

(12) United States Patent

Goodman et al.

(54) SEMAPHORIN-SPECIFIC ANTIBODIES

- (75) Inventors: Corey S. Goodman; Alex L. Kolodkin; David Matthes; David R. Bentley; Timothy O'Connor, all of Berkeley, CA (US)
- (73) Assignee: The Regents of the University of California, Oakland, CA (US)
- (*) Notice: This patent issued on a continued prosecution application filed under 37 CFR 1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C. 154(a)(2).

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 09/060,610
- (22) Filed: Apr. 15, 1998

Related U.S. Application Data

- (60) Continuation of application No. 08/835,268, filed on Apr. 8, 1997, now Pat. No. 5,807,826, which is a division of application No. 08/121,713, filed on Sep. 13, 1993, now Pat. No. 5,639,856.
- (51) Int. Cl.⁷ A61K 39/395; C07K 16/18
- (52) U.S. Cl. 530/387.9; 424/139.1

US 6,344,544 B1

*Feb. 5, 2002

(56) **References Cited**

(10) Patent No.:

(45) Date of Patent:

FOREIGN PATENT DOCUMENTS

WO WO 93/00365 * 1/1993

* cited by examiner

Primary Examiner—Gary L. Kunz Assistant Examiner—Stephen Gucker (74) Attorney, Agent, or Firm—Richard Aron Osman

(57) ABSTRACT

A novel class of proteins, semaphorins, nucleic acids encoding semaphorins, semaphorin peptides, and methods of using semaphorins and semaphorin-encoding nucleic acids are disclosed. Semaphorin peptides and receptor agonists and antagonists provide potent modulators of nerve cell growth and regeneration. The invention provides pharmaceutical compositions, methods for screening chemical libraries for regulators of cell growth/differentiation; semaphorin gene-derived nucleic acids for use in genetic mapping, as probes for related genes, and as diagnostic reagents for genetic neurological disease; specific cellular and animal systems for the development of neurological disease therapy.

1 Claim, No Drawings

SEMAPHORIN-SPECIFIC ANTIBODIES

This application is a continuation of U.S. application Ser. No. 08/835,268, filed Apr. 8, 1997, now U.S. Pat. No. 5,807,826, which is a division of U.S. application Ser. No. 08/121,713, filed Sep. 13, 1993, now U.S. Pat. No. 5,639, 856.

The research carried out in the subject application was supported in part by grants from the National Institutes of Health. The government may have rights in any patent ¹⁰ logical infection/diseases. issuing on this application. Semaphorins, semap

TECHNICAL FIELD

The technical field of this invention concerns peptides, polypeptides, and polynucleotides involved in nerve cell ¹⁵ growth.

BACKGROUND

The specificity of the wiring of the nervous system—the complex pattern of specific synaptic connections—begins to unfold during development as the growing tips of neurons— the growth cones—traverse long distances to find their correct targets. Along their journey, they are confronted by and correctly navigate a series of choice points in a remarkably unerring way to ultimately contact and recognize their correct target.

The identification of growth cone guidance cues is to a large extent, the holy grail of neurobiology. These are the compounds that tell neurons when to grow, where to grow, and when to stop growing. The medical applications of such compounds and their antagonists are enormous and include modulating neuronal growth regenerative capacity, treating neurodegenerative disease, and mapping (e.g. diagnosing) genetic neurological defects.

Over decades of concentrated research, various hypotheses of chemo-attractants and repellant, labeled pathways, cell adhesion molecules, etc. have been evoked to explain guidance. Recently, several recent lines of experiments suggest repulsion may play an important role in neuron guidance and two apparently unrelated factors ("Neurite Growth Inhibitor" and "Collapsin") capable of inhibiting or collapsing growth cones have been reported.

RELEVANT LITERATURE

For a recent review of much of the literature in this field, see Goodman and Shatz (1993) Cell 72/Neuron 10, 77–98. A description of grasshopper fasciclin IV (now called G-Semaphorin I) appears in Kolodkin et al. (1992) Neuron 9, 831–845. Recent reports on Collapsin and Neurite Growth 50 Inhibitor include Raper and Kapfhammer (1990) Neuron 4, 21–29, an abstract presented by Raper at the GIBCO-BRL Symposium on "Genes and Development/Function of Brain" on Jul. 26, 1993 and Schwab and Caroni (1988) J Neurosci 8, 2381 and Schnell and Schwab (1990) Nature 55 343, 269, respectively.

SUMMARY OF THE INVENTION

A novel class of proteins, semaphorins, nucleic acids encoding semaphorins, and methods of using semaphorins ⁶⁰ and semaphorin-encoding nucleic acids are disclosed. Semaphorins include the first known family of human proteins which function as growth cone inhibitors and a family of proteins involved in viral, particularly pox viral, pathogenesis and oncogenesis. Families of semaphorin-specific ⁶⁵ receptors, including receptors found on nerve growth cones and immune cells are also disclosed.

The invention provides agents, including semaphorin peptides, which specifically bind semaphorin receptors and agents, including semaphorin receptor peptides, which specifically bind semaphorins. These agents provide potent modulators of nerve cell growth, immune responsiveness and viral pathogenesis and find use in the treatment and diagnosis of neurological disease and neuro-regeneration, immune modulation including hypersensitivity and graftrejection, and diagnosis and treatment of viral and oncological infection/diseases.

Semaphorins, semaphorin receptors, semaphorinencoding nucleic acids, and unique portions thereof also find use variously in screening chemical libraries for regulators of semaphorin or semaphorin receptor-mediated cell activity, in genetic mapping, as probes for related genes, as diagnostic reagents for genetic neurological, immunological and oncological disease and in the production of specific cellular and animal systems for the development of neurological, immunological, oncological and viral disease therapy.

DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention discloses novel families of proteins important in nerve and immune cell function: the semaphor-25 ins and the semaphorin receptors. The invention provides agents, including semaphorin peptides, which specifically bind semaphorin receptors and agents, including semaphorin receptor peptides, which specifically bind semaphorins. These agents find a wide variety of clinical, therapeutic and 30 research uses, especially agents which modulate nerve and/ or immune cell function by specifically mimicing or interfering with semaphorin-receptor binding. For example, selected semaphorin peptides shown to act as semaphorin receptor antagonists are effective by competitively inhibit-35 ing native semaphorin association with cellular receptors. Thus, depending on the targeted receptor, these agents can be used to block semaphorin mediated neural cell growth cone repulsion or contact inhibition. Such agents find broad clinical application where nerve cell growth is indicated, e.g. 40 traumatic injury to nerve cells, neurodegenerative disease, etc. A wide variety of semaphorin- and semaphorin receptorspecific binding agents and methods for identifying, making and using the same are described below.

45 Binding agents of particular interest are semaphorin peptides which specifically bind and antagonize a semaphorin receptor and semaphorin receptor peptides which specifically bind a semaphorin and prevent binding to a native receptor. While exemplified primarily with semaphorin 50 peptides, much of the following description applies analogously to semaphorin receptor peptides.

The semaphorin peptides of the invention comprise a unique portion of a semaphorin and have semaphorin binding specificity. A "unique portion" of a semaphorin has an amino acid sequence unique to that disclosed in that it is not found in any previously known protein. Thus a unique portion has an amino acid sequence length at least long enough to define a novel peptide. Unique semaphorin portions are found to vary from about 5 to about 25 residues, preferably from 5 to 10 residues in length, depending on the particular amino acid sequence. Unique semaphorin portions are readily identified by comparing the subject semaphorin portion sequences with known peptide/protein sequence data bases. Preferred unique portions derive from the semaphorin domains (which exclude the Ig-like, intracellular and transmembrane domains as well as the signal sequences) of the disclosed semaphorin sequences, especially regions that

bind the semaphorin receptor, especially that of the human varieties. Preferred semaphorin receptor unique portions derive from the semaphorin binding domains, especially regions with residues which contact the semaphorin ligand, especially that of the human varieties. Particular preferred peptides are further described herein.

The subject peptides may be free or coupled to other atoms or molecules. Frequently the peptides are present as a portion of a larger polypeptide comprising the subject peptide where the remainder of the polypeptide need not be 10 semaphorin- or semaphorin receptor-derived. Alternatively, the subject peptide may be present as. a portion of a "substantially full-length" semaphorin domain or semaphorin receptor sequence which comprises or encodes at least about 200, preferably at least about 250, more prefer-15 ably at least about 300 amino acids of a disclosed semaphorin/receptor sequence. Thus the invention also provides polypeptides comprising a sequence substantially similar to that of a substantially full-length semaphorin domain or a semaphorin receptor. "Substantially similar" sequences share at least about 40%, more preferably at least about 60%, and most preferably at least about 80% sequence identity. Where the sequences diverge, the differences are generally point insertions/deletions or conservative substitutions, i.e. a cysteine/threonine or serine substitution, 25 an acidic/acidic or hydrophobic/hydrophobic amino acid substitution, etc.

The subject semaphorin peptides/polypeptides are "isolated", meaning unaccompanied by at least some of the material with which they are associated in their natural state. 30 Generally, an isolated peptide/polypeptide constitutes at least about 1%, preferably at least about 10%, and more preferably at least about 50% by weight of the total peptide/ protein in a given sample. By pure peptide/polypeptide is intended at least about 90%, preferably at least 95%, and more preferably at least about 99% by weight of total peptide/protein. Included in the subject peptide/polypeptide weight are any atoms, molecules, groups, or polymers covalently coupled to the subject semaphorin/receptor able labels, glycosylations, phosphorylations, etc.

The subject peptides/polypeptides may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample and to what, if anything, the peptide/polypeptide is 45 covalently linked. Purification methods include electrophoretic, molecular, immunological and chromatographic techniques, especially affinity chromatography and RP-HPLC in the case peptides. For general guidance in suitable purification techniques, see Scopes, R., Protein 50 Purification, Springer-Verlag, New York (1982).

The subject peptides/polypeptides generally comprise naturally occurring amino acids but D-amino acids or amino acid mimetics coupled by peptide bonds or peptide bond mimetics may also be used. Amino acid mimetics are other 55 than naturally occurring amino acids that conformationally mimic the amino acid for the purpose of the requisite semaphorin/receptor binding specificity. Suitable mimetics are known to those of ordinary skill in the art and include β - γ - δ amino and imino acids, cyclohexylalanine, adaman-60 tylacetic acid, etc., modifications of the amide nitrogen, the α -carbon, amide carbonyl, backbone modifications, etc. See, generally, Morgan and Gainor (1989) Ann. Repts. Med. Chem 24, 243-252; Spatola (1983) Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol VII 65 (Weinstein) and Cho et. al (1993) Science 261, 1303-1305 for the synthesis and screening of oligocarbamates.

4

The subject semaphorin peptides/polypeptides have a "semaphorin binding specificity" meaning that the subject peptide/polypeptide retains a molecular conformation specific to one or more of the disclosed semaphorins and specifically recognizable by a semaphorin-specific receptor, antibody, etc. As such, a semaphorin binding specificity may be provided by a semaphorin-specific immunological epitope, lectin binding site, etc., and preferably, a receptor binding site. Analogously, the semaphorin receptor peptides/ polypeptides have a "semaphorin receptor binding specificity" meaning that these peptides/polypeptides retain a molecular conformation specific to one or more of the disclosed semaphorin receptors and specifically recognizable by a semaphorin, a receptor-specific antibody, etc.

"Specific binding" is empirically determined by contacting, for example a semaphorin-derived peptide with a mixture of components and identifying those components that preferentially bind the semaphorin. Specific binding is most conveniently shown by competition with labeled 20 ligand using recombinant semaphorin peptide either in vitro or in cellular expression systems as disclosed herein. Generally, specific binding of the subject semaphorin has binding affinity of 10⁻⁶M, preferably 10⁻⁸M, more preferably 10^{-10} M, under in vitro conditions as exemplified below.

The peptides/polypeptides may be modified or joined to other compounds using physical, chemical, and molecular techniques disclosed or cited herein or otherwise known to those skilled in the relevant art to affect their semaphorin binding specificity or other properties such as solubility, membrane transportability, stability, binding specificity and affinity, chemical reactivity, toxicity, bioavailability, localization, detectability, in vivo half-life, etc. as assayed by methods disclosed herein or otherwise known to those of ordinary skill in the art. For example, point mutations are 35 introduced by site directed mutagenesis of nucleotides in the DNA encoding the disclosed semaphorin polypeptides or in the course of in vitro peptide synthesis.

Other modifications to further modulate binding specificity/affinity include chemical/enzymatic intervention peptide/polypeptide, especially peptides, proteins, detect- 40 (e.g. fatty acid-acylation, proteolysis, glycosylation) and especially where the peptide/polypeptide is integrated into a larger polypeptide, selection of a particular expression host, etc. In particular, many of the disclosed semaphorin peptides contain serine and threonine residues which are phosphorylated or dephosphorylated. See e.g. methods disclosed in Roberts et al. (1991) Science 253, 1022–1026 and in Wegner et al. (1992) Science 256, 370-373. Amino and/or carboxyl termini may be functionalized e.g., for the amino group, acylation or alkylation, and for the carboxyl group, esterification or amidification, or the like. Many of the disclosed semaphorin peptides/polypeptides also contain glycosylation sites and patterns which may disrupted or modified, e.g. by enzymes like glycosidases or used to purify/identify the receptor, e.g. with lectins. For instance, N or O-linked glycosylation sites of the disclosed semaphorin peptides may be deleted or substituted for by another basic amino acid such as Lys or His for N-linked glycosylation alterations, or deletions or polar substitutions are introduced at Ser and Thr residues for modulating O-linked glycosylation. Glycosylation variants are also produced by selecting appropriate host cells, e.g. yeast, insect, or various mammalian cells, or by in vitro methods such as neuraminidase digestion. Useful expression systems include COS-7, 293, BHK, CHO, TM4, CV1, VERO-76, HELA, MDCK, BRL 3A, W138, Hep G2, MMT 060562, TRI cells, baculovirus systems, for examples. Other covalent modifications of the disclosed semaphorin peptides/polypeptides may be intro-

duced by reacting the targeted amino acid residues with an organic derivatizing (e.g. methyl-3-[(p-azido-phenyl)dithio] propioimidate) or crosslinking agent (e.g. 1,1-bis (diazoacetyl)-2-phenylethane) capable of reacting with selected side chains or termini. For therapeutic and diagnostic localization, semaphorins and peptides thereof may be labeled directly (radioisotopes, fluorescers, etc.) or indirectly with an agent capable of providing a detectable signal, for example, a heart muscle kinase labeling site.

The following are 14 classes of preferred semaphorin 10 peptides where bracketed positions may be occupied by any one of the residues contained in the brackets and "Xaa" signifies that the position may be occupied by any one of the 20 naturally encoded amino acids. These enumerated peptides maintain highly conserved structures which provide 15 important semaphorin binding specificities;

(a)

- [AspGlu]Cvs[GlnLvsArgAlaAsn]Asn[TvrPheVal]Ile (SEQ ID NO:1)
- Cys[GlnLysArgAlaAsn]Asn[TyrPheVal]Ile[ArgLysGlnThr] (SEQ ID NO:2)

(b)

- CysGlyThr[AsnGly][AlaSerAsn][TyrPheHisGly] 25 [LysArgHisAsnGln] (SEQ ID NO:3)
- CysGlyThr[AsnGly][AlaSerAsn]XaaXaaPro (SEQ ID NO:4)
- CysGlyThr[AsnGly]XaaXaaXaaProXaa[CysAsp] (SEQ ID NO:5)
- CysGlyThrXaaXaaXaaXaaProXaa[CysAsp]XaaXaa [TyrIle] (SEQ ID NO:6)

(c)

- [ArgIleGlnVal] GlyAla [LeuValLys] CysSer Pro[PheTyr] 35 [AspAsn] (SEQ ID NO:7)
- [CysSer]Pro[PheTyr][AspAsn]Pro[AspGluArgLys] [HisLeuAsp] (SEQ ID NO:8)
- GlyXaa[GlyAla]Xaa[CysSer]ProTyr[AspAsn]Pro (SEQ ID NO:9)

(d)

- Leu[PheTyr]Ser[GlyAla]Thr[ValAsnAla]Ala (SEQ ID NO:10)
- NO:11)
- [PheTyr]Ser[GlyAla]Thr[ValAsnAla]Ala[AspGlu][PheTyr] (SEQ ID NO:12)

(e)

Leu[AsnAsp][AlaLys]ProAsnPheVal (SEQ ID NO:13)

(f)

- PhePhePheArgGlu (SEQ ID NO:14)
- PhePhe[PheTyr]ArgGlu[ThrAsn] (SEQ ID NO:15)
- PhePheArgGlu[ThrAsn]Ala (SEQ ID NO:16)
- Phe[PheTyr]ArgGlup[ThrAsn]Ala (SEQ ID NO:17)
- TyrPhePhe[PheTyr]ArgGlu (SEQ ID NO:18)
- [PheTyr]PhePhe[PheTyr]ArgGlu (SEQ ID NO:19)
- [PheTyr][PheTyr][PheTyr]ArgGlu[ThrAsn]Ala (SEQ ID 60 NO:20)
- [IleVal][PheTyr]Phe[PheTyr][PheTyr]ArgGlu (SEQ ID NO:21)
- Asp[LysPheTyr]Val[PheTyr][PheTyrIleLeu][PheTyrIleLeu] [PheTyr] (SEQ ID NO:22) 65
- [Vallle][PheTyr][PheTyrIleLeu][PheTyrIleLeu]Phe [ArgThr]Xaa[ThrAsn](SEQID NO:23)

[ValIle] PheTyr] PheTyrIleLeu] PheTyrIleLeu] PheTyr] [ArgThr][GluAspVal][ThrAsn] (SEQ ID NO:24)

(g)

Glu[PheTyr]IleAsn[CysSer]GlyLys (SEQ ID NO:25) [PheTyr]IleAsnCysGlyLys[AlaValIle] (SEQ ID NO:26)

(h)

- Arg[Vallle][AlaGly][ArgGln][Vallle]CysLys (SEQ ID NO:27)
- Arg[ValIle]Xaa[ArgGln][ValIle]CysXaaXaaAsp (SEQ ID NO:28)
- GlyLys[ValAlaIle]XaaXaaXaaArg[ValAlaIle] XaaXaaXaaCysLys (SEQ ID NO:29)

(i)

- [ArgLysAsn]Trp[ThrAlaSer][ThrAlaSer][PheTyrLeu]Leu [LysArg] (SEQ ID NO:30)
- [PheTyr]Leu[LysArg][AlaSer]ArgLeu[AsnIle]Cys (SEQ ID NO:31)
- [AsnIle]CysSer[[IleVal][ProSer]Gly (SEQ ID NO:32)
- Trp[ThrAlaSer][ThrAlaSer][PheTyrLeu]LeuLys [AlaSerValIleLeu]XaaLeu (SEQ ID NO:33)
- Trp[ThrAlaSer][ThrAlaSer]XaaLeuLysXaaXaaLeuXaaCys (SEQ ID NO:34)
- TrpXaa[ThrSer]XaaLeuLysXaaXaaLeuXaaCys (SEQ ID NO:35)

(i)

30

[PheTyr][PheTyr][AsnAsp]GluIleGlnSer (SEQ ID NO:36) [PheTyr]Pro[PheTyr][PheTyr][AsnAsp]Glu (SEQ ID NO:37)

(k)

GlySerAla[VallleLeu]CysXaa[PheTyr] (SEQ ID NO:38) SerAla[VallleLeu]CysXaa[PheTyr]XaaMet (SEQ ID NO:39)

(1)

40 AsnSer[AsnAla]TrpLeu[ProAla]Val (SEQ ID NO:40)

(m)

- [ValLeuIle]Pro[GluAspTyrSerPhe]ProArgProGly (SEQ ID NO:41)
- Leu[PheTyr]SerXaaThrXaaAla[AspGlu][PheTyr] (SEQ ID 45 [ValLeuIle]ProXaaPro[ArgAla]ProGlyXaaCys (SEQ ID NO:42)
 - Pro[GluAspTyrSerPhe]ProArgProGly[ThrGlnSer]Cys (SEQ ID NO:43)

50 (n)

- AspPro[HisPheTyr]Cys[AlaGly]Trp (SEQ ID NO:44) Pro[HisPheTyr]Cys[AlaGly]TrpAsp (SEQ ID NO:45) AspProXaaCys[AlaGly]TrpAsp (SEQ ID NO:46)
- CysXaaXaaXaaXaaAspProXaaCysTrpAsp (SEQ ID NO:47) 55
 - CysXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID NO:48)
 - CysXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID NO:49)

CysXaaXaaCysXaaXaaXaaXaaAspXaaXaaCysXaaTrpAsp(SEQ ID NO:50)

- CysXaaXaaCysXaaXaaXaaAspXaaXaaCysXaaTrpAsp(SEQ ID NO:51)
- CysXaaXaaCysXaaXaaAspXaaXaaCysXaaTrpAsp (SEQ ID NO:52)

The following peptides represent particularly preferred members of each class:

(e)

- AspCysGlnAsnTyrIle (SEQ ID NO:67)
- (b)

(a)

CysGlyThr[AsnGly][AlaSer]XaaXaaPro (SEQ ID NO:68)

7

- (c) GlyXaa[SerCys]ProTyrAspPro (SEQ D NO:69)
- (d)
- LeuTyrSerGlyThr[ValAsnAla]Ala (SEQ D NO:70)
- (e) LeuAsnAlaProAsnPheVal (SEQ ID NO:71)
- (f)
- [PheTyr]PhePhe[PheTyr]ArgGlu (SEQ ID NO:19)
- (g) Glu[PheTyr]IleAsn[CysSer]GlyLys (SEQ ID NO:25)
- (h)Arg[ValIle]AlaArgValCysLys (SEQ ID NO:72)
- (i)
- Trp[ThrAla][ThrSer][PheTyr]LeuLys[AlaSer]ArgLu (SEQ 20 ID NO:73)
- (i)
- ProPheTyrPhe[AsnAsp]GluIleGlnSer (SEQ ID NO:74) (k)
- GlySerAlaValCysXaa[PheTyr] (SEQ ID NO:75)
- (1)
- AsnSerAsnTrpLeu[ProAla]Val (SEQ ID NO:76)
- (m) Pro[GluAsp]ProArgProGly][ThrGlnSer]Cys (SEQ ID NO:77)
- (n)

AspProTyrCys[AlaGly]TrpAsp (SEQ ID NO:78)

exclude semaphorin peptides encoded in open reading frames of Variola major or Vaccinia viruses.

(a)

- [AspGlu]Cys[GlnLysArgAlaAsn]Asn[TyrPheVal]Ile (SEQ 40 (i) ID NO:01) Cys[GlnLysArgAlaAsn]Asn[TyrPheVal]Ile[ArgLysGlnThr] (SEO ID NO:02) (b)
- CysGlyThr[AsnGly][AlaSer][TryrPheHisGly] [LysArgHisAsnGln] (SEQ ID NO:79) CysGlyThr[AsnGly][AlaSerAsn][TyrPheHis] [LysArgHisAsnGln] (SEQ ID NO:80)

(c)

- [ArgIleGlnVal] GlyAla] LeuValLys] CysSer]Pro[PheTyr] [AspAsn] (SEQ ID NO:07)
- [CysSer]Pro[PheTYr][AspAsn]Pro[AspGluArgLys] [HisLeuAsp] (SEQ ID NO:08)
- GlyXaa[GlyAla]Xaa[CysSer]ProTyr[AspAsn]Pro (SEQ ID NO:09)

(d)

- Leu[PheTyr]Ser[GlyAla]Thr[ValAsnAla]Ala (SEQ ID NO:10)
- Leu[PheTyr]SerXaaThrXaaAla[AspGlu][PheTyr] (SEQ ID NO:11)
- [PheTyr]Ser[GlyAla]Thr[ValAsnAla]Ala[AspGlu][PheTyr] (SEQ ID NO:12)

8

Leu[AsnAsp][AlaLys]ProAsnPheVal (SEQ ID NO:13)

(f) PhePhePheArgGlu (SEQ ID NO:14) PhePhe[PheTyr]ArgGlu[ThrAsn] (SEQ ID NO:15) PhePheArgGlu[ThrAsn]Ala (SEQ ID NO:16) Phe[PheTyr]ArgGlu[ThrAsn]Ala (SEQ ID NO:17) TyrPhePhe[PheTyr]ArgGlu (SEQ ID NO:18) 10 [PheTyr]PhePhe[PheTyr]ArgGlu (SEQ ID NO:19) [PheTyr] PheTyr] PheTyr] ArgGlu [ThrAsn] Ala (SEQ ID NO:20) [IleVal] PheTyr]Phe[PheTyr] PheTyr] ArgGlu (SEQ ID NO:21) 15 Asp[LysPheTyr]Val[PheTyr][PheTyrLeu][PheTyrIleLeu] [PheTyr] (SEQ ID NO:22) Asp[LysPheTyr]Val[PheTyr][PheTyrIleLeu][PheTyrIle] [PheTyr] (SEQ ID NO:82) [ValIle] Phe Tyr] Phe TyrLeu Phe TyrIleLeu Phe ArgThr] Xaa[ThrAsn] (SEQ ID NO:83) [ValIle] PheTyr] PheTyrIleLeu PheTyrIle] Phe[ArgThr] Xaa[ThrAsn] (SEQ ID NO:84) [Vallle][PheTyr][PheTyrIleLeu][PheTyrIleLeu][PheArgXaa [ThrAsn] (SEQ ID NO:85) 25 [Vallle] PheTyr] PheTyrLeu] PheTyrIleLeu] PheTyr] [ArgThr][GluAspVal][ThrAsn] (SEQ ID NO:86) (g) Glu[PheTyr]]IleAsn[CysSer]GlyLys (SEQ ID NO:25) 30 [PheTyr]IleAsnCysGlyLys[AlaValIle] (SEQ ID NO:26) (h) Arg[ValIle][AlaGly][ArgGln][ValIle]CysLys (SEQ ID NO:27) The following 14 classes are preferred peptides which 35 Arg[ValIle]Xaa[ArgGln][ValIle]CySXaaXaaAsp (SEQ ID NO:28) GlvLys[Vallle]XaaXaaXaaArg[ValAlalle] XaaXaaXaaCysLys (SEQ ID NO:29) [AraLysAsn]Trp[ThrAla][ThrAlaSer][PheTyrLeu]Leu [LysArg] (SEQ ID NO:87) [PheTyr]Leu[LysArg][AlaSer]ArgLeu[AsnIle]Cys (SEQ ID NO:31) 45 [AsnIle]CysSer[IleVal][ProSer]Gly (SEQ ID NO:32) Trp[ThrAla][ThrAlaSer][PheTyreLeu]LeuLys [AlaSerValIleLeu]XaaLeu (SEQ ID NO:88) Trp[ThrAlaSer][ThrAlaSer][PheTyrLeu]LeuLys [AlaSerIleLeu]XaaLeu (SEQ ID NO:89) CysGlyThr[AsnGly][AlaSer]XaaXaaPro (SEQ ID NO:81) 50 Trp[ThrAla][ThrAlaSer]XaaLeuLysXaaXaaLeuXaaCys (SEQ ID NO:90) [PheTyr] PheTyr] AsnAsp]GluIleGlnSer (SEQ ID NO:36) 55 [PheThr]Pro[PheTyr][PheTyr][AsnAsp]Glu (SEQ ID NO:37) (k) GlySerAla[VallleLeu]CysXaa[PheTyr] (SEQ ID NO:38) 60 SerAla[ValIle]CysXaa[PheTyr]XaaMet (SEQ ID NO:39) (1)AsnSer[AsnAla]TrpLeu[ProAla]Val (SEQ ID NO:40) 65 (m) [ValLeuIle]Pro[GluAspTyrSerPhe]ProArgProGly (SEQ ID NO:41)

[ValLeuIle]ProXaaProArgProGlyXaaCys (SEQ ID NO:91) Pro[GluAspTyrSerPhe]ProArgProGly[ThrGlnSer]Cys (SEQ ED NO:43)

(n)

- AspPro[HisPheTyr]Cys[AlaGly]Trp (SEQ ID NO:44)
- Pro[HisPheTyr]Cys[AlaGly]TrpAsp (SEQ ID NO:45)
- AspProXaaCys[AlaGly]TrpAsp (SEQ ED NO:46)
- CysXaaXaaXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID NO:47)
- CysXaaXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID NO:48)
- CysXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID NO:49)
- CysXaaXaaCysXaaXaaXaaXaaAspXaaXaaCysXaaTrpAsp(SEQ ID NO:50)
- CysXaaXaaCysXaaXaaXaaAspXaaXaaCysXaaTrpAsp ¹⁵ (SEQ ED NO:51)
- CysXaaXaaCysXaaXaaAspXaaXaaCysXaaTrpAsp (SEQ ID NO:52)

The following 2 class are prepared peptides which 20 exclude semaphorin peptides encoded in open reading frames of Variola major or Vaccinia viruses Grasshopper Semaphorin I.

(f)

- TyrPhePhe[PheTyr]ArgGlu (SEQ ID NO:18)
- Asp[LysTyr]Val[PheTyr][PheTyrLeu][PheTyrIleLeu] [PheTyr] (SEQ ID NO:92)
- Asp[LysTyr]Val[PheTyr][PheTyrIleLeu][PheTyrIle] [PheTyr] (SEQ ID NO:93)
- [Vallle]Tyr[PheTyrLeu][PheTyrIleLeu]Phe[ArgThr]Xaa [ThrAsn] (SEQ ID NO:94)
- [ValIle]Tyr[PheTyrIleLeu][PheTyrIle]Phe[ArgThr]Xaa [ThrAsn] (SEQ ID NO:95)
- [ValIle]Tyr[PheTyrIleLeu][PheTyrIleLeu]PheArgXaa 35 [ThrAsn] (SEQ ID NO:96)
- Val[PheTyr] PheTyrLeu] PheTyrIleLeu] PheTyr] ArgThr] [GluAspVal][ThrAsn](SEQID NO:97)
- Val[PheTyr][PheTyrIleLeu][PheTyrIle][PheTyr][ArgThr] [GluAspVal] ThrAsn] (SEQID NO:98)
- Val[PheTyr][PheTyrIleLeu][PheTyrIleLeu][PheTyr]Arg [GluAspVal][ThrAsn](SEQID NO:99)

(n)

- NO:48)
- CysXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID NO:49)
- CysXaaXaaCysXaaXaaXaaAspXaaXaaCysXaaTrpAsp (SEO ID NO:51)
- CysXaaXaaCysXaaXaaAspXaaXaaCysXaaTrpAsp (SEQ 50 ID NO:52)

The following 5 classes include peptides which encompass peptides encoded in open reading frames of Variola major or Vacacinia viruses. Accordingly, in the event that 55 these viral peptides are not novel per se, the present invention discloses a hitherto unforseen and unforseeable utility for these peptides as immunosuppressants and targets of anti-viral therapy.

(b)

- CysGlyThr[AsnGly][AlaSerAsn][TyrPheHisGly] [LysArgHisAsnGln] (SEQ ID NO:03)
- CysGlyThr[AsnGly][AlaSerAsn]XaaXaaPro (SEQ ID NO:04)
- CysGlyThr[AsnGly]XaaXaaXaProXaa[CysAsp] (SEQ ID NO:05)

CysGlyThrXaaXaaXaaXaaProXaa[CysAsp]XaaXaa [TyrIle] (SEQ ID NO:06)

(f)

- Asp[LysPheTyr]Val[PheTyr]PheTyrIleLeu][PheTyrIleLeu] [PheTyr] (SEQ ID NO:22)
- [Vallle][PheTyr][PheTyrlleLeu][PheTyrlleLeu]Phe [ArgThr]Xaa[ThrAsn] (SEQ ID NO:23)
- Val[PheTyr][PheTyrIleLeu][PheTyrIleLeu][PheTyr]
- [ArgThr][GluVal][ThrAsn] (SEQ ID NO:100)

(i)

10

- [ArgLysAsn]Trp[ThrAlaSer][ThrAlaSer][PheTyrLeu]Leu [LysArg] (SEQ ID NO:30)
- Trp[ThrAlaSer][PheTyrLeu]LeuLys[AlaSerVallleLeu] XaaLeu (SEQ ID NO:33)
- Trp[ThrAlaSer][ThrAlaSer]XaaLeuLysXaaXaaLeuXaaCys (SEQ ID NO:34)
- TrpXaa[ThrSer]XaaLeuLysXaaXaaLeuXaaCys (SEQ ID NO:35)

(k)

(m)

SerAla[ValIleLeu]CysXaa[PheTyr]XaaMet (SEQ IID NO:39)

25

30

[ValLeuIle]ProXaaPro[ArgAla]ProGlyXaaCys (SEQ D NO:42)

The disclosed semaphorin sequence data are used to define a wide variety of other semaphorin- and semaphorin receptor-speicifc binding agents using immunologic, chromatographic or synthetic methods available to those skilled in the art.

Of particular significance are peptides comprising unique portions of semaphorin-specific receptors and polypeptides comprising a sequence substantially similar to that of a substantially full-length semaphorin receptor. Using semaphorin peptides, these receptors are identified by a variety of 40 techniques known to those skilled in the art where a ligand to the target receptor is known, including expression cloning as set out in the exemplification below. For other examples of receptor isolaton with known ligand using expression cloning, see, Staunton et al (1989) Nature 339, 61; Davis et CysXaaXaaXaaAspProXaaCysXaaTrpAsp (SEQ ID 45 al (1991) Science 253, 59; Lin et al (1992) Cell 68, 775; Gearing et al (1989) EMBO 8, 3667; Aruffo and Seed (1987) PNAS 84, 8573 and refrees therein. Generally, COS cells are transfected to express a cDNA mary or PCR product and cells producing peptides/polypeptides which bind a semaphorin/receptor peptide/polypeptide are isolated. For neurosemaphorin receptors, fetal brain cDNA libraries are preferred; for immunosemaphorin receptors, libraries derived from activated lymphoid or myeloid cell lines or tissue derived from sites of inflammation or delayed-type hypersensitivity are preferred; and for semaphorin and semaphorin receptor variants used by tumor cells to evade immune surveillance or suppress an immune response (oncosemaphorins), libraries derived from cancerous tissue or tumor cell lines resistant to the host immune system are 60 preferred. Alternatively, PCR primers based upon known semaphorin/receptor sequences such as those disclosed herein are used to amplify PCR product from such tissues/ cells. Other receptor/ligand isolation methods using immobilized ligand or antibody are known to those skilled in the 65 art.

Semaphorin receptor peptides with receptor binding specificity are identified by a variety of ways including

having conserved consensus sequences with other semaphorin receptors, by crosslinking to ligand or receptorspecific antibody, or preferably, by screening such peptides for semaphorin binding or disruption of semaphorinreceptor binding. Methods for identifying semaphorin receptor peptides with the requisite binding activity are described herein or otherwise known to those skilled in the art. By analogous methods, semaphorin receptor peptides are used to define additional semaphorin peptides with semaphorin binding specificity, particularly receptor specificity.

The various semaphorin and semaphorin receptor peptides are used to define functional domains of semaphorins, identify compounds that associate with semaphorins, design compounds capable of modulating semaphorin-mediated nerve and immune cell function, and define additional 15 semaphorin and semaphorin receptor-specific binding agents. For example, semaphorin mutants, including deletion mutants are generated from the disclosed semaphorin sequences and used to identify regions important for specific protein-ligand or protein-protein interactions, for example, 20 by assaying for the ability to mediate repulsion or preclude aggregation in cell-based assays as described herein. Further, x-ray crystallographic data of the disclosed protein are used to rationally design binding molecules of determined structure or complementarity for modulating growth 25 cone growth and guidance.

Additional semaphorin- and receptor-specific agents include specific antibodies that can be modified to a monovalent form, such as Fab, Fab', or Fv, specifically binding oligopeptides or oligonucleotides and most 30 preferably, small molecular weight organic receptor antagonists. For example, the disclosed semaphorin and receptor peptides are used as immunogens to generate semaphorinand receptor-specific polyclonal or monoclonal antibodies. Manual, Cold Spring Harbor Laboratory, for general methods. Anti-idiotypic antibody, especially internal imaging anti-ids are also prepared using the disclosures herein.

In addition to semaphorin and semaphorin-receptor derived polypeptides and peptides, other prospective agents 40 are screened from large libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of saccharide, peptide, and nucleic acid based compounds. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and 45 animal extracts are available or readily producible. Additionally, natural and synthetically produced libraries and compounds are readily modified through conventional chemical, physical, and biochemical means. See, e.g. Houghten et al. and Lam et al (1991) Nature 354, 84 and 81, 50 respectively and Blake and Litzi-Davis (1992), Bioconjugate Chem 3, 510.

Useful agents are identified with a range of assays employing a compound comprising the subject peptides or encoding nucleic acids. A wide variety of in vitro, cell-free 55 binding assays, especially assays for specific binding to immobilized compounds comprising semaphorin or semaphorin receptor peptide find convenient use. While less preferred, cell-based assays may be used to determine specific effects of prospective agents on semaphorin-receptor 60 binding may be assayed. Optionally, the intracellular C-terminal domain is substituted with a sequence encoding a oligopeptide or polypeptide domain that provides a detectable intracellular signal upon ligand binding different from the natural receptor. Useful intracellular domains include 65 those of the human insulin receptor and the TCR, especially domains with kinase activity and domains capable of trig-

gering calcium influx which is conveniently detected by fluorimetry by preloading the host cells with Fura-2. More preferred assays involve simple cell-free in vitro binding of candidate agents to immobilized semaphorin or receptor peptides, or vice versa. See, e.g. Fodor et al (1991) Science 251, 767 for light directed parallel synthesis method. Such assays are amenable to scale-up, high throughput usage suitable for volume drug screening.

Useful agents are typically those that bind to a semaphorin or disrupt the association of a semaphorin with its receptor. Preferred agents are semaphorin-specific and do not cross react with other neural or lymphoid cell membrane proteins. Useful agents may be found within numerous chemical classes, though typically they are organic compounds; preferably small organic compounds. Small organic compounds have a molecular weight of more than 150 yet less than about 4,500, preferably less than about 1500, more preferably, less than about 500. Exemplary classes include peptides, saccharides, steroids, heterocyclics, polycyclics, substituted aromatic compounds, and the like.

Selected agents may be modified to enhance efficacy, stability, pharmaceutical compatibility, and the like. Structural identification of an agent may be used to identify, generate, or screen additional agents. For example, where peptide agents are identified, they may be modified in a variety of ways as described above, e.g. to enhance their proteolytic stability. Other methods of stabilization may include encapsulation, for example, in liposomes, etc.

The subject binding agents may be prepared in a variety of ways known to those skilled in the art. For example, peptides under about 60 amino acids can be readily synthesized today using conventional commercially available automatic synthesizers. Alternatively, DNA sequences may be prepared encoding the desired peptide and inserted into an appropriate expression vector for expression in a prokaryotic See, Harlow and Lane (1988) Antibodies, A Laboratory 35 or eukaryotic host. A wide variety of expression vectors are available today and may be used in conventional ways for transformation of a competent host for expression and isolation. If desired, the open reading frame encoding the desired peptide may be joined to a signal sequence for secretion, so as to permit isolation from the culture medium. Methods for preparing the desired sequence, inserting the sequence into an expression vector, transforming a competent host, and growing the host in culture for production of the product may be found in U.S. Pat. Nos. 4,710,473, 4,711,843 and 4,713,339.

> For therapeutic uses, the compositions and agents disclosed herein may be administered by any convenient way, preferably parenterally, conveniently in a pharmaceutically or physiologically acceptable carrier, e.g., phosphate buffered saline, saline, deionized water, or the like. Typically, the compositions are added to a retained physiological fluid such as blood or synovial fluid. For CNS administration, a variety of techniques are available for promoting transfer of the therapeutic across the blood brain barrier including disruption by surgery or injection, drugs which transciently open adhesion contact between CNS vasculature endothelial cells, and compounds which fascilitate translocation through such cells. As examples, many of the disclosed therapeutics are amenable to directly injected or infused, contained within implants e.g. osmotic pumps, grafts comprising appropriately transformed cells. Generally, the amount administered will be empirically determined, typically in the range of about 10 to $1000 \,\mu g/kg$ of the recipient. For peptide agents, the concentration will generally be in the range of about 50 to 500 μ g/ml in the dose administered. Other additives may be included, such as stabilizers, bactericides, etc. These additives will be present in conventional amounts.

30

The invention provides isolated nucleic acid sequences encoding the disclosed semaphorin and semaphorin receptor peptides and polypeptides, including sequences substantially identical to sequences encoding such polypeptides. An "isolated" nucleic acid sequence is present as other than a naturally occurring chromosome or transcript in its natural state and typically is removed from at least some of the nucleotide sequences with which it is normally associated with on a natural chromosome. A complementary sequence hybridizes to a unique portion of the disclosed semaphorin 10 signal sequences and optionally, a fusion partner such as sequence under low stringency conditions, for example, at 50° C. and SSC (0.9 M saline/0.09 M sodium citrate) and that remains bound when subject to washing at 55° C. with SSC. Regions of non-identity of complementary nucleic acids are preferably or in the case of homologous nucleic 15 acids, a nucleotide change providing a redundant codon. A partially pure nucleotide sequence constitutes at least about 5%, preferably at least about 30%, and more preferably at least about 90% by weight of total nucleic acid present in a given fraction.

Unique portions of the disclosed nucleic acid sequence are of length sufficient to distinguish previously known nucleic acid sequences. Thus, a unique portion has a nucleotide sequence at least long enough to define a novel oligonucleotide. Preferred nucleic acid portions encode a unique semaphorin peptide. The nucleic acids of the invention and portions thereof, other than those used as PCR primers, are usually at least about 60 bp and usually less than about 60 kb in length. PCR primers are generally between about 15 and 100 nucleotides in length.

Nucleotide (cDNA) sequences encoding several full length semaphorins are disclosed in herein. The invention also provides for the disclosed sequences modified by transitions, transversions, deletions, insertions, or other for genomic semaphorin sequences, and gene flanking sequences, including regulatory sequences; included are DNA and RNA sequences, sense and antisense. Preferred DNA sequence portions include portions encoding the preferred amino acid sequence portions disclosed above. For 40 biotinylation, etc. antisense applications where the inhibition of semaphorin expression is indicated, especially useful oligonucleotides are between about 10 and 30 nucleotides in length and include sequences surrounding the disclosed ATG start site, especially the oligonucleotides defined by the disclosed 45 eukaryotic and prokaryotic hosts. Advantageously, vectors sequence beginning about 5 nucleotides before the start site and ending about 10 nucleotides after the disclosed start site. Other especially useful semaphorin mutants involve deletion or substitution modifications of the disclosed cytoplasmic C-termini of transmembrane semaphorins. Accordingly, 50 semaphorin mutants with semaphorin binding affinities but with altered intracellular signal transduction capacities are produced.

For modified semaphorin-encoding sequences or related sequences encoding proteins with semaphorin-like 55 functions, there will generally be substantial sequence identity between at least a segment thereof and a segment encoding at least a portion of the disclosed semaphorin sequence, preferably at least about 60%, more preferably at least 80%, most preferably at least 90% identity. Homolo-60 gous segments are particularly within semaphorin domainencoding regions and regions encoding protein domains involved in protein-protein, particularly semaphorinreceptor interactions and differences within such segments are particularly conservative substitutions. Typically, the 65 large number of transcription initiation and termination invention's semaphorin peptide encoding polynucleotides are associated with heterologous sequences. Examples of

such heterologous sequences include regulatory sequences such as promoters, enhancers, response elements, signal sequences, polyadenylation sequences, etc., introns, 5' and 3' noncoding regions, etc. Other useful heterologous sequences are known to those skilled in the art or otherwise disclosed references cited herein. According to a particular embodiment of the invention, portions of the semaphorin encoding sequence are spliced with heterologous sequences to produce soluble, secreted fusion proteins, using appropriate β-Gal.

The disclosed sequences are also used to identify and isolate other natural semaphorins and analogs. In particular, the disclosed nucleic acid sequences are used as hybridization probes under low-stringency or PCR primers, e.g. oligonucleotides encoding functional semaphorin domains are ³²P-labeled and used to screen λ cDNA libraries at low stringency to identify similar cDNAs that encode proteins with related functional domains. Additionally, nucleic acids encoding at least a portion of the disclosed semaphorin are used to characterize tissue specific expression of semaphorin as well as changes of expression over time, particularly during organismal development or cellular differentiation.

The semaphorin encoding nucleic acids can be subject to alternative purification, synthesis, modification, sequencing, expression, transfection, administration or other use by methods disclosed in standard manuals such as Molecular Cloning, A Laboratory Manual (2nd Ed., Sambrook, Fritsch and Maniatis, Cold Spring Harbor), Current Protocols in Molecular Biology (Eds. Aufubel, Brent, Kingston, More, Feidman, Smith and Stuhl, Greene Publ. Assoc., Wiley-Interscience, NY, N.Y., 1992) or that are otherwise known in the art. For example, the nucleic acids can be modified to alter stability, solubility, binding affinity and specificity, etc. modifications such as alternative splicing and also provides 35 semaphorin-encoding sequences can be selectively methylated, etc. The nucleic acid sequences of the present invention may also be modified with a label capable of providing a detectable signal, either directly or indirectly. Exemplary labels include radioisotopes, fluorescers,

> The invention also provides vectors comprising nucleic acids encoding semaphorin. peptides, polypeptides or analogs. A large number of vectors, including plasmid and viral vectors, have been described for expression in a variety of may also include a promotor operably linked to the semaphorin-encoding portion. Vectors will often include one or more replication systems for cloning or expression, one or more markers for selection in the host, e.g. antibiotic resistance. The inserted semaphorin coding sequences may be synthesized, isolated from natural sources, prepared as hybrids, etc. Suitable host cells may be transformed/ transfected/infected by any suitable method including electroporation, CaCl2 mediated DNA uptake, viral infection, microinjection, microprojectile, or other methods.

> Appropriate host cells include bacteria, archebacteria, fungi, especially yeast, and plant and animal cells, especially mammalian cells. Of particular interest are E. coli, B. subtilis, Saccharomyces cerevisiae, SF9 cells, C129 cells, 293 cells, Neurospora, and CHO, COS, HeLa cells, immortalized mammalian myeloid and lymphoid cell lines, and pluripotent cells, especially mammalian ES cells and zygotes. Preferred replication systems include M13, ColE1, SV40, baculovirus, lambda, adenovirus, AAV, BPV, etc. A regulatory regions have been isolated and shown to be effective in the transcription and translation of heterologous

15

20

proteins in the various hosts. Examples of these regions, methods of isolation, manner of manipulation, etc. are known in the art. Under appropriate expression conditions, host cells can be used as a source of recombinantly produced semaphorins or analogs.

For the production of stably transformed cells and transgenic animals, nucleic acids encoding the disclosed semaphorins may be integrated into a host genome by recombination events. For example, such a sequence can be microinjected into a cell, and thereby effect homologous recombination at the site of an endogenous gene, an analog or pseudogene thereof, or a sequence with substantial identity to an semaphorin-encoding gene. Other recombinationbased methods such as nonhomologous recombinations, deletion of endogenous gene by homologous recombination, especially in pluripotent cells, etc., provide additional applications. Preferred transgenics and stable transformants overexpress the disclosed receptor gene and find use in drug development and as a disease model. Alternatively, knockout cells and animals find use in development and functional studies. Methods for making transgenic animals, usually rodents, from ES cells or zygotes are known to those skilled in the art.

The compositions and methods disclosed herein may be used to effect gene therapy. See, e.g. Zhu et al. (1993) 25 Science 261, 209-211; Gutierrez et al. (1992) Lancet 339, 715-721. For example, cells are transfected with semaphorin sequences operably linked to gene regulatory sequences capable of effecting altered semaphorin expression or regulation. To modulate semaphorin translation, cells 30 may be transfected with complementary antisense polynucleotides. For gene therapy involving the transfusion of semaphorin transfected cells, administration will depend on a number of variables that are ascertained empirically. For example, the number of cells will vary depending on the stability of the transfused cells. Transfusion media is typically a buffered saline solution or other pharmacologically acceptable solution. Similarly the amount of other administered compositions, e.g. transfected nucleic acid, protein, etc., will depend on the manner of administration, purpose of the therapy, and the like.

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

I. Isolation and Characterization of Grasshopper Sema- 45 phorin I (SEQ ID NOS:57 & 58) (Previously Referred to as Fasciclin IV)

In order to identify cell surface molecules that function in selective fasciculation, a series of monoclonal antibody (MAb) screens was conducted. The immunogen used for 50 most of these screens was membranes from the longitudinal connectives (the collection of longitudinal axons) between adjacent segmental ganglia of the nervous system of the larval grasshopper. From these screens, MAb 3B11 and 8C6 were used to purify and characterize two surface 55 glycoproteins, fasciclin I and fasciclin II, see, Bastiani et al., 1987; the genes encoding both were subsequently cloned, see, Snow et al. 1989, Zinn et al. 1988, and Harrelson and Goodman, 1988.

Another MAb isolated during these screens, MAb 6F8, 60 was chosen for the present study because, just as with fasciclin I and fasciclin II, the antigen recognized by this MAb is expressed on a different but overlapping subset of axon pathways in the developing CNS. The 6F8 antigen appears to be localized on the outside of cell surfaces, as 65 indicated by MAb binding when incubated both in live preparations, and in fixed preparations in which no deter-

gents have been added. Because the 6F8 antigen is a surface glycoprotein expressed on a subset of axon fascicles (see below), we call it fasciclin IV.

Fasciclin IV expression begins early in embryonic development before axonogenesis. At 29% of development, expression is seen on the surface of the midline mesectodermal cells and around 5-7 neuroblasts and associated ectodermal cells per hemisegment. This expression is reminiscent of the mesectodermal and neuroblast-associated expression observed with both fasciclin I and fasciclin II: however, in each case, the pattern resolves into a different subset of neuroblasts and associated ectodermal cells.

At 32% of development, shortly after the onset of axonogenesis in the CNS, fasciclin IV expression is seen on the surface of the axons and cell bodies of the three pairs of MP4, MP5, and MP6 midline progeny, the three U motoneurons, and on several unidentified neurons in close proximity to the U's. This is in contrast to fasciclin II, which at this stage is expressed on the MP1 and dMP2 neurons, and fasciclin I, which is expressed on the U neurons but not on any midline precursor progeny.

The expression of fasciclin IV on a subset of axon pathways is best observed around 40% of development, after the establishment of the first longitudinal and commissural axon pathways . At this stage, the protein is expressed on two longitudinal axon fascicles, a subset of commissural axon fascicles, a tract extending anteriorly along the midline, and a subset of fascicles in the segmental nerve (SN) and intersegmental nerve (ISN) roots.

Specifically, fasciclin IV is expressed on the U fascicle, a longitudinal pathway (between adjacent segmental neuromeres) pioneered in part by the U neurons, and on the A/P longitudinal fascicle (in part an extension of the U fascicle within each segmental neuromere. In addition, fas-35 ciclin IV is also expressed on a second narrower, medial, and more ventral longitudinal pathway. The U axons turn and exit the CNS as they pioneer the ISN; the U's and many other axons within the ISN express fasciclin IV. The continuation of the U fascicle posterior to the ISN junction is 40 also fasciclin IV-positive. The specificity of fasciclin IV for distinct subsets of longitudinal pathways can be seen by comparing fasciclin IV and fasciclin II expression in the same embryo; fasciclin IV is expressed on the U and A/P pathways whereas fasciclin II is expressed on the MP1 pathway.

The axons in the median fiber tract (MFT) also express fasciclin IV. The MFT is pioneered by the three pairs of progeny of the midline precursors MP4, MP5, and MP6. The MFT actually contains three separate fascicles. The axons of the two MP4 progeny pioneer the dorsal MFT fascicle and then bifurcate at the posterior end of the anterior commnissure; whereas the axons of the two MP6 progeny pioneer the ventral MFT fascicle and then bifurcate at the anterior end of the posterior commissure. Fasciclin IV is expressed on the cell bodies of the six MP4, MP5, and MP6 neurons, and on their growth cones and axons as they extend anteriorly in the MFT and bifurcate in one of the two commissures. However, this expression is regional in that once these axons bifurcate and begin to extend laterally across the longitudinal pathways and towards the peripheral nerve roots, their expression of fasciclin IV greatly decreases. Thus, fasciclin IV is a label for the axons in the MFT and their initial bifurcations in both the anterior and posterior commissures. It appears to be expressed on other commissural fascicles as well. However, the commissural expression of fasciclin IV is distinct from the transient expression of fasciclin II along the posterior edge of the posterior commissure, or the expres-

sion of fasciclin I on several different commissural axon fascicles in both the anterior and posterior commissure (Bastiani et al., 1987; Harrelson and Goodman, 1988).

Fasciclin IV is also expressed on a subset of motor axons exiting the CNS in the SN. The SN splits into two major branches, one anterior and the other posterior, as it exits the CNS. Two large bundles of motoneuron axons in the anterior branch express fasciclin IV at high levels; one narrow bundle of motoneuron axons in the posterior branch expresses the protein at much lower levels Fasciclin IV is 10 also expressed on many of the axons in the ISN.

The CNS and nerve root expression patterns of fasciclin IV, fasciclin I, and fasciclin II at around 40% of embryonic development are summarized below. Although there is some overlap in their patterns (e.g., both fasciclin IV and fasciclin 15 I label the U axons), these three surface glycoproteins label distinct subsets of axon pathways in the developing CNS. Fasciclin IV is Expressed on Epithelial Bands in the Developing Limb Bud

Fasciclin IV is expressed on the developing limb bud 20 epithelium in circumferential bands; at 34.5% of development these bands can be localized with respect to constrictions in the epithelium that mark presumptive segment boundaries. In addition to a band just distal to the trochanter/ coxa segment boundary, bands are also found in the tibia, 25 femur, coxa, and later in development a fifth band is found in the tarsus. Fasciclin IV is also expressed in the nascent chordotonal organ in the dorsal aspect of the femur. The bands in the tibia, trochanter, and coxa completely encircle the limb. However, the femoral band is incomplete, con- 30 taining a gap on the anterior epithelia of this segment.

The position of the Ti1 axon pathway with respect to these bands of fasciclin IV-positive epithelia suggests a potential role for fasciclin IV in guiding the Ti1 growth cones. First, the band of fasciclin IV expression in the trochanter, which 35 is approximately three epithelial cell diameters in width when encountered by the Ti1 growth cones, is the axial location where the growth cones reorient from proximal migration to circumferential branch extension. The Tr1 cell, which marks the location of the turn, lies within this band, usually over the central or the proximal cell tier. Secondly, although there is a more distal fasciclin IV expressing band in the femur, where a change in Ti1 growth is not observed, there exists a gap in this band such that fasciclin IV expressing cells are not traversed by the Ti1 growth cones. 45 branches that fail to turn proximally in the ventral trochanter The Ti1 axons also may encounter a fasciclin IV expressing region within the coxa, where interactions between the growth cones, the epithelial cells, and the Cx1 guidepost cells have not yet been investigated.

epithelial cells, fasciclin IV protein, as visualized with MAb 6F8, is also found on the basal surface of these cells in a punctate pattern. This punctate staining is not an artifact of the HRP immunocytochemistry since fluorescent visualization of MAb 6F8 is also punctate. The non-neuronal expres- 55 sion of fasciclin IV is not restricted to limb buds. Circumferential epithelial bands of fasciclin IV expression are also seen on subesophageal mandibular structures and on the developing antennae.

MAb Directed Against Fasciclin IV Can Alter the Formation 60 MAb 6F8 are not due to cross linking by the bivalent IgG. of the Ti1 Axon Pathway in the Limb Bud

The expression of fasciclin IV on an epithelial band at a key choice point in the formation of the Ti1 axon pathway led us to ask whether this protein is involved in growth cone guidance at this location. To answer this question, we 65 cultured embryos, or epithelial fillets (e.g., O'Connor et al., 1990), during the 5% of development necessary for normal

pathway formation, either in the presence or absence of MAb 6F8 or 6F8 Fab fragments. Under the culture conditions used for these experiments, defective Ti1 pathways are observed in 14% of limbs (Chang et al., 1992); this defines the baseline of abnormalities observed using these conditions. For controls we used other MAbs and their Fab fragments that either bind to the surfaces of these neurons and epithelial cells (MAb 3B11 against the surface protein fasciclin I) or do not (MAb 4D9 against the nuclear protein engrailed; Patel et al., 1989). To assess the impact of MAb 6F8 on Ti1 pathway formation, we compared the percentage of aberrant pathways observed following treatment with MAb 6F8 to that observed with MAbs 3B11 and 4D9. Our cultures began at 32% of development when the Ti1 growth cones have not yet reached the epithelium just distal to the trochanter/coxa boundary and therefore have not encountered epithelial cells expressing fasciclin IV. Following approximately 30 hours in culture (~4% of development), embryos were fixed and immunostained with antibodies to HRP in order to visualize the Ti1 axons and other neurons in the limb bud. Criteria for scoring the Ti1 pathway, and the definition of "aberrant", are described in detail in the Experimental Procedures.

Although MAb 6F8 does not arrest pathway formation, several types of distinctive, abnormal pathways are observed. These defects generally begin where growth cones first contact the fasciclin IV expressing cells in the trochanter. Normally, the Ti1 neurons each have a single axon, and the axons of the two cells are fasciculated in that portion of the pathway within the trochanter. Following treatment with MAb 6F8, multiple long axon branches are observed within, and proximal to, the trochanter. Two major classes of pathways are taken by these branches; in 36% of aberrant limbs, multiple, long axon branches extend ventrally in the region distal to the Cx1 cells which contains the band of fasciclin IV expressing epithelial cells. In the ventral region of the trochanter, these branches often independently turn proximally to contact the Cx1 cells, and thus complete the pathway in this region.

In the second major class of pathway defect, seen in 47% 40 of aberrant limbs, axon branches leave the trochanter at abnormal, dorsal locations, and extend proximally across the trochanter/coxa boundary. These axons then veer ventrally, often contacting the Cx1 neurons. The remaining 17% of defects include defasciculation distal to the trochanter, axon and continue into the posterior compartment of the limb, and axon branches which cross the trochanter/coxa boundary and continue to extend proximally without a ventral turn.

When cultured in the presence of MAb 6F8, 43% of limbs In addition to its expression over the surface of bands of 50 exhibited malformed Ti1 pathways (n=381) as compared to 11% with MAb 3B11 (n=230) and 5% with MAb 4D9 (n=20). These percentages are pooled from treatments with MAbs concentrated from hybridoma supernatant, IgGs isolated from these supernatants, and Fab fragments isolated from these IgG preparations (see Experimental Procedures). The frequency of malformed Ti1 pathways and the types of defects observed showed no significant variation regard less of the method of antibody preparation or type of antibody used. Since Fabs show similar results as IgGs, the effects of

> In summary, following treatment with MAb 6F8, the Ti1 pathway typically exhibits abnormal morphology beginning just distal to the trochanter and at the site of fasciclin IV expression. The two most common types of Ti1 pathway defects described above occur in 36% of experimental limbs (treated with MAb 6F8), but are seen in only 4% of control limbs (treated with MAbs 3 B11 and 4D9).

Fasciclin IV cDNAs Encode a Novel Integral Membrane Protein

Grasshopper fasciclin IV was purified by passing crude embryonic grasshopper lysates over a MAb 6F8 column. After affinity purification, the protein was eluted, precipitated, denatured, modified at cysteines, and digested with either trypsin or Lys-C. Individual peptides were resolved by reverse phase HPLC and microsequenced using standard methods.

The amino acid sequences derived from these proteolytic 10 philic adhesion or signaling system. fragments were used to generate oligonucleotide probes for PCR experiments, resulting in products that were used to isolate cDNA clones from the Zinn embryonic grasshopper cDNA library (Snow et al., 1988). Sequence analysis of these cDNAs reveals a single open reading frame (ORF) 15 encoding a protein with two potential hydrophobic stretches of amino acids: an amino-terminal signal sequence of 20 residues and (beginning at amino acid 627) a potential transmembrane domain of 25 amino acids. Thus, the deduced protein has an extracellular domain of 605 amino 20 acids, a transmembrane domain, and a cytoplasmic domain of 78 amino acids. The calculated molecular mass of the mature fasciclin IV protein is 80 kd and is confirmed by Western blot analysis of the affinity purified and endogenous protein as described below. The extracellular domain of the 25 protein includes 16 cysteine residues that fall into three loose clusters but do not constitute a repeated domain and are not similar to other known motifs with cysteine repeats. There are also six potential sites for N-linked glycosylation in the extracellular domain. Treatment of affinity purified 30 fasciclin IV with N-Glycanase demonstrates that fasciclin IV does indeed contain N-linked oligosaccharides. Fasciclin IV shows no sequence similarity when compared with other proteins in the PIR data base using BLASTP (Altschul et al., 1990), and is therefore a novel type I integral membrane 35 protein.

A polyclonal antiserum directed against the cytoplasmic domain of the protein encoded by the fasciclin IV cDNA was used to stain grasshopper embryos at 40% of development. The observed staining pattern was identical to that seen with 40 MAb 6F8. On Western blots, this antiserum recognizes the protein we affinity purified using MAb 6F8 and then subjected to microsequence analysis. Additionally, the polyclonal serum recognizes a protein of similar molecular mass these data indicate that the sequence we have obtained is indeed fasciclin IV.

Four other cell surface proteins that label subsets of axon pathways in the insect nervous system (fasciclin I, fasciclin II, fasciclin III, and neuroglian) are capable of mediating 50 homophilic cell adhesion when transfected into S2 cells in vitro (Snow et al., 1989; Elkins et al., 1990b; Grenningloh et al., 1990). To ask whether fasciclin IV can function as a homophilic cell adhesion molecule, the fasciclin IV cDNA with the complete ORF was placed under the control of the 55 inducible metallothionein promoter (Bunch et al., 1988), transfected into S2 cells, and assayed for its ability to promote adhesion in normally non-adhesive S2 cells. Following induction with copper, fasciclin IV was synthesized in these S2 cells as shown by Western blot analysis and cell surface staining of induced S2 cells with the polyclonal antiserum described above.

We observed no evidence for aggregation upon induction of fasciclin IV expression, thus suggesting that, in contrast to the other four proteins, fasciclin IV does not function as 65 a homophilic cell adhesion molecule. Alternatively, fasciclin IV-mediated aggregation might require some further post-

translational modification, or co-factor, not supplied by the S2 cells, but clearly this protein acts differently in the S2 cell assay than the other four axonal glycoproteins previously tested. This is consistent with the pattern of fasciclin IV expression in the embryonic limb since only the epithelial cells and not the Ti1 growth cones express fasciclin IV, and yet antibody blocking experiments indicate that fasciclin IV functions in the epithelial guidance of these growth cones. Such results suggest that fasciclin IV functions in a hetero-

DISCUSSION

Fasciclin IV is expressed on groups of axons that fasciculate in the CNS, suggesting that, much like other insect axonal glycoproteins, it functions as a homophilic cell adhesion molecule binding these axons together. Yet, in the limb bud, fasciclin IV is expressed on a band of epithelium but not on the growth cones that reorient along this band, suggesting a heterophilic function. That fasciclin IV functions in a heterophilic rather than homophilic fashion is supported by the lack of homophilic adhesion in S2 cell aggregation assays. In contrast, fasciclin I, fasciclin II, fasciclin III, and neuroglian all can function as homophilic cell adhesion molecules (Snow et al., 1989; Elkins et al., 1990b; Grenningloh et al., 1990).

cDNA sequence analysis indicates that fasciclin IV is an integral membrane protein with a novel sequence not related to any protein in the present data base. Thus, fasciclin IV represents a new type of protein that functions in the epithelial guidance of pioneer growth cones in the developing limb bud. Given its expression on a subset of axon pathways in the developing CNS, fasciclin IV functions in the guidance of CNS growth cones as well.

The results from the MAb blocking experiments illuminate several issues in Ti1 growth cone guidance and axon morphogenesis in the limb. First, the most striking change in growth cone behavior in the limb is the cessation of proximal growth and initiation of circumferential extension of processes upon encountering the trochanter/coxa boundary region (Bentley and Caudy, 1983; Caudy and Bentley, 1987). This could be because the band of epithelial cells within the trochanter promotes circumferential growth, or because the cells comprising the trochanter/coxa boundary from grasshopper embryonic membranes. Taken together 45 and the region just proximal to it are non-permissive or aversive for growth cone migration, or both. The extension of many axon branches across the trochanter/coxa boundary following treatment with MAb 6F8 suggests that the trochanter/coxa boundary cells, which do not express fasciclin IV, are not aversive or non-permissive. Thus the change in behavior at the boundary appears to be due to the ability of fasciclin IV expressing epithelial cells to promote circumferential extension of processes from the Ti1 growth cones.

> Secondly, treatment with MAb 6F8 results in frequent defasciculation of the axons of the two Ti1 neurons, and also formation of abnormal multiple axon branches, within the trochanter over fasciclin IV-expressing epithelial cells. Previous studies have shown that treatment with antibodies against ligands expressed on non-neural substrates 60 (Landmesser et al., 1988), or putative competitive inhibitors of substrate ligands (Wang and Denburg, 1992) can promote defasciculation and increased axonal branching. Our results suggest that Ti1 axon:axon fasciculation and axon branching also are strongly influenced by interactions with substrate ligands, and that fasciclin IV appears to be a component of this interaction within the trochanter.

65

Thirdly, despite the effects of MAb 6F8 on axon branching, and on crossing the trochanter/coxa boundary, there remains a pronounced tendency for branches to grow ventrally both within the trochanter and within the distal region of the coxa. Consequently, all signals which can promote ventral migration of the growth cones have not been blocked by MAb 6F8 treatment. Antibody treatment may have a threshold effect in which ventral growth directing properties of fasciclin IV are more robust, and less incapacitated by treatment, than other features; alternatively, guidance information promoting ventral migration may be independent of fasciclin IV. Time lapse video experiments to determine how the abnormal pathways we observe actually form can resolve these issues.

These results demonstrate that fasciclin IV functions as a guidance cue for the Ti1 growth cones just distal to the trochanter/coxa boundary, is required for these growth cones to stop proximal growth and spread circumferentially, and that the function of fasciclin IV in Ti1 pathway formation result from interactions between a receptor/ligand on the Ti1 growth cones and fasciclin IV on the surface of the band of 20 epithelial cells results in changes in growth cone morphology and subsequent reorientation. Fasciclin IV appears to elicit this change in growth cone morphology and orientation via regulation of adhesion, a signal transduction function, or a combination of the two.

EXPERIMENTAL PROCEDURES

Immunocytochemistry

Grasshopper embryos were obtained from a colony maintained at the U.C. Berkeley and staged by percentage of total embryonic development (Bentley et al., 1979). Embryos 30 were dissected in PBS, fixed for 40 min in PEM-FA [0.1 M PIPES (pH6.95), 2.0 mM EGTA, 1.0 mM MgSO₄, 3.7% formaldehyde], washed for 1 hr with three changes in PBT (1×PBS, 0.5% Triton X-100, 0.2% BSA), blocked for 30 min in PBT with 5% normal goat serum, and incubated overnight at 4° C. in primary antibody. PBSap (1×PBS, 0.1% Saponin, 0.2% BSA) was used in place of PBT with MAb 8G7. Antibody dilutions were as follows: MAb 6F8 1:1, polyclonal antisera directed against a fasciclin IV bacterial fusion protein (#98-3) 1:400; MAb 8G7 1:4; MAb 8C6 1:1. The embryos were washed for one hour in PBT with three changes, blocked for 30 min, and incubated in secondary antibody for at least 2 hr at room temperature. The secondary antibodies were HRP-conjugated goat anti-mouse and anti-rat IgG (Jackson Immunoresearch Lab), and were diluted 1:300. Embryos were washed in PBT for one hour with three changes and then reacted in 0.5% diaminobenzidine (DAB) in PBT. The reaction was stopped with several washes in PBS and the embryos were cleared in a glycerol series (50%, 70%, 90%), mounted and viewed under Nomar-50 ski or bright field optics. For double-labelled preparations the first HRP reaction was done in PBT containing 0.06% NiCl, followed by washing, blocking, and incubation overnight in the second primary antibody. The second antibody was visualized with a DAB reaction as described above. Embryos cultured in the presence of monoclonal antibodies were fixed and incubated overnight in goat anti-HRP (Jackson Immunoresearch Labs) conjugated to RITC (Molecular Probes), washed for one hour in PBT with three changes, mounted in 90% glycerol, 2.5% DABCO (Polysciences), and viewed under epifluorescence. S2 cells were stained with polyclonal sera #98-3 diluted 1:400 and processed as described previously (Snow et al., 1989).

MONOCLONAL ANTIBODY BLOCKING **EXPERIMENTS**

In order to test for functional blocking, monoclonal antibody reagents were prepared as follows. Hybridoma super-

natant was brought to 20% with H_2O -saturated (NH₄)₂SO₄. incubated in ice 1 hr, and spun at 15,000 g at 4° C. for 20 min. The supernatant was brought to 56% with H₂Osaturated $(NH_4)_2SO_4$, incubated overnight at 4° C., spun as above. The pellet was resuspended in PBS using approximately 1/40 volume of the original hybridoma supernatant (often remaining a slurry) and dialyzed against 1×PBS overnight at 4° C. with two changes. This reagent is referred to as "concentrated hybridoma supernatant." Purified IgG 10 was obtained by using Immunopure Plus Immobilized Protein A IgG Purification Kit (Pierce) to isolate IgG from the concentrated hybridoma supernatant. Fab fragments were obtained using the ImmunoPure Fab Preparation Kit (Pierce) from the previously isolated IgGs. For blocking experiments each reagent was diluted into freshly made supplemented RPMI culture media (O'Connor et al., 1990) and dialyzed overnight at 4° C. against 10 volumes of the same culture media. Dilutions were as follows: concentrated hybridoma supernatant 1:4; purified IgG 150 mg/ml; Fab 75 mg/ml.

Embryos for culture experiments were carefully staged to between 31 and 32% of development. As embryos in each clutch typically differ by less that 1% of embryonic development from each other, the growth cones of the Ti1 neurons at the beginning of the culture period were located approxi-25 mately in the mid-femur, well distal to the trochanter/coxa segment boundary. From each clutch at least two limbs were filleted and the Ti1 neurons labelled with the lipophillic dye Di I (Molecular Probes) as described (O'Connor et al., 1990) in order to confirm the precise location of the Ti1 growth cones. Prior to culturing, embryos were sterilized and dissected (Chang et al., 1992). The entire amnion and dorsal membrane was removed from the embryo to insure access of the reagents during culturing. Embryos were randomly divided into groups and cultured in one of the blocking 35 reagents described above. Cultures were incubated with occasional agitation at 30° C. for 30 hrs. At the end of the culture period embryos were fixed and processed for analysis as described above in immunocytochemistry.

For each culture experiment, the scoring of the Ti1 pathway in each limb was confirmed independently by a second observer. There was no statistically significant variation between the two observers. Limbs from MAb cultured embryos were compared to representative normal limbs from non-MAb cultured embryos and were scored as abnor-45 mal if any major deviation from the normal Ti1 pathway was observed. The Ti1 pathway was scored as abnormal for one or more of the following observed characteristics: (1) defasciculation for a minimum distance of approximately 25 mm anywhere along the pathway, (2) multiple axon branches that extended ventrally within the trochanter, (3) presence of one or more axon branches that crossed the trochanter/coxa boundary dorsal to the Cx1 cells, but then turned ventrally in the coxa and contacted the Cx1 cells, (4) the presence of axon branches that crossed the trochanter/coxa segment boundary, did not turn ventrally, but continued proximally toward the CNS, and (5) failure of ventrally extended axons within the trochanter to contact and reorient proximally to the Cx1 cells. For each MAb tested, the data are presented as a percentage of the abnormal Ti1 pathways observed. Protein Affinity Purification and Microsequencing 60

Grasshopper fasciclin IV was purified by passing crude embryonic grasshopper lysate (Bastiani et al., 1987) over an Affi-Gel 15 column (Bio Rad) conjugated with the monoclonal antibody 6F8. Protein was eluted with 50 mM DEA (pH 11.5), 0.1% Lauryldimethylamine oxide (Cal Bio Chem), and 1 mM EDTA. Protein was then precipitated, denatured, modified at cysteines, and digested with either trypsin or Lys-C (Boehringer-Mannheim). Individual peptides were resolved by RP-HPLC and microsequenced (Applied Biosystems 4771 Microsequencer) using standard chemistry.

PCR Methods

DNA complementary to poly(A)+RNA from 45%-50% grasshopper embryos was prepared (Sambrook et al., 1989). PCR was performed using Perkin Elmer Taq polymerase (Saiki et al., 1988), and partially degenerate (based on grasshopper codon bias) oligonucleotides in both orienta- 10 tions corresponding to a portion of the protein sequence of several fasciclin IV peptides as determined by microsequencing. These oligonucleotides were designed so as not to include all of the peptide-derived DNA sequence, leaving a remaining 9-12 base pairs that could be used to confirm the 15 correct identity of amplified products. All possible combinations of these sequences were tried. 40 cycles were performed, the parameters of each cycle as follows: 96° for one min; a sequentially decreasing annealing temperature (2° C./cycle, starting at 65° C. and ending at 55° C. for 20 remaining 35 cycles) for 1 min; and at 72° C. for one min. Reaction products were cloned into the Sma site of M13 mp10 and sequenced. Two products, 1074 bp and 288 bp in length, contained DNA 3' to the oligonucleotide sequences encoded the additional amino acid sequence of the fasciclin 25 IV peptide from which the oligonuceotides were derived. These two fragments have one end in common, and the oligonucleotides used to amplify them correspond to the anino acid sequences Met-Tyr-Val-Gln-Phe-Gly-Glu-Glu and Met-Asp-Glu-Ala-Val-Pro-Ala-Phe (fasciclin IV resi- 30 due 29-386) (SEQ ID NO:58), and His-Thr-Leu-Met-Asp-Glu-Ala and Lys-Asn-Tyr-Val-Val-Arg-Met-Asp-Glu (fasciclin IV residue 376-472) (SEQ ID NO:58). cDNA Isolation and Sequence Analysis

Both PCR products were used to screen 1×10⁶ clones 35 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and from a grasshopper embryonic cDNA library (Snow et al., 1988). 21 clones that hybridized to both fragments were recovered, and one 2600 bp clone was sequenced using the dideoxy. chain termination method (Sanger et al., 1977) and Sequenase (US Biochemical Corp.). Templates were made 40 from M13 mp10 vectors containing inserts generated by sonication of plasmid clones. One cDNA was completely sequenced on both strands using Oligonucleotides and double strand sequencing of plasmid DNA (Sambrook et al., 1989) to fill gaps. Two additional cDNAs were analyzed by 45 double strand sequencing to obtain the 3' 402 bp of the transcript. All three cDNAs were used to construct a plasmid containing the entire transcript. The complete transcript sequence is 2860 bp in length with 452 bp of 5' and 217 bp of 3' untranslated sequences containing stop codons in all reading frames. The predicted protein sequence was analyzed using the FASTDB and BLASTP programs (Intelligenetics). The fasciclin IV ORF unambiguously contains 10 of the 11 peptide sequences determined by microsequencing the fasciclin IV trypsin and Lys-C peptides. Generation of Polyclonal Antibodies From Bacterial Fusion Proteins

Bacterial trpE fusion proteins were constructed using pATH (Koerner et al., 1991) vectors, three restriction fragments encoding extracellular sequences, and one fragment 60 (770 bp HindIII/Eco R1, which includes amino acids 476-730) encoding both extracellular and intracellular sequences (designated #98-3). Fusion proteins were isolated by making an extract of purified inclusion bodies (Spindler et al., 1984), and rats were immunized with ~70 mg of 65 protein emulsified in RIBI adjuvant (Immunochem Research). Rats were injected at two week intervals and

serum was collected 7 days following each injection. Sera were tested histologically on grasshopper embryos at 45% of development. Construct #98-3 showed a strong response and exhibited a staining pattern identical to that of MAb 6F8. Two of the extracellular constructs responded weakly but

also showed the fasciclin IV staining pattern. All preimmune sera failed to stain grasshopper embryos.

S2 Cell Transfections, Aggregation Assays, and Western Analysis

A restriction fragment containing the full length fasciclin IV cDNA was cloned into pRmHa-3 (Bunch et al, 1988) and co-transformed into Drosophila S2 cells (Schneider, 1972) with the plasmid pPC4 (Jokerst et al., 1989), which confers a-amanitin resistance. S2 cells were transformed using the Lipofectin Reagent and recommended protocol (BRL) with minor modifications. All other S2 cell manipulations are essentially as described (Snow et al., 1989), including adhesion assays. Fasciclin IV expression in transformed cell lines was induced for adhesion assays and histology by adding $CuSO_4$ to 0.7 mM and incubating for at least 48 hrs. Northern analysis confirmed transcription of fasciclin IV and surface-associated staining of the S2 cells with polyclonal serum #98-3 strongly suggests fasciclin IV is being transported to the cell surface. Preparation of membranes from S2 cells and from grasshopper embryos, PAGE, and Western blot were performed as previously described (Elkins et al., 1990b) except that signal was detected using the enhanced chemiluminescence immunodetection system kit (Amersham). Amount of protein per lane in each sample loaded: fasciclin IV protein, ~5 ng; S2 cell membranes, 40 mg; grasshopper membranes 80 mg. Amounts of protein loaded were verified by Ponceau S staining of the blot prior to incubation with the antibody.

REFERENCES CITED IN EXAMPLE I

- Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410.
- Bastiani, M. J., de Couet, H. G., Quinn, J. M. A., Karlstrom, R. O., Kotrla, K., Goodman, C. S., and Ball, E. E. (1992). Position-specific expression of the annulin protein during grasshopper embryogenesis. Dev. Biol., in press.
- Bastiani, M. J., du Lac, S., and Goodman, C. S. (1986). Guidance of neuronal growth cones in the grasshopper embryo. I. Recognition of a specific axonal pathway by the pCC neuron. J. Neurosci. 6, 3518-3531.
- Bastiani, M. J., and Goodman, C. S. (1986). Guidance of neuronal growth cones in the grasshopper embryo: III. Recognition of specific glial pathways. J. Neurosci. 6, 3542-3551.
- 50 Bastiani, M. J., Harrelson, A. L., Snow, P. M., and Goodman, C. S. (1987), Expression of fasciclin I and II glycoproteins on subsets of axon pathways during neuronal development in the grasshopper. Cell 48, 745-755.
 - Bastiani, M. J., Raper, J. A., and Goodman, C. S. (1984). Pathfinding by neuronal growth cones in grasshopper embryos. III. Selective affinity of the G growth cone for the P cells within the A/P fascicle. J. Neurosci. 4, 2311-2328.
 - Bentley, D., and Caudy, M. (1983). Pioneer axons lose directed growth after selective killing of guidepost cells. Nature. 304, 62-65.
 - Bentley, D., Keshishian, H., Shankland, M., and Toroian-Raymond, A. (1979). Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J. Embryol. Exp. Morph. 54, 47–74.
 - Bentley, D., and O'Connor, T. P. (1992). Guidance and steering of peripheral pioneer growth cones in grasshop-

45

60

per embryos. In The Nerve Growth Cone, P. C. Letourneau, S. B. Kater, and E. R. Macagno eds. (New York: Raven Press, Ltd.), pp. 265–282.

- Bunch, T. A., Grinblat, Y., and Goldstein, L. S. B. (1988). Characterization and use of the Drosophila metallothio--5 nein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043-1061.
- Chang, W. S., Serikawa, K., Allen, K., and Bentley, D. (1992). Disruption of pioneer growth cone guidance in vivo by removal of glycosyl-phosphatidylinositol- 10 anchored cell surface proteins. Development. 114, 507 - 519.
- Caudy, M., and Bentley, D. (1987). Pioneer growth cone behavior at a differentiating limb segment boundary in the grasshopper embryo. Dev. Biol. 119, 454-465.
- Chou, P. Y., and Fasman, G. D. (1974). Prediction of protein conformation. Biochemistry. 13, 222-245.
- Elkins, T., Zinn, K., McAllister, L., Hoffmann, F. M., and Goodman, C. S. (1990a). Genetic analysis of a Drosophila neural cell adhesion molecule: Interaction of fasciclin I 20 and abelson tyrosine kinase mutations. Cell. 60, 565-575.
- Elkins, T., Hortsch, M., Bieber, A. J., Snow, P. M., and Goodman, C. S. (1990b). Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting. J. Cell Biol. 110, 1825–1832.
- Goodman, C. S., Bate, C. M., and Spitzer, N. C. (1981). Embryonic development of identified neurons: Origin and transformation of the H cell. J. Neurosci. 1, 94-102.
- Grenningloh, G., Bieber, A., Rehm, J., Snow, P. M., Traquina, Z., Hortsch, M., Patel, N. H., and Goodman, C. 30 S. (1990). Molecular genetics of neuronal recognition in Drosophila: Evolution and function of immunoglobulin superfamily cell adhesion molecules. Cold Spring Harbor Symp. Quant. Biol. 55, 327-340.
- Grenningloh, G., Rehm, E. J., and Goodman, C. S. (1991). 35 Genetic analysis of growth cone guidance in Drosophila: Fasciclin II functions as a neuronal recognition molecule. Cell. 67, 45-57.
- Harrelson, A. L., and Goodman, C. S. (1988). Growth cone guidance in insects: Fasciclin II is a member of the 40 immunoglobulin superfamily. Science. 242, 700-708.
- Jacobs, J. R., and Goodman, C. S. (1989). Embryonic development of axon pathways in the Drosophila CNS. I. A glial scaffold appears before the first growth cones. J. Neurosci. 7, 2402-2411.
- Jay, D. J., and Keshishian, H. (1990). Laser inactivation of fasciclin I disrupts axon adhesion of grasshopper pioneer neurons. Nature. 348, 548-551.
- Jokerst, R. S., Weeks, J. R. Zehring, W. A., and Greenleaf, A. L. (1989). Analysis of the gene encoding the largest 50 subunit of RNA polymerase II in Drosophila. Mol. Gen. Genet. 215, 266-275.
- Koerner, T. J., Hill, J. E., Myers, A. M., and Tzagoloff, A. (1991). High-expression vectors with multiple cloning sites for construction of trpE-fusion genes: pATH vectors. 55 Genbank Accession Number: The accession number for the Methods Enzymol. 194, 477-490.
- Landmesser, L., Dahm L., Schultz, K., and Rutishauser, U. (1988). Distinct roles for adhesion molecules during innervation of embryonic chick muscle. Dev. Biol. 130, 645-670.
- Lefcort, F., and Bentley, D. (1987). Pathfinding by pioneer neurons in isolated, opened and mesoderm-free limb buds of embryonic grasshoppers. Dev. Biol. 119, 466-480.
- Lefcort, F., and Bentley, D. (1989). Organization of cytoskeletal elements and organelles preceding growth cone 65 emergence from an identified neuron in situ. J. Cell. Biol. 108, 1737-1749.

26

- O'Connor, T. P., Duerr, J. S., and Bentley, D. (1990). Pioneer growth cone steering decisions mediated by single filopodial contacts in situ . J. Neurosci. 10, 3935–3946.
- Patel, N. H., Martin-Blanco, E., Coleman, K. G., Poole, S. J., Ellis, M. C., Kornberg, T. B., and Goodman, C. S. (1989). Expression of engrailed proteins in arthropods, annelids, and chordates. Cell. 58, 955-968.
- Patel, N. H., Snow, P. M., and Goodman, C. S. (1987). Characterization and cloning of fasciclin Im: A glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell. 48, 975-988.
- Raper, J. A., Bastiani, M. J., and Goodman, C. S. (1984). Pathfinding by neuronal growth cones in grasshopper embryos. IV. The effects of ablating the A and P axons upon the behavior of the G growth cone. J. Neurosci. 4, 2329-2345.
- Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Ehrlich, H. A. (1988). Primerirected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-494.
- Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).
- 25 Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463–5467.
 - Schneider, I. (1972). Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353–365.
 - Snow, P. M., Bieber, A. J., and Goodman, C. S. (1989). Fasciclin III: a novel homophilic adhesion molecule in Drosophila. Cell. 59, 313-323.
 - Snow, P. M., Zinn, K., Harrelson, A. L., McAllister, L., Schilling, J., Bastiani, M. J., Makk, G., and Goodman, C. S. (1988). Characterization and cloning of fasciclin I and fasciclin II glycoproteins in the grasshopper. Proc. Natl. Acad. Sci. USA 85, 5291-5295.
 - Spindler, K. R., Rosser, D. S., and Berk, A. J. (1984). Analysis of adenovirus transforming proteins from early regions 1A and 1B with antisera to inducible fusion antigens produced in Escherichia coli. J. Virol. 49, 132 - 141.
 - Wang, L., and Denburg, J. L. (1992). A role for proteoglycans in the guidance of a subset of pioneer axons in cultured embryos of the cockroach. (1992). Neuron. 8, 701-714.
 - Wang, L. S., Feng, Y., and Denburg, J. L. (1992). A multifunctional cell surface developmental stage-specific antigen in the cockroach embryo: involvement in pathfinding by CNS pioneer axons. J. Cell Biol. 118, 163-176.
 - Zinn, K., McAllister, L., and Goodman, C. S. (1988). Sequence analysis and neuronal expression of fasciclin I in grasshopper and Drosophila. Cell. 53, 577-587.
 - sequence reported in this paper is L00709.

II. Isolation and Characterization of Tribolium (SEQ ID NOS:63 & 64) and Drosophila (SEQ ID NOS:59 & 60) Semaphorin I, Drosophila Semaphorin II (SEQ ID NOS:61 & 62) Human Semaphorin III (SEQ ID NOS:53 & 54) and Vaccinia Virus Semaphorin IV (SEQ ID NOS:55 & 56) and Variola Major (smallpox) Virus Semaphorin V (SEQ ID NOS:67 & 68)

We used our G-Semaphorin I cDNA in standard low stringency screening methods (of both cDNA and genomic libraries) in an attempt to isolate a potential Semaphorin I homologue from Drosophila. We were unsuccessful in these screens. Since the sequence was novel and shared no similarity to anything else in the data base, we then attempted to see if we could identify a Semaphorin I homologue in other, more closely related insects. If possible, we would then compare these sequences to find the most conserved regions, and then to use probes (i.e., oligonucleotide primers for PCR) based on these conserved regions to find a Drosophila homologue.

In the process, we used the G-Semaphorin I cDNA in low stringency screens to clone Semaphorin I cDNAs from 10 libraries made from locust *Locusta migratoria* embryonic RNA and from a cDNA embryonic library from the cricket *Acheta domestica*. We used PCR to clone genomic fragments from genomic DNA in the beetle Triboliwn, and from the moth Manduca. We then used the Triboliun genomic 15 DNA fragment to isolate cDNA clones and ultimately sequenced the complete ORF for the Tribolium cDNA.

In the meantime, we used the partial Tribolium and Manduca sequences in combination with the complete grasshopper sequence to identify conserved regions that allowed 20 us to design primers for PCR in an attempt to clone a Drosophila Semaphorin I homologue. Several pairs of primers generated several different bands, which were subcloned and sequenced and several of the bands gave partial sequences of the Drosophila Semaphorin homologue. One 25 of the bands gave a partial sequence of what was clearly a different, more divergent gene, which we call D-Semaphorin II.

Based on the sequence of PCR products, we knew we had identified two different Drosophila genes, one of which 30 appeared to be the Semaphorin I homologue, and the other a second related gene. The complete ORF sequence of the D-Semaphorin I homologue revealed an overall structure identical to G-Semaphorin I: a signal sequence, an extracellular domain of around 550 amino acids containing 16 35 cysteines, a transmembrane domain of 25 amino acids, and a cytoplasmic domain of 117 amino acids. When we had finished the sequence for D-Semaphorin II, we were able to begin to run homology searches in the data base, which revealed some of its structural features further described herein. The Semaphorin II sequence revealed a different structure: a signal sequence of 16 amino acids, a ~525 amino acid domain containing 16 cysteines, with a single immunoglobulin (Ig) domain of 66 amino acids, followed by a short unique region of 73 amino acids. There is no evidence 45 for either a transmembrane domain or a potential phospholipid linkage in the C-terminus of this protein. Thus, it appears that the D-Semaphorin II protein is secreted from the cells that produce it. The grasshopper, Tribolium, and Drosophila Semaphorin I cDNA sequences, as well as the 50 sequence of the D-Semaphorin II cDNA, are shown herein. In addition, we used this same technique to identify Semaphorin I genes in a moth, Manduca sexta, a locust, Locusta migratoria, and a cricket, Acheta domestica.

With this large family of insect Semaphorin genes, we 55 identified a number of good stretches of the right amino acids (with the least degeneracy based on their codons) with strong homology for designing primers for PCR to look for human genes. We designed a set of oligonucleotide primers, and plated out several human cDNA libraries: a fetal brain 60 library (Stratagene), and an adult hippocampus library. We ultimately obtained a human cDNA PCR bands of the right size that did not autoprime and thus were good candidates to be bonafide Semaphorin-like cDNAs from humans. These bands were purified, subcloned, and sequenced. 65

Whole-mount in situ hybridization experiments showed that D-Semaphorin I and II are expressed by different

subsets of neurons in the embryonic CNS. D-Semaphorin I is expressed by certain cells along the midline as well as by other neurons, whereas D-Semaphorin II is not expressed at the midline, but is expressed by a different subset of neurons. In addition, D-Semaphorin II is expressed by a subset of muscles prior to and during the period of innervation by specific motoneuron. On the polytene chromosomes, the D-Semaphorin I gene maps to (gene-band-chromosome) 29E1-22L and that of D-Semaphorin II to 53C9-102R. We have identified loss of function mutations in the D-Semaphorin I gene and a pair of P-element transposon insertions in the D-Semaphorin II gene which appear to cause severe phenotypes.

When we lined up the G-Semaphorin I, T-Semaphorin I, D-Semaphorin I, and D-Semaphorin II sequences and ran the sequences through a sequence data base in search of other sequences with significant similarity, we discovered a curious finding: these Semaphorins share sequence similarity with the A39R open reading frame (ORF) from Vaccinia virus and the A43R ORF from Variola Major (smallpox) virus and we discovered that the amino acids shared with the virus ORF were in the same regions where the insect proteins shared their greatest similarity. The viral ORF began with a putative signal sequence, continued for several hundred amino acids with sequence similarity to the Semaphorin genes, and then ended without any membrane linkage signal (suggesting that the protein as made by the infected cell would likely be secreted).

We reasoned that the virus semaphorins were appropriated host proteins advantageously exploited by the viruses, which would have host counterparts that most likely function in the immune system to inhibit or decrease an immune response, just as in the nervous system they appear to function by inhibiting growth cone extension. Analogous to situations where viruses are thought to encode a secreted form of a host cellular receptor, here the virus may cause the infected cell to make a lot of the secreted ligand to mimic an inhibitory signal and thus help decrease the immune response.

III. Isolation and Characterization of Murine CNS Semaphorin III Receptor Using Epitope Tagged Human Semaphorin III (hSIII)

mRNA was isolated from murine fetal brain tissue and used to construct a cDNA library in a mammalian expression vector, pCMX, essentially as in Davis et al. (1991) Science 253, 59.

The transfection and screening procedure is modified from Lin et al (1992) Cell 68, 775. COS cells grown on glass slide flaskettes are transfected with pools of the cDNA clones, allowed to bind radioiodinated hSIII truncated at the C-terminus end of the semaphorin domain. In parallel, similarly treated COS cells are allowed to bind unlabelled human semaphorin III truncated at the C-terminus end of the semaphorin domain and there joined to a 10-amino acid extension derived from the human c-myc proto-oncogene product. This modified hSIII allows the identification of hSIII receptors with the use of the tagged ligand as a bridge between the receptor and a murine monoclonal antibody which is specific for an epitope in the c-myc tag. Accordingly, after binding unlabelled hSIII the cells are exposed to the monoclonal which may be labeled directly or subsequently decorated with a secondary anti-mouse labeled antibody for enhanced signal amplification.

Cells are then fixed and screened using dark-field microscopy essentially as in Lin et al. (supra). Positive clones are identified and sequence analysis of murine CNS Semphorin 65 III receptor cDNA clones by the dideoxy chain termination method is used to construct full-length receptor coding sequences. It is evident from the above results that one can use the methods and compositions disclosed here in for making and identifying diagnostic probes and therapeutic drugs. It will also be clear to one skilled in the art from a reading of this disclosure that advantage can be taken to effect alterations of 5 semaphorin responsiveness in a host.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically

and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

TABLE	1
	_

۲ ٤ (٤	Deduced amino acid sequence of semaphorin gene family. Approximate position of enumerated peptide classes are indicated by barenthetical (a) through (o); semaphorin domains are bounded by arrows; G: grasshopper semaphorin I (SEQ ID N0:58), T: Tribolium semaphorin I SEQ ID N0:64), D1: Drosophila semaphorin I (SEQ ID N0:60), D2: Drosophila semaphorin II (SEQ ID N0:62), H3: Human semaphorin I (SEQ ID ON:54), V4: Vaccinia virus semaphorin IV (SEQ ID N0:55), V5: Variola virus (human small pox) semaphorin IV (SEQ ID N0:66); small case residues: conserved residues; underline: signal sequence; solid bar: transmembrane domain; double dashes: immunoglobulin domain.
G T D1 D2	MR <u>AALVAVAALLWVVALHAAAWV</u> NDVSPKMYVQFGEERVQR M <u>VVKILVWSICLIALCHAWMP</u> DSSSKLINHFKSVESKS MSLLOLSPLLALLLLLCSSVSETAADYENTWNFYYERPCCTGNDOGNNNYGKHGADHVRE
Н3 V4	MGWLTR <u>IVCLFWGVLLTA</u> RANYQNGKNNVPRLKLSYKEMLESNNVIT MMVLLH <u>AVYSIVFVDVIII</u> KVQRYINDI
G T D1	f-LgnESHKDHfKLLeKDHNS1LvgarNIVYnISLRDLTEFTEQRIEwHSsGAHRELcY fT-gnATFPDHfIVLNQDETSILvgGrNRVYnLSIFDLSERKGGRIDwPSsDAHGQLcI
D2 H3 V4	fNCgKLYYRTfHMNeDRDT-lYvgaMDrVFRVnLQNISSSNCNRDAiNLEPTRDDVVScV fN-gLAnSSSYHTfLLDEERSR-lYvgaKDHIFSFDLVnIKDFQKiVwPVsYTRRDEcK LTLDIFYLFKKMIPLLFILFYFANGIEWHKFETSEEIISTYLLDDVLYTGVNGAVYTFSN
G T D1 D2 H3 V4	À F ⊻ DDCQN-YIR(a) ICGTN(b) LkgkS-Eddqqn-yir-VlAKIDDDrVLICgtnaYKpLcRHyALKdGDyVVeKEYEgRg LkgkT-Dddcqn-yirilYSEPGRLVIcgtnSYKpLcRTyAFKEGKyLVeKEVEgIg Eddcqn-yiriMVVPSPGrlFvcgtnSFRpMcNTyIISdSNyTLeATKNgQA SkgkSQIFdcKnHViQSMDQGDrlYvcgtnaHNpKDYViYANLTHLPRSEYVIgVgLGIA WAgkDILKEcAn-FiKVlKAYNQTHlYAcgtGaFHpIcTYiEIGHPEDNIFKLENSHFENgRg NkLNKTGLTNNn-yiTTSiKVEDADKDTLvcgtnNGNpKcWKiDGSd
G T D1 D2 H3 V4 V5	SE A CPYDP(c) TVADFSG(d) LcpFdpDhnstAIYSEgQlysAtvadfsgTdpLiyrEpQ LcpyNpEh VcpydpRhnstsVSYNgQlysqtvadfsgSdpLiyrEpl KcpydpLD KcpydpLDnstAIYVENGNPGGLPGJysqtNaEfTKAdTviFrTDlYNTSAKRLEYKF KSpydpKLLTASLLIDgElysgtAadfMgRdFAiFrT-lGHHHPIRTEQHD dpKhRGRGYAPYQnsKVTIISHNGcYLSDINISKEGIKRWRRFDGPcGYD1 MIY1
G T D1 D2 H3 V4 V5	<u>N</u> LNAPNFV(e) (f)FFFRETA EYINCGK(g) (h)DKGG -rteRSdLkQ-lnapnfv-NTMEyNdFIFfffretaveyincgkaiysrvarvckHdkgg -rteLSdLkQ-lnapnfv-NsVAygdYIFffYretaveyMncgkViysrvarvckDdkgg -QteQYdSLS-lnapnfv-SsFtQgdFvyfffretaveFincgkaiysrvarvckWdkgg KrtLKYdSkW-lDKpnfv-GsFDIgEYvyfffretaveyincgkaVysriarvckKdVgg -SRWLNdpkF-ISaHLISESdNPEDdkvyfffreNaIDGEHSgkaTHAriGQIckndFgg YTADNVIpkDGlRGA-fvDKdGty-dkvyILfTDtIG-SKRIVkIPyiaQMcLndEgg YTADNVIpkDGlQGA-fvDKdGty-dkvyILfTDtIG-SKRIVkIPyiaQMcLndEcg
G T D1 D2 H3 V4 V5	SSY(i) V PH WTTFLKAR NCSIPG(j) phQF-GDrwtsflkSrlncsVpgDypfyfneigstsdlIegNyGGQVEkliygv phQ-SRDrwtsflkarlncsipgDypfyfDeigstsdLvegRyNsDDskliygI phRF-RNrwtsflksrlncsipgDypfyfneigsAsNLvegQyGsMSskliygv KNL1-AhNwAtYlkarlncsigGEFpfyfneigsVYQLPsDKsRF-FAT -hRSLVNKwttflkarllcsVpgPNGIDTHf-DeLqdVFLMNFKDPKNPVVygv pSSlSShrwStflkVElEcDiDgRSYRQIIHSRTiKTDNDtLLYvFFDsPYsk pSSlSShrwStllkVElEcDiDgRSYRQINHSKTiKQIMIRYYMYSLIVLFQVRIMYLFY
	V

NSNWLPV(1)

PRPGTCVND(m)

GSAVC(k)

TABLE 1-continued

p (S)	Deduced amino acid sequence of semaphorin gene family. Approximate position of enumerated peptide classes are indicated by arenthetical (a) through (o); semaphorin domains are bounded by arrows; G: grasshopper semaphorin I (SEQ ID N0:58), T: Tribolium semaphorin I EQ ID N0:64), D1: Drosophila semaphorin I (SEQ ID N0:60), D2: Drosophila emaphorin II (SEQ ID N0:62), H3: Human semaphorin I (SEQ ID ON:54), V4: Vacching winyc comarborin IV (SEO ID N0:56) V5: Variola winyc (human
5	<pre>small pox) semaphorin IV (SEQ ID N0:66); small case residues: conserved residues; underline: signal sequence; solid bar: transmembrane domain;</pre>
G T D1 D2 H3 V4 V5	fttpVnSiGgsavcafsmKSiLESfDgPfkeqETMnsnwlAvPSLKvpeprpgQcvndsr LttpVnAiGgsaIcayQmAdiLRVfEgSfkHqETInsnwlpvPQNLvpeprpgQcvRdsr fNtpSnSiPgsavcafALQdiADTfEgQfkeqTGInsnwlpvNNAKvpDprpgScHndsr fttSTnGLIgsavcSfHINEiQAAfNgKfkeqSSSnsAwlpvLNSRnpeprpgTcvndTS fttSSnIFKgsavcMysmSdVRRVfLgPYAHRDGPnYQwVp-YQGRvpYprpgTcPsK saLcTysmNTiKQSfSTSKLegYTKQLpSpApgIcLPAGK EYH
G T D1 D2 H3 V4	TlpdVSVnfV-kShTlmdEAvpaFfTRpillrIslQyrftKiAvdQqvRtPDgKAYdvLf IlpdKNVnfi-kThSlmED-vpaLfGKpVlVrVslQyrftAiTvdPqvKtINNQYLdvLY AlpdPTLnfi-kThSlmdENvpaFfSQpilVrTsTIyrftQiAvdAqIKtPGgKTYdvIf NlpdTVLnfi-RShPlmdKAvNHEHnNpVYYKRDlVFTK-LVVDKIRIDILNQEYI-vYY TFGGFDSTKDlpdDVITfA-rshPAmYNPvFPMNnRpiVIKTDVNyQftQiVvd-RvDAEDqQY-dvMf VVpHTTFEViEKYNVlDdIIKp-LSnQpiFEGPSGVKWFDIKEKENEHREYRIYFIKENS
G T D1 D2 H3 V4	igtddgkvIkALnSAsFDSSDTvDSvVIeeLQvLPPGVpVKnlYVvrMdgd igtddgkvLkAvnIPKRHAKALLYRKYRTSVHPHGApVKQlKIAPG VgtdHgkIIkSvnAEsADSADKvTSvVIeeIDvLTKSEpIRnlEIvrTMQYDQPKdgSYd VgtNLgRIYkIvnGEsLSKLLDIFEvAPNeAIQVMEISQTR igtdVgTvLkVvSIPKETWY-DLEEvLLeeMTvFREPTAISAMELSTK iYSFdTkSKQTRSSQVDARLFSvMVTSKPLFIADIGIGVGMPQMKKILKM*
G T D1 D2 H3	DPYCAWD(n) dsklVVvSdDEiLAiKlhrcGSdkItNcRecvSlqdpycawdNVELKcTAVgSpDwSAG YGKVVVvGKDEiRLANlNHcAs-k-tRcKDcvElqdpHcawdAKQNLcVSIDTVTSY dGklIivTdSQVVAiQlhrcHNdkItScSecvAlqdpycawdKIAGKcRSHgApRw-LE -KSlYiGTdHRiKQiDlAMc-NRRYDNcFRcvRdpycGwdKEANTcRPY QQQlYiGSTAGVAQLPlhrcDIYG-KAcAecCLARdpycawdGSAcsRYFPTAK
G T D D2 H3	↓ KrRFIqNISLgEH-KAcGGRPQTEIVASPVPTQPTTKSSGDPVHSIHQAEFEpeiDNEiVI -rFLIqdvVRgDD-NKcWsPQTDKKTVIKNKPSEVENEITNSIDEKDLDsSdpLiKTGLdD ENYFYqNvATgQH-AAcPsGKINSkDANAGEGKGFRNDMDLLDSRRQsKdQeiIDNidK ELDLLqdvANETS-DIcDsSVLKKk RrTRRqdIRNgDPLTHcSDLHDNHH
G T D	GVddSNVIPNTLAEINHAGSKLPSSQEKlPiytaetlTiaIvTSCLGAlVvgfIsgFLFS DSdcDPVSENSIGGcAVRQQlViytaGtlHiVvvVVsiVglFSWLYsgLSVF NFEdDIINAQytVet <u>lVMavLAGsiFSlLvgfFTgYFCG</u>
G T D	rrcRGEDYTDMpFpdQRHQLNRLTEAGlNADsPYLPPCANnkAAInlvLNvPpkN AKFHSdSQypEAPFIEQHNHLERlsANQTGYLTPRAnk-AVnlvvKvSSSTPRpkK rrcHKdEDDNLpypdTEYEYFEQRQNVNsFPsSCRIQQEPKLLPQVEEvTYAEPVLLpQP
G T D	KKTYI(o) AngKNANsSAENKPIQktyi* DnLDVSKDLNIASDGTLQKIkktyi* PPPNKMHsPKNTLRKPPMHQMHQGPNSETLFQFHVTATTPSSRIVVATTSEHCVPTR*
D2 H3	IVVTygQsVHlGcFVkIPEVlKNEQvTwYHHSKDKG GHSPEERIIygVENSsTFlEcSPkSQRAlvYwQFQRRNEE
D2 H3	rYeIRYSPTKYiETtERglVVVsVNEAdGgRyDchLGGSLLcSYNITVDAHRcTPPNKSN rKeE-IRVDDHiIRtDQglLLRsLQQKdSgNyLchAVEHGFIQTLLKVTLEVIDTEHLEE
D2 H3	DYQKIYSDWCHEFEKYKTAMKSWEKKQGQcSTRQNFScNQHPNEIFRKPNV* LLHKDDDGDGSKTKEMSNSMTPSQKVWYRDFMQLINHPNLNTMDEFcEQVWKRDRKQRRQ

H3 RPGHTPGNSNKHLQENKKGRNRRTHEFERAPRSV*

```
SEQUENCE LISTING
(1) GENERAL INFORMATION:
   (iii) NUMBER OF SEQUENCES: 100
(2) INFORMATION FOR SEQ ID NO:1:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 6 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..6
           (D) OTHER INFORMATION: /label= SEQ01
               /note= "Xaa denotes D or E at residue #1; Q,K,R,A
or N at residue #3; and Y,F or V at residue #5"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
Xaa Cys Xaa Asn Xaa Ile
                 5
(2) INFORMATION FOR SEQ ID NO:2:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 6 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
           (B) LOCATION: 1..6
           (D) OTHER INFORMATION: /label= SEQ02
                /note= "Xaa denotes Q,K,R,A or N at residue #2; Y,F or V at residue #4; and R,K,Q or T at residue
                #6″
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
Cys Xaa Asn Xaa Ile Xaa
                 5
(2) INFORMATION FOR SEQ ID NO:3:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
           (B) LOCATION: 1...7
           (D) OTHER INFORMATION: /label= SEQ03
                /note= "Xaa denotes N or G at residue #4; A,S or N
                at residue #5; Y,F,H or G at residue #6; and
                K,R,H,N or Q at residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
```

```
Cys Gly Thr Xaa Xaa Xaa Xaa
1 5
```

```
-continued
```

(2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ04 /note= "Xaa denotes N or G at residue #4; and A,S or N at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: Cys Gly Thr Xaa Xaa Xaa Xaa Pro 5 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..10 (D) OTHER INFORMATION: /label= SEQ05 /note= "Xaa denotes N or G at residue #4; and C or D at residue #10" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Cys Gly Thr Xaa Xaa Xaa Xaa Pro Xaa Xaa 5 10 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..13 (D) OTHER INFORMATION: /label= SEQ06 /note= "Xaa denotes C or D at residue #10; and Y or I at residue #13" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Cys Gly Thr Xaa Xaa Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa 10 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide

```
(ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..7
           (D) OTHER INFORMATION: /label= SEQ07
                /note= "Xaa denotes R,I,Q or V at residue #1; G or
A at residue #2; L,V or K at residue #3; C or S at
residue #4; F or Y at residue #6; and D or N at
residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
Xaa Xaa Xaa Xaa Pro Xaa Xaa
(2) INFORMATION FOR SEQ ID NO:8:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..7
           (D) OTHER INFORMATION: /label= SEQ08
                /note= "Xaa denotes C or S at residue #1; F or Y
                at residue #3; D or N at residue #4; D,E,R or K at
                residue #6; and H,L or D at residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
Xaa Pro Xaa Xaa Pro Xaa Xaa
                 5
1
(2) INFORMATION FOR SEQ ID NO:9:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 9 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..9
           (D) OTHER INFORMATION: /label= SEQ09
                /note= "Xaa denotes G or A at residue #3; C or S
                at residue #5; and D or N at residue #8"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
Gly Xaa Xaa Xaa Xaa Pro Tyr Xaa Pro
                 5
1
(2) INFORMATION FOR SEQ ID NO:10:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..7
           (D) OTHER INFORMATION: /label= SEQ10
                /note= "Xaa denotes F or Y at residue #2; G or A
at residue #4; and V,N or A at residue #6"
```

```
-continued
```

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
Leu Xaa Ser Xaa Thr Xaa Ala
1
                5
(2) INFORMATION FOR SEQ ID NO:11:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 9 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..9
          (D) OTHER INFORMATION: /label= SEQ11
               /note= "Xaa denotes F or Y at residue #2; D or E at residue #8; and F or Y at residue #9"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
Leu Xaa Ser Xaa Thr Xaa Ala Xaa Xaa
                5
(2) INFORMATION FOR SEQ ID NO:12:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 8 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..8
          (D) OTHER INFORMATION: /label= SEQ12
               /note= "Xaa denotes F or Y at residue #1; G or A
               at residue #3; V,N or A at residue #5; D or E at
               residue #7; and F or Y at residue #8" \!\!\!
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
Xaa Ser Xaa Thr Xaa Ala Xaa Xaa
                5
1
(2) INFORMATION FOR SEQ ID NO:13:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..7
          (D) OTHER INFORMATION: /label= SEQ13
               /note= "Xaa denotes N or D at residue #2; and A or
               K at residue #3"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
Leu Xaa Xaa Pro Asn Phe Val
1
                5
(2) INFORMATION FOR SEQ ID NO:14:
     (i) SEQUENCE CHARACTERISTICS:
```

```
-continued
```

(A) LENGTH: 5 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: Phe Phe Phe Arg Glu 1 5 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ15 /note= "Xaa denotes F or Y at residue #3; and T or N at residue #6" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: Phe Phe Xaa Arg Glu Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1...6 (D) OTHER INFORMATION: /label= SEQ16 /note= "Xaa denotes T or N at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: Phe Phe Arg Glu Xaa Ala 1 5 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ17 /note= "Xaa denotes F or Y at residue #2; and T or N at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: Phe Xaa Arg Glu Xaa Ala 1 5

```
-continued
```

(2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids
(B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ18 /note= "Xaa denotes F or Y at residue #4" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: Tyr Phe Phe Xaa Arg Glu 5 (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ19 /note= "Xaa denotes F or Y at residue #1; and F or Y at residue #4" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: Xaa Phe Phe Xaa Arg Glu 5 1 (2) INFORMATION FOR SEO ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ20 /note= "Xaa denotes F or Y at residue #1; F or Y at residue #2; F or Y at residue #3; and T or N at residue #6" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: Xaa Xaa Xaa Arg Glu Xaa Ala 1 5 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

```
-continued
```

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ21 /note= "Xaa denotes I or V at residue #1; F or Y at residue #2; F or Y at residue #4; and F or Y at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: Xaa Xaa Phe Xaa Xaa Arg Glu 5 (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ22 /note= "Xaa denotes K,F or Y at residue #2; F or Y at residue #4; F,Y,I or L at residue #5; F,Y,I or L at residue #6; and F or Y at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: Asp Xaa Val Xaa Xaa Xaa Xaa 5 (2) INFORMATION FOR SEQ ID NO:23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ23 /note= "Xaa denotes V or I at residue #1; F or Y at residue #2; F,Y,I or L at residue #3; F,Y,I or L at residue #4; R or T at residue #6; and T or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ24

```
/note= "Xaa denotes V or I at residue #1; F or Y
               at residue #2; F,Y,I or L at residue #3; F,Y,I or
               L at residue #4; F or Y at residue #5; R or T at
               residue #6; E,D or V at residue #7; and T or N at residue #8"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 1 5
(2) INFORMATION FOR SEQ ID NO:25:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids
          (B) TYPE: amino acid
           (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..7
          (D) OTHER INFORMATION: /label= SEQ25
               /note= "Xaa denotes F or Y at residue #2; and C or
               S at residue #5"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
Glu Xaa Ile Asn Xaa Gly Lys
                5
1
(2) INFORMATION FOR SEQ ID NO:26:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..7
(D) OTHER INFORMATION: /label= SEQ26
               /note= "Xaa denotes F or Y at residue #1; and A,V
               or I at residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
Xaa Ile Asn Cys Gly Lys Xaa
                5
(2) INFORMATION FOR SEQ ID NO:27:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 7 amino acids
           (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..7
          (D) OTHER INFORMATION: /label= SEQ27
               /note= "Xaa denotes V or I at residue #2; A or G
               at residue #3; R or Q at residue #4; and V or I at residue #5"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
Arg Xaa Xaa Xaa Xaa Cys Lys
```

```
-continued
```

1 5 (2) INFORMATION FOR SEQ ID NO:28: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..9 (D) OTHER INFORMATION: /label= SEQ28 /note= "Xaa denotes V or I at residue #2; R or Q at residue #4; and V or I at residue #5" $\,$ (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: Arg Xaa Xaa Xaa Xaa Cys Xaa Xaa Asp 5 (2) INFORMATION FOR SEQ ID NO:29: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..13 (D) OTHER INFORMATION: /label= SEQ29 /note= "Xaa denotes V,A or I at residue #3; and V,A or I at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29: Gly Lys Xaa Xaa Xaa Xaa Arg Xaa Xaa Xaa Cys Lys 1 5 10 (2) INFORMATION FOR SEQ ID NO:30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ30 /note= "Xaa denotes R,K or N at residue #1; T,A or S at residue #3; T,A or S at residue #4; F,Y or L at residue #5; and K or R at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30: Xaa Trp Xaa Xaa Xaa Leu Xaa 5 1 (2) INFORMATION FOR SEQ ID NO:31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single

```
(D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
(B) LOCATION: 1..8
          (D) OTHER INFORMATION: /label= SEQ31
               /note= "Xaa denotes F or Y at residue #1; K or R
               at residue #3; A or S at residue #4; and N or I at
               residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
Xaa Leu Xaa Xaa Arg Leu Xaa Cys
                5
(2) INFORMATION FOR SEQ ID NO:32:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 6 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..6
          (D) OTHER INFORMATION: /label= SEQ32
               /note= "Xaa denotes N or I at residue #1; I or V
               at residue #4; and P or S at residue #5"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
Xaa Cys Ser Xaa Xaa Gly
1
                5
(2) INFORMATION FOR SEQ ID NO:33:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 9 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..9
          (D) OTHER INFORMATION: /label= SEQ33
               /note= "Xaa denotes T,A or S at residue #2; T,A or
               S at residue #3; F,Y or L at residue #4; and
               A,S,V,I or L at residue \#7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu
1
                5
(2) INFORMATION FOR SEQ ID NO:34:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 11 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
(B) LOCATION: 1..11
          (D) OTHER INFORMATION: /label= SEQ34
```

-continued

/note= "Xaa denotes T,A or S at residue #2; and T,A or S at residue #3" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34: Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu Xaa Cys 5 10 (2) INFORMATION FOR SEQ ID NO:35: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..11 (D) OTHER INFORMATION: /label= SEQ35 /note= "Xaa denotes T or S at residue #3" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu Xaa Cys 5 10 (2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ36 /note= "Xaa denotes F or Y at residue #1; F or Y at residue #2; and N or D at residue #3" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: Xaa Xaa Xaa Glu Ile Gln Ser 5 1 (2) INFORMATION FOR SEQ ID NO:37: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ37 /note= "Xaa denotes F or Y at residue #1; F or Y at residue #3; F or Y at residue #4; F or Y at residue #5; and N or D at residue #6" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37: Xaa Pro Xaa Xaa Xaa Glu 1 5 (2) INFORMATION FOR SEQ ID NO:38:

```
(i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1...7
          (D) OTHER INFORMATION: /label= SEQ38
               /note= "Xaa denotes V,I or L at residue #4; and F
               or Y at residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:
Gly Ser Ala Xaa Cys Xaa Xaa
1
                5
(2) INFORMATION FOR SEO ID NO:39:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 8 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..8
          (D) OTHER INFORMATION: /label= SEQ39
               /note= "Xaa denotes V,I or L at residue #3; and F
               or Y at residue #6"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
Ser Ala Xaa Cys Xaa Xaa Xaa Met
                5
1
(2) INFORMATION FOR SEQ ID NO:40:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids(B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..7
          (D) OTHER INFORMATION: /label= SEQ40
               /note= "Xaa denotes N or A at residue #3; and P or A at residue #6"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
Asn Ser Xaa Trp Leu Xaa Val
                5
1
(2) INFORMATION FOR SEQ ID NO:41:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids
          (B) TYPE: amino acid
           (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
```

```
-continued
```

```
(A) NAME/KEY: Peptide
          (B) LOCATION: 1...7
          (D) OTHER INFORMATION: /label= SEQ41
               /note= "Xaa denotes V,L or I at residue #1; and E,D,Y,S or F at residue \#3"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
Xaa Pro Xaa Pro Arg Pro Gly
1 5
(2) INFORMATION FOR SEQ ID NO:42:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 9 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..9
          (D) OTHER INFORMATION: /label= SEQ42
               /note= "Xaa denotes V,L or I at residue #1; and R
               or A at residue #5"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:
Xaa Pro Xaa Pro Xaa Pro Gly Xaa Cys
                5
1
(2) INFORMATION FOR SEQ ID NO:43:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 8 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1...8
          (D) OTHER INFORMATION: /label= SEQ43
               /note= "Xaa denotes E,D,Y,S or F at residue #2;
               and T,Q or S at residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:
Pro Xaa Pro Arg Pro Gly Xaa Cys
                5
(2) INFORMATION FOR SEQ ID NO:44:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 6 amino acids
          (B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..6
          (D) OTHER INFORMATION: /label= SEQ44
               /note= "Xaa denotes H,F or Y at residue #3; and A
               or G at residue #5"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:
Asp Pro Xaa Cys Xaa Trp
                5
```

-continued

(2) INFORMATION FOR SEQ ID NO:45: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids
(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..6 (D) OTHER INFORMATION: /label= SEQ45 /note= "Xaa denotes H,F or Y at residue #2; and A or G at residue #4" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45: Pro Xaa Cys Xaa Trp Asp 5 1 (2) INFORMATION FOR SEQ ID NO:46: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ46 /note= "Xaa denotes A or G at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46: Asp Pro Xaa Cys Xaa Trp Asp 5 1 (2) INFORMATION FOR SEQ ID NO:47: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47: Cys Xaa Xaa Xaa Xaa Asp Pro Xaa Cys Xaa Trp Asp 5 10 (2) INFORMATION FOR SEQ ID NO:48: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48: Cys Xaa Xaa Xaa Asp Pro Xaa Cys Xaa Trp Asp 5 1 10

```
-continued
```

(2) INFORMATION FOR SEQ ID NO:49: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49: Cys Xaa Xaa Asp Pro Xaa Cys Xaa Trp Asp 5 (2) INFORMATION FOR SEQ ID NO:50: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50: Cys Xaa Xaa Cys Xaa Xaa Xaa Xaa Asp Xaa Xaa Cys Xaa Trp Asp 5 10 (2) INFORMATION FOR SEQ ID NO:51: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51: Cys Xaa Xaa Cys Xaa Xaa Xaa Asp Xaa Xaa Cys Xaa Trp Asp 5 10 (2) INFORMATION FOR SEQ ID NO:52: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52: Cys Xaa Xaa Cys Xaa Xaa Asp Xaa Xaa Cys Xaa Trp Asp 5 10 (2) INFORMATION FOR SEQ ID NO:53: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2601 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 16..2331 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

-cont	inued
-------	-------

GGA	ATTCO	сст о	GCAGO	C ATO Met	G GGC S Gly	C TGO Y Trp	G TTA D Lei	A ACT 1 Thi 5	T AGO Arg	G ATT J Ile	F GTC Val	C TG L Cys	r CT s Leu 1(TTC 1 Phe)	C TGG Trp	51
GGA Gly	GTA Val	TTA Leu 15	CTT Leu	ACA Thr	GCA Ala	AGA Arg	GCA Ala 20	AAC Asn	TAT Tyr	CAG Gln	AAT Asn	GGG Gly 25	AAG Lys	AAC Asn	AAT Asn	99
GTG Val	CCA Pro 30	AGG Arg	CTG Leu	AAA Lys	TTA Leu	TCC Ser 35	TAC Tyr	AAA Lys	GAA Glu	ATG Met	TTG Leu 40	GAA Glu	TCC Ser	AAC Asn	AAT Asn	147
GTG Val 45	ATC Ile	ACT Thr	TTC Phe	AAT Asn	GGC Gly 50	TTG Leu	GCC Ala	AAC Asn	AGC Ser	TCC Ser 55	AGT Ser	TAT Tyr	CAT His	ACC Thr	TTC Phe 60	195
CTT Leu	TTG Leu	GAT Asp	GAG Glu	GAA Glu 65	CGG Arg	AGT Ser	AGG Arg	CTG Leu	TAT Tyr 70	GTT Val	GGA Gly	GCA Ala	AAG Lys	GAT Asp 75	CAC His	243
ATA Ile	TTT Phe	TCA Ser	TTC Phe 80	GAC Asp	CTG Leu	GTT Val	AAT Asn	ATC Ile 85	AAG Lys	GAT Asp	TTT Phe	CAA Gln	AAG Lys 90	ATT Ile	GTG Val	291
TGG Trp	CCA Pro	GTA Val 95	TCT Ser	TAC Tyr	ACC Thr	AGA Arg	AGA Arg 100	GAT Asp	GAA Glu	TGC Cys	AAG Lys	TGG Trp 105	GCT Ala	GGA Gly	AAA Lys	339
GAC Asp	ATC Ile 110	CTG Leu	AAA Lys	GAA Glu	TGT Cys	GCT Ala 115	AAT Asn	TTC Phe	ATC Ile	AAG Lys	GTA Val 120	CTT Leu	AAG Lys	GCA Ala	TAT Tyr	387
AAT Asn 125	CAG Gln	ACT Thr	CAC His	TTG Leu	TAC Tyr 130	GCC Ala	TGT Cys	GGA Gly	ACG Thr	GGG Gly 135	GCT Ala	TTT Phe	CAT His	CCA Pro	ATT Ile 140	435
TGC Cys	ACC Thr	TAC Tyr	ATT Ile	GAA Glu 145	ATT Ile	GGA Gly	CAT His	CAT His	CCT Pro 150	GAG Glu	GAC Asp	AAT Asn	ATT Ile	TTT Phe 155	AAG Lys	483
CTG Leu	GAG Glu	AAC Asn	TCA Ser 160	CAT His	TTT Phe	GAA Glu	AAC Asn	GGC Gly 165	CGT Arg	GGG Gly	AAG Lys	AGT Ser	CCA Pro 170	TAT Tyr	GAC Авр	531
CCT Pro	AAG Lys	CTG Leu 175	CTG Leu	ACA Thr	GCA Ala	TCC Ser	CTT Leu 180	TTA Leu	ATA Ile	GAT Asp	GGA Gly	GAA Glu 185	TTA Leu	TAC Tyr	TCT Ser	579
GGA Gly	ACT Thr 190	GCA Ala	GCT Ala	GAT Asp	TTT Phe	ATG Met 195	GGG Gly	CGA Arg	GAC Asp	TTT Phe	GCT Ala 200	ATC Ile	TTC Phe	CGA Arg	ACT Thr	627
CTT Leu 205	GGG Gly	CAC His	CAC His	CAC His	CCA Pro 210	ATC Ile	AGG Arg	ACA Thr	GAG Glu	CAG Gln 215	CAT His	GAT Asp	TCC Ser	AGG Arg	TGG Trp 220	675
CTC Leu	AAT Asn	GAT Asp	CCA Pro	AAG Lys 225	TTC Phe	ATT Ile	AGT Ser	GCC Ala	CAC His 230	CTC Leu	ATC Ile	TCA Ser	GAG Glu	AGT Ser 235	GAC Asp	723
AAT Asn	CCT Pro	GAA Glu	GAT Asp 240	GAC Asp	AAA Lys	GTA Val	TAC Tyr	TTT Phe 245	TTC Phe	TTC Phe	CGT Arg	GAA Glu	AAT Asn 250	GCA Ala	ATA Ile	771
GAT Asp	GGA Gly	GAA Glu 255	CAC His	TCT Ser	GGA Gly	AAA Lys	GCT Ala 260	ACT Thr	CAC His	GCT Ala	AGA Arg	ATA Ile 265	GGT Gly	CAG Gln	ATA Ile	819
тсс Сув	AAG Lys 270	AAT Asn	GAC Asp	TTT Phe	GGA Gly	GGG Gly 275	CAC His	AGA Arg	AGT Ser	CTG Leu	GTG Val 280	AAT Asn	AAA Lys	TGG Trp	ACA Thr	867
ACA Thr 285	TTC Phe	CTC Leu	AAA Lys	GCT Ala	CGT Arg 290	CTG Leu	ATT Ile	TGC Cys	TCA Ser	GTG Val 295	CCA Pro	GGT Gly	CCA Pro	AAT Asn	GGC Gly 300	915
ATT Ile	GAC Asp	ACT Thr	CAT His	TTT Phe	GAT Asp	GAA Glu	CTG Leu	CAG Gln	GAT Asp	GTA Val	TTC Phe	CTA Leu	ATG Met	AAC Asn	TTT Phe	963

-continued

				305					310					315		
AAA Lys	GAT Asp	CCT Pro	AAA Lys 320	AAT Asn	CCA Pro	GTT Val	GTA Val	TAT Tyr 325	GGA Gly	GTG Val	TTT Phe	ACG Thr	ACT Thr 330	TCC Ser	AGT Ser	1011
AAC Asn	ATT Ile	TTC Phe 335	AAG Lys	GGA Gly	TCA Ser	GCC Ala	GTG Val 340	TGT Cys	ATG Met	TAT Tyr	AGC Ser	ATG Met 345	AGT Ser	GAT Asp	GTG Val	1059
AGA Arg	AGG Arg 350	GTG Val	TTC Phe	CTT Leu	GGT Gly	CCA Pro 355	TAT Tyr	GCC Ala	CAC His	AGG Arg	GAT Asp 360	GGA Gly	CCC Pro	AAC Asn	ТАТ Туг	1107
CAA Gln 365	TGG Trp	GTG Val	CCT Pro	TAT Tyr	CAA Gln 370	GGA Gly	AGA Arg	GTC Val	CCC Pro	TAT Tyr 375	CCA Pro	CGG Arg	CCA Pro	GGA Gly	ACT Thr 380	1155
TGT Cys	CCC Pro	AGC Ser	AAA Lys	ACA Thr 385	TTT Phe	GGT Gly	GGT Gly	TTT Phe	GAC Asp 390	TCT Ser	ACA Thr	AAG Lys	GAC Asp	CTT Leu 395	CCT Pro	1203
GAT Asp	GAT Asp	GTT Val	ATA Ile 400	ACC Thr	TTT Phe	GCA Ala	AGA Arg	AGT Ser 405	CAT His	CCA Pro	GCC Ala	ATG Met	TAC Tyr 410	AAT Asn	CCA Pro	1251
GTG Val	TTT Phe	CCT Pro 415	ATG Met	AAC Asn	AAT Asn	CGC Arg	CCA Pro 420	ATA Ile	GTG Val	ATC Ile	AAA Lys	ACG Thr 425	GAT Asp	GTA Val	AAT Asn	1299
TAT Tyr	CAA Gln 430	TTT Phe	ACA Thr	CAA Gln	ATT Ile	GTC Val 435	GTA Val	GAC Asp	CGA Arg	GTG Val	GAT Asp 440	GCA Ala	GAA Glu	GAT Asp	GGA Gly	1347
CAG Gln 445	TAT Tyr	GAT Asp	GTT Val	ATG Met	TTT Phe 450	ATC Ile	GGA Gly	ACA Thr	GAT Asp	GTT Val 455	GGG Gly	ACC Thr	GTT Val	CTT Leu	AAA Lys 460	1395
GTA Val	GTT Val	TCA Ser	ATT Ile	CCT Pro 465	AAG Lys	GAG Glu	ACT Thr	TGG Trp	TAT Tyr 470	GAT Asp	TTA Leu	GAA Glu	GAG Glu	GTT Val 475	CTG Leu	1443
CTG Leu	GAA Glu	GAA Glu	ATG Met 480	ACA Thr	GTT Val	TTT Phe	CGG Arg	GAA Glu 485	CCG Pro	ACT Thr	GCT Ala	ATT Ile	TCA Ser 490	GCA Ala	ATG Met	1491
GAG Glu	CTT Leu	TCC Ser 495	ACT Thr	AAG Lys	CAG Gln	CAA Gln	CAA Gln 500	CTA Leu	TAT Tyr	ATT Ile	GGT Gly	TCA Ser 505	ACG Thr	GCT Ala	GGG Gly	1539
GTT Val	GCC Ala 510	CAG Gln	CTC Leu	CCT Pro	TTA Leu	CAC His 515	CGG Arg	TGT Cys	GAT Asp	ATT Ile	TAC Tyr 520	GGG Gly	AAA Lys	GCG Ala	ТGТ Суз	1587
GCT Ala 525	GAG Glu	TGT Cys	TGC Cys	CTC Leu	GCC Ala 530	CGA Arg	GAC Asp	CCT Pro	TAC Tyr	TGT Cys 535	GCT Ala	TGG Trp	GAT Asp	GGT Gly	TCT Ser 540	1635
GCA Ala	TGT Cys	TCT Ser	CGC Arg	TAT Tyr 545	TTT Phe	CCC Pro	ACT Thr	GCA Ala	AAG Lys 550	AGA Arg	CGC Arg	ACA Thr	AGA Arg	CGA Arg 555	CAA Gln	1683
GAT Asp	ATA Ile	AGA Arg	AAT Asn 560	GGA Gly	GAC Asp	CCA Pro	CTG Leu	ACT Thr 565	CAC His	TGT Cys	TCA Ser	GAC Asp	TTA Leu 570	CAC His	CAT His	1731
GAT Asp	AAT Asn	CAC His 575	CAT His	GGC Gly	CAC His	AGC Ser	CCT Pro 580	GAA Glu	GAG Glu	AGA Arg	ATC Ile	ATC Ile 585	TAT Tyr	GGT Gly	GTA Val	1779
GAG Glu	AAT Asn 590	AGT Ser	AGC Ser	ACA Thr	TTT Phe	TTG Leu 595	GAA Glu	TGC Cys	AGT Ser	CCG Pro	AAG Lys 600	TCG Ser	CAG Gln	AGA Arg	GCG Ala	1827
CTG Leu 605	GTC Val	TAT Tyr	TGG Trp	CAA Gln	TTC Phe 610	CAG Gln	AGG Arg	CGA Arg	AAT Asn	GAA Glu 615	GAG Glu	CGA Arg	AAA Lys	GAA Glu	GAG Glu 620	1875
ATC	AGA	GTG	GAT	GAT	CAT	ATC	ATC	AGG	ACA	GAT	CAA	GGC	CTT	CTG	CTA	1923

-continued

Ile	Arg	Val	Asp	Asp 625	His	Ile	Ile	Arg	Thr 630	Asp	Gln	Gly	Leu	Leu 635	Leu	
CGT Arg	AGT Ser	CTA Leu	CAA Gln 640	CAG Gln	AAG Lys	GAT Asp	TCA Ser	GGC Gly 645	AAT Asn	TAC Tyr	CTC Leu	тсс Сув	CAT His 650	GCG Ala	GTG Val	1971
GAA Glu	CAT His	GGG Gly 655	TTC Phe	ATA Ile	CAA Gln	ACT Thr	CTT Leu 660	CTT Leu	AAG Lys	GTA Val	ACC Thr	CTG Leu 665	GAA Glu	GTC Val	ATT Ile	2019
GAC Asp	ACA Thr 670	GAG Glu	CAT His	TTG Leu	GAA Glu	GAA Glu 675	CTT Leu	CTT Leu	CAT His	AAA Lys	GAT Asp 680	GAT Asp	GAT Asp	GGA Gly	GAT Asp	2067
GGC Gly 685	TCT Ser	AAG Lys	ACC Thr	AAA Lys	GAA Glu 690	ATG Met	TCC Ser	AAT Asn	AGC Ser	ATG Met 695	ACA Thr	CCT Pro	AGC Ser	CAG Gln	AAG Lys 700	2115
GTC Val	TGG Trp	TAC Tyr	AGA Arg	GAC Asp 705	TTC Phe	ATG Met	CAG Gln	CTC Leu	ATC Ile 710	AAC Asn	CAC His	CCC Pro	AAT Asn	CTC Leu 715	AAC Asn	2163
ACG Thr	ATG Met	GAT Asp	GAG Glu 720	TTC Phe	тст Суз	GAA Glu	CAA Gln	GTT Val 725	TGG Trp	AAA Lys	AGG Arg	GAC Asp	CGA Arg 730	AAA Lys	CAA Gln	2211
CGT Arg	CGG Arg	CAA Gln 735	AGG Arg	CCA Pro	GGA Gly	CAT His	ACC Thr 740	CCA Pro	GGG Gly	AAC Asn	AGT Ser	AAC Asn 745	AAA Lys	TGG Trp	AAG Lys	2259
CAC His	TTA Leu 750	CAA Gln	GAA Glu	AAT Asn	AAG Lys	AAA Lys 755	GGT Gly	AGA Arg	AAC Asn	AGG Arg	AGG Arg 760	ACC Thr	CAC His	GAA Glu	TTT Phe	2307
GAG Glu 765	AGG Arg	GCA Ala	CCC Pro	AGG Arg	AGT Ser 770	GTC Val	TGA	GCTGO	CAT	FACC:	ICTA	GA A	ACCTO	CAAA		2358
AAG	TAGA	AAC 1	TTGC	CTAG	AC A	ATAA	CTGG	A AA2	AACA	AATG	CAA	TATA	CAT (GAAC	TTTTTT	2418
CAT	GGCA	TTA 1	IGTG	GATG	гт та	ACAA	IGGT	G GGI	AAT	ICAG	CTG	AGTTO	CCA (CCAA	TTATAA	2478
ATT.	AAAT	CCA !	I'GAG'	TAAC'	TT TO	CCTA	ATAG	G CT	rttt:	TTTC	CTA	ATAC	CAC	CGGG	ГТАААА	2538
GTA	AGAG	ACA (GCTG	AACCO	ст со	GTGGI	AGCCI	A TTO	CATA	CAGG	TCCO	CTAT	TTA 2	AGGA	ACGGAA	2598
TTC																2601
(2)	INFO	ORMA) SE((1 (1 (1	TION QUEN A) LI B) T D) T	FOR CE CI ENGTI YPE: OPOLO	SEQ HARAG H: 7 amin OGY:	ID I CTER: 71 ar no ac line	NO:54 ISTIC mino cid ear	4: CS: acid	ls							
	(ii) моі	LECU	LE T	YPE:	prot	cein									
	(xi) SEQ	QUEN	CE DI	ESCR	IPTIC	DN: S	SEQ I	ID NO	54	:					
Met 1	Gly	Trp	Leu	Thr 5	Arg	Ile	Val	Cys	Leu 10	Phe	Trp	Gly	Val	Leu 15	Leu	
Thr	Ala	Arg	Ala 20	Asn	Tyr	Gln	Asn	Gly 25	Lys	Asn	Asn	Val	Pro 30	Arg	Leu	
Lys	Leu	Ser 35	Tyr	Lys	Glu	Met	Leu 40	Glu	Ser	Asn	Asn	Val 45	Ile	Thr	Phe	
Asn	Gly 50	Leu	Ala	Asn	Ser	Ser 55	Ser	Tyr	His	Thr	Phe 60	Leu	Leu	Asp	Glu	
Glu 65	Arg	Ser	Arg	Leu	Ty r 70	Val	Gly	Ala	Lys	Asp 75	His	Ile	Phe	Ser	Phe 80	
Asp	Leu	Val	Asn	Ile 85	Lys	Asp	Phe	Gln	Lys 90	Ile	Val	Trp	Pro	Val 95	Ser	

-continued

Tyr	Thr	Arg	Arg 100	Asp	Glu	Cys	Lys	Trp 105	Ala	Gly	Lys	Asp	Ile 110	Leu	Lys
Glu	Суз	Ala 115	Asn	Phe	Ile	Lys	Val 120	Leu	Lys	Ala	Tyr	Asn 125	Gln	Thr	His
Leu	Tyr 130	Ala	Сув	Gly	Thr	Gly 135	Ala	Phe	His	Pro	Ile 140	Сув	Thr	Tyr	Ile
Glu 145	Ile	Gly	His	His	Pro 150	Glu	Asp	Asn	Ile	Phe 155	Lys	Leu	Glu	Asn	Ser 160
His	Phe	Glu	Asn	Gly 165	Arg	Gly	Lys	Ser	Pro 170	Tyr	Asp	Pro	Lys	Leu 175	Leu
Thr	Ala	Ser	Leu 180	Leu	Ile	Asp	Gly	Glu 185	Leu	Tyr	Ser	Gly	Thr 190	Ala	Ala
Asp	Phe	Met 195	Gly	Arg	Asp	Phe	Ala 200	Ile	Phe	Arg	Thr	Leu 205	Gly	His	His
His	Pro 210	Ile	Arg	Thr	Glu	Gln 215	His	Asp	Ser	Arg	Trp 220	Leu	Asn	Asp	Pro
L y s 225	Phe	Ile	Ser	Ala	His 230	Leu	Ile	Ser	Glu	Ser 235	Asp	Asn	Pro	Glu	Asp 240
Asp	Lys	Val	Tyr	Phe 245	Phe	Phe	Arg	Glu	Asn 250	Ala	Ile	Asp	Gly	Glu 255	His
Ser	Gly	Lys	Ala 260	Thr	His	Ala	Arg	Ile 265	Gly	Gln	Ile	Сув	L y s 270	Asn	Asp
Phe	Gly	Gly 275	His	Arg	Ser	Leu	Val 280	Asn	Lys	Trp	Thr	Thr 285	Phe	Leu	Lys
Ala	Arg 290	Leu	Ile	Сув	Ser	Val 295	Pro	Gly	Pro	Asn	Gly 300	Ile	Asp	Thr	His
Phe 305	Asp	Glu	Leu	Gln	Asp 310	Val	Phe	Leu	Met	Asn 315	Phe	Lys	Asp	Pro	L y s 320
Asn	Pro	Val	Val	Tyr 325	Gly	Val	Phe	Thr	Thr 330	Ser	Ser	Asn	Ile	Phe 335	Lys
Gly	Ser	Ala	Val 340	Сув	Met	Tyr	Ser	Met 345	Ser	Asp	Val	Arg	Arg 350	Val	Phe
Leu	GIY	Pro 355	Tyr	Ala	His	Arg	Asp 360	GIY	Pro	Asn	Tyr	G1n 365	Trp	Val	Pro
Tyr	G1n 370	GIY	Arg	Val	Pro	Tyr 375	Pro	Arg	Pro	GIY	7hr 380	Cys	Pro	Ser	Lys
7hr 385	Phe	GIY	GIY	Phe	Asp 390	Ser	Thr	Lys	Asp	Leu 395	Pro	Asp	Asp	Val	11e 400
Thr	Phe	Ala	Arg	Ser 405	His	Pro	Ala	Met	Tyr 410	Asn	Pro	Val	Phe	Pro 415	Met
Asn	Asn	Arg	420	lle	Val	IIe	Lys	425	Asp	Val	Asn	Tyr	GIn 430	Pne	Thr
GIn	lle	Va1 435	Val	Asp	Arg	Val	Asp 440	Ala	GIU	Asp	GIY	445	Tyr	Asp	val
Met	Pne 450	lle	GIY	Thr	Asp	Va1 455	GIY	Thr	Val	Leu	Lуз 460	vai	val	ser	IIe
465	цуз	GIU	Inr	Trp	470	нар пъ.	Leu	GIU	GIU	vai 475	Leu Mc+	Leu	GIU	GIU	мет 480
Inr	vai	rne	Arg	485	Pro	rnr	AIA	TTE	ser 490	Ala	Met	GIU	ьеu	495	Inr
цув	GIU	GTU GTU	500	цец	T ÅL	-1-e	сту	505	1111	AId	сту	vd⊥	510	GIN	Leu Gwe
LTO	ьeu	птS	мr д	cys	чер	тте	туr	σтУ	⊥уѕ	лта	cys	лıа	сти	cys	CYS

-continued

Leu	Ala 530	Arg	Asp	Pro	Tyr	С у в 535	Ala	Trp	Asp	Gly	Ser 540	Ala	Суз	Ser	Arg
Т у г 545	Phe	Pro	Thr	Ala	Lys 550	Arg	Arg	Thr	Arg	Arg 555	Gln	Asp	Ile	Arg	Asn 560
Gly	Asp	Pro	Leu	Thr 565	His	Cys	Ser	Asp	Leu 570	His	His	Asp	Asn	His 575	His
Gly	His	Ser	Pro 580	Glu	Glu	Arg	Ile	Ile 585	Tyr	Gly	Val	Glu	Asn 590	Ser	Ser
Thr	Phe	Leu 595	Glu	Сув	Ser	Pro	Lys 600	Ser	Gln	Arg	Ala	Leu 605	Val	Tyr	Trp
Gln	Phe 610	Gln	Arg	Arg	Asn	Glu 615	Glu	Arg	Lys	Glu	Glu 620	Ile	Arg	Val	Asp
A sp 625	His	Ile	Ile	Arg	Thr 630	Asp	Gln	Gly	Leu	Leu 635	Leu	Arg	Ser	Leu	Gln 640
Gln	Lys	Asp	Ser	Gly 645	Asn	Tyr	Leu	Cys	His 650	Ala	Val	Glu	His	Gly 655	Phe
Ile	Gln	Thr	Leu 660	Leu	Lys	Val	Thr	Leu 665	Glu	Val	Ile	Asp	Thr 670	Glu	His
Leu	Glu	Glu 675	Leu	Leu	His	Lys	Asp 680	Asp	Asp	Gly	Asp	Gly 685	Ser	Lys	Thr
Lys	Glu 690	Met	Ser	Asn	Ser	Met 695	Thr	Pro	Ser	Gln	L y s 700	Val	Trp	Tyr	Arg
A sp 705	Phe	Met	Gln	Leu	Ile 710	Asn	His	Pro	Asn	Leu 715	Asn	Thr	Met	Asp	Glu 720
Phe	Сув	Glu	Gln	Val 725	Trp	Lys	Arg	Asp	Arg 730	Lys	Gln	Arg	Arg	Gln 735	Arg
Pro	Gly	His	Thr 740	Pro	Gly	Asn	Ser	Asn 745	Lys	Trp	Lys	His	Leu 750	Gln	Glu
Asn	Lys	L y s 755	Gly	Arg	Asn	Arg	Arg 760	Thr	His	Glu	Phe	Glu 765	Arg	Ala	Pro
Arg	Ser 770	Val													
(2)	INFO	ORMA:	LION	FOR	SEQ	ID 1	NO:55	5:							
	(i)) SE((1 (1 (0 (1	QUENC A) LH 3) T 2) S 2) S 0) T 0	CE CH ENGTH (PE: TRANI DPOLO	HARAG H: 1: nuc: DEDNI DGY:	CTERI 332 h Leic ESS: line	ISTIC Dase acic doul ear	cs: pain 1 ple	îs						
	(ii)) MOI	LECUI	LE TY	/PE:	CDNA	Ŧ								
	(ix)) FE2 (2 (1	ATURH A) NA B) LO	E: AME/H DCATI	KEY: LON:	CDS 7	L329								
	(xi)) SEĢ	QUENC	CE DI	SCR:	(PTI)	DN: S	SEQ I	D NC	:55	:				
GGA	ATA 1 N	ATG A 4et N 1	ATG (1et \	GTA 7 7al I	TA : Leu I	TA C Leu H 5	CAT (His <i>H</i>	GCT (Ala N	GTA 1 Val 1	TAC T	CT 2 Ser 3 10	ATA (Ile V	GTC 1 Val H	TTT (Phe N	STA Val
GAT Asp 15	GTT Val	ATA Ile	ATC Ile	ATA Ile	AAA Lys 20	GTA Val	CAG Gln	AGG Arg	TAT Tyr	ATC Ile 25	AAC Asn	GAT Asp	ATT Ile	CTA Leu	ACT Thr 30
CTT Leu	GAC Asp	ATT Ile	TTT Phe	TAT Tyr 35	TTA Leu	TTT Phe	AAA Lys	ATG Met	ATA Ile 40	CCT Pro	TTG Leu	TTA Leu	TTT Phe	ATT Ile 45	TTA Leu

-continued

TTC Phe	C TAT 9 Tyr	TTT Phe	GCT Ala 50	AAC Asn	GGT Gly	ATC Ile	GAA Glu	TGG Trp 55	CAT His	AAG Lys	TTT Phe	GAA Glu	ACG Thr 60	AGT Ser	GAA Glu	192
GAA Glu	A ATA 1 Ile	ATT Ile 65	TCT Ser	ACT Thr	TAC Tyr	TTA Leu	TTA Leu 70	GAC Asp	GAC Asp	GTA Val	TTA Leu	TAC Tyr 75	ACG Thr	GGT Gly	GTT Val	240
AA Ası	GGG Gly 80	GCG Ala	GTA Val	TAC Tyr	ACA Thr	TTT Phe 85	TCA Ser	AAT Asn	AAT Asn	AAA Lys	CTA Leu 90	AAC Asn	AAA Lys	ACT Thr	GGT Gly	288
TTZ Let 95	ACT Thr	AAT Asn	AAT Asn	AAT Asn	TAT Tyr 100	ATA Ile	ACA Thr	ACA Thr	TCT Ser	ATA Ile 105	AAA Lys	GTA Val	GAG Glu	GAT Asp	GCG Ala 110	336
GA: Asj	AAG Lys	GAT Asp	ACA Thr	TTA Leu 115	GTA Val	TGC Cys	GGA Gly	ACC Thr	AAT Asn 120	AAC Asn	GGA Gly	AAT Asn	CCC Pro	AAA Lys 125	TGT Cys	384
TG(Trj	AAA Jys	ATA Ile	GAC Asp 130	GGT Gly	TCA Ser	GAC Asp	GAC Asp	CCA Pro 135	AAA Lys	CAT His	AGA Arg	GGT Gly	AGA Arg 140	GGA Gly	TAC Tyr	432
GC: Ala	CCT Pro	TAT Tyr 145	CAA Gln	AAT Asn	AGC Ser	AAA Lys	GTA Val 150	ACG Thr	ATA Ile	ATC Ile	AGT Ser	CAC His 155	AAC Asn	GGA Gly	ТGТ Сув	480
GTI Va:	CTA Leu 160	TCT Ser	GAC Asp	ATA Ile	AAC Asn	ATA Ile 165	TCA Ser	AAA Lys	GAA Glu	GGA Gly	ATT Ile 170	AAA Lys	CGA Arg	TGG Trp	AGA Arg	528
AGA Arg 175	A TTT J Phe	GAC Asp	GGA Gly	CCA Pro	TGT C y s 180	GGT Gly	TAT Tyr	GAT Asp	TTA Leu	TAC Tyr 185	ACG Thr	GCG Ala	GAT Asp	AAC Asn	GTA Val 190	576
AT: Ile	CCA Pro	AAA Lys	GAT Asp	GGT Gly 195	TTA Leu	CGA Arg	GGA Gly	GCA Ala	TTC Phe 200	GTC Val	GAT Asp	AAA Lys	GAT Asp	GGT Gly 205	ACT Thr	624
ТА: Туз	GAC Asp	AAA Lys	GTT Val 210	TAC Tyr	ATT Ile	CTT Leu	TTC Phe	ACT Thr 215	GAT Asp	ACT Thr	ATC Ile	GGC Gly	TCA Ser 220	AAG Lys	AGA Arg	672
AT: Ile	GTC Val	AAA Lys 225	ATT Ile	CCG Pro	TAT Tyr	ATA Ile	GCA Ala 230	CAA Gln	ATG Met	TGC Cys	CTA Leu	AAC Asn 235	GAC Asp	GAA Glu	GGT Gly	720
GG Gly	CCA Pro 240	TCA Ser	TCA Ser	TTG Leu	TCT Ser	AGT Ser 245	CAT His	AGA Arg	TGG Trp	TCG Ser	ACG Thr 250	TTT Phe	CTC Leu	AAA Lys	GTC Val	768
GAN Glu 255	Leu	GAA Glu	ТGТ Суз	GAT Asp	ATC Ile 260	GAC Asp	GGA Gly	AGA Arg	AGT Ser	TAT Ty r 265	AGA Arg	CAA Gln	ATT Ile	ATT Ile	CAT His 270	816
TC: Sei	AGA Arg	ACT Thr	ATA Ile	AAA Lys 275	ACA Thr	GAT Asp	AAT Asn	GAT Asp	ACG Thr 280	ATA Ile	CTA Leu	TAT Tyr	GTA Val	TTC Phe 285	TTC Phe	864
GA: Asj	AGT Ser	CCT Pro	TAT Tyr 290	TCC Ser	AAG Lys	TCC Ser	GCA Ala	TTA Leu 295	ТСТ Суз	ACC Thr	TAT Tyr	TCT Ser	ATG Met 300	AAT Asn	ACC Thr	912
AT: Ile	AAA Lys	CAA Gln 305	TCT Ser	TTT Phe	TCT Ser	ACG Thr	TCA Ser 310	AAA Lys	TTG Leu	GAA Glu	GGA Gly	TAT Tyr 315	ACA Thr	AAG Lys	CAA Gln	960
TT(Lei	GCCG Pro 320	TCG Ser	CCA Pro	GCC Ala	TCT Ser	GGT Gly 325	ATA Ile	ТСТ Сув	CTA Leu	CCA Pro	GCT Ala 330	GGA Gly	AAA Lys	GTT Val	GTT Val	1008
CCA Pro 335	A CAT His	ACC Thr	ACG Thr	TTT Phe	GAA Glu 340	GTC Val	ATA Ile	GAA Glu	AAA Lys	TAT Tyr 345	AAT Asn	GTA Val	CTA Leu	GAT Asp	GAT Asp 350	1056
AT: Ile	ATA Ile	AAG Lys	CCT Pro	TTA Leu 355	TCT Ser	AAC Asn	CAA Gln	CCT Pro	ATC Ile 360	TTC Phe	GAA Glu	GGA Gly	CCG Pro	TCT Ser 365	GGT Gly	1104

GTT Val	AAA Lys	TGG Trp	TTC Phe 370	GAT Asp	ATA Ile	AAG Lys	GAG Glu	AAG Lys 375	GAA Glu	AAT Asn	GAA Glu	CAT His	CGG Arg 380	GAA Glu	TAT Tyr	1152
AGA Arg	ATA Ile	TAC Tyr 385	TTC Phe	ATA Ile	AAA Lys	GAA Glu	AAT Asn 390	TCT Ser	ATA Ile	TAT Tyr	TCG Ser	TTC Phe 395	GAT Asp	ACA Thr	AAA Lys	1200
TCT Ser	AAA Lys 400	CAA Gln	ACT Thr	CGT Arg	AGC Ser	TCG Ser 405	CAA Gln	GTC Val	GAT Asp	GCG Ala	CGA Arg 410	CTA Leu	TTT Phe	TCA Ser	GTA Val	1248
ATG Met 415	GTA Val	ACT Thr	TCG Ser	AAA Lys	CCG Pro 420	TTA Leu	TTT Phe	ATA Ile	GCA Ala	GAT Asp 425	ATA Ile	GGG Gly	ATA Ile	GGA Gly	GTA Val 430	1296
GGA Gly	ATG Met	CCA Pro	CAA Gln	ATG Met 435	AAA Lys	AAA Lys	ATA Ile	CTT Leu	AAA Lys 440	ATG Met	TAA					1332
(2)	INFO	RMAT	LION	FOR	SEQ	ID 1	NO:56	5:								
	(i)) SEQ (7 (1 (1	QUENC A) LI B) T C) T	CE CH ENGTH (PE: DPOLO	HARAG H: 44 amin DGY:	CTERI 11 ar 10 ac 1ine	ISTIC nino cid ear	CS: acio	ls							
	(ii)) MOI	LECUI	LE T	YPE:	prot	cein									
	(xi)) SEÇ	QUENC	CE DI	ESCR	(PTI)	DN: S	SEQ I	ED NO	D:56	:					
Met 1	Met	Val	Leu	Leu 5	His	Ala	Val	Tyr	Ser 10	Ile	Val	Phe	Val	Asp 15	Val	
Ile	Ile	Ile	Lys 20	Val	Gln	Arg	Tyr	Ile 25	Asn	Asp	Ile	Leu	Thr 30	Leu	Asp	
Ile	Phe	Tyr 35	Leu	Phe	Lys	Met	Ile 40	Pro	Leu	Leu	Phe	Ile 45	Leu	Phe	Tyr	
Phe	Ala 50	Asn	Gly	Ile	Glu	Trp 55	His	Lys	Phe	Glu	Thr 60	Ser	Glu	Glu	Ile	
Ile 65	Ser	Thr	Tyr	Leu	Leu 70	Asp	Asp	Val	Leu	Tyr 75	Thr	Gly	Val	Asn	Gly 80	
Ala	Val	Tyr	Thr	Phe 85	Ser	Asn	Asn	Lys	Leu 90	Asn	Lys	Thr	Gly	Leu 95	Thr	
Asn	Asn	Asn	Tyr 100	Ile	Thr	Thr	Ser	Ile 105	Lys	Val	Glu	Asp	Ala 110	Asp	Lys	
Asp	Thr	Leu 115	Val	Сув	Gly	Thr	Asn 120	Asn	Gly	Asn	Pro	L y s 125	Cys	Trp	Lys	
Ile	Asp 130	Gly	Ser	Asp	Asp	Pro 135	Lys	His	Arg	Gly	Arg 140	Gly	Tyr	Ala	Pro	
Ty r 145	Gln	Asn	Ser	Lys	Val 150	Thr	Ile	Ile	Ser	His 155	Asn	Gly	Сув	Val	Leu 160	
Ser	Asp	Ile	Asn	Ile 165	Ser	Lys	Glu	Gly	Ile 170	Lys	Arg	Trp	Arg	Arg 175	Phe	
Asp	Gly	Pro	C ys 180	Gly	Tyr	Asp	Leu	Ty r 185	Thr	Ala	Asp	Asn	Val 190	Ile	Pro	
Lys	Asp	Gly 195	Leu	Arg	Gly	Ala	Phe 200	Val	Asp	Lys	Asp	Gly 205	Thr	Tyr	Asp	
Lys	Val 210	Tyr	Ile	Leu	Phe	Thr 215	Asp	Thr	Ile	Gly	Ser 220	Lys	Arg	Ile	Val	
L y s 225	Ile	Pro	Tyr	Ile	Ala 230	Gln	Met	Cys	Leu	Asn 235	Asp	Glu	Gly	Gly	Pro 240	
Ser	Ser	Leu	Ser	Ser	His	Arg	Trp	Ser	Thr	Phe	Leu	Lys	Val	Glu	Leu	

245 250 255	
Glu Cys Asp Ile Asp Gly Arg Ser Tyr Arg Gln Ile Ile His Ser Arg 260 265 270	
Thr Ile Lys Thr Asp Asn Asp Thr Ile Leu Tyr Val Phe Phe Asp Ser275280285	
Pro Tyr Ser Lys Ser Ala Leu Cys Thr Tyr Ser Met Asn Thr Ile Lys 290 295 300	
Gln Ser Phe Ser Thr Ser Lys Leu Glu Gly Tyr Thr Lys Gln Leu Pro 305 310 315 320	
Ser Pro Ala Ser Gly Ile Cys Leu Pro Ala Gly Lys Val Val Pro His 325 330 335	
Thr Thr Phe Glu Val Ile Glu Lys Tyr Asn Val Leu Asp Asp Ile Ile 340 345 350	
Lys Pro Leu Ser Asn Gln Pro Ile Phe Glu Gly Pro Ser Gly Val Lys 355 360 365	
Trp Phe Asp Ile Lys Glu Lys Glu Asn Glu His Arg Glu Tyr Arg Ile 370 375 380	
Tyr Phe Ile Lys Glu Asn Ser Ile Tyr Ser Phe Asp Thr Lys Ser Lys385390395400	
Gln Thr Arg Ser Ser Gln Val Asp Ala Arg Leu Phe Ser Val Met Val 405 410 415	
Thr Ser Lys Pro Leu Phe Ile Ala Asp Ile Gly Ile Gly Val Gly Met 420 425 430	
Pro Gln Met Lys Lys Ile Leu Lys Met 435 440	
 (2) INFORMATION FOR SEQ ID NO:57: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2854 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 4512640 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
ATTCCACCTC CCGCTGACCG CCTACGCCGC GACGATCTTT CCTCTCGCCA GGCGAAAACT	60
ACGACGTGTC AACAACATTT TTGTTTTTTC TGCTTCCGTG TTTTCATGTT CCGTGAAACC	120
GCTTCTCGCA TTACCACTCT TCCGTTTCCC AGTGTTTGTT TTCTCCGTTT CTTTCATCGT	180
GGATGTTTTG TTTTGGTGTA GCGAGTGACG AGCTTATGTC ATTAAACGTA CATCCAATCT	240
GTCGGTATAT TGGTGTGTGA TATTTTACTA TTATATATTT AGCCATCACT TGAAAGCCGT	300
GAAAAATTTT TGAAAGTGGA GAGGAAAAAG AAAAGGCGCA GAAGGCTTTT TAAGCTTCAT	360
GGATATGTGC TCTACGCTTC AACTACTGTC GCAGAATCAT CTTCCGGGAA AGGAAATTTC	420
GCCTGAAATG GTGCCGCGGC CGCACTGAAC ATG CGG GCG GCG CTG GTG GCC GTC Met Arg Ala Ala Leu Val Ala Val 1 5	474
GCG GCG CTT TGG GTG GCG CTC GCC GCA TGG GTC AAC AAC AAA AAAA AAA AAAA AAAA AAAA AAAA AAAA AAAA AAAAAAA AAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	522
GTC AGC CCC AAG ATG TAC GTC CAG TTC GGT GAG GAA CGG GTG CAA CGC 99 Val Ser Pro Lys Met Tyr Val Gln Phe Gly Glu Glu Arg Val Gln Arg	570

7	9
	-

25					30					35					40	
TTC Phe	CTG Leu	GGC Gly	AAT Asn	GAA Glu 45	TCG Ser	CAC His	AAA Lys	GAC Asp	CAC His 50	TTC Phe	AAG Lys	CTG Leu	CTG Leu	GAG Glu 55	AAG Lys	618
GAC Asp	CAC His	AAC Asn	TCG Ser 60	CTC Leu	CTC Leu	GTA Val	GGA Gly	GCT Ala 65	AGG Arg	AAC Asn	ATC Ile	GTC Val	TAC Tyr 70	AAT Asn	ATC Ile	666
AGC Ser	CTT Leu	CGA Arg 75	GAC Asp	CTC Leu	ACA Thr	GAA Glu	TTC Phe 80	ACC Thr	GAG Glu	CAG Gln	AGG Arg	ATC Ile 85	GAG Glu	TGG Trp	CAC His	714
TCG Ser	TCA Ser 90	GGT Gly	GCC Ala	CAT His	CGC Arg	GAG Glu 95	CTC Leu	TGC Cys	TAC Tyr	CTC Leu	AAG Lys 100	GGG Gly	AAG Lys	TCA Ser	GAG Glu	762
GAC Asp 105	GAC Asp	TGC Cys	CAG Gln	AAC Asn	TAC Tyr 110	ATC Ile	CGA Arg	GTC Val	CTG Leu	GCG Ala 115	AAA Lys	ATT Ile	GAC Asp	GAT Asp	GAC Asp 120	810
CGC Arg	GTA Val	CTC Leu	ATC Ile	ТGC Сув 125	GGT Gly	ACG Thr	AAC Asn	GCC Ala	TAT Tyr 130	AAG Lys	CCA Pro	CTA Leu	тдт Сув	CGG Arg 135	CAC His	858
TAC Tyr	GCC Ala	CTC Leu	AAG Lys 140	GAT Asp	GGA Gly	GAT Asp	TAT Tyr	GTT Val 145	GTA Val	GAG Glu	AAA Lys	GAA Glu	TAT Tyr 150	GAG Glu	GGA Gly	906
AGA Arg	GGA Gly	TTG Leu 155	TGC Cys	CCA Pro	TTT Phe	GAC Asp	CCT Pro 160	GAC Asp	CAC His	AAC Asn	AGC Ser	ACT Thr 165	GCA Ala	ATA Ile	TAC Tyr	954
AGT Ser	GAG Glu 170	GGA Gly	CAA Gln	TTG Leu	TAC Tyr	TCA Ser 175	GCA Ala	ACA Thr	GTG Val	GCA Ala	GAC Asp 180	TTC Phe	TCT Ser	GGA Gly	ACT Thr	1002
GAC Asp 185	CCT Pro	CTC Leu	ATA Ile	TAC Tyr	CGC Arg 190	GGC Gly	CCT Pro	CTA Leu	AGA Arg	ACA Thr 195	GAG Glu	AGA Arg	TCT Ser	GAC Asp	CTC Leu 200	1050
AAA Lys	CAA Gln	TTA Leu	AAT Asn	GCT Ala 205	CCT Pro	AAC Asn	TTT Phe	GTC Val	AAC Asn 210	ACA Thr	ATG Met	GAG Glu	TAC Tyr	AAT Asn 215	GAT Asp	1098
TTT Phe	ATA Ile	TTC Phe	TTC Phe 220	TTC Phe	TTC Phe	CGA Arg	GAG Glu	ACT Thr 225	GCT Ala	GTT Val	GAG Glu	TAC Tyr	ATC Ile 230	AAC Asn	TGC Cys	1146
GGA Gly	AAG Lys	GCT Ala 235	ATC Ile	TAT Tyr	TCA Ser	AGA Arg	GTT Val 240	GCC Ala	AGA Arg	GTC Val	ТGТ Сув	AAA Lys 245	CAT His	GAC Asp	AAG Lys	1194
GGC Gly	GGC Gly 250	CCT Pro	CAT His	CAG Gln	GGT Gly	GGT Gly 255	GAC Asp	AGA Arg	TGG Trp	ACT Thr	TCT Ser 260	TTT Phe	TTG Leu	AAA Lys	TCA Ser	1242
CGT Arg 265	CTG Leu	AAC Asn	ТGТ Сув	TCC Ser	GTC Val 270	CCT Pro	GGA Gly	GAT Asp	TAT Tyr	CCA Pro 275	TTT Phe	TAC Tyr	TTC Phe	AAT Asn	GAA Glu 280	1290
ATT Ile	CAG Gln	TCA Ser	ACA Thr	AGT Ser 285	GAC Asp	ATC Ile	ATT Ile	GAA Glu	GGA Gly 290	AAT Asn	TAT Tyr	GGT Gly	GGT Gly	CAA Gln 295	GTG Val	1338
GAG Glu	AAA Lys	CTC Leu	ATC Ile 300	TAC Tyr	GGT Gly	GTC Val	TTC Phe	ACG Thr 305	ACA Thr	CCA Pro	GTG Val	AAC Asn	TCT Ser 310	ATT Ile	GGT Gly	1386
GGC Gly	TCT Ser	GCT Ala 315	GTT Val	ТСТ Суз	GCC Ala	TTC Phe	AGT Ser 320	ATG Met	AAG Lys	TCA Ser	ATA Ile	CTT Leu 325	GAG Glu	TCA Ser	TTT Phe	1434
GAT Asp	GGT Gly 330	CCA Pro	TTT Phe	AAA Lys	GAG Glu	CAG Gln 335	GAA Glu	ACG Thr	ATG Met	AAC Asn	TCA Ser 340	AAC Asn	TGG Trp	TTG Leu	GCA Ala	1482
GTG	CCA	AGC	CTT	ААА	GTG	CCA	GAA	CCA	AGG	ССТ	GGA	CAA	TGT	GTG	AAT	1530

-continued

Val 345	Pro	Ser	Leu	Lys	Val 350	Pro	Glu	Pro	Arg	Pro 355	Gly	Gln	Cys	Val	Asn 360	
GAC Asp	AGT Ser	CGT Arg	ACA Thr	CTT Leu 365	CCT Pro	GAT Asp	GTG Val	TCT Ser	GTC Val 370	AAT Asn	TTT Phe	GTA Val	AAG Lys	TCA Ser 375	CAT His	1578
ACA Thr	CTG Leu	ATG Met	GAT Asp 380	GAG Glu	GCC Ala	GTG Val	CCA Pro	GCA Ala 385	TTT Phe	TTT Phe	ACT Thr	CGG Arg	CCA Pro 390	ATT Ile	CTC Leu	1626
ATT Ile	CGG Arg	ATC Ile 395	AGC Ser	TTA Leu	CAG Gln	TAC Tyr	AGA Arg 400	TTT Phe	ACA Thr	AAA Lys	ATA Ile	GCT Ala 405	GTT Val	GAT Asp	CAA Gln	1674
CAA Gln	GTC Val 410	CGA Arg	ACA Thr	CCA Pro	GAT Asp	GGG Gly 415	AAA Lys	GCG Ala	TAT Tyr	GAT Asp	GTC Val 420	CTG Leu	TTT Phe	ATA Ile	GGA Gly	1722
ACT Thr 425	GAT Asp	GAT Asp	GGC Gly	AAA Lys	GTG Val 430	ATA Ile	AAA Lys	GCT Ala	TTG Leu	AAC Asn 435	TCT Ser	GCC Ala	TCC Ser	TTT Phe	GAT Asp 440	1770
TCA Ser	TCT Ser	GAT Asp	ACT Thr	GTA Val 445	GAT Asp	AGT Ser	GTT Val	GTA Val	ATA Ile 450	GAA Glu	GAA Glu	CTG Leu	CAA Gln	GTG Val 455	TTG Leu	1818
CCA Pro	CCT Pro	GGA Gly	GTA Val 460	CCT Pro	GTT Val	AAG Lys	AAC Asn	CTG Leu 465	TAT Tyr	GTG Val	GTG Val	CGA Arg	ATG Met 470	GAT Asp	GGG Gly	1866
GAT Asp	GAT Asp	AGC Ser 475	AAG Lys	CTG Leu	GTG Val	GTT Val	GTG Val 480	TCT Ser	GAT Asp	GAT Asp	GAG Glu	ATT Ile 485	CTG Leu	GCA Ala	ATT Ile	1914
AAG Lys	CTT Leu 490	CAT His	CGT Arg	ТСТ Сув	GGC Gly	TCA Ser 495	GAT Asp	AAA Lys	ATA Ile	ACA Thr	AAT Asn 500	TGT Cys	CGA Arg	GAA Glu	ТGТ Суз	1962
GTG Val 505	TCC Ser	TTG Leu	CAA Gln	GAT Asp	CCT Pro 510	TAC Tyr	TGT Cys	GCA Ala	TGG Trp	GAC Asp 515	AAT Asn	GTA Val	GAA Glu	TTA Leu	AAA Lys 520	2010
TGT Cys	ACA Thr	GCT Ala	GTA Val	GGT Gly 525	TCA Ser	CCA Pro	GAC Asp	TGG Trp	AGT Ser 530	GCT Ala	GGA Gly	AAA Lys	AGA Arg	CGC Arg 535	TTT Phe	2058
ATT Ile	CAG Gln	AAC Asn	ATT Ile 540	TCA Ser	CTC Leu	GGT Gly	GAA Glu	CAT His 545	AAA Lys	GCT Ala	TGT Cys	GGT Gly	GGA Gly 550	CGT Arg	CCA Pro	2106
CAA Gln	ACA Thr	GAA Glu 555	ATC Ile	GTT Val	GCT Ala	TCT Ser	CCT Pro 560	GTA Val	CCA Pro	ACT Thr	CAG Gln	CCG Pro 565	ACG Thr	ACA Thr	AAA Lys	2154
TCT Ser	AGT Ser 570	GGC Gly	GAT Asp	CCC Pro	GTT Val	CAT His 575	TCA Ser	ATC Ile	CAC His	CAG Gln	GCT Ala 580	GAA Glu	TTT Phe	GAA Glu	CCT Pro	2202
GAA Glu 585	ATT Ile	GAC Asp	AAC Asn	GAG Glu	ATT Ile 590	GTT Val	ATT Ile	GGA Gly	GTA Val	GAT Asp 595	GAC Asp	AGC Ser	AAC Asn	GTC Val	ATT Ile 600	2250
CCT Pro	AAT Asn	ACC Thr	CTG Leu	GCT Ala 605	GAA Glu	ATA Ile	AAT Asn	CAT His	GCA Ala 610	GGT Gly	TCA Ser	AAG Lys	CTG Leu	CCT Pro 615	TCC Ser	2298
TCC Ser	CAG Gln	GAA Glu	AAG Lys 620	TTG Leu	CCT Pro	ATT Ile	TAT Tyr	ACA Thr 625	GCG Ala	GAG Glu	ACT Thr	CTG Leu	ACT Thr 630	ATT Ile	GCT Ala	2346
ATA Ile	GTT Val	ACA Thr 635	TCA Ser	TGC Cys	CTT Leu	GGA Gly	GCT Ala 640	CTA Leu	GTT Val	GTT Val	GGC Gly	TTC Phe 645	ATC Ile	TCT Ser	GGA Gly	2394
TTT Phe	CTT Leu 650	TTT Phe	TCT Ser	CGG Arg	CGA Arg	TGC Cys 655	AGG Arg	GGA Gly	GAG Glu	GAT Asp	TAC Tyr 660	ACA Thr	GAC Asp	ATG Met	CCT Pro	2442

-continued

The Control of the C
ANT GCA GAC TCA CCC TAT CTT CCA CCC TGT GCC ANT AAC ANG GCA GCC Asm Ala Asp Ser Pro Tyr Leu Pro Pro Cys Ala Asm Asm Lys Ala Ala 695 ATA AAT CTT GTG CTC AAT GTC CCA CCA AAG AAT GCA AAT GGA AAA AAT 11e Asm Leu Val Leu Asm Val Pro Pro Lys Asm Ala Asm Gly Lys Asm 700 705 GCC AAC TCT TCA GCT GAA AAC AAA CCA ATA CAG AAA GTA AAA AAG ACA Ala Asm Ser Ser Ala Glu Asm Lys Pro 11e Gln Lys Val Lys Lys Thr 715 TAC ATT TAGCAGAAAT CTTTGGTATC TGTTTTGGTG CAGACCCATG CCACTAGAGT 725 TAC ATT TAGCAGAAAT CTTTGGTATC TGTTTTGGTG CAGACCCATG CCACTAGAGT 730 AACCAAGACT CTATTGAGAA ATGTCCTCAA GAAAGTTAAA AAGATGTAGA CTTCTGTAAT 725 CGAGAGCACC ACTTTCCATA GTAATACAGA ACAATGTGAA ATAAATACTA CAGAAGAAGT 730 AACCAAGACT CTATTGAGAA ATGTCCTCAA GAAAGTTAAA AAGATGTAGA CTTCTGTAAT 725 CGAGAGCACC ACTTTCCATA GTAATACAGA ACAATGTGAA ATAAATACTA CAGAAGAAGT 7281 (2) INFORMATION FOR SEQ ID NO:58: (1) SEQUENCE CHARACTERISTICS: (2) INFORMATION FOR SEQ ID NO:58: (3) CEPUCED CHARACTERISTICS: (4) LENGTH: 730 amino acids (5) TYPE: amino acid (7) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 10 15 His Ala Ala Lau Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 12 Ad0 45 Asp His Phe Lys Leu Leu Glu Arg Phe Leu Gly Asm Glu Ser His Lys 40 40 40 45 Asp His Phe Lys Leu Leu Glu Lys Asp His Asm Ser Leu Leu Val Gly 50 Ala Arg Asm 11e Val Tyr Asm 11e Ser Leu Arg App Leu Thr Glu Phe 65 70 75 80 Thr Glu Glu Arg VIE GLU Trp His Ser Ser Gly Ala His Arg Glu Leu 85 90 95
ATA AAT CTT GTG CTC AAT GTC CCA CCA AAG AAT GCA AAT GGA AAA AAT 11 e Aan Leu Val Leu Aan Val Pro Pro Lys Aan Ala Aan Gly Lys Aan 700 GCC AAC TCT TCA GCT GAA AAC AAA CCA ATA CAG AAA GTA AAA AAG ACA Ala Aan Ser Ser Ala Glu Aan Lys Pro II e Gln Lys Val Lys Lys Thr 715 TAC ATT TAGCAGAAAT CTTTGGTATC TGTTTTGGTG CAGACCCATG CCACTAGAGT 725 AACCAAGGACT CTATTGAGAA ATGTCCTCAA GAAAGTTAAA AAGATGTAGA CTTCTGTAAT 730 AACCAAGGACT CTATTGAGAA ATGTCCTCAA GAAAGTTAAA AAGATGTAGA CTTCTGTAAT CGAGAGGCAC ACTTTCCATA GTAATACAGA ACAATGTGAA ATAAATACTA CAGAAGAAGT 2854 (2) INFORMATION FOR SEQ ID NO:58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 10 10 10 10 15 His Ala Ala Trp Val Aan Asp Val Ser Pro Lys Met Tyr Val Gln 20 Phe Gly Clu Glu Arg Val Gln Arg Phe Leu Cly Aan Glu Ser His Lys 40 Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly 50 Ala Arg Asn Ile Val Tyr Aan Ile Ser Leu Arg Asp Leu Thr Glu Phe 65 60 Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 80 90 95
$ \begin{array}{c} \operatorname{GCC} \operatorname{AAC} \operatorname{TCT} \operatorname{TCA} \operatorname{GCT} \operatorname{GAA} \operatorname{AAC} \operatorname{AAA} \operatorname{CAA} \operatorname{ATA} \operatorname{CAG} \operatorname{AAA} \operatorname{GTA} \operatorname{AAA} \operatorname{AAG} \operatorname{ACA} \\ \operatorname{Ala} \operatorname{Asn} \mathop{\operatorname{Ser}} \operatorname{Ser} \operatorname{Ala} \operatorname{Glu} \operatorname{Asn} \underbrace{\operatorname{Lys}} \operatorname{Pro} \operatorname{Ile} \operatorname{Gln} \operatorname{Lys} \operatorname{Val} \operatorname{Lys} \operatorname{Lys} \operatorname{Thr} \\ \\ \begin{array}{c} \operatorname{715} \\ \operatorname{720} \\ \end{array} \end{array} $
TAC ATT TAGCAGAAAT CTTTGGTATC TGTTTTGGTG CAGACCCATG CCACTAGAGT2690Tyr 11e 730730AACCAAGACT CTATTGAGAA ATGTCCTCAA GAAAGTTAAA AAGATGTAGA CTTCTGTAAT2750CGAGAGCACC ACTTTCCATA GTAATACAGA ACAATGTGAA ATAAATACTA CAGAAGAGT2810CTTTGTTACA CAAAAAGTG TATAGTGATC TGTGATCAGT TTCG2854(2) INFORMATION FOR SEQ ID N0:58:2854(1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 amino acids (B) TYPE: amino acids (D) TOPOLOGY: linear2854(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID N0:58:2854Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 1015His Ala Ala Ala Trp Val Asn Asp Val Ser Pro Lys Met Tyr Val Gln 2020Phe Gly Glu Glu Arg Val Gln Arg Phe Leu Gly Asn Glu Ser His Lys 4045Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly 5020Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 6520Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 6520Thr Glu Gln Arg Ile Clu Trp His Ser Ser Gly Ala His Arg Glu Leu 9095
AACCAAGACT CTATTGAGAA ATGTCCTCAA GAAAGTTAAA AAGATGTAGA CTTCTGTAAT 2750 CGAGAGCACC ACTTTCCCATA GTAATACAGA ACAATGTGAA ATAAAATACTA CAGAAGAAGT 2810 CTTTGTTACA CAAAAAAGTG TATAGTGATC TGTGATCAGT TTCG 2854 (2) INFORMATION FOR SEQ ID NO:58: (1) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 1 $1 \frac{5}{10} \frac{10}{10} \frac{11}{10} \frac{11}$
CGAGAGCACC ACTTTCCATA GTAATACAGA ACAATGTGAA ATAAATACTA CAGAAGAAGT 2810 CTTGTTACA CAAAAAGGT TATAGTGAT TGTGATCAGT TTCG 2854 (2) INFORMATION FOR SEQ ID NO:58:
CTTIGTIACA CAAAAAAGTG TATAGTGATC TGTGATCAGT TTCG (2) INFORMATION FOR SEQ ID NO:58: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 1 5 10 15 His Ala Ala Leu Val Ala Val Ala Ser Pro Lys Met Tyr Val Gln 20 25 25 Pro Lys Met Tyr Val Gln 20 40 45 Asp His Phe Lys Leu Leu Glu Arg Phe Leu Gly Asn Glu Ser His Lys 40 45 Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly 50 Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 65 70 75 80 Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 85 90 95
 (2) INFORMATION FOR SEQ ID NO:58: (i) SEQUENCE CHARACTERISTICS: (A) LEMOTH: 730 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 10 10 His Ala Ala Ala Trp Val Asn Asp Val Ser Pro Lys Met Tyr Val Gln 20 25 80 81 90 95
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 730 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 1 1 Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 10 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 5 4 4 5 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4 4 5 4 5 4 5 4 5 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5
 (ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 10 His Ala Ala Ala Trp Val Asn Asp Val Ser Pro Lys Met Tyr Val Gln 20 Phe Gly Glu Glu Arg Val Gln Arg Phe Leu Gly Asn Glu Ser His Lys 40 Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly 50 Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 80 Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 95
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58: Met Arg Ala Ala Leu Val Ala Val Ala Ala Leu Leu Trp Val Ala Leu 10 r Val Ala Leu 10 r Val Ala Leu 15 r His Ala Ala Ala Trp Val Asn Asp Val Ser Pro Lys Met Tyr Val Gln 30 Val Gln Phe Gly Glu Glu Arg Val Gln Arg Phe Leu Gly Asn Glu Ser His Lys 35 r Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly 50 r Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 80 r Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 90 r
Met 1ArgAlaAlaLeu ValAlaAlaAlaAlaAlaAlaLeu 10InHisAlaAlaAlaTrpValAsnAspValSerProLysMetTyrValGlnPheGlyGluGluArgValGlnArgPheLeuGlyAsnGlySerFroLysMetTyrValGlnAspGluGluArgValGluArgAspHisAsnGluAspSerHisAsnGluGlyAlaArgAsnIleValTyrAsnIleSerLeuArgAspLeuFroValGluAlaArgAsnIleValTyrAsnIleSerLeuArgAspLeuFroValGlyAlaArgAsnIleValTyrAsnIleSerLeuArgAspLeuFro
His Ala Ala Ala Trp Val Asn Asp Val Ser Pro Lys Met Tyr Val Gln Phe Gly Glu Glu Arg Val Gln Arg Phe Leu Gly Asn Glu Ser His Lys Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 80 Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 90
Phe Glu Glu Arg Val Glu Arg Phe Leu Glu Ser His Lys Asp His Phe Lys Leu Glu Lys Asp His Ser His Leu Val Glu Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asn Glu Phe Ser Leu Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asn Glu Phe Ser Leu Arg Asn Glu Phe Ser Ser Ser Ser Leu Val Ser S
Asp His Phe Lys Leu Leu Glu Lys Asp His Asn Ser Leu Leu Val Gly50Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe6570<
Ala Arg Asn Ile Val Tyr Asn Ile Ser Leu Arg Asp Leu Thr Glu Phe 65 70 75 80 Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 85 90 95
Thr Glu Gln Arg Ile Glu Trp His Ser Ser Gly Ala His Arg Glu Leu 85 90 95
Cys Tyr Leu Lys Gly Lys Ser Glu Asp Asp Cys Gln Asn Tyr Ile Arg 100 105 110
Val Leu Ala Lys Ile Asp Asp Asp Arg Val Leu Ile Cys Gly Thr Asn 115 120 125
Ala Tyr Lys Pro Leu Cys Arg His Tyr Ala Leu Lys Asp Gly Asp Tyr 130 135 140
Val Val Glu Lys Glu Tyr Glu Gly Arg Gly Leu Cys Pro Phe Asp Pro 145 150 155 160
Asp His Asn Ser Thr Ala Ile Tyr Ser Glu Gly Gln Leu Tyr Ser Ala 165 170 175
Thr Val Ala Asp Phe Ser Gly Thr Asp Pro Leu Ile Tyr Arg Gly Pro 180 185 190
Leu Arg Thr Glu Arg Ser Asp Leu Lys Gln Leu Asn Ala Pro Asn Phe 195 200 205
Val Asn Thr Met Glu Tyr Asn Asp Phe Ile Phe Phe Phe Arg Glu 210 215 220

Thr 225	Ala	Val	Glu	Tyr	Ile 230	Asn	Сув	Gly	Lys	Ala 235	Ile	Tyr	Ser	Arg	Val 240
Ala	Arg	Val	Cys	L y s 245	His	Asp	Lys	Gly	Gly 250	Pro	His	Gln	Gly	Gl y 255	Asp
Arg	Trp	Thr	Ser 260	Phe	Leu	Lys	Ser	Arg 265	Leu	Asn	Cys	Ser	Val 270	Pro	Gly
Asp	Tyr	Pro 275	Phe	Tyr	Phe	Asn	Glu 280	Ile	Gln	Ser	Thr	Ser 285	Asp	Ile	Ile
Glu	Gly 290	Asn	Tyr	Gly	Gly	Gln 295	Val	Glu	Lys	Leu	Ile 300	Tyr	Gly	Val	Phe
Thr 305	Thr	Pro	Val	Asn	Ser 310	Ile	Gly	Gly	Ser	Ala 315	Val	Cys	Ala	Phe	Ser 320
Met	Lys	Ser	Ile	Leu 325	Glu	Ser	Phe	Asp	Gly 330	Pro	Phe	Lys	Glu	Gln 335	Glu
Thr	Met	Asn	Ser 340	Asn	Trp	Leu	Ala	Val 345	Pro	Ser	Leu	Lys	Val 350	Pro	Glu
Pro	Arg	Pro 355	Gly	Gln	Сув	Val	Asn 360	Asp	Ser	Arg	Thr	Leu 365	Pro	Asp	Val
Ser	Val 370	Asn	Phe	Val	Lys	Ser 375	His	Thr	Leu	Met	Asp 380	Glu	Ala	Val	Pro
Ala 385	Phe	Phe	Thr	Arg	Pro 390	Ile	Leu	Ile	Arg	Ile 395	Ser	Leu	Gln	Tyr	Arg 400
Phe	Thr	Lys	Ile	Ala 405	Val	Asp	Gln	Gln	Val 410	Arg	Thr	Pro	Asp	Gl y 415	Lys
Ala	Tyr	Asp	Val 420	Leu	Phe	Ile	Gly	Thr 425	Asp	Asp	Gly	Lys	Val 430	Ile	Lys
Ala	Leu	Asn 435	Ser	Ala	Ser	Phe	Asp 440	Ser	Ser	Asp	Thr	Val 445	Asp	Ser	Val
Val	Ile 450	Glu	Glu	Leu	Gln	Val 455	Leu	Pro	Pro	Gly	Val 460	Pro	Val	Lys	Asn
Leu 465	Tyr	Val	Val	Arg	Met 470	Asp	Gly	Asp	Asp	Ser 475	Lys	Leu	Val	Val	Val 480
Ser	Asp	Asp	Glu	Ile 485	Leu	Ala	Ile	Lys	Leu 490	His	Arg	Cys	Gly	Ser 495	Asp
Lys	Ile	Thr	Asn 500	Cys	Arg	Glu	Cys	Val 505	Ser	Leu	Gln	Asp	Pro 510	Tyr	Cys
Ala	Trp	Asp 515	Asn	Val	Glu	Leu	Lys 520	Сув	Thr	Ala	Val	Gly 525	Ser	Pro	Asp
Trp	Ser 530	Ala	Gly	Lys	Arg	Arg 535	Phe	Ile	Gln	Asn	Ile 540	Ser	Leu	Gly	Glu
His 545	Lys	Ala	Cys	Gly	Gly 550	Arg	Pro	Gln	Thr	Glu 555	Ile	Val	Ala	Ser	Pro 560
Val	Pro	Thr	Gln	Pro 565	Thr	Thr	Lys	Ser	Ser 570	Gly	Asp	Pro	Val	His 575	Ser
Ile	His	Gln	Ala 580	Glu	Phe	Glu	Pro	Glu 585	Ile	Asp	Asn	Glu	Ile 590	Val	Ile
Gly	Val	Asp 595	Asp	Ser	Asn	Val	Ile 600	Pro	Asn	Thr	Leu	Ala 605	Glu	Ile	Asn
His	Ala 610	Gly	Ser	Lys	Leu	Pro 615	Ser	Ser	Gln	Glu	L y s 620	Leu	Pro	Ile	Tyr
Thr 625	Ala	Glu	Thr	Leu	Thr 630	Ile	Ala	Ile	Val	Thr 635	Ser	Cys	Leu	Gly	Ala 640

-continued

Leu	Val	Val	Gly	Phe 645	Ile	Ser	Gly	Phe	Leu 650	Phe	Ser	Arg	Arg	Cys 655	Arg		
Gly	Glu	Asp	Ty r 660	Thr	Asp	Met	Pro	Phe 665	Pro	Asp	Gln	Arg	His 670	Gln	Leu		
Asn	Arg	Leu 675	Thr	Glu	Ala	Gly	Leu 680	Asn	Ala	Asp	Ser	Pro 685	Tyr	Leu	Pro		
Pro	C y s 690	Ala	Asn	Asn	Lys	Ala 695	Ala	Ile	Asn	Leu	Val 700	Leu	Asn	Val	Pro		
Pro 705	Lys	Asn	Ala	Asn	Gly 710	Lys	Asn	Ala	Asn	Ser 715	Ser	Ala	Glu	Asn	L y s 720		
Pro	Ile	Gln	Lys	Val 725	Lys	Lys	Thr	Tyr	Ile 730								
(2)	INFO	ORMA:	LION	FOR	SEO	ID 1	NO:51	9:									
(-)	(i) SE(DUEN	CE CI	HARA	CTER	ISTIC	cs:									
	(- .	(2 (1 (0 (1	A) L1 B) T C) S D) T	ENGTI YPE: IRANI	H: 3 nuc DEDNI OGY:	560] leic ESS: line	acio doul ear	pain d ole	ſS								
	(ii)) MOI	LECUI	LE T	YPE:	cDN	A										
	(ix)) FEA (2 (1	ATURI A) NA B) LO	E: AME/I DCATI	KEY: ION:	CDS 1	1953										
	(xi) SE(QUEN	CE DI	ESCR	IPTI	ON: S	SEQ :	ED NG	D:59	:						
GAG Glu 1	GAT Asp	GAT Asp	ТСТ Сув	CAG Gln 5	AAT Asn	TAC Tyr	ATC Ile	CGC Arg	ATC Ile 10	ATG Met	GTG Val	GTG Val	CCA Pro	TCG Ser 15	CCG Pro	48	
GGT Gly	CGC Arg	CTT Leu	TTC Phe 20	GTT Val	TGT Cys	GGC Gly	ACC Thr	AAC Asn 25	TCG Ser	TTC Phe	CGG Arg	CCC Pro	ATG Met 30	TGC Cys	AAC Asn	96	
ACG Thr	TAT Tyr	ATC Ile 35	ATT Ile	AGT Ser	GAC Asp	AGC Ser	AAC Asn 40	TAC Tyr	ACG Thr	CTG Leu	GAG Glu	GCC Ala 45	ACG Thr	AAG Lys	AAC Asn	144	
GGA Gly	CAG Gln 50	GCG Ala	GTG Val	TGC Cys	CCC Pro	TAC Tyr 55	GAT Asp	CCA Pro	CGT Arg	CAC His	AAC Asn 60	TCC Ser	ACC Thr	TCT Ser	GTG Val	192	
CTG	GCC	GAC	AAC	GAA	CTG	TAT	TCC	GGT	ACC	GTG V∍¹	GCG ⊿1∽	GAT	TTC	AGT	GGC	240	
ьец 65	нта	нар	АВП	сти	лец 70	туг	ser	σтλ	TUL	75 var	мта	чар	FIIG	ser	80 80		
AGC Ser	GAT Asp	CCG Pro	ATT Ile	ATC Ile 85	TAC Tyr	CGG Arg	GAG Glu	CCC Pro	CTG Leu 90	CAG Gln	ACC Thr	GAG Glu	CAG Gln	TAC Tyr 95	GAT Asp	288	
AGC Ser	CTA Leu	AGT Ser	CTC Leu 100	AAC Asn	GCA Ala	CCG Pro	AAC Asn	TTT Phe 105	GTG Val	AGC Ser	TCA Ser	TTT Phe	ACG Thr 110	CAG Gln	GGC Gly	336	
GAC Asp	TTT Phe	GTC Val 115	TAT Tyr	TTC Phe	TTC Phe	TTT Phe	CGG Arg 120	GAA Glu	ACC Thr	GCC Ala	GTT Val	GAG Glu 125	TTT Phe	ATC Ile	AAC Asn	384	
тдт Сув	GGC Gly 130	AAG Lys	GCG Ala	ATT Ile	TAT Tyr	TCG Ser 135	CGC Arg	GTT Val	GCC Ala	CGC Arg	GTC Val 140	тсс Суз	AAA Lys	TGG Trp	GAC Asp	432	
AAA Lys 145	GGT Gly	GGC Gly	CCG Pro	CAT His	CGA Arg 150	TTC Phe	CGC Arg	AAC Asn	CGC Arg	TGG Trp 155	ACA Thr	TCC Ser	TTC Phe	CTC Leu	AAG Lys 160	480	
TCC Ser	CGC Arg	CTC Leu	AAC Asn	TGC C y s 165	TCC Ser	ATT Ile	CCC Pro	GGC Gly	GAT Asp 170	TAT Tyr	CCT Pro	TTC Phe	TAC Tyr	TTT Phe 175	AAT Asn	528	

-continued

GAA Glu	ATC Ile	CAA Gln	TCT Ser 180	GCC Ala	AGC Ser	AAT Asn	CTG Leu	GTG Val 185	GAG Glu	GGA Gly	CAG Gln	TAT Tyr	GGC Gly 190	TCG Ser	ATG Met	576
AGC Ser	TCG Ser	AAA Lys 195	CTG Leu	ATC Ile	TAC Tyr	GGA Gly	GTC Val 200	TTC Phe	AAC Asn	ACG Thr	CCG Pro	AGC Ser 205	AAC Asn	TCA Ser	ATT Ile	624
CCC Pro	GGC Gly 210	TCA Ser	GCG Ala	GTT Val	ТСТ Суз	GCC Ala 215	TTT Phe	GCC Ala	CTC Leu	CAG Gln	GAC Asp 220	ATT Ile	GCC Ala	GAT Asp	ACG Thr	672
TTT Phe 225	GAG Glu	GGT Gly	CAG Gln	TTC Phe	AAG Lys 230	GAG Glu	CAG Gln	ACT Thr	GGC Gly	ATC Ile 235	AAC Asn	TCC Ser	AAC Asn	TGG Trp	CTG Leu 240	720
CCA Pro	GTG Val	AAC Asn	AAC Asn	GCC Ala 245	AAG Lys	GTA Val	CCC Pro	GAT Asp	CCT Pro 250	CGA Arg	CCC Pro	GGT Gly	TCC Ser	TGT Cys 255	CAC His	768
AAC Asn	GAT Asp	TCG Ser	AGA Arg 260	GCG Ala	CTT Leu	CCG Pro	GAT Asp	CCC Pro 265	ACA Thr	CTG Leu	AAC Asn	TTC Phe	ATC Ile 270	AAA Lys	ACA Thr	816
CAT His	TCG Ser	CTA Leu 275	ATG Met	GAC Asp	GAG Glu	AAT Asn	GTG Val 280	CCG Pro	GCA Ala	TTT Phe	TTC Phe	AGT Ser 285	CAA Gln	CCG Pro	ATT Ile	864
TTG Leu	GTC Val 290	CGG Arg	ACG Thr	AGC Ser	ACA Thr	ATA Ile 295	TAC Tyr	CGC	TTC Phe	ACT Thr	CAA Gln 300	ATC Ile	GCC Ala	GTA Val	GAT Asp	912
GCG Ala 305	CAG Gln	ATT Ile	AAA Lys	ACT Thr	CCT Pro 310	GGC Gly	GGC Gly	AAG Lys	ACA Thr	TAT Tyr 315	GAT Asp	GTT Val	ATC Ile	TTT Phe	GTG Val 320	960
GGC Gly	ACA Thr	GAT Asp	CAT His	GGA Gly 325	AAG Lys	ATT Ile	ATT Ile	AAG Lys	TCA Ser 330	GTG Val	AAT Asn	GCT Ala	GAA Glu	TCT Ser 335	GCC Ala	1008
GAT Asp	TCA Ser	GCG Ala	GAT Asp 340	AAA Lys	GTC Val	ACC Thr	TCC Ser	GTA Val 345	GTC Val	ATC Ile	GAG Glu	GAG Glu	ATC Ile 350	GAT Asp	GTC Val	1056
CTG Leu	ACC Thr	AAG Lys 355	AGT Ser	GAA Glu	CCC Pro	ATA Ile	CGC Arg 360	AAT Asn	CTG Leu	GAG Glu	ATA Ile	GTC Val 365	AGA Arg	ACC Thr	ATG Met	1104
CAG Gln	TAC Tyr 370	GAT Asp	CAA Gln	CCC Pro	AAA Lys	GAT Asp 375	GGC Gly	AGC Ser	TAC Tyr	GAC Asp	GAT Asp 380	GGT Gly	AAA Lys	TTA Leu	ATC Ile	1152
ATT Ile 385	GTG Val	ACG Thr	GAC Asp	AGT Ser	CAG Gln 390	GTG Val	GTA Val	GCC Ala	ATA Ile	CAA Gln 395	TTG Leu	CAT His	CGT Arg	TGT Cys	CAC His 400	1200
AAT Asn	GAC Asp	AAA Lys	ATC Ile	ACC Thr 405	AGC Ser	TGC Cys	AGC Ser	GAG Glu	TGC Cys 410	GTC Val	GCA Ala	TTG Leu	CAG Gln	GAT Asp 415	CCG Pro	1248
TAC Tyr	TGC Cys	GCC Ala	TGG Trp 420	GAC Asp	AAA Lys	ATC Ile	GCT Ala	GGC Gly 425	AAG Lys	TGC Cys	CGT Arg	TCC Ser	CAC His 430	GGC Gly	GCT Ala	1296
CCC Pro	CGA Arg	TGG Trp 435	CTA Leu	GAG Glu	GAG Glu	AAC Asn	TAT Tyr 440	TTC Phe	TAC Tyr	CAG Gln	AAT Asn	GTG Val 445	GCC Ala	ACT Thr	GGC Gly	1344
CAG Gln	CAT His 450	GCG Ala	GCC Ala	ТGС Сув	CCC Pro	TCA Ser 455	GGC Gly	AAA Lys	ATC Ile	AAT Asn	TCA Ser 460	AAG Lys	GAT Asp	GCC Ala	AAC Asn	1392
GCT Ala 465	GGG Gly	GAG Glu	CAG Gln	AAG Lys	GGC Gly 470	TTC Phe	CGC Arg	AAC Asn	GAC Asp	ATG Met 475	GAC Asp	TTA Leu	TTG Leu	GAT Asp	TCG Ser 480	1440
CGA Arg	CGC Arg	CAG Gln	AGC Ser	AAG Lys 485	GAT Asp	CAG Gln	GAA Glu	ATA Ile	ATC Ile 490	GAC Asp	AAT Asn	ATT Ile	GAT Asp	AAG Lys 495	AAC Asn	1488

TTT Phe	GAA Glu	GAT Asp	ATA Ile 500	ATC Ile	AAC Asn	GCC Ala	CAG Gln	TAC Tyr 505	ACT Thr	GTG Val	GAG Glu	ACC Thr	CTC Leu 510	GTG Val	ATG Met	1536
GCC Ala	GTT Val	CTG Leu 515	GCC Ala	GGT Gly	TCG Ser	ATC Ile	TTT Phe 520	TCG Ser	CTG Leu	CTG Leu	GTC Val	GGC Gly 525	TTC Phe	TTT Phe	ACA Thr	1584
GGC Gly	TAC Tyr 530	TTC Phe	тдС Сув	GGT Gly	CGC Arg	CGT Arg 535	тдт Сув	CAC His	AAG Lys	GAC Asp	GAG Glu 540	GAT Asp	GAT Asp	AAT Asn	CTG Leu	1632
CCG Pro 545	TAT Tyr	CCG Pro	GAT Asp	ACG Thr	GAG Glu 550	TAC Tyr	GAG Glu	TAC Tyr	TTC Phe	GAG Glu 555	CAG Gln	CGA Arg	CAG Gln	AAT Asn	GTC Val 560	1680
AAT Asn	AGC Ser	TTC Phe	CCC Pro	TCG Ser 565	TCC Ser	ТGТ Сув	CGC Arg	ATC Ile	CAG Gln 570	CAG Gln	GAG Glu	CCC Pro	AAG Lys	CTG Leu 575	CTG Leu	1728
CCC Pro	CAA Gln	GTG Val	GAG Glu 580	GAG Glu	GTG Val	ACG Thr	TAT Tyr	GCG Ala 585	GAC Asp	GCA Ala	GTG Val	CTC Leu	CTG Leu 590	CCA Pro	CAG Gln	1776
CCT Pro	CCG Pro	CCG Pro 595	CCC Pro	AAT Asn	AAG Lys	ATG Met	CAC His 600	TCG Ser	CCG Pro	AAG Lys	AAC Asn	ACG Thr 605	CTG Leu	CGT Arg	AAG Lys	1824
CCC Pro	CCG Pro 610	ATG Met	CAC His	CAG Gln	ATG Met	CAC His 615	CAG Gln	GGT Gly	CCC Pro	AAC Asn	TCG Ser 620	GAG Glu	ACC Thr	CTC Leu	TTC Phe	1872
CAG Gln 625	TTC Phe	CAC His	GTG Val	ACG Thr	GCT Ala 630	ACA Thr	ACA Thr	CCC Pro	AGC Ser	AGT Ser 635	CGT Arg	ATC Ile	GTG Val	GTC Val	GCG Ala 640	1920
ACA Thr	ACT Thr	TCG Ser	GAA Glu	CAC His	TGC Cys	GTT Val	CCC Pro	ACC Thr	AGG Arg	TGAT	IGGG	CGA (CAAT	FACAG	GG	1970
				645					650							
CGCC	GCGI	ATG (GCTT	645 ITCC2	AC CZ	ACCCO	GCAGO	C GTO	650 CAAGI	AAGG	TTT	ACCT	TTG 2	AGACO	GGGAGT	2030
CGCC	GCGI GCGGC	ATG (CTG A	GCTT: AAAC(645 ITCCI CAGT(ac ca Ca go	ACCCO GGAC:	GCAGO FAATI	C GTO T ACO	650 CAAGA CCAAA	AAGG AATA	TTT2 TGG(ACCT: CTGT2	TTG 2	AGACO CAAC <i>I</i>	GGGAGT ACAAAC	2030 2090
CGCC GGGC ACAC	GCG <i>I</i> GCGGC CGTA <i>I</i>	ATG (CTG A ACA (GCTT: AAACO GAAGI	645 FTCCA CAGTO FCTTO	AC CA CA GO GG TO	ACCCO GGAC: CGCGO	GCAGO TAATT CAAG <i>I</i>	C GTO T ACO A AG2	650 CAAGA CCAAA ACAGO	AAGG AATA CCGC	TTTA TGGO CCCO	ACCT: CTGT2 GTCA:	TTG A AAA (IGG (AGACO CAAC <i>I</i> CATTO	GGGAGT ACAAAC GTAACT	2030 2090 2150
CGCC GGGC ACAC CAAC	GGCG <i>I</i> GCGGG CGTA <i>I</i> CACCO	ATG (CTG 4 ACA (GCT (GCTT: AAACO GAAGI CGAAI	645 ITCC CAGT ICTT IAGC	AC CA CA GO GG TO CC CO	ACCCO GGACT CGCGO CAGC <i>I</i>	GCAGO FAATT CAAG <i>I</i> AGCAO	C GTO F ACO A AGA G CAO	650 CAAGA CCAAA ACAGO GCAGO	AAGG AATA CCGC CAGT	TTTZ TGGO CCCO CGCZ	ACCT: CTGT/ GTCA: AGCAG	ITG A AAA (IGG (GCC (AGACO CAACA CATTO GCACT	GGGAGT ACAAAC GTAACT ICCAGT	2030 2090 2150 2210
CGCC GGGC ACAC CAAC TCGC	GCG4 GCGGC CGTA4 CACCC GGCTC	ATG (CTG 2 ACA (GCT (CCT (GCTT AAACO GAAGI CGAAI CGCCO	645 ITCCA CAGTO ICTTO IAGCO CGTAA	AC CA CA GO GG TO CC CO AT GI	ACCCO GGAC CGCGO CAGC ICCA	GCAGO FAATT CAAGA AGCAO ACAGO	C GTC F ACC A AGA G CAC C AGC	650 CAAGA CCAAA ACAGC GCAGC CAGCA	AAGG AATA CCGC CAGT AGTC	TTTA TGGO CCCO CGCA CGGO	ACCT: CTGT/ GTCA: AGCAC	ITG 2 AAA (IGG (GCC (GCC (AGACO CAACA CATTO GCACT	GGGAGT ACAAAC GTAACT FCCAGT AGCAGT	2030 2090 2150 2210 2270
CGCC GGGC ACAC CAAC TCGC	GCG4 GCGGC CGTA4 CACCC GGCTC	ATG (CTG 2 ACA (GCT (CCT (CGC 2	GCTT AAACO GAAG CGAAC CGCCO AGGAO	645 FTCCA CAGTO FAGCO FAGCO CGTAA	AC CA CA GO GG TO CC CO AT GT CC CA	ACCCO GGAC CGCGO CAGC ICCA AAGA	GCAGO IAATT CAAGA AGCAG ACAGO	C GTC F ACC A AGA G CAC G CAC C AGC	650 CAAGA CCAAA ACAGC GCAGCA CAGCA CTACA	AAGG AATA CCGC CAGT AGTC ATCT	TTTA TGGO CCCO CGCA CGGO ACCO	ACCT CTGT GTCA GTCA CTCCC GTGA	FTG 2 AAA (FGG (GCC (GCC (FTG 2	AGACO CAACA CATTO GCACT CTCCA	GGGAGT ACAAAC GTAACT FCCAGT AGCAGT ATATGC	2030 2090 2150 2210 2270 2330
CGCC GGGC ACAC CAAC TCGC CCC2 AAC2	GCGG GCGGC CGTA CACCC GCTC AGTCC	ATG (CTG) ACA (GCT (CCT (CGC)	GCTT: AAACO GAAG CGAA CGCCO AGGAO CGATO	645 FTCC CAGTO FCTTO FAGCO CGTA GAGCO GCCAO	AC CA CA GO GG TO CC CO AT GT CC CA	ACCCC GGAC CGCGC CAGC ICCA AAGA ATCC	GCAGC IAATT CAAGA AGCAC ACAGC ACTGC	C GTC F ACC A AGA G CAC C AGC C AGC C CAC	650 CAAGA CCAAA ACAGC GCAGC CAGCA CTACA	AAGG AATA CCGC CAGT AGTC ATCT ACGC	TTTA TGGC CGCA CGGC ACCC ACCC	ACCT: CTGTA GTCA: AGCAG CTCCG GTGA: CCCAG	TTG 2 AAA (IGG (GCC (GCC (ITG 2 GCC 2	AGACO CAACA CATTO GCACT CTCCA ATTGA	GGGAGT ACAAAC FTAACT FCCAGT AGCAGT ATATGC FCACAC	2030 2090 2150 2210 2270 2330 2390
CGCC GGGC ACAC CAAC TCGC CCCZ AACZ	GCCGA GCCGCC CGTAA CACCCC AGTCC ACCCAA CACCCC	ATG (CTG) ACA (GCT (CCT (CCC) AAT (CCC)	GCTT GAAC GAAG CGAA CGCCC AGGAC CGATC	645 FTCCA CAGTO FAGCO CGTAA GAGCO GCCAO GCCAO	AC CA CA GO GG TO CC CO AT GT CC CA CT CA		GCAGC FAATT CAAGA AGCAGC ACAGC ACTGC AGGCC CCGGT	C GTC F ACC A AG2 G CAC C AGC C AGC C CAC F CCC	650 CAAGA CCAAA ACAGC GCAGCA CAGCA CTACA GTCCA GTCCA	AAGG AATA CCGC CAGT AGTC AGTC ACGC	TTTA TGGO CGCA CGGO ACCO ACCO	ACCT CTGT/ GTCA GTCA CTCCC GTGA CCCAC CAGC/	TTG 2 AAA (IGG (GCC (GCC (ITG 2 GCC 2 ACA (AGACO CATTO GCACT CTCCA ATTGA ACACT	GGGAGT ACAAAC GTAACT ICCAGT AGCAGT ATATGC ICACAC CGCGCC	2030 2090 2150 2210 2270 2330 2390 2450
CGCC GGGC ACAC CAAC TCGC CCC2 AAC2 CCCC AGAA	GGCGA GCGGC CGTAA CCAAGTCC AGTCC AGTCC	ATG (CTG 1 ACA (CCT (CCC (CCC (AAAT (CCC 1 AAAT (CCC 1 AAAT (CCC 1 AAAT (GCTT AAACC GAAC CGAAC CGCC CGAT CGAT CGA	645 TTCC/ CAGTO TCTTO CGTA/ GCCAC GCCAC GCCAC	AC C1 CA GC GG TC CC CC CC C1 CT C1 CC GC AG G1	ACCCC GGAC CGCGC CAGCI CCAC CCACC	GCAGC TAATT CAAGA AGCAC ACAGC ACAGC CCGG7	C GTC F ACC F ACA G AGA C AGC C AGC C AGC C CAC F CCC C AAC	650 CAAGA CCAAA ACAGC GCAGCA CAGCA CAGCA CAGCA CAGCA STCCA	AAGG AATA CCGC CAGT CAGTC AGTC ACGC ACGC	TTTA TGGC CGCA CGGC ACCC ACCC CCCC	ACCTT CTGTI GTCAT AGCAC CTCCC CCCAC CAGCI CAGCI	TTG 2 AAAA (GGCC (GGCC (GGCC 2 AGCC 2 AGCA (AGCC 2	AGACO CATTO GCACT CTCCA ATTGA ACACT GCCAO	GGGAGT ACAAAC STAACT ICCAGT AGCAGT ATATGC ICACAC CGCGCC CAACCG	2030 2090 2150 2210 2270 2330 2390 2450 2510
CGCC GGGC ACAC CAAC TCGC CCC AAC ACC CCGC AGAA	GGCGA GCGGGC CGTAA ZACCC AGTCC ZACCC AGTCC CGCC CGCCC	ATG (CTG) ACA (GCT (CCC (CCC (CCC) AAT (CCC) CCC 1 CCC 1 CCCCC 1 CCC 1 CCCC	GCTT AAACC GAAG CGAAC CGAC CGATC CGATC TGGC TGG	645 TTCC/ CAGTO TCTTO CGTAA CCGTAA GCCAO GCCAO CCGCCA	AC C2 CA GC GG TC CC C2 CT C2 CT C2 CC GC GAG G2	ACCCC GGAC CGCGC CAGC ICCAA AAAGAA AACCA CCACCA	GCAGC FAATT CAAGA AGCAC ACAGC CCGGT ATGCC CCTAT	C GTC F ACC A AGJ C AG C AG C AG C AG C C AG C C AG C C AG C AG	650 CAAGA CCAAA ACAGC GCAGC CCAGC CCAGC CTACA GTCCA GTCCA GTCCA	AAGG AATA CCGC CAGT AGTC ACGC ACGC ATGC FACG	TTTA TGGC CGC2 CGC2 ACCC ACCC CCCC CCCC	ACCT TGTJ FTCA: AGCAG TTCCC GTCCAG CCCAG GCCAG	TTG 2 AAAA (IGG (GGCC (GGCC (GGCC 2 AGCA (ACC 2 CTC (AGACC CATTO GCACT TTCC/ ATTG/ GCCAC GCCAC	GGGAGT ACAAAC TCCAGT TCCAGT AGCAGT ATATGC TCACAC CGCGCC CAACCG GCGGCC	2030 2090 2150 2210 2270 2330 2390 2450 2510 2570
CGCC GGGC ACAC CCAAC CCCC ACC ACC CCCC AGAA ACC	GGCGA GCGGA CGTAA CAGTCC AGTCC AGTCC AGTCC CGCC TCCC2	ATG (CTG) ACA (GCT (CCC (CCC) AAT (CCC) CCC (CCC) CCC (CCC) CCC (CCC)	GCTT: AAACC GAAG CGAAC CGAAC CGATC CGATC CGATC TGGC TTGGC	645 FTCCJ CAGTO FCTTO FAGCO CGTAJ GCCAO GC	AC C1 CA GC GG TC CC CC CT C1 CC C1 CC C1 CC C1 CC C1 CC C1 CC C1 C1 CC C1 C1 CC C1 C1 CC C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	ACCCC GGAC CGCGC CAGCI ICCAI AAAGAI AATCCI CCCAC ACATI	GCAGC TAATT CAAGA AGCAG ACAGG CCGGT ATGCC CCTAT	C GTC C ACC A AGJ C ACC C AGC C AGC C CAC C CAC C CAC C CAC C GAC C GAC	650 CCAAG CCAAA ACAGC GCAGC CAGCA CTACA GTCCA GTCCA GTCCA GCTCT IGATC	AAGG AATA CCGC CAGT AGTC ATCT ACGC ACGC	TTTA TGGC CGCA CGCA ACCC ACCC CCCC CCCC	ACCT TGTI FTCA GCAC CTCCC CCCAC CAGCI GCCAC	TTG) AAAA (TGG (GGCC (GGCC (GGCC) GGCC) ACA (ACC) CTC (CCA (AGACC CAACA CATTC GCACT CTCCA ATTGA ACACT GCCA GGATC GGATC	GGGAGT ACAAAC FTAACT TCCAGT AGCAGT ATATGC CGCGCC CAACCG GCGGCC GACACC	2030 2090 2150 2210 2270 2330 2390 2450 2510 2570 2630
CGCC GGGC ACAC CAAC CCC AAC2 CCCC AGAA CAAT ACCT TCAT	GGCGA GCGGC CGTAA CACCCAA GGCTC AGTCC AGTCC TCCCA TCCCA	ATG (CTG) ACA (GCT (CCCT (CCCT (CCC) AAT (CCCC) CCC 1 CCCC 1 CCCCC 1 CCCC 1 CCCC 1 CCCC 1 CCCC 1 CCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCC 1 CCCCCCC 1 CCCCCC 1 CCCCCCCC	GCTT AAAACC GAAG CGAAC CGAAC CGAAC CGAAC TGGC TTGGC CCAAC	645 TTCCJ TTCCJ CAGTO TAGCO CGTAJ JAGCO GGCCA GGCCA GGCCA GGCCA GGCTTO GGCA GGCATO	AC C1 CA GC GG TC CC CC CT C1 CT C1 CC GC GAG G1 GAAC GC AC AC	ACCCC GGAC CGCGC CAGCI ICCAA AAGAI AAGAI ACATI CCCAC CCCCC CCGCC	GCAGC FAATT CAAGA AGCAG ACAGCAG ACGGCA CCGGT ATGCC CCTAT	C GTC F ACC A AGJ C AGC C AGC C AGC C CAC F CCC C AAC F GAC C GAC C GAC	650 CAAGA CCAAA ACAGC GCAGC CTACA GCAGC GCAGC GCAGC GCACC GCACC GCACC CTACC CTACC	AAGG AATA CCGC CAGT AGTC ACGC ACGC ACGC	TTTA TGGC CGCA CGGC ACCC ACCC CCCC ACCC A	ACCT TGTI GTCA GTCA GTCA GTCA GCCA GCCA CGCA CGCA	TTG 2 AAAA (IGG (GCC (GCC 2 ACA (ACC 2 CTC (CCA (CCA (AGACC CAACZ CATTO GCACT CTCCZ ATTGZ ACACT GCCAC GGATO GGATO GGAGO GGAGO	GGGAGT ACAAAC TCCAGT TCCAGT ACCAGT ATATGC TCACAC CGCGCCC CAACCG GCGCCC GACCG GCATCG	2030 2090 2150 2210 2330 2390 2450 2510 2570 2630 2690
CGCC GGGC ACAC CAAC CCC ACAA CCC AGAA ACC TCAT	GGCGA GCGGCC CGTAA CCGTAA GGCTCC AGTCCC AGTCCC AGTCCC TTCCA TTCCA TCCCCT	ATG (CTG 1 GCT (GCT (CCC (CCC 1 CCC 1 CCCCC 1 CCC 1 CCCC	GCTT AAAACC CGAAC CGAAC CGAAC CGATC TGGC TTGGC CCATC CCCATC	645 TTCCI TTCCI TTCCI TTCCI TTCCI TCTTC TCTTC TCTTC TCTTC CCGTA TCTTC CCGTA CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCCI CCGCI CCGCCI CCGCI CCGCCI CCGC	AC C1 CA GC CC CC CC CC C1 CC C1 CC C1 CC C2 CC C1 CC C3 CC C4 CC C4 C4 CC C4 C4 C4 C4 C4 C5 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	ACCCC GGAC CAGCI CAGCI CCAC CCAC CCAC CC	GCAGC IPATT AGCAG AGCAG CCGGT ATGCC CCGTAT ATGAC CCGCC CCGCC	C GTC C ACC C ACC C ACC C ACC C CAC C C C C C	650 CEAAGA CEAAG GEAGCA CEAGCA CEAGCA CEAGCA GETECA GETECA TGATC CEAGCA CEAGCA CEAGCA	AAGG CCGC CAGT CAGTC ATCT ACGC ATGC TACG GATG GACA	TTTA TGGG CGCA CGGA ACCG ACCG CCGG ACCG CCGG ACCG CCGG CCGG CCGG CCGG	ACCT TTGTI STCA: STCA: CTCCC STGA: STGA: CCCCA GCCA GCCA CGCA: ACGA CCCCA	TTG 2 IGG (GGCC (GGCC (ITG 2 GGCC 2 ITG 2 IGGC 2 ICTC (CCCA (ICTC (AGACC CAACL CAACL CTCCL ATTGJ ACACT GGCAC GGAGC GGAGC CAGCL CAGCL CAGCL	GGGAGT ACAAAC FTAACT TCCAGT AGCAGT ATATGC CGCGCC CACCG GCGCCC GCGCCC GCATCG ATGAGT	2030 2090 2150 2210 2330 2390 2450 2510 2570 2630 2690 2750
CGCC GGGC ACAO CAAO TCGC CCCZ AGAA CAAC TCAT CCAO CCAO	GGCGA GCGGGC CGTAA ZACCC AGTCC AGTCC CAGTCC TCCCA TCCCC TCCCC CCCCC	ATG (CTG) ACA (GCT (CCC (CCC) AAT (CCC) CAA (CCC) CAA (CCC) CAA (CCC) CAA (CCC) CAA (CCC) CCC) CCC (CCC) CCC (CCC) CCC) CCC (CCC) CCC) CCC (CCC) CCC) CCC (CCC) CCC) CCC) CCC) CCC (CCC) CCC)	GCTTT AAACC GGAAC CGAAC CGAAC CGAAC CGAAC CGAAC CCAAC CCCAAC CCCAAC	645 TTCC/ TTCC/ CAGTO ICTTO ICTTO ICTTO ICGCA GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC GCCAC	AC C1 CA GC GG TC CC CC CT C1 CT C1 CCC GC GAC GC T1 AC GC	ACCCC GGGAC CGGGG CCAGC AAGAA AAGAA AACCAT AACCAT ACCAT CCCCA CCCCA	GCAGO TAATT CAAGA AGCAG AGCAG CCGG CCGG TTCGG CCGCC	C GTC C ACC C ACC C ACC C ACC C ACC C CAC C C C C C C C C C C C C	650 CAAGA CCAAA ACAGC GCAGC CTACA GCCAC GCCCA TGATC CTACC TGGCA	AAGG AATA CCGC CAGT AGTC AGTC AGCC AGCC	TTTA TGGC CGC2 CGC2 ACCC ACCC CCCC ACCC ACCC CCCC ACCC CCCC CCCC ACCC CCCC ACCC ACCC ACCC ACCC ACCC CCCC CCCC ACCC CCCC ACCC CCCC CCCC ACCC CCCC CCCC ACCC CCCC CCCC CCCC ACCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC	ACCT TGT/ GTCA: CTCCC CTCCC CTCCC CTCCC CTCAC CTCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC	TTG 2 AAAA (GGC (GGC (GGC 2 CTG 2 GGC 2 CTG 2 CTC (CCA (AGACC CAACJ CATTC GCACT TCCZ ATTGZ ACACT GCCAC GGACC GGACC CAGCZ CAGCZ	GGGAGT ACAAAC TCCAGT TCCAGT AGCAGT ATATGC CGCGCC CACCG GCGCCC GCGCCC GCATCG ATGAGT GCCATC	2030 2090 2150 2210 2330 2390 2450 2510 2570 2630 2690 2750 2810
CGCC GGGC ACAC TCGC CCCZ AACZ ACC ACC TCAT CCAC CCAC	GGCGA	ATG (CTG) ACA (CCT (CCT (CCC) AAT (CCC) CAA (CCC) CAA (CCC) CCA (CCC) CCA (CCC) CCA (CCC) CCA (CCC) CCC) CCC) CCC (CCC) CCC)	GCTT AAACC GAAG CGAAC CGCC CGATC CGATC CGCC CGC	645 TTCCI TTCCI TAGCO CGTAI GAGCO GGCCA GGCC	AC CI CA GG GG TC CC CC CT CI CT CI CC GC AG GI AC AC AC AC AC AC AC GC	ACCCC GGAC: CGCGC CAGCJ TCCAJ AAGAJ AAGAJ ACCCC CCCCC CCCCC CCCCA CCCCA CCCCA	GCAGC TAATT CAAGA AGCAGC ACAGGC CCGGG CCGGG CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC	2 GTC 7 ACC 4 AG2 5 CAC 2 AGC 2 AGC 2 AGC 2 AGC 7 GAC 7 GAC 7 GAC 7 GAC 7 GAC 7 GAC 7 TTT 2 TCC 3 GCC	650 CAAGA CCAAA ACAGC GCAGC CTACA STCCA STCCA STCCA STCCA CTACC TGCCA CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CCAAA	AAGG AATA CCGC CAGT AGTC AGTC ACGC ACGC	TTTA TGGC CGC2 CGC2 ACCC ACCC ACCC CCCC CCCC C	ACCTT TTGT/ GTCAT GTCAT CTCCC GTCAC	TTG 2 AAAA (TGG (GGC (GGC (CGC 2 CTTG 2 CTTG 2 CCCA (CCCA 2 CCCA 2 CCCA 2	AGACC CAACA CATTC GCACT CTCCA ATTGA ACACT GCCAC GGATC GGATC CAGCZ CAGCZ	GGGAGT ACAAAC FTAACT TCCAGT AGCAGT ATATGC TCACAC CCACCC GCGCCC GCGCCC GCGCCC GCATCG GCCATC GCCACC	2030 2090 2150 2210 2330 2390 2450 2510 2510 2630 2690 2750 2810 2870
CGCC GGGC ACAC CCAC CCCA ACC CCCA CCAC CCAC CCAC CCAC	GGCGA GCGGC CGTAA CACCCA GGCTCC AGTCC CCCCA CCCCA CCCCA CCCCA CCCCA	ATG (CTG 2 ACA (CCT (CCT (CCC 2 CCC 2 CCCCC 2 CCC 2 CCCC	GCTTT AAAACC GGAAC CGAAC CGAAC CGAAC CGAAC CGAAC CCAAC CCAAC CCCAAC CCCAAC CCCAAC CCCAAC CCCAAC CCCAAC CCCAAC CCCAAC CCCAAC	645 TTCCI CAGTO ICTTO CGTAI GGCAG GCCAGCCA	AC C1 CA GC GG TC CC C1 C1 CC C1 CC C1 C1 CC C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	ACCCC GGAC: CGCGC CAGCJ TCCAA AAAGAJ ATCCJ CCCAC CCCAC CCCAC CCCCCC CCCCC CCCCC CCCCC CCCCCC	GCAGC TAATT CAAGA AGCAG AGCAG CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGCA	C GTC A AGJ C AGC C AGC C AGC C AGC C AGC C AGC C GAC C GAC C GAC C TTC C GCC C GCC A AGC	650 CAAGZ CCAAA ACAGC GCAGC GCAGC CTACZ GCTCZ TGGCZ GGCAC GGCAC GGCAC GGCAC GGCAC	AAGG AATA CCGC CAGT AGTC AGCC ACGC ACGC	TTT7 TGGC CGC2 CGC2 ACCC ACCC CCCC CCCC CCCC C	ACCT TGT/ JTCA GCCA CTCCC CCCA CAGC/ CCCA CCCA CCCA CCCA CCCA	TTG 2 AAAA (GGC (GGC (GGC 2 CTTG 2 GGC 2 GGC 2 GGC 2 GGC 2 GGC 2 GGC 4 GGC	AGACC CAACJ CATTC GCACT CTCCJ ATTGJ ACACT GGCAC GGATC GGATC CAGCJ CAGCJ CAGCJ CAGCJ CAGCJ CAGCJ	GGGAGT ACAAAC TCCAGT TCCAGT AGCAGT ATATGC CGCGCC CACCG GCGGCC GCGGCC GCACCG GCCATCG GCCATCC GCCACC	2030 2090 2150 2210 2270 2330 2390 2450 2510 2570 2630 2690 2750 2810 2810 2870
CGCC GGGC ACAC CCAAC CCCA AACA CCCA CCAC CCAC CCAC CCAC CCAC	GGCGA GGCGA CGTAA CACCCA GGCTC CACCAA CACCAA CACCAA CCCCAA CCCCAA CCCCAA CCCCAA CCCCAA CCCCAA	ATG (CTG) ACA (CCT (CCT (CCT (CCC) AAT (CCC) CCA ? CCA ? CCA ? CCA (CCA) CCA (CCA)	GCTTT GCCTTT GGAAC CGAAC CGAAC CGAAC CGATC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC CGCCC	645 GAST CAGTO CAGTO ICTTO CGTAN BAGCO GGCCA GGCA GGCCA	AC C1 CA GC GG TC CC CC CAT G! CT C1 CT C1 CT C1 CC GC CC G1 AC GC CC T1 CC GC CC T1 CC GC CC T1 CC GC CC CC CC CC CC C1 CC C1 CC C1 CC C1 CC C1 C1 CC C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	ACCCC GGAC: CGCGG CAGCJ TCCAJ AAGAJ AACCJ CCCAC CCACG CCACG CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC	GCAGC TAATT CAAGA AGCAG ACAGG CCGGT ATGCC CCGGT CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CCGGC CGGC CGGC	2 GTC 4 AGJ 4 AGJ 5 CAC 2 AGC 2 AGC 2 AGC 2 AGC 2 AGC 2 CAC 2 CAC 2 CAC 3 CCC 2 TTC 2 TCC 3 GCC 4 AGC 4 AGC	650 CAAGA CCAAA ACAGC GCAGC CTACA GTACA GTACA GTACA TGGATC TGGATC CTACCA TGGATC CTACCA GGCAAC	AAGG AATA CCGC CAGT CAGTC AACCC AACGC AACGC GACA AACA A	TTTA TGGC CGC2 CGC2 CGGC ACCC CCCC ACCC CCCC C	ACCT TGT/ AGCAC CTCCC CTCCC GTGAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCAC CCCCC CCCCC CCCCC CCCCC CCCCCC	TTG 2 AAAA (GGCC (GGCC (GGCC 2 AGCA 2 AGCA 2 CTC (GGCA 2 CCCA 2 CCCA 2 CCCA 2 CCCA 2 CCCA 2	AGACC CAACJ CATTC GCACT CTCCJ ATTGJ ACACT GGCAC GGCAC CAGCJ CAGCJ CAGCJ CAGCJ CAGCJ CAGCJ CAGCJ	GGGAGT ACAAAC TCCAGT TCCAGT ATATGC TCACAC CACACC CACCG CACCG GCATCG GCCATC GCCATC GCCATC GCCATC GCCATC GCCATC	2030 2090 2150 2210 2330 2390 2450 2510 2570 2630 2690 2750 2810 2870 2870 2990
CGCC GGGC ACAC TCGC CCAA CCC AACA ACCT TCAT CCAC CCAC	GGCGA GGGGGC GGTAA CACCCA GGGCTC CCCCA GCCCCA CCCCCA CCCCCA CCCCCC	ATG (CTG) ACA (CCT (CCC (CCC) CCC (CCC) CCC (CCC) CCC (CCC (CCC) CCC) CCC) CCC (CCC) CCC)	GCTT AAACC GAAG CGAAC CGAAC CGAAC CGATC CGATC CGATC CGCATC CGCATC CGCATC CGCATC CGCATC CGCATC CGCATC	645 TTCCI TTCCI TAGCI CAGTO TAGCI CGTAI GGCA	AC CI CA GG TC CC CC CAT G' CC CI CC CI CI CC CI CI CI CI CI CI CI CI CI CI CI CI CI C	ACCCC GGAC: CGCGC CAGCJ TCCAJ AAAGAJ CCCACC GCCGC CCCACC GCCGC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACC CCCACJ CCCACC CCCAC CCCACC CCCACC CCCACC CCCCAC CCCCCC	GCAGC IPATT CAAGA AGCAG AGCAG CCGGT CCGGT CCGGT CCGGC CCGCC CCGCCCC CCGCCC	C GTC A AGA A AGA C AGC C AGC C AGC C AGC C CAC C C C C C	650 CAAGZ CCAAG CCAAG CCAAG GCAGC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CTACC CAAG CAAG	AAGG AATA CCGC CAGT AGTC AGCC ACGC ACGC	TTTA TGGC CGC2 CGC2 ACCC ACCC CCCC CCCC CCCC C	ACCT TGT/ TGA/ TGA/ TGA/ TGA/ TGA/ CCCA CCCA CCCA CCCA CCCA CCCA CCCA C	TTG 2 AAAA (GGC (GGC (C GGC 2 C GGC 2 C C C C C C C C C C C C C C C C C C	AGACC CAAC/ CATTC GCACT CTCC/ ATTG/ ACACT GCACC GGAGC CAGC/ CAGC/ CAGC/ CAGC/ CAGC/ CAGC/ CAGC/ CAGC/ CAGC/ CAGC/	GGGAGT ACAAAC FTAACT FCCAGT ACCAGT ATATGC CACACC CACCC GCGCCC GCATCG GCCATCC GCCATCC GCCATCC GCCATCC ACCACC ACCACC ACCACC ACCACC	2030 2090 2150 2210 2270 2330 2390 2450 2510 2570 2630 2690 2750 2810 2810 2810 2870 2930 2990

-continued

TAAAGAACGC TTTAGAGAAG TTTTCTGCTA CCTTAAATAG TACACACAAC TCATATCTAA	3170
CGTGGCGCTG CGATATAGGA ATAACCACTC CCCCTTCCCT TAAACTTAAA GTAGCAATCG	3230
AAAAGATCAT TCATTAGCGA CAGAAACTGG ATGGGGATTT ACTTACACAC AAAAAGCCAG	3290
AGAAGTTATA CACGAAGTTT ATAGTTATAT AGCCTTTATA CATACTCCCC GATCTGCTAA	3350
GTATACACAA GCAAGCATAA CATAACATAC GTATATATGA CTCTATATAT ACCAATAGAT	3410
TTCATAGACG ATTCACATGG ATCGGCTACG CTAAATTAGA GCTGCAAAAT GATATTGTTA	3470
ATTACGATTA GAGAAAAAAA AAAAGGAATT CGATATCAAG CKTATCGATA CCNTCGACCT	3530
CGNNNNNGGG GCCCGGTACC CAATTCGCCC	3560
(2) INFORMATION FOR SEC ID NO.60.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 650 amino acids (B) TYPE: amino acid	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
Glu Asp Asp Cys Gln Asn Tyr Ile Arg Ile Met Val Val Pro Ser Pro 1 5 10 15	
Gly Arg Leu Phe Val Cys Gly Thr Asn Ser Phe Arg Pro Met Cys Asn 20 25 30	
Thr Tyr Ile Ile Ser Asp Ser Asn Tyr Thr Leu Glu Ala Thr Lys Asn	
35 40 45	
Gly Gln Ala Val Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ser Val 50 55 60	
Leu Ala Asp Asn Glu Leu Tyr Ser Gly Thr Val Ala Asp Phe Ser Gly65707580	
Ser Asp Pro Ile Ile Tyr Arg Glu Pro Leu Gln Thr Glu Gln Tyr Asp 85 90 95	
Ser Leu Ser Leu Asn Ala Pro Asn Phe Val Ser Ser Phe Thr Gln Gly 100 105 110	
Asp Phe Val Tyr Phe Phe Phe Arg Glu Thr Ala Val Glu Phe Ile Asn	
115 120 125	
Cys Gly Lys Ala Ile Tyr Ser Arg Val Ala Arg Val Cys Lys Trp Asp 130 135 140	
Lys Gly Gly Pro His Arg Phe Arg Asn Arg Trp Thr Ser Phe Leu Lys 145 150 155 160	
Ser Arg Leu Asn Cys Ser Ile Pro Gly Asp Tyr Pro Phe Tyr Phe Asn 165 170 175	
Glu Ile Gln Ser Ala Ser Asn Leu Val Glu Gly Gln Tyr Gly Ser Met	
Ser Ser Lys Leu He Tyr Giy val Phe Asn Thr Pro Ser Asn Ser He 195 200 205	
Pro Gly Ser Ala Val Cys Ala Phe Ala Leu Gln Asp Ile Ala Asp Thr 210 215 220	
Phe Glu Gly Gln Phe Lys Glu Gln Thr Gly Ile Asn Ser Asn Trp Leu225230235240	
Pro Val Asn Asn Ala Lys Val Pro Asp Pro Arg Pro Gly Ser Cys His 245 250 255	
Asn Asp Ser Arg Ala Leu Pro Asp Pro Thr Leu Asn Phe Ile Lys Thr 260 265 270	

-continued

His	Ser	Leu 275	Met	Asp	Glu	Asn	Val 280	Pro	Ala	Phe	Phe	Ser 285	Gln	Pro	Ile
Leu	Val 290	Arg	Thr	Ser	Thr	Ile 295	Tyr	Arg	Phe	Thr	Gln 300	Ile	Ala	Val	Asp
Ala 305	Gln	Ile	Lys	Thr	Pro 310	Gly	Gly	Lys	Thr	Tyr 315	Asp	Val	Ile	Phe	Val 320
Gly	Thr	Asp	His	Gly 325	Lys	Ile	Ile	Lys	Ser 330	Val	Asn	Ala	Glu	Ser 335	Ala
Asp	Ser	Ala	Asp 340	Lys	Val	Thr	Ser	Val 345	Val	Ile	Glu	Glu	Ile 350	Asp	Val
Leu	Thr	Lys 355	Ser	Glu	Pro	Ile	Arg 360	Asn	Leu	Glu	Ile	Val 365	Arg	Thr	Met
Gln	Tyr 370	Asp	Gln	Pro	Lys	Asp 375	Gly	Ser	Tyr	Asp	Asp 380	Gly	Lys	Leu	Ile
Ile 385	Val	Thr	Asp	Ser	Gln 390	Val	Val	Ala	Ile	Gln 395	Leu	His	Arg	Сув	His 400
Asn	Asp	Lys	Ile	Thr 405	Ser	Сув	Ser	Glu	Cys 410	Val	Ala	Leu	Gln	Asp 415	Pro
Tyr	Cys	Ala	Trp 420	Asp	Lys	Ile	Ala	Gl y 425	Lys	Cys	Arg	Ser	His 430	Gly	Ala
Pro	Arg	Trp 435	Leu	Glu	Glu	Asn	Tyr 440	Phe	Tyr	Gln	Asn	Val 445	Ala	Thr	Gly
Gln	His 450	Ala	Ala	Суз	Pro	Ser 455	Gly	Lys	Ile	Asn	Ser 460	Lys	Asp	Ala	Asn
Ala 465	Gly	Glu	Gln	Lys	Gly 470	Phe	Arg	Asn	Asp	Met 475	Asp	Leu	Leu	Asp	Ser 480
Arg	Arg	Gln	Ser	L y s 485	Asp	Gln	Glu	Ile	Ile 490	Asp	Asn	Ile	Asp	Lys 495	Asn
Phe	Glu	Asp	Ile 500	Ile	Asn	Ala	Gln	Ty r 505	Thr	Val	Glu	Thr	Leu 510	Val	Met
Ala	Val	Leu 515	Ala	Gly	Ser	Ile	Phe 520	Ser	Leu	Leu	Val	Gly 525	Phe	Phe	Thr
Gly	Tyr 530	Phe	Cys	Gly	Arg	Arg 535	Сув	His	Lys	Asp	Glu 540	Asp	Asp	Asn	Leu
Pro 545	Tyr	Pro	Asp	Thr	Glu 550	Tyr	Glu	Tyr	Phe	Glu 555	Gln	Arg	Gln	Asn	Val 560
Asn	Ser	Phe	Pro	Ser 565	Ser	Сув	Arg	Ile	Gln 570	Gln	Glu	Pro	Lys	Leu 575	Leu
Pro	Gln	Val	Glu 580	Glu	Val	Thr	Tyr	Ala 585	Asp	Ala	Val	Leu	Leu 590	Pro	Gln
Pro	Pro	Pro 595	Pro	Asn	Lys	Met	His 600	Ser	Pro	Lys	Asn	Thr 605	Leu	Arg	Lys
Pro	Pro 610	Met	His	Gln	Met	His 615	Gln	Gly	Pro	Asn	Ser 620	Glu	Thr	Leu	Phe
Gln 625	Phe	His	Val	Thr	Ala 630	Thr	Thr	Pro	Ser	Ser 635	Arg	Ile	Val	Val	Ala 640
Thr	Thr	Ser	Glu	His 645	Сув	Val	Pro	Thr	Arg 650						

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2670 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA

```
(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 268..2439
```

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

GAAAATCGAA CWCCGAATTG AATGAACWGC AAAACGCCAA TTAGATAGTT GCAAGCCTAA	60
TGCATTTCAG AKATTTNMMC GATGCGAAAC AAGTTCCGCC ACGAAAGTGA ACAGTGGTAA	120
AATGCCCAAG AATCTCGAGC GGAAACACCA AACACAAAAG AACAAGCAAC CGCCTCTCAC	180
TCGCTCTTGC ACTTTAATCC AATTGAGGTT GGTGGGGTCG CATTCGCCCC CCGGTCGACC	240
ACCCCTCTCG CTCGCACCGC CCTCGCA ATG TCT CTT CTA CAG CTA TCG CCG CTC Met Ser Leu Leu Gln Leu Ser Pro Leu 1 5	294
CTC GCA CTC CTG CTA CTC CTC TGC AGT AGT GTG AGC GAG ACG GCT GCG Leu Ala Leu Leu Leu Leu Leu Cys Ser Ser Val Ser Glu Thr Ala Ala 10 15 20 25	342
GAC TAC GAG AAC ACC TGG AAC TTC TAC TAC GAG CGT CCC TGT TGC ACT Asp Tyr Glu Asn Thr Trp Asn Phe Tyr Tyr Glu Arg Pro Cys Cys Thr 30 35 40	390
GGA AAC GAT CAG GGG AAC AAC AAT TAC GGA AAA CAC GGC GCA GAT CAT Gly Asn Asp Gln Gly Asn Asn Asn Tyr Gly Lys His Gly Ala Asp His 45 50 55	438
GTG CGG GAG TTC AAC TGC GGC AAG CTG TAC TAT CGT ACA TTC CAT ATG Val Arg Glu Phe Asn Cys Gly Lys Leu Tyr Tyr Arg Thr Phe His Met 60 65 70	486
AAC GAA GAT CGA GAT ACG CTC TAT GTG GGA GCC ATG GAT CGC GTA TTCAsn Glu Asp Arg Asp Thr Leu Tyr Val Gly Ala Met Asp Arg Val Phe758085	534
CGT GTG AAC CTG CAG AAT ATC TCC TCA TCC AAT TGT AAT CGG GAT GCG Arg Val Asn Leu Gln Asn Ile Ser Ser Ser Asn Cys Asn Arg Asp Ala 90 95 100 105	582
ATC AAC TTG GAG CCA ACA CGG GAT GAT GTG GTT AGC TGC GTC TCC AAA Ile Asn Leu Glu Pro Thr Arg Asp Asp Val Val Ser Cys Val Ser Lys 110 115 120	630
GGC AAA AGT CAG ATC TTC GAC TGC AAG AAC CAT GTG CGT GTC ATC CAG Gly Lys Ser Gln Ile Phe Asp Cys Lys Asn His Val Arg Val Ile Gln 125 130 135	678
TCA ATG GAC CAG GGG GAT AGG CTC TAT GTA TGC GGC ACC AAC GCC CAC Ser Met Asp Gln Gly Asp Arg Leu Tyr Val Cys Gly Thr Asn Ala His 140 145 150	726
AAT CCC AAG GAT TAT GTT ATC TAT GCG AAT CTA ACC CAC CTG CCG CGCAsn Pro Lys Asp Tyr Val Ile Tyr Ala Asn Leu Thr His Leu Pro Arg155160165	774
TCG GAA TAT GTG ATT GCC GTG GGT CTG GGC ATT GCC AAG TGC CCC TACSer Glu Tyr Val Ile Gly Val Gly Leu Gly Ile Ala Lys Cys Pro Tyr170175180185	822
GAT CCC CTC GAC AAC TCA ACT GCG ATT TAT GTG GAG AAT GGC AAT CCG Asp Pro Leu Asp Asn Ser Thr Ala Ile Tyr Val Glu Asn Gly Asn Pro 190 195 200	870
GGT GGT CTG CCC GGT TTG TAC TCC GGC ACC AAT GCG GAG TTC ACC AAG Gly Gly Leu Pro Gly Leu Tyr Ser Gly Thr Asn Ala Glu Phe Thr Lys 205 210 215	918
GCG GAT ACG GTT ATT TTC CGC ACT GAT CTG TAT AAT ACT TCG GCT AAA Ala Asp Thr Val Ile Phe Arg Thr Asp Leu Tyr Asn Thr Ser Ala Lys 220 225 230	966
CGT TTG GAA TAT AAA TTC AAG AGG ACT CTG AAA TAC GAC TCC AAG TGG	1014

100

-continued

Ar	g Leu 235	Glu	Tyr	Lys	Phe	L y s 240	Arg	Thr	Leu	Lys	T y r 245	Asp	Ser	Lys	Trp		
T Le	TG GAG u Asp	C AAi Lys	A CCA Pro	A AA Asn	C TT Phe	r GTC Val	C GGC Gly	C TCC Ser	C TT Phe	I GAN	I ATT Ile	r GGG Gly	G GAG Glu	G TAG Tyr	C GTG Val	1062	
25 TA	0 T TTC	ттт	TTC	CGT	255 GAA	ACC	GCC	GTG	GAA	260 TAC	ATC	AAC	TGC	GGC	265 AAG	1110	
ту	r Phe	Phe	Phe	Arg 270	Glu	Thr	Ala	Val	Glu 275	Tyr	Ile	Asn	Сув	Gl y 280	Lys		
GC Al	T GTC a Val	TAT Tyr	TCG Ser 285	CGC Arg	ATC Ile	GCA Ala	CGG Arg	GTG Val 290	ТGС Сув	AAG Lys	AAG Lys	GAT Asp	GTG Val 295	GGT Gly	GGA Gly	1158	
AA Ly	G AAT s Asn	CTG Leu 300	CTG Leu	GCC Ala	CAC His	AAC Asn	TGG Trp 305	GCC Ala	ACC Thr	TAC Tyr	CTG Leu	AAG Lys 310	GCC Ala	AGA Arg	CTC Leu	1206	
AA As	C TGC n Cys 315	AGC Ser	ATC Ile	TCC Ser	GGC Gly	GAA Glu 320	TTT Phe	CCG Pro	TTC Phe	TAT Tyr	TTC Phe 325	AAC Asn	GAG Glu	ATC Ile	CAA Gln	1254	
TC Se 33	G GTC r Val 0	TAC Tyr	CAG Gln	CTG Leu	CCC Pro 335	TCC Ser	GAT Asp	AAG Lys	AGT Ser	CGA Arg 340	TTC Phe	TTC Phe	GCC Ala	ACA Thr	TTC Phe 345	1302	
AC Th	G ACG r Thr	AGC Ser	ACT Thr	AAT Asn 350	GGC Gly	CTG Leu	ATT Ile	GGA Gly	TCT Ser 355	GCC Ala	GTA Val	ТGС Сув	AGT Ser	TTC Phe 360	CAC His	1350	
AT Il	T AAC e Asn	GAG Glu	ATT Ile 365	CAG Gln	GCT Ala	GCC Ala	TTC Phe	AAT Asn 370	GGC Gly	AAA Lys	TTC Phe	AAG Lys	GAG Glu 375	CAA Gln	TCT Ser	1398	
TC Se	A TCG r Ser	AAT Asn 380	TCC Ser	GCA Ala	TGG Trp	CTG Leu	CCG Pro 385	GTG Val	CTT Leu	AAC Asn	TCC Ser	CGG Arg 390	GTG Val	CCG Pro	GAA Glu	1446	
CC Pr	A CGG o Arg 395	CCG Pro	GGT Gly	ACA Thr	ТСТ Сув	GTC Val 400	AAC Asn	GAT Asp	ACA Thr	TCA Ser	AAC Asn 405	CTG Leu	CCC Pro	GAT Asp	ACC Thr	1494	
GT Va 41	A CTG l Leu 0	AAT Asn	TTC Phe	ATC Ile	AGA Arg 415	TCC Ser	CAT His	CCA Pro	CTT Leu	ATG Met 420	GAC Asp	AAA Lys	GCC Ala	GTA Val	AAT Asn 425	1542	
CA Hi	C GAG s Glu	CAC His	AAC Asn	AAT Asn 430	CCA Pro	GTC Val	TAT Tyr	TAT Tyr	AAA Lys 435	AGG Arg	GAT Asp	TTG Leu	GTC Val	TTC Phe 440	ACC Thr	1590	
AA Ly	G CTC s Leu	GTC Val	GTT Val 445	GAC Asp	AAA Lys	ATT Ile	CGC Arg	ATT Ile 450	GAC Asp	ATC Ile	CTC Leu	AAC Asn	CAG Gln 455	GAA Glu	TAC Tyr	1638	
AT Il	T GTG e Val	TAC Tyr 460	TAT Tyr	GTG Val	GGC Gly	ACC Thr	AAT Asn 465	CTG Leu	GGT Gly	CGC Arg	ATT Ile	TAC Tyr 470	AAA Lys	ATC Ile	GTG Val	1686	
CA Gl	G TAC n Tyr 475	TAC Tyr	CGT Arg	AAC Asn	GGA Gly	GAG Glu 480	TCG Ser	CTG Leu	TCC Ser	AAG Lys	CTT Leu 485	CTG Leu	GAT Asp	ATC Ile	TTC Phe	1734	
GA Gl 49	G GTG u Val 0	GCT Ala	CCA Pro	AAC Asn	GAG Glu 495	GCC Ala	ATC Ile	CAA Gln	GTG Val	ATG Met 500	GAA Glu	ATC Ile	AGC Ser	CAG Gln	ACA Thr 505	1782	
CG Ar	T AAG g Lys	AGC Ser	CTC Leu	TAC Tyr 510	ATT Ile	GGC Gly	ACC Thr	GAT Asp	CAT His 515	CGC Arg	ATC Ile	AAG Lys	CAA Gln	ATC Ile 520	GAC Asp	1830	
CT Le	G GCC u Ala	ATG Met	ТGC Сув 525	AAT Asn	CGC Arg	CGT Arg	TAC Tyr	GAC Asp 530	AAC Asn	тсс Сув	TTC Phe	CGC Arg	ТGC Сув 535	GTC Val	CGT Arg	1878	
GA As	T CCC p Pro	TAC Tyr 540	TGC Cys	GGC Gly	TGG Trp	GAT Asp	AAG Lys 545	GAG Glu	GCC Ala	AAT Asn	ACG Thr	TGC Cys 550	CGA Arg	CCG Pro	TAC Tyr	1926	

-continued	
GAG CTG GAT TTA CTG CAG GAT GTG GCC AAT GAA ACG AGT GAC ATT TGC Glu Leu Asp Leu Leu Gln Asp Val Ala Asn Glu Thr Ser Asp Ile Cys 555 560 565	1974
GAT TCG AGT GTG CTG ACA AAA AAG AAG AAT GTG GTG ACC TAT GGC CAG AGTAsp Ser Ser Val Leu Lys Lys Lys Ile Val Val Thr Tyr Gly Gln Ser570575580585	2022
GTA CAT CTG GGC TGT TTC GTC AAA ATA CCC GAA GTG CTG AAG AAT GAG Val His Leu Gly Cys Phe Val Lys Ile Pro Glu Val Leu Lys Asn Glu 590 595 600	2070
CAA GTG ACC TGG TAT CAT CAC TCC AAG GAC AAG GGA CGC TAC GAG ATT Gln Val Thr Trp Tyr His His Ser Lys Asp Lys Gly Arg Tyr Glu Ile 605 610 615	2118
CGT TAC TCG CCG ACC AAA TAC ATT GAG ACC ACC GAA CGT GGC CTG GTT Arg Tyr Ser Pro Thr Lys Tyr Ile Glu Thr Thr Glu Arg Gly Leu Val 620 625 630	2166
GTG GTT TCC GTG AAC GAA GCC GAT GGT GGT CGG TAC GAT TGC CAT TTG Val Val Ser Val Asn Glu Ala Asp Gly Gly Arg Tyr Asp Cys His Leu 635 640 645	2214
GGC GGC TCG CTT TTG TGC AGC TAC AAC ATT ACA GTG GAT GCC CAC AGA Gly Gly Ser Leu Leu Cys Ser Tyr Asn Ile Thr Val Asp Ala His Arg 650 665 660 665	2262
TGC ACT CCG CCG AAC AAG AGT AAT GAC TAT CAG AAA ATC TAC TCG GAC Cys Thr Pro Pro Asn Lys Ser Asn Asp Tyr Gln Lys Ile Tyr Ser Asp 670 675	2310
TGG TGC CAC GAG TTC GAG AAA TAC AAA ACA GCA ATG AAG TCC TGG GAATrp Cys His Glu Phe Glu Lys Tyr Lys Thr Ala Met Lys Ser Trp Glu685690	2358
AAGAAGCGAGGCCAATGCTCGACACGGCAGATCAGCTGCAATCAGLysLysGlnGlyGlnCysSerThrArgGlnAsnPheSerCysAsnGln700705710	2406
CAT CCG AAT GAG ATT TTC CGT AAG CCC AAT GTC TGATATCACG AAGAGAGTAT His Pro Asn Glu Ile Phe Arg Lys Pro Asn Val 715 720	2459
CGCCCTCAAA ATGCCGTCAT CGTCGTCCAA TCAATTTTAG TTAATCGAAA GCGAAGAGGA	2519
TAATAACAGT GCGGAATAGA AAGCCCAGGA CGAGAAGAAC TCATTATAAT CATTATTATC	2579
AGCGACATCA TCATAGACAT ACTTTCTTCA GCAATGAACA GAAAACTCTT CCTAAAGGAT	2639
TATGCATTTA CCGAAGCATT TACAATGCAT C	2670
(2) INFORMATION FOR SEQ ID NO:62:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 724 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
Met Ser Leu Leu Gln Leu Ser Pro Leu Leu Ala Leu Leu Leu Leu 1 5 10 15	
Cys Ser Ser Val Ser Glu Thr Ala Ala Asp Tyr Glu Asn Thr Trp Asn 20 25 30	
Phe Tyr Tyr Glu Arg Pro Cys Cys Thr Gly Asn Asp Gln Gly Asn Asn 35 40 45	
Asn Tyr Gly Lys His Gly Ala Asp His Val Arg Glu Phe Asn Cys Gly 50 55 60	
Lys Leu Tyr Tyr Arg Thr Phe His Met Asn Glu Asp Arg Asp Thr Leu 65 70 75 80	

-continued

Tyr	Val	Gly	Ala	Met 85	Asp	Arg	Val	Phe	Arg 90	Val	Asn	Leu	Gln	Asn 95	Ile
Ser	Ser	Ser	Asn 100	Cys	Asn	Arg	Asp	Ala 105	Ile	Asn	Leu	Glu	Pro 110	Thr	Arg
Asp	Asp	Val 115	Val	Ser	Сув	Val	Ser 120	Lys	Gly	Lys	Ser	Gln 125	Ile	Phe	Asp
Cys	Lys 130	Asn	His	Val	Arg	Val 135	Ile	Gln	Ser	Met	Asp 140	Gln	Gly	Asp	Arg
Leu 145	Tyr	Val	Сув	Gly	Thr 150	Asn	Ala	His	Asn	Pro 155	Lys	Asp	Tyr	Val	Ile 160
Tyr	Ala	Asn	Leu	Thr 165	His	Leu	Pro	Arg	Ser 170	Glu	Tyr	Val	Ile	Gl y 175	Val
Gly	Leu	Gly	Ile 180	Ala	Lys	Суз	Pro	Ty r 185	Asp	Pro	Leu	Asp	Asn 190	Ser	Thr
Ala	Ile	T y r 195	Val	Glu	Asn	Gly	Asn 200	Pro	Gly	Gly	Leu	Pro 205	Gly	Leu	Tyr
Ser	Gl y 210	Thr	Asn	Ala	Glu	Phe 215	Thr	Lys	Ala	Asp	Thr 220	Val	Ile	Phe	Arg
Thr 225	Asp	Leu	Tyr	Asn	Thr 230	Ser	Ala	Lys	Arg	Leu 235	Glu	Tyr	Lys	Phe	Lys 240
Arg	Thr	Leu	Lys	Ty r 245	Asp	Ser	Lys	Trp	Leu 250	Asp	Lys	Pro	Asn	Phe 255	Val
Gly	Ser	Phe	Asp 260	Ile	Gly	Glu	Tyr	Val 265	Tyr	Phe	Phe	Phe	Arg 270	Glu	Thr
Ala	Val	Glu 275	Tyr	Ile	Asn	Сув	Gly 280	Lys	Ala	Val	Tyr	Ser 285	Arg	Ile	Ala
Arg	Val 290	Cys	Lys	Lys	Asp	Val 295	Gly	Gly	Lys	Asn	Leu 300	Leu	Ala	His	Asn
Trp 305	Ala	Thr	Tyr	Leu	Lys 310	Ala	Arg	Leu	Asn	Сув 315	Ser	Ile	Ser	Gly	Glu 320
Phe	Pro	Phe	Tyr	Phe 325	Asn	Glu	Ile	Gln	Ser 330	Val	Tyr	Gln	Leu	Pro 335	Ser
Asp	Lys	Ser	Arg 340	Phe	Phe	Ala	Thr	Phe 345	Thr	Thr	Ser	Thr	Asn 350	Gly	Leu
Ile	Gly	Ser 355	Ala	Val	Cys	Ser	Phe 360	His	Ile	Asn	Glu	Ile 365	Gln	Ala	Ala
Phe	Asn 370	Gly	Lys	Phe	Lys	Glu 375	Gln	Ser	Ser	Ser	Asn 380	Ser	Ala	Trp	Leu
Pro 385	Val	Leu	Asn	Ser	Arg 390	Val	Pro	Glu	Pro	Arg 395	Pro	Gly	Thr	Суз	Val 400
Asn	Asp	Thr	Ser	Asn 405	Leu	Pro	Asp	Thr	Val 410	Leu	Asn	Phe	Ile	Arg 415	Ser
His	Pro	Leu	Met 420	Asp	Lys	Ala	Val	Asn 425	His	Glu	His	Asn	Asn 430	Pro	Val
Tyr	Tyr	Lys 435	Arg	Asp	Leu	Val	Phe 440	Thr	Lys	Leu	Val	Val 445	Asp	Lys	Ile
Arg	Ile 450	Asp	Ile	Leu	Asn	G1n 455	Glu	Tyr	Ile	Val	Tyr 460	Tyr	Val	Gly	Thr
Asn 465	Leu	Gly	Arg	Ile	Tyr 470	Lys	Ile	Val	Gln	Tyr 475	Tyr	Arg	Asn	Gly	Glu 480
Ser	Leu	Ser	Lys	Leu 485	Leu	Asp	Ile	Phe	Glu 490	Val	Ala	Pro	Asn	Glu 495	Ala
Ile	Gln	Val	Met	Glu	Ile	Ser	Gln	Thr	Arg	Lys	Ser	Leu	Tyr	Ile	Gly

											-	con	tin	ued				
			500					505					510					
Thr	Asp	His 515	Arg	Ile	Lys	Gln	Ile 520	Asp	Leu	Ala	Met	C ys 525	Asn	Arg	Arg			
Tyr	As p 530	Asn	Сув	Phe	Arg	С у в 535	Val	Arg	Asp	Pro	T y r 540	Cys	Gly	Trp	Asp			
Lys 545	Glu	Ala	Asn	Thr	C ys 550	Arg	Pro	Tyr	Glu	Leu 555	Asp	Leu	Leu	Gln	Asp 560			
Val	Ala	Asn	Glu	Thr 565	Ser	Asp	Ile	Суз	Asp 570	Ser	Ser	Val	Leu	L y s 575	Lys			
Lys	Ile	Val	Val 580	Thr	Tyr	Gly	Gln	Ser 585	Val	His	Leu	Gly	C y s 590	Phe	Val			
Lys	Ile	Pro 595	Glu	Val	Leu	Lys	Asn 600	Glu	Gln	Val	Thr	Trp 605	Tyr	His	His			
Ser	Lys 610	Asp	Lys	Gly	Arg	Ty r 615	Glu	Ile	Arg	Tyr	Ser 620	Pro	Thr	Lys	Tyr			
Ile 625	Glu	Thr	Thr	Glu	Arg 630	Gly	Leu	Val	Val	Val 635	Ser	Val	Asn	Glu	Ala 640			
Asp	Gly	Gly	Arg	Tyr 645	Asp	Cys	His	Leu	Gly 650	Gly	Ser	Leu	Leu	C y s 655	Ser			
Tyr	Asn	Ile	Thr 660	Val	Asp	Ala	His	Arg 665	Cys	Thr	Pro	Pro	Asn 670	Lys	Ser			
Asn	Asp	T y r 675	Gln	Lys	Ile	Tyr	Ser 680	Asp	Trp	Cys	His	Glu 685	Phe	Glu	Lys			
Tyr	Lys 690	Thr	Ala	Met	Lys	Ser 695	Trp	Glu	Lys	Lys	Gln 700	Gly	Gln	Сув	Ser			
Thr 705	Arg	Gln	Asn	Phe	Ser 710	Сув	Asn	Gln	His	Pro 715	Asn	Glu	Ile	Phe	A rg 720			
Lys	Pro	Asn	Val															
(2)	INFO	ORMA	FION	FOR	SEQ	ID 1	NO:63	3:										
	(i)) SE((1 (1 (0 (1	QUEN A) L B) T C) S D) T	CE C ENGT YPE: TRAN OPOL	HARAG H: 2 nuc DEDNI OGY:	CTER: 504 } leic ESS: line	ISTIC Dase acio doul Bar	CS: pain d ole	ŝ									
	(ii)) мој	LECU	LE T	YPE:	CDN	A											
	(ix)) FE2 (2 (1	ATUR A) N. B) L	e: ame/: ocat:	KEY: ION:	CDS 355	249	93										
	(xi) SEQ	QUEN	CE D	ESCR	IPTIC	ON: S	SEQ :	D N	: 63	:							
GGC	CGGT	CGA (CCAC	GAGC	GA AG	GTTT	AGTA:	r cai	AGTT	GAGA	GTT	IGTT:	IGG 2	AGCG:	TAGTTT	60		
ACG	GAGCO	GTA (CATT	TAAA'	TT TO	GCGG	ACAA	A TCO	GTGT	FTTG	GTG	CTTC	ICT (GTGG	ATTGTT	120		
GTG	TTCT:	IGA Z	AGAT	GCTT	cc cr	I'TGG'	TTTT	C GG	ATAA	GCTT	TCC	IGTG	GAT 1	IGTTO	GTGTTC	180		
TTG	AAGA	IGC 7	TTCC	CTTG	GT T	TTCG	GATA	A GC	TTTC	CAGC	GTG	GTTT	CAG (CCTC	GCTTG	240		
TTT	GGAC	ccc d	GACA	TAAT	СТ ТО	CGAA	CTAC	A ATO	GAAG	AGGA	AAT	TTTG	AAA (CGCG	ITTCAG	300		
ACG	CGTA	CAA '	ICGA	CAAA	AT G	TTTG	GTTT	CA	ATTG	ATCT	TGC	AATG:	TAG (CTAC	ATG Met 1	357		
GTG Val	GTG Val	AAG Lys	ATC Ile 5	TTG Leu	GTT Val	TGG Trp	TCG Ser	ATA Ile 10	ТGТ Суз	CTG Leu	ATA Ile	GCG Ala	CTG Leu 15	ТGТ Суз	CAT His	405		
GCT	TGG	ATG	CCG	GAT	AGT	TCT	TCC	AAA	TTA	ATA	AAC	CAT	TTT	ААА	TCA	453		

-continued

Ala	Trp	Met 20	Pro	Asp	Ser	Ser	Ser 25	Lys	Leu	Ile	Asn	His 30	Phe	Lys	Ser	
GTT Val	GAA Glu 35	AGT Ser	AAA Lys	AGC Ser	TTT Phe	ACC Thr 40	GGG Gly	AAC Asn	GCC Ala	ACG Thr	TTC Phe 45	CCT Pro	GAT Asp	CAC His	TTT Phe	501
ATT Ile 50	GTC Val	TTG Leu	AAT Asn	CAA Gln	GAC Asp 55	GAA Glu	ACT Thr	TCG Ser	ATA Ile	TTA Leu 60	GTA Val	GGC Gly	GGT Gly	AGA Arg	AAT Asn 65	549
AGG Arg	GTT Val	TAC Tyr	AAT Asn	TTA Leu 70	AGT Ser	ATA Ile	TTC Phe	GAC Asp	CTC Leu 75	AGT Ser	GAG Glu	CGT Arg	AAA Lys	GGG Gly 80	GGG Gly	597
CGA Arg	ATC Ile	GAC Asp	TGG Trp 85	CCA Pro	TCG Ser	TCC Ser	GAT Asp	GCA Ala 90	CAT His	GGC Gly	CAG Gln	TTG Leu	TGT Cys 95	ATA Ile	TTG Leu	645
AAA Lys	GGG Gly	AAA Lys 100	ACG Thr	GAC Asp	GAC Asp	GAC Asp	TGC Cys 105	CAA Gln	AAT Asn	TAC Tyr	ATT Ile	AGA Arg 110	ATA Ile	CTG Leu	TAC Tyr	693
TCT Ser	TCA Ser 115	GAA Glu	CCG Pro	GGG Gly	AAA Lys	TTA Leu 120	GTT Val	ATT Ile	TGC Cys	GGG Gly	ACC Thr 125	AAT Asn	TCG Ser	TAC Tyr	AAA Lys	741
CCC Pro 130	CTC Leu	тдт Суз	CGG Arg	ACG Thr	TAC Tyr 135	GCA Ala	TTT Phe	AAG Lys	GAG Glu	GGA Gly 140	AAG Lys	TAC Tyr	CTG Leu	GTT Val	GAG Glu 145	789
AAA Lys	GAA Glu	GTA Val	GAA Glu	GGG Gly 150	ATA Ile	GGC Gly	TTG Leu	TGT Cys	CCA Pro 155	TAC Tyr	AAT Asn	CCG Pro	GAA Glu	CAC His 160	AAC Asn	837
AGC Ser	ACA Thr	TCT Ser	GTC Val 165	TCC Ser	TAC Tyr	AAT Asn	GGC Gly	CAA Gln 170	TTA Leu	TTT Phe	TCA Ser	GCG Ala	ACG Thr 175	GTC Val	GCC Ala	885
GAC Asp	TTT Phe	TCC Ser 180	GGG Gly	GGC Gly	GAC Asp	CCT Pro	CTC Leu 185	ATA Ile	TAC Tyr	AGG Arg	GAG Glu	CCC Pro 190	CAG Gln	CGC Arg	ACC Thr	933
GAA Glu	CTC Leu 195	TCA Ser	GAT Asp	CTC Leu	AAA Lys	CAA Gln 200	CTG Leu	AAC Asn	GCA Ala	CCG Pro	AAT Asn 205	TTC Phe	GTA Val	AAC Asn	TCG Ser	981
GTG Val 210	GCC Ala	TAT Tyr	GGC Gly	GAC Asp	TAC Tyr 215	ATA Ile	TTC Phe	TTC Phe	TTC Phe	TAC Tyr 220	CGT Arg	GAA Glu	ACC Thr	GCC Ala	GTC Val 225	1029
GAG Glu	TAC Tyr	ATG Met	AAC Asn	TGC Cys 230	GGA Gly	AAA Lys	GTC Val	ATC Ile	TAC Tyr 235	TCG Ser	CGG Arg	GTC Val	GCC Ala	AGG Arg 240	GTG Val	1077
TGC Cys	AAG Lys	GAC Asp	GAC Asp 245	AAA Lys	GGG Gly	GGC Gly	CCT Pro	CAC His 250	CAG Gln	TCA Ser	CGC Arg	GAC Asp	CGC Arg 255	TGG Trp	ACG Thr	1125
TCG Ser	TTC Phe	CTC Leu 260	AAA Lys	GCA Ala	CGT Arg	CTC Leu	AAT Asn 265	ТGТ Сув	TCA Ser	ATT Ile	CCC Pro	GGC Gly 270	GAG Glu	TAC Tyr	CCC Pro	1173
TTT Phe	TAC Tyr 275	TTT Phe	GAT Asp	GAA Glu	ATC Ile	CAA Gln 280	TCA Ser	ACA Thr	AGT Ser	GAT Asp	ATA Ile 285	GTC Val	GAG Glu	GGT Gly	CGG Arg	1221
TAC Tyr 290	AAT Asn	TCC Ser	GAC Asp	GAC Asp	AGC Ser 295	AAA Lys	AAG Lys	ATC Ile	ATT Ile	TAT Tyr 300	GGA Gly	ATC Ile	CTC Leu	ACA Thr	ACT Thr 305	1269
CCA Pro	GTT Val	AAT Asn	GCC Ala	ATC Ile 310	GGC Gly	GGC Gly	TCG Ser	GCC Ala	ATT Ile 315	TGC Cys	GCG Ala	TAT Tyr	CAA Gln	ATG Met 320	GCC Ala	1317
GAC Asp	ATC Ile	TTG Leu	CGC Arg 325	GTG Val	TTT Phe	GAA Glu	GGG Gly	AGC Ser 330	TTC Phe	AAG Lys	CAC His	CAA Gln	GAG Glu 335	ACG Thr	ATC Ile	1365

-continued

AAC Asn	TCG Ser	AAC Asn 340	TGG Trp	CTC Leu	CCC Pro	GTG Val	CCC Pro 345	CAG Gln	AAC Asn	CTA Leu	GTC Val	CCT Pro 350	GAA Glu	CCC Pro	AGG Arg	1413		
CCC Pro	GGG Gly 355	CAG Gln	TGC Cys	GTA Val	CGC Arg	GAC Asp 360	AGC Ser	AGG Arg	ATC Ile	CTG Leu	CCC Pro 365	GAC Asp	AAG Lys	AAC Asn	GTC Val	1461		
AAC Asn 370	TTT Phe	ATT Ile	AAG Lys	ACC Thr	CAC His 375	TCT Ser	TTG Leu	ATG Met	GAG Glu	GAC Asp 380	GTT Val	CCG Pro	GCT Ala	CTT Leu	TTC Phe 385	1509		
GGA Gly	AAA Lys	CCA Pro	GTT Val	CTG Leu 390	GTC Val	CGA Arg	GTG Val	AGT Ser	CTG Leu 395	CAG Gln	TAT Tyr	CGG Arg	TTT Phe	ACA Thr 400	GCC Ala	1557		
ATA Ile	ACA Thr	GTG Val	GAT Asp 405	CCA Pro	CAA Gln	GTG Val	AAA Lys	ACA Thr 410	ATC Ile	AAT Asn	AAT Asn	CAG Gln	TAT Tyr 415	CTC Leu	GAT Asp	1605		
GTT Val	TTG Leu	TAT Tyr 420	ATC Ile	GGA Gly	ACA Thr	GAT Asp	GAT Asp 425	GGG Gly	AAG Lys	GTA Val	CTA Leu	AAA Lys 430	GCT Ala	GTT Val	AAT Asn	1653		
ATA Ile	CCA Pro 435	AAG Lys	CGA Arg	CAC His	GCT Ala	AAA Lys 440	GCG Ala	TTG Leu	TTA Leu	TAT Tyr	CGA Arg 445	AAA Lys	TAC Tyr	CGT Arg	ACA Thr	1701		
TCC Ser 450	GTA Val	CAT His	CCG Pro	CAC His	GGA Gly 455	GCT Ala	CCC Pro	GTA Val	AAA Lys	CAG Gln 460	CTG Leu	AAG Lys	ATC Ile	GCT Ala	CCC Pro 465	1749		
GGT Gly	TAT Tyr	GGC Gly	AAA Lys	GTT Val 470	GTG Val	GTG Val	GTC Val	GGG Gly	AAA Lys 475	GAC Asp	GAA Glu	ATC Ile	AGA Arg	CTT Leu 480	GCT Ala	1797		
AAT Asn	CTC Leu	AAC Asn	CAT His 485	TGT Cys	GCA Ala	AGC Ser	AAA Lys	ACG Thr 490	CGG Arg	TGC Cys	AAG Lys	GAC Asp	TGT Cys 495	GTG Val	GAA Glu	1845		
CTG Leu	CAA Gln	GAC Asp 500	CCA Pro	CAT His	тдС Суз	GCC Ala	TGG Trp 505	GAC Asp	GCC Ala	AAA Lys	CAA Gln	AAC Asn 510	CTG Leu	ТGТ Суз	GTC Val	1893		
AGC Ser	ATT Ile 515	GAC Asp	ACC Thr	GTC Val	ACT Thr	TCG Ser 520	TAT Tyr	CGC Arg	TTC Phe	CTG Leu	ATC Ile 525	CAG Gln	GAC Asp	GTA Val	GTT Val	1941		
CGC Arg 530	GGC Gly	GAC Asp	GAC Asp	AAC Asn	AAA Lys 535	TGT Cys	TGG Trp	TCG Ser	CCG Pro	CAA Gln 540	ACA Thr	GAC Asp	AAA Lys	AAG Lys	ACT Thr 545	1989		
GTG Val	ATT Ile	AAG Lys	AAT Asn	AAG Lys 550	CCC Pro	AGC Ser	GAG Glu	GTT Val	GAG Glu 555	AAC Asn	GAG Glu	ATT Ile	ACG Thr	AAC Asn 560	TCC Ser	2037		
ATT Ile	GAC Asp	GAA Glu	AAG Lys 565	GAT Asp	CTC Leu	GAT Asp	TCA Ser	AGC Ser 570	GAT Asp	CCG Pro	CTC Leu	ATC Ile	AAA Lys 575	ACT Thr	GGT Gly	2085		
CTC Leu	GAT Asp	GAC Asp 580	GAT Asp	TCC Ser	GAT Asp	TGT Cys	GAT Asp 585	CCA Pro	GTC Val	AGC Ser	GAG Glu	AAC Asn 590	AGC Ser	ATA Ile	GGC Gly	2133		
GGA Gly	ТGC Сув 595	GCC Ala	GTC Val	CGC Arg	CAG Gln	CAA Gln 600	CTT Leu	GTT Val	ATA Ile	TAC Tyr	ACA Thr 605	GCT Ala	GGG Gly	ACT Thr	CTA Leu	2181		
CAC His 610	ATT Ile	GTC Val	GTG Val	GTC Val	GTC Val 615	GTC Val	AGC Ser	ATC Ile	GTG Val	GGT Gly 620	TTA Leu	TTT Phe	TCT Ser	TGG Trp	CTT Leu 625	2229		
TAT Tyr	AGC Ser	GGG Gly	TTA Leu	TCT Ser 630	GTT Val	TTC Phe	GCA Ala	AAA Lys	TTT Phe 635	CAC His	TCG Ser	GAT Asp	TCG Ser	CAA Gln 640	TAT Tyr	2277		
CCT Pro	GAG Glu	GCG Ala	CCG Pro 645	TTT Phe	ATA Ile	GAG Glu	CAG Gln	CAC His 650	AAT Asn	CAT His	TTG Leu	GAA Glu	AGA Arg 655	TTA Leu	AGC Ser	2325		

-continued

GCC Ala	AAC Asn	CAG Gln 660	ACG Thr	GGG Gly	TAT Tyr	TTG Leu	ACT Thr 665	CCG Pro	AGG Arg	GCC Ala	AAT Asn	AAA Lys 670	GCG Ala	GTC Val	AAT Asn	2373
TTG Leu	GTG Val 675	GTG Val	AAG Lys	GTG Val	TCT Ser	AGT Ser 680	AGC Ser	ACG Thr	CCG Pro	CGG Arg	CCG Pro 685	AAA Lys	AAG Lys	GAC Asp	AAT Asn	2421
CTC Leu 690	GAT Asp	GTC Val	AGC Ser	AAA Lys	GAC Asp 695	TTG Leu	AAC Asn	ATT Ile	GCG Ala	AGT Ser 700	GAC Asp	GGG Gly	ACT Thr	TTG Leu	CAA Gln 705	2469
AAA Lys	ATC Ile	AAG Lys	AAG Lys	ACT Thr 710	TAC Tyr	ATT Ile	TAG:	rgcgi	АСТ Т	FTTT						2504
(2)	INFO	RMA	TION	FOR	SEQ	ID 1	NO:64	1:								
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 712 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 															
	(ii)	MOI	LECUI	LE T	YPE:	prot	cein									
	(xi)) SE(QUENC	CE DI	ESCR	IPTIC	DN: S	SEQ I	ED NO	D:64	:					
Met 1	Val	Val	Lys	Ile 5	Leu	Val	Trp	Ser	Ile 10	Суз	Leu	Ile	Ala	Leu 15	Cys	
His	Ala	Trp	Met 20	Pro	Asp	Ser	Ser	Ser 25	Lys	Leu	Ile	Asn	His 30	Phe	Lys	
Ser	Val	Glu 35	Ser	Lys	Ser	Phe	Thr 40	Gly	Asn	Ala	Thr	Phe 45	Pro	Asp	His	
Phe	Ile 50	Val	Leu	Asn	Gln	Asp 55	Glu	Thr	Ser	Ile	Leu 60	Val	Gly	Gly	Arg	
Asn 65	Arg	Val	Tyr	Asn	Leu 70	Ser	Ile	Phe	Asp	Leu 75	Ser	Glu	Arg	Lys	Gly 80	
Gly	Arg	Ile	Asp	Trp 85	Pro	Ser	Ser	Asp	Ala 90	His	Gly	Gln	Leu	Cys 95	Ile	
Leu	Lys	Gly	Lys 100	Thr	Asp	Asp	Asp	Cys 105	Gln	Asn	Tyr	Ile	Arg 110	Ile	Leu	
Tyr	Ser	Ser 115	Glu	Pro	Gly	Lys	Leu 120	Val	Ile	Суз	Gly	Thr 125	Asn	Ser	Tyr	
Lys	Pro 130	Leu	Cys	Arg	Thr	Tyr 135	Ala	Phe	Lys	Glu	Gly 140	Lys	Tyr	Leu	Val	
Glu 145	Lys	Glu	Val	Glu	Gly 150	Ile	Gly	Leu	Cys	Pro 155	Tyr	Asn	Pro	Glu	His 160	
Asn	Ser	Thr	Ser	Val 165	Ser	Tyr	Asn	Gly	Gln 170	Leu	Phe	Ser	Ala	Thr 175	Val	
Ala	Asp	Phe	Ser 180	Gly	Gly	Asp	Pro	Leu 185	Ile	Tyr	Arg	Glu	Pro 190	Gln	Arg	
Thr	Glu	Leu 195	Ser	Asp	Leu	Lys	Gln 200	Leu	Asn	Ala	Pro	Asn 205	Phe	Val	Asn	
Ser	Val 210	Ala	Tyr	Gly	Asp	Ty r 215	Ile	Phe	Phe	Phe	T y r 220	Arg	Glu	Thr	Ala	
Val 225	Glu	Tyr	Met	Asn	Cys 230	Gly	Lys	Val	Ile	Tyr 235	Ser	Arg	Val	Ala	Arg 240	
Val	Cys	Lys	Asp	Asp 245	Lys	Gly	Gly	Pro	His 250	Gln	Ser	Arg	Asp	Arg 255	Trp	
Thr	Ser	Phe	Leu 260	Lys	Ala	Arg	Leu	Asn 265	Cys	Ser	Ile	Pro	Gly 270	Glu	Tyr	

⁻continued

Pro	Phe	T y r 275	Phe	Asp	Glu	Ile	Gln 280	Ser	Thr	Ser	Asp	Ile 285	Val	Glu	Gly
Arg	Tyr 290	Asn	Ser	Asp	Asp	Ser 295	Lys	Lys	Ile	Ile	Tyr 300	Gly	Ile	Leu	Thr
Thr 305	Pro	Val	Asn	Ala	Ile 310	Gly	Gly	Ser	Ala	Ile 315	Суз	Ala	Tyr	Gln	Met 320
Ala	Asp	Ile	Leu	Arg 325	Val	Phe	Glu	Gly	Ser 330	Phe	Lys	His	Gln	Glu 335	Thr
Ile	Asn	Ser	Asn 340	Trp	Leu	Pro	Val	Pro 345	Gln	Asn	Leu	Val	Pro 350	Glu	Pro
Arg	Pro	Gly 355	Gln	Cys	Val	Arg	Asp 360	Ser	Arg	Ile	Leu	Pro 365	Asp	Lys	Asn
Val	Asn 370	Phe	Ile	Lys	Thr	His 375	Ser	Leu	Met	Glu	Asp 380	Val	Pro	Ala	Leu
Phe 385	Gly	Lys	Pro	Val	Leu 390	Val	Arg	Val	Ser	Leu 395	Gln	Tyr	Arg	Phe	Thr 400
Ala	Ile	Thr	Val	Asp 405	Pro	Gln	Val	Lys	Thr 410	Ile	Asn	Asn	Gln	Tyr 415	Leu
Asp	Val	Leu	Tyr 420	Ile	Gly	Thr	Asp	Asp 425	Gly	Lys	Val	Leu	L y s 430	Ala	Val
Asn	Ile	Pro 435	Lys	Arg	His	Ala	Lys 440	Ala	Leu	Leu	Tyr	Arg 445	Lys	Tyr	Arg
Thr	Ser 450	Val	His	Pro	His	Gl y 455	Ala	Pro	Val	Lys	Gln 460	Leu	Lys	Ile	Ala
Pro 465	Gly	Tyr	Gly	Lys	Val 470	Val	Val	Val	Gly	Lys 475	Asp	Glu	Ile	Arg	Leu 480
Ala	Asn	Leu	Asn	His	Cys	Ala	Ser	Lys	Thr	Arg	Cys	Lys	Asp	Cys	Val
				485					490					495	
Glu	Leu	Gln	Asp 500	485 Pro	His	Cys	Ala	Trp 505	490 Asp	Ala	Lys	Gln	Asn 510	495 Leu	Cys
Glu Val	Leu Ser	Gln Ile 515	Asp 500 Asp	485 Pro Thr	His Val	Cys Thr	Ala Ser 520	Trp 505 Tyr	490 Asp Arg	Ala Phe	Lys Leu	Gln Ile 525	Asn 510 Gln	495 Leu Asp	Cys Val
Glu Val Val	Leu Ser Arg 530	Gln Ile 515 Gly	Asp 500 Asp Asp	485 Pro Thr Asp	His Val Asn	Cys Thr Lys 535	Ala Ser 520 Cys	Trp 505 Tyr Trp	490 Asp Arg Ser	Ala Phe Pro	Lys Leu Gln 540	Gln Ile 525 Thr	Asn 510 Gln Asp	495 Leu Asp Lys	Cys Val Lys
Glu Val Val Thr 545	Leu Ser Arg 530 Val	Gln Ile 515 Gly Ile	Asp 500 Asp Asp Lys	485 Pro Thr Asp Asn	His Val Asn Lys 550	Cys Thr Lys 535 Pro	Ala Ser 520 Cys Ser	Trp 505 Tyr Trp Glu	490 Asp Arg Ser Val	Ala Phe Pro Glu 555	Lys Leu Gln 540 Asn	Gln Ile 525 Thr Glu	Asn 510 Gln Asp Ile	495 Leu Asp Lys Thr	Cys Val Lys Asn 560
Glu Val Val Thr 545 Ser	Leu Ser Arg 530 Val Ile	Gln 515 Gly Ile Asp	Asp 500 Asp Asp Lys Glu	485 Pro Thr Asp Asn Lys 565	His Val Asn Lys 550 Asp	Cys Thr Lys 535 Pro Leu	Ala Ser 520 Cys Ser Asp	Trp 505 Tyr Trp Glu Ser	490 Asp Arg Ser Val Ser 570	Ala Phe Pro Glu 555 Asp	Lys Leu Gln 540 Asn Pro	Gln Ile 525 Thr Glu Leu	Asn 510 Gln Asp Ile Ile	495 Leu Asp Lys Thr Lys 575	Cys Val Lys Asn 560 Thr
Glu Val Val Thr 545 Ser Gly	Leu Ser Arg 530 Val Ile Leu	Gln Ile 515 Gly Ile Asp	Asp 500 Asp Lys Glu Asp 580	485 Pro Thr Asp Asn Lys 565 Asp	His Val Asn Lys 550 Asp Ser	Cys Thr Lys 535 Pro Leu Asp	Ala Ser 520 Cys Ser Asp Cys	Trp 505 Tyr Trp Glu Ser Asp 585	490 Asp Arg Ser Val Ser 570 Pro	Ala Phe Pro Glu 555 Asp Val	Lys Leu Gln 540 Asn Pro Ser	Gln Ile 525 Thr Glu Leu Glu	Asn 510 Gln Asp Ile Ile Asn 590	495 Leu Asp Lys Thr Lys Ser	Cys Val Lys Asn 560 Thr Ile
Glu Val Val Thr 545 Ser Gly Gly	Leu Ser Arg 530 Val Ile Leu Gly	Gln Ile 515 Gly Ile Asp Asp Cys 595	Asp 500 Asp Lys Glu Asp 580 Ala	485 Pro Thr Asp Asn Lys 565 Asp Val	His Val Asn Lys 550 Asp Ser Arg	Cys Thr Lys 535 Pro Leu Asp Gln	Ala Ser 520 Cys Ser Asp Cys Gln 600	Trp 505 Tyr Trp Glu Ser Asp 585 Leu	490 Asp Arg Ser Val Ser 570 Pro Val	Ala Phe Pro Glu 555 Asp Val Ile	Lys Leu Gln 540 Asn Pro Ser Tyr	Gln Ile 525 Thr Glu Leu Glu Thr 605	Asn 510 Gln Asp Ile Ile Asn 590 Ala	495 Leu Asp Lys Thr Lys 575 Ser Gly	Cys Val Lys Asn 560 Thr Ile Thr
Glu Val Val Thr 545 Ser Gly Gly Leu	Leu Ser Arg 530 Val Ile Leu Gly His 610	Gln Ile 515 Gly Ile Asp Cys 595 Ile	Asp 500 Asp Lys Glu Asp 580 Ala Val	485 Pro Thr Asp Asn Lys 565 Asp Val Val	His Val Asn Lys 550 Asp Ser Arg Val	Cys Thr Lys 535 Pro Leu Asp Gln Val 615	Ala Ser 520 Cys Ser Asp Cys Gln 600 Val	Trp 505 Tyr Glu Ser Asp 585 Leu Ser	490 Asp Arg Ser Val Ser 570 Pro Val Ile	Ala Phe Pro Glu 555 Asp Val Ile Val	Lys Leu Gln 540 Asn Pro Ser Tyr Gly 620	Gln Ile 525 Thr Glu Leu Glu Thr 605 Leu	Asn 510 Gln Asp Ile Ile Asn 590 Ala Phe	495 Leu Asp Lys Thr Lys S75 Ser Gly Ser	Cys Val Lys Asn 560 Thr Ile Thr Trp
Glu Val Thr 545 Ser Gly Leu Leu	Leu Ser Arg 530 Val Ile Leu Gly His 610 Tyr	Gln Ile 515 Gly Ile Asp Cys 595 Ile Ser	Asp 500 Asp Lys Glu Asp 580 Ala Val Gly	485 Pro Thr Asp Asn Lys 565 Asp Val Val Leu	His Val Asn Lys 550 Asp Ser Arg Val Ser 630	Cys Thr Lys 535 Pro Leu Asp Gln Val 615 Val	Ala Ser 520 Cys Ser Asp Cys Gln 600 Val Phe	Trp 505 Tyr Glu Ser Asp 585 Leu Ser Ala	490 Asp Arg Ser Val Ser 570 Pro Val Ile Lys	Ala Phe Glu 555 Asp Val Ile Val Phe 635	Lys Leu Gln 540 Asn Pro Ser Tyr Gly 620 His	Gln Jle 525 Thr Glu Leu Glu Thr 605 Leu Ser	Asn 510 Gln Asp Ile Ile Asn 590 Ala Phe Asp	495 Leu Asp Lys Thr Lys 575 Ser Gly Ser Ser	Cys Val Lys Asn 560 Thr Ile Thr Trp Gln 640
Glu Val Thr 545 Ser Gly Leu Leu Leu 225 Tyr	Leu Ser Arg 530 Val Ile Leu Gly His 610 Tyr Pro	Gln Ile 515 Gly Ile Asp Cys 595 Ile Ser Glu	Asp 500 Asp Lys Glu Asp 580 Ala Val Gly Ala	485 Pro Thr Asp Asn Lys 565 Asp Val Leu Pro 645	His Val Asn Lys 550 Asp Ser Arg Val Ser 630 Phe	Cys Thr Lys 535 Pro Leu Asp Gln 615 Val Ile	Ala Ser 520 Cys Ser Asp Cys Gln 600 Val Phe Glu	Trp 505 Tyr Glu Ser Asp 585 Leu Ser Ala Gln	490 Asp Arg Ser Val Ser 570 Pro Val Ile Lys Hiss 650	Ala Phe Pro Glu 555 Asp Val Ile Val Phe 635 Asn	Lys Leu Gln 540 Asn Pro Ser Tyr Gly 620 His	Gln Ile 525 Thr Glu Leu Glu Thr 605 Leu Ser Leu	Asn 510 Gln Asp Ile Ile Asn 590 Ala Phe Asp Glu	495 Leu Asp Lys Thr Lys 575 Ser Gly Ser Ser Ser Arg 655	Cys Val Lys Asn 560 Thr Ile Thr Trp Gln 640 Leu
Glu Val Thr 545 Ser Gly Leu 625 Tyr Ser	Leu Ser Arg 530 Val Ile Leu Gly His 610 Tyr Pro Ala	Gln Ile 515 Gly Ile Asp Cys 595 Ile Ser Glu Asn	Asp 500 Asp Lys Glu Asp 580 Ala Gly Ala Gly Ala	485 Pro Thr Asp Asn Lys 565 Asp Val Leu Val Leu Pro 645	His Val Asn Lys 550 Asp Ser Arg Val Ser 630 Phe Gly	Cys Thr Lys 535 Pro Leu Asp Gln Val 615 Val Ile Tyr	Ala Ser Cys Ser Asp Cys Gln 600 Val Phe Glu Leu	Trp 505 Tyr Glu Ser Asp 585 Leu Ser Ala Gln Thr 665	490 Asp Arg Ser Val Ser 570 Pro Val Ile Lys His 650 Pro	Ala Phe Glu 555 Asp Val Ile Val Phe 635 Asn Arg	Lys Leu Gln 540 Asn Pro Ser Tyr Gly 620 His His Ala	Gln Jle 525 Thr Glu Leu Glu Thr 605 Leu Ser Leu Asn	Asn 510 Gln Asp Ile Asn 590 Ala Phe Glu Lys 670	495 Leu Asp Lys Thr Lys 575 Ser Gly Ser Ser Ser Arg 655 Ala	Cys Val Lys Asn 560 Thr Ile Thr Trp Gln 640 Leu Val

-continued

Asn Leu Asp Val Ser Lys Asp	Leu Asn Ile Ala Se	er Asp Gly Thr Leu	
690 695	70	00	
Gln Lys Ile Lys Lys Thr Tyr 705 710	Ile		
(2) INFORMATION FOR SEQ ID N	iO:65:		
 (i) SEQUENCE CHARACTERI (A) LENGTH: 369 ba (B) TYPE: nucleic (C) STRANDEDNESS: (D) TOPOLOGY: line 	STICS: se pairs acid double ar		
(ii) MOLECULE TYPE: cDNA			
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 13	69		
(xi) SEQUENCE DESCRIPTIC	N: SEQ ID NO:65:		
ATG ATT TAT TTA TAC ACG GCG	GAT AAC GTA ATT CC	CA AAA GAT GGT TTA 48	
Met Ile Tyr Leu Tyr Thr Ala	Asp Asn Val Ile Pr	TO Lys Asp Gly Leu	
1 5	10	15	
CAA GGA GCA TTT GTC GAT AAA	GAC GGT ACT TAT GA	AC AAA GTT TAC ATT 96	
Gln Gly Ala Phe Val Asp Lys	Asp Gly Thr Tyr As	Sp Lys Val Tyr Ile	
20	25	30	
CTT TTC ACT GTT ACT ATC GGC	TCA AAG AGA ATT GT	TT AAA ATT CCG TAT 144	
Leu Phe Thr Val Thr Ile Gly	Ser Lys Arg Ile Va	al Lys Ile Pro Tyr	
35	40	45	
ATA GCA CAA ATG TGC TTA AAC	GAC GAA TGT GGT CC	CA TCA TCA TTG TCT 192	
Ile Ala Gln Met Cys Leu Asn	Asp Glu Cys Gly Pr	TO Ser Ser Leu Ser	
50 55	6	50	
AGT CAT AGA TGG TCG ACG TTG	CTC AAA GTC GAA TT	TA GAA TGT GAC ATC 240	
Ser His Arg Trp Ser Thr Leu	Leu Lys Val Glu Le	Bu Glu Cys Asp Ile	
65 70	75	80	
GAC GGA AGA AGT TAT AGT CAA	ATT AAT CAT TCT AA	AA ACT ATA AAA CAG 288	
Asp Gly Arg Ser Tyr Ser Gln	Ile Asn His Ser Ly	75 Thr Ile Lys Gln	
85	90	95	
ATA ATG ATA CGA TAC TAT ATG	TAT TCT TTG ATA GT	CC CTT TTC CAA GTC 336	
Ile Met Ile Arg Tyr Tyr Met	Tyr Ser Leu Ile Va	al Leu Phe Gln Val	
100	105	110	
CGC ATT ATG TAC CTA TTC TAT Arg Ile Met Tyr Leu Phe Tyr 115	GAA TAC CAT TAA Glu Tyr His 120	369	
(2) INFORMATION FOR STO ID N	0.66.		
 (i) SEQUENCE CHARACTERI (A) LENGTH: 122 an (B) TYPE: amino ac (D) TOPOLOGY: line 	STICS: ino acids id ar		
(ii) MOLECULE TYPE: prot	ein		
(xi) SEQUENCE DESCRIPTIO	N: SEQ ID NO:66:		
Met Ile Tyr Leu Tyr Thr Ala	Asp Asn Val Ile Pr	co Lys Asp Gly Leu	
1 5	10	15	
Gln Gly Ala Phe Val Asp Lys	Asp Gly Thr Tyr As	sp Lys Val Tyr Ile	
20	25	30	
Leu Phe Thr Val Thr Ile Gly	Ser Lys Arg Ile Va	al Lys Ile Pro Tyr	
35	40	45	
Ile Ala Gln Met Cys Leu Asn	Asp Glu Cys Gly Pr	co Ser Ser Leu Ser	
50 55	6	50	

-continued

117

Ser His Arg Trp Ser Thr Leu Leu Lys Val Glu Leu Glu Cys Asp Ile 65 70 75 80 Asp Gly Arg Ser Tyr Ser Gln Ile Asn His Ser Lys Thr Ile Lys Gln 85 90 95 Ile Met Ile Arg Tyr Tyr Met Tyr Ser Leu Ile Val Leu Phe Gln Val 105 100 110 Arg Ile Met Tyr Leu Phe Tyr Glu Tyr His 115 120 (2) INFORMATION FOR SEQ ID NO:67: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67: Asp Cys Gln Asn Tyr Ile (2) INFORMATION FOR SEQ ID NO:68: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ68 /note= "Xaa denotes N or G at residue #4; and A or S at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68: Cys Gly Thr Xaa Xaa Xaa Xaa Pro 1 5 (2) INFORMATION FOR SEQ ID NO:69: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ69 /note= "Xaa denotes S or C at residue #3" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69: Gly Xaa Xaa Pro Tyr Asp Pro 1 5 (2) INFORMATION FOR SEQ ID NO:70: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids(B) TYPE: amino acid

```
-continued
```

```
(C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..7
          (D) OTHER INFORMATION: /label= SEQ70
               /note= "Xaa denotes V, N or A"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
Leu Tyr Ser Gly Thr Xaa Ala
1
                5
(2) INFORMATION FOR SEQ ID NO:71:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids(B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:
Leu Asn Ala Pro Asn Phe Val
1
                5
(2) INFORMATION FOR SEQ ID NO:72:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 7 amino acids(B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
           (B) LOCATION: 1..7
          (D) OTHER INFORMATION: /label= SEQ72
               /note= "Xaa denotes V or I"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:
Arg Xaa Ala Arg Val Cys Lys
(2) INFORMATION FOR SEQ ID NO:73:
     (i) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 9 amino acids(B) TYPE: amino acid
          (C) STRANDEDNESS: single
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
          (A) NAME/KEY: Peptide
          (B) LOCATION: 1..9
          (D) OTHER INFORMATION: /label= SEQ73
               /note= "Xaa denotes T or A at residue #2; T or S
                at residue #3; F or Y at residue #4; and A or S at
               residue #7"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:
Trp Xaa Xaa Xaa Leu Lys Xaa Arg Leu
1
                5
(2) INFORMATION FOR SEQ ID NO:74:
```

```
-continued
```

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..9 (D) OTHER INFORMATION: /label= SEQ74 /note= "Xaa denotes N or D" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:74: Pro Phe Tyr Phe Xaa Glu Ile Gln Ser 1 5 (2) INFORMATION FOR SEQ ID NO:75: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ75 /note= "Xaa denotes F or Y at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75: Gly Ser Ala Val Cys Xaa Xaa (2) INFORMATION FOR SEQ ID NO:76: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ76 /note= "Xaa denotes P or A at residue #6" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76: Asn Ser Asn Trp Leu Xaa Val 1 5 (2) INFORMATION FOR SEQ ID NO:77: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ77

/note= "Xaa denotes E or D at residue #2; T, Q or S at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77: Pro Xaa Pro Arg Pro Gly Xaa Cys 5 (2) INFORMATION FOR SEQ ID NO:78: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ78 /note= "Xaa denotes A or G" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78: Asp Pro Tyr Cys Xaa Trp Asp 5 (2) INFORMATION FOR SEQ ID NO:79: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ79 /note= "Xaa denotes N or G at residue #4; A or S at residue #5; Y, F, H or G at residue #6; and K, R, H, N or Q at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79: Cys Gly Thr Xaa Xaa Xaa Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:80: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1...7 (D) OTHER INFORMATION: /label= SEQ80 /note= "Xaa denotes N or G at residue #4; A, S or N at residue #5; Y, F or H at residue #6; and K, R, H, N or Q at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80: Cys Gly Thr Xaa Xaa Xaa Xaa 5

```
-continued
```

(2) INFORMATION FOR SEQ ID NO:81: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ81 /note= "Xaa denotes N or G at residue #4; and A or S at residue #5" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81: Cys Gly Thr Xaa Xaa Xaa Xaa Pro 5 (2) INFORMATION FOR SEQ ID NO:82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ82 /note= "Xaa denotes K, F or Y at residue #2; F or Y at residue #4; F, Y, I or L at residue #5; F, Y or I at residue #6; and F or Y at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82: Asp Xaa Val Xaa Xaa Xaa 5 1 (2) INFORMATION FOR SEO ID NO:83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ83 /note= "Xaa denotes V or I at residue #1; F or Y at residue #2; F, Y or L at residue #3; F, Y, I or L at residue #4; R or T at residue #6; and T or N at residue #8″ (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83: Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa 5 (2) INFORMATION FOR SEQ ID NO:84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid(C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
-continued
```

(ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8
(D) OTHER INFORMATION: /label= SEQ84 /note= "Xaa denotes V or I at residue #1; F or Y at residue #2; F, Y, I or L at residue #3; F, Y or I at residue #4; R or T at residue #6; and T or N at residue #8″ (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84: Xaa Xaa Xaa Xaa Phe Xaa Xaa Xaa 5 (2) INFORMATION FOR SEQ ID NO:85: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ85 /note= "Xaa denotes V or I at residue #1; F or Y at residue #2; F, Y, I or L at residue #3; F, Y, I or L at residue #4; and T or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85: Xaa Xaa Xaa Xaa Phe Arg Xaa Xaa 5 1 (2) INFORMATION FOR SEQ ID NO:86: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ86 /note= "Xaa denotes V or I at residue #1; F or Y at residue #2; F, Y or L at residue #3; F, Y, I or L at residue #4; F or Y at residue #5, R or T at residue #6, E, D or V at residue #7; and T or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86: Xaa Xaa Xaa Xaa Xaa Xaa Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:87: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide

```
-continued
```

(B) LOCATION: 1...7 (D) OTHER INFORMATION: /label= SEQ87 /note= "Xaa denotes R, K or N at residue #1; T or A at residue #3; T, A or S at residue #4; F, Y or L at residue #5; and K or R at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:87: Xaa Trp xaa Xaa Xaa Leu Xaa 5 (2) INFORMATION FOR SEQ ID NO:88: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..9 (D) OTHER INFORMATION: /label= SEQ88 /note= "Xaa denotes T or A at residue #2; T, A or S at residue #3; F, Y or L at residue #4; A, S, V, I or L at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88: Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu 5 1 (2) INFORMATION FOR SEQ ID NO:89: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1...9 (D) OTHER INFORMATION: /label= SEQ89 /note= "Xaa denotes T, A or S at residue #2; T, A or S at residue #3; F, Y or L at residue #4; A, S, I or L at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89: Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu 5 1 (2) INFORMATION FOR SEQ ID NO:90: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..11 (D) OTHER INFORMATION: /label= SEQ90 /note= "Xaa denotes T or A at residue #2; and T, A or S $\,$ at residue #3" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

10

5

132

```
Trp Xaa Xaa Xaa Leu Lys Xaa Xaa Leu Xaa Cys
```

-continued

(2) INFORMATION FOR SEQ ID NO:91: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids(B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..9 (D) OTHER INFORMATION: /label= SEQ91 /note= "Xaa denotes V, L or I at residue #1" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91: Xaa Pro Xaa Pro Arg Pro Gly Xaa Cys 5 (2) INFORMATION FOR SEQ ID NO:92: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ92 /note= "Xaa denotes K or Y at residue #2; F or Y at residue #4; F, Y or L at residue #5; F, Y, I or L at residue #6; and F or Y at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92: Asp Xaa Val Xaa Xaa Xaa Xaa 5 1 (2) INFORMATION FOR SEQ ID NO:93: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide(B) LOCATION: 1..7 (D) OTHER INFORMATION: /label= SEQ93 /note= "Xaa denotes K or Y at residue #2; F or Y at residue #4; F, Y, I or L at residue #5; F, Y or I at residue #6; and F or Y at residue #7" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93: Asp Xaa Val Xaa Xaa Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:94: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids(B) TYPE: amino acid

```
-continued
```

```
(C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..8
           (D) OTHER INFORMATION: /label= SEQ94
                 /note= "Xaa denotes V or I at residue #1; F, Y or L
                at residue #3; F, Y, I or L at residue #4; R or T at
residue #6; and T or N at residue #8"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:
Xaa Tyr Xaa Xaa Phe Xaa Xaa Xaa
1
                  5
(2) INFORMATION FOR SEQ ID NO:95:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 8 amino acids(B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..8
           (D) OTHER INFORMATION: /label= SEQ95
                /note= "Xaa denotes V or I at residue #1; F, Y, I or L
at residue #3; F, Y or I at residue #4; R or T at
residue #6; and T or N at residue #8"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:
Xaa Tyr Xaa Xaa Phe Xaa Xaa Xaa
                  5
(2) INFORMATION FOR SEQ ID NO:96:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 8 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
           (B) LOCATION: 1..8
           (D) OTHER INFORMATION: /label= SEQ96
                /note= "Xaa denotes V or I at residue #1; F, Y, I or L
                at residue #3; F, Y, I or L at residue #4; and T or N at residue #8" \,
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:
Xaa Tyr Xaa Xaa Phe Arg Xaa Xaa
1
                 5
(2) INFORMATION FOR SEQ ID NO:97:
     (i) SEQUENCE CHARACTERISTICS:
           (A) LENGTH: 8 amino acids
           (B) TYPE: amino acid
           (C) STRANDEDNESS: single
           (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: peptide
    (ix) FEATURE:
           (A) NAME/KEY: Peptide
```

```
-continued
```

(B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ97 /note= "Xaa denotes F or Y at residue #2; F, Y or L at residue #3; F, Y, I or L at residue #4; F or Y at residue #5; R or T at residue #6; E, D, or V at residue #7; and T or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97: Val Xaa Xaa Xaa Xaa Xaa Xaa 5 (2) INFORMATION FOR SEQ ID NO:98: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ98 /note= "Xaa denotes F or Y at residue #2; F, Y, I or L at residue #3; F, Y or I at residue #4; F or Y at residue #5; R or T at residue #6; E, D, or V at residue #7; and T or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98: Val Xaa Xaa Xaa Xaa Xaa Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:99: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1...8 (D) OTHER INFORMATION: /label= SEQ99 /note= "Xaa denotes F or Y at residue #2; F, Y, I or L at residue #3; F, Y, I or L at residue #2; F, Y, I or residue #5; E, D, or V at residue #7; and T or N at residue #8" (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99: Val Xaa Xaa Xaa Xaa Arg Xaa Xaa 1 5 (2) INFORMATION FOR SEQ ID NO:100: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 1..8 (D) OTHER INFORMATION: /label= SEQ100 /note= "Xaa denotes F or Y at residue #2; F, Y, I or L at residue #3; F, Y, I or L at residue #4; F or Y at

-continued	
residue #5; R or T at residue #6; E, D, or V at residue #7; and T or N at residue $\#8''$	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:	
Val Xaa Xaa Xaa Xaa Xaa Xaa 1 5	

What is claimed is

semaphorin III which comprises SEQ ID NO:54.

1. An isolated antibody that specifically binds human

* * * * *