a second-order polynomial reproducing kernel:
k ~(s"x+1)%.

13. A computer-implemented method of using feature
vectors and machine learning algorithms to determine a
discriminant function of a minimum risk quadratic classifi-
cation system that classifies said feature vectors into two
classes and using said discriminant function of said mini-
mum risk quadratic classification system to determine a
classification error rate and a measure of overlap between
distributions of said feature vectors, said method compris-
ing:

receiving an Nxd data set of feature vectors within a
computer system, wherein N is a number of feature
vectors, d is a number of vector components in each
feature vector, and each one of said N feature vectors
is labeled with information that identifies which of two
classes each one of said N feature vectors belongs to,
and wherein each said feature vector is defined by a
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d-dimensional vector of numerical features, wherein
said numerical features are extracted from digital sig-
nals;

receiving an Nxd test data set of test feature vectors

related to said data set within said computer system,
wherein N is a number of test feature vectors, d is a
number of vector components in each test feature
vector, and each one of said N test feature vectors is
labeled with information that identifies which of said
two classes each one of said N test feature vectors
belongs to;

determining a kernel matrix using said data set, said

determination of said kernel matrix being performed by
using processors of said computer system to calculate
a matrix of all possible inner products of signed repro-
ducing kernels of said N feature vectors, wherein a
reproducing kernel of a feature vector replaces said
feature vector with a curve that contains first and
second degree vector components, and wherein each
one of said reproducing kernels of said N feature
vectors has a sign of +1 or -1 that identifies which of
said two classes each one of said N feature vectors
belongs to, and using said processors of said computer
system to calculate a regularized kernel matrix from
said kernel matrix;

determining scale factors of a geometric locus of signed

and scaled reproducing kernels of extreme points using
said regularized kernel matrix, wherein said extreme
points are located within overlapping regions or near
tail regions of distributions of said N feature vectors,
said determination of said scale factors being per-
formed by using said processors of said computer
system to determine a solution of a dual optimization
problem, wherein said scale factors and said geometric
locus satisfy a system of fundamental locus equations
of binary classification, subject to geometric and sta-
tistical conditions for a minimum risk quadratic clas-
sification system in statistical equilibrium, and wherein
said scale factors determine conditional densities for
said extreme points and also determine critical mini-
mum eigenenergies exhibited by scaled extreme vec-
tors on said geometric locus, wherein said critical
minimum eigenenergies determine conditional prob-
abilities of said extreme points and also determine
corresponding counter risks and risks of a minimum
risk quadratic classification system, wherein said coun-
ter risks are associated with right decisions and said
risks are associated with wrong decisions of said mini-
mum risk quadratic classification system, and wherein
said geometric locus determines the principal eigenaxis
of the decision boundary of said minimum risk qua-
dratic classification system, wherein said principal
eigenaxis exhibits symmetrical dimensions and density,
wherein said conditional probabilities and said critical
minimum eigenenergies exhibited by said minimum
risk quadratic classification system are symmetrically
concentrated within said principal eigenaxis, and
wherein counteracting and opposing components of
said critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus together
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically balanced with each other
about the geometric center of said principal eigenaxis,
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wherein the center of total allowed eigenenergy and
minimum expected risk of said minimum risk quadratic
classification system is located at the geometric center
of said geometric locus, and wherein said geometric
locus determines a primal representation of a dual locus
of likelihood components and principal eigenaxis com-
ponents, wherein said likelihood components and said
principal eigenaxis components are symmetrically dis-
tributed over either side of the axis of said dual locus,
wherein a statistical fulcrum is placed directly under
the center of said dual locus, and wherein said likeli-
hood components of said dual locus determine condi-
tional likelihoods for said extreme points, and wherein
said principal eigenaxis components of said dual locus
determine an intrinsic coordinate system of geometric
loci of a quadratic decision boundary and correspond-
ing decision borders that jointly partition the decision
space of said minimum risk quadratic classification
system into symmetrical decision regions;

determining said extreme vectors on said geometric locus

using the vector of said scale factors, said determina-
tion of said extreme vectors being performed by using
said processors of said computer system to identify said
scale factors that exceed zero by a small threshold, and
using said processors of said computer system to deter-
mine a sign vector of signs associated with said
extreme vectors using said data set, and compute the
average sign using said sign vector;

determining a locus of average risk for said quadratic

classification system using said reproducing kernels of
said extreme vectors and said sign vector, said deter-
mination of said locus of average risk being performed
by using said processors of said computer system to
calculate a kernel matrix of all possible inner products
of said reproducing kernels of said extreme vectors and
multiply said kernel matrix by said sign vector;
determining said geometric locus, said determination of
said geometric locus being performed by using said
processors of said computer system to calculate a
matrix of inner products between said signed reproduc-
ing kernels of said N feature vectors and said repro-
ducing kernels of said N feature vectors and said N test
feature vectors, and multiply said matrix by said vector
of scale factors;

determining the discriminant function of said minimum
quadratic classification system, using said locus of
aggregate risk and said average sign and said geometric
locus, said determination of said discriminant function
of said minimum risk quadratic classification system
being performed by using said processors of said
computer system to subtract said locus of aggregate
risk from sum of said geometric locus and said average
sign, wherein said discriminant function of said mini-
mum risk quadratic classification system satisfies said
system of fundamental locus equations of binary clas-
sification, and wherein said discriminant function of
said minimum risk quadratic classification system
determines likely locations of said N feature vectors
and said N test feature vectors and also determines said
geometric loci of said quadratic decision boundary and
said corresponding decision borders that jointly parti-
tion said extreme points into said symmetrical decision
regions, wherein said symmetrical decision regions
span said overlapping regions or said tail regions of
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said distributions of said N feature vectors, and wherein
said discriminant function of said minimum risk qua-
dratic classification system satisfies said quadratic deci-
sion boundary in terms of a critical minimum eigene-
nergy and said minimum expected risk, wherein said
counteracting and opposing components of said critical
minimum eigenenergies exhibited by said scaled
extreme vectors on said geometric locus associated
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically distributed over said axis of
said dual locus, on equal sides of said statistical ful-
crum located at said geometric center of said dual
locus, wherein said counteracting and opposing com-
ponents of said critical minimum eigenenergies
together with said corresponding counter risks and risks
exhibited by said minimum risk quadratic system are
symmetrically balanced with each other about said
geometric center of said dual locus, and wherein said
statistical fulcrum is located at said center of said total
allowed eigenenergy and said minimum expected risk
of said minimum risk quadratic classification system,
wherein said minimum risk quadratic classification
system satisfies a state of statistical equilibrium,
wherein said total allowed eigenenergy and said
expected risk of said minimum risk quadratic classifi-
cation system are minimized, and wherein said mini-
mum risk quadratic classification system exhibits the
minimum probability of error for classifying said N
feature vectors and said N test feature vectors related to
said data set;

determining which of said two classes said N feature

vectors belong to using said discriminant function of
said minimum risk quadratic classification system, said
determination of said classes of said N feature vectors
being performed by using said processors of said
computer system to apply said discriminant function of
said minimum risk quadratic classification system to
said N feature vectors, wherein said discriminant func-
tion determines likely locations of said N feature vec-
tors and identifies said decision regions related to said
two classes that said N feature vectors are located
within, wherein said discriminant function recognizes
said classes of said N feature vectors, and wherein said
minimum risk quadratic classification system decides
which of said two classes said N feature vectors belong
to belong to and thereby classifies said N feature
vectors;

determining an in-sample classification error rate for said

two classes of feature vectors, said determination of
said error rate being performed by using said proces-
sors of said computer system to calculate the average
number of wrong decisions made by said minimum risk
quadratic classification system for classifying said N
features vectors;

determining which of said two classes said N test feature

vectors belong to using said discriminant function of
said minimum risk quadratic classification system, said
determination of said classes of said N test feature
vectors being performed by using said processors of
said computer system to apply said discriminant func-
tion of said minimum risk quadratic classification sys-
tem to said N test feature vectors, wherein said dis-
criminant function determines likely locations of said N
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test feature vectors and identifies said decision regions
related to said two classes that said N test feature
vectors are located within, wherein said discriminant
function recognizes said classes of said N test feature
vectors, and wherein said minimum risk quadratic
classification system decides which of said two classes
said N test feature vectors belong to and thereby
classifies said N test feature vectors;
determining an out-of-sample classification error rate for
said two classes of feature vectors, said determination
of said error rate being performed by using said pro-
cessors of said computer system to calculate the aver-
age number of wrong decisions made by said minimum
risk quadratic classification system for classifying said
N test features vectors;

determining a classification error rate for said two classes
of feature vectors, said determination of said classifi-
cation error rate being performed by using said pro-
cessors of said computer system to average said in-
sample classification error rate and said out-of-sample
classification error rate; and

determining a measure of overlap between distributions of

feature vectors for said two classes of feature vectors
using said N feature vectors and said extreme vectors,
said determination of said measure of overlap being
performed by using said processors of said computer
system to calculate the ratio of the number of said
extreme vectors to the number of said N feature vec-
tors, wherein said ratio determines said measure of
overlap.

14. The method of claim 13, wherein the reproducing
kernel is a Gaussian reproducing kernel: k —exp(-y||s—x|]*):
0.01=y=<0.1.

15. The method of claim 13, wherein the reproducing
kernel is a second-order polynomial reproducing kernel:
k=("x+1)%

16. A computer-implemented method of using feature
vectors and machine learning algorithms to determine a
discriminant function of a minimum risk quadratic classifi-
cation system that classifies collections of said feature
vectors into two classes and using said discriminant function
of said minimum risk quadratic classification system to
determine if distributions of said collections of said feature
vectors are homogenous distributions, said method compris-
ing:

receiving an Nxd data set of feature vectors within a

computer system, wherein N is a number of feature
vectors, d is a number of vector components in each
feature vector, and each one of said N feature vectors
is labeled with information that identifies which of two
collections each one of said N feature vectors belongs
to, and wherein each said feature vector is defined by
a d-dimensional vector of numerical features, wherein
said numerical features are extracted from digital sig-
nals;

determining a kernel matrix using said data set, said

determination of said kernel matrix being performed by
using processors of said computer system to calculate
a matrix of all possible inner products of signed repro-
ducing kernels of said N feature vectors, wherein a
reproducing kernel of a feature vector replaces said
feature vector with a curve that contains first and
second degree vector components, and wherein each
one of said reproducing kernels of said N feature
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vectors has a sign of +1 or -1 that identifies which of
said two collections each one of said N feature vectors
belongs to, and using said processors of said computer
system to calculate a regularized kernel matrix from
said kernel matrix;

determining scale factors of a geometric locus of signed

and scaled reproducing kernels of extreme points using
said regularized kernel matrix, wherein said extreme
points are located within overlapping regions or near
tail regions of distributions of said N feature vectors,
said determination of said scale factors being per-
formed by using said processors of said computer
system to determine a solution of a dual optimization
problem, wherein said scale factors and said geometric
locus satisfy a system of fundamental locus equations
of binary classification, subject to geometric and sta-
tistical conditions for a minimum risk quadratic clas-
sification system in statistical equilibrium, and wherein
said scale factors determine conditional densities for
said extreme points and also determine critical mini-
mum eigenenergies exhibited by scaled extreme vec-
tors on said geometric locus, wherein said critical
minimum eigenenergies determine conditional prob-
abilities of said extreme points and also determine
corresponding counter risks and risks of a minimum
risk quadratic classification system, wherein said coun-
ter risks are associated with right decisions and said
risks are associated with wrong decisions of said mini-
mum risk quadratic classification system, and wherein
said geometric locus determines the principal eigenaxis
of the decision boundary of said minimum risk qua-
dratic classification system, wherein said principal
eigenaxis exhibits symmetrical dimensions and density,
wherein said conditional probabilities and said critical
minimum eigenenergies exhibited by said minimum
risk quadratic classification system are symmetrically
concentrated within said principal eigenaxis, and
wherein counteracting and opposing components of
said critical minimum eigenenergies exhibited by said
scaled extreme vectors on said geometric locus together
with said corresponding counter risks and risks exhib-
ited by said minimum risk quadratic classification
system are symmetrically balanced with each other
about the geometric center of said principal eigenaxis,
wherein the center of total allowed eigenenergy and
minimum expected risk of said minimum risk quadratic
classification system is located at the geometric center
of said geometric locus, and wherein said geometric
locus determines a primal representation of a dual locus
of likelihood components and principal eigenaxis com-
ponents, wherein said likelihood components and said
principal eigenaxis components are symmetrically dis-
tributed over either side of the axis of said dual locus,
wherein a statistical fulcrum is placed directly under
the center of said dual locus, and wherein said likeli-
hood components of said dual locus determine condi-
tional likelihoods for said extreme points, and wherein
said principal eigenaxis components of said dual locus
determine an intrinsic coordinate system of geometric
loci of a quadratic decision boundary and correspond-
ing decision borders that jointly partition the decision
space of said minimum risk quadratic classification
system into symmetrical decision regions;
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determining said extreme vectors on said geometric locus

using the vector of said scale factors, said determina-
tion of said extreme vectors being performed by using
said processors of said computer system to identify said
scale factors that exceed zero by a small threshold, and
using said processors of said computer system to deter-
mine a sign vector of signs associated with said
extreme vectors using said data set, and compute the
average sign using said sign vector;

determining a locus of average risk for said quadratic

classification system using said reproducing kernels of
said extreme vectors and said sign vector, said deter-
mination of said locus of average risk being performed
by using said processors of said computer system to
calculate a kernel matrix of all possible inner products
of said reproducing kernels of said extreme vectors and
multiply said kernel matrix by said sign vector;

determining said geometric locus, said determination of

said geometric locus being performed by using said
processors of said computer system to calculate a
matrix of inner products between said signed reproduc-
ing kernels of said N feature vectors and said repro-
ducing kernels of said N feature vectors, and multiply
said matrix by said vector of scale factors;

determining the discriminant function of said minimum

quadratic classification system, using said locus of
aggregate risk and said average sign and said geometric
locus, said determination of said discriminant function
of said minimum risk quadratic classification system
being performed by using said processors of said
computer system to subtract said locus of aggregate
risk from sum of said geometric locus and said average
sign, wherein said discriminant function of said mini-
mum risk quadratic classification system satisfies said
system of fundamental locus equations of binary clas-
sification, and wherein said discriminant function of
said minimum risk quadratic classification system
determines likely locations of said N feature vectors
and also determines said geometric loci of said qua-
dratic decision boundary and said corresponding deci-
sion borders that jointly partition said extreme points
into said symmetrical decision regions, wherein said
symmetrical decision regions span said overlapping
regions or said tail regions of said distributions of said
N feature vectors, and wherein said discriminant func-
tion of said minimum risk quadratic classification sys-
tem satisfies said quadratic decision boundary in terms
of a critical minimum eigenenergy and said minimum
expected risk, wherein said counteracting and opposing
components of said critical minimum eigenenergies
exhibited by said scaled extreme vectors on said geo-
metric locus associated with said corresponding coun-
ter risks and risks exhibited by said minimum risk
quadratic classification system are symmetrically dis-
tributed over said axis of said dual locus, on equal sides
of said statistical fulcrum located at said geometric
center of said dual locus, wherein said counteracting
and opposing components of said critical minimum
eigenenergies together with said corresponding counter
risks and risks exhibited by said minimum risk qua-
dratic system are symmetrically balanced with each
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other about said geometric center of said dual locus,
and wherein said statistical fulcrum is located at said
center of said total allowed eigenenergy and said mini-
mum expected risk of said minimum risk quadratic
classification system, wherein said minimum risk qua-
dratic classification system satisfies a state of statistical
equilibrium, wherein said total allowed eigenenergy
and said expected risk of said minimum risk quadratic
classification system are minimized, and wherein said
minimum risk quadratic classification system exhibits
the minimum probability of error for classifying said N
feature vectors that belong to said two collections of
said feature vectors;

determining which of said two collections said N feature

vectors belong to using said discriminant function of
said minimum risk quadratic classification system, said
determination of said collections of said N feature
vectors being performed by using said processors of
said computer system to apply said discriminant func-
tion of said minimum risk quadratic classification sys-
tem to said N feature vectors, wherein said discriminant
function determines likely locations of said N feature
vectors and identifies said decision regions related to
said two collections that said N feature vectors are
located within, wherein said discriminant function rec-
ognizes said collections of said N feature vectors, and
wherein said minimum risk quadratic classification
system decides which of said two collections said N
feature vectors belong to belong to and thereby classi-
fies said N feature vectors;

determining an in-sample classification error rate for said

two collections of feature vectors, said determination of
said error rate being performed by using said proces-
sors of said computer system to calculate the average
number of wrong decisions made by said minimum risk
quadratic classification system for classifying said N
features vectors;

determining a measure of overlap between said distribu-

tions of said N feature vectors for said two collections
of feature vectors using said N feature vectors and said
extreme vectors, said determination of said measure of
overlap being performed by using said processors of
said computer system to calculate the ratio of the
number of said extreme vectors to the number of said
N feature vectors, wherein said ratio determines said
measure of overlap; and

determining if said distributions of said two collections of

said N feature vectors are homogenous distributions
using said in-sample classification error rate and said
measure of overlap, wherein said distributions of said
N feature vectors are homogenous distributions if said
measure of overlap has an approximate value of one
and said in-sample classification error rate has an
approximate value of one half.

17. The method of claim 16, wherein the reproducing
kernel is a Gaussian reproducing kernel: k —exp(-y||s—x|]*):
0.01=y=<0.1.

18. The method of claim 16, wherein the reproducing
kernel is a second-order polynomial reproducing kernel:
k =(sTx+1)%.



