US 20190028414A1

a2y Patent Application Publication (o) Pub. No.: US 2019/0028414 A1l

a9y United States

Walker et al.

43) Pub. Date: Jan. 24, 2019

(54) SYSTEM AND METHOD FOR PROVIDING A
COMMUNICATIONS LAYER TO ENABLE
FULL PARTICIPATION IN A DISTRIBUTED
COMPUTING ENVIRONMENT THAT USES
MULTIPLE MESSAGE TYPES

(71) Applicant: n.ie Innovation, LL.C, Broomfield, CO
(US)

(72) Inventors: James David Walker, Denver, CO
(US); Matthew R. Dodge, Dana Point,
CA (US); James A. Holmes,
Broomfield, CO (US); Franky Martin,
Boca Raton, FL (US)

(21) Appl. No.: 16/038,786
(22) Filed: Jul. 18, 2018

Related U.S. Application Data

(60) Provisional application No. 62/534,503, filed on Jul.

19, 2017, provisional application No. 62/599,981,
filed on Dec. 18, 2017.

108

Publication Classification

(51) Int. CL
HO4L 12/58 (2006.01)
HO4L 29/08 (2006.01)
HO4L 29/06 (2006.01)
(52) US.CL
CPC ... HO4L 51/066 (2013.01); HO4L 51/38

(2013.01); HO4L 63/0428 (2013.01); HO4L
67/104 (2013.01); HO4L 67/26 (2013.01);
HO4L 67/2823 (2013.01)

(57) ABSTRACT

An improved system and method for communication among
clients using multiple messaging types are disclosed. In one
example, a client includes at least one brew that interfaces
with a module. The module encapsulates a transfer mecha-
nism for sending and receiving messages using a particular
message type. The client further includes at least one brewer
or patron, but may include many brewers and/or patrons,
each of which corresponds to at least one topic. An appli-
cation using the client can send messages to other clients
using a standardized interface provided by all brewers and
may receive messages from other clients either from patrons
using a standardized interface provided by all patrons or
from the brew.

100

N DEVICE ¢

102
Z_\-] PUBKEEPER

SERVER
ya <
- 114
RN DEVICE] DEVICE 2
NETWORK(S) e
104 | | PUBKEEPER |/ N PUBKEEPER |4 |90
CLIENT \\Hi_/g\\mﬂx/;NJ/ CLENT

US 2019/0028414 A1l

Jan. 24,2019 Sheet 1 of 35

Patent Application Publication

< 'old

gl "old
ALITYNOLLONN WALSAS HAdFIMENd Ny _ (S)LNIFD
N
‘g0, 1] HIJIAIMEN
(SNOLLYINIWE 1A ‘bl
“ (SINOH.LYd AdAL FDOVSSIN) o »
LnovLvYa } (S)TINaon muszM% | wanaEs
605 r or ot 1] ¥3d3INENd
%
(s3INQOW OL A ERILE
SoToe | (Sdamave 5 SIOVAUILNYSHIdIVEM) |~ OH
(Simzyg z0z
P 4
902 LNFIO ¥3d3avand a
A E
N3O : N3O |
e %
ool T ¥3damiand SEEEENE AT I A
(
™M 30IN3A (SHHOMLAN 30IA3Q WaN

ot

< -

HIAAIS N
HIdIIHGNd ZoL
FA0IA3d N

Okt

US 2019/0028414 A1l

Jan. 24,2019 Sheet 2 of 35

Patent Application Publication

0oy

¥¥ Oid PR
H " Y
¥ ¢ A
M M MUY w ! N
z0z
F: E-
¥ 4
(€ oi1dOL) (Z O1dOL) (1L oidoL) {1 Di1dOL)
NO¥LYd HIMINE NOH.IVd HAMIHE
g80z asoz BR0Z BQ0Z ¥OlL
Ve 'Old
. HIAASNVHL
g "Oid IYa MW
FINAON
NOLLYOrIddY \ o ™oz
P MIHG L~
O | N e z0z
idvy N
- 90% A , voe
INGFO 802 (SINOHLIVd | (S)d3IMINY Moz
{H8Nd) S P B
, 80€
WILSAS vor mzwa&\jn&ﬁ J,
LNOVYIVa . NI Yiva
HALI]IEN S 0p <
W NOILLYOITddY o
zoe

00

US 2019/0028414 A1l

Jan. 24,2019 Sheet 3 of 35

Patent Application Publication

ddAl OVES3W .
HYIOLLEYE ¥ 4O 88 'Oid
NOLIYINIGWA AN
HAID3dS
ATNCONW HOVYE ¥4
oy FICGON NOLLVENIWI N =hiatslell} e
ay0c N4104dS BH07
R L o U0 N 8202
PNy fdY idy N
¥0g < P0g
SAFY
TIY 504 idY
SHADELS J1d0OL TYOLLNT HADAAS D1d0OL
ANE ALVTYNOILLONN A 1N8 ALMYNOILLONOH
GAIEOEE TYILLNED ONAS TYILLNZOL
mWWON mecN QMQN
o4 NOHIVd NOM 1Y HAMIHY HAMEHE HIAMIME |~
L1216 /0NN ONNNUROIOVNPVRUOTSOHS! § SERSURNUNUURIIOUPN § SNGUORMIOIOIUINROUPNE J SRR SRR BOOZ
bdY idV feidl iV ¥
5 S 9 X X
\W 20% 20g 90L a0¢ 80e
00e SNOHLYd SHIMTHE
T HO4 IdY T €04
TYOLLNEG Id¥ TYOLLNSO

US 2019/0028414 A1l

Jan. 24, 2019 Sheet 4 of 35

00%

Patent Application Publication

& 'Old

NOLLYONddY
HOA VIV FIVOINNAINGD
SNOUIVI/SHIMINE
Q3LO3INNOD

alg

K

SNOHLVI/SHIMIHE SANFND
HO4 304N SY A3HSavLs3
3V SNOLLOINNOD

809

&

SNOHLVd OGNV SHIMEHY
GIAOHIH/MEN/F1EYTIVAY
40 INZIO S3UAILON ¥3AMES

904

A

HIAMAS
HELM SHILSIDIY NGO

p0G

E:

ANZITD S1HVLS NOLLVOddY

<09

US 2019/0028414 A1l

Jan. 24,2019 Sheet S of 35

Patent Application Publication

9 "9id
{1 1) (1 1)
P o} B N
araz -l 3naow m FINAOW | BP0z
o 509
4w G Moz
azoz MIuE MIMHE
apLo A~ A~ ey L9
989 | eglo |
{1 D1dOL qzi9 BZ19 (L 0IdOL
~ HIAIFOIH) m 4 (L o1doL) {1 21d0OL) - ¥IANES)
NOLLYDddY NO¥1vd MIMINE NOLIYOIddY
ALHYd QHIHL i - ALY aHIHL
w 019 19 | 80Z BOl§ | 90C 2019 S
09 (NOHLAG) (LJIMOSYAYT) c09
SN IN3MD AN N
o0) HIdIIHANd Y¥34IIHANd P01
\W MIANIS |
003 HIdIIMEN >01

US 2019/0028414 A1l

Jan. 24,2019 Sheet 6 of 35

Patent Application Publication

L7914

-3

c01
H3IAHES

il

By0C
FIMNAOK

S

004

(SINOUIVA (SIIMaNE HILSIDTY
(SINOH LY oL/
{S)yIMIUE
(SIMmaNg
HILSIDHIH
= FJHNDHANOD FIvIND v/
JUNOIENOD 31v340 ~S
FUNDIHENOD "FIVIND
a0s 1YLS
C{(S)AIHE 90/
ERSNARS
C IHNDIENOD ONY 3LYIHD x\wcm
BR-L-ARN 704
802 90z BZ0T 0L z09
(SINOuIvd (ShH3IMIuE (Simaus INTHTD ddV

v

«

= 8 'Ol

&

g

S INFITO HUM NOHLYd o~
= /HEMINE HOVE HILSIOTY 018
N

= 6 "9l M

i . NOY IV IMIEE HOVE

o HIAYIS AN

S

2 HLIM (SINOULYIASIHIMAYNE P AHNDIANOD ANV H.1v=360 808
< ¥ILSIDIY 906 L

= ¢

N

= g) ™

S (SINOYU1Vd (S)damang (SIMTHE LHVLS 08
< (YN EREREREIRS =N I N 3

< MOVHL ANY IAIFOFY 06

s Y .

N (S)Mavg A~

- FANOIEANOD ANV FLYIAHO y08
= Q3L8VLS INID e y

g Z06

=

£

. INIINO LUVLS AN

S 208
g 006

=

=

E S

g 008

=

[~

US 2019/0028414 A1l

Jan. 24,2019 Sheet 8 of 35

Patent Application Publication

90} LNIITO \uk

01 '9Oid
T NOILYOIHILON TWAOWIY NOG1vd 7oL
NOILYNIYIL NOHLYd 40 AdILON 2701
NOILLVOIHILON TYAOWTY ¥amaug ozl
NOILVNIFYEL H3ME8E 40 A4IION 1™ 3101
) FLYOINNININOD T 3101
(smviza _ rioL
UIMIUG L) ADLON HIMINE e
(sTv13a _ 01
NO¥1Vd ‘L) A4ILON NO¥1Vd
LN
SN0 NIIMLIE 038N 38 0104
Ol 3dAL IDYSSIN ININHILAT
NOYLVd 40 AJILON ™ g0t
HIMEYE 40 AJILON ™S00
X NOILVOLLNIHLNY ™ ool
) NOILYDILNIHLNY 001
0L INIIIO 201 ¥AAMIS

0001

US 2019/0028414 A1l

Jan. 24,2019 Sheet 9 of 35

Patent Application Publication

v e T AN
(09 |~
INZO Z0z
HAd43DdNd
009

L 'Oid

vz LN

(NOHLAd)
INTD
HAL4IDIEN

HIANIS
H3433480Nd

S0t

Z04

AN
(LdPIDSYAVT) L~

ANZD yOlL
H343IMHENd

FOE LNSINO

S

OGLE

L "e3id

T ONIDVS SN TOMINOD W04 agsn L

TINNYHD THND3S ‘TILNVHO i
Q3INIC/GELNYED NOILVOILNGHLAY Mgy,
TIATVSNLYLS L

NOILLYOLLNIH LAY

S.INIMO INIWYILIC
a3153N03Y NOILYOILNIHLAY ~ oL
701 MIAHIS

S

oogl

—

<«

=

3 VoL "9l

o

% |

= mwmm)\, vivad ONIONIS NID3g

= m

o

* (@3a33n) ™~ Biel

=] LAAMONT/SSIOOH

[T'g)

m oLEL ViVQ NS

(=]

S GELEENENT NS

= LdAA¥ONT

2

7 .

w ZLEL SIVALLDY

m 5

< NOMIVd 40 AJILON oLel

= |

= (Shdamadg ~Fho
INVATTIY 80E}

- AdLLNI

2

~Nt

b INIID H3HLONY LV NOMIVY 40 NOLLYDIHILON onet

=

= \K\E%

nm ¥0EL

2) aN3S 0L Viva

5 |

L

= 201 By0z 90z BZ0Z yOL z09

M HIANIS FINCOW HIMIHE AMIHE INTD ddy

=

e

[

=W

coet

US 2019/0028414 A1l

Jan. 24,2019 Sheet 11 of 35

gyl

Patent Application Publication

gkl "Old

HEMIHE
dHL DNIZINOH LY LYVLS

OL MIHE STHEL NOHLVYd HOV3E

G3033N I NOLYIWNHO AN
MIHE JAMTONVEEIMENE
MANY S FH3HL
JYHL NOHIYd HOVI AJLLON

4

NOLLVYINGHOANI
MEAHE T3033N ANV TINd

&

OldOL SHEMIUE
HOH4 SNOHLIYd TV 40 X007

-y

NOLLYOI4LLON
«H3MFEE MIN SAIZ03Y

gevi

gevl

gyl

vivi

eyl

g€l "old

NOH1Vd
AHL OL ONIANIS LViS OL
MFE STTEL YEMIYE HOVE

-

G4034N 1 NOLWYINHO AN
MIHE FANTONINOY IV
MINY St FHIHL
IVHL HEMIHE HOVE AJILON

£

NOLLYINHOANI
MIEE GHO3EN ANY TN

&

JHdOL SINOHIYd
HOH4 SHIMIHEE TV JdNAHOO0T

£

NOILYOI4ILLON
NOHLVd MIN JAIZ03Y

oeel

8Ll

acel

yeel

ccel

A4 WIE

{(HSNd) viva

US 2019/0028414 A1l

(azazan4) /7 1 S
1dAND3Q

(HSNd/MIN) ViVQ

w,
e
S
0 =
2 =
= Vivd YLl
E
N’
7 GEEENE]) P
o LdAMDIWSSIOON
S |
2 -
X opl viva GaAE0EY
m »
= o0vt JIVAILLDY

&

HIMIBME 40 AHLLON

90F

=

om

M Y

= (SINOULVD PN

< INVATTIH POl
A A4LLNAAI

g m

s TNIMD HIHIONY 1V S9mMasd 40 NOILYOIHILON _ ™ Sop
[*)

2 | |

S Z01 avoz 807 azoz 901

< HIANIS H TINAON NOM IV MIHE INER

g aov i

[

=W

08
¥

8ivi

Gl¥l
Livi

US 2019/0028414 A1l

Jan. 24,2019 Sheet 13 of 35

Patent Application Publication

Gl Ol
SNIANIS 1avis Szl
B ONIGN3S 1dvls yesL
ONAS NOMIVd ™ gocy
) ONAS NOH1iVd 2LG1
i
T L
LAOINIL —_] ONAS NOY 1vd o151
AL
—tha ONAS NOY1vd 161
A4ILON HEMIng ~ el
LNOINIL
A AHILLON ¥3MIU8 0L51
qzZ5h |
(Lol INTID '90L ™ 8oy
INTID] LINL YIMTNE
 HALSIOTY HIMINE S0c1
HIALSIOTY NOHLvd P0C1L
HALSIDTH NOYIvd Socs
\W 20} (907 ¥3aMIUE) {4807 NOU 1Y) (eg0Z NOM LY
HUIAEIS pOL AN LOSL INTITO 90} LN3IO

oG

US 2019/0028414 A1l

Jan. 24, 2019 Sheet 14 of 35

Patent Application Publication

,,,,,,,, = (ALYNYIELTY) viva
vivd

8t "9id
N {1 1)) {4 1) L~
407 IINCAON IINAON 0z
-
ki
~ (L) (1 1) L~
azéz MINE MINE 8702
0oL P WL %
N\\\ | EzosL
(1 D1dOL Ao ,
— HIAFOTH) | {1 D1dOL) (i OIdOL)
NOILY O ddY ¢ w NOHLVd HIMIUG
ALMYd QHIHL
m 4ci8t gnz 80z
v09 (NOHLAJ) {LAIHOSYAYT)
N\ INTND INTD o™
904 NEREENIERD MIAJIDIGNd ¥OL
¥3IANES L
HILTIHEN >0l

009

{1 O1dOL

- YIAANES)
NOLLY O ddY
ALsvd QUIHL

5

c09

=
-+ L "9id
-
oy
x |
N f ™
m w Yiva vell
9 AN
= (aaazan a0, 1 2o
A ONIZNIND _
e J OO SO SONNUUAY SOUUNUSUN NP UNTS ROV SSUONUSRUUUY RPN SOOI S
0zLL

& C wlva
= . SN
- CeEREEINE 8Ll
— ONIFENEND
= gLil
= Vv
wnn
o (aaczan 40 /7 S
& $5300Md _|
S . (FdAL
. m vivd IOVSSIN
= AV ,
= _NO gasgve) | 9Lt

T HIASNVUL 80/

AR 7o B ™

g Viva
g N AN
k> GEleEEINE Q041
w $$300¥d
£ } v0L1
g Yiva
.m H vivQ >0/
E
< 004t 09 802 9z0z a4poe ey0z BZOT 902 z09
- ddv NOHLYd Mg IJIaow 3INAoW MINE HIMIAE ddv
&
&
="

US 2019/0028414 A1l

Jan. 24,2019 Sheet 16 of 35

Patent Application Publication

ogel

gigl

a8l "oid

NOLLY DAY OL THNd/MSNd
NV NOPLJAGOHT HOH NOHIYd
CLVYI¥a G31LdAGHONT ONES

N
gesl

f

{Q3Q33N 41 NOH LY Y04
FINCOW WOHA VIVA 1HIANGD

AN
Fegl

i

FTNTONW WOYL
ViVQ3 03 1LdAHONT 3AIE03Y

2esl

881 "Oid

ASVETIVO VIA NOUVOTddY O
ATLOEHIT GNGS/NOILLVYONddY
HOH4 NOHIYd OLVYEIYA ONIR

N
2i8l

A

(Q3aIIN 40 NOYLYd HOA
IINAOW WOMH VIVE LHIANOD

RN
gigl

&

(Q3033N 4D viva LdAYD3d

vigl

F:N

FINGON WO
VivQ Q3 LdANDOND AIZ03Y

AIRN
cigl

ogel

008l

281 "Sid

NOISSINSNYHL HO4 3TN0
OLVIVO O3 LdAMONT ONES

N
9281

A

(a3Q33N 30 F3MNCOW Y04
HIMIHE WOHH VYA LHIANOD

RS
vl

I

HIMIEE WOHS
YivVQ d31dAHONT IAZ03

sl

v8l 'Ol

NOISSHASNYYL
HO4 FINAOW 0L VYIVGE ANES

808/

{(Q3033N 4D viva LdAHONT

08l

&

(303N 41 3TNAOKW HO4
HIMIHE WOHL vV LHIANOD

N,
081

A

HIMIRE INOXA
VIVQ Q3LdAHONIND IAEDEY

0Bl

US 2019/0028414 A1l

Jan. 24,2019 Sheet 17 of 35

Patent Application Publication

eLols T Z DidOL
L dOL
{1 21d0oL
A - HIAONES)
(z D1dOL POBL | 35un0s viva
~H{3ANIDTH) oL
NOLYNILSZA ™ 3gg, m oroe /
viva ’ G
5 904 ‘ g90Z
M S (e 1W) (€1W) M0z
: IINACK MIuE m
. =1
(Z NdOL) ko~ octe roe (Z 91dOL)
1 NOHivd 480¢ m m HIMINE
: {z 1) (z 1n) {z 1) (Z L) X
M MIug Ehlalelely IJINAOW AMIME /
]
(L oidoL) |3 ~ ~ (1 DldOL)
NOMIVd R avoc azoe Hamaxg
%
w o T W T G 7 G m
MIHg IJINAON |, JINACW MIHE
=1 © " bt
807 mmam,i ooz 2907
{z "¢ L) INTIO A ﬁ €'z} 1) INTIND
Y 4 r
B ¥ PyOZ ey0z {
¢ 1 50IdOL (z'1 $O14OL
HIAITOTY) -
NOLIYNILSIA ™ e (N T HEONES)
vIvQ 9081 \W cost IoHENOS YIVA

006l

US 2019/0028414 A1l

Jan. 24,2019 Sheet 18 of 35

Patent Application Publication

0¢ "Oid

AN
2802

(z oldoL
~ ¥IAFOT)
NOLYNILSEA |~ S0s1
YVivQ
2002
3 oz0z
! ¢ m
: 7
L, (eowon) | b W L @)
NOH LY MIHE IJMAOW F,
{(Z L) LN A
7
a0z
ool (o
NOH.LVd 480¢ pzoz
S
(1 oldoL) | G 7 G [
NOYIYd | MIHE o] FINAOW g
mw%w\ (L UA) INFD A
. 7
4 " PYOz m
('L 301d0L Q04
~HIAFDIY) N
NOLIYNILSIA
9061
VIV Q \M@
000z

,,,,,,,,, Z DldOL
L DidOL
(1 D1dOL
A - H¥AANIS)
FOBL | 35un08 viva
yOL oh0z
S (\
J
(€ L) (e 1o Szo7 ap0e
IINA0W MG m
(z D1doL)
HIMIHE
Nooeaw] @aw) %
TINCAOW AINE J
~ ~ (1 DIdOL)
arGe qe0c HIMIHEG
T G T G % m
FINCAOW [MIUE
- egoz
ﬁ (€21 L) INFITD
4 \
BYOZ ‘
{(Z 'L 801d0oL
A~ HIONES)
co6t JOHNOS YIVD

US 2019/0028414 A1l

Jan. 24,2019 Sheet 19 of 35

Patent Application Publication

o 0000 T Z OldOL
L OIdOL
oLz M%w Mmom
- m < - a90z
N (Z D1d0OL) S Jowoow L) m
0807 NO§MLVd e 7 3dOL STIHAA ﬂwmx%wmmwmﬁv
(ool
ANIFD ERVE JNAON T yamave
m LIMO0583M m
8012 m /
voie azoLz /
{ J (1 D1dOL)
(z D1doL) Z HIAMIHE
I H T oor g
{(OWoYIZ) soir
U Godon |, wmmmmw MIug
B0z NOHIVd o P 87
7 “Oke | _anaon INTD
N3O S04 m w
. S
»0Z ©Z07 oi
0012

US 2019/0028414 A1l

Jan. 24,2019 Sheet 20 of 35

Patent Application Publication

4col

ezoL

qzal

2201

(Z INBLSAS)
HIAAMIS
HALIINGN

€2 "Old

ZANIO

(L WILSAS)
HIAMIS
HA4IIHENd

Hdd3IMENd

o)

NOLLYOIddY

coe

EANINO

(Z W3LSAS)
HAANES
HILIADIEN

{1 WILSAS)
HAAHES
HASIIMEND

EEREEVICIAN

N

22 'Old

<t
<
pr

1

00ec

ANINOD
HHdFEMENd

NOIUYOTddY

AN
FASS

5

0L

1

00ge

US 2019/0028414 A1l

Jan. 24,2019 Sheet 21 of 35

Patent Application Publication

cOve

7 LN

7 IW

{(NOH1LAG)
LN
H34II]ENd

ve Old

AW

(NOHLAL)
AN
HIA4IIHEN

0L

¢ LW HO L LN

&

aove

A

€TV AN

{LdIMDSYAYT)
ANID
HIAL4IINEN

RS
Ol

US 2019/0028414 A1l

Jan. 24, 2019 Sheet 22 of 35

Patent Application Publication

€8T "4
N |
{NOY LY ! INZHD | (43amIyg
NOHUVNILSID | oWz || (yamzug | OLTYNMIING | (nOwivd | |SLIM0OOSEIM| NISIO)
_ : y &
W ano | INIWDIS) LNIWDIS) | Ao MY,
HIA4IINEN ! ANZO | HAJIIHEN
! HIJIIHEN]
e e e e A
\Va 901
0052
Y6Z "Oid
(owz
\ (
(OWZ) LN 'S13H00593IM) (S1:400883M)
OWZ LA SLIMO0SEIM A
NS -
FaY. N,
zove 1 uadaIIIENd INTID mmwmwmm:a e
HIJTINGN
r'y N
901
NELNEL
HA4IIMEN
NS
0l

006¢

US 2019/0028414 A1l

Jan. 24,2019 Sheet 23 of 35

Patent Application Publication

LINZNOES
HALSIOFY

{(SILNTTD
Elalelts
AALLNIC

92 "4
. viva
JdAL IDVSSIW 1 gz
JONVHD
) Yiv(Q AT
HIMIYE LOINNOD ININDIS ™ %oz
AULON ¥3MINE [§107
™\
A1LON NO¥1vd
PN 7107
m Z192Z
X NOILLVH1SIOTH INTND3S Loz
SININOIS AN
HO4 ¥3IMINE 808
INOHIVD 2LVIHD
NOLLYIHD INTWDIS ™ 300z
LN
m b007
) NOLLYHLSIDTY Mand 007
zol (NOHLvd (INIWO3S (43maug
HIAMIS NOILLYNLLSRQ) 350g) NIDRIO)
Z0bZ LNAIID 901 LN3ID pOL INIIID

S

008c

US 2019/0028414 A1l

Jan. 24, 2019 Sheet 24 of 35

Patent Application Publication

4 24

(LLDW) LW

L1OW

L2 'O

ANZIO
HA4FDAENd

0042

{owz

: " \ {(SLIMD0S8I)
(LIDW ‘DWZ) LN O m»mx@%%mm&c S Ly
INTD .
NEREENENT INTITD mwﬁﬂm%%n&

HILII|EN

0L 901

HIAAHIS

HILIDENd

AN
zZot

POt

US 2019/0028414 A1l

Jan. 24,2019 Sheet 25 of 35

Patent Application Publication

¥8Z id
AILON ¥3mIug Soar
AdLLON NOY1Vd 078z
HIMIAUE LOINNCD INIWDIS T oiez
i
HIMIHE LOINNOD INIWNOIS T diez
) NOLYHISIONY INAWOIS »187
SININDIS N
HO4 HIMIUE cies
INOHIY TLVIHD
NOLLYTHD INTNOIS 1 diez
X NOLLYHLSIOTY INIWOIS 808z
SINIWOIS N
HOH HIMITNE sose
INOHLYd ILVIHD
NOILYINS ININDIS T bosz
I E e N
ID0E co8e
AHLLNFC
201 (NOH1Vd {Z INTWO3S {1 INTWD3S (¥3MIU8
HIAAHIS NOLLYNLLSIQ) Inqug) I90iyg) NIDRIO)
Z0vZ INTTD z0/7 IN3MD 901 NI pOL INTTD

S

0088

US 2019/0028414 A1l

Jan. 24,2019 Sheet 26 of 35

<0l
H3IAHES

S

goge

Patent Application Publication

g8¢ "Did
7097 YivQd
AdAL IOVSSIN /7 1 Hegz
ADNYHD
gzer 1 Yviva

o™ N\

IdAL ADVSSIN SYASYA
JAONYHD
vivQ

{(NOM1Ivd (Z INIWD3S {1 INTWDH3S

NOLIYNILSIO) I9aiHg) 3900i44g)
Z0vZ ANAD 2047 INTD Q0L LNTUTD

yeed

{({IAINY
NISINO)
0L AN3ID

8062

HALSIO3Y OL INFO
H001E MIN JO4 LIvAA

&

ON

LATEVTHVAY
(SAHOLYIN

48 T4

18I NYHJHO
NGO ATLNIHHND SNOHLIV
/SAIMIMEE OL (SILNID
390ME HOLYIN OL LdWI LY

LN

NOLLVILSIOEY
ANIND 3001E 3AE03Y

2068

—
< 62 "B
-
y—
-
[=)
o
[l
S
S LSIT NVHJEO WONA
< A NOYLVd NOLLYNILSIA ¥O/ONY
2 8167 HIMINE NIDIHO JAOWIY
&
[T'g)
o)
= FINET TR ER L
~ ‘S INTIO NOLLYNILS3Q
o mwmm)& QONVY NIDIMO OL SNOILLYDIJILON
m HIMIHE ANV NOHLYd ONTS
wn &
(=)}
y—
>
< ANTD 390N
N Ao HOVE 0L 39VSSIA HIAMIUE
= vigd L1O3NNOD INIWD TS ONES
S y
g
= JOVSSIW NOLLYHLSIOTY
S 2168] INFWDIAS INTORY
= - I0aiug
& L NEQ3ISN
E 28 OL N3O
= 3IOVSSaN HOVI HO4
o p— \j(\
= oLes NOLLYIHO INIWOIAS ONIS
(=9
< 1
=
[P
=
=W

i
1

0062

US 2019/0028414 A1l

Jan. 24,2019 Sheet 28 of 35

Patent Application Publication

HAMIAUE
ANFWOES VIAVIVA HSHEN

A

YivQd
ADVHOVdEY ANY SAIE03Y

4

NOHLYd INSWOHES VIA HamMdud
ONIGI0ZAd OL LOINNQOD

&

AOVSSHN HaIMIHE
LOANNOD INIWDES 3AIE0EY

B

3000

0¢ "Olid

dALLOY

SELNIWDES

ATHHM
BAVE e b

AOVEEIN
NOUVHISIOEY INJWOES ONIS

&

INIWOES O
HIAMEHE ANV NOHLVYd 3UV3-HO

&

JOVESIN
NOLLYIHO LNIWOES SAIEZ03Y

F:

ANZNO 39014
SV ALIHEYTIVAY J3LS1D34

S

000¢

800¢

g00e

yO0L

200¢e

US 2019/0028414 A1l

Jan. 24,2019 Sheet 29 of 35

Patent Application Publication

Vit "D
AZLLON TYADINEH NOX LY 0ZLE
| .
INIWNOES SIYNINYGEL : SiLe
| .
(&) LNITD o~ ANINDIS FLYNIEIL aLLE
5014 rile
QA IEY
ANY AZLLNIC
© LDANNOOSI] >iie
7 N e e .
ZZLE
AILLON T duie
TYAOWEY HIMINE
INIWNDES TIYNINYAL) 8018
W .
I E N ININDIS FLYNINKEIL doLe
IDaiMd $OLe
eI AR
ANY ADLLNZC
Z0L6 LOANNODSIO
<0 {(NOH1vd {Z INTWDES (1 INTWO3S {(¥3Mmavd
HIAMES NOLLYNILLS3Q) 30aa) Ioag) NIOINO)
\W ZOPZ INTIO ZOLT ANITD 0L LNITD 0L AN

oole

US 2019/0028414 A1l

Jan. 24,2019 Sheet 30 of 35

Patent Application Publication

HLE "Did
21YAdN NOU LY T doie
NOLLYWHOAN LNIWDES 31w 0dN g gp1e
{(NMOHS LON))
INIWOES orie
AMEN dNLES
FIEVHYAY L~
Si D0 FiLE
3LNLILsEns
IANINYILIC
LOINNODSIT >pLe
0 e e .
FAIR >
AHLLON ovLe
TYAOWEY HIMINE
AALLON TYAOWTY NOYLYd T Seie
| .
{(S)LNZITO L~ INIWDIS JIYNINGIL geie
ID0g yeLe
a3iviay
ANY AN
LOANNODSIA Zele
2ot {(NOH1ivd (z INIWOIS {1 INIWOIS {43Mmang
HIAMES NOUYNILS3O) I0ag) I9aNE) NIOINO)
H‘ ZoPZ LNTTD ZOLT INITD SOL LN O LNID

oele

—

«

=

m ¥ee "'Oid

S

=

S HAZE 914 18T NYHAHO

2 Va4 OL NOY1Vd NOILVNILSEd
80ce NV H3MIHE NIDIKEO aay

ANIO NIDRIO OL 4DVES I [

7176 SINIIMO 3001 OL JOVSSaN

AIVNINEEL INFWOES ONIS

F-N

S E D ERNCEINAE
A~ ANY HOA SAINITD 3DaIHE 0L
rOZe IAOVYSSIAW FLYNIANEIL ONIS

[T'g)

- @&m‘/\ TYAOWIY NOHLYd ONIS

2 , ATIAILDIASIY 'SINTTD
< NOILYNILSIO ONV NIDIHO
2 ,, cozé] OLSIOVSSAN IWAOWIY
2 (S)LNaNDAS HIMITUG ONY NOYIYd ONIS
o IV ANY HO4 o

o N

o

S

o

g

<

J

NCILOINNOOSIO y

s NOHLYd NOILYNILS3A

= A 40 NOUYDIIHILON

[*)

= chee IAIZDTY HO 103130 NOLLOINNOOSIA

= ANIWOFS/LNITD
= Nomm< IO0HE 40 NOLLVYDIHLLON
S IAIF0EY HO 103430
Aw 0128 \W

£ 00ZE

5

=W

US 2019/0028414 A1l

Jan. 24,2019 Sheet 32 of 35

Patent Application Publication

HEE 'Oid

LS NYHJHO

A OL NOHIYd NOLLYNLLSEO

ETARS

a4
ocee

giee

ONY HEMIE NIDRIO GGV

Elaie]els
MEN
dfias

ON
PEEIVAY
390148 MIN
zzes

4901Hd
MIN FLv3IHO OL 1dNTLLY

ATAALLOALSTM 'SINTTO

NOLLYNILSHO GNY NIDREO

0L S30VESIIN TWVAOIWIY
HAMIUEG ONY NOY Y] ON3S

&

(S}INIWDIS 03LvI3Y

A ANY HOL SINITO 390G OL

AOVSEIW JLVNINGGL ONTS

0oee

S3A

AR

9gce

rece

il

32O

NOuLYd
NOLLYNILSEO OL JOVSSaW

TYACWEY M3MINE ON3S

F:3

(S)INIWDIS
O3V T3 ANY HOA
SININO FA901HE OL 3DVESIN
APYNIWHEL INGINO DS ONIS

&

NOILLOINNOOSIC MaMIHeg
NISIHO 40 NOUYOIHLLON

AAIHOEE HO 103130

S

0zee

US 2019/0028414 A1l

Jan. 24,2019 Sheet 33 of 35

Patent Application Publication

iee

{03033N
40 ATAALLD34STY 'SINTTD
NOIVYNILS IO ONY NIDRIO
OL SNOLLWVOIHLLON 31vddn
HAMIHE ONV NOULVYd GNES

3

CIEE

(S)INIMD 390g
ONILSIXT OL $39VSSIN
HIMINE LDINNOD INIWDHES
J31vadn 303N ANY aN3S

E-X

glee

LNINO FAALLSENS WOHA
JOVESEIN NOLIVHLSIOFY
ANIWD S IAIEFO3

8

80ge

N0
ALNLLSENS O JOVSS3IN
NOLLYZHO LINIWOIS ONIS

i

Vet "Old

S3A

LATAVIIVAY
HOLYIA

ALNLLSENS
SV INTO 30014
HAHLONY HOLVIN OL LdWE LY

4

NOLLOINNODSIO
JNFWNOFS/INGND
A001HE 40 NOLLYOIHILLON
AANIEOFY HO 103130

1

o0ee

FOLE

AUR

US 2019/0028414 A1l

Jan. 24,2019 Sheet 34 of 35

Patent Application Publication

BOSE

90%¢e

8aFL

(NOHLAd)

ANFND
HAdIIMENd

(NOHLAL)

ANIND
HdddmDigNd

{NOHLAd)

LNZND
lEELEERI T

Qore

¥

&% "Oid
{(NOHLAJ
‘LAEDSYAYT) (LAIHDSYAYT)
® AN
INZTD INTID z0s¢e
HALIIMEND [~ HIALIDIGN
#0GE
¥ 'Oid {LdINOSYAYT)
INTTD N
H3J4IIMENd ove
{(NOHLAL X
| dHASTAYT) {LdIHMOSYAYT)
* o LU
INTD mmmemm:a Z0be
HALADIENd b~ -
20ve

US 2019/0028414 A1l

Jan. 24,2019 Sheet 35 of 35

Patent Application Publication

48 "Old

HeOMLEN

Pl
I0v4HIING | TH
A pomean | 0HE L O
804€ m S0/€
|
] Adowan || sd ndo ||
rOLE 7 Z0LE
{ WILSAS
/

00.e

9¢ Ol

AHOMLIIN QL 88300V

HO/ANY S31LLTIEYdYO

NOLYOINNWNCYD et mM%%WMWm
di ONSIVIRINII
HLIAM 30IA30
N WILSAS
343N

}/
pOSE

TN
ANE

H 9aet

0%t

US 2019/0028414 Al

SYSTEM AND METHOD FOR PROVIDING A
COMMUNICATIONS LAYER TO ENABLE
FULL PARTICIPATION IN A DISTRIBUTED
COMPUTING ENVIRONMENT THAT USES
MULTIPLE MESSAGE TYPES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application 62/534,503, filed on Jul. 19, 2017, and
entitled SYSTEM AND METHOD FOR PROVIDING A
COMMUNICATIONS LAYER TO ENABLE FULL PAR-
TICIPATION IN A DISTRIBUTED COMPUTING ENVI-
RONMENT THAT USES MULTIPLE MESSAGE TYPES,
and U.S. Provisional Application 62/599,981, filed on Dec.
18, 2017, and entitled SYSTEM AND METHOD FOR
PROVIDING BRIDGING FOR A COMMUNICATIONS
LAYER TO ENABLE FULL PARTICIPATION IN A DIS-
TRIBUTED COMPUTING ENVIRONMENT THAT USES
MULTIPLE MESSAGE TYPES, both of which are hereby
incorporated by reference in their entirety.

BACKGROUND

[0002] The proliferation of message types has caused
difficulties in creating distributed systems in which all
applications can fully participate. Accordingly, what is
needed are systems and methods that address this issue.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] For a more complete understanding, reference is
now made to the following description taken in conjunction
with the accompanying Drawings in which:

[0004] FIG. 1A illustrates one embodiment of a messaging
system,
[0005] FIG. 1B illustrates one embodiment of a device

within the system of FIG. 1A on which a server and/or at
least one client are running;

[0006] FIG. 2 illustrates one embodiment of a client that
may be used in the system of FIG. 1A;

[0007] FIG. 3A illustrates one embodiment of a stack
representing different layers of the client of FIG. 2 and how
those layers may interact with an application;

[0008] FIG. 3B illustrates another embodiment of the
stack of FIG. 3A;

[0009] FIG. 4A illustrates one embodiment of how com-
ponents within the client of FIG. 2 may interact;

[0010] FIG. 4B illustrates one embodiment of different
communication routes for an application;

[0011] FIG. 5 illustrates one embodiment of a sequence
diagram showing steps by which a client may operate within
the messaging system of FIG. 1A;

[0012] FIG. 6 illustrates a more detailed embodiment of
the messaging system of FIG. 1A from a signal/control
perspective;

[0013] FIG. 7 illustrates one embodiment of a sequence
diagram showing a process by which a client may be started
for use within the message system of FIG. 1A;

[0014] FIG. 8 illustrates one embodiment of a flow chart
representing a method for starting a client from an applica-
tion’s perspective;

[0015] FIG. 9 illustrates one embodiment of a flow chart
representing a method for starting a client from the client’s
perspective;

Jan. 24, 2019

[0016] FIG. 10 illustrates one embodiment of a sequence
diagram showing a process by which clients may commu-
nicate with a server in order to communicate within the
message system of FIG. 1A;

[0017] FIG. 11 illustrates one embodiment of a sequence
diagram showing a process by which a client may authen-
ticate with a server within the message system of FIG. 1A;
[0018] FIG. 12 illustrates one embodiment of the messag-
ing system of FIG. 1A with clients supporting different
message types;

[0019] FIGS. 13A and 13B illustrate embodiments of a
sequence diagram and a flow chart, respectively, showing a
process by which a client may begin sending data to another
client within the message system of FIG. 1A;

[0020] FIGS. 14A and 14B illustrate embodiments of a
sequence diagram and a flow chart, respectively, showing a
process by which a client may begin receiving data from
another client within the message system of FIG. 1A;
[0021] FIG. 15 illustrates one embodiment of a sequence
diagram showing a process by which a server may attempt
to synchronize receiving clients before they begin to receive
data from another client within the message system of FIG.
1A;

[0022] FIG. 16 illustrates one embodiment of the messag-
ing system of FIG. 6 from a data perspective;

[0023] FIG. 17 illustrates one embodiment of a sequence
diagram showing a process by which a client may transfer
data to another client within the message system of FIG. 1A;
[0024] FIGS. 18A-18D illustrate embodiments of flow
charts representing methods for processing data by brews of
FIG. 17,

[0025] FIG. 19 illustrates one embodiment of a portion of
the message system of FIG. 1A with data for multiple topics
being transferred from one client to another client;

[0026] FIG. 20 illustrates another embodiment of a portion
of the message system of FIG. 1A with data for multiple
topics being transferred from one client to two clients;
[0027] FIG. 21 illustrates a more detailed embodiment of
a portion of the message system of FIG. 1A with data for
multiple topics being transferred from one client to two
clients using two different message types;

[0028] FIG. 22 illustrates one embodiment of a system
within which an application uses a single client to commu-
nicate with multiple message systems;

[0029] FIG. 23 illustrates one embodiment of a system
within which an application uses a separate client to com-
municate with each of multiple message systems;

[0030] FIG. 24 illustrates one embodiment of a system
within which a bridge client converts and relays communi-
cations between two clients that cannot communicate
directly;

[0031] FIGS. 25A and 25B illustrate a more detailed
embodiment of the system of FIG. 24;

[0032] FIG. 26 illustrates one embodiment of a sequence
diagram showing a process by which a single bridge seg-
ment may be established within the system of FIGS. 25A
and 25B;

[0033] FIG. 27 illustrates a more detailed embodiment of
the system of FIG. 24 with multiple bridge segments;
[0034] FIGS. 28A and 28B illustrate one embodiment of a
sequence diagram showing a process by which multiple
bridge segments may be established within the system of
FIG. 27,

US 2019/0028414 Al

[0035] FIG. 29 illustrates one embodiment of a flow chart
representing a method for establishing a bridge segment
from a server’s perspective;

[0036] FIG. 30 illustrates one embodiment of a flow chart
representing a method for establishing a bridge segment
from a bridge client’s perspective;

[0037] FIGS. 31A and 31B illustrate one embodiment of a
sequence diagram showing various processes by which
disconnection may be handled for a bridge;

[0038] FIGS. 32A thru 32C and 33A and 33B illustrate
embodiments of flow charts representing methods for deal-
ing with disconnections in a bridge;

[0039] FIG. 34 illustrates one embodiment of a system in
which multiple clients publish to a single bridge client;

[0040] FIG. 35 illustrates one embodiment of a system in
which multiple clients receive data from a single bridge
client;

[0041] FIG. 36 illustrates one embodiment of a system
within which a gateway enables a device to fully participate
in a message system when the device lacks the capability to
do so itself; and

[0042] FIG. 37 illustrates one embodiment of a device that
may be used to run a client and/or a server within the
message system of FIG. 1A.

DETAILED DESCRIPTION

[0043] The present disclosure is directed to a system and
method for providing a communications layer to enable full
participation in a distributed computing environment that
uses multiple message types. It is understood that the
following disclosure provides many different embodiments
or examples. Specific examples of components and arrange-
ments are described below to simplify the present disclo-
sure. These are, of course, merely examples and are not
intended to be limiting. In addition, the present disclosure
may repeat reference numerals and/or letters in the various
examples. This repetition is for the purpose of simplicity and
clarity and does not in itself dictate a relationship between
the various embodiments and/or configurations discussed.

[0044] Communication systems, such as distributed com-
puter systems, use many different messaging types to com-
municate. For example, Socket.IO, WebSocket, and pub-
lisher/subscriber models such as ZeroMQ, as well as other
transmission control protocol (TCP), user datagram protocol
(UDP) based communications, and other link layer trans-
ports like Bluetooth, Xbee, etc., all enable bi-directional
communications and are commonly used. However, while
similarities exist, different messaging types frequently work
in different ways that make them incompatible with each
other.

[0045] For example, Socket.IO may be configured to use
“rooms” to manage data, with data written to and read from
the rooms. Web Socket uses full-duplex communication
channels over a single TCP connection. ZeroMQ may be
used in many different configurations, including a push/pull
configuration and a publisher/subscriber configuration that
uses a broker to manage publishers and subscribers. TCP
uses a model in which the receiver is notified where to
connect to the sender to receive data. UDP uses a model in
which the sender is notified where to send the data to the
receiver. Accordingly, different message types have different
requirements for the sender and/or receiver, and those

Jan. 24, 2019

requirements must be met for the message type to be
properly implemented under the defined standards for that
message type.

[0046] To enable a single application to use multiple
messaging types, a developer or user will generally need to
separately configure the application to handle each message
type, as well as clarify which type is to be used for a given
communication. This approach lacks flexibility and typically
makes adding and/or removing message types a non-trivial
process. This approach may also make it difficult to port
code to another application, which may need its own mes-
sage type configurations to work properly.

[0047] As more and more devices are integrated into
increasingly large networks, the use of non-compatible
message types imposes an increasingly large cost. For
example, based on their available message types, some
devices and/or applications may be excluded from consid-
eration entirely, others may be selected but may require
additional effort to implement a particular message type into
their firmware or software, and others may be selected
simply because of their message compatibility even though
some of their parameters (e.g., processing speed, memory,
power consumption, security, and/or feature set) are less
than ideal.

[0048] Another issue with typical messaging types is that
thin clients, such as web browsers, cannot directly interact
with the network as a full client. This limits the thin clients’
functionality and requires that thin clients either be avoided
entirely or operate with limited functionality with a reduced
number of compatible messaging types (e.g., WebSocket or
other hypertext transfer protocol (http) based communica-
tions but not ZeroMQ).

[0049] In addition, even if a thin client can communicate
within a network using Web Sockets or another compatible
messaging type, there is generally no standardized process
by which communications can be compartmentalized. For
example, a standard Web Socket connection may be used to
connect to a server and broadcast information to all clients,
but there may be no way to direct the information only to
certain clients without implementing customized solutions.
Broadcasting generally causes increased network usage and
requires additional processing power as each client deter-
mines if a message is needed by that particular client.

[0050] Referring to FIG. 1A, one embodiment of an
environment 100 is illustrated in which a messaging system
(which may be referred to herein as “Pubkeeper” or the
“Pubkeeper system”) may be used to address the previously
described issues. The Pubkeeper system provides an abstrac-
tion layer between different messaging mechanisms and any
applications or components that are sending and/or receiving
messages. The abstraction layer enables Pubkeeper to man-
age multiple messaging types while using a common inter-
face to provide access to those message types regardless of
the requirements of each message type.

[0051] To accomplish this, the Pubkeeper system provides
one or more servers 102 that provide management function-
ality and endpoint clients 104 and 106 that handle client side
messaging. While the server 102 is used to register the
clients 104 and 106 and obtain initial communication infor-
mation from the clients to facilitate communications
between the clients, data does not go through the server 102
unless required by the particular message type being used.
Instead, the clients 104 and 106 are responsible for ensuring

US 2019/0028414 Al

that outgoing data is sent using the appropriate message
type(s) and that incoming data is received and handled
correctly.

[0052] As will be described in greater detail below, the
manner in which data is sent between the clients 104 and 106
is based on the particular message type being used. For
example, messages may be sent directly between clients
(e.g., via ZeroMQ) or using an intermediary (e.g., a Socket.
10 or Web Socket server) depending on the requirements of
the particular message type being used. For purposes of this
disclosure, a message type may represent a messaging
system or library (e.g., ZeroMQ) and/or a particular protocol
or standard (e.g., TCP, Bluetooth, or Xbee). In other words,
a message type defines the mechanisms used to send and
receive messages that are compatible with that message
type.

[0053] Pubkeeper provides an abstraction layer that sepa-
rates the user from the details of the message type. Using the
Pubkeeper interface, an application developer or user can
focus on their application’s functionality and use common
calls supported by Pubkeeper for sending and receiving
messages, regardless of the underlying structure of a par-
ticular message type. Pubkeeper then manages the underly-
ing communication layer to ensure that the messages are
properly sent and/or received.

[0054] Pubkeeper clients can be written in different lan-
guages (e.g., Python, C++, Java, Go, or JavaScript) and/or
for different operating systems and can communicate with
each other as long as the selected message type is compat-
ible. This is because the actual transfer mechanism between
clients is fully compliant with the corresponding message
type and is not altered by Pubkeeper. This means that
Pubkeeper clients can be implemented for different operat-
ing systems and those clients will be compatible with any
Pubkeeper system to which they all belong. This enables
messaging functionality across operating systems without
any additional effort by developers or users as long as a
client can be run on each of the desired operating systems.
Pubkeeper also provides full client functionality on plat-
forms that would ordinarily not be able to participate as a
full client (e.g., a web browser running a Pubkeeper
JavaScript client can communicate either directly if the two
Pubkeeper clients have a common message type or with
other Pubkeeper clients via a bridge Pubkeeper client).
[0055] As illustrated in the environment 100 of FIG. 1A,
the Pubkeeper system may be distributed on multiple
devices (e.g., the devices 108, 110, and 112) that are coupled
via a network 114. Examples of such devices include cellular
telephones (including smart phones), personal digital assis-
tants (PDAs), netbooks, tablets, laptops, desktops, worksta-
tions, single board computers, single board microcontrollers,
embedded systems, and any other computing device that can
communicate with another computing device using a wire-
less and/or wireline communication link.

[0056] Such communications occur through one or more
networks 114 and may be direct (e.g., via a peer-to-peer
network, an ad hoc network, or using a direct connection),
indirect, such as through a server, gateway, or other proxy
(e.g., in a client-server model), or may use a combination of
direct and indirect communications. The network 114 may
be a single network or may represent multiple networks,
including networks of different types. For example, the
device 110 may be coupled to the device 112 via a network
that includes a cellular link coupled to a data packet net-

Jan. 24, 2019

work, or via a data packet link such as a wide local area
network (WLAN) coupled to a data packet network. Accord-
ingly, many different network types and configurations may
be used to couple the devices 108, 110, and 112. It is
understood that the devices 108, 110, and 112 themselves
provide physical channels, but the server 102 and clients 104
and 106 that form the Pubkeeper system are shown with
connections to each other to emphasize the communications
within the Pubkeeper system.

[0057] With additional reference to FIG. 1B, it is under-
stood that a single device (e.g., the device 110) may include
the server 102 and one or more clients 104, 106, . . . , N.
Furthermore, the server 102 may shift between devices
based on availability, device parameters, network condi-
tions, and/or other factors. For example, the first device in a
Pubkeeper system may start the server 102, and the server
may automatically be moved to another device later. In
another embodiment, the server 102 may be assigned to a
dedicated device.

[0058] Although a dedicated device may be used to host
only the server 102, the server 102 may share a device with
a client 104 in a Pubkeeper system. By avoiding the use of
a dedicated device for the server 102, the Pubkeeper system
may be more flexible as any capable device can host the
server 102 (e.g., a device that has enough processing power,
memory, and network bandwidth). Furthermore, by using
the ability of the Pubkeeper system to switch which device
is hosting the server 102, the Pubkeeper system is more
resilient and may continue to operate despite device failures,
localized network failures that affect only certain devices,
and similar problems.

[0059] Accordingly, the Pubkeeper system provides a dis-
tributed messaging interface that enables applications to
communicate using many different message types. By pro-
viding an application program interface (API) that exposes
only needed functionality, Pubkeeper simplifies messaging
and enables applications to focus on their own functionality
while being integrated into the larger, multi-protocol mes-
saging system that Pubkeeper enables.

[0060] Referring to FIG. 2, one embodiment of the client
104 of FIG. 1A is illustrated. The client 104 includes or is
associated with one or more brews 202, one or more
modules 204, and at least one brewer 206 or patron 208. In
order to communicate within the Pubkeeper system, the
client 100 needs at least one brew 202, at least one module
204 that corresponds to the brew 202, and at least one brewer
206 or patron 208. It is understood that some or all of the
functionality provided by the various components may be
combined (e.g., the brew 202 and the module 204 may be
combined) or further separated into additional components.
[0061] Each Pubkeeper client is a generic manager that is
able to operate within the Pubkeeper system (e.g., can
communicate with the server 102) and provides a registra-
tion framework for its brews 202, brewers 206, and patrons
208.

[0062] A brew 202 is a wrapper for a particular module
204 and provides an interface between the module and
brewers 206 and patrons 208. A module 204 is a particular
implementation of a message type and may come in different
forms. For example, ZeroMQ may be a module, as may a
library that enables Web Socket communications. A module
204 may include various layers of a network stack (e.g., an
HTTP layer, a TCP layer, and an IP layer), or may use the
network stack provided by the operating system of the

US 2019/0028414 Al

device on which the client 104 is running. Accordingly, a
module 204 represents the actual send/receive mechanism
for a particular message type and the corresponding brew
202 is a wrapper that provides a standardized interface (e.g.,
an API) for that module.

[0063] More specifically, a brew 202 provides a standard-
ized interface for brewers 206 and patrons 208 that can be
used to send and receive messages, respectively, with a
module 204 regardless of the module’s message type. For
example, a standard call to a brew 202 from a brewer 206
may be used to send data and that brew 202 will be
configured to accept the standard call and manage interac-
tions with the module 204 in any way needed to accomplish
the actual transmission of the data by the module 204. The
brewers 206 and patrons 208 need not be concerned with the
module’s actual mechanics of sending or receiving mes-
sages, respectively, and only need to know the standardized
set of interactions that are made available by all brews 202.
[0064] A brew 202 may also provide additional processing
functionality, such as encryption/decryption. Although other
components may be customized (e.g., brewers 206 may be
configured to handle encryption and patrons 208 may be
configured to handle decryption), the brew 202 will gener-
ally be the client component that handles customized pro-
cessing. This ensures that the brewers 206, patrons 208, and
modules 204 remain standardized.

[0065] A brewer 206 exposes an API for use by applica-
tions in sending messages for a particular topic and a patron
208 exposes an API for receiving information by an appli-
cation for a particular topic. In other words, a brewer 206
provides an interface between the brews 202 and data
sources. A patron 208 provides an interface between the
brews 202 and data destinations, although a brew 202 may
communicate directly with a data destination in some
embodiments (e.g., FIG. 3A). Accordingly, each brew 202
corresponds to a single module 204 and provides a stan-
dardized communications interface that is the same across
all brews 202. This enables all brewers 206 and patrons 208
to interact with a brew 202 in the same manner regardless of
the underlying module 204 that is managed by the brew.
[0066] As described, there is typically a one-to-one cor-
respondence between modules 204 and brews 202, with
each brew 202 corresponding to a single module 204.
However, there may be a one-to-many correspondence
between brews 202 and/or brewers 206/patrons 208, with
each brew interacting with multiple brewers and/or patrons.
By separating the APIs that brewers 206 and patrons 208
provide to applications from the API that the brews 202
provide to the brewers 206 and patrons 208, the brews 202
can be modified as needed (e.g., to address compatibility
issues if the underlying module 204 is altered or to add
additional processing functionality) without needing to
change the brewers 206 and patrons 208.

[0067] System functionality 210 enables the client 104 to
operate as part of a Pubkeeper system. For example, the
system functionality 210 enables the client 104 to interact
with the server 102 for authentication and registration pur-
poses, both of which will be described below in greater
detail. From one perspective, the system functionality 210 is
the client 104, and the brews 202, modules 204, brewers
206, and patrons 208 are components of the client that
interact with the system functionality as needed.

[0068] In some embodiments, the client 104 may be
executed as a thread of an application that is using the client

Jan. 24, 2019

104. The thread may run the system functionality 210 and
the brews 202, modules 204, brewers 206, and patrons 208
may be run as other threads. In other embodiments, the client
104 may be a process running the system functionality 210,
and the brews 202, modules 204, brewers 206, and patrons
208 may be run as threads of that process. In still other
embodiments, some or all of the brews 202, modules 204,
brewers 206, and patrons 208 may be run as their own
processes.

[0069] With additional reference to FIG. 3A, one embodi-
ment of a stack 300 illustrates the relationships between a
brew 202, a module 204, brewer(s) 206, and patron(s) 208
as layers through which data passes to and from an appli-
cation 302. It is understood that the “IN” and “OUT” are
from the Pubkeeper client’s perspective in FIG. 3A, and
would be reversed from the perspective of the application
302.

[0070] The arrow labeled “DATA TRANSFER” is data
that is being sent or received by the client on behalf of the
application 302. The arrow labeled “DATA IN” represents
data that has been received by the client 104 from the
application 302 and is to be sent by the client.

[0071] Data that has been received by the client 104 from
a data source (e.g., another application) can be sent to the
application 302 using either a pull process or a push process.
In the present example, the pull process moves the data from
the brew 202 through the patron 208 to the application 302.
This enables the patron 208 to provide queuing functionality
for the brew 202. In other words, the brew 202 can push data
to the patron 208, which can then queue the data until the
application 302 is ready to pull it. This is represented by
PULL part of the arrow labeled “DATA OUT (PULL/
PUSH).” Because the application 302 can pull the data
whenever there is data available and the application 302 is
ready, thread safety is not generally an issue. In other
embodiments, the patron 208 may be used by the brew 202
to decrypt the data before pushing it to the application 302.
This is represented by PUSH part of the arrow labeled
“DATA OUT (PULL/PUSH).”

[0072] Another push process bypasses the patron 208 and
moves the data directly from the brew 202 to the application
302. For example, if the brew 202 is handling decryption,
there may be no need to push the data through the patron
208. This is represented by the arrow labeled “DATA OUT
(PUSH).” Because data structures may be shared between
threads and the application 302 may receive pushed data at
any time, thread safety is generally needed when data is
pushed to the application 302.

[0073] Whether data is pushed directly from the brew 202
or through the patron 208 may depend on whether encryp-
tion is enabled. If encryption is not enabled, the brew 202
may push the data directly to the application 302 (although
pushing through the patron 208 would still be possible). If
encryption is enabled, whether data is pushed directly from
the brew 202 or through the patron 208 may depend on
which component is responsible for decryption. If the brew
202 is responsible for decryption, the brew 202 may push the
data directly to the application 302 (although pushing
through the patron 208 would still be possible). If the patron
208 is responsible for decryption, the brew 202 would need
the patron 208 to decrypt the data being pushed. In such
cases, the brew 202 may call the patron 208 for decryption
and then send the data out itself or may simply push the data
through the patron 208 following decryption.

US 2019/0028414 Al

[0074] It is understood that other embodiments may be
configured for different data flows. For example, in one
embodiment, the brew 202 may have queuing capabilities
and the application 302 may be able to pull directly from the
brew 202. In another embodiment, the patron 202 may have
push capabilities and brew 202 may push to the patron 208,
which may in turn push the data to the application 302.
Accordingly, while many examples in the present disclosure
use the patron 208 for pulling data and the brew 202 for
pushing data, other configurations are also possible.

[0075] As illustrated, the actual send/receive mechanisms
of the module 204 and brew 202 are shielded from the
application 302, which uses a standard set of calls with
brewer(s) 206 and/or patron(s) 208 in order to send or
receive (e.g., pull) data. In turn, the brew 202 shields the
brewer(s) 206 and patron(s) 208 from the module 204. The
brewer(s) 206 and/or patron(s) 208 use a standard set of calls
with the brew 202 to send or receive data via the module
204. Because data is only pushed to the application 302 by
the brew 202 (and not pulled from the brew 202), there are
no calls by the application 302 to the brew 202 as required
for pulling data from the patron 208.

[0076] In the present example, there is a one-to-one cor-
respondence between brews 202 and modules 204 within a
client. Without a module 204, a brew 202 cannot send
information, as the module handles the actual transmission/
reception for that message type. Without a brew 202, the
brewers 206 and patrons 208 will not be able to use the
module 204 because the brewers 206 and patrons 208 rely on
standardized calls to the brew 202. Accordingly, each brew
202 is designed specifically for a particular module 204.
Without the brews 202, each brewer 206 and patron 208
would need to know how to use the module 204, which
would complicate the construction and maintenance of
brewers and patrons. In a client with multiple brews 202, the
brewers 206 and patrons 208 would be even more complex.

[0077] The Pubkeeper system is designed to allow new
brews 202 and modules 204 to be added without needing
corresponding changes to Pubkeeper clients, brewers 206,
patrons 208, and system functionality 210. It is understood
that, in some embodiments, it may be desirable to make
changes to the clients 104/106, brewers 206, and/or patrons
208 for one or more brews 202. However, such changes may
reduce the flexibility of the Pubkeeper system and/or reduce
Pubkeeper’s uniformity across large and/or multiple deploy-
ments.

[0078] With additional reference to FIG. 3B, one embodi-
ment of the stack 300 with an additional brew 2025 and
module 2045 illustrates various similarities and differences
between components. Each module 204a and 2045 is dif-
ferent due to the different message types being implemented.
Similarly, each brew 202a and 2025 is different because
each brew must interact with its corresponding module.
However, both brews 202a and 2025 expose an identical API
that is used to interact with brewers and patrons.

[0079] All brewers 206a-206¢ have identical send func-
tionality (“send” being from the application’s perspective),
but are topic specific. More specifically, the Pubkeeper
system uses “topics” to track what data goes where. Topic
specific data may be routed into corresponding publication/
subscription channels, sent directly to particular destinations
(e.g., rooms), or handled in many different ways depending
on the particular message type used to send the data. All

Jan. 24, 2019

brewers 206a-206¢ expose an identical API that is used to
interact with the application 302.

[0080] All patrons 208a and 2085 have identical receive
functionality (“receive” being from the application’s per-
spective), but are topic specific. Both patrons 208a and 2085
expose an identical API that is used to interact with the
application 302. As shown, there may be different numbers
of brewers 206 and patrons 208 within a client. It is
understood that describing various components in this
example as identical means that they have substantially
similar functionality, as customized components may be
integrated into the stack 300 if desired.

[0081] Referring to FIG. 4A, one embodiment of a brew
202 is illustrated with brewers 206a and 2065, and patrons
208a and 208b. The abstraction layers provided by brews
202 and brewers 206/patrons 208 enable the brew 202 to
interact with its corresponding module (not shown) while
brewers 206 and patrons 208 represent topics.

[0082] In the present example, the brewer 2064 represents
Topic 1 and the brewer 2065 represents Topic 2. The patron
208a represents Topic 1 and the patron 2085 represents
Topic 3. Both brewers 206a and 2065 and both patrons 208a
and 2085 are communicating using the same message type
represented by the brew 202. However, by partitioning data
into defined topics, the Pubkeeper system can maintain a
single abstraction layer for a particular message type using
the brew 202 while providing a more granular level of
control over what data is being sent/received with respect to
various destinations/sources using the brewer 206/patron
208 layer. This enables applications to restrict their sending/
receiving to specific topics and/or specific destinations/
sources while maintaining a common interface for actually
sending and receiving the data for those topics or destina-
tions/sources.

[0083] In the present example, a brewer 206 is limited to
one topic and a patron 208 may be limited to one topic or
may enable the use of wildcards to subscribe to more than
one topic. However, it is understood that, in some embodi-
ments, a brewer 206 and/or patron 208 may be configured to
handle multiple topics.

[0084] As illustrated in FIG. 4A with respect to the brewer
206a and patron 2084, data may loop back to the same client
based on topic. More specifically, the brewer 206a is sending
data out for Topic 1 and the patron 208a is receiving data for
Topic 1, which means that the patron 208a will receive the
data being sent by the brewer 206a. Accordingly, internal
communications (e.g., within an application) may be inte-
grated into the same Pubkeeper system that is used for
external communications as long as the internal communi-
cations are routed through the client 104. This ability to
route internal application messages through the Pubkeeper
system enables distributed systems to be built that do not
differentiate between internal and external messaging, mak-
ing it as easy to communicate with an external application
(either on the same device or a different device) as within an
application itself.

[0085] With additional reference to FIG. 4B, due to the
flexibility provided by a Pubkeeper system 402 with respect
to whether particular communications for an application 302
are routed through the Pubkeeper system 402, the applica-
tion 302 may be easily configured to handle communications
in many different ways. More specifically, Pubkeeper does
not require an “all or nothing” approach with an application
and allows selected communications to be routed through a

US 2019/0028414 Al

Pubkeeper system. For example, while a web browser (e.g.,
the application 302) may use a JavaScript Pubkeeper client
104 to communicate with another Pubkeeper client (not
shown) using Websockets (represented by line 404), the web
browser 302 may also use other connections (e.g., Web-
socket or WebRTC) (represented by line 406) that do not
pass through the client 104. Such other connections 406
would not be part of the Pubkeeper system 402 to which the
client 104 belongs even though the Websocket communica-
tions 404 are part of the Pubkeeper system. However, the
web browser 302 may choose to only use support provided
by the client 104, in which case all connections from the web
browser 302 would be fully integrated into the Pubkeeper
system 402.

[0086] Referring to FIG. 5, a method 500 illustrates one
embodiment of a process that may be performed within a
Pubkeeper system for a Pubkeeper client (e.g., the client 104
of FIG. 1) to join and operate within the Pubkeeper system.
More detailed examples of each step will be provided in
following embodiments.

[0087] In step 502, an application (e.g., the application
302 of FIG. 3A) starts the client 104, which includes
creating and configuring various options (e.g., the address
and port information of the Pubkeeper server(s)) and com-
ponents (e.g., brewer(s) 208 and/or patron(s) 208) of the
client. In step 504, the client registers with the server 102.
[0088] In step 506, the server 102 sends the client 104 a
list of only the brewers 206 and/or patrons 208 relevant to
the client 104. For example, the server 102 may examine the
client’s registered brewers 206 and/or patrons 208 and return
only the brewers 206 and/or patrons 208 that correspond to
those registered by the client 104. In other embodiments, the
server 102 may send the client 104 a list of all brewers 206
and patrons 208 that are available within the Pubkeeper
system managed by the server 102.

[0089] In step 508, the client 102 establishes connections
with the brewers 206 and/or patrons 208 in which the client
is interested. In step 510, the client’s brewers 206 and/or
patrons 208 communicate with other brewers 206 and/or
patrons 208 within the Pubkeeper system. Steps 506, 508,
and 510 may repeat as the server 102 updates the client 104
whenever relevant brewers 206 and patrons 208 are added to
and removed from the Pubkeeper system.

[0090] Referring to FIG. 6, one embodiment of a Pub-
keeper system 600 is illustrated from a signal/control per-
spective with third party applications 602 and 604. A later
embodiment (FIG. 16) illustrates the Pubkeeper system 600
from a data perspective. It is understood that some signaling
may be dependent on the particular message type (e.g.,
between the modules 204a and 2046 as illustrated by line
606 in order to establish a Web Socket connection or another
connection type) and may not exist in all embodiments.
Accordingly, FIG. 6 is largely directed to control signal
paths within the Pubkeeper system 600 and between the
Pubkeeper system 600 and the applications 602 and 604.
Such control signals include instructions and/or messaging
needed to start and maintain pubkeeper clients, client/server
communications, and internal client communications.
[0091] The applications 602 and 604 are not part of the
Pubkeeper system 600, but it is understood that in some
embodiments one or both of the clients 104 and 106 may be
embedded in the applications 602 and 604, respectively, or
the applications may otherwise contain or include the cli-
ents. However, the applications 602 and 604 would gener-

Jan. 24, 2019

ally use the same interfaces provided by their respective
client, brewers, and patrons regardless of how the clients are
implemented with respect to the applications. In some
alternate embodiments, certain interfaces may be removed
or replaced and an application may communicate with a
client in different ways (e.g., if some or all of the function-
ality of the client is written into the application itself).
[0092] Although the clients 104 and 106 are shown as
separate from their respective brews 202, modules 204, and
brewers 206/patrons 208, the separation is merely to illus-
trate the interaction between the clients 104 and 106 and the
components that are included within or are otherwise part of
each client. Similarly, from the signaling perspective of FIG.
6, the brews 202a and 2024 are illustrated as wrappers for
their respective modules 204a and 2045. From the data
perspective that is discussed later with respect to FIG. 16,
the brews 202a and 2025 are illustrated as separate from
their respective modules in order to better illustrate the flow
of data through each client and its components.

[0093] For purposes of example, the client 104 is a
JavaScript client and the application 602 is a web browser.
The Pubkeeper client 104 enables the web browser, which
would ordinarily be limited in its messaging interactions, to
interact fully with the Pubkeeper system and any supported
message types. The client 106 is a Python client and the
application 604 is any application that may be installed on
or used with a device. The application 602 is sending data
for “Topic 1” to the application 604 via the Pubkeeper
system 600. Accordingly, the client 104 includes a brewer
206 for Topic 1 and the client 106 includes a patron 208 for
Topic 1. The selected message type (MT) is “MT 1,” which
can be any message type supported by both of the clients 104
and 106 (e.g., Web Sockets, WebRTC, or any other message
type).

[0094] Examples of the creation and/or purpose of the
illustrated signal paths of FIG. 6 will be described in various
embodiments below.

[0095] With additional reference to FIG. 7, a sequence
diagram 700 illustrates one embodiment of a process by
which the client 104 may be started and registered with the
server 102 of FIG. 6. The process of FIG. 7 provides a more
detailed example of steps 502 and 504 of FIG. 5 and
describes signal paths 6084, 610a, 6124, and 614a of FIG.
6. While FIG. 7 is directed to the client 104, the client 106
would perform an identical process using signal paths 6085,
6105, 6125, and 61456 of FIG. 6. It is understood that some
steps may occur in a different order than that shown,
depending on the particular startup sequence that takes
place. For example, step 706 may occur later than shown.
[0096] In step 702, the application 602 starts the client
104. This may occur as part of the application’s startup
process if the client 104 is embedded or otherwise included
within the application 602, or may be a separate process that
is initiated by the application 602 during or after the appli-
cation’s own startup process. The start command may be
formatted in many different ways and may include different
type of information. For example, the command may be
similar to “client.name=PubkeeperClient(token, config={
configuration information}).

[0097] The token is an authentication token (if needed) for
use with the server 102. The configuration information may
include such information as the IP/port information of the
Pubkeeper server 102 (if not dynamically discovered or
assigned), certificate information, connection timeout

US 2019/0028414 Al

parameters, and brewer/patron information (from which
brew information may be extracted). In some embodiments,
the configuration information may include brew information
that is separate from brewer/patron information.

[0098] The brew information, which may be automatically
discovered in some embodiments, may identify all brews
202 that are available to the client 104 and any needed
information to use each brew. For example, a Web Socket
brew 202 may be associated with IP/port information for a
WebSocket server. In embodiments where the brews 202 are
automatically discovered on startup, one or more locations
where brews are stored may be provided to the client 104 or
the client may simply scan default locations for available
brews.

[0099] In step 704, the application 602 creates and con-
figures each brew (including the brew 202q of FIG. 6) that
is available to the client 104. For example, the application
may create a brew using a particular name and assign a
module to the brew using websocket_
brew=WebsocketBrew. In step 706, the application 602
instructs the client 104 to start the brews 202, which the
client 104 does in step 708. These steps determine which
message types will be available to the client 104. Because
the brews 202 are wrappers for their respective modules 204,
the brew 202q starts the corresponding module 204a (for
websockets in this example) in step 710. At this point, the
brew 202a does not have information about any brewers or
patrons and may be considered “inactive,” although it is
ready to be used.

[0100] Insteps 712 and 714, the application 602 starts any
needed brewers 206 and patrons 208, respectively. For
example, the application 602 may create the brewer 206
using brewer_name=Brewer(’topic.name’). A unique
brewer 1D is assigned to the brewer 206 within the client
104. With respect to FIG. 6, only the brewer 206 would be
started as no patrons are illustrated for the client 104 and
step 714 would be omitted. Steps 712 and 714 also provide
the application 602 with the information needed to send/
receive data for specific topics. For example, by creating the
brewer 206 with the desired topic, the application 602 will
know to send data for that topic to the brewer 206.

[0101] In step 716, the application 602 registers the brews
202, brewers 206, and patrons 208 with the client 104. For
example, the application 602 may register the brew 202 with
the client 104 using client.add_brew(websocket_brew) and
may register the brewer 206 using client.add_brewer(brew-
er_name).

[0102] It is understood that registration may occur imme-
diately after each brew 202, brewer 206, and/or patron 208
is created, rather than in the order illustrated in FIG. 7. For
example, the websocket_brew may be registered immedi-
ately following step 704, rather than in step 712, and the
brewer 206 may be registered immediately following step
708. It is understood that a brewer 206 or patron 208 is
generally created after any brews 202 that are to be used.
Otherwise the information for a later created brew 202 will
need to be passed to the brewer 206 and/or patron 208,
which complicates the startup process.

[0103] Instep 718, the client 104 registers the brewers 206
and the patrons 208 with the server 102. Step 718 may also
be used to notify the server 102 of the client’s brews 202
based on the registered brewers 206 and patrons 208,
although this information may be explicitly relayed to the
server 102 in the same step or a separate step.

Jan. 24, 2019

[0104] Although not shown, the client 106 would perform
the same basic startup process as that of the client 104,
including the use of the websocket brew. However, rather
than creating and registering the brewer 206, the client 106
would create the patron 208 (e.g., “patron_name=Patron
("topic.name’)” with the same topic as the brewer 206) and
then register the patron 208 (e.g., “client.add_patron(pa-
tron_name)”). A unique patron ID would be assigned to the
patron 208 within the client 106.

[0105] Although the application 602 is responsible for
most of the initial startup processes in the present example,
the client 104 may have more responsibility in other
embodiments. For example, the application 602 may start
the client 104 in step 702 and the client 104 may then initiate
and perform steps 704, 708, 710, 712, and 714 without any
additional instructions from the application 602. In such
embodiments, the client 104 may then report any needed
information to the application 602. Such information needed
by the application 602 would include how to send data for
Topic 1 to the brewer 206.

[0106] Referring to FIG. 8, a method 800 illustrates one
embodiment of the process of FIG. 7 from the perspective of
the application 602. In step 802, the application 602 starts
the client 104. In step 804, the application 602 creates and
configures any brews 202. In step 806, the application 602
instructs the client 104 to start the brews 202. The method
800 then continues to step 808 where each brewer 206 and
patron 208 to be used by the client 104 is created. In step
810, each brewer 206 and patron 208 is registered with the
client 104. It is understood that the steps 808 and 810 may
overlap and/or repeat, with brewers 206 and patrons 208
being created and registered until no more remain to be
created or registered.

[0107] Referring to FIG. 9, a method 900 illustrates one
embodiment of the process of FIG. 7 from the perspective of
the client 104. In step 902, the client 104 is started. In step
904, the client 104 receives registration information from
the application 602. This registration information is used to
track the brews, brewers, and/or patrons associated with the
client. In step 906, the brews, brewers, and/or patrons are
registered with the server 102.

[0108] It is understood that there are many different ways
to order and track the clients and their brews, brewers, and
patrons within the Pubkeeper system 600. In the present
example, the server 102 keeps track of all clients, brews,
brewers, and patrons within the Pubkeeper system 600, and
each client keeps track of its own brews, brewers, patrons,
and the clients, brewers, and patrons with which it is
communicating. For example, a client may keep a record of
all topics, the brewers and patrons for each topic, and the
brews available for each brewer and patron as follows:

brewers {
topic_1 {
brewer_ID_ 123: [
{
name: websocket
host: 127.0.0.1
port: 9001
encryption: encryption_ key
b
{ name: zmq
publish:
hil

client: resource to socket

US 2019/0028414 Al

-continued
¥
topic_2 {
brewer_ID_ 124: [
{
name: websocket
host: 127.0.0.1
port: 9002
encryption: encryption_ key
b
{ name: zmgq
publish:
¥
]
client: resource to socket
¥
¥
patrons {
topic_3 {
patron_ID_ 128: [
{
name: websocket
host: 127.0.0.1
port: 9011
encryption: encryption_ key
b
{ name: zmgq
publish:
1
client: resource to socket
¥
[0109] In other embodiments, each client may receive a

list of all brewers and patrons in the Pubkeeper system, even
for currently inactive brewers and patrons.

[0110] Referring to FIG. 10, a sequence diagram 1000
illustrates one embodiment of a process by which the client
104 may interact with the server 102 of FIG. 6. For each of
the clients 104 and 106 to operate within the Pubkeeper
system 600 and communicate with each other, the server 102
should recognize them as clients and the clients should know
which message type to use with each other. The process of
FIG. 10 provides a more detailed example of steps 504-512
of FIG. 5 and describes signal paths 608a and 6085 of FIG.
FIG. 6.

[0111] The clients 104 and 106 authenticate with the
server 102 in steps 1002 and 1004, respectively. In some
embodiments, actual authentication may not occur and steps
1002 and 1004 may represent simple registration where each
client 104 and 106 notifies the server 102 that the client is
online. However, for security reasons, the present embodi-
ment requires authentication to ensure that only authorized
clients are able to operate within the Pubkeeper system 600.
It is understood that although the sequence diagram 1000
illustrates only a single brewer notification in step 1006 and
a single patron notification in step 1008, multiple brewers
and/or patrons may be notified by each client 104 and 106
during these steps.

[0112] With additional reference to FIG. 11, a sequence
diagram 1100 illustrates one embodiment of a process by
which the client 104 of FIG. 6 may authenticate with the
server 102. In step 1102, the client 104 sends an authenti-
cation request to the server 102. For example, the client 104
may be configured with an encryption token (e.g., a
JavaScript Object Notation (JSON) Web Token (JWT))
issued or otherwise recognized by the server 102 and may
present the token to the server 102. In step 1104, the server
102 determines whether the client 104 is to be authenticated
(e.g., whether the client’s JWT is valid for the Pubkeeper

Jan. 24, 2019

system 600). Even if the token is valid, the token may be
associated with particular privileges within the Pubkeeper
system 600 and, if so, the server 102 would limit the actions
of the client 102 to comply with those privileges.

[0113] In step 1106, the server 102 responds to the client
104 and either grants or denies the authentication request.
The response may also provide information on the client’s
privileges within the Pubkeeper system 600. In step 1108, if
the request is granted, a secure channel may be established
(if such a channel was not established during the authenti-
cation process) between the server 102 and the client 104.
The secure channel is used for notifications, heartbeats,
and/or other messages between the server 102 and the client
104.

[0114] Referring again to FIG. 10, after authentication, the
clients 104 and 106 register their brews, brewers, and/or
patrons with the server 102 in steps 1006 and 1008, respec-
tively. It is understood that the registration may occur as part
of the authentication process of steps 1002 and 1004. For
purposes of example, the client 104 registers the brewer 206
(FIG. 6) and the client 106 registers the patron 208.
[0115] At this point, because the client 104 has registered
the brewer 206 for Topic 1 and the client 106 has registered
the patron 208 for Topic 1, the server 102 is able to identify
that the two clients will need to communicate. Accordingly,
in step 1010, the server 102 determines which message type
should be used between the two clients 104 and 106. In the
present example, the server 102 makes this decision because
it is aware of all the brewers 206 and patrons 208 within the
Pubkeeper system 600, and can optimize the number of
message types being used and therefore minimize the
amount of the client resources needed for the connections.
[0116] At some point, the client 104 and/or the client 106
may completely disconnect or may at least terminate their
corresponding brewer or patron. As shown in step 1018, if
the brewer is terminated, the client 104 may notify the server
102 of the brewer termination. In step 1020, the server 102
may then send a brewer removal notification to the client
106. As shown in step 1022, if the patron is terminated, the
client 106 may notify the server 102 of the patron termina-
tion. In step 1024, the server 102 may then send a patron
removal notification to the client 104.

[0117] With additional reference to FIG. 12, a simplified
diagram of the Pubkeeper system 600 of FIG. 6 is illustrated
with the client 104 capable of communicating with message
types 1, 2, and 3, and the client 106 capable of communi-
cating with message types 1, 2, and 4. Another client 1202
(not shown in FIG. 6) is also present and is capable of
communicating with message types 2, 3, and 4.

[0118] Between the clients 104 and 106, the server 102
could choose either MT 1 or MT 2 and the two clients could
communicate normally. Such a selection could be based on
many different criteria, including a default message type for
the entire Pubkeeper system 600 or a preferred message type
for a particular type of client (e.g., MT 1 for JavaScript
clients when possible). The server 102 may also be config-
ured to consider existing connections. For example, if the
client 102 is already using MT 1 for communications with
other clients (not shown), the server 102 may select MT 1 for
use between the clients 104 and 106 so that the client 104
can continue using the same message type.

[0119] The server 102 may also be configured to consider
possible future connections as shown in FIG. 12. More
specifically, the client 1202 can communicate with the client

US 2019/0028414 Al

104 using MT 2 or MT 3, and can communicate with the
client 106 using MT 2 or MT 4. However, the only common
message type for all three clients is MT 2, so the server 102
may select that message type for the clients 104 and 106
even if the client 1202 does not currently have brewers or
publishers corresponding to the client 104 or 106. Accord-
ingly, the server 102 may select a particular message type for
use between the clients 104 and 106 based on many different
criteria.

[0120] Returning again to FIG. 10, after determining the
message type to be used between the clients 104 and 106 in
step 1010, the server 102 notifies the clients of the available
brewers 206 and patrons 208, as well as the selected
message type, in steps 1012 and 1014, respectively. More
specifically, continuing the example of steps 1006 and 1008,
the server 102 sends a message to the client 104 that informs
the client 104 of the selected message type, the patron 208,
and any details needed to communicate with the patron 208
in step 1012. The server 102 sends a message to the client
106 that informs the client 106 of the selected message type,
the brewer 206, and any details needed to communicate with
the brewer 206 in step 1014. The two clients 104 and 106
can then communicate using that message type as shown in
step 1016.

[0121] Referring to FIG. 13A, a sequence diagram 1300
illustrates one embodiment of a process by which the client
104 of FIG. 6 may send or not send data. Prior to step 1302,
the client 104 has been started with the brewer 206, but there
is no registered patron 208 corresponding to the brewer 206
(e.g., the patron 208 of FIG. 6 has not yet been registered).
[0122] Accordingly, with respect to steps 1302 and 1304,
the brewer 206 (FIG. 6) is able to send information, but there
is no patron 208 registered to receive the information.
Depending on the configuration of the application 602, the
application 602 may send data to the brewer 206 in step
1302. However, as there is no patron 208 registered to
receive the data, the brew 202a is not active for the brewer
206 and the brewer 206 will not send the data to the brew
202a as shown by incomplete line 1306. In other embodi-
ments, the brewer 206 may forward the data to the brew
202a, but the brew 202a would not send the data anywhere
because there is no registered patron 208 for the brewer 206.
[0123] In some embodiments, step 1306 may result in an
error (e.g., to notify the client 104 and/or the application 602
that there is no destination and the data is not actually being
sent) and/or the data may continue to be sent to the module
204a (and ignored by the module 204a) as the application
602 continues to provide data to send.

[0124] In step 1306, a notification of a patron 208 is
received by the client 104 from the server 102. For example,
another client (not shown) that includes the patron 208 may
have been started. The notification may include any needed
information for communication with the patron 208 (e.g.,
address and port information). The patron 208 corresponds
to the topic of the brewer 206 and may be a patron at another
client (e.g., the patron 208 of the client 106) as shown or
may be a patron within the client 104 itself.

[0125] In step 1308, the client 104 identifies relevant
brewers within the client, including the brewer 206. In step
1310, the client 104 notifies the brewer 206 of the patron 208
(as illustrated by line 6164 of FIG. 6), including any needed
information for communication with the patron 208 (e.g.,
address and port information). In step 1312, the brewer 206
activates the brew 202q (as illustrated by line 618a of FIG.

Jan. 24, 2019

6). This activation informs the brew 202a of the patron 208
and provides any corresponding patron information to the
brew 2024, which makes the brew aware that it should start
sending data received from the brewer 206 to the patron 208.
[0126] It is understood that the brew 2024 may already be
active with respect to other brewers 206 and/or patrons 208.
Accordingly, the concept of “active” for a brew 202 in the
present example applies on a per brewer/patron basis, and
determines whether the brew 202 will send or receive data
for a particular brewer/patron.

[0127] In step 1314, the brewer 206 may encrypt the data
being sent in embodiments where the brewer 206, rather
than the brew 202aq, is responsible for data encryption.
Accordingly, step 1314 may be omitted if not needed. It is
understood that step 1314 may occur prior to activation of
the brew 202a (e.g., prior to step 1312).

[0128] In step 1316, the brewer 206 begins sending data
received from the application 602 (step 1302) to the now
active brew 202a. In step 1318, the brew 202a performs any
needed processing (e.g., formatting and/or encryption if the
brew 202a is configured to encrypt the data) for the data to
be sent. In step 1319, the brew 2024 sends the data received
from the application 602 to the module 204¢a for transfer to
the corresponding module of the other client. It is under-
stood that when the clients 104 and 106 are started relatively
simultaneously, step 1304 may be omitted and step 1306
would be the same as step 1014 of FIG. 10, after which step
1302 would occur.

[0129] Referring to FIG. 13B, a method 1320 illustrates
one embodiment of the process of FIG. 13A. In the present
example, steps 1322-1328 are performed by the client 104
and step 1330 is performed by the brewer 206. In step 1322,
the client 104 receives a new patron notification. In step
1324, the client 104 looks up all of its registered brewers 206
that correspond to the patron’s topic. In step 1326, the client
104 pulls any needed brew information for the brew 202 that
is to be used. In step 1328, the client 104 notifies each
brewer 206 that there is a new patron 208 and provides any
needed information about the patron 208 and/or the brew
202 to each brewer 206. In step 1330, each brewer 206
instructs the brew 202 to start sending its data to the patron
208.

[0130] Referring to FIG. 14A, a sequence diagram 1400
illustrates one embodiment of a process by which the client
106 of FIG. 6 may receive and handle data. Prior to step
1402, the client 106 has been started with the patron 208, but
either has not received the registration response of step 1012
(FIG. 10) from the server 102 or there is no registered
brewer (e.g., the brewer 206 of FI1G. 6) corresponding to the
patron 208. Accordingly, the patron 208 is not receiving any
data.

[0131] In step 1402, the client 106 receives a notification
from the server 102 about the brewer 206. The notification
may include any needed information for communication
with the brewer 206 (e.g., address and port information). In
step 1404, the client 106 identifies relevant patrons within
the client, including the patron 208. In step 1406, the client
106 notifies the patron 208 of the brewer 206 (as illustrated
by line 6165 of FIG. 6), including any needed information
for communication with the brewer 206 (e.g., address and
port information).

[0132] In step 1408, the patron 208 activates the brew
2025 (as illustrated by line 618a of FIG. 6). This activation
informs the brew 2025 of the brewer 206 and provides any

US 2019/0028414 Al

corresponding brewer information to the brew 2025, which
makes the brew aware that it should start receiving data from
the brewer 206 for the patron 208. At this point, the patron
208 may notify the brew 2026 how the incoming data should
be handled by defining a callback. For example, the patron
208 may instruct the brew 2025 to send the data to the patron
208 (e.g., to be pulled by, or pushed to, the application 604)
or to send the data directly to the application 604 (e.g., push
the data to the application 604). As with the brew 2024 of
FIG. 13 A, the brew 202a may already be active with respect
to other brewers 206 and/or patrons 208. In step 1410, the
now active brew 2025 receives the data from the module
204b. In step 1412, the brew 2026 performs any needed
processing (e.g., formatting and/or decryption if the brew
2025 is configured to decrypt the data) for the received data.
In step 1414, the brew 2025 sends the data to the patron 208.
In step 1416, the patron 208 may decrypt the data being
received in embodiments where the patron 208, rather than
the brew 2025, is responsible for data decryption. Accord-
ingly, step 1416 may be omitted if not needed. In step 1417,
the patron 208 sends the data to the application 604.
[0133] In some embodiments, as illustrated below line
1419, steps 1414, 1416, and 1417 may be replaced by a
single step 1418. In step 1418, the brew 2026 sends data
directly to the application 604. This avoids passing the data
through the patron 208.

[0134] Referring to FIG. 14B, a method 1420 illustrates
one embodiment of the process of FIG. 14A. In the present
example, steps 1422-1428 are performed by the client 106
and step 1430 is performed by the patron 208. In step 1422,
the client 106 receives a new brewer notification. In step
1424, the client 106 looks up all of its registered patrons 208
that correspond to the brewer’s topic. In step 1426, the client
106 pulls any needed brew information for the brew 202 that
is to be used. In step 1428, the client 106 notifies each patron
208 that there is a new brewer 206 and provides any needed
information about the brewer 206 and/or the brew 202 to
each patron 208. In step 1430, each patron 208 instructs the
brew 202 to start patronizing (e.g., obtaining data from) the
brewer 206.

[0135] Referring to FIG. 15, a sequence diagram 1500
illustrates one embodiment of a process by which multiple
clients within the Pubkeeper system 600 of FIG. 6 may be
synchronized. Such synchronization may be desirable in
cases where multiple patrons are connecting to a new
brewer. The synchronization process is an attempt to have
the patrons start by receiving the same data from the brewer,
rather than one patron missing data that is received by
another patron. In the present example, the internal behavior
of the clients 104, 106, and 1501 is not illustrated as
previous diagrams (e.g., FIGS. 13A and 14A) have
described embodiments of such behavior. Accordingly, cli-
ent 104 includes brewer 206, client 106 includes patron
208a, and client 1501 includes patron 2084.

[0136] As described in previous embodiments, each client
106 and 1501 registers its respective patron with the server
102 in steps 1502 and 1504, and the client 104 registers its
brewer 206 with the server in step 1506. In step 1508, the
server 102 responds to the client 104 with brewer initial-
ization information that notifies the client 104 of the patron
208a of the client 106 and the patron 2085 of the client 1501.
[0137] In steps 1510 and 1512, the server 102 notifies the
clients 106 and 1501 of the brewer 206. In steps 1514 and
1516, the clients 106 and 1501 acknowledge the notifica-

Jan. 24, 2019

tions with patron synchronization messages that inform the
server 102 that the respective patrons 208a and 2085 are
ready to receive data. In steps 1518 and 1520, the server 102
notifies the client 104 of the patron synchronization mes-
sages.

[0138] As illustrated by a bracket identified by reference
number 15224, the server 102 may use a timeout period to
ensure that any delays will be minimized. For example, the
server 102 may wait a predefined period of time (e.g., 500
milliseconds) after sending the brewer notifications in steps
1510 and 1512. If one or both of the patron synchronization
messages are not received before the timeout period expires,
the server 102 may send one or both of the messages in steps
1518 and 1520 (or a similar message that is not a synchro-
nization message) following the timeout period. It is under-
stood that this may be handled in many different ways. For
example, a synchronization message may be sent only for a
client from which a patron synchronization message was
received.

[0139] In other embodiments, the client 104 may use a
timeout period in addition to, or as an alternative to, a server
based timeout. For example, as illustrated by a bracket
identified by reference number 15225, the client 104 may
start a timeout period after receiving the brewer initialization
information from the server 102 in step 1508.

[0140] Regardless of the method in which the timeout
period (if any) is implemented, the brewer 206 will being
sending data to the patrons 2084 and 2085 in steps 1524 and
1526. It is understood that the synchronization process may
be omitted entirely in some embodiments, and that data will
be sent to the patrons identified in step 1508 without any
attempt at synchronization. If a particular patron is not
available (e.g., a required connection cannot be established),
the brewer 206 may not send data to that patron.

[0141] Referring to FIG. 16, one embodiment of the
Pubkeeper system 600 of FIG. 6 is illustrated from a data
perspective. As shown, the server 102 and the clients 104
and 106 (e.g., the system functionality 210 of FIG. 2) are not
involved in the actual transfer of data from the application
602 to the application 604.

[0142] With additional reference to FIG. 17, a sequence
diagram 1700 illustrates one embodiment of a process by
which data flow may occur within the Pubkeeper system 600
of FIG. 17. The data is to be sent from the application 602
to the application 604.

[0143] In step 1702, the data for Topic 1 is sent from the
application 602 to the brewer 206 as the brewer 206 corre-
sponds to Topic 1. In step 1704, the brewer 206 sends the
data to the brew 202a, which identifies the brewer’s ID as
corresponding to Topic 1. In step 1706, the brew 202a
performs any needed processing (e.g., formatting of the data
for the module 2044 and/or encryption). The brew 202a then
sends the data to the module 2044 in step 1708.

[0144] In the present example, the brews 202a and 2025
are responsible for encryption and decryption, respectively.
In embodiments where the brewer 206 is responsible for
encryption and the patron 208 is responsible for decryption,
the sequence diagram 1700 may be modified as illustrated in
FIGS. 13A and 14A to account for such encryption and
decryption.

[0145] In step 1710, the module 2044 transfers the data to
the module 20456. The transfer process may vary based on
the particular transfer mechanism used by the message type
represented by the modules 204a and 2045. The module

US 2019/0028414 Al

204b sends the received data to the brew 2025 in step 1712.
In step 1714, the brew 2025 performs any needed processing
(e.g., formatting of the data and/or decryption). The brew
202a then sends the data to the patron 208 in step 1716. In
step 1718, the patron 208 queues the data (if needed) before
sending the data to the application 604 in step 1720. In some
embodiments, the brews 202a and/or 2025 may be capable
of queueing. Steps 1716-1720 are represented in FIG. 16 by
lines 1602a and 16024, respectively, which show the data
passing through the patron 208.

[0146] In another embodiment, steps 1716-1720 may be
replaced by a callback that bypasses the patron 208. In this
embodiment, the brew 2026 may perform any needed queu-
ing in step 1722 before sending the data directly to the
application 604 in step 1724. In other embodiments of the
callback process, the brew 20256 may not be capable of
queueing and received data may be streamed directly to the
application 604 or written to a storage area for later retrieval
by the application 604. Step 1724 is represented in FIG. 16
by line 1604, which shows the data bypassing the patron
208.

[0147] Referring to FIG. 18A, a method 1800 illustrates
one embodiment of a process of that may be executed by the
brew 2024 of FIG. 17 when the brew 202a is responsible for
encryption. In step 1802, unencrypted data is received from
the brewer 206. In step 1804, the data is converted as needed
for the module 1804. This step prepares the data for sending
by the module 204a and may vary based on the requirements
of the module 204a (e.g., formatting and/or segmentation of
the data). In step 1806, the data may be encrypted if needed
(e.g., if encryption is required or desired). In step 1808, the
data is sent to the module 204a for transmission.

[0148] Referring to FIG. 18B, a method 1810 illustrates
one embodiment of a process of that may be executed by the
brew 2025 of FIG. 17 when the brew 20254 is responsible for
decryption. In step 1812, encrypted data is received from the
module 2045. In step 1814, the data is decrypted if needed.
In step 1816, the data is converted for the patron 208 if
needed. In step 1816, the data may be sent to the patron 208
or directly to the application 604.

[0149] Referring to FIG. 18C, a method 1820 illustrates
one embodiment of a process of that may be executed by the
brew 202a of F1G. 17 when the brew 2024 is not responsible
for encryption. In step 1822, encrypted data is received from
the brewer 206. In step 1824, the data is converted as needed
for the module 1804. This step prepares the data for sending
by the module 204a and may vary based on the requirements
of the module 204a (e.g., formatting and/or segmentation of
the data). In step 1826, the still encrypted data is sent to the
module 2044 for transmission.

[0150] Referring to FIG. 18D, a method 1830 illustrates
one embodiment of a process of that may be executed by the
brew 2025 of F1G. 17 when the brew 2025 is not responsible
for decryption. In step 1832, encrypted data is received from
the module 2045. In step 1834, the data is converted for the
patron 208 if needed. In step 1836, the still encrypted data
may be sent to the patron 208 for decryption and relay to the
application 604.

[0151] Referring to FIG. 19, a diagram illustrates one
embodiment of a system 1900. The system 1900 includes a
data source 1902 (Topics 1 and 2), a data source 1904 (Topic
1), a data destination 1906 (Topics 1 and 2), and a data
destination 1908 (Topic 2). The data sources 1902 and 1904,

Jan. 24, 2019

and the data destinations 1906 and 1908, may be different
parts of a single application or may be different applications.
[0152] The system 1900 further includes a client 104 and
a client 106. The client 104 is configured for message types
1, 2, and 3, and includes a brewer 206a for Topic 1 and a
brewer 2065 for Topic 2. The client 104 further includes a
brew 202a and a corresponding module 204a (MT 1), a brew
2025 and a corresponding module 2045 (MT 2), and a brew
202¢ and a corresponding module 204¢ (MT 3). The client
106 is configured for message types 1 and 2, and includes a
patron 208a for Topic 1 and a patron 2085 for Topic 2. The
client 106 further includes a brew 2024 and a corresponding
module 2044 (MT 1) and a brew 202e¢ and a corresponding
module 204¢ (MT 2).

[0153] As illustrated, the data source 1902 sends its Topic
1 data to the brewer 2064 and its Topic 2 data to the brewer
2065. The data source 1904 sends its Topic 1 data to the
brewer 206a. Each brewer 2064 and 2065 sends the data to
all of the available brews 2024, 2025, and 202¢, which can
distinguish the data by brewer ID. By sending its data to all
available brews 202a-202¢, a brewer 206 does not need to
know which brew is being used for the actual transfer. In
other embodiments, a brewer 206 may be configured with
information as to which brew 202 will be used for trans-
mission, and the brewer may send its data only to that brew.
[0154] A pubkeeper server 102 (not shown) has deter-
mined that the clients 104 and 106 should communicate
using MT 1. Accordingly, the data for both Topic 1 and Topic
2 is sent out by the brew 202q via the module 204aq.
Although the brews 2025 and 202¢ receive the data, they are
not active in this example and do not send the data to their
corresponding modules 2085 and 208c.

[0155] The module 2044 receives the data for Topic 1 and
Topic 2 and sends the data to the brew 202d. The module
204¢ and the brew 202e are inactive in this transaction. The
brew 2024 sends the Topic 1 data to the patron 208a and the
Topic 2 data to the patron 2085. The patron 208a sends the
Topic 1 data to the data destination 1906. The patron 2085
sends the Topic 2 data to the data destinations 1906 and
1908.

[0156] Referring to FIG. 20, a diagram illustrates one
embodiment of a system 2000 that is a variation of the
system 1900 of FIG. 19. In the present example, the client
106 is associated with the data destination 1906 and a client
2002 is associated with the data destination 1908. The client
104 communicates with the client 106 using MT 1 and the
client 2002 using MT 2. Unused modules and brews have
been omitted from the clients 106 and 2002 for purposes of
clarity.

[0157] As illustrated, the data source 1902 sends its Topic
1 data to the brewer 2064 and its Topic 2 data to the brewer
2065. The data source 1904 sends its Topic 1 data to the
brewer 206a. Each brewer 2064 and 2065 sends the data to
all of the available brews 202a, 2025, and 202¢. The brews
202a (MT 1) and 2025 (MT 2) are the active brews. The data
for both Topic 1 and Topic 2 is sent out by the brew 202a via
the module 204q to the module 204d. The data for Topic 2
is sent out by the brew 2025 via the module 2045 to the
module 204e. In the present example, the MT 1 and MT 2
modules are configured with different sockets or channels
for different topics, and so only the data for Topic 2 (but not
the data for Topic 1) is sent to the module 204e.

[0158] The module 2044 receives the data for Topic 1 and
Topic 2 and sends the data to the brew 202d. The brew 2024

US 2019/0028414 Al

sends the Topic 1 data to the patron 208a and the Topic 2
data to the patron 2085. The patron 208a sends the Topic 1
data to the data destination 1906. The patron 2085 sends the
Topic 2 data to the data destination 1906.

[0159] The module 204e receives the data for Topic 2 and
sends the data to the brew 202e. The brew 202e¢ sends the
Topic 2 data to the patron 208¢. The patron 208¢ sends the
Topic 2 data to the data destination 1908.

[0160] Referring to FIG. 21, a diagram illustrates one
embodiment of a system 2100 (e.g., the system 2000 of FIG.
20) in which a client 104 is to transfer data to clients 106 and
2108. The client 104 includes a ZeroMQ brew 202q and a
Web Socket brew 202b. It is understood that these are for
purposes of example and may be any message type. The
client 104 also includes a brewer 206a for Topic 1 and a
brewer 2065 for Topic 2. Data sources have been omitted for
the client 104 in the present example, but would interact
with the illustrated components as previously described.

[0161] The client 106 includes a patron 208a for Topic 1
and a patron 2085 for Topic 2. The client 2108 includes a
patron 208¢ for Topic 2. Data destinations and brews 202
have been omitted from the clients 106 and 2108 in the
present example, but would interact with the illustrated
components as previously described.

[0162] The clients 104 and 106 communicate via ZeroMQ
and the clients 104 and 2108 communicate via WebSockets.
The brewers 206a and 2065 send their data to both of the
brews 202a and 2025b.

[0163] Because the behavior of a brew 202 depends on the
characteristics and requirements of the underlying module,
each brew operates as needed for its module. For example,
a ZeroMQ brew may use a separate socket on the corre-
sponding module for each topic. This allows the brew to
send/receive data for each topic via the corresponding
socket. A Web Socket brew may be coupled to one or more
WebSocket servers, and may use a different room for each
topic. This means that “sending” involves writing to the
appropriate room and “receiving” means reading from the
appropriate room.

[0164] Because of differences between the brews 202a and
202b, the timing of various actions such as resource allo-
cation may differ. For example, with respect to the brew
202a, the sockets 2102a and 21026 are created by the
module 204a when the corresponding brewers 206a and
2066 are created. This is specific to the ZeroMQ implemen-
tation of the brew 202a. In contrast, when the brew 2025 is
created, the module 2045 creates the user resources. This is
specific to the Web Sockets implementation of the brew
2025.

[0165] Accordingly, as illustrated in FIG. 21, the module
204a includes a socket 21024 for Topic 1 and a socket 21025
for Topic 2. More specifically, when each of the brewers
206a and 2066 are created, a socket for their corresponding
topic is created (or associated if already existing) in the
ZeroMQ module 204a with the brewer’s ID. The brew 202a
can then link the brewers 2064 and 2065 with their corre-
sponding sockets 2102a and 21025, respectively, which
enables the brew 202a to correctly route the data received
from each brewer 206a and 2065.

[0166] The patron 208a is aware of the socket 21024 and
is able to receive data from the socket 2102q via a ZeroMQ
module and brew (not shown) of the client 106. The patron

Jan. 24, 2019

2085 is aware of the socket 21025 and is able to receive data
from the socket 21025 via the ZeroMQ module and brew of
the client 106.

[0167] In the present example, the WebSocket brew 2025
writes to a room 2106 for Topic 2 on a Web Socket server
2104. The patron 208c¢ is aware of the room 2106 and is able
to read data from the room 2106 via a Web Socket module
and brew (not shown) of the client 2108.

[0168] Referring to FIG. 22, one embodiment of a system
2200 includes a Pubkeeper server 102a that is part of one
Pubkeeper system (System 1) and a Pubkeeper server 1025
that is part of a different Pubkeeper system (System 2). As
shown the Pubkeeper client 104 communicates with both of
the Pubkeeper servers 1024 and 1025, which means that the
application 302 only needs the single client to participate in
both Pubkeeper systems.

[0169] Referring to FIG. 23, one embodiment of a system
2300 includes a Pubkeeper server 102a that is part of one
Pubkeeper system (System 1) and a Pubkeeper server 1025
that is part of a different Pubkeeper system (System 2). In the
present example, the application 302 uses two separate
clients 104 and 106. The client 104 communicates with the
server 1024 and the client 106 communicates with the server
1026b.

[0170] Referring to FIG. 24, one embodiment of a system
2400 includes a client 104, a client 106, and a client 2402.
As illustrated, the client 104 may communicate using mes-
sagetypes 1, 2, and 3. The client 106 can communicate using
message types 1, 2, and 4. The client 2402 can only
communicate using message type 4. This means that the
clients 104 and 2402 cannot communicate directly. Accord-
ingly, the client 106, which can communicate with both the
client 104 and the client 2402, may relay communications
between the two endpoints 104 and 2402. For example, the
client 106 may receive a message from one client, convert
the message into the appropriate message type, and send the
message to the other client. This allows the clients 104 and
2402 to participate fully in the Pubkeeper system and with
each other without requiring additional message types to be
added to the client 104 and/or the client 2402 for such
communications.

[0171] Referring to FIGS. 25A and 25B, a system 2500
illustrates a more detailed embodiment of the system 2400
of FIG. 24. The system 2500 enables the client 104 to
communicate with the client 2502 via a bridge provided by
the client 106. For purposes of example, the client 104
includes a brewer that publishes using WebSockets, the
client 2402 includes a patron that uses ZeroMQ and wants
to receive information output by the brewer of the client 104,
and the client 106 can communicate using both WebSockets
and ZeroMQ. The client 104 is not configured to use
ZeroMQ, the client 2402 is not configured to use WebSock-
ets, there are no compatible message types available
between the clients 104 and 2402, and the client 106 will be
used to bridge the WebSocket/ZeroMQ gap. It is understood
that these may be any message types and that Web Sockets
and ZeroMQ are used only as examples.

[0172] The bridge client 106 represents a bridge segment
that connects the client 104 to the client 2402. The bridge
segment is formed by a brewer and patron pair of the client
106, with the bridge segment patron connecting to the
brewer of the client 104 and the bridge segment brewer
publishing to the patron of the client 2402. While the data
path illustrates data flowing from the client 104 to the client

US 2019/0028414 Al

2402, it is understood that communications may flow from
the client 2402 to the client 104 in embodiments where the
client 104 has a patron for a topic published by a brewer on
the client 2402 and/or if needed for call setup or mainte-
nance (e.g., for signaling). As will be shown in a later
embodiment, there may be multiple bridge clients between
the clients 104 and 2502 if needed to provide the necessary
message types for the client 104 and 2402 to communicate.

[0173] A Pubkeeper server 102 (FIG. 25A) is responsible
for identifying the appropriate bridge client(s) and setting up
the bridge segments needed to support the two clients 104
and 2402 that are trying to communicate. To facilitate this
process, the server 102 may keep a list of orphans for the
system 2500. Each orphan represents a brewer or patron,
along with the corresponding topic and message type, that
does not have a matching patron or brewer, respectively. For
example, the client 104 may have a brewer that publishes to
a topic “sensor data” using WebSockets and the client 2402
may have a patron that uses only ZeroMQ but wants to
subscribe to that topic. If there is no available bridge to
connect the brewer to the patron, the server 102 will add the
brewer and patron to the orphan list. When a new client
comes online, the server 102 will check to see if the new
client can provide a bridge for any of the orphans. If a
desired bridge is made available by the new client, the server
102 will facilitate the bridging process and remove the
corresponding orphans from the list. An orphan may remain
on the list until a bridge is established, the client leaves the
system 2500, or the client closes the brewer or patron.

[0174] Depending on the particular implementation of
bridge mode within the system 2500, bridge mode may be
optional for a particular client (e.g., opt-in or opt-out) or may
be mandatory. If optional, bridge mode may be disabled by
default and enabled only if a client registers with the server
102 to enable bridge mode. Bridge mode may be enabled by
a client only for particular brews or for all brews that are
supported by the client.

[0175] By providing control over bridge mode on a per
client basis, clients that may be negatively impacted by
bridging (e.g., clients with little or no extra processing
power and/or the network capacity needed to handle bridge
mode in addition to their assigned tasks) can be configured
to refrain from bridging while clients that will not be
negatively impacted can be used in bridge mode. As there
will likely be additional resources available for bridging
within the Pubkeeper system 2500, a system may usually be
planned normally and operate effectively without explicitly
planning for each client to have the resources needed for
bridge mode.

[0176] In the present embodiment, a client may be both a
bridge client and a regular subscriber and/or publisher (e.g.,
may be configured to produce and/or consume information
as part of the client’s non-bridge mode operation) within the
system 2500. However, in other embodiments, clients that
are regular subscribers and/or publishers may not be allowed
to serve as bridge clients for security reasons. In such
embodiments, a bridge client will exist only to handle
bridging. In the present embodiment, the server 102 will not
create a bridge node because the server 102 is not to be
involved in the transmission of information for security
reasons. However, in other embodiments, if no bridge is
available, the server 102 may launch a client to serve as a
bridge or may instruct another device to create a bridge

Jan. 24, 2019

client, or may override a client that has indicated that it does
not want to be a bridge client and force the client into bridge
mode.

[0177] As shown in FIG. 25B, communications within the
bridge client 106 (e.g., between the segment patron and
segment brewer) are internal to the client 106. For example,
when creating the segment, the segment brewer may be
created first and then the segment patron may be created
with a callback to the segment brewer. This enables the
segment patron to pass received data directly to the segment
brewer within the client 106 and the data is not made
available outside of the client 106. More specifically, the
segment patron receives the raw data from its assigned brew
and passes the raw data to the segment brewer, which in turn
sends the raw data out through its assigned brew.

[0178] Because decryption/encryption occur at the patron/
brewer level in the present embodiment (rather than at the
brew level as described in some previous embodiments), the
segment patron and segment brewer are created with instruc-
tions to not decrypt or encrypt the raw data. This maintains
the raw data in its original state, which means that the
original encryption and decryption keys used by the origin
brewer and destination patron remain valid. In addition, this
prevents the data from being decrypted by a segment (which
does not have the decryption key), thereby increasing the
security of the transmitted data.

[0179] Referring to FIG. 26, a sequence diagram 2600
illustrates one embodiment of a process by which the client
106 of FIGS. 25A and 25B may become a bridge between
the clients 104 and 2402 within the Pubkeeper system 2500.
The internal behavior of the clients 104, 106, and 2402 is not
illustrated as previous diagrams have described embodi-
ments of such behavior. In addition, initial registration by
the clients 104, 106, and 2402 with the server 102 has been
omitted for purposes of clarity other than a brew registration
message by the client 106.

[0180] In the present example, due to the way in which the
bridge is established, the client 104 and the client 2402 are
unaware of the bridge client 106. Accordingly, the brewer of
the client 104 assumes that it is publishing directly to the
destination that wants the data being published (e.g., the
patron of the client 2402). Similarly, the patron of the client
2402 assumes that it is subscribed directly to the origin of
the data being received (e.g., the brewer of the client 104).
In other embodiments, one or both of the clients 104 and
2402 may be aware that the bridge client 106 is serving as
an intermediary.

[0181] In step 2602, the client 106 sends a brew registra-
tion message to the server 102. The brew registration
message may be part of a regular registration message (e.g.,
the message of step 718 of FIG. 7) or may be a separate
message. An example of a brew registration message for the
client 106 is shown below.

{
brews: [
‘websocket’,
‘zmg’
15

bridge__mode: True

}

[0182] The illustrated brew registration message informs
the server 102 of all the brews that the client 106 will be

US 2019/0028414 Al

using and whether the client 106 is available as a bridge. In
the present example, “bridge_mode: True” indicates that the
client 106 is available as a bridge for the listed brews, while
“bridge_mode: False” would indicate that the client 106 is
not available as a bridge.

[0183] In some embodiments, the “true” or “false” indi-
cator may be at least partly based on a status of each brew.
For example, if a particular brew is unavailable and it is one
of only two brews on that client 106, then there can be no
bridging. While the bridge mode status may still be set to
true in this case, bridging would only occur if the client later
notified the server of a second active brew. If there are three
or more brews and at least two of those brews are functional,
then the client 106 may be used as a bridge as long as the
functional brews are the brews needed for bridging.

[0184] In some embodiments, the server 102 may be
notified of the status of each brew at the time of registration,
a later status message may be sent, or the server 102 may be
notified of a non-functional brew only when the server 102
attempts to create a bridge using the brew. Accordingly,
brew status may be used to indicate whether a particular
brew is currently available. For example, ZeroMQ may have
a status of “OK” or “ERROR.”

[0185] In step 2604, the server 102 identifies the client(s)
to be used for bridge mode with the clients 104 and 2402,
which includes the client 106 in the present example. If
multiple bridge possibilities are available, the server 102
may use the first available client, may calculate shortest/
fastest path for bridge selection, may use the client(s) with
the most available resources, and/or may choose the bridge
client(s) in other ways.

[0186] In step 2606, the server 102 sends a segment
creation message to the client 106. In the present example,
the segment creation message instructs the client 106 to
create a WebSocket patron and a ZeroMQ brewer that will
be needed for the clients 104 and 2402, respectively. An
example of a segment creation message is as follows:

{
‘patron__details’: {
‘patron__id’: ‘ale88daacf58495a84000ce4abl 66725°,
‘prev__brewer__id’: ‘19beb2a0e4094af1921ac3c17a3608de’
‘brew’: {‘sock’: “/tmp/
19beb2a0e4094af1921ac3¢17a3608de.sock’, ‘name’: ‘local-
83779604500539°},
‘topic’: ‘example.topic’,
5
‘brewer__details”: {
‘brewer__id’: *50176f68a6cf4fc38dfbbOede2c3f2c1”
‘brew__name’: ‘zmq’,
‘topic’: ‘example.topic’,

‘segment__id”: ‘f9d43d33926147d9ac8be5dcOb0fc78e’,

[0187] As shown, the segment creation message includes
patron details for the bridge’s patron, brewer details for the
bridge’s brewer, and a unique segment identifier. The patron
details include a patron identifier that is assigned by the
server 102, the brewer from which the patron will receive
information (prev_brewer_id), the brew that is used by the
previous brewer and any relevant information so that the
patron can subscribe to that brewer, and the topic (e.g.,
example_topic). The previous brewer may be the originating

Jan. 24, 2019

brewer (e.g., the brewer of the client 104) or the brewer of
the previous bridge in a chain of bridge clients (e.g., as
shown in FIG. 27).

[0188] The brewer details include a brewer identifier that
is assigned by the server 102, the name of the brew that the
brewer is to use, and the topic. The topic name used by the
brewer of the last bridge in a chain of bridges or a single
bridge if only one bridge is used may be assigned using one
of two different naming conventions. The first naming
convention assigns the bridge’s brewer topic the same name
as that of the origination topic (e.g., the topic name used by
the originating brewer of the client 104). This allows the
patron of the final destination client (e.g., the client 2402) to
subscribe to the topic using the original name. The second
naming convention assigns the bridge’s brewer topic a new
name that does not match the originating brewer’s topic,
such as a randomized or otherwise selected name, and
requires the final patron to subscribe to the assigned name.
For example, rather than using the name “example.topic,”
the name may be assigned as
“709d9¢b2361842deaec963f01c0365¢a6.”

[0189] The first naming convention enables the bridging
process to occur without the final patron’s knowledge. In
other words, the patron of the client 2402 is subscribing to
the same topic as that of the brewer of the client 104. A
potential downside is that in some embodiments, such as
when a WebSocket server is being used, the bridge’s brewer
may be publishing into a room that may have multiple
subscribers, some of which are subscribed directly to the
originating brewer rather than the bridge’s brewer. While the
data being written to the room by the bridge’s brewer is the
same data that would be written to the room by the origi-
nating client’s brewer, it is possible that complications might
occur. For example, this process can technically nullify the
WebSocket room’s last value caching (if enabled), since the
last value may be written by the bridge’s brewer rather than
the originating client’s brewer.

[0190] The second naming convention provides a unique
subscription channel for the final patron, but means that the
final patron will be subscribing to the bridge brewer’s topic
name rather than the originating brewer’s topic name. This
exposes the destination client’s patron to the bridging pro-
cess because the destination client’s patron is subscribing to
a different topic name. This may complicate the process on
the destination client’s end, while solving the potential
problems of the first naming convention. In the present
example, the first naming convention is used.

[0191] In multi-bridge scenarios, topic names between
bridges may be different from the originating brewer’s topic
name, but will generally be consistent between all the
bridges. For example, the name
“709d9eb2361842deac963f01c0365¢a6” may be used
between bridges even if the first naming convention is
implemented and the final bridge’s brewer uses the original
topic name.

[0192] The unique segment identifier enables the server
102 to distinguish between different segments and enables
the client 106 to support multiple simultaneous segments for
different bridges, with each segment having a unique seg-
ment identifier. The use of uniquely identifiable segments
enables the server 102 to instruct the client 106 to terminate
or modify specific segments based on their identifiers.
[0193] In step 2608, the client 106 creates the segment
patron needed to receive information from the client 104 and

US 2019/0028414 Al

the segment brewer needed to publish information for the
client 2402. In step 2610, the brewer and patron on the client
106 are registered with the server 102 for the segment
identifier provided in the segment creation message of step
2606. The segment registration of step 2610 may serve as a
response to the segment creation message. An example of a
segment registration message for the client 106 is as follows:

‘brewer__brew’: {
‘publisher_url’: ‘tep://127.0.0.1:9097",
‘name’: ‘zmgq’

)

‘patron__brew’: {

‘name’: ‘local-83779604500539°
b
‘segment__id”: ‘f9d43d33926147d9ac8be5dcOb0fc78e’

[0194] The segment registration message notifies the
server 102 of the bridge’s brewer and patron information,
and identifies the bridge by its segment identifier. In step
2612, the server 102 registers the information received from
the client 106 in step 2610.

[0195] In step 2614, the server 102 sends a patron notify
message to the client 104 to inform the client 104 of the
segment patron of the client 106. This message is similar or
identical to the patron notification of step 1306 of FIG. 13A.
[0196] In step 2616, the server 102 sends a brewer notify
message to the client 2402 to inform the client 2402 of the
brewer of the client 106. This message is similar or identical
to the brewer notification of step 1402 of FIG. 14A.
[0197] In step 2618, the server 102 sends a segment
connect brewer message to the client 106. The segment
connect brewer message serves as a patron notification to the
client 106, providing the brewer of the client 106 with the
patron information of the next client (e.g., the client 2402)
in a manner similar to that of the patron notity of step 2614.
While the server 102 already knows the patron information
needed by the brewer of the client 106 in the present
example, the information is not sent until this time for
consistency with multi-bridge embodiments where such
information may not be known until each bridge segment is
created. It is understood that the patron notify of step 2614,
the brewer notify of step 2616, and the segment connect
brewer message of step 2818 may be sent in a different order
or simultaneously.

[0198] It is noted that there may not be an explicit brewer
notification for the segment patron of the bridge client 106,
as the brewer notification may be an implicit part of the
earlier segment creation message for that bridge client when
the patron is created. In other words, by creating the patron
and brewer on the bridge client 106 for the bridge segment,
the patron is automatically aware of the existence of the
corresponding brewer, which negates the need for an explicit
brewer notify message for the patron.

[0199] Following step 2618, the bridge segment is com-
plete and data from the client 104 can be communicated to
the client 2402 via a first leg from the origin brewer of the
client 104 to the segment patron of the client 106, between
the segment patron and the segment brewer of the client 106,
and then via a second leg from the segment brewer of the
client 106 to the destination patron of the client 2402. To
accomplish this, data corresponding to the desired topic that
is published by the client 104 is received by the client 106

Jan. 24, 2019

in step 2620. In the present example, the data is received via
WebSocket and is to be sent to the client 2402 via ZeroMQ.
Accordingly, in step 2622, the client 106 prepares the data
for ZeroMQ transmission. It is understood that the data itself
is generally not altered. For example, the data may be
extracted from the payload of the incoming messages and
inserted into the payload of outgoing messages and sent.
This enables encrypted data to be received and relayed
without alteration. In other embodiments, data may be
altered if desired. In step 2624, the data is sent to the client
2402.

[0200] Referring to FIG. 27, a system 2700 illustrates an
embodiment of the system 2500 of FIGS. 25A and 25B with
a second bridge client 2702. In the present example, the
client 104 publishes information via WebSockets and the
client 2402 wants to receive the published information but
only uses MQTT. The system 2700 does not include an
available bridge client that uses both WebSockets and
MQTT. However, the system 2700 includes the client 106
that uses WebSockets and ZeroMQ, and a client 2702 that
uses ZeroMQ and MQTT. Accordingly, the client 106 can
provide a Web Socket to ZeroMQ bridge segment and the
client 2702 can provide a ZeroMQ to MQTT bridge segment
to enable the client 2402 to receive the information pub-
lished by the client 104. It is understood that these may be
any message types and that WebSockets, ZeroMQ, and
MQTT are used only as examples.

[0201] Referring to FIGS. 28A and 28B, a sequence
diagram 2800 illustrates one embodiment of a process by
which the clients 106 and 2702 of FIG. 27 may be used to
form a multi-segment bridge between the clients 104 and
2402 within the Pubkeeper system 2700. The internal behav-
ior of the clients 104, 106, 2402, and 2702 is not illustrated
as previous diagrams have described embodiments of such
behavior. In addition, initial registration by the clients 104,
106, 2402, and 2702 with the server 102 has been omitted
for purposes of clarity, as have the brew registration mes-
sages by the clients 106 and 2702 (if different from the initial
registration messages) and the segment registration by the
server (e.g., step 2612 of FIG. 26).

[0202] Steps 2802, 2804, 2806, and 2808 correspond to
steps 2604, 2606, 2608, and 2610 of FIG. 26, respectively,
and are not described in detail in the present example.
However, for the bridge-to-bridge communications between
the clients 106 and 2702, the topic for the brewer of the
client 106 is assigned as
“709d9eb2361842deac963f01c0365ea6” in the present
example, rather than the “example.topic” name used with
respect to FIG. 26.

[0203] In step 2810, the server 102 sends a segment
creation message to the client 2702. In the present example,
the segment creation message instructs the client 2702 to
create a ZeroMQ patron and a MQTT brewer that will be
needed for the clients 106 and 2402, respectively. An
example of the segment creation message is as follows:

{
‘create__patron__details’: {
‘patron__id’: “409a7bcd09204691922bc77a50b769e4”,
‘prev__brewer__id": ‘50176f68a6cf4fc38dfbb0ede2c3f2cl’,
‘brew’: {
‘publisher_url’: ‘tep://127.0.0.1:9097°,
‘name’: ‘zmgq’

b

US 2019/0028414 Al

-continued

Jan. 24, 2019
16

-continued

‘topic’: “709d9%eb2361842deae963f01c0365¢a6°,

)

reate_brewer__details’: {
‘brewer__id’: “78¢3b261942144bd894bbddda7de497b’.
‘brew__name’: ‘mqtt’,
‘topic’: ‘example.topic’,
b
‘segment__id’: ‘5a61954a68f54de4b3629b5a1110184e’,

[0204] As shown, the segment creation message includes
patron details for the bridge’s patron, brewer details for the
bridge’s brewer, and a unique segment identifier. The patron
details include a patron identifier that is assigned by the
server 102, the brewer from which the patron will receive
information (e.g., the brewer of the bridge client 106), the
brew that is used by the previous brewer and any relevant
information so that the patron can subscribe to that brewer,
and the topic name. For purposes of example, the topic name
that has been assigned to the brewer of the bridge 106 (e.g.,
in step 2804) is “709d9eb2361842deae963f01c0365¢a6.”
Accordingly, the topic to which the patron of the bridge
client 2702 is to subscribe is
“709d9eb2361842deae963f01c0365¢a6.” The brewer
details include a brewer identifier that is assigned by the
server 102, the name of the brew that the brewer is to use,
and the topic. The topic is named “example.topic,” which is
identical to the topic name used by the originating brewer of
the client 104.

[0205] In step 2812, the client 2702 creates the segment
patron needed to receive information from the bridge client
106 and the segment brewer needed to publish information
for the client 2402. In step 2814, the brewer and patron on
the client 2702 are registered with the server 102 for the
segment identifier provided in the segment creation message
of step 2810. An example of a segment registration message
for the client 2702 is as follows:

‘brewer__brew’: {
‘publisher_url’: ‘tep://127.0.0.1:9171°,
‘name’: ‘mqtt’

)

atron__brew’: {
‘name’: ‘zmgq’

b

‘segment__id”: ‘5a61954a6854de4b3629b5a1110{84e’

[0206] In steps 2816 and 2818, the server 102 sends
segment connect brewer messages to the bridge clients 106
and 2702, respectively. Because the server 102 may not have
all the needed information for the bridge clients until both
bridge clients have created their respective brewers, the
segment connect brewer message are sent following the
receipt of the segment registration messages by the server
102. An example of the segment connect brewer message for
the client 106 is as follows:

{
‘patron__id’: “409a7bcd09204691922bc77a50b769e4°,
‘patron__brew’: {
‘name’: ‘zmgq’

2
‘segment__id": ‘P9d43d33926147d9ac’be5dcObOfc78e’}

[0207] This message informs the client 106 of the exis-
tence of the patron of the client 2702 and the brew used by
that patron. It is noted that there is not an explicit brewer
notify for the segment patron of the bridge client, as the
brewer notification is an implicit part of the earlier segment
creation message for that bridge client when the patron is
created.

[0208] An example of the segment connect brewer mes-
sage for the client 2702 is as follows:

{
‘patron__id": *2708dd30f67b4b0182817119adbdc5e’,

‘patron__brew’: {
‘name’: ‘mqtt’
¥

‘segment_id’: ‘Sa6f954a68f54de4b3629b531110f84e’}

[0209] This message informs the client 2702 of the patron
of the client 2402 and the brew used by that patron.

[0210] In steps 2820 and 2822, respectively, a patron
notification is sent to the client 104 and a brewer notification
is sent to the client 2402. It is understood that the segment
connect brewer messages of steps 2816 and 2818, the patron
notify of step 2820, and the brewer notify of step 2822 may
be sent in a different order or simultaneously.

[0211] Following step 2622, the bridge segments are com-
plete and data from the client 104 can be communicated to
the client 2402. To accomplish this, data corresponding to
the desired topic that is published by the client 104 is
received by the client 106 in step 2826. In the present
example, the data is received via Web Socket and is to be
published via ZeroMQ. Accordingly, in step 2826, the client
106 prepares the data for ZeroMQ transmission. The data is
published by the client 106 and received by the client 2702
in step 2828. In the present example, the data is received via
ZeroMQ and is to be published by the client 2702 via
MQTT. Accordingly, in step 2830, the client 2702 prepares
the data for MQTT transmission. In step 2832, the data is
sent to the client 2402.

[0212] Referring to FIG. 29, a method 2900 illustrates one
embodiment of a process that may be performed within a
Pubkeeper system by a Pubkeeper server (e.g., the server
102 of FIGS. 25A or 27) to establish one or more bridge
segments. In the present example, the server 102 maintains
an orphan list with patrons and brewers that have no current
match and for which there are no compatible bridge clients
registered with the server 102.

[0213] In step 2902, a bridge client registers. As previ-
ously described, the registration provides information to the
server 102, including the brews supported by the registering
bridge client. In steps 2904 and 2906, the server 102
determines whether the newly registered bridge client can be
used to link any of the patrons and/or brewers on the orphan
list. If no matches are available (e.g., if the bridge client
cannot be used with any of the current orphans), the method
2900 continues to step 2908. In step 2908, the server 102
waits for another bridge client to register, at which time the
method 2900 returns to step 2902.

US 2019/0028414 Al

[0214] If a match is available (e.g., if the server 102 can
build a bridge for an orphan using one or more available
bridge clients), the method 2900 moves from step 2906 to
step 2910. For each bridge client to be used in creating a
bridge, the server 102 sends a segment creation message to
the client in step 2910 and receives a segment registration
message from the client in step 2912. As these messages
have been described in previous embodiments, they are not
described in detail in the present example.

[0215] In step 2914, the server 102 sends a segment
connect brewer message to each bridge client. Although
shown following the receipt of all segment registrations of
step 2912, a segment connect brewer message may be sent
to a bridge client once the server 102 has any needed
information from a particular segment registration message,
even if other segment registration messages have not been
received. In step 2916, the server 102 sends patron and
brewer notification messages to the origin and destination
clients, respectively. Steps 2916 and 2918 may occur in a
different order or simultaneously.

[0216] In step 2918, the server 102 removes the origin
brewer and/or destination patron from the orphan list. Step
2918 may occur earlier in the method 2900 (e.g., immedi-
ately following step 2906), but is shown in its current
location to ensure the orphan list is not updated until the
bridge is in place.

[0217] Referring to FIG. 30, a method 3000 illustrates one
embodiment of a process that may be performed within a
Pubkeeper system by a bridge client (e.g., the client 106 of
FIGS. 24, 25A, 25B, or 27) to establish a bridge segment.
The client 106 may be the only bridge segment (e.g., as in
FIGS. 25A and 25B) or may be one of multiple bridge
segments (e.g., as in FIG. 27).

[0218] In step 3002, the bridge client 106 registers with
the server 102 as a bridge client, which includes notifying
the server 102 of the brews that the client 106 has available.
In step 3004, which may occur at any time following step
3002, the client 106 receives a segment creation message. As
previously described, the segment creation message
instructs the client 106 to create a patron and brewer for a
segment using particular brews. In step 3006, the client 106
creates the segment patron and segment brewer using the
defined brews. In step 3008, the client 106 sends a segment
registration message to the server 102. The segment regis-
tration message notifies the server 102 that the client 106 has
created the segment patron and segment brewer, and pro-
vides any patron/brewer specific information that may be
needed by the server 102 while setting up the bridge.
[0219] In step 3010, the client 106 receives a segment
connect brewer message. The segment connect brewer mes-
sage activates the segment patron and provides any infor-
mation that may be needed by the patron and/or brewer. In
step 3012, the segment patron of the client 106 connects to
the brewer of the previous client (either the origin client or
a preceding bridge client). In step 3014, the client 106
receives and repackages data from the previous brewer. In
step 3016, the client 106 republishes the data via the
segment brewer.

[0220] Referring to FIG. 31A, a sequence diagram 3100
illustrates embodiments of two different processes (sepa-
rated by a line 3122) that may be used by the system 2700
of FIG. 27 to handle a disconnect by an origin brewer or a
destination patron. The first process begins with step 3102
and illustrates an origin brewer disconnection. The second

Jan. 24, 2019

process begins with step 3112 and illustrates a destination
patron disconnection. It is understood that if no initial
disconnect message is sent to the server 102 (e.g., if the
client 104 or the client 2402 crashes), the server 102 may
detect the disconnect and perform the steps shown following
a disconnect message. Although shown with two segments,
it is understood that the sequence diagram 3100 is equally
applicable to single segment bridges such as that shown in
FIG. 25A.

[0221] In step 3102, the client 104 sends a disconnect
message for the origin brewer. In step 3104, the server 102
identifies any bridge clients with related segments. In steps
3106 and 3108, the server 102 notifies the clients 2702 and
106, respectively, to terminate their corresponding seg-
ments. In step 3110, the server 102 sends a brewer removal
notification to the client 2402 to inform the client 2402 that
the brewer to which the destination patron was listening is
no longer available. It is understood that the messages of
steps 3106, 3108, and 3110 may occur in a different order or
simultaneously.

[0222] In step 3112, the client 2402 sends a disconnect
message for the destination patron. In step 3114, the server
102 identifies any bridge clients with related segments. In
steps 3116 and 3118, the server 102 notifies the clients 2702
and 106, respectively, to terminate their corresponding seg-
ments. In step 3120, the server 102 sends a patron removal
notification to the client 104 to inform the client 104 that the
patron to which the origin brewer was publishing is no
longer available. It is understood that the messages of steps
3116, 3118, and 3120 may occur in a different order or
simultaneously.

[0223] Referring to FIG. 31B, a sequence diagram 3130
illustrates embodiments of two different processes (sepa-
rated by a line 3152) that may be used by the system 2700
of FIG. 27 to handle a disconnect by a bridge client. The first
process begins with step 3132 and illustrates a disconnection
that automatically results in the entire bridge being termi-
nated. The second process begins with step 3142 and illus-
trates a disconnection in which the server 102 attempts to
repair the bridge. It is understood that if no initial disconnect
message is sent to the server 102 (e.g., if the bridge client
106 or 2702 crashes), the server 102 may detect the discon-
nect and perform the steps shown following a disconnect
message. Although shown with two segments, it is under-
stood that the sequence diagram 3130 is equally applicable
to single segment bridges such as that shown in FIG. 25A.
[0224] In step 3132, the bridge client 106 sends a discon-
nect message for the bridge segment. The disconnect mes-
sage may indicate that the client 106 is disconnecting
entirely or that the segment is being terminated by the client
106. In step 3134, the server 102 identifies any bridge clients
with related segments. In step 3136, the server 102 notifies
the client 2702 to terminate the corresponding segment. In
step 3138, the server 102 sends a patron removal notification
to the client 104. In step 3140, the server 102 sends a brewer
removal notification to the client 2402. It is understood that
the messages of steps 3136, 3138, and 3140 may occur in a
different order or simultaneously.

[0225] In step 3142, the bridge client 106 sends a discon-
nect message for the bridge segment. The disconnect mes-
sage may indicate that the client 106 is disconnecting
entirely or that the segment is being terminated by the client
106. In step 3144, the server 102 determines that a substitute
bridge is available. In step 3146, the server 102 sets up a new

US 2019/0028414 Al

segment using the substitute bridge (not shown). As the
substitute segment is created as a regular segment and such
setup steps have been previously described, the setup pro-
cess is not shown in FIG. 31B.

[0226] Instep 3148, the server 102 sends a segment update
to the bridge client 2702 so that the client 2702 will have the
information for the new segment (e.g., the brewer informa-
tion needed by the segment patron of the client 2702). In step
3150, the server 102 sends a patron update to the client 104.
It is understood that the messages of steps 3148 and 3150
may occur in a different order or simultaneously.

[0227] If the disconnect of step 3142 was sent by the
bridge client 2702, the message of step 3148 would be sent
to the client 106 and a brewer update would be sent to the
client 2402. It is understood that updates may be sent to all
clients involved in the bridge or just to clients that are
adjacent to, or otherwise affected by the introduction of, a
substitute node. If the determination of step 3144 does not
identify a substitute bridge client, the bridge would be
terminated as illustrated in steps 3134 through 3140.
[0228] Referring to FIG. 32A, a method 3200 illustrates
one embodiment of a process that may be performed within
a Pubkeeper system by a server (e.g., the server 102 of FIGS.
24, 25A, or 27) when a bridge client disconnects. The
method 3200 may be used with both single segment and
multi-segment bridges. In the present example, the entire
bridge is terminated if any segment disconnects.

[0229] In step 3202, the server 102 detects that a bridge
client or segment has disconnected or receives a notification
of such a disconnection. In step 3204, the server 102 sends
a segment termination message to any bridge clients that are
providing other segments for the bridge. In step 3206, the
server 102 sends a patron removal message to the client with
the origin brewer and a brewer removal message to the client
with the destination patron. In step 3208, the origin brewer
and destination patron are added to the orphan list.

[0230] Referring to FIG. 32B, a method 3210 illustrates
one embodiment of a process that may be performed within
a Pubkeeper system by a server (e.g., the server 102 of FIGS.
24, 25A, or 27) when a bridge’s destination patron discon-
nects. The method 3210 may be used with both single
segment and multi-segment bridges.

[0231] In step 3212, the server 102 detects that the desti-
nation patron has disconnected or receives a notification of
such a disconnection. In step 3214, the server 102 sends a
termination message to any bridge clients that are providing
other segments for the bridge. In step 3216, the server 102
sends a patron removal message to the client with the origin
brewer.

[0232] Referring to FIG. 32C, a method 3220 illustrates
one embodiment of a process that may be performed within
a Pubkeeper system by a server (e.g., the server 102 of FIGS.
24, 25A, or 27) when a bridge’s origin brewer disconnects.
The method 3220 may be used with both single segment and
multi-segment bridges.

[0233] In step 3222, the server 102 detects that the origin
brewer has disconnected or receives a notification of such a
disconnection. In step 3224, the server 102 sends a termi-
nation message to any bridge clients that are providing other
segments for the bridge. In step 3226, the server 102 sends
a brewer removal message to the client with the destination
patron.

[0234] Referring to FIGS. 33A and 33B, a method 3300
illustrates one embodiment of a process that may be per-

Jan. 24, 2019

formed within a Pubkeeper system by a server (e.g., the
server 102 of FIGS. 24, 25A, or 27) when a bridge client
disconnects. As disconnection by the origin brewer or des-
tination patron results in the entire bridge being terminated,
the present example applies only when a bridge segment
disconnects. The method 3300 may be used with both single
segment and multi-segment bridges.

[0235] In step 3302, the server 102 detects that a bridge
client or segment has disconnected or receives a notification
of'a disconnection. It is noted that a segment may disconnect
even if the bridge client supporting that segment remains
online if, for example, one of the brews supporting the
segment enters an error state. In step 3304, the server 102
attempts to locate another bridge client to serve as a sub-
stitute for the disconnected segment. For example, if the
segment was supporting ZeroMQ to MQTT, the server 102
may determine whether another bridge client is available
that can support a ZeroMQ to MQTT segment. If a match is
found, as determined in step 3306, the method moves to step
3308.

[0236] In step 3308, the server 102 sends a segment
creation message to the substitute bridge client. In step 3310,
the server 102 receives a segment registration message from
the substitute bridge. In step 3312, the server 102 sends
updated segment brewer connect messages to existing
bridge clients as needed. In some embodiments the server
102 may send segment brewer connect messages to all
existing bridge clients, while in other embodiments the
server 102 may only send necessary segment brewer connect
messages (e.g., to the bridge client preceding the substitute
bridge client). It is understood that step 3312 may be omitted
entirely when dealing with single segment bridges as no
other bridge clients exist.

[0237] In step 3314, patron and/or brewer update mes-
sages may be sent to the origin and destination clients,
respectively, as needed. For example, if the new segment
immediately follows the origin brewer in the bridge, the
origin brewer may be updated with the new segment’s
patron information. Similarly, if the destination patron
immediately follows the new segment, the destination
patron may be updated with the new segment’s brewer
information. If the new segment is between two bridge
clients, then neither the origin brewer nor the destination
patron may be updated. However, in some embodiments,
updates may be sent to the origin brewer and the destination
patron even if such updates are not needed. For example, this
may be done to maintain messaging consistency and/or to
account for possible scenarios in which such updates are
useful.

[0238] Returning to step 3306, if no match is found, the
method 3300 moves to step 3316 rather than step 3308. In
step 3316, the server 102 sends termination messages for
any related segments because there is no substitute for the
disconnected segment. In step 3318, the server 102 sends a
patron removal message to the client with the origin brewer
and a brewer removal message to the client with the desti-
nation patron.

[0239] At this point, the bridge has been completely
terminated and the origin brewer and destination patron may
be added to the orphan list. However, in the present example,
the server 102 attempts to create a new bridge in step 3320.
For example, even though the disconnected segment cannot
be replaced, another bridge may be available that does not
need the brews provided by the missing segment. If a new

US 2019/0028414 Al

bridge is available as determined in step 3322, the method
3300 moves to step 3324. In step 3324, the new bridge is
created. If no new bridge is available, the method 3300
moves to step 3326 and the origin brewer and destination
patron are added to the orphan list.

[0240] Referring to FIG. 34, one embodiment of a system
3400 includes clients 3402, 3404, 3406, and 3408 and
illustrates multiple brewers publishing to a single bridge
client. The clients 3402 and 3404 are both publishing via a
JavaScript brew to the client 3406, which is serving as a
bridge client. The client 3406 is publishing the received data
via Python to the client 3408.

[0241] Referring to FIG. 35, one embodiment of a system
3500 includes clients 3502, 3504, 3506, and 3508 and
illustrates multiple patrons listening to a single bridge client.
The client 3502 is publishing via a JavaScript brew to the
client 3504, which is serving as a bridge client. The client
3504 is publishing via Python to the clients 3506 and 3508.
In some embodiments, the server 102 (FIGS. 25A and 27)
may use the client 3504 to broadcast a single topic to
multiple patrons (e.g., the patrons of the client 3506 and
3508) in order to avoid the need for multiple bridges for a
single topic.

[0242] Referring to FIG. 36, one embodiment of a system
3600 includes a Pubkeeper system 3602 containing a gate-
way 3604. The gateway 3604 is coupled to a device 3606.
The device 3606 may lack or have minimal IP communi-
cations capabilities, and/or may have no or limited access to
a network necessary to communicate as a client within the
Pubkeeper system 3602.

[0243] Referring to FIG. 37, one embodiment of a device
3700 is illustrated. The device 3700 is one possible example
of one or more of the devices 108, 110, and 112 of FIG. 1A.
The device 3700 may include a controller (e.g., a processor/
central processing unit (“CPU”)) 3702, a memory unit 3704,
an input/output (“I/O”) device 3706, and a network interface
3708. The components 3702, 3704, 3706, and 3708 are
interconnected by a data transport system (e.g., a bus) 3710.
A power supply (PS) 3712 may provide power to compo-
nents of the device 3700 via a power transport system 3714
(shown with data transport system 3710, although the power
and data transport systems may be separate).

[0244] It is understood that the device 3700 may be
differently configured and that each of the listed components
may actually represent several different components. For
example, the CPU 3702 may actually represent a multi-
processor or a distributed processing system; the memory
unit 3704 may include different levels of cache memory,
main memory, hard disks, and remote storage locations; the
1/0 device 3706 may include monitors, keyboards, touch-
pads, and the like; and the network interface 3708 may
include one or more network chips or cards providing one or
more wired and/or wireless connections to a network 3716.
Therefore, a wide range of flexibility is anticipated in the
configuration of the device 3700, which may range from a
single physical platform configured primarily for a single
user or autonomous operation to a distributed multi-user
platform such as a cloud computing system.

[0245] The device 3700 may use any operating system (or
multiple operating systems), including various versions of
operating systems provided by Microsoft (such as WIN-
DOWS), Apple (such as MacOS), UNIX, and LINUX, and
may include operating systems specifically developed for
handheld devices (e.g., i0S, Android, Blackberry, and/or

Jan. 24, 2019

Windows Phone), personal computers, servers, and other
computing platforms depending on the use of the device
3700. The operating system, as well as other instructions
(e.g., for telecommunications and/or other functions pro-
vided by the device), may be stored in the memory unit 3704
and executed by the processor 3702. For example, if the
device 3700 is the device 110, the memory unit 3704 may
include instructions for providing the Pubkeeper server 102
and/or client 104 and for performing some or all of the
processes described herein.

[0246] The network 3716 (which may be the network(s)
114 of FIG. 1A) may be a single network or may represent
multiple networks, including networks of different types,
whether wireless or wireline. For example, the device 3700
may be coupled to external devices via a network that
includes a cellular link coupled to a data packet network, or
may be coupled via a data packet link such as a wide local
area network (WLAN) coupled to a data packet network or
a Public Switched Telephone Network (PSTN). Accord-
ingly, many different network types and configurations may
be used to couple the device 3700 with external devices.
[0247] Exemplary network, system, and connection types
include the internet, WiMax, local area networks (LANs)
(e.g., IEEE 802.11a and 802.11g wi-fi networks), digital
audio broadcasting systems (e.g., HD Radio, T-DMB and
ISDB-TSB), terrestrial digital television systems (e.g.,
DVB-T, DVB-H, T-DMB and ISDB-T), WiMax wireless
metropolitan area networks (MANs) (e.g., IEEE 802.16
networks), Mobile Broadband Wireless Access (MBWA)
networks (e.g., IEEE 802.20 networks), Ultra Mobile Broad-
band (UMB) systems, Flash-OFDM cellular systems, and
Ultra wideband (UWB) systems. Furthermore, the present
disclosure may be used with communications systems such
as Global System for Mobile communications (GSM) and/or
code division multiple access (CDMA) communications
systems. Connections to such networks may be wireless or
may use a line (e.g., digital subscriber lines (DSL), cable
lines, and fiber optic lines).

[0248] Accordingly, in one embodiment, the present dis-
closure describes a client configured to operate within a
messaging system that enables the use of a plurality of
message types, the client comprising system functionality
that enables the client to operate within the messaging
system in order to send and receive messages for an appli-
cation that is using the client; at least one brew that is
configured to manage one of the plurality of message types
for the client by interacting with a module that encapsulates
a process for sending and receiving messages within the
messaging system that are compliant with the message type,
wherein the brew provides a brew interface for interaction
with at least one brewer of the client, and wherein the brew
interface is standardized across all brews within the client to
enable any brewers of the client to send messages to the
brews in an identical manner regardless of the process
encapsulated by the module that is being managed by each
brew; and at least one brewer that is associated with a topic
and provides a brewer interface for receiving outgoing data
corresponding to the topic from the application, wherein the
brewer is configured to send the outgoing data to the brew,
and wherein the brewer interface is standardized across all
brewers within the client to enable the application to send
messages to the brewers in an identical manner.

[0249] In some embodiments, the brew is configurable to
push data directly to the application.

US 2019/0028414 Al

[0250] In some embodiments, the brewer is configured to
notify at least one of the brews that a patron corresponding
to the topic has been registered within the messaging system
by another client, wherein the brew establishes a connection
via the module with a corresponding brew and module of the
other client based on the notification in order to send data for
the topic to the other client.

[0251] In some embodiments, the client further comprises
at least one patron that is associated with a topic and is
configured to notify at least one of the brews that a brewer
corresponding to the topic has been registered within the
messaging system by another client, wherein the brew
establishes a connection via the module with a correspond-
ing brew and module of the other client based on the
notification in order to receive data for the topic from the
other client.

[0252] In some embodiments, the client further comprises
at least one patron that is associated with a topic and
configured to receive incoming data corresponding to the
topic from the brew, wherein the patron provides a patron
interface from which the application can pull the incoming
data from the patron, and wherein the patron interface is
standardized across all patrons within the client.

[0253] In some embodiments, the patron is configurable to
push data to the application.

[0254] In some embodiments, the module is configured to
send the outgoing data directly to a module of another client
in a peer-to-peer manner.

[0255] In some embodiments, the module is configured to
send the outgoing data to a server for retrieval by a module
of another client.

[0256] In some embodiments, the brew is configured to
perform processing to format the outgoing data and the
incoming data.

[0257] In some embodiments, the brew is configured to
perform processing to encrypt the outgoing data and decrypt
the incoming data.

[0258] In another embodiment, the present disclosure
describes a client configured to operate within a messaging
system that enables the use of a plurality of message types,
the client comprising system functionality that enables the
client to operate within the messaging system in order to
send and receive messages for an application that is using
the client; at least one brew that is configured to manage one
of' the plurality of message types for the client by interacting
with a module that encapsulates a process for sending and
receiving messages within the messaging system that are
compliant with the message type, wherein the brew provides
a brew interface for interaction with at least one patron of the
client, wherein the brew interface is standardized across all
brews within the client to enable any patrons of the client to
interact with the brews in an identical manner regardless of
the process encapsulated by the module that is being man-
aged by each brew; and at least one patron that is associated
with a topic and is configured to notify at least one of the
brews that a brewer corresponding to the topic has been
registered within the messaging system by another client,
wherein the brew establishes a connection via the module
with a corresponding brew and module of the other client
based on the notification in order to receive data for the topic
from the other client.

[0259] In some embodiments, the patron provides a patron
interface from which the application can pull the incoming

Jan. 24, 2019

data from the patron, and wherein the patron interface is
standardized across all patrons within the client.

[0260] Insome embodiments, the patron is configurable to
push data to the application.

[0261] In some embodiments, the brew is configurable to
push data directly to the application.

[0262] In some embodiments, the client further comprises
at least one brewer that is associated with a topic and
provides a brewer interface for receiving outgoing data
corresponding to the topic from the application, wherein the
brewer is configured to send the outgoing data to the brew,
and wherein the brewer interface is standardized across all
brewers within the client.

[0263] In some embodiments, the brewer is configured to
notify at least one of the brews that a patron corresponding
to the topic has been registered within the messaging system
by another client, wherein the brew establishes a connection
via the module with a corresponding brew and module of the
other client based on the notification in order to send data for
the topic to the other client.

[0264] In some embodiments, the module is configured to
send the outgoing data directly to a module of another client
in a peer-to-peer manner.

[0265] In some embodiments, the module is configured to
send the outgoing data to a server room for retrieval by a
module of another client.

[0266] In some embodiments, the brew is configured to
perform processing to format the outgoing data and the
incoming data.

[0267] In some embodiments, the brew is configured to
perform processing to encrypt the outgoing data and decrypt
the incoming data.

[0268] In another embodiment, the present disclosure
describes a system for enabling the management of a plu-
rality of message types through a common interface, the
system comprising a server configured to manage messaging
information for a plurality of clients; and the plurality of
clients, wherein each client includes a plurality of brews that
are registered with the client, wherein each brew is config-
ured to manage one of a plurality of message types for the
client by interacting with a module that encapsulates a
process for sending and receiving messages of the message
type, and wherein the brew provides an interface between
the module and a plurality of brewers and patrons to enable
sending and receiving data, respectively, via the module in
compliance with the message type, and wherein the brew is
configurable to send incoming data directly to an application
that is using the client; the plurality of brewers, wherein each
brewer is associated with at least one topic and provides an
interface for receiving outgoing data corresponding to the
topic from the application and sending the outgoing data to
at least one of the plurality of brews; and the plurality of
patrons that are registered with the client, wherein each
patron is associated with a topic and is configurable to
provide an interface for receiving incoming data correspond-
ing to a topic from at least one of the plurality of brews and
sending the incoming data to the application.

[0269] In another embodiment, the present disclosure
describes a method for use by a client in a messaging system
that supports multiple message types, the method compris-
ing starting, by an application, a client process in order to
launch the client; creating and configuring at least one brew
for use by the client, wherein the brew is configured to
manage one of a plurality of message types for the client by

US 2019/0028414 Al

interacting with a module that encapsulates a process for
sending and receiving messages of the message type; cre-
ating and configuring the module corresponding to each
brew; creating and configuring at least one of a brewer for
sending outgoing data or a patron for receiving incoming
data; registering the at least one brewer or patron with a
server of the messaging system; receiving a list including at
least one patron or brewer from the server; and performing
at least one of sending outgoing data for the application or
receiving incoming data for the application.

[0270] Insome embodiments, the client includes a brewer,
the method further comprising receiving a notification of a
new patron at another client within the messaging system;
notifying the brew of the new patron; and connecting, by the
brew via the module, with a module and brew of the other
client in order to send outgoing data from the application to
the other client.

[0271] In some embodiments, the client includes a patron,
the method further comprising receiving a notification of a
new brewer at another client within the messaging system;
notifying the brew of the new brewer; and connecting, by the
brew via the module, with a module and brew of the other
client in order to receive incoming data for the application
from the other client.

[0272] In another embodiment, the present disclosure
describes a method for creating a bridge segment within a
messaging system that supports the use of a plurality of
message types, the method comprising maintaining an
orphan list that contains at least one pair of incompatible
brewers and patrons within the messaging system, wherein
each pair on the orphan list includes a brewer configured to
publish data for a topic and a list of all message types
supported by the client corresponding to the brewer; and a
patron configured to subscribe to the topic and a list of all
message types supported by the client corresponding to the
patron, wherein the patron cannot communicate directly
with the brewer because the clients corresponding to the
brewer and the patron do not share a compatible message
type; identifying, for a first pair on the orphan list formed by
a first brewer and a first patron, a bridge client that can
communicate with a first client corresponding to the first
brewer and a second client corresponding to the first patron,
wherein the first client uses a first message type and the
second client uses a second message type; instructing the
bridge client to create a bridge segment by starting a
segment patron that uses the first message type and a
segment brewer that uses the second message type, wherein
the bridge patron and the bridge client are linked together
within the bridge client; receiving a notification from the
bridge client that the bridge segment has been created; and
notifying the first client of the bridge patron and the second
client of the bridge brewer, wherein communication between
the first and second clients is enabled via a channel formed
between the first brewer and the bridge patron using the first
message type, the bridge segment, and the bridge brewer and
the first patron using the second message type.

[0273] In another embodiment, the present disclosure
describes a method for creating a bridge between incompat-
ible clients within a messaging system that supports the use
of a plurality of message types, the method comprising
maintaining an orphan list that stores pairs of incompatible
brewers and patrons that exist within the messaging system,
wherein each pair on the orphan list includes an origin
brewer configured to publish data for a topic and a list of all

Jan. 24, 2019

message types supported by a client corresponding to the
origin brewer; and a destination patron configured to sub-
scribe to the topic and a list of all message types supported
by the client corresponding to the destination patron,
wherein the destination patron cannot communicate directly
with the origin brewer because the clients corresponding to
the origin brewer and the destination patron do not share a
compatible message type; identifying a plurality of bridge
clients available within the messaging system that can be
used to create a bridge between the origin brewer and the
destination patron of a first pair on the orphan list, wherein
the bridge will include a plurality of bridge segments that are
each provided by one of the bridge clients, and wherein each
of the bridge clients supports two different message types
needed for the bridge; for each bridge segment, instructing
the corresponding bridge client to create the bridge segment
by starting a segment patron that uses the one of the two
message types that is needed as an input and a segment
brewer that uses the other of the two message types that is
needed as an output, wherein the segment patron and the
segment client are linked together within the bridge client;
for each bridge segment, notifying each bridge client of an
immediately preceding brewer in the bridge to which the
segment patron should subscribe and an immediately fol-
lowing patron in the bridge that is to receive data published
by the segment brewer; and notifying the origin brewer of
the following segment patron and notifying the destination
patron of the preceding segment brewer.

[0274] While the preceding description shows and
describes one or more embodiments, it will be understood by
those skilled in the art that various changes in form and
detail may be made therein without departing from the spirit
and scope of the present disclosure. For example, various
steps illustrated within a particular flow chart may be
combined or further divided. In addition, steps described in
one diagram or flow chart may be incorporated into another
diagram or flow chart. Furthermore, the described function-
ality may be provided by hardware and/or software, and may
be distributed or combined into a single platform. Addition-
ally, functionality described in a particular example may be
achieved in a manner different than that illustrated, but is
still encompassed within the present disclosure. Therefore,
the claims should be interpreted in a broad manner, consis-
tent with the present disclosure.

What is claimed is:

1. A client configured to operate within a messaging
system that enables the use of a plurality of message types,
the client comprising:

system functionality that enables the client to operate

within the messaging system in order to send and
receive messages for an application that is using the
client;

at least one brew that is configured to manage one of the

plurality of message types for the client by interacting
with a module that encapsulates a process for sending
and receiving messages within the messaging system
that are compliant with the message type, wherein the
brew provides a brew interface for interaction with at
least one brewer of the client, and wherein the brew
interface is standardized across all brews within the
client to enable any brewers of the client to send
messages to the brews in an identical manner regardless
of the process encapsulated by the module that is being
managed by each brew; and

US 2019/0028414 Al

at least one brewer that is associated with a topic and
provides a brewer interface for receiving outgoing data
corresponding to the topic from the application,
wherein the brewer is configured to send the outgoing
data to the brew, and wherein the brewer interface is
standardized across all brewers within the client to
enable the application to send messages to the brewers
in an identical manner.

2. The client of claim 1 wherein the brew is configurable
to push data directly to the application.

3. The client of claim 1 wherein the brewer is configured
to notify at least one of the brews that a patron correspond-
ing to the topic has been registered within the messaging
system by another client, wherein the brew establishes a
connection via the module with a corresponding brew and
module of the other client based on the notification in order
to send data for the topic to the other client.

4. The client of claim 1 further comprising at least one
patron that is associated with a topic and is configured to
notify at least one of the brews that a brewer corresponding
to the topic has been registered within the messaging system
by another client, wherein the brew establishes a connection
via the module with a corresponding brew and module of the
other client based on the notification in order to receive data
for the topic from the other client.

5. The client of claim 1 further comprising at least one
patron that is associated with a topic and configured to
receive incoming data corresponding to the topic from the
brew, wherein the patron provides a patron interface from
which the application can pull the incoming data from the
patron, and wherein the patron interface is standardized
across all patrons within the client.

6. The client of claim 5 wherein the patron is configurable
to push data to the application.

7. The client of claim 1 wherein the module is configured
to send the outgoing data directly to a module of another
client in a peer-to-peer manner.

8. The client of claim 1 wherein the module is configured
to send the outgoing data to a server for retrieval by a
module of another client.

9. The client of claim 1 wherein the brew is configured to
perform processing to format the outgoing data and the
incoming data.

10. The client of claim 1 wherein the brew is configured
to perform processing to encrypt the outgoing data and
decrypt the incoming data.

11. A client configured to operate within a messaging
system that enables the use of a plurality of message types,
the client comprising:

system functionality that enables the client to operate
within the messaging system in order to send and
receive messages for an application that is using the
client;

at least one brew that is configured to manage one of the
plurality of message types for the client by interacting
with a module that encapsulates a process for sending
and receiving messages within the messaging system
that are compliant with the message type, wherein the
brew provides a brew interface for interaction with at
least one patron of the client, wherein the brew inter-
face is standardized across all brews within the client to
enable any patrons of the client to interact with the

Jan. 24, 2019

brews in an identical manner regardless of the process
encapsulated by the module that is being managed by
each brew; and

at least one patron that is associated with a topic and is

configured to notify at least one of the brews that a
brewer corresponding to the topic has been registered
within the messaging system by another client, wherein
the brew establishes a connection via the module with
a corresponding brew and module of the other client
based on the notification in order to receive data for the
topic from the other client.

12. The client of claim 11 further wherein the patron
provides a patron interface from which the application can
pull the incoming data from the patron, and wherein the
patron interface is standardized across all patrons within the
client.

13. The client of claim 12 wherein the patron is configu-
rable to push data to the application.

14. The client of claim 11 wherein the brew is configu-
rable to push data directly to the application.

15. The client of claim 11 further comprising at least one
brewer that is associated with a topic and provides a brewer
interface for receiving outgoing data corresponding to the
topic from the application, wherein the brewer is configured
to send the outgoing data to the brew, and wherein the
brewer interface is standardized across all brewers within
the client.

16. The client of claim 11 wherein the brewer is config-
ured to notify at least one of the brews that a patron
corresponding to the topic has been registered within the
messaging system by another client, wherein the brew
establishes a connection via the module with a correspond-
ing brew and module of the other client based on the
notification in order to send data for the topic to the other
client.

17. The client of claim 11 wherein the module is config-
ured to send the outgoing data directly to a module of
another client in a peer-to-peer manner.

18. The client of claim 11 wherein the module is config-
ured to send the outgoing data to a server room for retrieval
by a module of another client.

19. The client of claim 11 wherein the brew is configured
to perform processing to format the outgoing data and the
incoming data.

20. A system for enabling the management of a plurality
of message types through a common interface, the system
comprising:

a server configured to manage messaging information for

a plurality of clients; and

the plurality of clients, wherein each client includes

a plurality of brews that are registered with the client,
wherein each brew is configured to manage one of a
plurality of message types for the client by interact-
ing with a module that encapsulates a process for
sending and receiving messages of the message type,
and wherein the brew provides an interface between
the module and a plurality of brewers and patrons to
enable sending and receiving data, respectively, via
the module in compliance with the message type,
and wherein the brew is configurable to send incom-
ing data directly to an application that is using the
client;

the plurality of brewers, wherein each brewer is asso-
ciated with at least one topic and provides an inter-

US 2019/0028414 Al Jan. 24, 2019
23

face for receiving outgoing data corresponding to the
topic from the application and sending the outgoing
data to at least one of the plurality of brews; and

the plurality of patrons that are registered with the
client, wherein each patron is associated with a topic
and is configurable to provide an interface for receiv-
ing incoming data corresponding to a topic from at
least one of the plurality of brews and sending the
incoming data to the application.

#* #* #* #* #*

