
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0307676 A1

Price et al.

US 20090307676A1

(43) Pub. Date: Dec. 10, 2009

(54)

(75)

(73)

(21)

(22)

(86)

DEAD FUNCTIONSELMINATION IN
DYNAMIC LINKED LIBRARIES FOR CODE
SIZE REDUCTION OF OPERATING
SYSTEMIS IN EMBEDDED SYSTEMS

Inventors: Howard Price, Buckinghamshire
(GB); Aleksandar Antonic, Essex
(GB)

Correspondence Address:
Saul Ewing LLP (Philadelphia)
Attn: Patent Docket Clerk, 2 North Second St.
Harrisburg, PA 17101 (US)

Assignee: Nokia Corporation

Appl. No.: 12/295,883

PCT Fled: Apr. 5, 2007

PCT NO.: PCT/GB07/O1273

S371 (c)(1),
(2), (4) Date: Jan. 29, 2009

(30) Foreign Application Priority Data

Apr. 7, 2006 (GB) O6O7O68.4
Dec. 20, 2006 (GB) O6254O9.8

Publication Classification

(51) Int. Cl.
G06F 9/45 (2006.01)

(52) U.S. Cl. .. 717/162

(57) ABSTRACT

This invention relates to a method for reducing the size of a set
of computer code by replacing unused functions in the set of
code with Void functions having no operative content. The
invention may be applied to a core operating system in order
to reduce the amount of code that is permanently loaded on a
computing device while the device is operating, thereby
potentially reducing the requirements for both read-only non
execute-in-place memory and randomly addressable
memory. The removed functionality may be provided sepa
rately in read-only memory if desired, so that it can be loaded
when needed.

edata
f1 address

user module

f1 stub

f2 Stub
f3 Stub

Core OS Image ROFS

Ordinal
DLLX IM/m+1 (f1, f2,f3) DLLXM/m+2(f1, f2,f3) O fi()

dummy .edata (f1, f2,f3) address
f1() f1 address in Core DLLX

OS image
f2O - f2 address

f30 LOADER f3 address

Patent Application Publication Dec. 10, 2009 Sheet 1 of 3 US 2009/0307676 A1

Figure 1

US 2009/0307676 A1 Dec. 10, 2009 Sheet 2 of 3 Patent Application Publication

SHOH?6eu.I SO ?JOO

Patent Application Publication Dec. 10, 2009 Sheet 3 of 3 US 2009/0307676 A1

Create a full COre
OS image as a

test image

Find all statically unused exported functions in
the executables Within that test COre and stub

... althose unused exported functions in the
SOUFCe COde

Find all statically unused unexported functions
in the executables within that test COre and

delete all those unused unexported functions
in the SOUrCe COde

ldentify and remove from
the SOUrce COde any
executables no longer

needed

Build the COfe
image Containing
Only the used

functions

Identify all executables which have been
produced as tiny variants by steps 2 and 3

Build full variants for all executables identified in
step 6 together with copies of all executables
identified and removed in step 4, and include

them in storage memory.

Recursively remove any DLLs now not needed in the core due
to the reduced dependencies of the new core functionality, and

include them in storage memory,

Figure 3

US 2009/0307676 A1

DEAD FUNCTIONSELMINATION IN
DYNAMIC LINKED LIBRARIES FOR CODE

SIZE REDUCTION OF OPERATING
SYSTEMIS IN EMBEDDED SYSTEMS

0001. This invention relates to reducing the size of com
puter code, and in particular but not exclusively to reducing
the size of software to be embedded in a computing device.
0002 The term computing device as used herein is to be
expansively construed to cover any form of electrical com
puting device and includes, data recording devices, comput
ers of any type or form, including hand held and personal
computers such as Personal Digital Assistants (PDAs), and
communication devices of any form factor, including mobile
phones, Smartphones, communicators which combine com
munications, image recording and/or playback, and comput
ing functionality within a single device, and other forms of
wireless and wired information devices, including digital
cameras, MP3 and other music players, and digital radios.
0003 Modern computing devices generally contain mul

tiple types of memory. Memory can be broadly categorised
into two types:

0004 Memory that can be used for programs that
eXecute In Place (XIP), that is where the programs do
not need to be loaded into a different form of memory in
order to execute. The various types of RAM (Random
Access Memory) are the most prominent examples of
this type. However, because RAM is volatile and loses
its contents when powered down, many devices include
smaller amounts of the more expensive but slower vari
eties of non-volatile XIP memory such as NOR Flash.

0005 Memory that can be used for storage, but not for
XIP generally this is because it can only be accessed
sequentially or in blocks, rather than being randomly
addressable. Disk drives and NAND Flash are promi
nent examples of this type. Programs kept in storage
memory have to be copied to XIP memory in order to be
able to run.

0006. There is additionally one significant difference
between these two types of memory; XIP memory is much
more expensive than memory which can only be used for
storage. Because there are considerable cost pressures on the
manufacture of modern computing devices, including por
table devices such as mobile telephones which are aimed at
the price sensitive mass market, it is desirable that Such
devices should wherever possible minimise their require
ments for XIP memory.
0007. It is known that there is a requirement for computing
devices to be provided with software that is essential to the
proper functioning of the device in Some type of permanent
non-volatile storage as part of the manufacturing process.
Such software commonly includes data and programs that are
necessary to the boot-up procedures that run when the device
is powered up, or that provide Operating System (OS) ser
vices that are required frequently, or that provide critical
applications.
0008. Devices that keep as much as possible of this type of
Software in Storage memory, copying it to XIP memory (load
ing it) when needed and releasing the XIP memory when no
longer needed (unloading it), are able to minimise their manu
facturing costs compared to devices that keep more of this
software in XIP memory.

Dec. 10, 2009

0009 More specifically, where the core operating system
(OS) of a device has been provided in storage memory at
manufacture time, it generally needs to be copied as an entire
OS image from storage to XIP memory as part of the startup
(boot) process. The term “core OS' is used here in a general
sense to refer to the parts of an OS that are essential to the
basic operation of a computing device. An "OS image' is a
file representing the entirety of the OS software. The size of
an OS image is thus the footprint of the OS when stored in
memory.
0010. In general, once loaded into XIP memory an OS
image cannot be practically unloaded, even in part; it is
known to those skilled in the art that because such OS images
are typically built using a technique known as static linkage,
the memory locations they occupy must be regarded as
reserved and are not available for reuse by other software.
0011. A device that minimises the size of the core operat
ing system will be able to minimise the fixed cost of providing
XIP memory dedicated for its use, thus minimising the
requirements of the device for XIP memory and making it less
expensive to buy and more accessible to the general public. It
also provides the benefit that less storage memory is required
to store the core OS.
0012. Where manufacturers of computing devices provide
such devices as families of products, with each member of a
family exhibiting different functionality but being developed
from the same or similar software, it is desirable from a device
manufacturer's perspective for all the members of a family of
products to include compatible core operating systems. It is
known that this both decreases development costs and
increases reliability. Furthermore, where such devices are
open and permit the post-manufacture installation of software
modules providing additional functionality, compatible core
operating systems may enable the utilisation of the same Such
Software modules across an entire family of products.
0013. In the market for computing devices, and especially
portable devices such as mobile telephones, related members
of product families are typically differentiated by price points
and by feature sets. In general, lower priced members of the
product family are provided with a lesser feature set (either
hardware or software related). This is a well-known phenom
enon; see, for example, the account at http://news.bbc.co.uk/
2/hi/business/527.4352.stm which explains that:
0014) “In the hi-tech world it is common to produce a
high-specification product, sold at a premium price, and then
sell the same product more cheaply with some of the func
tions disabled.”
0015. If, for reasons of maintaining OS compatibility
within a product family, a core operating system that offers
Support for a full range of features has to be installed on a
member of the product family that was designed to offer a
lesserrange offeatures, it is clear that those portions of the OS
that offer support for features that are not present constitute
wasted memory. If the core OS image is built using static
linkage, it will generally not be feasible to reuse the wasted
memory addresses occupied by the code implementing these
unused features. This is because the core OS image consti
tutes a monolithic block of code in which memory addresses
are written into the programs and it would not be practical to
interleave additional code into the wasted addresses associ
ated with OS code that is not used.
0016. On computing devices which copy the core OS from
storage to XIP memory, including Support for unavailable
features bloats the operating system and adds to manufactur
ing costs without contributing any value. It also increases
start-up time, as the Support code needs to be copied from
storage to XIP memory even though it will not be used.

US 2009/0307676 A1

0017. It is of course possible to manufacture an alternative
version of the core operating system without these unused
portions. However, Such a version would necessarily abandon
a number of the considerable economic benefits to both the
manufacturer and its customers of maintaining a coherent
product family in two significant respects.

0018 1. Such a version of the core OS may not benefit
from compatibility with the original, full, version. In
particular, any software installed post-manufacture that
relied on code that was supposed to reside in the fully
featured version of the core OS would fail to work.

0019 2. Because an alternative version of the OS would
fragment the product family it would require separate
development and testing, thereby increasing develop
ment costs and time to market.

0020. It is thus desirable to provide a way of removing
unused functions, and thereby reducing the size of a set of
code, while mitigating the problems set out above.
0021. According to a first aspect of the present invention
there is provided a method of reducing the size of a set of
computer code intended for use in a computing device, the
code comprising a plurality of files, each specifying one or
more functions for performing computing tasks, the method
comprising: identifying functions within the set of code that:
i) are available to be called by others of the functions; and ii)
will not be called by others of the functions when the files are
executed on the computing device; and removing from the set
of code at least part of the content defining the identified
functions while retaining, in place of each identified function,
a void function of reduced size.
0022. The void function preferably contains no operative
code.
0023. Each of the identified functions in the set of code is
preferably associated with an ordinal number specifying the
position of the function within a defined order, and, for each
identified function, the step of removing content preferably
results in the creation of a Void function having the same
ordinal number as the identified function.
0024. The set of code may be an operating system or a part
of an operating system.
0025. The said identified functions are preferably
exported functions.
0026. The method may further comprise, for at least one of
the files containing one or more Void functions, creating
complementary code for the respective file, the complemen
tary code containing functionality that was removed in the
said step of removing at least part of the content, such that a
combination of i) the reduced file containing one or more
Void functions, and ii) the complementary code, provides
functionality equivalent to that of the original file.
0027. The method may further comprise the step of stor
ing: i) the set of code, including the reduced file, and ii) the
complementary code as separately loadable files in Storage
memory of the computing device in which code cannot
execute in place.
0028. The method may further comprise providing a link
ing arrangement configured to link between functions in the
reduced set of code and functions in the complementary code,
such that all functionality provided by the original set of code
can be provided by the combination of the reduced set of code
and the complementary code.
0029. The method may further comprise the step of stor
ing: i) the reduced set of code, including any Void functions,
and ii) each file that contains identified functions, in its origi

Dec. 10, 2009

nal form, as separately loadable files in storage memory of the
computing device in which code cannot execute in place.
0030 The method may further comprise providing a link
ing arrangement configured to link between functions in the
reduced set of code and functions in the said separately load
able files, such that all functionality provided by the original
set of code can be provided by the combination of the reduced
set of code and the separately loadable files.
0031. The method may further comprise removing from
the set of code any files containing only Void functions.
0032. The method may further comprise storing, in stor
age memory of the computing device in which code cannot
execute in place, and as separately loadable files, the said
removed files in the form in which they existed prior to the
step of removing content defining the said identified func
tions.
0033. The method may further comprise the steps of iden
tifying further functions within the set of code that: i) are
available to be called by other functions within the same files
as the said further functions; and ii) will not be called by other
functions when the files are executed on the computing
device; and removing from the set of code the identified
further functions.
0034. According to a second aspect of the present inven
tion there is provided a set of code intended for use on a
computing device, the set of code comprising a plurality of
files, each specifying one or more functions for performing
computing tasks, wherein those of the functions that: i) are
available to be called by others of the functions; and ii) will
not be called by others of the functions when the files are
executed on the computing device; are present in the set of
code only as Void functions having no operative code.
0035. According to a third aspect of the present invention
there is provided an operating system comprising the set of
code as defined above.
0036. According to a fourth aspect of the present invention
there is provided a computing device having non-volatile
memory, the memory containing the set of code defined
above. The memory may be storage memory in which code
cannot execute in place.
0037. The memory may additionally contain, as one or
more separately loadable files, complementary code includ
ing operative functions, the complementary code being
arranged for execution with one or more of the Void functions
to perform computing tasks.
0038. Each void function may be associated with an ordi
nal number specifying the position of the function within a
defined order, and the complementary code may be arranged
to be invoked by linking via an ordinal number associated
with a void function in the set of code.
0039. Alternatively or in addition, the memory may con
tain, as one or more separately loadable files, operative func
tions each associated with one of the Void functions.
0040. As will be seen from the following discussion,
embodiments of the invention enable the RAM requirements
of differently featured models of computing devices belong
ing to the same family to be matched to the feature level of
particular models while retaining compatibility with other
models in the same family. Embodiments of the invention
may be particularly suitable for those devices where a core
operating system image is provided in NAND Flash or other
types of non-executable non-volatile storage memory, and
where that image is copied into RAM at boot. The preferred
embodiment of the invention involves identifying those func
tions that are unused within the core OS image, removing

US 2009/0307676 A1

them from the executables they are found in, replacing them
with stubs to ensure binary compatibility for those functions
that remain, and building a revised core OS image using these
"tiny variants’ of the affected executables. A version of the
executable containing the full version of the removed func
tions is then placed as a separately loadable module in storage
memory for any after-market applications that may require
them.
0041 Embodiments of the invention can enable the XIP or
RAM memory overhead of a computing device to be reduced
in direct proportion to reduction in feature sets, while at the
same time permitting compatibility between all members of a
product family irrespective of the features they offer.
0042. An exemplary implementation of the invention will
now be described in detail with reference to the accompany
ing drawings, in which:
0.043 FIG. 1 illustrates the occurrence of unused func
tions;
0044 FIG. 2 represents an exemplary implementation of
the invention; and
0045 FIG.3 is a flow chart illustrating a process for modi
fying software.
0046. The preferred embodiment of the invention may
advantageously be applied to reduce XIP or RAM memory on
devices which provide their core operating system together
with other (non-core) executables in NAND Flash storage
memory. In Such an arrangement, the core image contains
executable files together with all their dependencies and is
recursively copied from NAND Flash to RAM at boot. This
core image is supplied as a single file on NAND Flash; when
the image is copied into RAM, it then appears as multiple files
in a conventional XIP read-only file system (ROFS). The
remainder of the non-core executables remain in the non-XIP
ROFS on NAND Flash and are loaded and unloaded on
demand; unlike the contents of the core image, they do not
have to occupy reserved sections of memory, and any
resources they consume can be freed when they are no longer
required.
0047. As described above, provision of a fully-featured
version of the core OS on a device with only a reduced feature
set would inevitably allocate valuable and scarce XIP
memory at boot time for a significant number of functions that
are not needed by the rest of the core OS. Furthermore,
because the entire core is statically linked, it is impractical for
the RAM so allocated to be freed up for other purposes.
0048. In accordance with the preferred embodiment of the
invention, whenafunction in an executable file is identified as
not being used in the particular version of the OS, it is stubbed
for that version: any subroutines which depend on the unused
function and are also unused are removed from the OS code,
so that what remains is an executable file of reduced size that
includes only avoid function. A Void function is one that does
not run, and therefore does not perform any tasks.
0049. For example, if a function previously appeared in
the executable file as:

void func1()

func3 ()
func4()

Dec. 10, 2009

then after stubbing it would appear as:

void func1()

0050. The stubbed function is empty: it contains no work
ing code, and it now requires less memory space.
0051. It should be noted that unused functionality may be
identified and removed from code in accordance with the
invention when the code is inhuman-readable or in computer
readable form. In most implementations it is likely to be
preferable to identify and remove the functions from source
code because in this form the code is more easily readable by
an engineer for verification. However, tools could be devel
oped for removing the functions once code has been com
piled.
0.052 FIG. 1 illustrates the concept of unused functions by
way of example. It shows a number of files within a core OS.
An executable file".exe' is shown to call a function f from a
dynamic link library, DLL. A DLL is a type of executable file
which typically contains a number of functions that can be
used by functions in other executable files or other DLLs. f.
is known as an exported function, since it may be invoked by
means of a call from a function in a different executable file or
DLL. When f is called by the .exe file, DLL is loaded into
RAM and f executes, and it in turn calls a further function f
that is held in DLL.DLL is then loaded and f executed.
0053 As can be seen from FIG. 1, DLL and DLL, each
contain a number of functions—example functions f, f, and
fare shown explicitly. FIG. 1 also shows schematically that
f, when executed, will call f, from DLL. However, Suppose
that no executable files in the version of the core OS of the
present example ever invoke f f will therefore never run,
and is an example of a function that represents wasted
memory usage. The same is true in this example forf, which
can only be called by f, and will therefore not be used in this
core OS image version. A further function f in this example
is held in DLL, and is not invoked by any executable func
tions in this version of the core OS image. f. therefore also
represents wasted memory usage.
0054 The skilled person will be aware of various means
by which unused function could be identified. Examples are
linker feedback and calligraph analysis. However, linker feed
back has been found by the present inventors to provide more
reliable results, and is therefore the preferred technique. The
armlink command, described in the RealView(R) Compilation
Tools Linker and Utilities Guide Version 3.0 (http://www.
arm.com/pdfs/DUI0206G rvct linker and utilities quide.
pdf, especially in sections 3.3.3 to 3.3.5, is an example of a
tool that may be used to identify unused functions.
0055. There are various reasons why functions in the origi
nal version of the core OS image are unused. These include:

0056 1) They may support the use of hardware which is
not present on all versions of the devices on which the
OS is intended to be used. For example, the generic
(original) OS may cater for the possible use of an SD
card, whereas some devices on which the OS is imple
mented use no memory card, a CompactFlash card, or a
USB-compatible memory stick. In such devices, the par
ticular functionality provided for compatibility with an
SD card is not required, and could therefore be removed.

0057 2) They may relate to the use of an application
that needs to be separately downloaded in order to oper

US 2009/0307676 A1

ate on a device, but the application requires hardware
that is not provided in certain devices. So, for example,
an email messaging application that can be downloaded
for use on certain devices may require the presence of a
particular type of processor which may not be provided
on all devices for which the generic OS is intended.
Thus, the functions that would provide the email mes
saging capability will be unused on versions of the OS
that are to be used on devices without the relevant pro
cessing capacity.

0058. In addition, functions may be identified as “unused
when they are likely to be used only on an occasional basis, or
used only by functions outside the core OS. This is an impor
tant aspect of the preferred embodiment of the invention,
since in Such cases it can be inefficient to have to load the
functions as part of the core OS when they are not necessarily
required for use.
0059. It can be seen from FIG. 1, and from the correspond
ing part of the description above, that memory savings could
be made iff, f, and f could be removed from the OS image.
While it would be possible to simply delete any reference to
these functions from the OS, the preferred embodiment of the
invention instead involves retaining a skeletal version, or
stub, of the function. Where an unused function is identified,
the executable retains a reference to the primary function
(such as f). However the contents of that function, including
the unused functions which would have been called by the
primary function, are removed from the executable, thereby
leaving the following form of function:

void func1()

0060. As an alternative to leaving a remnant of the original
function, the function could be removed altogether and
replaced with a marker indicating that the function is absent
from the executable. Both of these alternatives are intended to
be encompassed by the term “void functions” as used herein,
which indicates the presence of an item of code having con
tent which is inoperative or not fully operative, and which
therefore is incapable of performing the computing tasks
represented by the corresponding original function.
0061 Ordinal number linking is utilised in the preferred
embodiment: ordinal numbers, which are assigned to func
tions in an exported set (Such as a DLL) indicate the position
of one function relative to another function in a defined order.
Ordinal numbers are the index by which functions are linked
to in the preferred embodiment, so that a function calling
another function will refer to the ordinal number of the other
function (rather than, say, its name or its location in physical
memory) in order to invoke it. In this embodiment, retaining
a reference in a stub to a primary function has the advantage
that binary compatibility with other members of a family may
be retained, as discussed in detail below.
0062) If a function having a particular ordinal number is
unused and is thus a candidate for deletion, it is desirable to
retain a stub of that function rather than deleting any reference
to the function, so that the relative positions of all other
functions in the same set do not shift within the predefined
order. For example, simply deleting a function at ordinal
number 9 may have the effect that functions at ordinal num
bers 10 onwards assume new ordinal numbers 9 onwards,

Dec. 10, 2009

since the previous function 9 no longer exists in the order.
This could be undesirable because the ordinal numbers of this
version of code would no longer be compatible with other
versions of the OS that retain the original ordinal numbering,
and updates of the code may therefore need to be customised
to the new numbering scheme. If many different forms of the
OS were to exist for this reason, then there would be obvious
impacts on the cost and viability of future improvements or
additions to the OS.
0063. Instead, it is preferred to retain a stub at the ordinal
position of the unused function, in the manner illustrated
above. In this way, the contents of the function are removed,
but the function still exists in an empty form in the OS,
thereby retaining its ordinal number so that binary compat
ibility with core OSs of other family members can be ensured,
and extra functionality relying on the presence of the function
previously at that ordinal number can be more easily added
O.

0064. In general, a given part of a set of code, that is
intended for a specific end use but that will not necessarily be
used in all implementations, is known as a variant. In the
present description, the term variant is also used to refer to
alternative versions of a particular piece of code, Such as a
DLL. In this description, executables that are provided only
for certain end use cases but are unrequired in a particular
implementation are referred to as tiny variants after they have
been stubbed. The tiny variants have minimal function stubs,
which replace the body of those functions that are not
required for a reduced feature set. The tiny variants need not
contain any operative code, that is they need not be capable of
performing any computing tasks: they are simply used to
replace the original full-featured components while maintain
ing the ordinal number of the original component.
0065 Tiny variants may be created from any executable
code components, including Dynamic Link Libraries (DLLS)
and standalone executables (EXEs). Because they are part of
the core OS, these tiny variants are copied at boot time into
XIP RAM instead of the fully featured variants. The originals
(the full variants) of the DLLs and EXEs containing the
selected components can then be provided as loadable execut
able program files in storage memory instead of as part of the
core OS image; this is described in more detail below.
0066. In the preferred embodiment binary compatibility
between different core OS images is supported by means of
rules governing the circumstances under which components
loadable from storage memory can be used to replace com
ponents from a particular OS core image.
0067. To illustrate these rules, suppose that executable
FRED.EXE in the core OS image uses a DLL called JOE.
DLL. The two will be statically linked when the core OS
image is built. If you wish to modify JOE.DLL, then the
modified version can be placed in memory storage; however,
FRED.EXE still uses the original version from the core OS
image, as they are statically linked. If, however, you add a new
version of FRED.EXE in memory storage then it can now use
the new version of JOE.DLL also in memory storage. Only
those applications in the core OS image that were statically
linked to it continue to use the version of JOE.DLL included
in the image.
0068. The application of these rules means that the provi
sion of executables as separate files in storage memory which
include the full versions of anything provided as a tiny variant
in the core OS image allows any after-market executable
loaded on to the device to function as intended; instead of

US 2009/0307676 A1

linking to a DLL with tiny variants from the core OS image,
such an executable would dynamically link and load the full
version of the DLL provided in storage memory.
0069. Taking advantage of these rules, the preferred
embodiment of this invention further utilises the following
mechanism for producing a core OS image that is compatible
with other core OS images in the same family:

0070) 1... create a full core OS image as a test image
0071 2. find all statically unused exported functions in
the executables within that test core and stub all those
unused exported functions in the source code

0072. 3. find all statically unused unexported functions
in the executables within that test core and delete all
those unused unexported functions in the Source code

0073 4. identify and remove from the source code any
executables no longer needed

0074 5. build the core image containing only the used
functions

(0075 6. identify all executables which have been pro
duced as tiny variants by steps 2 and 3

0076 7. build full variants for all executables identified
in step 6 together with copies of all executables identi
fied and removed in step 4, and include them in storage
memory.

0077 8. recursively remove any DLLs now not needed
in the core due to the reduced dependencies of the new
core functionality, and include them in storage memory.

0078. This method is shown diagrammatically in FIG. 3.
The mechanism provides the ability to build core OS images
which minimise the amount of XIP memory that needs to be
used in each device that is a member of a product family.
Components in the core OS image continue to use the reduced
variants also found in the core, as they are statically linked at
build time to those variants.
0079 If the core OS variant is also held in storage memory

it will link to the variant found in storage memory.
0080. Other components in storage memory, and any
application installed post-manufacture, will link to the full
variants, satisfying any compatibility requirements.
0081. If usage at boot-time of functions in the core image

is X% (in terms of the number of bytes) of a full executable
tree, then the XIPusage at boot would decrease by (100-X)%
at the expense of extra storage memory usage of X% (due to
the duplication).
0082 For an executable with a tiny variant in core and a

full variant in storage memory, where of the tiny variant is Y
% of the full variant, (100+Y)% of the full variant's size will
be used up in XIP usage by the executable whenever the full
variant needs to be loaded. However, the XIP memory con
sumed by the full variant will be freed when it is no longer
needed, and given the larger number of full variants that no
longer consume any XIP memory, the overall tradeoff is
beneficial.

0083. A further optimisation of the method described here
is not to provide a full variant of an executable in Storage
memory, but to provide instead a variant that only contains the
full version of those functions that are stubbed out in the tiny
variant provided in the core. Those functions that are pro
vided in full in the core are stubbed out in the variant provided
in storage memory. When a client using the storage variant
calls a function only contained in the core, the stub in the
storage variant would then forward it to the core variant's
function.

Dec. 10, 2009

I0084. In other words, the tiny variant and the variant in
storage memory complement each other. We shall refer to the
variant in storage memory as the complemented variant. Nei
ther variant individually provides a full version of the func
tions in the original executable, but they do when taken
together; every function is fully provided in either the tiny
variant in the core OS image or the complemented variant in
storage memory, but no functions are provided in both.
I0085. In the preferred embodiment the addresses of func
tions and methods provided in full in the tiny variant of an
executable present in the core OS image are inserted into the
export table of the variant of that executable provided in
storage memory before that executable is placed in storage
memory. The header of the executable provided in storage
memory is modified before that executable is placed in stor
age memory to indicate where entries in the export table
reference addresses of functions and methods provided in full
in the tiny variant of that executable present in the core OS
image, and the loader of that executable inspects its header
and uses such indications to avoid further modifying the said
entries in the export table.
I0086 Preferably, linkage involving elements of the core
OS is managed statically and linkage involving modules
present as separately loadable entities in storage memory is
managed dynamically.
I0087. The use of complemented variants can ensure that
no code is unnecessarily duplicated and therefore saves
memory. We now discuss in more detailhow this optimisation
can be implemented.
0088. As described earlier, all executables in the core OS
image are statically linked to the tiny variant. There is no need
for any calls made by these executables to the tiny variant to
be forwarded to the complemented variant, since the whole
point of having a tiny variant is that it completely satisfies the
requirement of the executables in the core OS image.
Executables in storage memory, however, will link to any
complemented variant which is also present in Storage
memory. These variants need to be able to forward calls made
to them on to the tiny variant in the core OS image for all
functions which they do not fully implement themselves.
I0089. As an example case, we shall consider an original
fully featured DLL named X which is further identified by a
conventional version number in major version/minor version
form. This DLLX Major/minor version provides methods
f1(), f2() and f3(), and is shown in FIG. 2.
0090. In order to reduce the size of the core image and the
consequent impact on system RAM usage, this executable is
split into two: DLLX Major/minor-1 version is the tiny
variant provided within the core image and DLLXMajor/
minor-2 version is the complemented variant provided in
storage memory (“ROFS).
0091. The tiny variant contains an implementation only of
method f1(), as it is the only method utilized by the other
modules in the core, which are linked to it statically. The
unused methods f2() and f3() in this variant are stubbed and
marked as ABSENT.
0092. The complemented variant contains implementa
tions of methods f2() and f3(). Method f1() in this variant is
stubbed and marked as ABSENT. The addresses of all the
methods provided in this variant are made public in a table of
exported functions; these are in turn picked up by the loader
of any executable modules that depend on DLLX. The loader
functions as a dynamic linker and fixes up any references to
the methods in DLLX to point to the correct addresses.

US 2009/0307676 A1

0093. For the optimisation to work, the dynamic linking
with the complemented variant has to work in Such a way as
to ensure that references to f2() and f3() are fixed up in the
normal way, but that references to f1() are fixed up with the
address of the method in the tiny variant.
0094. The exact method that is used to do this may be
varied for use with different operating systems, but the basic
principles are as described above. A specific implementation
will now be described with reference to the Symbian OS
advanced operating system for mobile wireless devices. It
should be noted that this implementation is described only for
the purposes of illustration of the general principles and is not
intended to limit the scope of the invention in any way. For
example, those skilled in the art will appreciate that the prin
ciples set out above can be applied to any operating system
which includes a run-time program loader that inspects
executable file headers.
0095. The workings of program loading and dynamic run
time linking in Symbian OS are described in the Chapter 10 of
Symbian OS Internals' edited by Jane Sales, published by
Wiley in 2005, ISBN 0-470-02524-7. A Symbian OS execut
able includes a pointer to an edata table at offset 0x58 in the
executable file header. This is a table containing the export
directory:

0096 “The export directory is a table supplying the
address of each function exported from this executable.
Each entry holds the start address of the function as an
offset relative to the start of the code section:

OO
Address of 1st function exported from this executable.
O4
Address of 2nd function exported from this executable.

4n-4
Address of last function exported from this executable.

0097. The order of exports in the table corresponds to
the order in the DEF file for this executable. The table is
not null terminated. Instead, the number of entries in the
table is available from the file's image header” ibid. p.
388

0098. In the case of the complemented variant, the .edata
table needs to ensure that the entry for f1() is actually popu
lated with the address of the implementation in the code
section. This is done at the time the embedded software (com
monly called the ROM) for the device is built. It will be
recalled that the ROM includes both a core OS image, which
will include all tiny variants, and a number of non-core files in
a read-only file system (ROFS) which will include all
complemented variants. A redirect tool is provided with infor
mation on f1() which is used to construct an export table for
the complemented variant that delegates its implementation
to the tiny variant.
0099. This redirect tool, during the ROM build, picks up
the absolute address off () in the core OS image. Before the
non-core ROFSportion of the ROM is built, the tool fixes the
.edata table in the complemented variant provided in ROFS
with the address for f1() retrieved from the core OS image.
0100 However, the address for f1() so inserted is an
absolute address, while the normal addresses forf2() and f3(
) in the export table are, by necessity, relative addresses. This
is because no dynamically loaded executable knows in

Dec. 10, 2009

advance where in memory it is going to be loaded; so any
addresses for exported functions have to be given relative to
the beginning of the executable. One of the jobs of the loader
is to fix up the export table to ensure that all entries point at the
correct absolute address.
0101. The loader therefore has to be told that while it is
quite welcome to fix up the addresses off2() and f3() in the
usual way, the address of fl() should be left alone, as it is
already absolute.
0102. In Symbian OS, this is done by means of an exten
sion to the executable file header (the E32ImageHeader
described in Appendix 2 of Symbian OS Internals. A new
“redirect-to-rom bitmap is added to the module V-header
and the redirect tool sets the corresponding bit in the bitmap
in order to indicate to the loader that the address of a particular
ordinal in the export table is fixed.
(0103. The loader is also modified to examine the “redirect
to-rom' bitmap during the loading of the complemented vari
ant, and it does not fix up the address of any entry in the export
table if the entry in the bitmap is set.
0104. The effect of this optimisation is shown diagram
matically in FIG. 2. It allows the maximum amount of saving
not just of the memory used by the statically linked modules
present in the core OS image loaded at boot, but also of the
memory used by dynamically linked variant modules pro
vided as separate files in storage memory.
0105. It can be seen from the example described above that
the following advantages can result from embodiments of the
invention:

0106. The size of an OS core image in a NAND Flash
computing device can be reduced in proportion to the
feature set provided while retaining binary compatibility
with other devices in the same family which are fully
featured.

0107 The smaller size of the core OS image in NAND
Flash means that the image consumes less RAM once
loaded.

0108. The smaller size of the core OS image in NAND
Flash means that the device will boot up faster.

0.109 The fact that less RAM is required means that
devices with a reduced feature set are able to be manu
factured at a lower cost.

0110. The fact that less RAM is required means that a
device with a reduced feature set will consume less
power.

0111. The complemented variant optimisation of the
preferred embodiment extends the memory saving to
dynamically loaded variant of modules provided as files
in NAND Flash.

0112. It will be understood by the skilled person that alter
native implementations are possible, and that various modi
fications of the methods and implementations described
above may be made within the scope of the invention, as
defined by the appended claims.

1. A method of reducing the size of a set of computer code
intended for use in a computing device, the code comprising
a plurality of files, each specifying one or more functions for
performing computing tasks, the method comprising:

identifying functions within the set of code that:
i) are available to be called by others of the functions; and
ii) will not be called by others of the functions when the

files are executed on the computing device; and

US 2009/0307676 A1

removing from the set of code at least part of the content
defining the identified functions while retaining, in place
of each identified function, a void function of reduced
S17C.

2. A method according to claim 1 wherein the void function
contains no operative code.

3. A method according to claim 1 wherein each of the
identified functions in the set of code is associated with an
ordinal number specifying the position of the function within
a defined order, and, for each identified function, the step of
removing content results in the creation of a Void function
having the same ordinal number as the identified function.

4. A method according to claim 1 wherein the set of code is
an operating System.

5. A method according to claim 1 wherein the set of code is
a part of an operating system.

6. A method according to claim 1 wherein the said identi
fied functions are exported functions.

7. A method according to claim 1 further comprising, for at
least one of the files containing one or more Void functions,
creating complementary code for the respective file, the
complementary code containing functionality that was
removed in the said step of removing at least part of the
content, such that a combination of

i) the reduced file containing one or more Void functions,
and

ii) the complementary code,
provides functionality equivalent to that of the original file.

8. A method according to claim 7 further comprising the
step of storing:

i) the set of code, including the reduced file, and
ii) the complementary code

as separately loadable files in storage memory of the comput
ing device in which code cannot execute in place.

9. A method according to claim 8 further comprising pro
viding a linking arrangement configured to link between
functions in the reduced set of code and functions in the
complementary code. Such that all functionality provided by
the original set of code can be provided by the combination of
the reduced set of code and the complementary code.

10. A method according to claim 1 further comprising the
step of storing:

i) the reduced set of code, including any Void functions, and
ii) each file that contains identified functions, in its original

form,
as separately loadable files in storage memory of the comput
ing device in which code cannot execute in place.

11. A method according to claim 10 further comprising a
linking arrangement configured to link between functions in
the reduced set of code and functions in the said separately
loadable files, such that all functionality provided by the
original set of code can be provided by the combination of the
reduced set of code and the separately loadable files.

Dec. 10, 2009

12. A method according to claim 1 further comprising
removing from the set of code any files containing only Void
functions.

13. A method according to claim 12 further comprising
storing, in storage memory of the computing device in which
code cannot execute in place, and as separately loadable files,
the said removed files in the form in which they existed prior
to the step of removing content defining the said identified
functions.

14. A method according to claim 1 further comprising the
steps of:

identifying further functions within the set of code that:
i) are available to be called by other functions within the

same files as the said further functions; and
ii) will not be called by other functions when the files are

executed on the computing device; and
removing from the set of code the identified further func

tions.
15. A set of code intended for use on a computing device,

the set of code comprising a plurality of files, each specifying
one or more functions for performing computing tasks,
wherein those of the functions that:

i) are available to be called by others of the functions; and
ii) will not be called by others of the functions when the

files are executed on the computing device;
are present in the set of code only as Void functions having no
operative code.

16. A set of code according to claim 15 wherein the void
functions represent exported functions.

17. An operating system comprising the set of code accord
ing to claim 15.

18. A computing device having non-volatile memory, the
memory containing the set of code according to claim 15.

19. A computing device according to claim 18 wherein the
memory is storage memory in which code cannot execute in
place.

20. A computing device according to claim 18 wherein the
memory additionally contains, as one or more separately
loadable files, complementary code including operative func
tions, the complementary code being arranged for execution
with one or more of the Void functions to perform computing
tasks.

21. A computing device according to claim 20 wherein
each Void function is associated with an ordinal number
specifying the position of the function within a defined order,
and wherein the complementary code is arranged to be
invoked by linking via an ordinal number associated with a
void function in the set of code.

22. A computing device according to claim 18 wherein the
memory additionally contains, as one or more separately
loadable files, operative functions each associated with one of
the void functions.

