
(12) United States Patent
Reynolds et al.

USOO8909761 B2

US 8,909,761 B2
Dec. 9, 2014

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

METHODS AND COMPUTER PROGRAM
PRODUCTS FORMONITORING AND
REPORTNG PERFORMANCE OF
NETWORKAPPLICATIONS EXECUTING IN
OPERATING-SYSTEM-LEVEL
VIRTUALIZATION CONTAINERS

Inventors: Patrick A. Reynolds, Chapel Hill, NC
(US); Glenn T. Nethercutt, Raleigh, NC
(US); John B. Bley, Durham, NC (US);
Nathaniel C. Williams, Durham, NC
(US)

Assignee: BlueStripe Software, Inc., Morrisville,
NC (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 422 days.

Appl. No.: 13/022.906

Filed: Feb. 8, 2011

Prior Publication Data

US 2012/O2O3890 A1 Aug. 9, 2012

Int. C.
G06F 5/73
G06F II/34
G06F 9/455
U.S. C.
CPC G06F II/3495 (2013.01); G06F 9/45558

(2013.01); G06F II/3419 (2013.01); G06F
1 1/3409 (2013.01); G06F 2009/45595
(2013.01); G06F2201/815 (2013.01)

USPC 709/224; 709/202; 709/223; 700/9;
700/17: 718/1719/331

Field of Classification Search
None
See application file for complete search history.

(2006.01)
(2006.01)
(2006.01)

Host Machine 24
Collector 200

Wirtual Machine 28
Collector 200

Virtual Machine 26
Collector 20

OS Wirtualization
Container 115

Collector

Health data processing
application 100

Collector 200
Machine 20

(56) References Cited

U.S. PATENT DOCUMENTS

7.461,144 B1* 12/2008 Beloussov et al. 709,223
2004/0015583 A1 1/2004 Barrett et al. TO9,224
2007/0106756 A1* 5, 2007 Eftis et al. 709/217
2009/0070462 A1* 3/2009 Chong et al. ... TO9,224
2009.0113031 A1* 4/2009 Ruan et al. TO9,223
2009.0125496 A1* 5, 2009 Wexler et al. .. TO7/4
2011/O126198 A1* 5, 2011 Vike et al. 718.1
2012/0005334 A1* 1/2012 Raja et al. TO9,224
2012,0005674 A1 1/2012 Larimore et al. 718.1
2012/0084381 A1* 4/2012 Alladi et al. TO9,213
2012/0151177 A1* 6, 2012 Kalach et al. T11 203

OTHER PUBLICATIONS

Trie online). Sep. 18, 2010 retrieved on Dec. 21, 2010). Retrieved
from the Internet: <http://en.wikipedia.org/w/index.php?title=Tries:
oldid=3854.95914).
Suffix tree online). Aug. 29, 2010 retrieved on Dec. 21, 2010).
Retrieved from the Internet: <http://en.wikipedia.org/w/index.
php?title=Suffix tree&oldid=381775612>.

(Continued)

Primary Examiner — Saleh Naijar
Assistant Examiner — Jason Plotkin
(74) Attorney, Agent, or Firm — Myers Bigel Sibley &
Sajovec, P.A.

(57) ABSTRACT
Provided are methods and computer program products for
monitoring the performance of network applications execut
ing within operating-system-level virtualization containers.
Methods may include enumerating operating-system-level
virtualization containers on a networked device; creating a
named pipe accessible by at least one application running in
each operating-system-level virtualization container, retriev
ing, via the named pipe, performance data gathered by the at
least one application, including an identification of each oper
ating-system-level virtualization container, generating met
rics based on the retrieved performance data; and generating
an event incorporating the metrics, including operating-sys
tem-level virtualization container identifiers.

20 Claims, 14 Drawing Sheets

- 10

Collector 200

Collector 20

US 8,909,761 B2
Page 2

(56) References Cited Optimizing Levenshtein distance algorithm online). May 27, 2010
retrieved on Dec. 21, 2010. Retrieved from the Internet: <http://

OTHER PUBLICATIONS stackoverflow.com/questions/2918771/optimizing-levenshtein-dis
tance-algorithm).

Levenshtein distance online). Sep. 13, 2010 retrieved on Dec. 21.
2010. Retrieved from the Internet: <http://en.wikipedia.org/w/in
dex.php?title=Levenshtein distance&oldid=3845.05495>. * cited by examiner

US 8,909,761 B2 Sheet 1 of 14 Dec. 9, 2014 U.S. Patent

US 8,909,761 B2 Sheet 2 of 14 Dec. 9, 2014 U.S. Patent

eseqeqeq

US 8,909,761 B2 U.S. Patent

US 8,909,761 B2 U.S. Patent

US 8,909,761 B2 Sheet 5 of 14 Dec. 9, 2014 U.S. Patent

Z "SDI

US 8,909,761 B2 U.S. Patent

—,

(que!IO) owº

US 8,909,761 B2 Sheet 8 of 14 Dec. 9, 2014 U.S. Patent

US 8,909,761 B2 Sheet 9 of 14 Dec. 9, 2014 U.S. Patent

puE FI?

US 8,909,761 B2 U.S. Patent

US 8,909,761 B2 Sheet 11 of 14 Dec. 9, 2014 U.S. Patent

303

US 8,909,761 B2 Sheet 12 of 14 Dec. 9, 2014 U.S. Patent

puE

US 8,909,761 B2 Sheet 13 of 14 Dec. 9, 2014 U.S. Patent

000},

puE

US 8,909,761 B2 Sheet 14 of 14 Dec. 9, 2014 U.S. Patent

00Zj, sesseuppe al peuô?sse æJou Jo auo

US 8,909,761 B2
1.

METHODS AND COMPUTER PROGRAM
PRODUCTS FORMONITORING AND
REPORTNG PERFORMANCE OF

NETWORKAPPLICATIONS EXECUTING IN
OPERATING-SYSTEM-LEVEL

VIRTUALIZATION CONTAINERS

FIELD OF INVENTION

The present invention relates to computer networks and,
more particularly, to network performance monitoring meth
ods, devices, and computer program products.

BACKGROUND

The growing presence of computer networks such as intra
nets and extranets has brought about the development of
applications in e-commerce, education, manufacturing, and
other areas. Organizations increasingly rely on Such applica
tions to carry out their business, production, or other objec
tives, and devote considerable resources to ensuring that the
applications perform as expected. To this end, various appli
cation management, monitoring, and analysis techniques
have been developed.
One approach for managing an application involves moni

toring the application, generating data regarding application
performance, and analyzing the data to determine application
health. Some system management products analyze a large
number of data streams to try to determine a normal and
abnormal application state. Large numbers of data streams
are often analyzed because the system management products
may not have a semantic understanding of the data being
analyzed. Accordingly, when an unhealthy application state
occurs, many data streams may have abnormal data values
because the data streams are causally related to one another.
Because the system management products may lack a seman
tic understanding of the data, they may not be able to assist the
user in determining either the ultimate source or cause of a
problem. Additionally, these application management sys
tems may not know whether a change in data indicates an
application is actually unhealthy or not.

Current application management approaches may include
monitoring techniques such as deep packet inspection (DPI),
which may be performed as a packet passes an inspection
point and may include collecting statistical information,
among others. Such monitoring techniques can be data-inten
sive and may be ineffective in providing substantively real
time health information regarding network applications.
Additionally, packet trace information may be lost and appli
cation-specific code may be required.

Embodiments of the present invention are, therefore,
directed towards solving these and other related problems.

SUMMARY

It should be appreciated that this Summary is provided to
introduce a selection of concepts in a simplified form, the
concepts being further described below in the Detailed
Description. This Summary is not intended to identify key
features or essential features of this disclosure, nor is it
intended to limit the scope of the invention.
Some embodiments of the present invention are directed to

a method for monitoring and reporting the performance of
network applications executing in operating-system-level
virtualization containers. Methods may include monitoring
application performance in a networked device that provides
operating-system-level virtualization containers. One or

10

15

25

30

35

40

45

50

55

60

65

2
more operating-system-level virtualization containers on the
networked device are enumerated, and named pipes that are
accessible by at least one application running in a respective
one of the one or more operating-system-level virtualization
containers, and that are configured to receive data from within
the respective one of the one or more operating-system-level
virtualization containers, are created. Performance data,
gathered by the at least one application running in the respec
tive one of the one or more operating-system-level virtualiza
tion containers and including an identification of the respec
tive one of the one or more operating-system-level
virtualization containers, is retrieved via the named pipe that
is accessible by the at least one application running in the
respective one of the one or more operating-system-level
virtualization containers. A plurality of metrics based on the
collected performance data is generated, and an event incor
porating at least one of the plurality of metrics is generated.
Some embodiments may provide that the generated event
includes an IP address, a port, and/or a container identifier.

In some embodiments, creating a named pipe that is acces
sible by the at least one application running in the respective
one of the one or more operating-system-level virtualization
containers includes creating a named pipe within a file system
for a respective one of the one or more operating-system-level
virtualization containers.

Enumerating one or more operating-system-level virtual
ization containers on the networked device, in Some embodi
ments, includes determining, for a respective one of the one or
more operating-system-level virtualization containers, a
name, an identifier, a root location of a file system in a
machine global context, and/or one or more IP addresses
assigned to the respective one of the one or more operating
system-level virtualization containers. In some embodi
ments, enumerating one or more operating-system-level Vir
tualization containers on the networked device occurs
responsive to a system startup. Some embodiments may pro
vide that enumerating one or more operating-system-level
virtualization containers occurs responsive to a startup and/or
a shutdown of an operating-system-level virtualization con
tainer on the networked device.

Methods according to some embodiments may include
monitoring, for a respective one of the one or more operating
system-level virtualization containers, a call to a container
shutdown function. The named pipe that is accessible by the
at least one application running in the respective one of the
one or more operating-system-level virtualization containers
is removed responsive to detecting the call to the container
shutdown function. In some embodiments, a call to a system
shutdown and/or a system reboot function is monitored, and
the named pipe that is accessible by the at least one applica
tion running in the respective one of the one or more operat
ing-system-level virtualization containers is removed respon
sive to detecting the call to the system shutdown and/or the
system reboot function.
Some embodiments may provide that a write connection to

a named pipe that is accessible from within a respective one of
the one or more operating-system-level virtualization con
tainers is maintained, the write connection being operative to
prevent the named pipe from being automatically closed.

In some embodiments, a computer program product
including a non-transitory computer usable storage medium
having computer-readable program code embodied in the
medium is provided. The computer-readable program code is
configured to perform operations corresponding to methods
described herein.

Other methods, devices, and/or computer program prod
ucts according to exemplary embodiments will be or become

US 8,909,761 B2
3

apparent to one with skill in the art upon review of the fol
lowing drawings and detailed description. It is intended that
all Such additional methods, devices, and/or computer pro
gram products be included within this description, be within
the scope of the present invention, and be protected by the
accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described in more detail
in relation to the enclosed drawings, in which:

FIGS. 1a-1d are block diagrams illustrating exemplary
networks in which operations for monitoring network appli
cation performance may be performed according to some
embodiments of the present invention,

FIG. 2 is a block diagram illustrating an architecture of a
computing device as discussed above regarding FIGS. 1c and
1d,

FIG. 3 is a block diagram illustrating operations and/or
functions of a collector application as described above
regarding FIG. 1a,

FIG. 4 is a diagram illustrating determining a read wait
time corresponding to a user transaction according to some
embodiments of the present invention,

FIG. 5 is a block diagram illustrating a kernel level archi
tecture of a collector application to explain kernel level met
rics according to Some embodiments of the present invention,

FIG. 6 is a flowchart illustrating exemplary operations
carried out by a collector application in monitoring and
reporting network application performance according to
Some embodiments of the present invention,

FIG. 7 is a screen shot of a graphical user interface (GUI)
including a model generated by a health data processing
application according to some embodiments of the present
invention,

FIG. 8 is a flowchart illustrating exemplary operations
carried out by a health data processing application in gener
ating and displaying a real-time model of network application
health according to Some embodiments of the present inven
tion, and

FIG. 9 is a flowchart illustrating exemplary operations
carried out by a health data processing application in gener
ating and displaying an historical model of network applica
tion health according to Some embodiments of the present
invention.

FIG. 10 is a block diagram illustrating the architecture of a
system providing full-machine virtualization according to
Some embodiments of the present invention.

FIG. 11 is a block diagram illustrating the architecture of a
system providing operating-system-level virtualization
according to some embodiments of the present invention.

FIG. 12 is a flowchart illustrating exemplary operations
carried out a collector application 200 in monitoring the per
formance of network applications executing within operat
ing-system-level virtualization containers utilizing named
pipes according to some embodiments of the present inven
tion.

DETAILED DESCRIPTION

In the following description, for purposes of explanation
and not limitation, specific details are set forth Such as par
ticular architectures, interfaces, techniques, etc. in order to
provide a thorough understanding of the present invention.
However, it will be apparent to those skilled in the art that the
present invention may be practiced in other embodiments that
depart from these specific details. In other instances, detailed

10

15

25

30

35

40

45

50

55

60

65

4
descriptions of well known devices, circuits, and methods are
omitted so as not to obscure the description of the present
invention with unnecessary detail. While various modifica
tions and alternative forms of the embodiments described
herein may be made, specific embodiments are shown by way
of example in the drawings and will herein be described in
detail. It should be understood, however, that there is no intent
to limit the invention to the particular forms disclosed, but on
the contrary, the invention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the invention as defined by the claims. Like reference
numbers signify like elements throughout the description of
the figures.
As used herein, the singular forms “a,” “an, and “the are

intended to include the plural forms as well, unless expressly
stated otherwise. It should be further understood that the
terms “comprises” and/or "comprising when used in this
specification are taken to specify the presence of stated fea
tures, steps, operations, elements, and/or components, but do
not preclude the presence or addition of one or more other
features, steps, operations, elements, components, and/or
groups thereof. It will be understood that when an element is
referred to as being “connected' or “coupled to another
element, it can be directly connected or coupled to the other
element or intervening elements may be present. Further
more, “connected or “coupled as used herein may include
wirelessly connected or coupled. As used herein, the term
“and/or includes any and all combinations of one or more of
the associated listed items, and may be abbreviated as “7”.

Unless otherwise defined, all terms (including technical
and Scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art. It
will be further understood that terms, such as those defined in
commonly used dictionaries, should be interpreted as having
a meaning that is consistent with their meaning in the context
of the relevant art, and will not be interpreted in an idealized
or overly formal sense unless expressly so defined herein.

It will be understood that, although the terms first, second,
etc. may be used herein to describe various elements, these
elements should not be limited by these terms. These terms
are only used to distinguish one element from another.

Exemplary embodiments are described below with refer
ence to block diagrams and/or flowchart illustrations of meth
ods, apparatus (systems and/or devices), and/or computer
program products. It is understood that a block of the block
diagrams and/or flowchart illustrations, and combinations of
blocks in the block diagrams and/or flowchart illustrations,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, and/or other programmable data processing appa
ratus to produce a machine, such that the instructions, which
execute via the processor of the computer and/or other pro
grammable data processing apparatus, create means (func
tionality) and/or structure for implementing the functions/
acts specified in the block diagrams and/or flowchart block or
blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, Such that the instructions stored in the
computer-readable memory produce an article of manufac
ture including instructions which implement the functions/
acts specified in the block diagrams and/or flowchart block or
blocks.
The computer program instructions may also be loaded

onto a computer or other programmable data processing

US 8,909,761 B2
5

apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer-implemented process, such that the
instructions, which execute on the computer or other pro
grammable apparatus, provide steps for implementing the
functions/acts specified in the block diagrams and/or flow
chart block or blocks.

Accordingly, exemplary embodiments may be imple
mented in hardware and/or in Software (including firmware,
resident software, micro-code, etc.). Furthermore, exemplary
embodiments may take the form of a computer program prod
uct on a non-transitory computer-usable or computer-read
able storage medium having computer-usable or computer
readable program code embodied in the medium for use by or
in connection with an instruction execution system. In the
context of this document, a non-transitory computer-usable
or computer-readable medium may be any medium that can
contain, Store, or transport the program for use by or in con
nection with the instruction execution system, apparatus, or
device.
The computer-usable or computer-readable medium may

be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device. More specific examples (a non-exhaus
tive list) of the computer-readable medium would include the
following: a portable computer diskette, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), and a portable compact disc read-only memory
(CD-ROM).
Computer program code for carrying out operations of data

processing systems discussed herein may be written in a
high-level programming language, such as C, or Java, for
development convenience. In addition, computer program
code for carrying out operations of exemplary embodiments
may also be written in other programming languages, such as,
but not limited to, interpreted languages. Some modules or
routines may be written in assembly language or even micro
code to enhance performance and/or memory usage. How
ever, embodiments are not limited to a particular program
ming language. It will be further appreciated that the
functionality of any or all of the program modules may also be
implemented using discrete hardware components, one or
more application specific integrated circuits (ASICs), or a
programmed digital signal processor or microcontroller.

It should also be noted that in some alternate implementa
tions, the functions/acts noted in the blocks may occur out of
the order noted in the flowcharts. For example, two blocks
shown in Succession may in fact be executed Substantially
concurrently or the blocks may sometimes be executed in the
reverse order, depending upon the functionality/acts
involved. Moreover, the functionality of a given block of the
flowcharts and/or block diagrams may be separated into mul
tiple blocks and/or the functionality of two or more blocks of
the flowcharts and/or block diagrams may be at least partially
integrated.

Reference is made to FIGS. 1a-1d, which are block dia
grams illustrating exemplary networks in which operations
for monitoring and reporting network application perfor
mance may be performed according to some embodiments of
the present invention.
Computing Network

Referring to FIG. 1a, a network 10 according to some
embodiments herein may include a health data processing
application 100 and a plurality of network devices 20, 24, and
26 that may each include respective collector applications
200. It is to be understood that a “network device' as dis

10

15

25

30

35

40

45

50

55

60

65

6
cussed herein may include physical (as opposed to virtual)
machines 20; host machines 24, each of which may be a
physical machine on which one or more virtual machines may
execute; and/or virtual machines 26 executing on host
machines 24. It is to be further understood that an “applica
tion' as discussed herein refers to an instance of executable
software operable to execute on respective ones of the net
work devices. The terms “application' and “network appli
cation' may be used interchangeably herein, regardless of
whether the referenced application is operable to access net
work resources.

Collector applications 200 may collect data related to the
performance of network applications executing on respective
network devices. For instance, a collector application execut
ing on a physical machine may collect performance data
related to network applications executing on that physical
machine. A collector application executing on a host machine
and external to any virtual machines hosted by that host
machine may collect performance data related to network
applications executing on that host machine, while a collector
application executing on a virtual machine may collect per
formance data related to network applications executing
within that virtual machine.
The health data processing application 100 may be on a

network device that exists within the network 10 or on an
external device that is coupled to the network 10. Accord
ingly, in some embodiments, the network device on which the
health data processing application 100 may reside may be one
of the plurality of machines 20 or 24 or virtual machines 26.
Communications between various ones of the network
devices may be accomplished using one or more communi
cations and/or network protocols that may provide a set of
standard rules for data representation, signaling, authentica
tion and/or error detection that may be used to send informa
tion over communications channels therebetween. In some
embodiments, exemplary network protocols may include
HTTP, TDS, and/or LDAP among others.

Referring to FIG. 1b, an exemplary network 10 may
include a web server 12, one or more application servers 14
and one or more database servers 16. Although not illustrated,
a network 10 as used herein may include directory servers,
security servers, and/or transaction monitors, among others.
The web server 12 may be a computer and/or a computer
program that is responsible for accepting HTTP requests
from clients 18 (e.g., user agents such as web browsers) and
serving them HTTP responses along with optional data con
tent, which may be, for example, web pages such as HTML
documents and linked objects (images, etc.). An application
server 14 may include a service, hardware, and/or software
framework that may be operable to provide one or more
programming applications to clients in a network. Applica
tion servers 14 may be coupled to one or more web servers 12,
database servers 16, and/or other application servers 14,
among others. Some embodiments provide that a database
server 16 may include a computer and/or a computer program
that provides database services to other computer programs
and/or computers as may be defined, for example by a client
server model, among others. In some embodiments, database
management systems may provide database server function
ality.
Some embodiments provide that the collector applications

200 and the health data processing application 100 described
above with respect to FIG.1a may reside on ones of the web
server(s) 12, application servers 14 and/or database servers
16, among others. In some embodiments, the health data
processing application 100 may reside in a dedicated com
puting device that is coupled to the network 10. The collector

US 8,909,761 B2
7

applications 200 may reside on one, some or all of the above
listed network devices and provide network application per
formance data to the health data processing application 100.
Computing Device
Web server(s) 12, application servers 14 and/or database

servers 16 may be deployed as and/or executed on any type
and form of computing device, such as a computer, network
device, or appliance capable of communicating on any type
and form of network and performing the operations described
herein. FIGS. 1c and 1d depict block diagrams of a computing
device 121 useful for practicing some embodiments
described herein. Referring to FIGS. 1c and 1d, a computing
device 121 may include a central processing unit 101 and a
main memory unit 122. A computing device 100 may include
a visual display device 124, a keyboard 126, and/or a pointing
device 127. Such as a mouse. Each computing device 121 may
also include additional optional elements. Such as one or more
input/output devices 130a-130b (generally referred to using
reference numeral 130), and a cache memory 140 in commu
nication with the central processing unit 101.
The central processing unit 101 is any logic circuitry that

responds to and processes instructions fetched from the main
memory unit 122. In many embodiments, the central process
ing unit 101 is provided by a microprocessor unit, such as:
those manufactured by Intel Corporation of Mountain View,
Calif.; those manufactured by Motorola Corporation of
Schaumburg, Ill., the POWER processor, those manufactured
by International Business Machines of White Plains, N.Y.:
and/or those manufactured by Advanced Micro Devices of
Sunnyvale, Calif. The computing device 121 may be based on
any of these processors, and/or any other processor capable of
operating as described herein.
Main memory unit 122 may be one or more memory chips

capable of storing data and allowing any storage location to
be directly accessed by the microprocessor 101, such as Static
random access memory (SRAM), Burst SRAM or Synch
Burst SRAM (BSRAM), Dynamic random access memory
(DRAM), Fast Page Mode DRAM (FPMDRAM), Enhanced
DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst
Extended Data Output DRAM (BEDO DRAM), Enhanced
DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR
SDRAM), Enhanced SDRAM (ESDRAM), SyncLink
DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), or
Ferroelectric RAM (FRAM), among others. The main
memory 122 may be based on any of the above described
memory chips, or any other available memory chips capable
of operating as described herein. In some embodiments, the
processor 101 communicates with main memory 122 via a
system bus 150 (described in more detail below). In some
embodiments of a computing device 121, the processor 101
may communicate directly with main memory 122 via a
memory port 103. Some embodiments provide that the main
memory 122 may be DRDRAM.

FIG. 1d depicts some embodiments in which the main
processor 101 communicates directly with cache memory
140 via a secondary bus, sometimes referred to as a backside
bus. In some other embodiments, the main processor 101 may
communicate with cache memory 140 using the system bus
150. Cache memory 140 typically has a faster response time
than main memory 122 and may be typically provided by
SRAM, BSRAM, or EDRAM. In some embodiments, the
processor 101 communicates with various I/O devices 130
via a local system bus 150. Various busses may be used to
connect the central processing unit 101 to any of the I/O
devices 130, including a VESAVL bus, an ISA bus, an EISA

10

15

25

30

35

40

45

50

55

60

65

8
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, and/or a NuBus, among oth
ers. For embodiments in which the I/O device is a video
display 124, the processor 101 may use an Advanced Graph
ics Port (AGP) to communicate with the display 124. FIG. 1d
depicts some embodiments of a computer 100 in which the
main processor 101 communicates directly with I/O device
130 via HyperTransport, Rapid I/O, or InfiniBand. FIG. 1d
also depicts some embodiments in which local busses and
direct communication are mixed: the processor 101 commu
nicates with I/O device 130a using a local interconnect bus
while communicating with I/O device 130b directly.
The computing device 121 may supportany suitable instal

lation device 116, such as a floppy disk drive for receiving
floppy disks such as 3.5-inch, 5.25-inch disks, or ZIP disks, a
CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape
drives of various formats, USB device, hard disk drive
(HDD), solid-state drive (SSD), or any other device suitable
for installing software and programs such as any client agent
120, or portion thereof. The computing device 121 may fur
ther comprise a storage device 128. Such as one or more hard
disk drives or solid-state drives or redundant arrays of inde
pendent disks, for storing an operating system and other
related Software, and for storing application software pro
grams such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIXR, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri
bution from knoppix.net.

Furthermore, the computing device 121 may include a
network interface 118 to interface to a Local Area Network
(LAN), Wide Area Network (WAN) or the Internet through a
variety of connections including, but not limited to, standard
telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb,
X.25), broadband connections (e.g., ISDN. Frame Relay,
ATM), wireless connections (e.g., IEEE 802.11), or some
combination of any or all of the above. The network interface
118 may comprise a built-in network adapter, network inter
face card, PCMCIA network card, card bus network adapter,
wireless network adapter, USB network adapter, modem, or
any other device Suitable for interfacing the computing device
121 to any type of network capable of communication and
performing the operations described herein. A wide variety of
I/O devices 130a-130n may be present in the computing
device 121. Input devices include keyboards, mice, track
pads, trackballs, microphones, and drawing tablets, among
others. Output devices include video displays, speakers, ink
jet printers, laser printers, and dye-Sublimation printers,
among others. The I/O devices 130 may be controlled by an
I/O controller 123 as shown in FIG. 1C. The I/O controller
may control one or more I/O devices such as a keyboard 126
and a pointing device 127, e.g., a mouse or optical pen.
Furthermore, an I/O device may also provide storage 128
and/or an installation medium 116 for the computing device
100. In still other embodiments, the computing device 121
may provide USB connections to receive handheld USB stor
age devices such USB flash drives.

In some embodiments, the computing device 121 may
comprise or be connected to multiple display devices 124a
124m, which each may be of the same or different type and/or
form. As such, any of the I/O devices 130a-130n and/or the
I/O controller 123 may comprise any type and/or form of
suitable hardware, software, or combination of hardware and
Software to Support, enable, or provide for the connection and
use of multiple display devices 124a-124n by the computing

US 8,909,761 B2
9

device 121. For example, the computing device 121 may
include any type and/or form of video adapter, video card,
driver, and/or library to interface, communicate, connect or
otherwise use the display devices 124a-124n. In some
embodiments, a video adapter may comprise multiple con
nectors to interface to multiple display devices 124a-124n. In
Some other embodiments, the computing device 121 may
include multiple video adapters, with each video adapter con
nected to one or more of the display devices 124a-124n. In
Some embodiments, any portion of the operating system of
the computing device 100 may be configured for using mul
tiple displays 124a-124n. In some embodiments, one or more
of the display devices 124a-124 in may be provided by one or
more other computing devices connected to the computing
device 121, for example, via a network. Such embodiments
may include any type of software designed and constructed to
use another computer's display device as a second display
device 124.a for the computing device 121. One ordinarily
skilled in the art will recognize and appreciate the various
ways and embodiments that a computing device 121 may be
configured to have multiple display devices 124a-124n.

In further embodiments, an I/O device 130 may be a bridge
170 between the system bus 150 and an external communi
cation bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalkbus, a Giga
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPIbus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, and/or a Serial Attached small com
puter system interface bus, among others.
A computing device 121 of the sort depicted in FIGS. 1c

and 1d may typically operate under the control of operating
systems, which control Scheduling of tasks and access to
system resources. The computing device 121 can be running
any operating system such as any of the versions of the
Microsoft(R) Windows operating systems, any of the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any real-time operating system, any open
Source operating system, any proprietary operating system,
any operating systems for mobile computing devices, and/or
any other operating system capable of running on a comput
ing device and performing the operations described herein.
Typical operating systems include: WINDOWS 3.x, WIN
DOWS 95, WINDOWS 98, WINDOWS 2000, WINDOWS
NT 3.51, WINDOWS NT 4.0, WINDOWS CE, WINDOWS
XP, WINDOWS VISTA WINDOWS 7.0, WINDOWS
SERVER 2003, and/or WINDOWS SERVER 2008, all of
which are manufactured by Microsoft Corporation of Red
mond, Wash.; MacOS, manufactured by Apple Computer of
Cupertino, Calif.; OS/2, manufactured by International Busi
ness Machines of Armonk, N.Y.; and Linux, a freely-avail
able operating system distributed by Red Hat of Raleigh,
N.C., among others, or any type and/or form of a Unix oper
ating System, among others.

In some embodiments, the computing device 121 may have
different processors, operating systems, and input devices
consistent with the device. For example, in one embodiment
the computing device 121 is a Treo 180,270, 1060, 600 or 650
Smartphone manufactured by Palm, Inc. In this embodiment,
the Treo Smart phone is operated under the control of the
PalmOS operating system and includes a stylus input device
as well as a five-way navigator device. Moreover, the com
puting device 121 can be any workstation, desktop computer,
laptop, or notebook computer, server, handheld computer,
mobile telephone, any other computer, or other form of com
puting or telecommunications device that is capable of com

5

10

15

25

30

35

40

45

50

55

60

65

10
munication and that has sufficient processor power and
memory capacity to perform the operations described herein.
Architecture

Reference is now made to FIG. 2, which is a block diagram
illustrating an architecture of a computing device 121 as
discussed above regarding FIGS. 1c and 1d. The architecture
of the computing device 121 is provided by way of illustration
only and is not intended to be limiting. The architecture of
computing device 121 may include a hardware layer 206 and
a software layer divided into a user space 202 and a kernel
space 204.

Hardware layer 206 may provide the hardware elements
upon which programs and services within kernel space 204
and user space 202 are executed. Hardware layer 206 also
provides the structures and elements that allow programs and
services within kernel space 204 and user space 202 to com
municate data both internally and externally with respect to
computing device 121. The hardware layer 206 may include
a processing unit 262 for executing Software programs and
services, a memory 264 for storing Software and data, and
network ports 266 for transmitting and receiving data over a
network. Additionally, the hardware layer 206 may include
multiple processors for the processing unit 262. For example,
in Some embodiments, the computing device 121 may include
a first processor 262 and a second processor 262". In some
embodiments, the processor 262 or 262 includes a multi-core
processor. The processor 262 may include any of the proces
sors 101 described above in connection with FIGS.1c and 1d.

Although the hardware layer 206 of computing device 121
is illustrated with certain elements in FIG. 2, the hardware
portions or components of computing device 121 may
include any type and form of elements, hardware or software,
of a computing device. Such as the computing device 121
illustrated and discussed herein in conjunction with FIGS. 1c
and 1d. In some embodiments, the computing device 121 may
comprise a server, gateway, router, Switch, bridge, or other
type of computing or network device, and have any hardware
and/or software elements associated therewith.
The operating system of computing device 121 allocates,

manages, or otherwise segregates the available system
memory into kernel space 204 and user space 202. As dis
cussed above, in the exemplary Software architecture, the
operating system may be any type and/or form of various ones
of different operating systems capable of running on the
computing device 121 and performing the operations
described herein.
The kernel space 204 may be reserved for running the

kernel 230, including any device drivers, kernel extensions,
and/or other kernel related software. As known to those
skilled in the art, the kernel 230 is the core of the operating
system, and provides access, control, and management of
resources and hardware-related elements of the applications.
In accordance with some embodiments of the computing
device 121, the kernel space 204 also includes a number of
network services or processes working in conjunction with a
cache manager sometimes also referred to as the integrated
cache. Additionally, some embodiments of the kernel 230
will depend on embodiments of the operating system
installed, configured, or otherwise used by the device 121.

In some embodiments, the device 121 includes one net
work stack 267, such as a TCP/IP based stack, for communi
cating with a client and/or a server. In other embodiments, the
device 121 may include multiple network Stacks. In some
embodiments, the network stack 267 includes a buffer 243 for
queuing one or more network packets for transmission by the
computing device 121.

US 8,909,761 B2
11

As shown in FIG. 2, the kernel space 204 includes a high
speed layer 2-7 integrated packet engine 240 and a policy
engine 236. Running packet engine 240 and/or policy engine
236 in kernel space 204 or kernel mode instead of the user
space 202 improves the performance of each of these com
ponents, alone and in combination. Kernel operation means
that packet engine 240 and/or policy engine 236 run in the
core address space of the operating system of the device 121.
For example, data obtained in kernel mode may not need to be
passed or copied to a process or thread running in user mode,
such as from a kernel level data structure to a user level data
structure. In this regard, such data may be difficult to deter
mine for purposes of network application performance moni
toring. In another aspect, the number of context Switches
between kernel mode and user mode are also reduced. Addi
tionally, synchronization of and communications between
packet engine 240 and/or policy engine 236 can be performed
more efficiently in the kernel space 204.

In some embodiments, any portion of the packet engine
240 and/or policy engine 236 may run or operate in the kernel
space 204, while other portions of packet engine 240 and/or
policy engine 236 may run or operate in user space 202. In
Some embodiments, the computing device 121 uses a kernel
level data structure providing access to any portion of one or
more network packets, for example, a network packet com
prising a request from a client or a response from a server. In
some embodiments, the kernel-level data structure may be
obtained by the packet engine 240 via a transport layer driver
interface (TDI) or filter to the network stack 267. The kernel
level data structure may include any interface and/or data
accessible via the kernel space 204 related to the network
stack 267, network traffic, or packets received or transmitted
by the network stack 267. In some embodiments, the kernel
level data structure may be used by packet engine 240 and/or
policy engine 236 to perform the desired operation of the
component or process. Some embodiments provide that
packet engine 240 and/or policy engine 236 is running in
kernel mode 204 when using the kernel-level data structure,
while in some other embodiments, the packet engine 240
and/or policy engine 236 is running in user mode when using
the kernel-level data structure. In some embodiments, the
kernel-level data structure may be copied or passed to a sec
ond kernel-level data structure, or any desired user-level data
Structure.
A policy engine 236 may include, for example, an intelli

gent statistical engine or other programmable application(s).
In some embodiments, the policy engine 236 provides a con
figuration mechanism to allow a user to identify, specify,
define or configure a caching policy. Policy engine 236, in
Some embodiments, also has access to memory to Support
data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In some embodi
ments, the policy engine 236 may include any logic, rules,
functions or operations to determine and provide access, con
trol and management of objects, data or content being cached
by the computing device 121 in addition to access, control and
management of security, network traffic, network access,
compression, and/or any other function or operation per
formed by the computing device 121.

High speed layer 2-7 integrated packet engine 240, also
generally referred to as a packet processing engine or packet
engine, is responsible for managing the kernel-level process
ing of packets received and transmitted by computing device
121 via network ports 266. The high speed layer 2-7 inte
grated packet engine 240 may include a buffer for queuing
one or more network packets during processing. Such as for
receipt of a network packet or transmission of a network

10

15

25

30

35

40

45

50

55

60

65

12
packer. Additionally, the high speed layer 2-7 integrated
packet engine 240 is in communication with one or more
network stacks 267 to send and receive network packets via
network ports 266. The high speed layer 2-7 integrated packet
engine 240 may work in conjunction with policy engine 236.
In particular, policy engine 236 is configured to perform
functions related to traffic management such as request-level
content Switching and request-level cache redirection.
The high speed layer 2-7 integrated packet engine 240

includes a packet processing timer 242. In some embodi
ments, the packet processing timer 242 provides one or more
time intervals to trigger the processing of incoming (i.e.,
received) or outgoing (i.e., transmitted) network packets. In
Some embodiments, the high speed layer 2-7 integrated
packet engine 240 processes network packets responsive to
the timer 242. The packet processing timer 242 provides any
type and form of signal to the packet engine 240 to notify,
trigger, or communicate a time related event, interval or
occurrence. In many embodiments, the packet processing
timer 242 operates in the order of milliseconds, such as for
example 100 ms, 50 ms, or ms. For example, in some embodi
ments, the packet processing timer 242 provides time inter
vals or otherwise causes a network packet to be processed by
the high speed layer 2-7 integrated packet engine 240 at a 10
ms time interval, while in other embodiments, at a 5 ms time
interval, and still yet in further embodiments, as short as a 3.
2, or 1 ms time interval. The high speed layer 2-7 integrated
packet engine 240 may be interfaced, integrated and/or in
communication with the policy engine 236 during operation.
AS Such, any of the logic, functions, or operations of the
policy engine 236 may be performed responsive to the packet
processing timer 242 and/or the packet engine 240. There
fore, any of the logic, functions, and/or operations of the
policy engine 236 may be performed at the granularity of time
intervals provided via the packet processing timer 242, for
example, at a time interval of less than or equal to 10 ms.

In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. Generally, a user mode application may not access
kernel space 204 directly, and instead must use service calls in
order to access kernel services. As shown in FIG.2, user space
202 of computing device 121 includes a graphical user inter
face (GUI) 210, a command line interface (CLI) 212, shell
services 214, and daemon services 218. Using GUI 210 and/
or CLI 212, a system administrator or other user may interact
with and control the operation of computing device 121. The
GUI 210 may be any type and form of graphical user interface
and may be presented via text, graphical or otherwise, by any
type of program or application, such as a browser. The CLI
212 may be any type and form of command line or text-based
interface. Such as a command line provided by the operating
system. For example, the CLI 212 may comprise a shell,
which is a tool to enable users to interact with the operating
system. In some embodiments, the CLI 212 may be provided
via a bash, csh, tcsh, and/orksh type shell. The shell services
214 may include the programs, services, tasks, processes
and/or executable instructions to Support interaction with the
computing device 121 or operating system by a user via the
GUI 210 and/or CLI 212.
Daemon services 218 are programs that run continuously

or in the background and handle periodic service requests
received by computing device 121. In some embodiments, a
daemon service may forward the requests to other programs
or processes, such as another daemon service 218 as appro
priate. As known to those skilled in the art, a daemon service
218 may run unattended to perform continuous and/or peri

US 8,909,761 B2
13

odic system wide functions, such as network control, or to
performany desired task. In some embodiments, one or more
daemon services 218 run in the user space 202, while in other
embodiments, one or more daemon services 218 run in the
kernel space.
Collector Application

Reference is now made to FIG.3, which is a block diagram
illustrating operations and/or functions of a collector appli
cation 200 as described above regarding FIG.1a. The collec
tor application 200 includes a kernel space module 310 and a
user space module 320. The kernel space module 310 may
generally operate to intercept network activities as they occur.
Some embodiments provide that the kernel space module 310
may use a kernel mode interface in the operating system, Such
as, for example, Microsoft Windows transport data interface
(TDI). The kernel space module 310 may include a TDI filter
314that is configured to monitor and/or intercept interactions
between applications. Additionally, Some embodiments pro
vide that the kernel space module 310 may include an ancil
lary functions driver (AFD) filter 312 that is configured to
intercept read operations and the time of their duration. Some
operating systems may include a kernel mode driver other
than the AFD. In this regard, operations described herein may
be used with other such kernel mode drivers to intercept
application operational data.
The raw data related to the occurrence of and attributes of

transactions between network applications may be generally
referred to as “performance data.” The raw data may have
value for diagnosing network application performance issues
and/or for identifying and understanding the structure of the
network applications. The measurements or aggregations of
performance data may be generally referred to as "metrics” or
“performance metrics.” Performance data and the metrics
generated therefrom may be temporally relevant—i.e., the
performance data and the metrics may be directly related to
and/or indicative of the health of the network at the time the
performance data is collected. Performance data may be col
lected, and metrics based thereon may be generated, on a
client side and/or a server side of an interaction. Some
embodiments provide that performance data is collected in
substantially real-time. In this context, “substantially real
time” means that performance data is collected immediately
subsequent to the occurrence of the related network activity,
subject to the delays inherent in the operation of the comput
ing device and/or the network and in the method of collection.
The performance data collected and/or the metrics generated
may correspond to a predefined time interval. For example, a
time interval may be defined according to the dynamics of the
network and may include exemplary period lengths of less
than 1, 1, 5, 10, 15, 20, 30, and/or 60, seconds, among others.

Exemplary client side metrics may be aggregated accord
ing to one or more applications or processes. For example, the
client side metrics may be aggregated according to destina
tion address, port number, and a local process identifier (PID).
A PID may be a number used by some operating system
kernels to uniquely identify a process. This number may be
used as a parameter in various function calls allowing pro
cesses to be manipulated, such as adjusting the process’s
priority and/or terminating the process. In this manner, mul
tiple connections from the same application or process to the
same remote service may be aggregated. As discussed in
more detail with respect to FIGS. 10-11, client side metrics
for processes that work together as a single logical unit may
also be aggregated into process pools.

Similarly, serverside metrics may be aggregated according
to the same application or service regardless of the client. For
example, Some embodiments provide that server side metrics

10

15

25

30

35

40

45

50

55

60

65

14
may be aggregated according to local address, port number,
and PID. Respective ones of the client side and server side
metrics may be collected from the kernel space and/or user
Space.
The kernel space module 310 may include a kernel events

sender 316 that is configured to receive performance data
from the AFD filter 312 and/or the TDI filter 314, and gener
ate metrics based on the performance data for receipt by a
kernel events receiver 322 in the user space module 320. In
the user space module 320, metrics data received by the
kernel event receiver 322 may be processed by a reverse
domain name system (DNS) resolver 325 to map an observed
network address to a more user-friendly DNS name. Addi
tionally, metrics data received by the kernel events receiver
322 may be used by a process resolver 326 to determine the
processes and/or applications corresponding to the collected
kernel metrics data.
The user space module 320 may include a machine infor

mation collector 324 that is operable to determine static
machine information, Such as, for example, CPU speed,
memory capacity, and/or operating system version, among
others. As the performance data is collected corresponding to
applications and/or processes, the machine information may
be non-correlative relative to the applications and/or pro
cesses. The userspace module 320 may include a process data
collector 328 that collects data corresponding to the processes
and/or applications determined in the process resolver 326. A
machine performance data collector 330 may collect machine
specific performance data. Examples of machine data may
include information about resource utilization Such as the
amount of memory in use and/or the percentage of available
CPU time consumed. The user space module 320 may include
an event dispatcher 332 that is configured to receive the
machine information, resolved DNS information, process
identification, process data, and/or machine data, and togen
erate events incorporating the aggregated metrics data for
dispatch to a health data processor application 100 that is
operable to receive aggregated metrics data from multiple
collectors 200.
Some embodiments provide that the performance data col

lected and/or metrics generated may be diagnostically
equivalent and, thus, may be aggregated into a single event.
The identification process may depend on which application
initiates a network connection and which end of the connec
tion is represented by a current collector application host.

Kernel level metrics may generally include data corre
sponding to read operations that are in progress. For example,
reference is now made to FIG. 4, which is a diagram illustrat
ing determining a read wait time corresponding to a user
transaction according to some embodiments of the present
invention. A user transaction between a client 401 and a
server 402 are initiated when the client 401 sends a write
request at time T1 to the server 402. The server 402 completes
reading the request at time T2 and responds to the request at
time T3 and the client 401 receives the response from the
server 402 at time T4. A kernel metric that may be determined
is the amount of time spent between beginning a read opera
tion and completing the read operation. In this regard, client
measured server response time 410 is the elapsed time
between when the request is sent (T1) and when a response to
the request is read (T4) by the client. Accordingly, the client
measured server response time 410 may be determined as
T4-T1. The server 402 may determine a server measured
server response time 412 that is the elapsed time between
when the request is read (T2) by the server 402 and when the
response to the request is sent (T3) by the server 402 to the

US 8,909,761 B2
15

client 401. Accordingly, the server measured server response
time 412 may be determined as T3-T2.
As the application response is measured in terms of

inbound and outbound packets, the application response time
may be determined in an application agnostic manner.

Additionally, another metric that may be determined is the
read wait time 414, which is the elapsed time between when
the client 401 is ready to read a response to the request T5 and
when the response to the request is actually read T4. In some
embodiments, the read wait time may represent a portion of
the client measured server response time 410 that may be
improved upon by improving performance of the server 402.
Further, the difference between the client measured server
response time 410 and the server measured server response
time 412 may be used to determine the total transmission time
of the data between the client 401 and the server 402. Some
embodiments provide that the values may not be determined
until a read completes. In this regard, pending reads may not
be included in this metric. Further, as a practical matter,
higher and/or increasing read time metrics discussed above
may be indicative of a slow and/or poor performing server
402 and/or protocol where at least Some messages originate
unsolicited at the server 402.

Other read metrics that may be determined include the
number of pending reads. For example, the number of read
operations that have begun but are not yet completed may be
used to detect high concurrency. In this regard, high and/or
increasing numbers of pending read operations may indicate
that a server 402 is not keeping up with the workload. Some
embodiments provide that the total number of reads may
include reads that began at a time before the most recent
aggregated time period.

Additionally, some embodiments provide that the number
of reads that were completed during the last time period may
be determined. An average of read wait time per read may be
generated by dividing the total read wait time, corresponding
to a sum of all of the T4-T5 values during the time period, by
the number of completed reads in that period.

In some embodiments, the number of stalled reads may be
determined as the number of pending reads that began earlier
thana predefined threshold. For example, a predefined thresh
old of 60 seconds may provide that the number of pending
read operations that began more than 60 seconds ago are
identified as stalled read operations. Typically, any value
greater than Zero may be undesirable and/or may be indicative
of a server-initiated protocol. Some embodiments may also
determine the number of bytes sent/received on a connection.
The number of completed responses may be estimated as

the number of times a client-to-server message (commonly
interpreted as a request) was followed by a server-to-client
message (commonly interpreted as a response). Some
embodiments provide that this may be measured by both the
server and the client connections. In some embodiments, this
may be the same as the number of completed reads for a given
connection. Additionally, a total response time may be esti
mated as the total time spent in request-to-response pairs.

Reference is now made to FIG. 5, which is a block diagram
illustrating a kernel level architecture of a collector applica
tion 200 to explain kernel level metrics according to some
embodiments of the present invention. As discussed above,
regarding FIG.3, the collector may use a TDI filter 314 and an
AFD filter 312. The AFD filter 312 may intercept network
activity from user space processes that use a library defined in
a standard interface between a client application and an
underlying protocol stack in the kernel.

The TDI filter 314 may operate on a lower layer of the
kernel and can intercept all network activity. As the amount of

10

15

25

30

35

40

45

50

55

60

65

16
information available at AFD filter 312 and TDI filter 314 is
different, the performance data that may be collected and the
metrics that may be generated using each may also be differ
ent. For example, the AFD filter 312 may collect AFD per
formance data and generate AFD metrics that include total
read wait time, number of completed reads, number of pend
ing reads and number of stalled reads, among others. The TDI
filter may collect TDI performance data and generate TDI
metrics including total bytes sent, total bytes received, total
response time and the number of responses from the server.
Depending on the architecture of a target application, the
AFD metrics for client-side connections may or may not be
available. In this regard, if the application uses the standard
interface, the collector may report non-zero AFD metrics.
Otherwise, all AFD metrics may not be reported or may be
reported as Zero.
Some embodiments provide that kernel level metrics may

be generated corresponding to specific events. Events may
include read wait metrics that may include client side metrics
Such as total read wait time, number of completed reads,
number of pending reads, number of stalled reads, bytes sent,
bytes received, total response time, and/or number of
responses, among others. Events may further include server
response metrics such as bytes sent, bytes received, total
response time and/or number of responses, among others.

In addition to the kernel metrics discussed above, the col
lector 200 may also generate user level metrics. Such user
level metrics may include, but are not limited to aggregate
CPU percentage (representing the percentage of CPU time
across all cores), aggregate memory percentage (i.e., the per
centage of physical memory in use by a process and/or all
processes), and/or total network bytes sent/received on all
network interfaces, among others. User level metrics may
include, but are not limited to, the number of page faults (the
number of times any process tries to read from or write to a
page that was not in its resident in memory), the number of
pages input (i.e., the number of times any process tried to read
a page that had to be read from disk), and/or the number of
pages output (representing the number of pages that were
evicted by the operating system memory manager because it
was low on physical memory), among others. User level
metrics may include, but are not limited to, a queue length
(the number of outstanding read or write requests at the time
the metric was requested), the number of bytes read from
and/or written to a logical disk in the last time period, the
number of completed read/write requests on a logical disk in
the last time period, and/or total read/write wait times (cor
responding to the number of milliseconds spent waiting for
read/write requests on a logical disk in the last time interval),
among others.

Further, some additional metrics may be generated using
data from external application programming interfaces. Such
metrics may include, for example: the amount of memory
currently in use by a machine memory control driver; CPU
usage expressed as a percentage; memory currently used as a
percentage of total memory; and/or total network bytes sent/
received, among others.

In some embodiments, events may be generated responsive
to certain occurrences in the network. For example events
may be generated: when a connection, Such as a TCP connec
tion, is established from or to a machine; when a connection
was established in the past and the collector application 200
first connects to the health data processing application 100;
and/or when a connection originating from the current
machine was attempted but failed due to timeout, refusal, or
because the network was unreachable. Events may be gener
ated when a connection is terminated; when a local server

US 8,909,761 B2
17

process is listening on a port; when a local server process
began listening on a port in the past and the collector appli
cation 200 first connects to the health data processing appli
cation 100; and/or when a local server process ceases to listen
on a port. Events may be generated if local network interfaces
have changed and/or if a known type of event occurs but some
fields are unknown. Events may include a description of the
static properties of a machine when a collector application
200 first connects to a health data processing application 100:
process information data when a process generates its first
network-related event; and/or information about physical
disks and logical disks when a collector application 200 first
connects to a health data processing application 100.
Some embodiments provide that the different link events

may include different data types corresponding to the type of
information related thereto. For example, data strings may be
used for a type description of an event. Other types of data
may include integer, bytes and/or Boolean, among others.

In some embodiments, the events generated by collector
application 200 for dispatch to heath data processing appli
cation 100 may incorporate metrics related to network struc
ture, network health, computational resource health, Virtual
machine structure, virtual machine health, and/or process
identification, among others. Metrics related to network
structure may include data identifying the network device on
which collector application 200 is executing, or data related
to the existence, establishment, or termination of network
links, or the existence of bound ports or the binding or unbind
ing of ports. Metrics pertinent to network health may include
data related to pending, completed, and stalled reads, bytes
transferred, and response times, from the perspective of the
client and/or the serverside. Metrics related to computational
resource health may include data regarding the performance
of the network device on which collector application 200 is
executing, Such as processing and memory usage. Metrics
related to virtual machine structure may include data identi
fying the physical host machine on which collector applica
tion 200 is executing, and/or data identifying the virtual
machines executing on the physical host machine. Metrics
pertinent to virtual machine health may include regarding the
performance of the host machine and/or the virtual machines
executing on the host machine, such as processing and
memory usage as determined from the perspective of the host
machine and/or the virtual machines. Finally, metrics related
to process identification may include data identifying indi
vidual processes executing on a network device.

Reference is made to FIG. 6, which illustrates exemplary
operations that may be carried out by collector application
200 in monitoring and reporting network application perfor
mance according to Some embodiments of the present inven
tion. At block 600, collector application 200 establishes
hooks on a networked device to an internal network protocol
kernel interface utilized by the operating system of the net
worked device. In some embodiments, these hooks may
include, for instance, a TDI filter. Collector application 200
also establishes hooks to an application oriented system call
interface to a transport network Stack. The hooks may
include, in some embodiments, an AFD filter. Collector appli
cation 200 collects, via the established hooks, performance
data corresponding to at least one network application run
ning on the networked device (block 602). At block 604,
kernel level and user level metrics are generated based on the
collected performance data. The generated metrics may pro
vide an indication of the occurrence of an interaction (e.g.,
establishment of a network link), or may provide measure
ments of, for instance, a count of some attribute of the col
lected performance data (e.g., number of completed reads) or

10

15

25

30

35

40

45

50

55

60

65

18
a summation of some attribute of the collected performance
data (e.g., total read attempts). The kernel leveland user level
metrics are aggregated by application—e.g., by aggregating
metrics associated with the same IP address, local port, and
process ID (block 606). At block 608, the kernel leveland user
level metrics generated within a specified time interval are
aggregated. For instance, in Some embodiments, metrics gen
erated within the most recent 15-second time interval are
aggregated.
At block 610, redundant data is removed from the aggre

gated metrics, and inconsistent data therein is reconciled.
Redundant data may include, for instance, functionally
equivalent data received from both the TDI and AFD filters.
Collector application 200 performs a reverse DNS lookup to
determine the DNS name associated with IP addresses refer
enced in the generated kernel level and user level metrics
(block 612). Finally, at block 614, an event is generated,
incorporating the kernel level and user level metrics and the
determined DNS name(s). The generated event may be sub
sequently transmitted to health data processing application
100 for incorporation into a model of network health status.
Installation without Interruption

In some embodiments, the collector application 200 may
be installed into a machine of interest without requiring a
reboot of the machine. This may be particularly useful in the
context of a continuously operable system, process and/or
operation as may be frequently found in manufacturing envi
ronments, among others. As the collector operations interface
with the kernel, and more specifically, the protocol stack,
installation without rebooting may entail intercepting
requests coming in and out of the kernel using the TDI filter.
Some embodiments include determining dynamically critical
offsets in potentially undocumented data structures. Such
offsets may be used in intercepting network activity for ports
and connections that exist prior to an installation of the col
lector application 200. For example, such previously existing
ports and connections may be referred to as the extant state of
the machine.
Some embodiments provide that intercepting the stack data

may include overwriting the existing stack function tables
with pointers and/or memory addresses that redirect the
request through the collector filter and then to the intended
function. In some embodiments, the existing stack function
tables may be overwritten atomically in that the overwriting
may occur at the smallest indivisible data level. Each entry in
a function table may generally include a function pointer and
a corresponding argument. However, only one of these entries
(either the function or the argument) can be overwritten at one
time. Thus, intercepting function calls may rely on two con
secutive overwrites of the Stack data corresponding to the
function and corresponding argument. In some embodiments,
there is no means for protecting from an intervening operation
between overwriting one of the function and argument and
overwriting the other one of them. In this regard, system
stability may beat risk from two attempted consecutive over
writes.
As the consecutive overwrites of intercepting function

calls may place the machine at risk of instability, a dynamic
overwriting operation may be used. Specifically, a separate
data structure is provided that includes a pointer to the origi
nal function, its original argument and dynamically generated
code to call a filter in the collector application 200. The
address of this data structure may be used to atomically over
write the original function pointer in a single operation. The
collector collects the data and then calls the original function
corresponding to the overwritten stack data to perform its
intended purpose. In this manner, the original behavior of the

US 8,909,761 B2
19

machine is preserved and the collector application collects
the relevant data without rebooting the machine and/or plac
ing the machine at risk of instability.
Some embodiments may include identifying the poten

tially undocumented data structures representing bound ports
and network connections. For example, TDI objects (connec
tions and bound ports) created prior to the installation of the
collector application 200 may be determined by first enumer
ating all objects identified in a system. Each of the enumer
ated objects may be tagged with an identifier corresponding
to its Sub-system. A request corresponding to a known TDI
object is created and sent for processing. The type codes of the
enumerated objects are compared to those of the known TDI
object to determine which of the objects are ports and which
of the objects are connections. The enumerated objects may
then be filtered as either connections or ports.

In some embodiments, this may be accomplished using an
in-kernel thread. The thread may monitor network connec
tions having restricted visibility and may detect when a moni
tored connection no longer exists. Connections may be added
dynamically to the monitored list as needed.
Some embodiments provide that events may be generated

to indicate that visibility into network events may be incom
plete. For example, information may be missing correspond
ing to an active process, the state of a known connection,
and/or missing information regarding network activity. In this
manner, depending on conditions, a custom event can be
transmitted to indicate what type of information is missing
and what process may be responsible for that information.
Health Data Processing Application

In some embodiments, the health data processing applica
tion 100 may be operable to receive, from at least one collec
tor application 200, network activity data corresponding to
network activity of the applications on the network device on
which the collector application 200 is installed. The health
data processing application 100 may combine the network
activity data received from the collector application 200 to
remove redundant portions thereof. In some embodiments,
the health data processing application 100 may archive the
received activity data in a persistent data store along with a
timestamp indicating when the activity data was collected
and/or received. The health data processing application 100
may generate a model that includes identified network appli
cation components and their relatedness and/or links therebe
tween. The generated model may be displayed via one or
more display devices such as, e.g., display devices 124a-124n
discussed in greater detail above.

In some embodiments, the health data processing applica
tion 100 may be operable to combine network activity data
reported from multiple collector applications 200 to eliminate
redundancy and to address inconsistencies among data
reported by different collector applications 200. For example,
network data from multiple collector applications 200 may be
stitched together to create a consistent view of the health of
the network applications.
Some embodiments provide that the model may be a

graphical display of the network including application com
ponents (machines, clients, processes, etc.) and the relation
ships therebetween. In some embodiments, the model may be
generated as to reflect the real-time or near-real-time activity
of the network. It is to be understood that, in this context,
“near-real-time' may refer to activity occurring in the most
recent of a specified time interval for which activity data was
received. For instance, health data processing application 100
may receive from collector applications 200 aggregated
activity data corresponding to the most recent 15-second
interval of network operation, and, accordingly, the model of

10

15

25

30

35

40

45

50

55

60

65

20
near-real-time activity may reflect the activity of the network
as it existed during that most recent 15-second interval.
Some embodiments provide that the model may be gener

ated to reflect an historical view of network activity data
corresponding to a specified time interval. The historical view
may be generated based on archived activity data retrieved
from a persistent data store and having a timestamp indicating
that the activity data was collected or received during the
specified time interval. In other embodiments, the model may
be dynamically updated to reflect new and/or lost network
collectors and/or network components. Further, graphs may
be provided at each and/or selected network resource indica
tors to show activity data over part of and/or all of the time
interval.

In some embodiments, a model may include sparklines to
provide quick access to trends of important metrics, process
and application views to provide different levels of system
detail, and/or model overlays to provide additional applica
tion analysis. For example, visual feedback regarding the
contribution of a network link relative to a given criterion may
be provided. In this manner, hop by hop transaction data about
the health of applications can be provided. Additionally,
visual ranking of connections based on that criteria may be
provided. Bottleneck analysis based on estimated response
times may be provided to identify slow machines, applica
tions, and/or processes, among others.
Some embodiments provide that health data processing

application 100 may be operable to infer the existence of
network devices and/or network applications for which no
activity data was received or on which no collector applica
tion 200 is running, based on the identification of other net
work devices and/or other network applications for which
activity data was received. For instance, activity data received
by health data processing application 100 may indicate that a
network link has been established between a local network
device running collector application 200 and a remote net
work device that is not running collector application 200.
Because the activity data may include identifying informa
tion for both the local and remote network devices, health data
processing application 100 may infer that the remote network
device exists, and incorporate the remote network device into
the generated model of network activity.

In other embodiments, health data processing application
100 may be operable to identify a network application based
on predefined telecommunications standards, such as, e.g.,
the port numbers list maintained by the Internet Assigned
Numbers Authority (IANA). Health data processing applica
tion 100 may, for example, receive activity data indicating
that a process on a network device is bound to port 21. By
cross-referencing the indicated port number with the IANA
port numbers list, health data processing application 100 may
identify the process as an File Transfer Protocol (FTP) server,
and may include the identification in the generated model.

Reference is made to FIG. 7, which is a screen shot of a
graphical user interface (GUI) including a model generated
by a health data processing application according to some
embodiments of the present invention. The GUI 700 includes
a model portion 701 that illustrates representations of various
network applications and/or application components 702.
Such representations may include identifier fields 704 that are
operable to identify application and/or application compo
nent addresses, ports, machines and/or networks. Connec
tions 706 between network applications and/or application
components may be operable to convey additional informa
tion via color, size and/or other graphical and/or text-based
information. A summary field 708 may be provided to illus
trate Summary information corresponding to one or more

US 8,909,761 B2
21

applications and/or application components, among others. A
port identification portion 712 may be operable to show the
connections corresponding to and/or through a particular
port. The GUI 700 may include a system and/or network
navigation field 710, overlay selection field 714, and one or
more time interval and/or snapshot field(s) 716.

FIG. 8 is a flowchart illustrating exemplary operations that
may be carried out by health data processing application 100
in generating and displaying a real-time model of network
application health according to some embodiments of the
present invention. At block 800, health data processing appli
cation 100 may receive activity data from a plurality of col
lector applications 200 executing on respective ones of a
plurality of network devices. The received activity data cor
responds to activities of a plurality of network applications
executing on respective ones of the plurality of networked
devices. At block 802, the received activity data is archived
along with a timestamp indicating when the activity data was
collected and/or received. As discussed in greater detail with
respect to FIG. 9, this archived data may allow health data
processing application 100 to generate and display an histori
cal model of network application health during a specified
time interval. At block 804, the received activity data is com
bined to remove redundant data and to reconcile inconsistent
data. At block 806, health data processing application 100
identifies the network applications executing on the respec
tive ones of the plurality of networked devices, and ascertains
the relationships therebetween. The identification of the net
work applications and the relationships therebetween may be
based on the received activity data, and may further be deter
mined based on a correlation between the received activity
data and predefined industry standards, as discussed above.
At block 808, health data processing application 100 may
infer the existence of network applications for which no activ
ity data was received, based on the identification of network
applications for which activity data was received. At block
810, a real-time model of network health status, including the
identified network applications and the relationships therebe
tween, is generated, and the model is displayed at block 812.

FIG. 9 is a flowchart illustrating exemplary operations
carried out by a health data processing application 100 in
generating and displaying an historical model of network
application health according to some embodiments of the
present invention. At block 900, the activity data previously
archived at block 802 and corresponding to a specified time
interval is retrieved. The retrieved activity data is combined to
remove redundant data and reconcile inconsistent data at
block 902. At block 904, health data processing application
100 identifies the network applications associated with the
retrieved activity data, and ascertains the relationships ther
ebetween. The identification of the network applications and
the relationships therebetween may be based on the retrieved
activity data, and may further be determined based on corre
lation between the retrieved activity data and industry stan
dards. At block 906, health data processing application 100
may infer the existence of network applications for which no
activity data was retrieved, based on the identification of
network applications for which activity data was retrieved. At
block908, an historical model of network health status in the
specified time interval, including the identified network
applications and the relationships therebetween, is generated,
and the historical model is displayed at block 910.
Custom Protocol
Some embodiments provide that transferring the activity

data between the collector applications 200 and the health
data processing application 100 may be performed using a
compact, self-describing, linear buffer communications pro

10

15

25

30

35

40

45

50

55

60

65

22
tocol. In some embodiments, the custom protocol uses a
common representation for monitoring information, com
mands and configuration data. As the methods and systems
described herein are intended to monitor network perfor
mance, the protocol may be operable to minimize the Volume
of information exchanged between the collector applications
200 and the health data processing application 100.

In some embodiments, the collector applications 200 are
operable to generate events in a streaming data format. Events
may be generated corresponding to the predefined monitoring
time period. Information provided corresponding to an event
may include an event type, network resource identification
data including PID, remote identifiers, quantities and/or types
of data sent/received, and/or response time information,
among others. The protocol may include a banner portion that
may be established through a handshaking process that may
occur when a collector application 200 initially communi
cates with the health data processing application 100. The
banner portion may define the data types and formats to be
transferred. In this manner, the protocol may be flexible by
virtue of the self-descriptive banner portion and may avoid
sending unused, unwanted or blank data fields.
Monitoring and Reporting Performance of Network Applica
tions Executing in Operating-System-Level Virtualization
Containers

Reference is now made to FIG. 10, which is a block dia
gram illustrating the architecture of a system providing full
machine virtualization according to Some embodiments of
the present invention. As discussed above, collector applica
tion 200, in some embodiments, may be operable to collect
performance data and generate metrics for network applica
tions that are executing within a virtual machine environ
ment—i.e., within a virtual machine provided by a full-ma
chine virtualization platform, Such as VMware, among
others. Such a full-machine virtualization platform may
execute on a single physical computer but may provide mul
tiple isolated virtual machines, each of which may execute a
separate instance of an operating system, and may be per
ceived as a separate physical computer by the operating sys
tem instance and user applications executing within the Vir
tual machine. For example, as seen in FIG. 10, physical
machine 1000, which may be a computing device as
described above and illustrated in FIGS. 1c and 1d, may run
virtualization platform 1005, which may be the software that
provides full-machine virtualization functionality. Virtualiza
tion platform 1005 may provide virtual machines 1010 and
1015, each of which may execute its own instance of an
operating system (such as operating system instances 1020
and 1025, respectively).

In some embodiments, collector application 200, when
executing within a full-machine virtualization system, may
run on physical machine 1000, or may run within virtual
machines 1010 and/or 1015. In this way, performance data
may be gathered and events generated for each physical and/
or virtual machine.

In contrast to full-machine virtualization, Some operating
systems may provide virtualization at the operating system
level. Reference is now made to FIG. 11, which is a block
diagram illustrating the architecture of a system providing
operating-system-level virtualization according to some
embodiments of the present invention. This type of virtual
ization is distinct from full-machine virtualization in that the
kernel of the operating system may allow the creation of
multiple isolated user space instances, referred to as virtual
ization containers. For example, as illustrated by FIG. 11,
physical machine 1100, which may be a computing device as
described above and illustrated in FIGS. 1c and 1d, may

US 8,909,761 B2
23

execute primary operating system 1105, which may provide
operating-system-level virtualization functionality. Primary
operating system 1105 may provide global virtualization con
tainer 1110, within which multiple operating system virtual
ization containers 1110 and 1115 may be created. Some 5
examples of virtualization containers, among others, are
Workload Partitioning (WPAR) containers provided by the
AIX operating system, and Zones provided by the Solaris
operating system.

Collector application 200, when executed within an oper- 10
ating-system-level virtualization system, may run withinglo
bal virtualization container 1110, while the network applica
tions to be monitored by collector application 200 may run
within operating system virtualization containers 1115 and
1120. However, because operating system virtualization con- 15
tainers 1115 and 1120 are isolated from global virtualization
container 1110 by primary operating system 1105's isolation
mechanisms, collector application 200 may not be able to
collect performance data from the network applications
executing within operating system virtualization containers 20
1115 and 1120. Moreover, when a process executing within a
particular operating system virtualization container binds a
port to the ANY (0.0.0.0) or loopback (127.0.0.1) IP
addresses within that operating system virtualization con
tainer, collector application 200 may not be able to determine 25
in which operating system virtualization container the bind
occurred. This could result in the model of network applica
tion health generated by health data processing application
100 being unable to provide an accurate depiction of the
existing network links. 30

Accordingly, in Some embodiments, collector application
200 may provide a method for monitoring the performance of
network applications executing within operating system Vir
tualization containers 1115 and 1120. Collector application
200 may first enumerate the existing virtualization containers 35
present in the global virtualization container 1110. In some
embodiments, enumerating may include determining the
name and identifier of each operating system virtualization
container, the root location of each operating system virtual
ization container's file system in a machine global context, 40
and/or the IP addresses assigned to each operating system
virtualization container, among others.

Collector application 200 may then create, for each enu
merated operating system virtualization container 1115 and
1120, a named pipe that is accessible for writing from within 45
each of operating system virtualization containers 1115 and
1120, and from which collector application 200 may read. It
is to be understood that a “named pipe' is a first-in, first-out
(FIFO) data conduit that enables the transmission of data
between executing processes. In some embodiments, collec- 50
tor application 200 may create the named pipe within the file
system for each of operating system virtualization containers
1115 and 1120, using the root location of each operating
system virtualization container's file system as determined
during collector application 200’s enumeration of the exist- 55
ing operating system virtualization containers. Collector
application 200 may retrieve, via the named pipe, perfor
mance data collected within operating system virtualization
containers 1115 and 1120 (for example, performance data
gathered by network applications running within operating 60
system virtualization containers 1115 and 1120), effectively
overcoming the isolation between operating system virtual
ization containers 1115 and 1120 and the global virtualization
container 1110. Collector application 200 may then generate
kernel level metrics and/or user level metrics based on the 65
collected performance data, and may generate an event incor
porating the kernel level metrics and the user level metrics.

24
Some embodiments may provide that the generated event
includes an IP address, a port, and/or a container identifier,
among others. For example, the generated event may include
a data block as illustrated below:

IPAddress Port Number Container Identifier

In some embodiments, health data processing application 100
may use the additional data provided by the generated event to
more accurately model network application health, such as,
e.g., by providing special modeling of intra-container con
nections to the ANY and/or loopback IP addresses.

In some embodiments, collector application 200’s enu
meration of the existing virtualization containers occurs on
system startup. This allows collector application 200 to
obtain a view of the initial state of the virtualization environ
ment immediately after the system begins execution. Some
embodiments may provide that enumeration of the existing
virtualization containers occurs in response to the startup or
shutdown of an individual virtualization container, thus per
mitting collector application 200 to maintain an accurate list
of open virtualization containers.

Collector application 200, in some embodiments, may
execute on operating systems that may not permit a virtual
ization container to shut down if there exists an active con
nection to a named pipe within the virtualization container.
Accordingly, collector application 200 may monitor a con
tainer shutdown function, for instance by “hooking,” or inter
cepting calls to, the containershutdown function. When a call
to the container shutdown function is detected for a virtual
ization container, collector application 200 may remove the
named pipe for the virtualization container prior to shutdown
to avoid interfering with the container shutdown. Some
embodiments may provide that collector application 200
hooks the system shutdown function and/or the system reboot
function, and, in response to a call to the system shutdown
function and/or the system reboot function, removes all
named pipes for existing virtualization containers prior to
system shutdown or reboot.

In some embodiments, an operating system that provides
named pipe functionality may monitor the number of write
connections to a named pipe, and, in order to conserve system
resources, may automatically remove the named pipe when
all data sources within the operating system virtualization
container have released the named pipe. To prevent this auto
matic removal from occurring. Some embodiments may pro
vide that collector application 200 may create and maintain
its own write connection to each named pipe that it creates—
i.e., collector application 200 may hold both a read connec
tion and a write connection to each named pipe, in addition to
any write connections to the named pipes from within oper
ating system virtualization containers 1115 and 1120.
Accordingly, as long as collector application 200 holds a
write connection to each named pipe, the operating system
will not remove the named pipe should there temporarily be
no active connections to the named pipe within operating
system virtualization containers 1115 and 1120.

Reference is now made to FIG. 12, which a flowchart
illustrating exemplary operations carried out by a collector
application 200 in monitoring the performance of network
applications executing within an operating-system-level Vir
tualization containers utilizing named pipes. At block 1200,
collector application 200 enumerates the operating-system
level virtualization containers on the networked device. In
doing so, collector application 200 may determine a name, an

US 8,909,761 B2
25

identifier, a root location of the file system in a machine global
context, and/or one or more assigned IP addresses for each
virtualization container. Collector application 200 creates a
named pipe in the root location of each virtualization con
tainer's file system (block 1205). Within each container, per
formance data is gathered by at least one network application
running within the container, the performance data including
an IP address, a port, and/or a container identifier (block
1210). At block 1215, collector application 200 retrieves, via
the named pipes, the performance data collected within each
container. Collector application 200 generates, for each con
tainer, metrics based on the retrieved performance data (block
1220), and generates an event incorporating the metrics,
including the container identifier (block 1225).
Many variations and modifications can be made to the

embodiments without Substantially departing from the prin
ciples of the present invention. The following claims are
provided to ensure that the present application meets all statu
tory requirements as a priority application in all jurisdictions
and shall not be construed as setting forth the scope of the
present invention.

That which is claimed:
1. A method for monitoring application performance in a

networked device that provides operating-system-level virtu
alization containers, the method comprising:

enumerating one or more operating-system-level virtual
ization containers on the networked device;

creating a named pipe that is accessible by at least one
application running in a respective one of the one or
more operating-system-level virtualization containers
and that is configured to receive data from within the
respective one of the one or more operating-system
level virtualization containers;

retrieving, via the named pipe that is accessible by the at
least one application running in the respective one of the
one or more operating-system-level virtualization con
tainers, performance data gathered by the at least one
application running in the respective one of the one or
more operating-system-level virtualization containers,
wherein the collected performance data includes an
identification of the respective one of the one or more
operating-system-level virtualization containers;

maintaining a write connection to the named pipe that is
accessible by the at least one application running in the
respective one of the one or more operating-system
level virtualization containers, wherein the write con
nection is operative to prevent the named pipe from
being automatically closed;

generating a plurality of metrics based on the retrieved
performance data; and

generating an event incorporating at least one of the plu
rality of metrics:

wherein said enumerating one or more operating-system
level virtualization containers, creating a named pipe,
retrieving performance data, generating a plurality of
metrics, and/or generating an event comprise operations
performed using at least one programmed computer pro
cessor circuit.

2. The method of claim 1, wherein creating the named pipe
that is accessible by the at least one application running in the
respective one of the one or more operating-system-level
virtualization containers comprises creating the named pipe
within a file system for the respective one of the one or more
operating-system-level virtualization containers.

3. The method of claim 1, wherein the generated event
comprises a container identifier associated with the one or
more operating-system-level virtualization containers.

5

10

15

25

30

35

40

45

50

55

60

65

26
4. The method of claim 1, wherein enumerating one or

more operating-system-level virtualization containers on the
networked device comprises determining, for a respective
one of the one or more operating-system-level virtualization
containers

a root location of a file system in a machine global context.
5. The method of claim 1, wherein enumerating one or

more operating-system-level virtualization containers on the
networked device occurs responsive to a system startup.

6. The method of claim 5, wherein enumerating one or
more operating-system-level virtualization containers further
occurs responsive to a startup and/or a shutdown of an oper
ating-system-level virtualization container on the networked
device.

7. The method of claim 1, the method further comprising:
monitoring, for a respective one of the one or more oper

ating-system-level virtualization containers, a call to a
container shutdown function; and

removing the named pipe that is accessible by the at least
one application running in the respective one of the one
or more operating-system-level virtualization contain
ers responsive to detecting the call to the containershut
down function.

8. The method of claim 1, the method further comprising:
monitoring a call to a system shutdown and/or a system

reboot function; and
removing the named pipe that is accessible by the at least

one application running in the respective one of the one
or more operating-system-level virtualization contain
ers responsive to detecting the call to the system shut
down and/or the system reboot function.

9. A computer program product comprising:
a non-transitory computer readable storage medium hav

ing computer readable program code embodied therein,
the computer readable program code executable on a
processor, comprising:

computer readable program code configured to enumerate
one or more operating-system-level virtualization con
tainers on a networked device;

computer readable program code configured to create a
named pipe that is accessible by at least one application
running in a respective one of the one or more operating
system-level virtualization containers and that is config
ured to receive data from within the respective one of the
one or more operating-system-level virtualization con
tainers;

computer readable program code configured to retrieve,
via the named pipe that is accessible by the at least one
application running in the respective one of the one or
more operating-system-level virtualization containers,
performance data gathered by the at least one applica
tion running in the respective one of the one or more
operating-system-level virtualization containers,
wherein the collected performance data includes an
identification of the respective one of the one or more
operating-system-level virtualization containers;

computer readable program code configured to maintain a
write connection to the named pipe that is accessible by
the at least one application running in the respective one
of the one or more operating-system-level virtualization
containers, wherein the write connection is operative to
prevent the named pipe from being automatically
closed;

computer readable program code configured to generate a
plurality of metrics based on the retrieved performance
data; and

US 8,909,761 B2
27

computer readable program code configured to generate an
event incorporating at least one of the plurality of met
rics.

10. The computer program product of claim 9, wherein the
computer readable program code configured to create the
named pipe that is accessible by the at least one application
running in the respective one of the one or more operating
System-level virtualization containers comprises computer
readable program code configured to create the named pipe
within a file system for the respective one of the one or more
operating-system-level virtualization containers.

11. The computer program product of claim 9, wherein the
generated event comprises a container identifier associated
with the one or more operating-system-level virtualization
containers.

12. The computer program product of claim 9, wherein the
computer readable program code configured to enumerate
one or more operating-system-level virtualization containers
on the networked device comprises computer readable pro
gram code configured to determine, for a respective one of the
one or more operating-system-level virtualization containers
a root location of a file system in a machine global context.

13. The computer program product of claim 9, wherein the
computer readable program code configured to enumerate
one or more operating-system-level virtualization containers
on the networked device is further configured to enumerate
one or more operating-system-level virtualization containers
on the networked device responsive to a system startup.

14. The computer program product of claim 13, wherein
the computer readable program code configured to enumerate
one or more operating-system-level virtualization containers
on the networked device is further configured to enumerate
one or more operating-system-level virtualization containers
on the networked device responsive to a startup and/or a
shutdown of an operating-system-level virtualization con
tainer on the networked device.

15. The computer program product of claim 9, the com
puter readable program code comprising further comprising:

computer readable program code configured to monitor,
for a respective one of the one or more operating-sys
tem-level virtualization containers, a call to a container
shutdown function; and

computer readable program code configured to remove the
named pipe that is accessible by the at least one appli
cation running in the respective one of the one or more
operating-system-level virtualization containers
responsive to detecting the call to the container shut
down function.

16. The computer program product of claim 9, the com
puter readable program code further comprising:

10

15

25

30

35

40

45

28
computer readable program code configured to monitor a

call to a system shutdown and/or a system reboot func
tion; and

computer readable program code configured to remove the
named pipe that is accessible by the at least one appli
cation running in the respective ones of the one or more
operating-system-level virtualization containers
responsive to detecting the call to the system shutdown
and/or the system reboot function.

17. A computer implemented method embodied on a non
transitory computer-readable medium and executable by a
processor, the method comprising:

creating a named pipe that is accessible by at least one
application running in a respective one of one or more
operating-system-level virtualization containers on a
networked device, and that is configured to receive data
from within the respective one of the one or more oper
ating-system-level virtualization containers on the net
worked device; and

retrieving, via the named pipe that is accessible by the at
least one application running in the respective one of the
one or more operating-system-level virtualization con
tainers, performance data gathered by the at least one
application running in the respective one of the one or
more operating-system-level virtualization containers,
wherein the collected performance data includes an
identification of the respective one of the one or more
operating-system-level virtualization containers; and

maintaining a write connection to the named pipe that is
accessible by the at least one application running in the
respective one of the one or more operating-system
level virtualization containers, wherein the write con
nection is operative to prevent the named pipe from
being automatically closed.

18. The method of claim 17, further comprising:
generating a plurality of metrics based on the retrieved

performance data; and
generating an event incorporating at least one of metrics.
19. The method of claim 1, wherein the generated event

comprises an IP address and/or a port.
20. The method of claim 1, wherein enumerating one or

more operating-system-level virtualization containers on the
networked device comprises determining, for a respective
one of the one or more operating-system-level virtualization
containers:

a name,
an identifier, and/or
one or more IP addresses assigned to the respective one of

the one or more operating-system-level virtualization
containers.

