

US 20160032317A1

(19) United States

(12) Patent Application Publication Rossi et al.

(10) **Pub. No.: US 2016/0032317 A1**(43) **Pub. Date:** Feb. 4, 2016

(54) COMPOSITIONS AND METHODS FOR REPROGRAMMING HEMATOPOIETIC STEM CELL LINEAGES

(71) Applicant: CHILDREN'S MEDICAL CENTER CORPORATION, Boston, MA (US)

(72) Inventors: **Derrick Rossi**, Roslindale, MA (US); **Jonah Riddell**, Brighton, MA (US); **Roi**

Gazit, Rishon LeZion (IL)

(73) Assignee: CHILDREN'S MEDICAL CENTER CORPORATION, Boston, MA (US)

(21) Appl. No.: 14/774,785

(22) PCT Filed: Mar. 14, 2014

(86) PCT No.: PCT/US14/29144

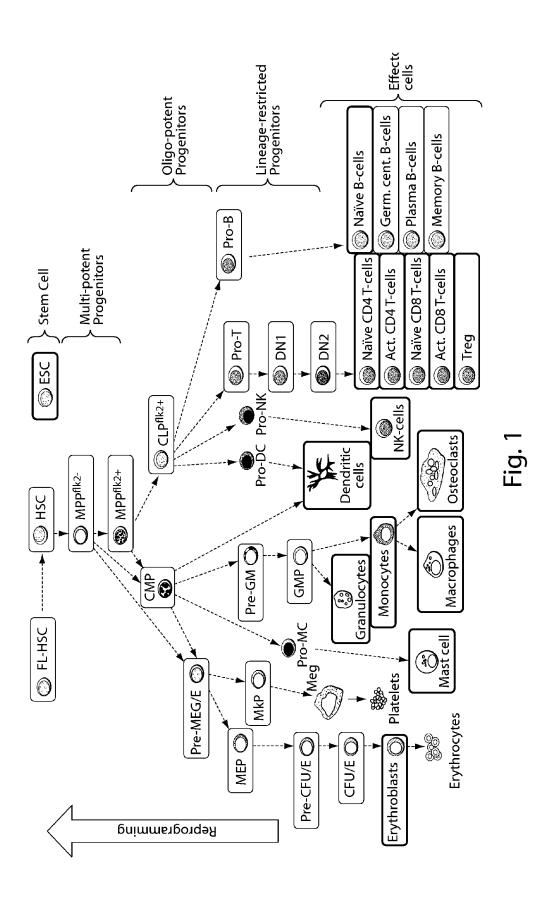
§ 371 (c)(1),

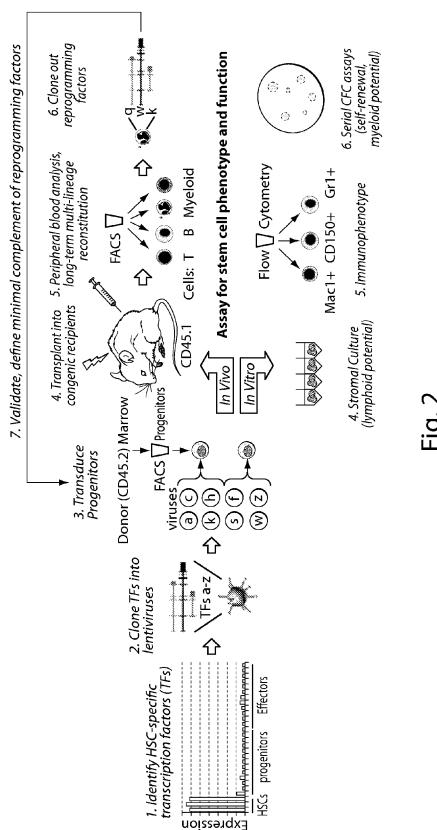
(2) Date: **Sep. 11, 2015**

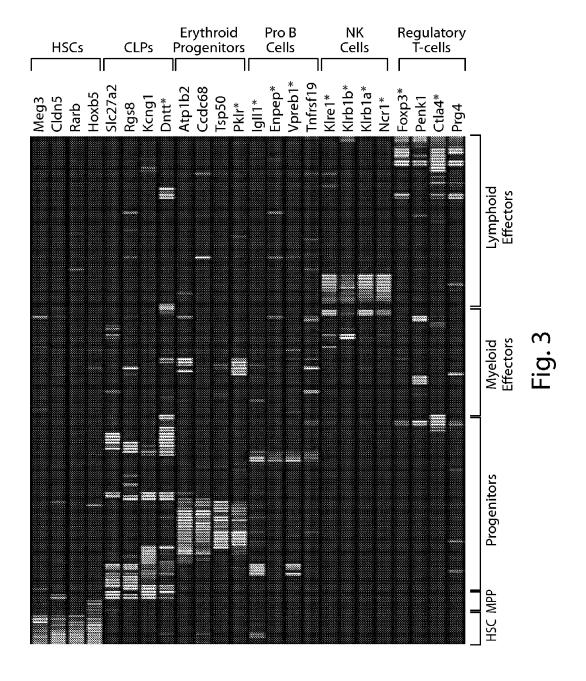
Related U.S. Application Data

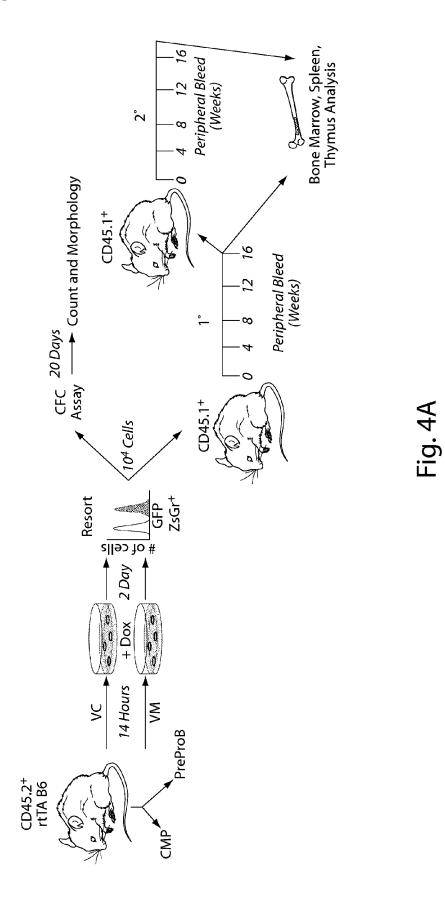
(60) Provisional application No. 61/782,037, filed on Mar. 14, 2013.

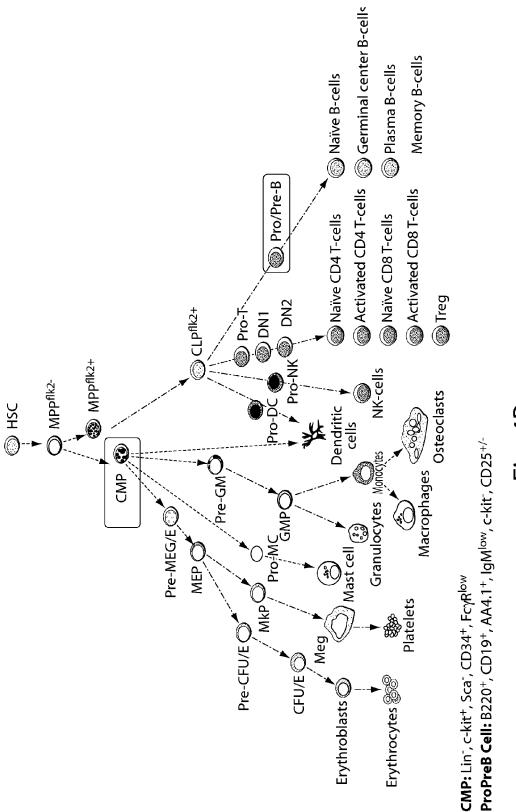
Publication Classification

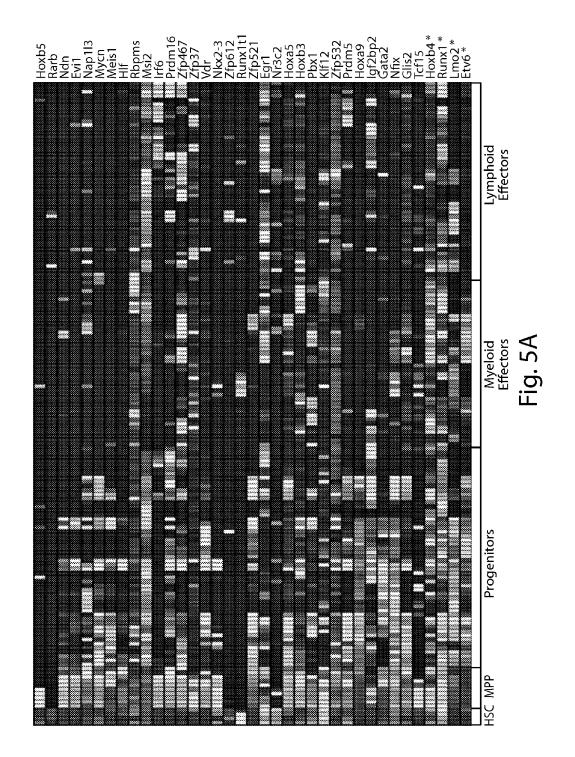

(51) **Int. Cl.**


C12N 15/86 (2006.01) *C12N 5/0789* (2006.01)


(52) U.S. Cl.


(57) ABSTRACT


Provided herein are compositions, methods, and kits for hematopoietic stem cell induction or for reprogramming cells to the multipotent state of hematopoietic stem cells. In some embodiments, the compositions comprise at least one HSC inducing factor. Such compositions, methods and kits can be used for inducing hematopoietic stem cells in vitro, ex vivo, or in vivo, as described herein, and these induced hematopoietic stem cells can be used in regenerative medicine applications and therapies.



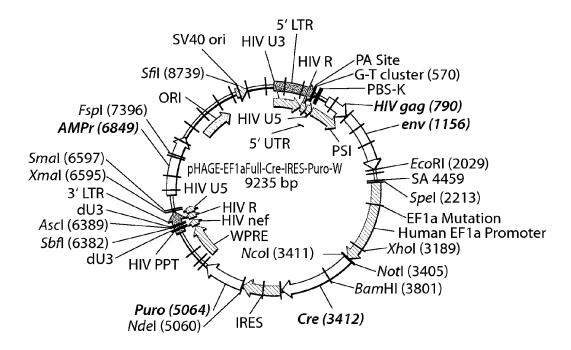


Fig. 5B

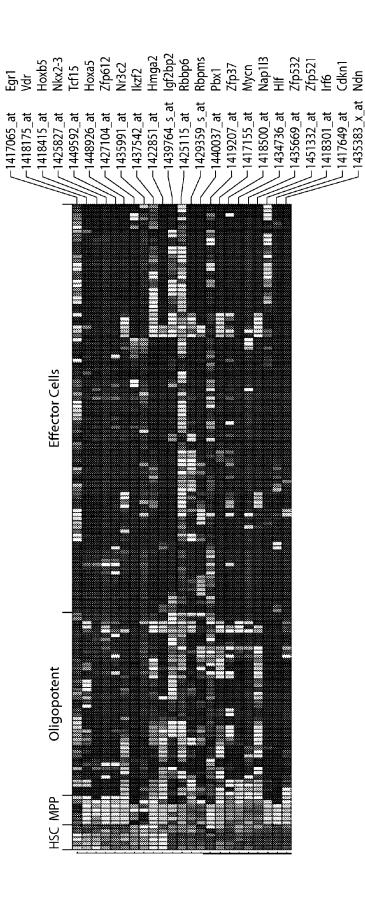


Fig. 5C-1

-1449389_at

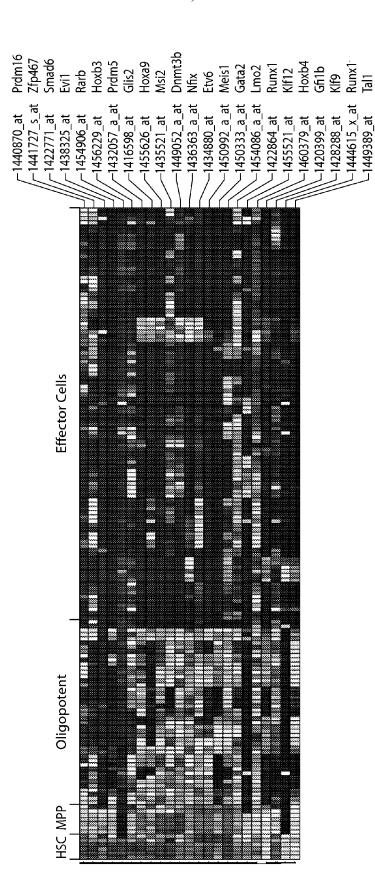
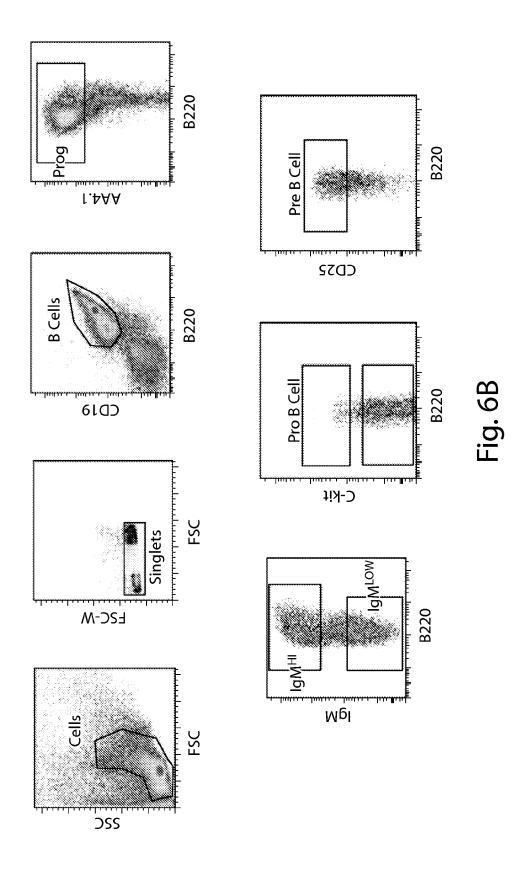



Fig. 5C-2

B220 Enrichment

Fig. 6A

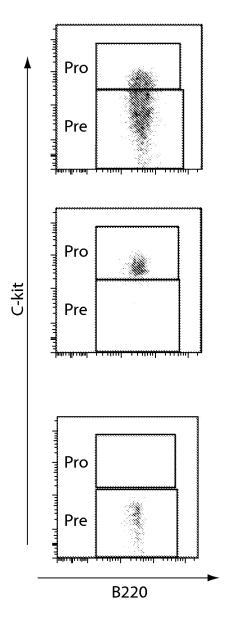
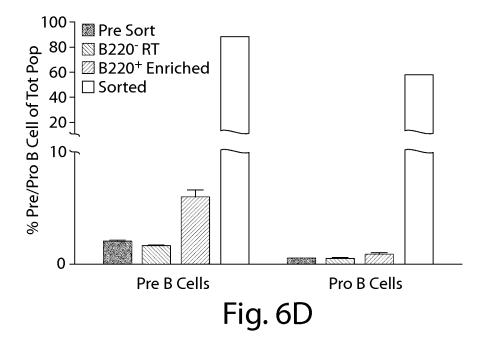
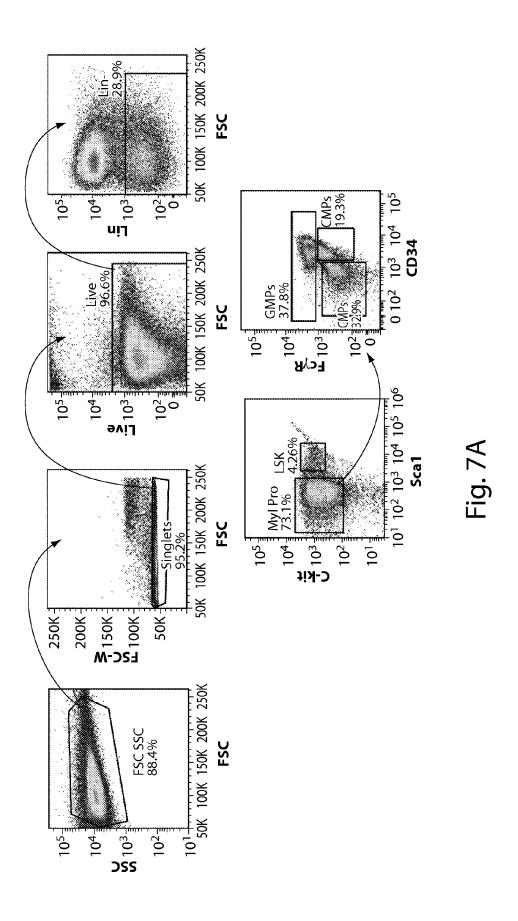
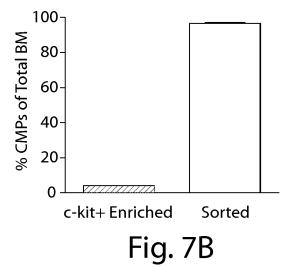
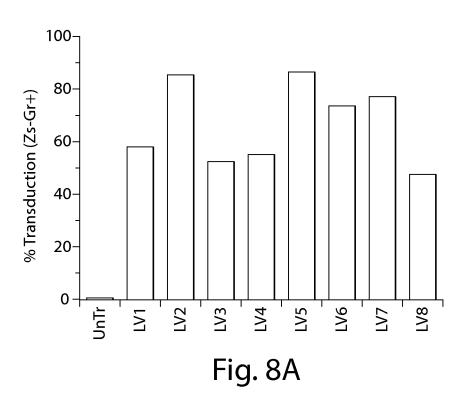






Fig. 6C

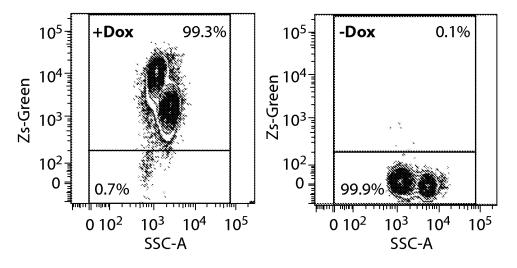


Fig. 8B

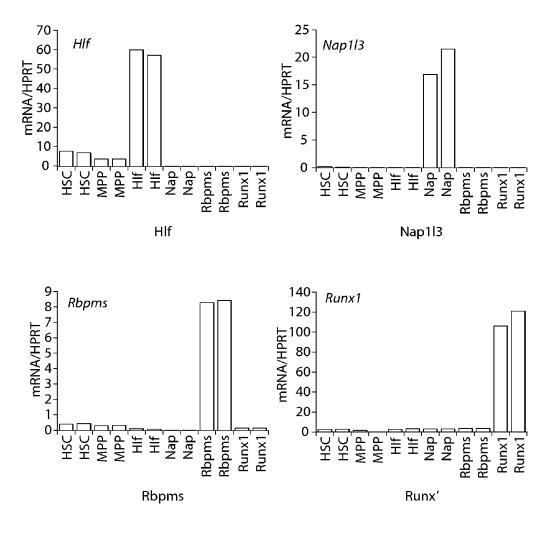


Fig. 8C

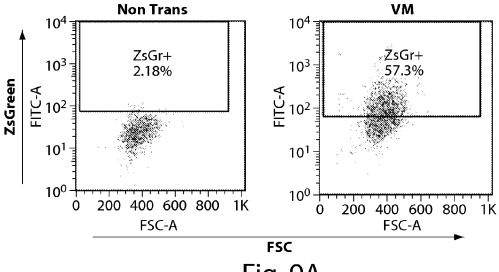


Fig. 9A

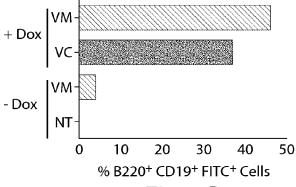
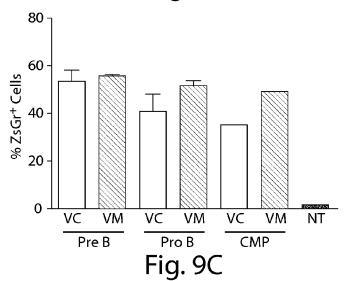



Fig. 9B

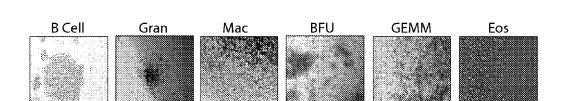


Fig. 10A

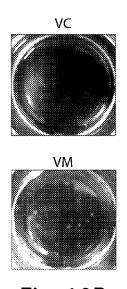
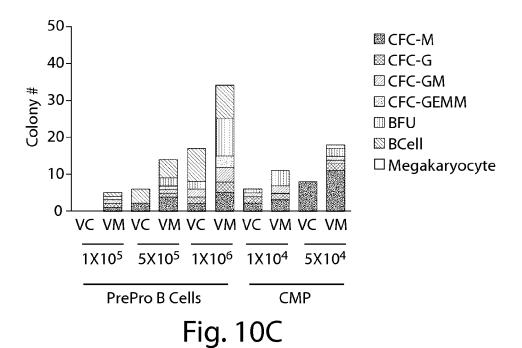



Fig. 10B

30- □ CFC-M ⊠ CFC-G 20 Colony # ☑ CFC-GM ☑ CFC-GEMM ■ BFU BCeII 10 □ Eosinophils 0 ۷C VC VM VM CMP PrePro B Cells

Fig. 10D

MPP 18 Control virus MPP Control virus

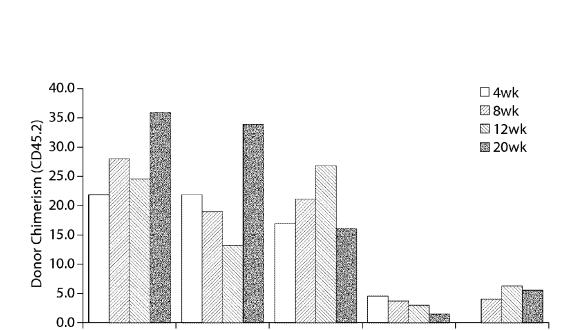


Fig. 11

MPP 18 Factors

MPP 18 Factors

MPP 18 Factors

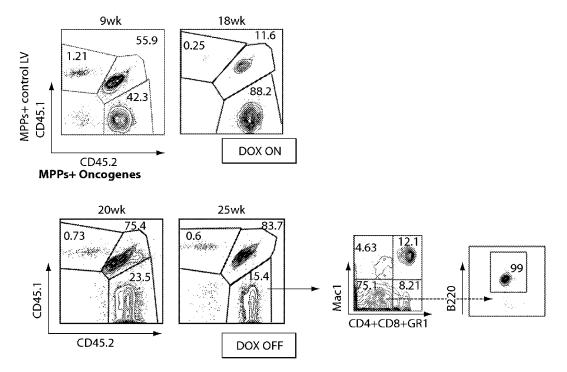


Fig. 12

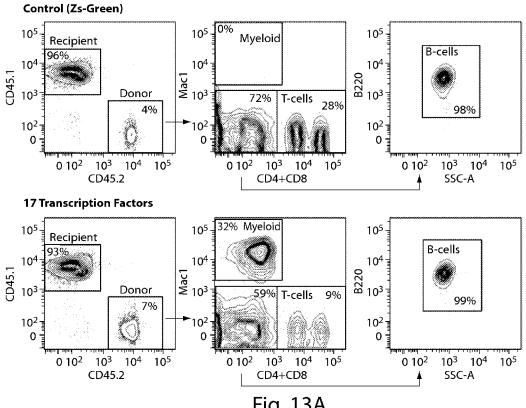
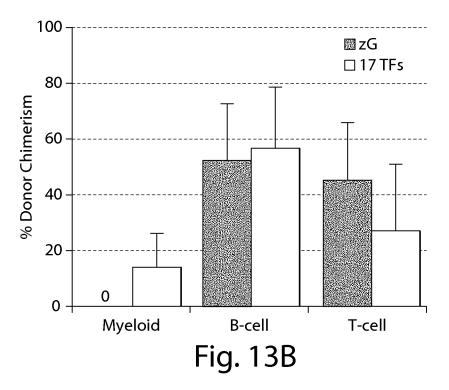



Fig. 13A

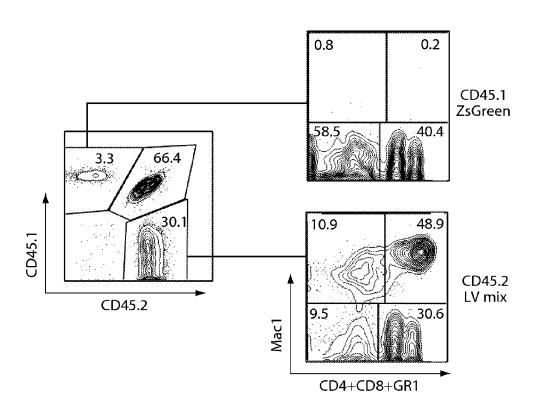


Fig. 14

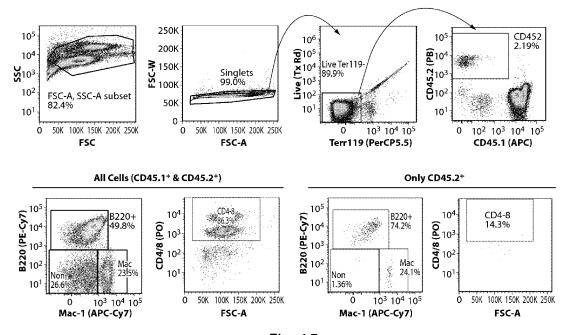


Fig. 15

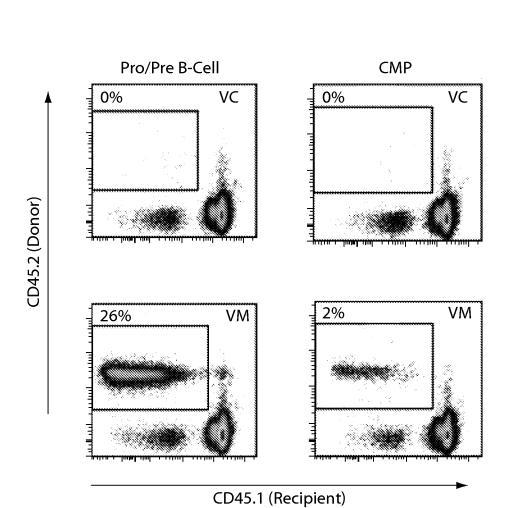
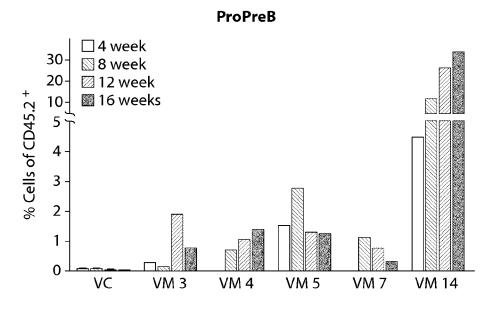



Fig. 16A

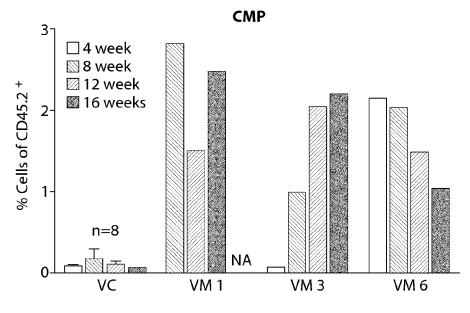
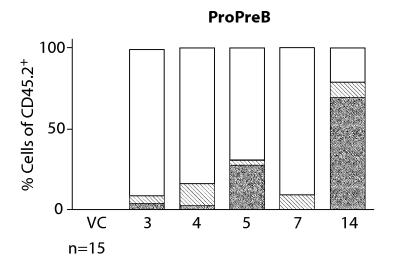



Fig. 16B

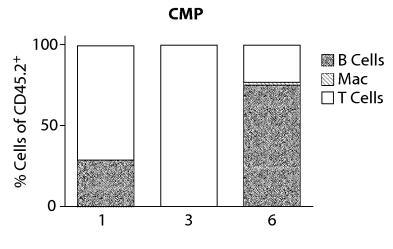


Fig. 16C

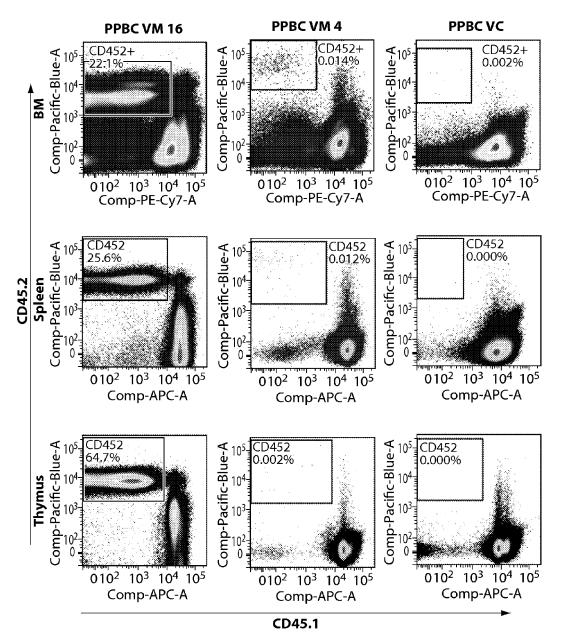


Fig. 17-1

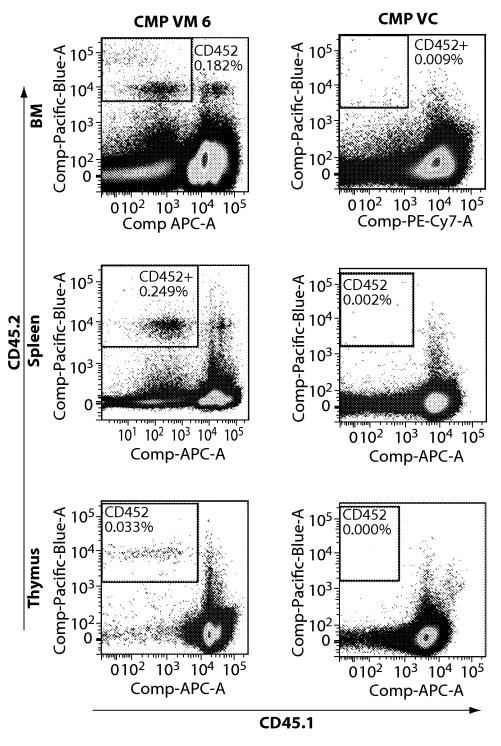


Fig. 17-2

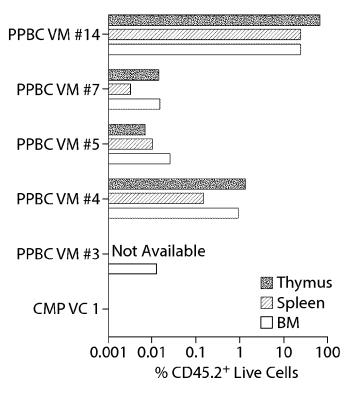
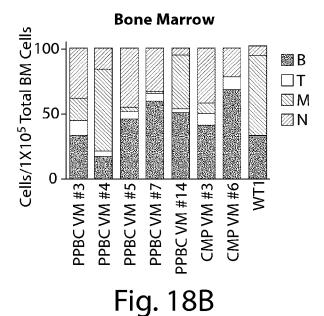
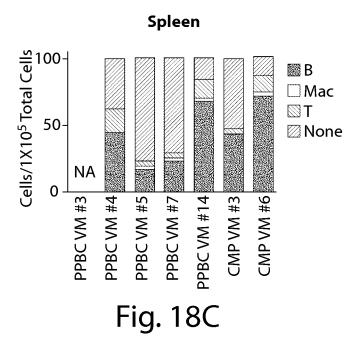
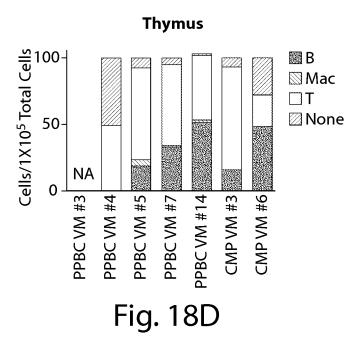





Fig. 18A

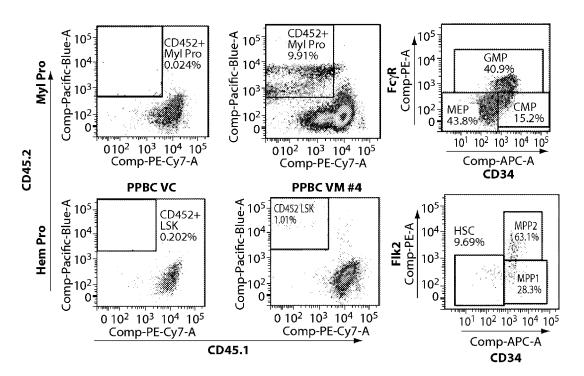
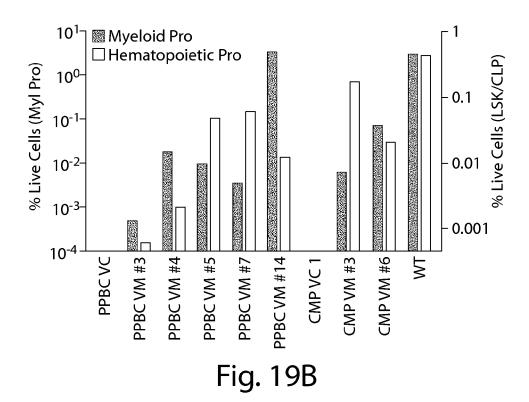
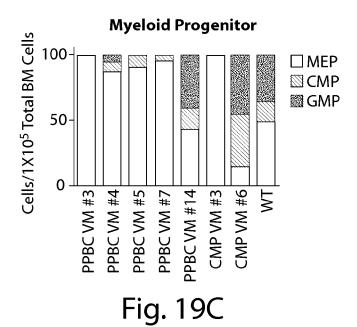




Fig. 19A

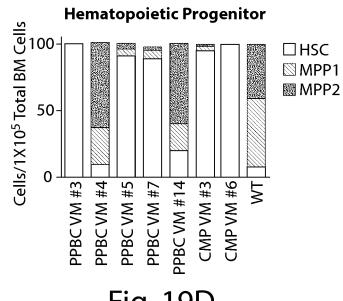


Fig. 19D

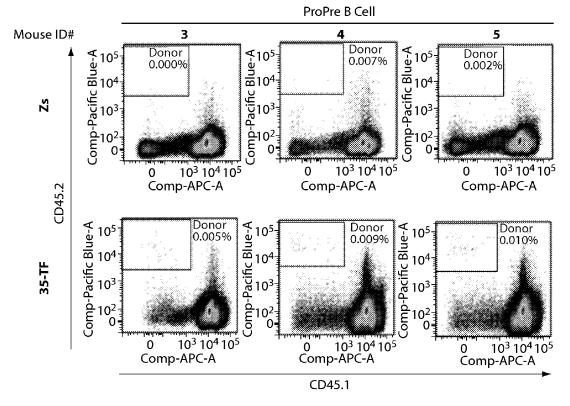


Fig. 20A-1

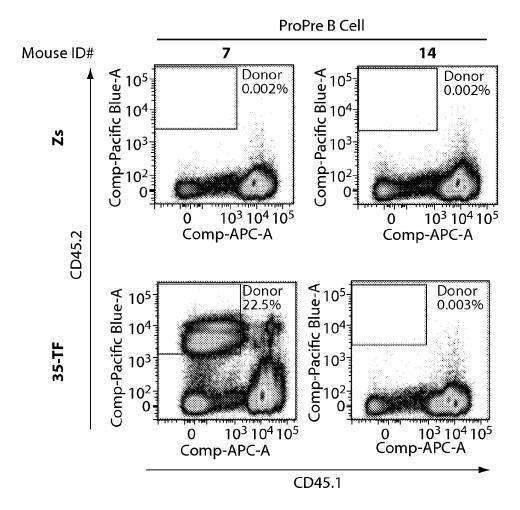


Fig. 20A-2

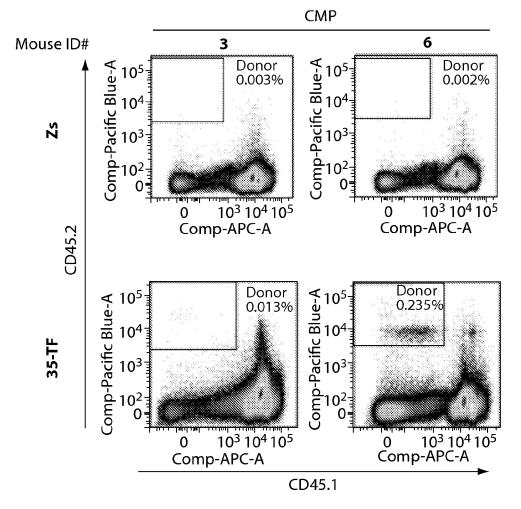
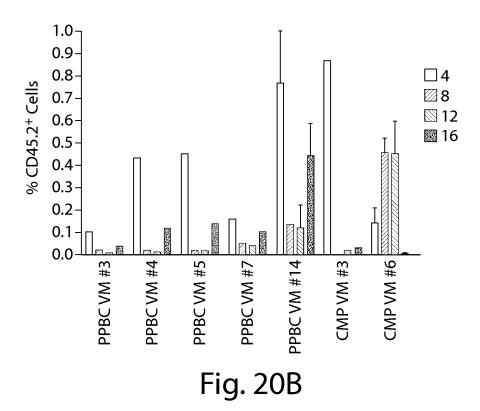
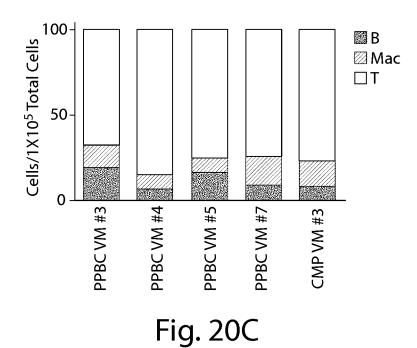




Fig. 20A-3

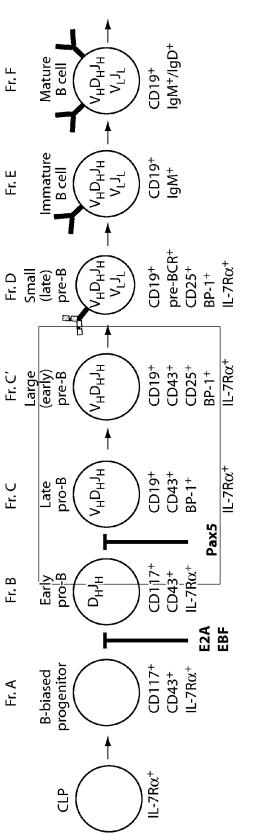


Fig. 21A

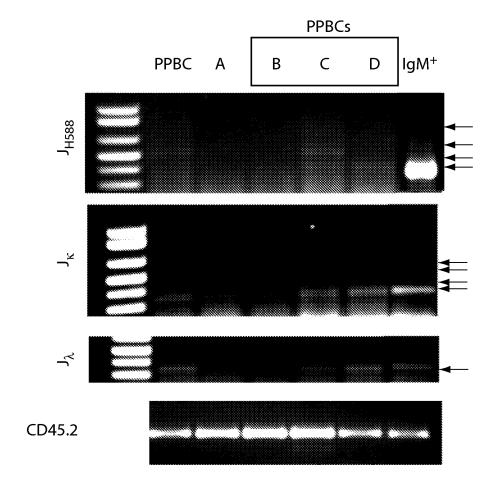
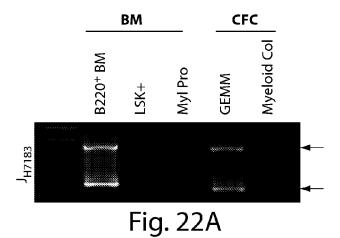



Fig. 21B

JLX

Genomic CD45

BM ProPreB #4 PB

Fig. 22B

		V _{HJ558}	V_{κ}	V_λ
РРВС	З	Polyclonal	None	None
	4	Polyclonal	None	None
	5	Polyclonal	Polyclonal	None
	7	Polyclonal	Polyclonal	√
	14	Polyclonal	Polyclonal	None

Fig. 22C

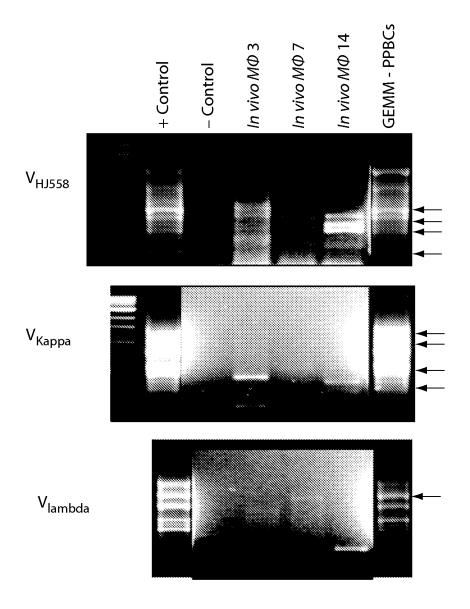


Fig. 23A

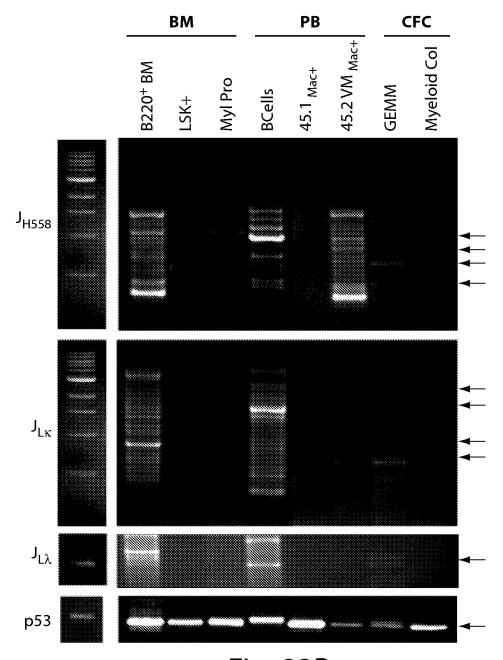


Fig. 23B

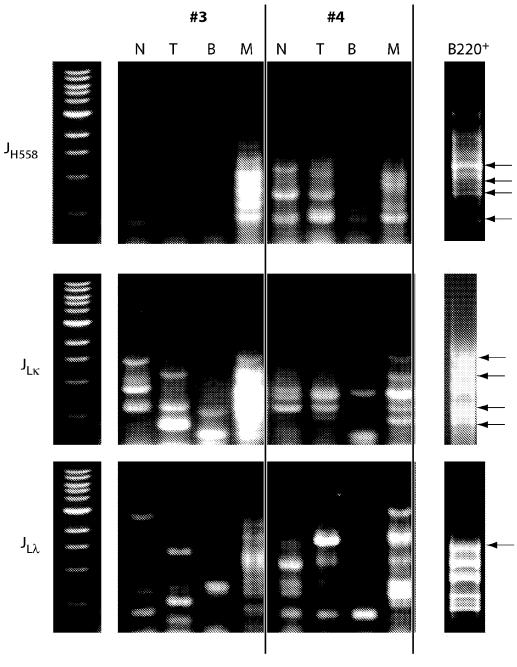


Fig. 24

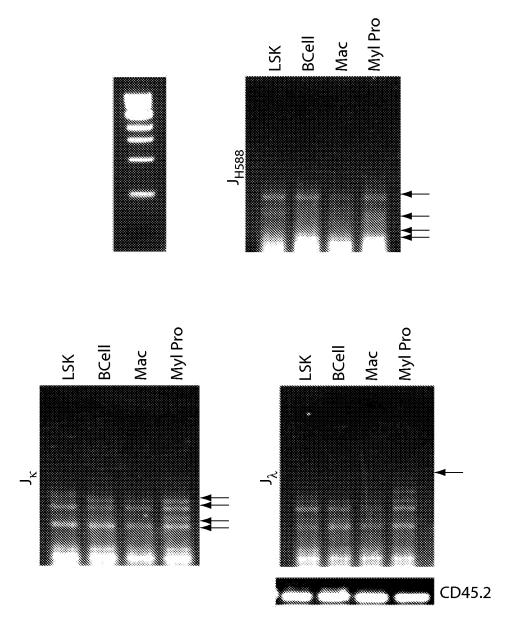


Fig. 25A

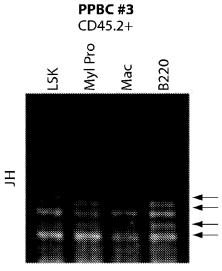
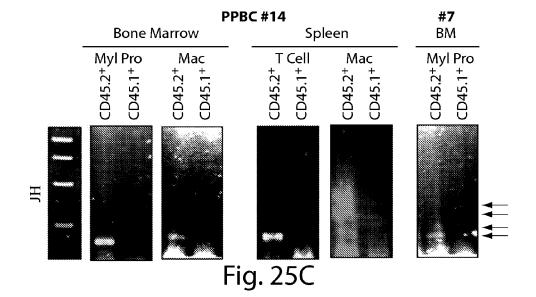



Fig. 25B

Thymus 5 VM#4

Fig. 25D

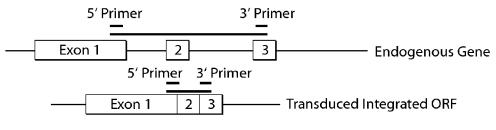


Fig. 26

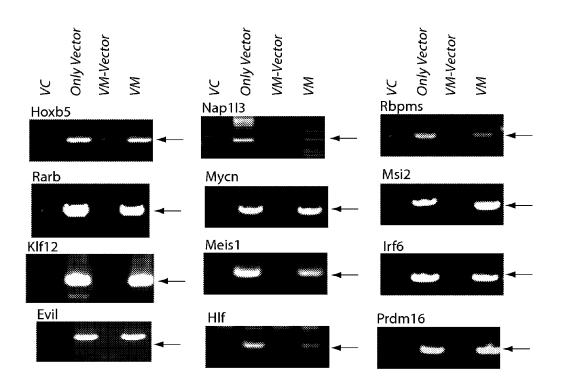


Fig. 27

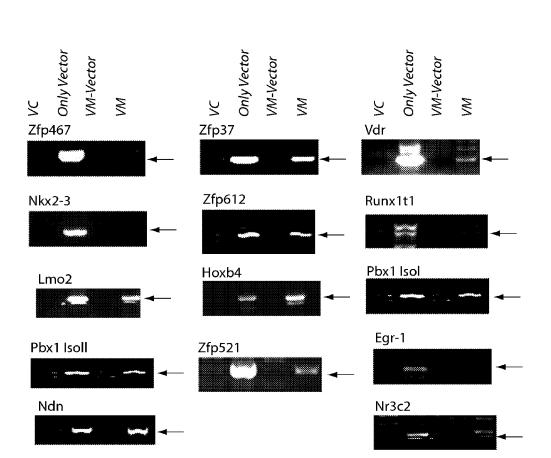


Fig. 28

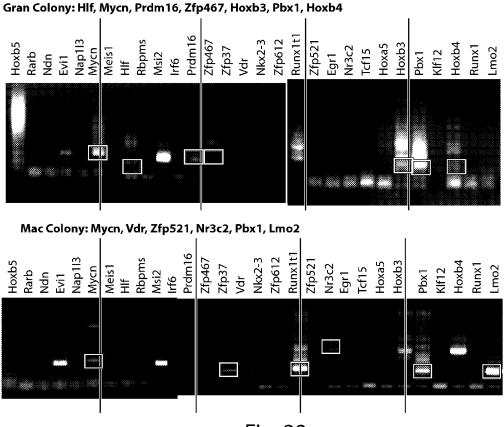
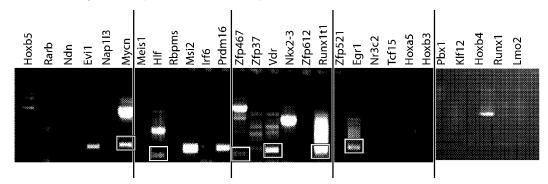



Fig. 29

GEMM: Mycn, Hlf, Zfp467, Vdr, Runx1t1, Egr1

B Cell Colony: Hoxb5, Hlf, Mycn, Zfp37, Runx1t, Zfp521, Pbx1, Lmo2

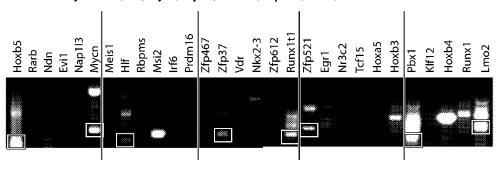
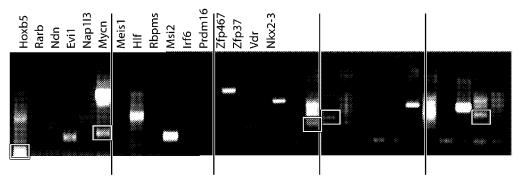



Fig. 30

BFU Colony 49: Hoxb5, Mycn, Zfp521, Runx1, Runx1t1

BFU Colony 46: Prdm16, Zfp467, Zfp37, Egr1, Runx1t1, Pbx1, Hoxb4

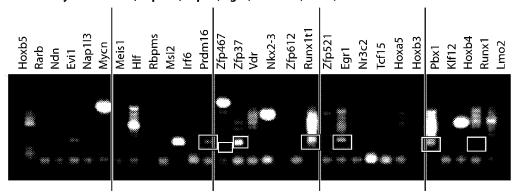


Fig. 31

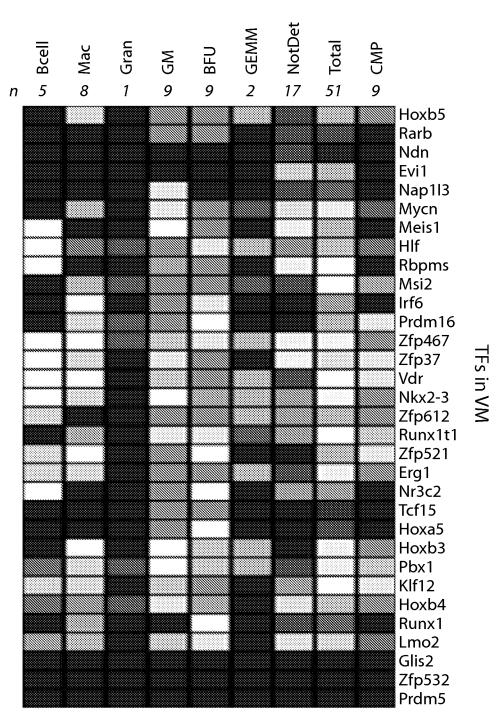


Fig. 32

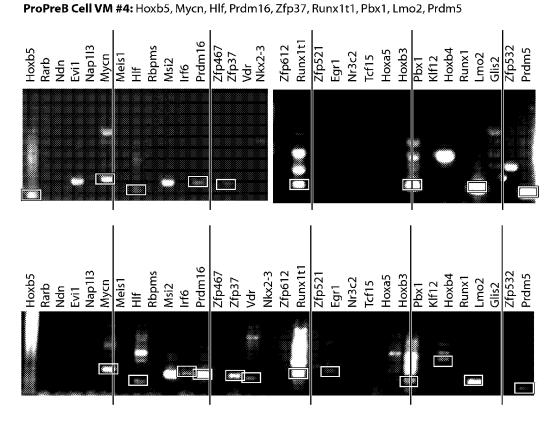
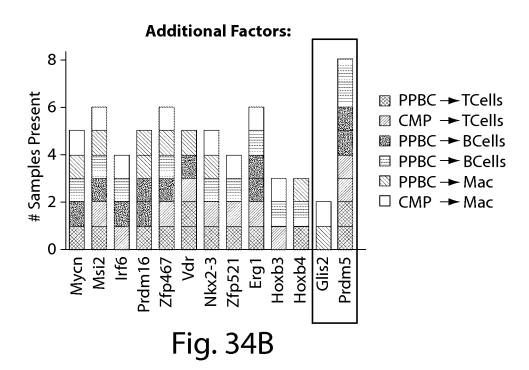



Fig. 33

Every Bleed contained: Hlf, Zfp37, Runx1t1, Pbx1 and Lmo2

Fig. 34A

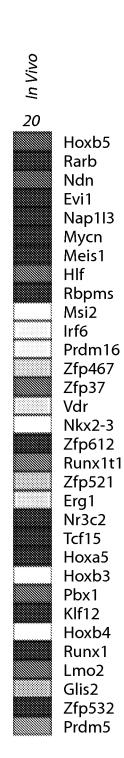


Fig. 34C

Ë
£
2
4
ف
×
2
_
×
Ō
Δ.
7
9
4
은
Ź
Ë

37
\sim
Ω
Ζfμ
Ν
9
$\overline{}$
⊱
≒
9
☲
▔
N
O
E
\boldsymbol{L}
<u> </u>
Ξ
I
+1
ΤI

2. Mycn, Msi2, Nkx2-3, Runx1t1

3. Hoxb4, Pbx1, Lmo2, Zfp612, Zfp521

$$\pm$$
 Klf12, Hlf, Egr1

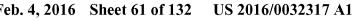
4. Meis1, Rbpms, Zfp37, Runx1t1, Lmo2

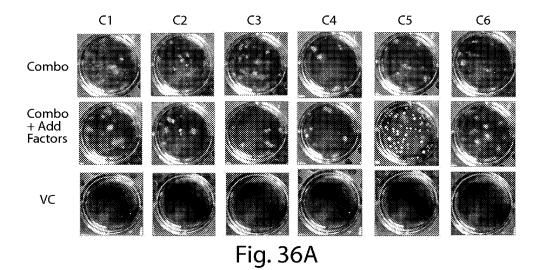
± KIf12, HIf

CMP — GEMM

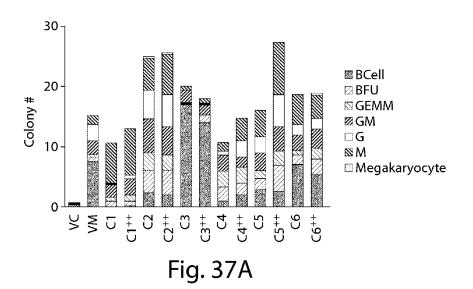
Zfp37, Hoxb4, Lmo2, Hlf

Ŋ.


In Vitro Overall Combination


HIf, Runx1t1, Pbx1, Lmo2, Prdm5

ن


7. Hlf, Runx1t1, Pbx1, Lmo2, Prdm5, Mycn, Msi2, Nkx2-3, Meis1, Rbpms

. . .

40 30 # Kuoloo 10 0 Fig. 36B

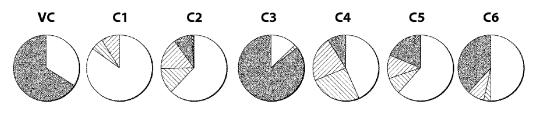


Fig. 37B

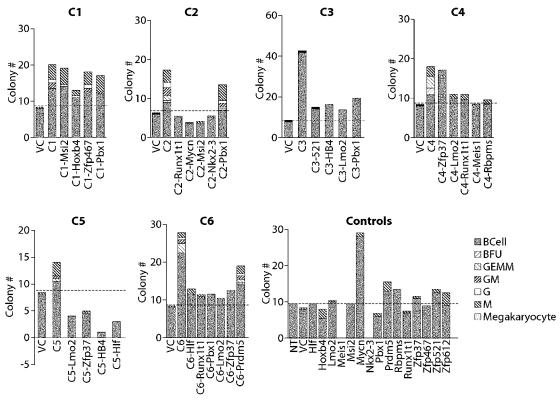
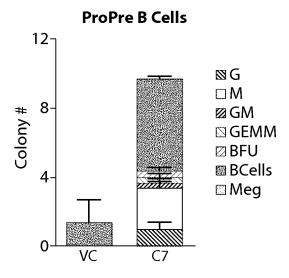



Fig. 38

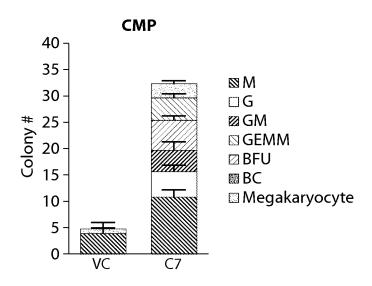
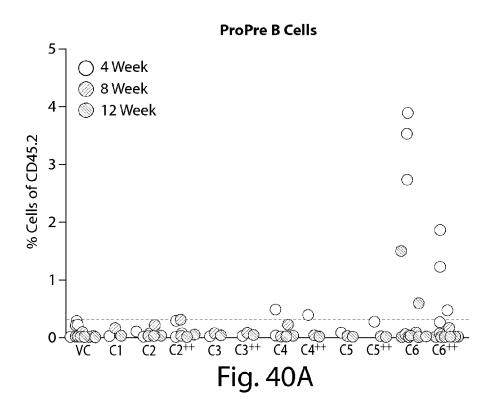
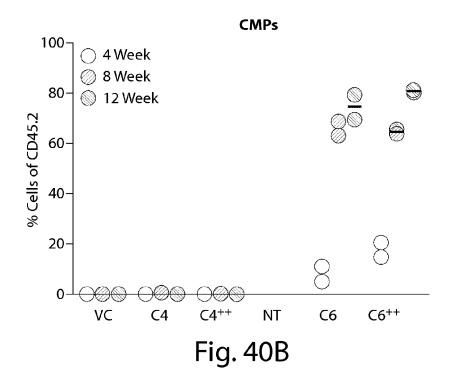




Fig. 39

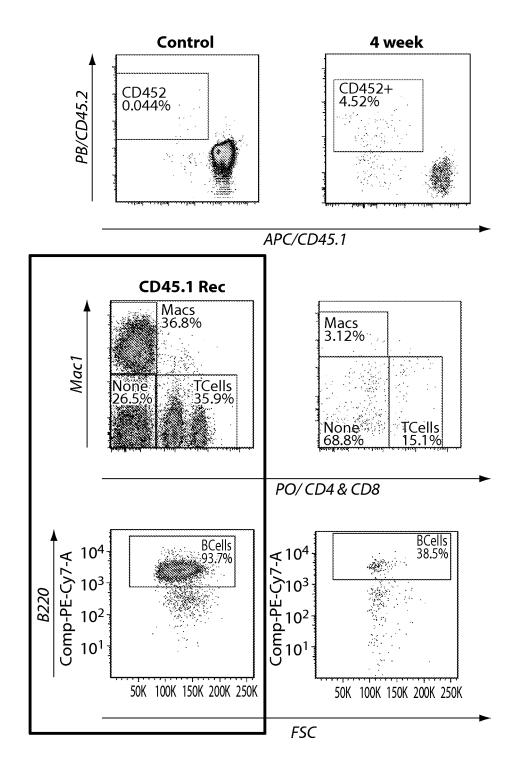


Fig. 41A-1

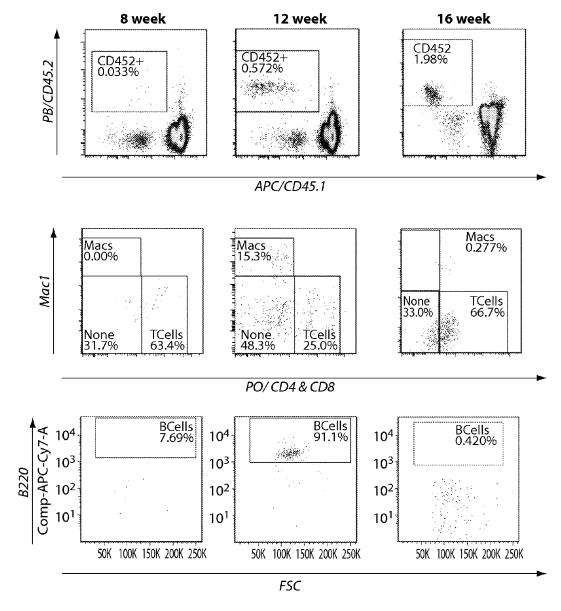
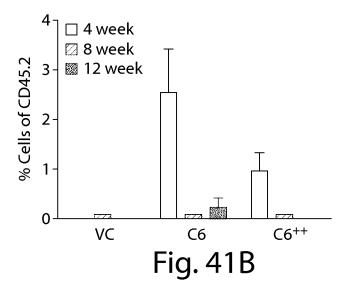
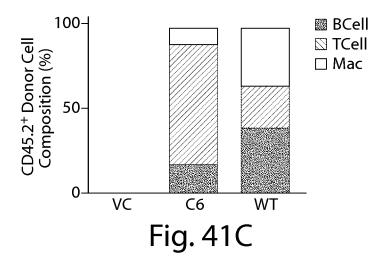




Fig. 41A-2

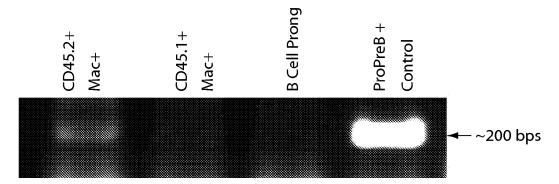


Fig. 42

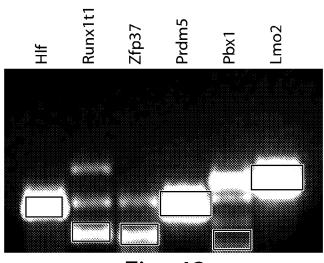


Fig. 43

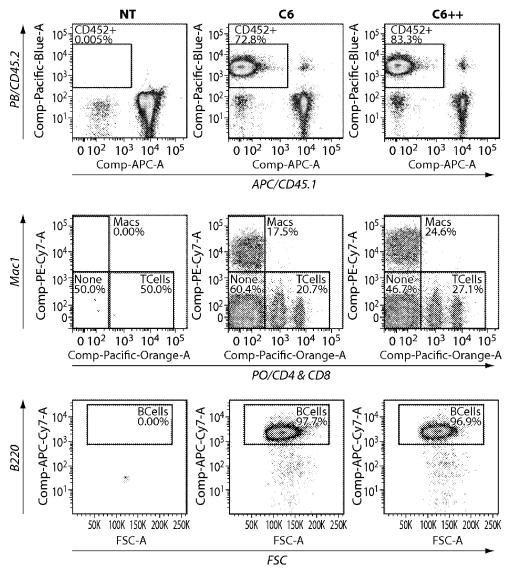
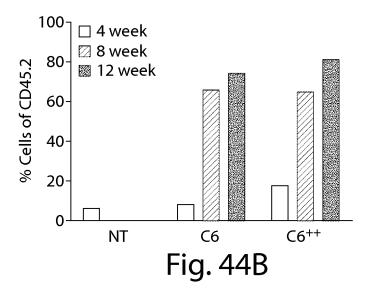
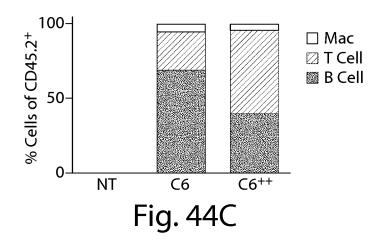




Fig. 44A

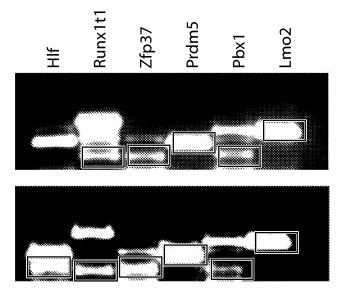


Fig. 45

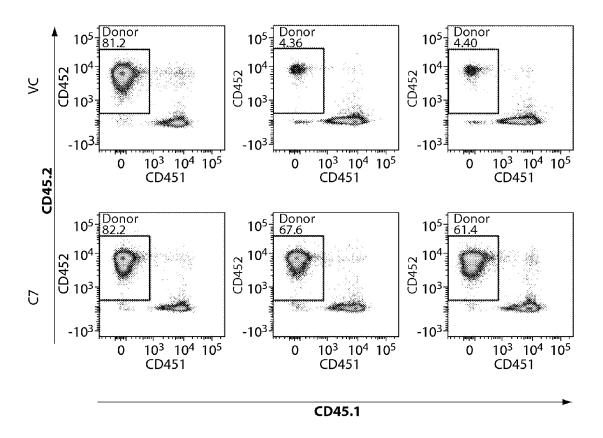


Fig. 46A-1

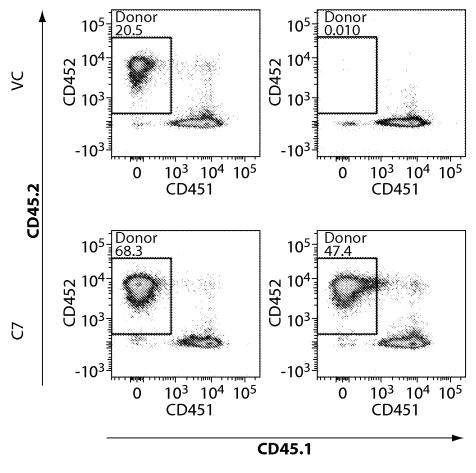
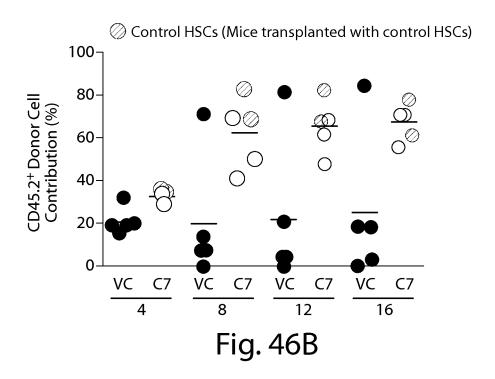
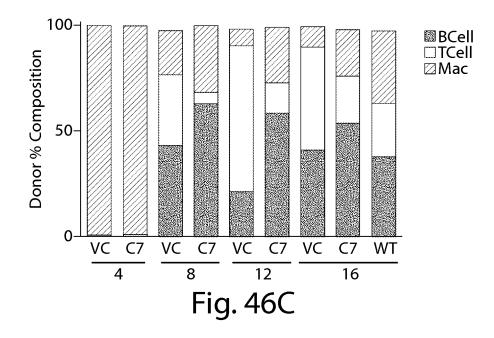




Fig. 46A-2

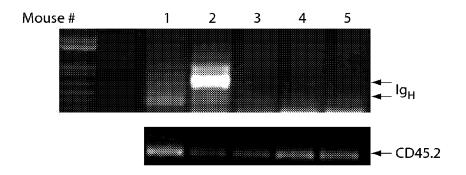


Fig. 47

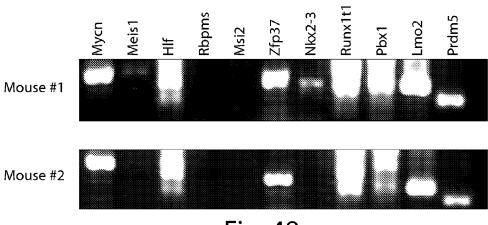
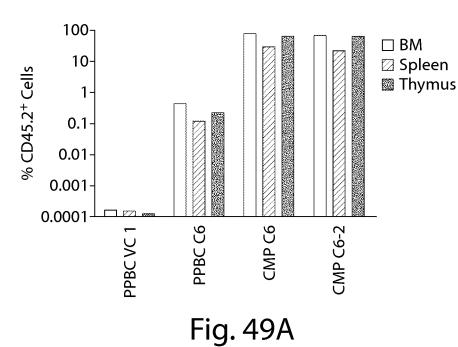
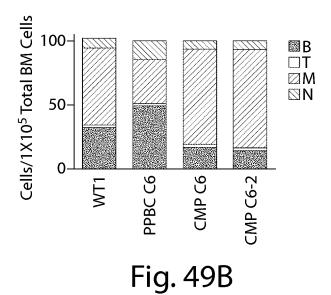
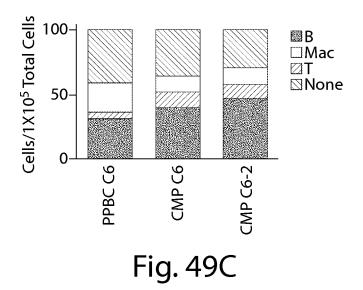
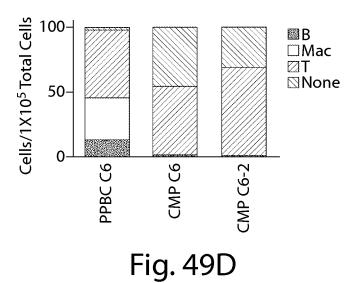






Fig. 48



Fig. 50

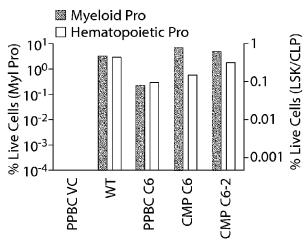
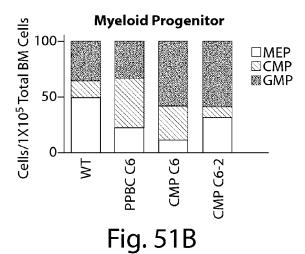



Fig. 51A

Hematopoietic Progenitors

100100MPP1
SMPP1
SMPP2

CWB Ce-5

WPP2

Fig. 51C

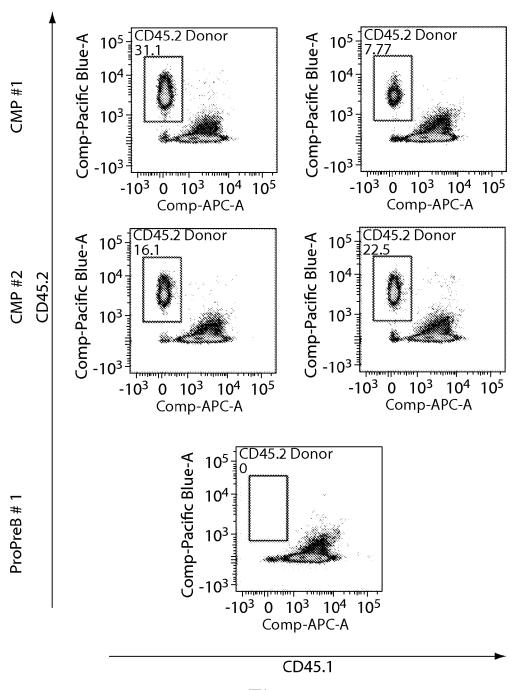


Fig. 52-1

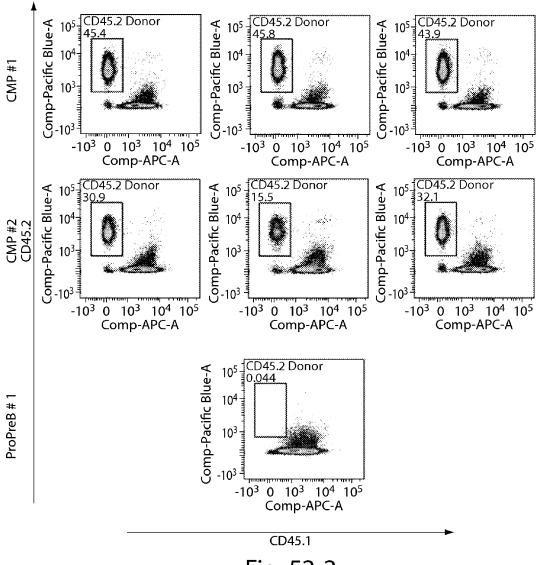


Fig. 52-2

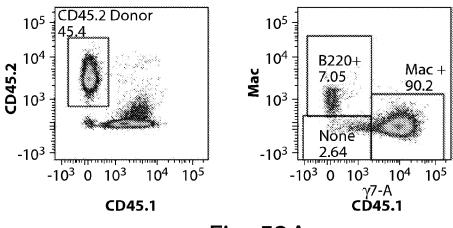
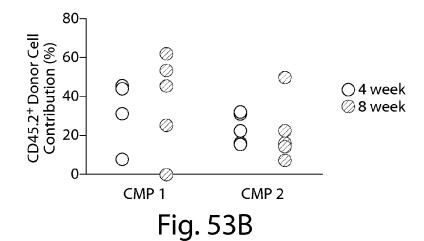
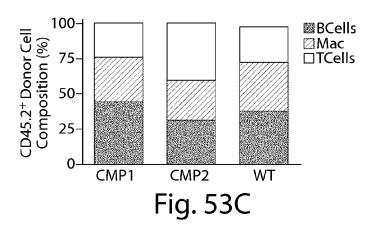




Fig. 53A

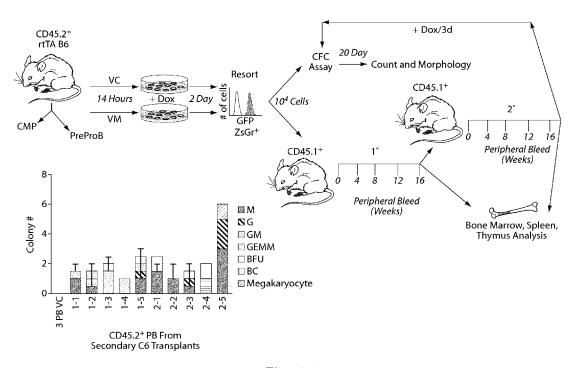


Fig. 54

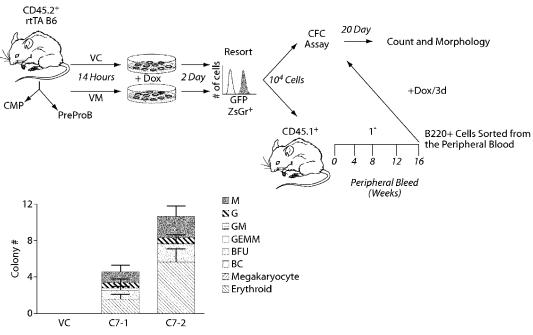


Fig. 55

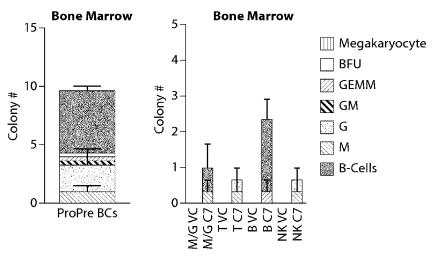
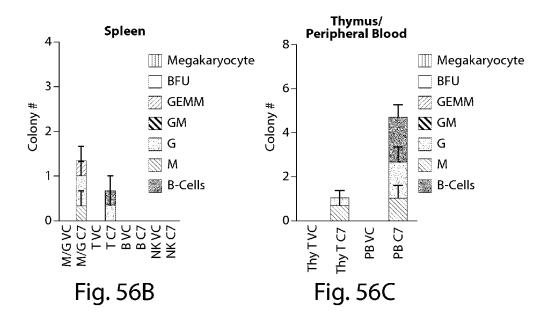
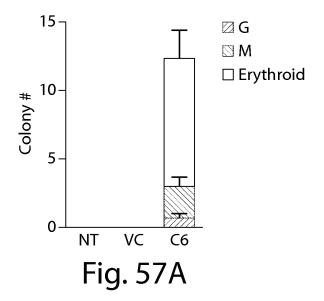




Fig. 56A

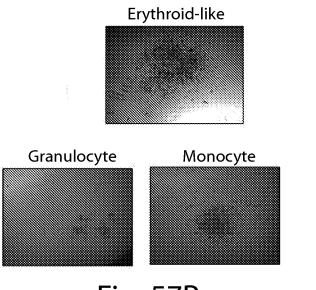


Fig. 57B

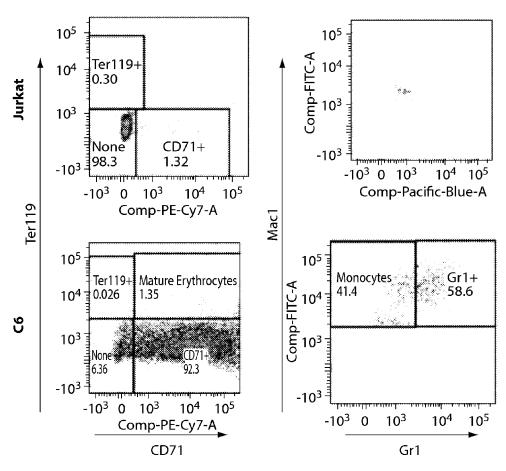
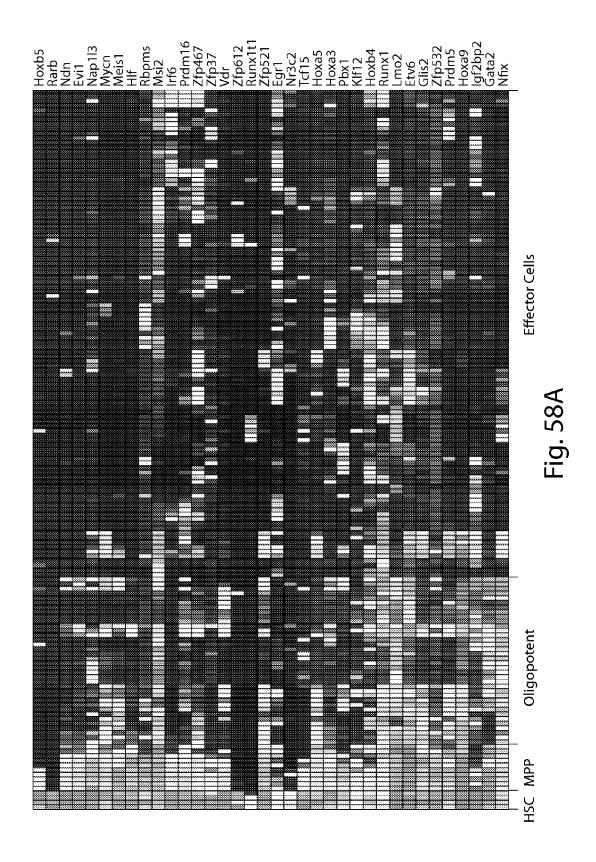
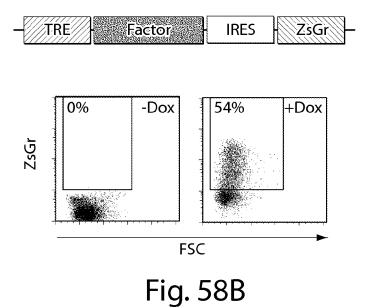




Fig. 57C

Transduce
B-cell progenitors

+ Dox

Transfer into
methylcellulose

Score
colonies

24h

20 days

Fig. 58C

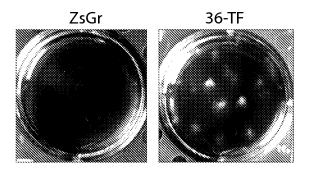
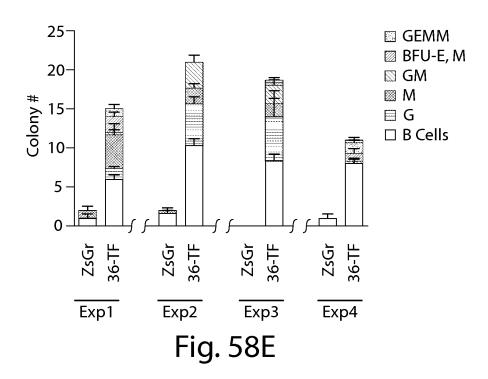



Fig. 58D

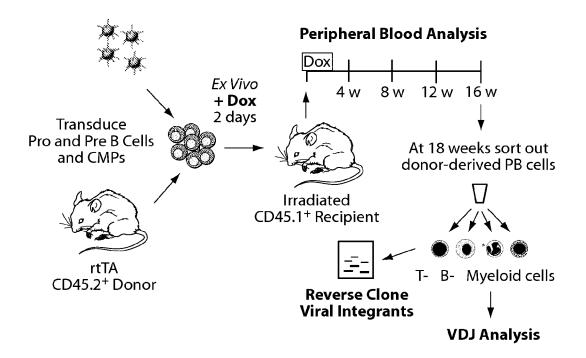


Fig. 59A

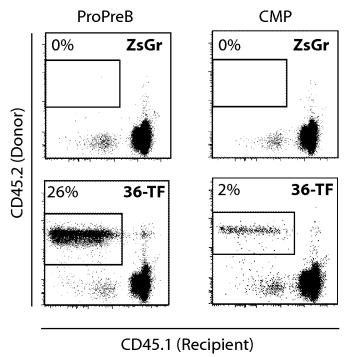


Fig. 59B

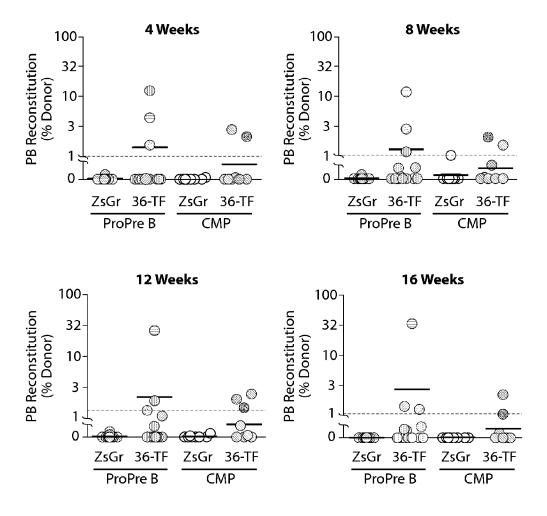


Fig. 59C

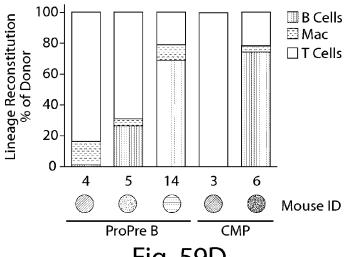


Fig. 59D

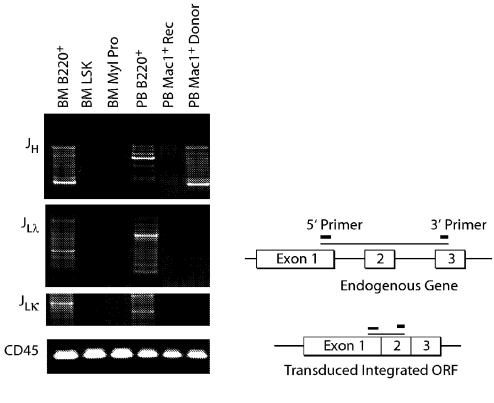


Fig. 59E

Fig. 59F

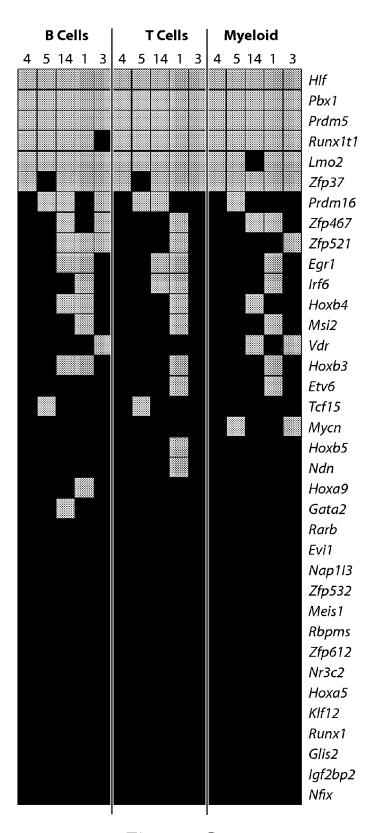


Fig. 59G

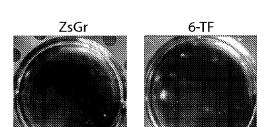
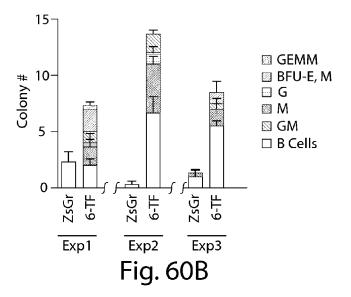
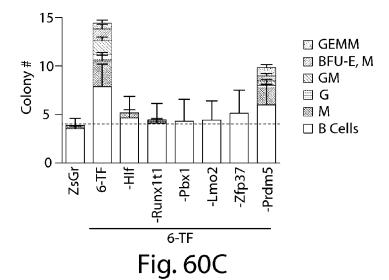
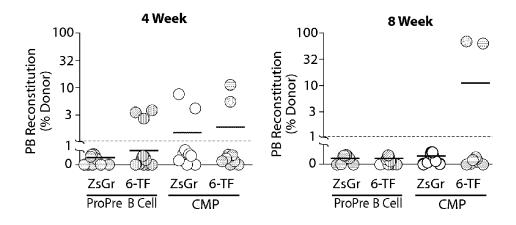





Fig. 60A

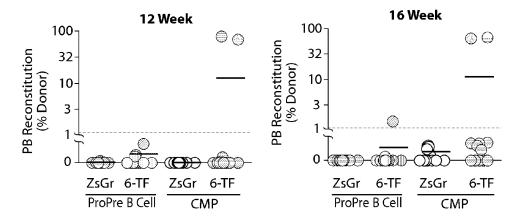


Fig. 60D

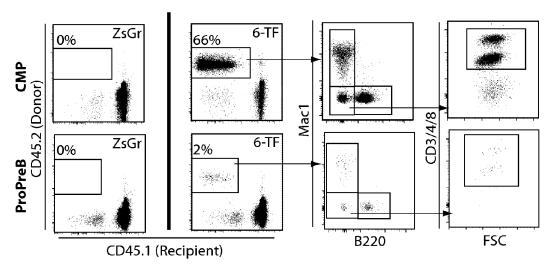
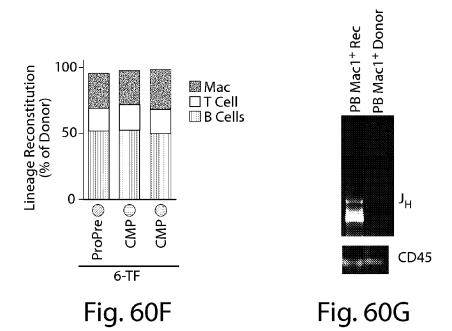
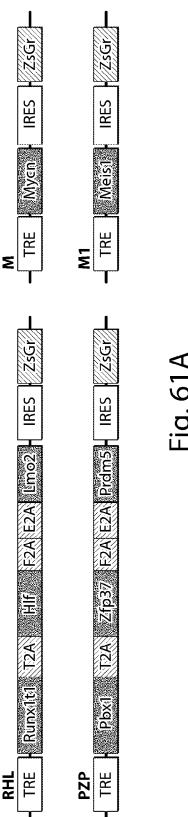




Fig. 60E

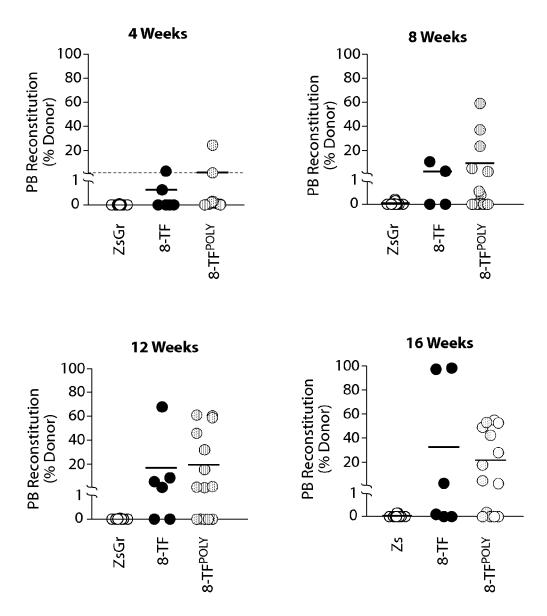


Fig. 61B

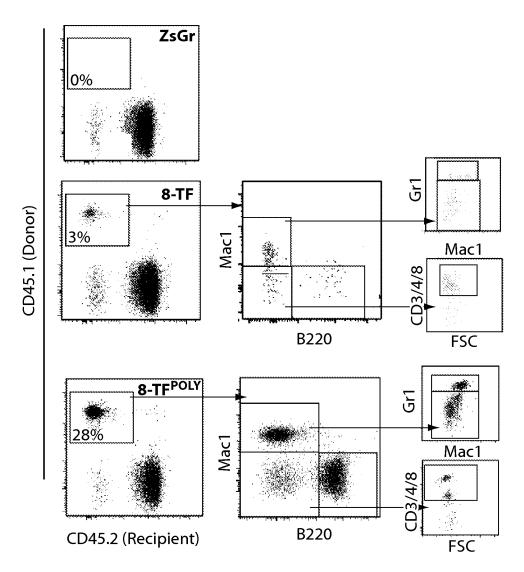


Fig. 61C

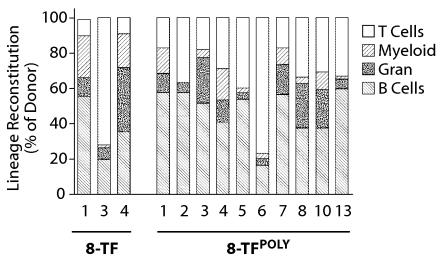
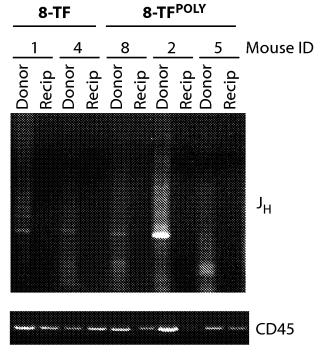
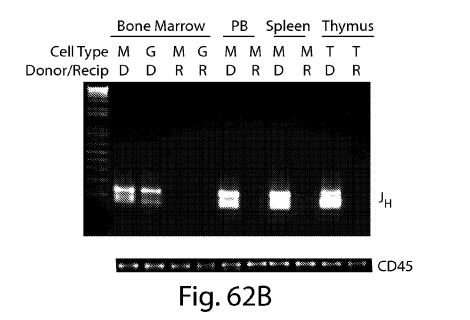
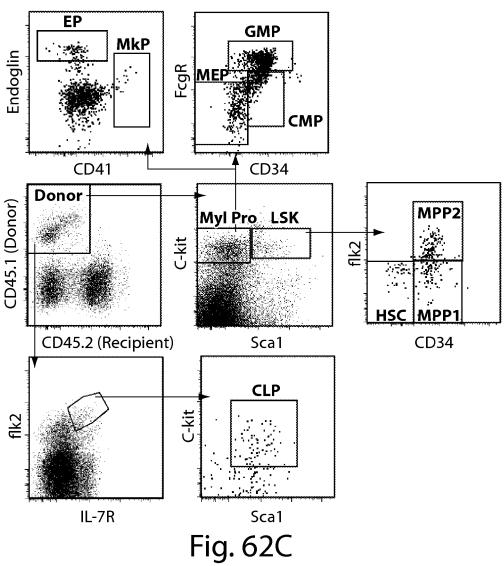
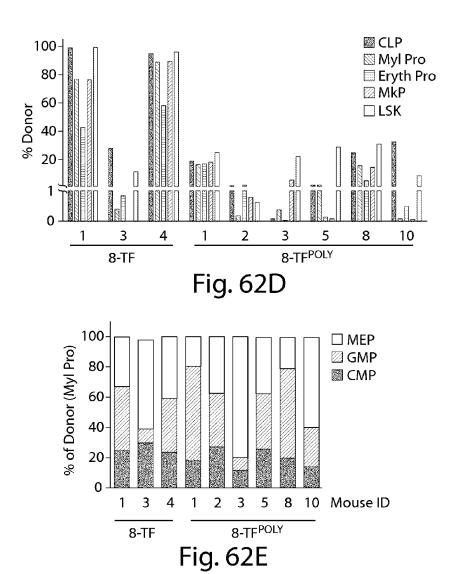
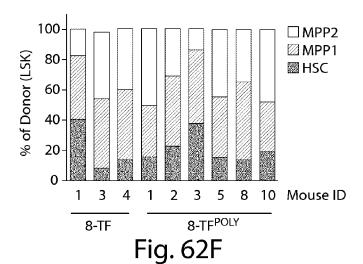


Fig. 61D




Fig. 61E

Secondary Transplantation

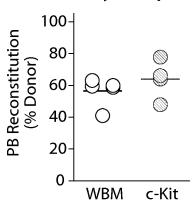
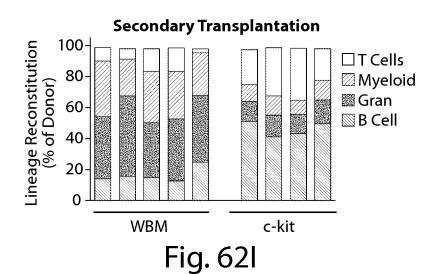
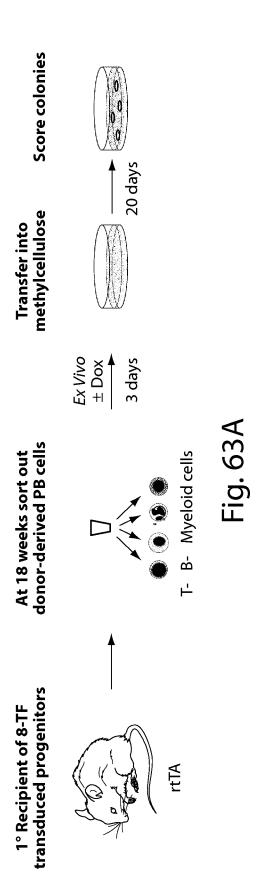




Fig. 62G

Fig. 62H

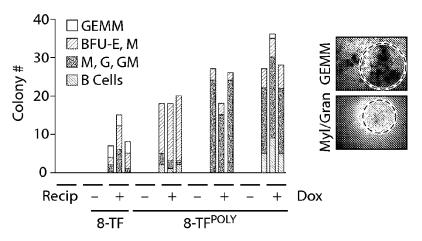


Fig. 63B

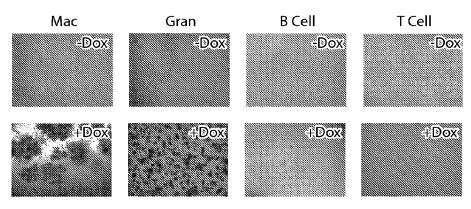


Fig. 63C

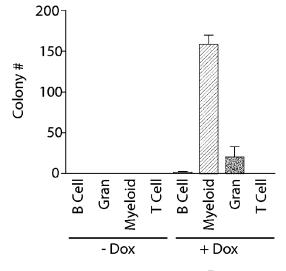


Fig. 63D

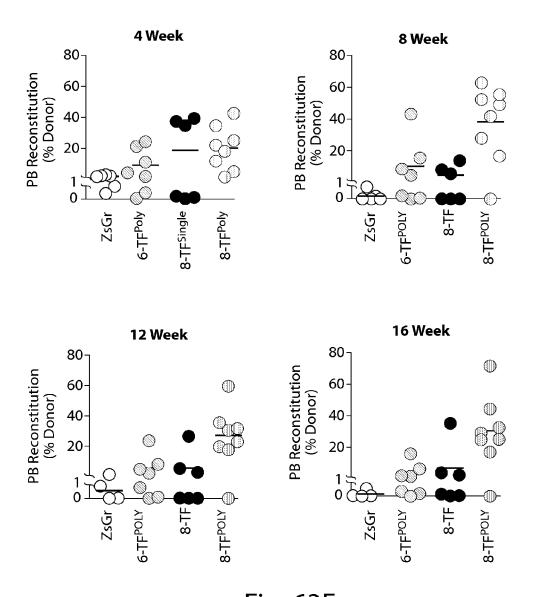


Fig. 63E

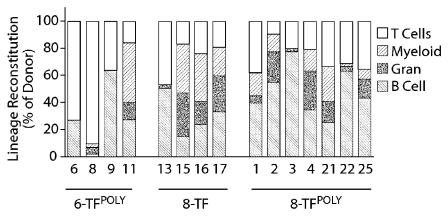


Fig. 63F

Secondary Transplantation

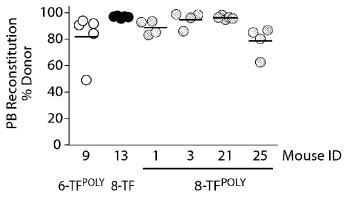


Fig. 63G

Secondary Transplantation

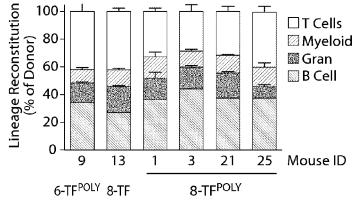


Fig. 63H

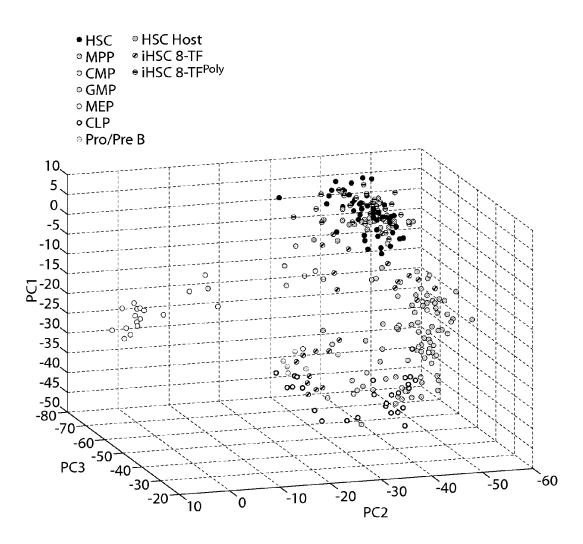
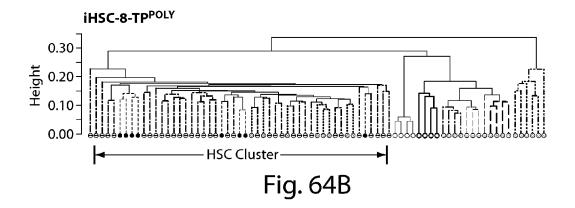
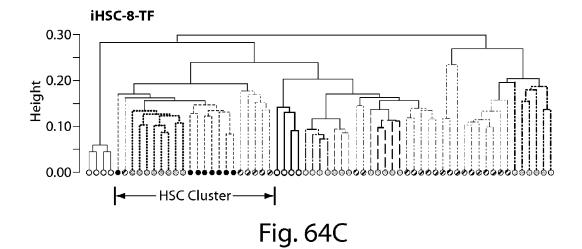
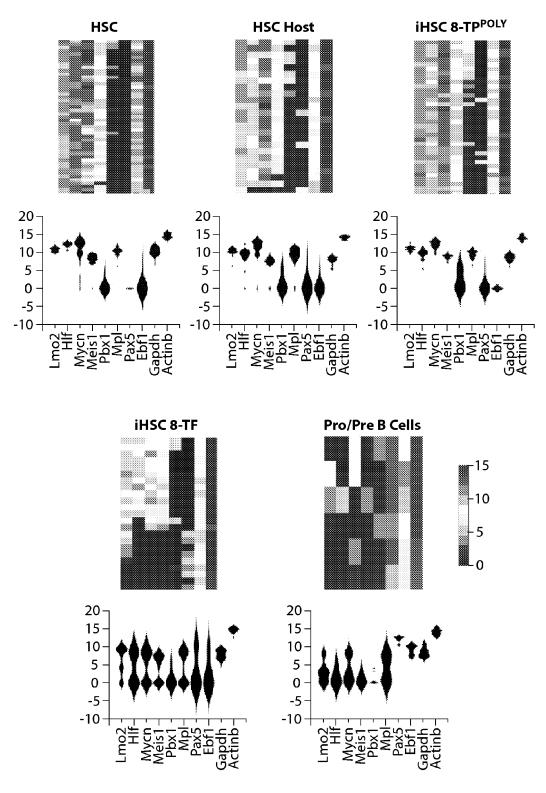
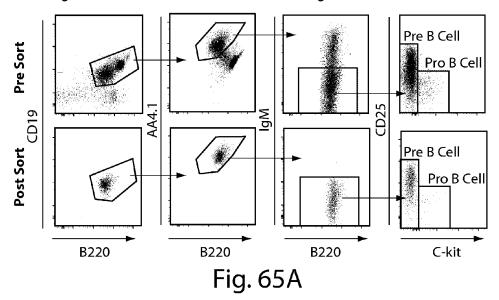
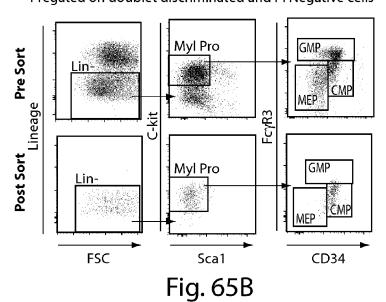
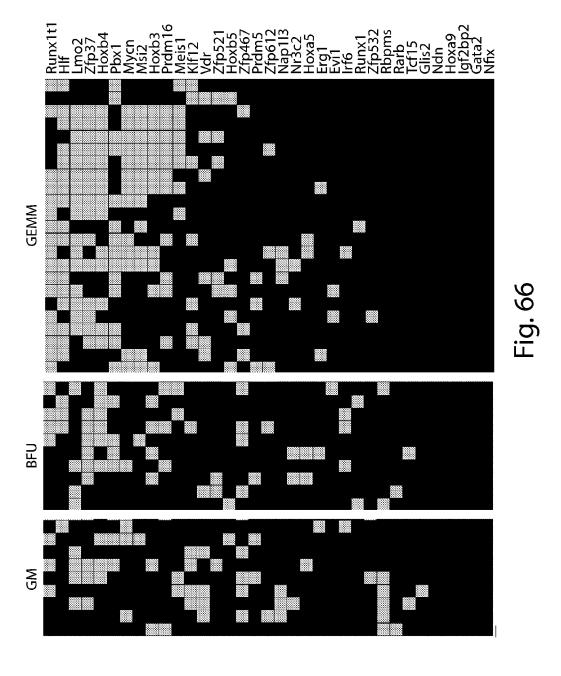
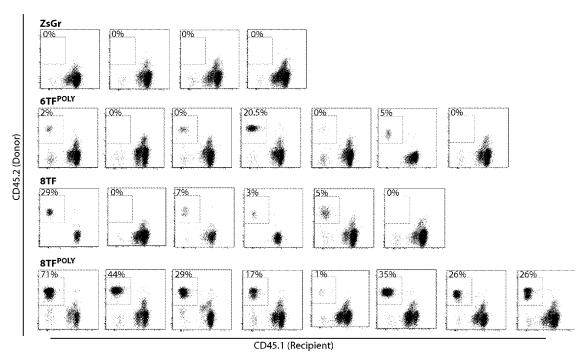
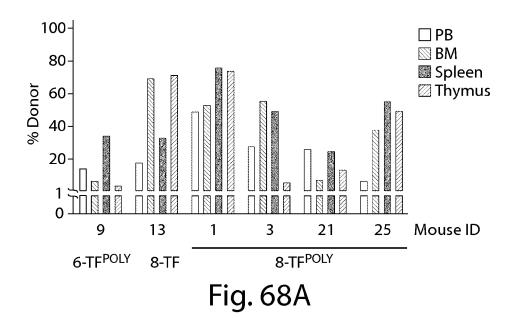
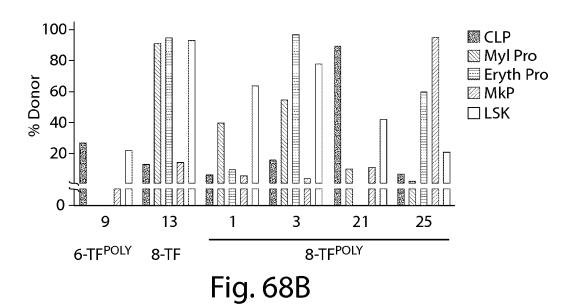
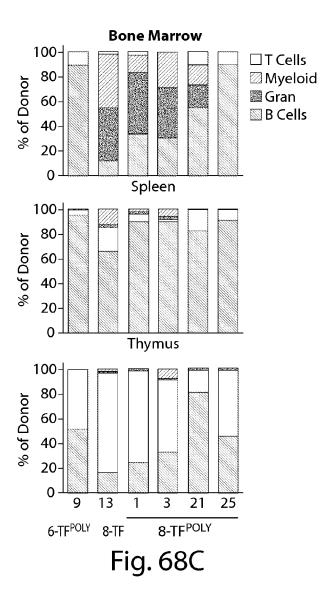
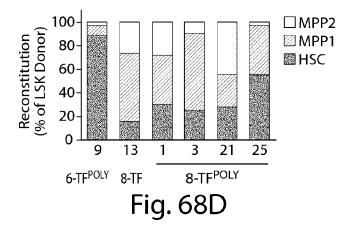




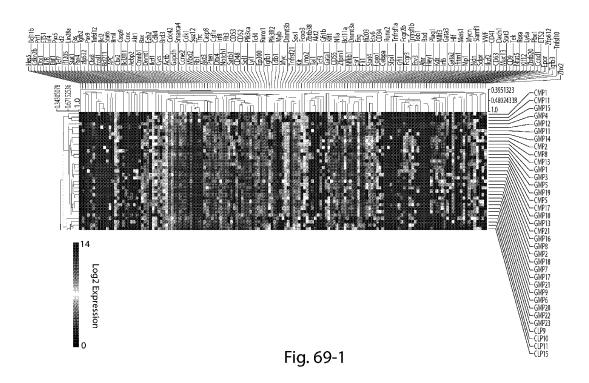
Fig. 64A

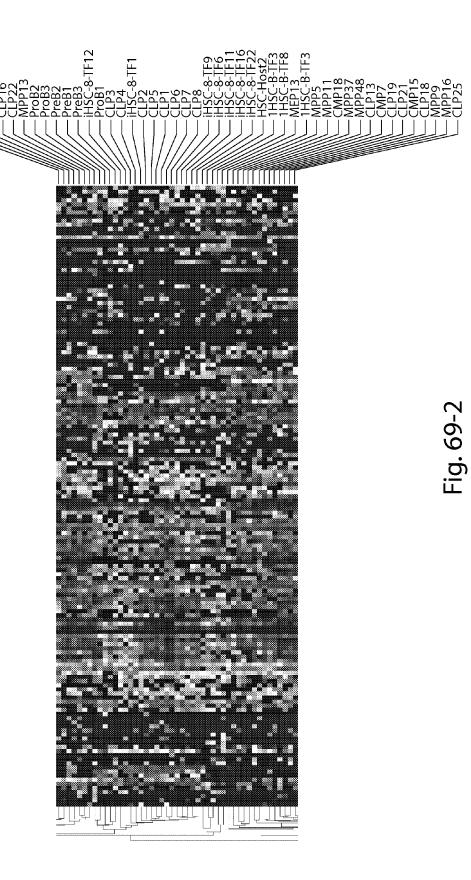




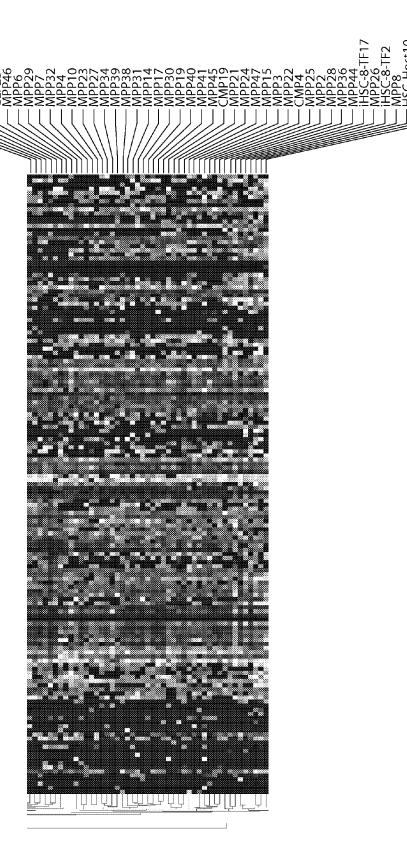

Fig. 64D

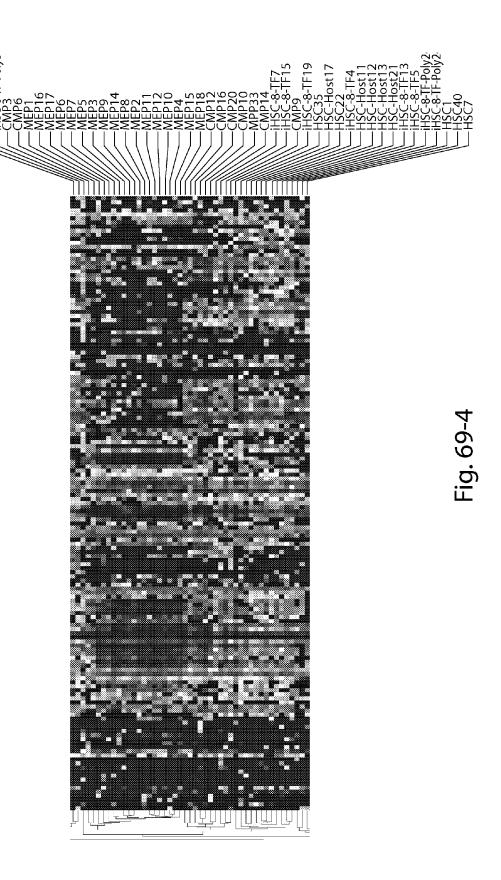
Pregated on doublet discriminated and PI Negative cells

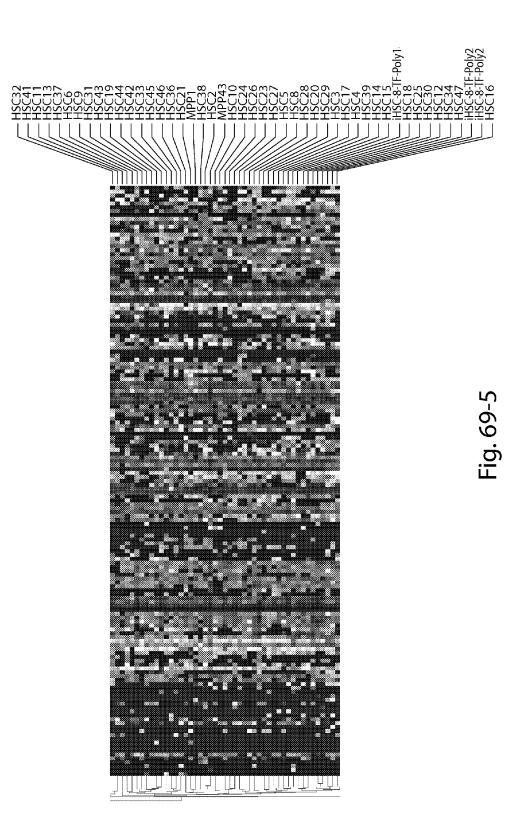






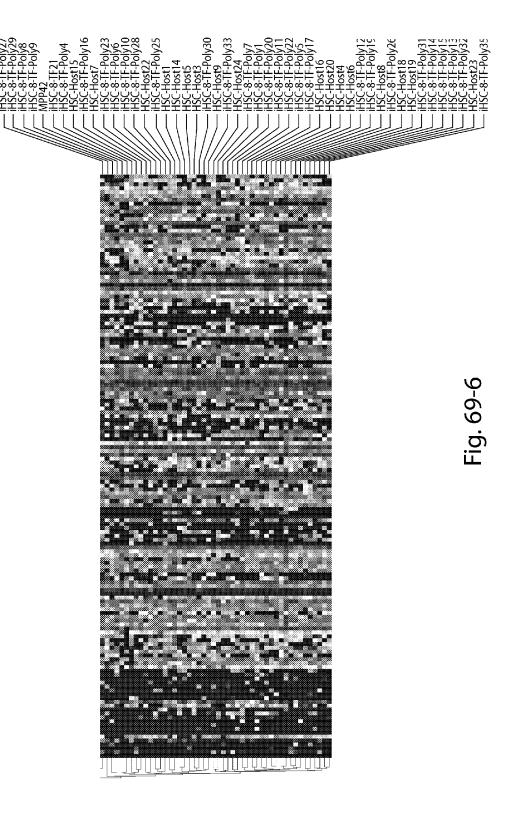

Fig. 67

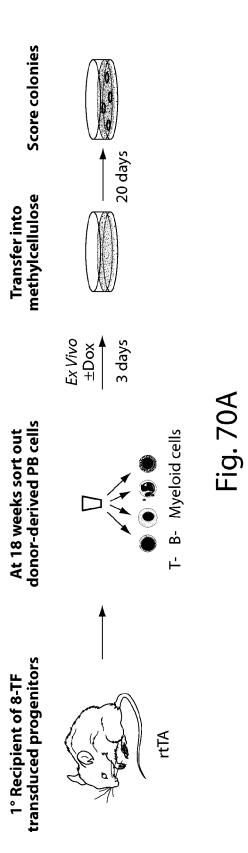


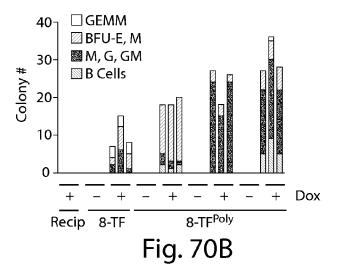


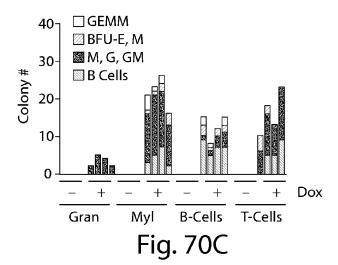












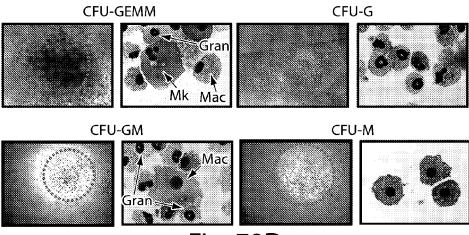


Fig. 70D

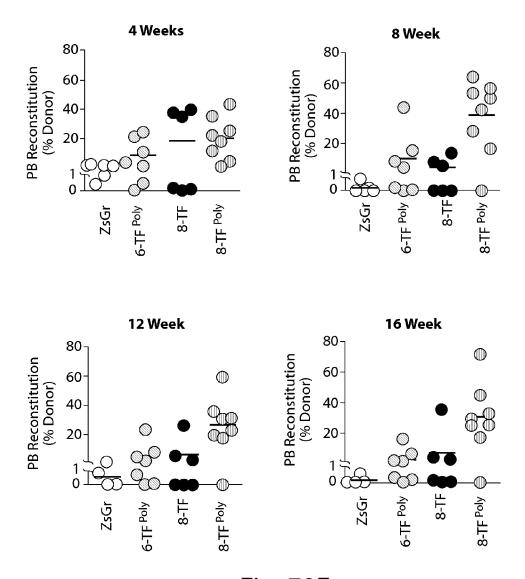


Fig. 70E

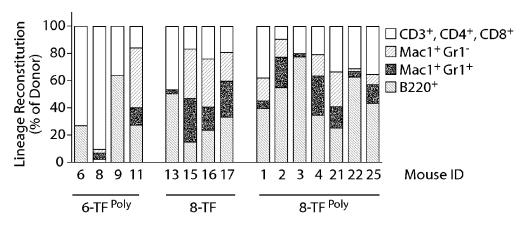


Fig. 70F

Secondary Transplantation

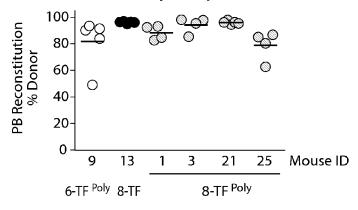
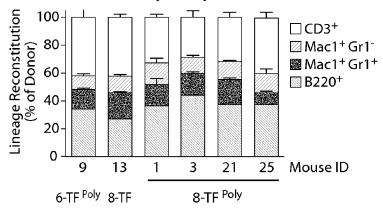
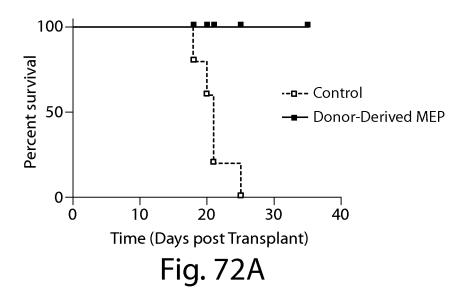
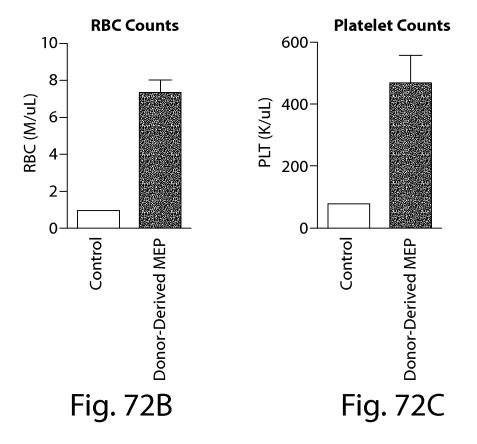


Fig. 70G

Secondary Transplantation




Fig. 70H


\forall
တ်
iĔŤ

Donor	VDJID	Cell Type	Λ _H	D _H	н
	เ-รเ	B-Cell	acacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
0	/8-7(T-Cell	cacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
- ! -	J/Zl	Myeloid	acacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
	-SA	Gran	cacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
	Į.	B-Cell	acacggccgtgtattactgt	gatag tagctggct ttttctt	tctgcacattccaattct
°	-21/1-	T-Cell	acacggccgtgtattactgt	gatag tagctggct ttttctt	tctgcacattccaattct
ρ -	IO/6-	Myeloid	acacggccgtgtattactgt	gatag tagctggct ttttctt	tctgcacattccaattct
	SΛ	Gran	acacggccgtgtattactgt	gatag tagctggct ttttctt	tctgcacattccaattct

Donor	OI (DV	Cell Type	V _H	D _H	J _H
	3/J2-1	B-Cell	acacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
2° - 1	V5-17/D2-3/J2-1	T-Cell	acacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
	V5-1	Myeloid	acacggccgtgtattactgtgcaagg	cc tgatggtta ggg	caaggcaccactct
	/D2-3/ -1	B-Cell	acteggeegtgttteeetgtgeaagg	cc tgatggtta gggn	cc
	V5-17/D2-3/ J1-1	Myeloid	tacacggccgtgtattactgtgcaagg	cc tgatggtta gggc	cnngnccccctttcac
	V1-54/D1-1/ J2-1	Myeloid	caaggaggcctta	ta ctacggt a	gtgactactttgactact
	V1-54	Gran	aggaggcctta	ta ctacggt a	gtgactactttgactact
	V1-2/D4-11/ J4-03	Myeloid	gcaagacaggggctactat	a gtaac ct	ctttgactactggggcc
	V1-2/[J4-	Gran	ntan	a gtaac ct	ctttgactactggggcc

Fig. 71B

COMPOSITIONS AND METHODS FOR REPROGRAMMING HEMATOPOIETIC STEM CELL LINEAGES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/782,037 filed Mar. 14, 2013, the content of which is incorporated herein by reference in its entirety.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 14, 2014, is named 701039-076171-PCT1_SL.txt and is 506,202 bytes in size.

FIELD OF THE INVENTION

[0003] The present invention relates to compositions, methods, and kits for reprogramming hematopoietic lineages and inducing hematopoietic stem cells.

BACKGROUND

[0004] Hematopoietic stem cells (HSCs) are a subset of multipotent stem cells that are responsible for the ability to sustain lifelong hematopoiesis, and continuously generate myriad and various blood cell types, while maintaining adequate number of stem cells in the bone marrow. Hematopoietic stem cells give rise to all the blood or immune cell types, including monocytes and macrophages, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes/platelets, dendritic cells, T-cells, B-cells, NKT-cells, and NK-cells. Hematopoietic tissues contain cells with long-term and short-term regeneration capacities, and committed multipotent, oligopotent, and unipotent progenitors.

[0005] Transplantation of hematopoietic stem cells (HSCT) has become the standard of care for many patients with defined congenital or acquired disorders of the hematopoietic system or with chemo- radio- or, immuno-sensitive malignancies. Over the last two decades, HSCT has seen rapid expansion and a constant evolution in technology use. (Gratwohl A, et al., (2010). Hematopoietic stem cell transplantation A Global Perspective. JAMA. 303(16):1617-24).

SUMMARY

[0006] The inventors have identified key transcription factors that can surprisingly reprogram committed cells and blood cells back into hematopoietic stem cells.

[0007] Hematopoietic stem cells (HSCs) are the best-characterized tissue-specific stem cells, yet the experimental study of HSCs remains challenging, due to the fact that they are exceedingly rare and methods to purify them are cumbersome, and vary between different laboratories. Moreover, genetic tools for specifically addressing issues related to HSC biology are lacking. In spite of wide clinical use, HSC transplantation remains a high-risk procedure, with the number of stem cells available for transplantation being the strongest predictor of transplantation success. One of the central clinical challenges of HSC transplantation arises from the fact that HSCs are exceedingly rare cells, occurring at a frequency of only 1/20,000 bone marrow cells and obtaining enough cells

for transplant is challenging. Thus, an ability to expand HSC numbers prior to transplantation could overcome the problem of limited HSC numbers. Efforts to expand HSCs prior to transplant by ex vivo culturing have proven challenging and such efforts have not yet translated to the clinic. Thus, there remains a clinical need to find alternative strategies for either expanding the numbers of existing HSCs, or generating HSCs de novo from more abundant cell types.

[0008] The embodiments of the invention provide multiple applications, including kits for research use and methods for generation of cells useful for conducting small molecule screens for blood diseases. In addition, the invention provides commercially and medically useful methods to produce autologous hematopoietic stem cells and give them back to a patient in need, with or without genome editing. Transplant of hematopoietic stem cells is a critically important procedure that is currently limited for a variety of reasons.

[0009] Provided herein are compositions, methods, and kits for hematopoietic stem cell induction or for reprogramming cells to the multipotent state of hematopoietic stem cells, based, in part, on the discoveries described herein of novel combinations of transcription factors that permit dedifferentiation and reprogramming of more differentiated cells to the hematopoietic stem cell state. Such compositions, nucleic acid constructs, methods and kits can be used for inducing hematopoietic stem cells in vitro, ex vivo, or in vivo, as described herein, and these induced hematopoietic stem cells can be used in regenerative medicine applications and therapies.

[0010] For example, the methods described herein can be used to produce HSC cells for treat diseases including leukemia, lymphomas, solid tumors, aplastic anemia, congenital bone marrow failure syndromes, immune deficiencies, sickle cell disease, thalassemia and metabolic/storage diseases, such as amyloidosis.

[0011] Accordingly, provided herein, in some aspects are hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors encoding at least one, two, three, four, five, six, seven, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612.

[0012] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0013] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.

[0014] Also provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising:

[0015] a. a nucleic acid sequence encoding HLF;

[0016] b. a nucleic acid sequence encoding RUNX1T1;

[0017] c. a nucleic acid sequence encoding ZFP37;

[0018] d. a nucleic acid sequence encoding PBX1; [0019] e. a nucleic acid sequence encoding LMO2; and

[0020] f. a nucleic acid sequence encoding PRDM5.

```
[0021] In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0022] a. a nucleic acid sequence encoding PRDM16;
[0023] b. a nucleic acid sequence encoding ZFP467; and
[0024] c. a nucleic acid sequence encoding VDR.
[0025] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0026] a. a nucleic acid sequence encoding HLF;
[0027]
        b. a nucleic acid sequence encoding RUNX1T1;
[0028]
        c. a nucleic acid sequence encoding PBX1;
[0029]
        d. a nucleic acid sequence encoding LMO2;
[0030]
        e. a nucleic acid sequence encoding PRDM5
[0031] f. a nucleic acid sequence encoding ZFP37;
        g. a nucleic acid sequence encoding MYCN;
[0032]
[0033] h. a nucleic acid sequence encoding MSI2;
[0034] i. a nucleic acid sequence encoding NKX2-3;
[0035]
       j. a nucleic acid sequence encoding MEIS1; and
        k. a nucleic acid sequence encoding RBPMS.
[0036]
[0037]
       Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0038]
        a. a nucleic acid sequence encoding ZFP467;
[0039]
        b. a nucleic acid sequence encoding PBX1;
[0040]
        c. a nucleic acid sequence encoding HOXB4; and
[0041]
        d. a nucleic acid sequence encoding MSI2.
[0042]
        In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0043] a. a nucleic acid sequence encoding HLF;
[0044] b. a nucleic acid sequence encoding LMO2;
[0045] c. a nucleic acid sequence encoding PRDM16; and
[0046]
       d. a nucleic acid sequence encoding ZFP37.
[0047] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0048] a. a nucleic acid sequence encoding MYCN;
[0049] b. a nucleic acid sequence encoding MSI2;
[0050] c. a nucleic acid sequence encoding NKX2-3; and
[0051] d. a nucleic acid sequence encoding RUNX1T1.
[0052] In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0053] a. a nucleic acid sequence encoding HOXB5;
[0054]
        b. a nucleic acid sequence encoding HLF;
[0055]
        c. a nucleic acid sequence encoding ZFP467;
[0056]
        d. a nucleic acid sequence encoding HOXB3;
[0057]
        e. a nucleic acid sequence encoding LMO2;
[0058]
        f. a nucleic acid sequence encoding PBX1;
[0059]
        g. a nucleic acid sequence encoding ZFP37; and
[0060]
        h. a nucleic acid sequence encoding ZFP521.
[0061] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0062] a. a nucleic acid sequence encoding HOXB4;
[0063]
        b. a nucleic acid sequence encoding PBX1;
[0064]
        c. a nucleic acid sequence encoding LMO2;
[0065]
        d. a nucleic acid sequence encoding ZFP467; and
[0066]
        e. a nucleic acid sequence encoding ZFP521.
```

[0067] In some embodiments of these aspects and all such

aspects described herein, the composition further comprises

one or more expression vectors comprising:

```
[0068]
        a. a nucleic acid sequence encoding KLF12;
[0069]
        b. a nucleic acid sequence encoding HLF; and
[0070]
        c. a nucleic acid sequence encoding EGR1.
[0071]
        Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0072] a. a nucleic acid sequence encoding MEIS1;
[0073]
        b. a nucleic acid sequence encoding RBPMS;
[0074]
        c. a nucleic acid sequence encoding ZFP37;
[0075]
        d. a nucleic acid sequence encoding RUNX1T1; and
[0076]
        e. a nucleic acid sequence encoding LMO2.
[0077]
        In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0078] a. a sequence encoding KLF12; and
[0079]
        b. a sequence encoding HLF;
[0080] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0081]
       a. a nucleic acid sequence encoding ZFP37;
[0082]
        b. a nucleic acid sequence encoding HOXB4;
[0083]
        c. a nucleic acid sequence encoding LMO2; and
[0084]
        d. a nucleic acid sequence encoding HLF.
        In some embodiments of these aspects and all such
[0085]
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0086] a. a nucleic acid sequence encoding MYCN;
[0087]
        b. a nucleic acid sequence encoding ZFP467;
[8800]
        c. a nucleic acid sequence encoding NKX2-3
[0089] d. a nucleic acid sequence encoding PBX1; and
[0090] e. a nucleic acid sequence encoding KLF4.
[0091] In some embodiments of these aspects and all such
aspects described herein, the one or more expression vectors
are retroviral vectors.
[0092] In some embodiments of these aspects and all such
aspects described herein, the one or more expression vectors
are lentiviral vectors. In some embodiments, the lentiviral
vectors are inducible lentiviral vectors.
[0093] Also provided herein, in some aspects, are hemato-
poietic stem cell (HSC) inducing compositions comprising
modified mRNA sequences encoding at least one, two, three,
four, five, six, seven, eight, or more HSC inducing factors
selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1,
GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9,
HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12,
KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3,
NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5,
RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6,
TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and
ZFP612, wherein each cytosine of each said modified mRNA
sequence is a modified cytosine, each uracil of each said
modified mRNA sequence is a modified uracil, or a combi-
nation thereof.
[0094] In some embodiments of these aspects and all such
aspects described herein, the at least one, two, three, four, or
more HSC inducing factors are HLF, RUNX1T1, PBX1,
```

[0096] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1,

[0095] In some embodiments of these aspects and all such

aspects described herein, the at least one, two, three, four, or

more HSC inducing factors are HLF, RUNX1T1, ZFP37,

and RBPMS.

PBX1, LMO2, and PRDM5.

[0097] a. a modified mRNA sequence encoding HLF;

[0098] b. a modified mRNA sequence encoding RUNX1T1;

[0099] c. a modified mRNA sequence encoding ZFP37;

[0100] d. a modified mRNA sequence encoding PBX1;

[0101] e. a modified mRNA sequence encoding LMO2; and

[0102] f. a modified mRNA sequence encoding PRDM5;

[0103] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0104] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0105] a. a modified mRNA sequence encoding PRDM16; [0106] b. a modified mRNA sequence encoding ZFP467;

[0106] b. a modified mRNA sequence encoding ZFP467;

[0107] c. a modified mRNA sequence encoding VDR;

[0108] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0109] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0110] a. a modified mRNA sequence encoding HLF;

[0111] b. a modified mRNA sequence encoding RUNX1T1;

[0112] c. a modified mRNA sequence encoding PBX1;

[0113] d. a modified mRNA sequence encoding LMO2;

[0114] e. a modified mRNA sequence encoding PRDM5

[0115] f. a modified mRNA sequence encoding ZFP37;

[0116] g. a modified mRNA sequence encoding MYCN;

[0117] h. a modified mRNA sequence encoding MSI2;

[0118] i. a modified mRNA sequence encoding NKX2-3;

[0119] j. a modified mRNA sequence encoding MEIS1; and

[0120] k. a modified mRNA sequence encoding RBPMS;

[0121] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0122] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0123] a. a modified mRNA sequence encoding ZFP467;

[0124] b. a modified mRNA sequence encoding PBX1;

[0125] c. a modified mRNA sequence encoding HOXB4; and

[0126] d. a modified mRNA sequence encoding MSI2;

[0127] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0128] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0129] a. a modified mRNA sequence encoding HLF;

[0130] b. a modified mRNA sequence encoding LMO2;

[0131] c. a modified mRNA sequence encoding PRDM16; and

[0132] d. a modified mRNA sequence encoding ZFP37.

[0133] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0134] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0135] a. a modified mRNA sequence encoding MYCN;

[0136] b. a modified mRNA sequence encoding MSI2;

 $\mbox{\bf [0137]}$ $\,$ c. a modified mRNA sequence encoding NKX2-3; and

[0138] d. a modified mRNA sequence encoding RUNX1T1;

[0139] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0140] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0141] a. a modified mRNA sequence encoding HOXB5;

[0142] b. a modified mRNA sequence encoding HLF;

[0143] c. a modified mRNA sequence encoding ZFP467;

[0144] d. a modified mRNA sequence encoding HOXB3;

[0145] e. a modified mRNA sequence encoding LMO2;

[0146] f. a modified mRNA sequence encoding PBX1;

[0147] g. a modified mRNA sequence encoding ZFP37; and

[0148] h. a modified mRNA sequence encoding ZFP521;

[0149] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0150] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0151] a. a modified mRNA sequence encoding HOXB4;

[0152] b. a modified mRNA sequence encoding PBX1;

[0153] c. a modified mRNA sequence encoding LMO2;

[0154] d. a modified mRNA sequence encoding ZFP467; and

[0155] e. a modified mRNA sequence encoding ZFP521;

[0156] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0157] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0158] a. a modified mRNA sequence encoding KLF12;

[0159] b. a modified mRNA sequence encoding HLF; and

[0160] c. a modified mRNA sequence encoding EGR;

[0161] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0162] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0163] a. a modified mRNA sequence encoding MEIS1;

[0164] b. a modified mRNA sequence encoding RBPMS;

[0165] c. a modified mRNA sequence encoding ZFP37;

[0166] d. a modified mRNA sequence encoding RUNX1T1; and

[0167] e. a modified mRNA sequence encoding LMO2.

[0168] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0169] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0170] a. a modified mRNA sequence encoding KLF12; and

[0171] b. a modified mRNA sequence encoding HLF;

[0172] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0173] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0174] a. a modified mRNA sequence encoding ZFP37;

[0175] b. a modified mRNA sequence encoding HOXB4;

[0176] c. a modified mRNA sequence encoding LMO2; and

[0177] d. a modified mRNA sequence encoding HLF;

[0178] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0179] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0180] a. a modified mRNA encoding MYCN;

[0181] b. a modified mRNA encoding ZFP467;

[0182] c. a modified mRNA encoding NKX2-3

[0183] d. a modified mRNA encoding PBX1; and

[0184] e. a modified mRNA encoding KLF4;

[0185] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0186] In some embodiments of these aspects and all such aspects described herein, the modified cytosine is 5-methyl-cytosine and the modified uracil is pseudouracil.

[0187] In some embodiments of these aspects and all such aspects described herein, the modified mRNA sequences comprise one or more nucleoside modifications selected from the group consisting of pyridin-4-one ribonucleoside, 5-azauridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine. 5-carboxymethyl-uridine, 1-carboxymethylpseudouridine, 5-propynyl-uridine, 1-propynylpseudouridine, 5-taurinomethyluridine, 1-taurinomethylpseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methylpseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihvdrouridine. dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deazapseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine,

zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-ad-7-deaza-2-aminopurine, 7-deaza-8-aza-2aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2, 6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine, inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deazaguanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-me-N2,N2-dimethylguanosine, 8-oxo-guathylguanosine. nosine. 7-methyl-8-oxo-guanosine, 1-methyl-6-thioguanosine, N2-methyl-6-thio-guanosine, and N2,N2dimethyl-6-thio-guanosine, and combinations thereof.

[0188] Also provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0189] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a promoter; and

[0190] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0191] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding PRDM16 a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR.

[0192] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0193] a transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0194] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0195] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

- [0196] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and
- [0197] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0198] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0199] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

- [0200] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2, a nucleic acid sequence encoding NKX2-3; and a nucleic acid sequence encoding RUNX1T1; wherein each said nucleic acid sequence is operably linked to a promoter; and
- [0201] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0202] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HOXB5; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding HOXB3; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP521.

[0203] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

- [0204] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and
- [0205] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0206] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.

[0207] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0208] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MEIS1; a nucleic acid sequence encoding RBPMS; a nucleic acid sequence encoding ZFP37; a nucleic acid

- sequence encoding RUNX1T1; and a nucleic acid sequence encoding LMO2; wherein each said nucleic acid sequence is operably linked to a promoter; and
- [0209] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0210] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.

[0211] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

- [0212] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and
- [0213] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0214] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.
- [0215] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:
 - [0216] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0217] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0218] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding KLF4.
- [0219] In some embodiments of these aspects and all such aspects described herein, the somatic cell is a fibroblast cell.
 [0220] In some embodiments of these aspects and all such aspects described herein, the somatic cell is a hematopoietic lineage cell.
- [0221] In some embodiments of these aspects and all such aspects described herein, the hematopoietic lineage cell is selected from promyelocytes, neutrophils, eosinophils, basophils, reticulocytes, erythrocytes, mast cells, osteoclasts, megakaryoblasts, platelet producing megakaryocytes, platelets, monocytes, macrophages, dendritic cells, lymphocytes, NK cells, NKT cells, innate lymphocytes, multipotent hematopoietic progenitor cells, and lineage restricted hematopoietic progenitors.

[0222] In some embodiments of these aspects and all such aspects described herein, the hematopoietic lineage cell is

selected from a multi-potent progenitor cell (MPP), common myeloid progenitor cell (CMP), granulocyte-monocyte progenitor cells (GMP), common lymphoid progenitor cell (CLP), and pre-megakaryocyte-erythrocyte progenitor cell.

[0223] In some embodiments of these aspects and all such aspects described herein, the hematopoietic lineage cell is selected from a megakaryocyte-erythrocyte progenitor cell (MEP), a ProB cell, a PreB cell, a PreProB cell, a ProT cell, a double-negative T cell, a pro-NK cell, a pro-dendritic cell (pro-DC), pre-granulocyte/macrophage cell, a granulocyte/macrophage progenitor (GMP) cell, and a pro-mast cell (ProMC).

[0224] Also provided herein, in some aspects, are methods of promoting transdifferentiation of a ProPreB cell to the myeloid lineage comprising:

[0225] a. transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0226] b. culturing the transduced ProPreB cell in a cell media that supports growth of myeloid lineage cells, thereby transdifferentiating the ProPreB cell to the myeloid lineage.

[0227] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0228] Also provided herein, in some aspects, are methods of increasing survival and/or proliferation of ProPreB cells, comprising:

[0229] a. transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0230] b. culturing the transduced ProPreB cell in a cell media that supports growth of ProPreB cells, thereby increasing survival and/or proliferation of ProPreB cells.

[0231] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.

[0232] Also provided herein, in some aspects, are isolated induced hematopoietic stem cells (iHSCs) produced using any of the HSC inducing compositions or methods described herein.

[0233] In some aspects, provided herein are cell clones comprising a plurality of the induced hematopoietic stem cells (iHSCs) produced using any of the HSC inducing compositions or methods described herein. In some embodiments of these aspects and all such aspects described herein, the cell clones further comprise a pharmaceutically acceptable carrier

[0234] Also provided herein, in some aspects, are kits for making induced hematopoietic stem cells (iHSCs), the kits comprising any of the HSC inducing compositions comprising one or more expression vector components described herein.

[0235] Provided herein, in some aspects, are kits for making induced hematopoietic stem cells (iHSCs), the kits comprising any of the HSC inducing compositions comprising modified mRNA sequence components described herein.

[0236] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, and MEIS1

[0237] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, and LMO2.

[0238] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising:

[0239] a nucleic acid sequence encoding HLF;

[0240] a nucleic acid sequence encoding RUNX1T1;

[0241] a nucleic acid sequence encoding ZFP37;

[0242] a nucleic acid sequence encoding PBX1;

[0243] a nucleic acid sequence encoding LMO2;

[0244] a nucleic acid sequence encoding PRDM5;

[0245] a nucleic acid sequence encoding MYCN; and

[0246] a nucleic acid sequence encoding MEIS1.

[0247] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising:

[0248] a nucleic acid sequence encoding HLF;

[0249] a nucleic acid sequence encoding RUNX1T1;

[0250] a nucleic acid sequence encoding ZFP37;

[0251] a nucleic acid sequence encoding PBX1; and

[0252] a nucleic acid sequence encoding LMO2;

[0253] In some embodiments of these aspects and all such aspects described herein, the one or more expression vectors are lentiviral vectors. In some embodiments, the lentiviral vectors are inducible lentiviral vectors. In some embodiments, the lentiviral vectors are polycistronic inducible lentiviral vectors. In some embodiments, the polycistronic inducible lentiviral vectors express three or more nucleic acid sequences. In some embodiments, each of the nucleic acid sequences of the polycistronic inducible lentiviral vectors are separated by 2A peptide sequences.

[0254] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, and MEIS1.

[0255] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, and LMO2.

[0256] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding RUNX1T1; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding PRDM5; a modified mRNA sequence encoding MEIS1; and a modified mRNA sequence encoding MYCN; wherein each cytosine of each said modi-

fied mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0257] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding RUNX1T1; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding PBX1; and a modified mRNA sequence encoding LMO2; wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified wrong in a combination thereof.

[0258] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising: transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding MYCN, wherein each said nucleic acid sequence is operably linked to a promoter; and

culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0259] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising: transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a promoter; and culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0260] As demonstrated herein, the use of polycistronic viral expression systems can increase the in vivo reprogramming efficiency of somatic cells to iHSCs. Accordingly, in some embodiments of the aspects described herein, a polycistronic lentiviral vector is used. In such embodiments, sequences encoding two or more of the HSC inducing factors described herein, are expressed from a single promoter, as a polycistronic transcript. We used 2A peptide strategy to make polycistronic vectors (see, e.g., Expert Opin Biol Ther. 2005 May; 5(5):627-38). Polycistronic expression vector systems can also use internal ribosome entry sites (IRES) elements to create multigene, or polycistronic, messages. IRES elements are able to bypass the ribosome scanning model of 5'-methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988). IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, thus creating polycistronic messages. By virtue of the IRES element, each open reading frame is accessible to ribosomes for efficient translation. Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message. See, for example, U.S. Pat. Nos. 4,980,285; 5,925,565; 5,631,150; 5,707,828; 5,759,828; 5,888,783; 5,919,670; and 5,935,819; and Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Press (1989).

DEFINITIONS

[0261] For convenience, certain terms employed herein, in the specification, examples and appended claims are collected here. Unless stated otherwise, or implicit from context, the following terms and phrases include the meanings provided below. Unless explicitly stated otherwise, or apparent from context, the terms and phrases below do not exclude the meaning that the term or phrase has acquired in the art to which it pertains. The definitions are provided to aid in describing particular embodiments, and are not intended to limit the claimed invention, because the scope of the invention is limited only by the claims. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

[0262] The term "HSC inducing factor," as used herein, refers to a developmental potential altering factor, as that term is defined herein, such as a protein, RNA, or small molecule, the expression of which contributes to the reprogramming of a cell, e.g. a somatic cell, to the HSC state. An HSC inducing factor can be, for example, transcription factors that can reprogram cells to the HSC state, such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, and the like, including any gene, protein, RNA or small molecule that can substitute for one or more of these factors in a method of making iHSCs in vitro. In some embodiments, exogenous expression of an HSC inducing factor induces endogenous expression of one or more HSC inducing factors, such that exogenous expression of the one or more HSC inducing factor is no longer required for stable maintenance of the cell in the iHSC state.

[0263] As used herein, the terms "developmental potential" or "developmental potency" refer to the total of all developmental cell fates or cell types that can be achieved by a given cell upon differentiation. Thus, a cell with greater or higher developmental potential can differentiate into a greater variety of different cell types than a cell having a lower or decreased developmental potential. The developmental potential of a cell can range from the highest developmental potential of a totipotent cell, which, in addition to being able to give rise to all the cells of an organism, can give rise to extra-embryonic tissues; to a "unipotent cell," which has the capacity to differentiate into only one type of tissue or cell type, but has the property of self-renewal, as described herein; to a "terminally differentiated cell," which has the lowest developmental potential. A cell with "parental developmental potential" refers to a cell having the developmental potential of the parent cell that gave rise to it.

[0264] The term "multipotent" when used in reference to a "multipotent cell" refers to a cell that has the developmental potential to differentiate into cells of one or more germ layers, but not all three. Thus, a multipotent cell can also be termed a "partially differentiated cell." Multipotent cells are well known in the art, and examples of multipotent cells include adult stem cells, such as for example, hematopoietic stem cells and neural stem cells. "Multipotent" indicates that a cell may form many types of cells in a given lineage, but not cells of other lineages. For example, a multipotent hematopoietic cell can form all of the many different types of blood cells (red, white, platelets, etc. . . .), but it cannot form neurons.

Accordingly, the term "multipotency" refers to a state of a cell with a degree of developmental potential that is less than totipotent and pluripotent.

[0265] The terms "stem cell" or "undifferentiated cell" as used herein, refer to a cell in an undifferentiated or partially differentiated state that has the property of self-renewal and has the developmental potential to differentiate into multiple cell types, without a specific implied meaning regarding developmental potential (i.e., totipotent, pluripotent, multipotent, etc.). A stem cell is capable of proliferation and giving rise to more such stem cells while maintaining its developmental potential. In theory, self-renewal can occur by either of two major mechanisms. Stem cells can divide asymmetrically, which is known as obligatory asymmetrical differentiation, with one daughter cell retaining the developmental potential of the parent stem cell and the other daughter cell expressing some distinct other specific function, phenotype and/or developmental potential from the parent cell. The daughter cells themselves can be induced to proliferate and produce progeny that subsequently differentiate into one or more mature cell types, while also retaining one or more cells with parental developmental potential. A differentiated cell may derive from a multipotent cell, which itself is derived from a multipotent cell, and so on. While each of these multipotent cells can be considered stem cells, the range of cell types each such stem cell can give rise to, i.e., their developmental potential, can vary considerably. Alternatively, some of the stem cells in a population can divide symmetrically into two stem cells, known as stochastic differentiation, thus maintaining some stem cells in the population as a whole, while other cells in the population give rise to differentiated progeny only. Accordingly, the term "stem cell" refers to any subset of cells that have the developmental potential, under particular circumstances, to differentiate to a more specialized or differentiated phenotype, and which retain the capacity, under certain circumstances, to proliferate without substantially differentiating. In some embodiments, the term stem cell refers generally to a naturally occurring parent cell whose descendants (progeny cells) specialize, often in different directions, by differentiation, e.g., by acquiring completely individual characters, as occurs in progressive diversification of embryonic cells and tissues. Some differentiated cells also have the capacity to give rise to cells of greater developmental potential. Such capacity may be natural or may be induced artificially upon treatment with various factors. Cells that begin as stem cells might proceed toward a differentiated phenotype, but then can be induced to "reverse" and re-express the stem cell phenotype, a term often referred to as "dedifferentiation" or "reprogramming" or "retrodifferentiation" by persons of ordinary skill in the art, and as used

[0266] In the context of cell ontogeny, the term "differentiate", or "differentiating" is a relative term that refers to a developmental process by which a cell has progressed further down a developmental pathway than its immediate precursor cell. Thus in some embodiments, a reprogrammed cell as the term is defined herein, can differentiate to a lineage-restricted precursor cell (such as a common lymphoid progenitor), which in turn can differentiate into other types of precursor cells further down the pathway (such as a ProBPreB cell, for example), and then to an end-stage differentiated cells, which play a characteristic role in a certain tissue type, and may or may not retain the capacity to proliferate further.

[0267] "Transdifferentiation," as used herein refers to a process by which the phenotype of a cell can be switched to that of another cell type, without the formation of a multipotent intermediate cell. Thus, when transdifferentiation methods are employed, it is not required that the cell first be de-differentiated (or reprogrammed) to a multipotent cell and then differentiated to another hematopoietic lineage cell; rather the cell type is merely "switched" from one cell type to another without first forming a multipotent iHSC phenotype, for example.

[0268] As used herein, the term "without the formation of a multipotent or pluripotent intermediate cell" refers to the transdifferentiation of one cell type to another cell type, preferably, in one step; thus a method that modifies the differentiated phenotype or developmental potential of a cell without the formation of a multipotent or pluripotent intermediate cell does not require that the cell be first dedifferentiated (or reprogrammed) to a multipotent state and then differentiated to another cell type.

[0269] The term "expression" refers to the cellular processes involved in producing RNA and proteins and as appropriate, secreting proteins, including where applicable, but not limited to, for example, transcription, translation, folding, modification and processing. "Expression products" include RNA transcribed from a gene, and polypeptides obtained by translation of mRNA transcribed from a gene. In some embodiments, an expression product is transcribed from a sequence that does not encode a polypeptide, such as a microRNA.

[0270] As used herein, the term "transcription factor" or "TF" refers to a protein that binds to specific parts of DNA using DNA binding domains and is part of the system that controls the transcription of genetic information from DNA to RNA.

[0271] As used herein, the term "small molecule" refers to a chemical agent which can include, but is not limited to, a peptide, a peptide, a peptide, an amino acid, an amino acid analog, a polynucleotide, a polynucleotide analog, an aptamer, a nucleotide, a nucleotide analog, an organic or inorganic compound (e.g., including heterorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

[0272] The term "exogenous" as used herein refers to a nucleic acid (e.g., a synthetic, modified RNA encoding a transcription factor), or a protein (e.g., a transcription factor) that has been introduced by a process involving the hand of man into a biological system such as a cell or organism in which it is not normally found, or in which it is found in lower amounts. A factor (e.g. a synthetic, modified RNA encoding a transcription factor, or a protein, e.g., a polypeptide) is considered exogenous if it is introduced into an immediate precursor cell or a progeny cell that inherits the substance. In contrast, the term "endogenous" refers to a factor or expression product that is native to the biological system or cell (e.g., endogenous expression of a gene, such as, e.g., HLF refers to production of an HLF polypeptide by the endogenous gene in a cell).

[0273] The term "isolated" or "partially purified" as used herein refers, in the case of a nucleic acid or polypeptide, to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) that is present with the nucleic acid or polypeptide as found in its natural source and/or that would be present with the nucleic acid or polypeptide when expressed by a cell, or secreted in the case of secreted polypeptides. A chemically synthesized nucleic acid or polypeptide or one synthesized using in vitro transcription/translation is considered "isolated".

[0274] The term "isolated cell" as used herein refers to a cell that has been removed from an organism in which it was originally found, or a descendant of such a cell. Optionally the cell has been cultured in vitro, e.g., in the presence of other cells. Optionally, the cell is later introduced into a second organism or re-introduced into the organism from which it (or the cell or population of cells from which it descended) was isolated.

[0275] The term "isolated population" with respect to an isolated population of cells as used herein refers to a population of cells that has been removed and separated from a mixed or heterogeneous population of cells. In some embodiments, an isolated population is a "substantially pure" population of cells as compared to the heterogeneous population from which the cells were isolated or enriched. In some embodiments, the isolated population is an isolated population of multipotent cells which comprise a substantially pure population of multipotent cells as compared to a heterogeneous population of somatic cells from which the multipotent cells were derived.

[0276] The term "immediate precursor cell" is used herein to refer to a parental cell from which a daughter cell has arisen by cell division.

[0277] The term "contacting" or "contact" as used herein in connection with contacting a cell with one or more constructs, viral vectors, or synthetic, modified RNAs, includes subjecting a cell to a culture medium which comprises one or more constructs, viral vectors, or synthetic, modified RNAs at least one time, or a plurality of times, or to a method whereby such constructs, viral vectors, or synthetic, modified RNAs are forced to contact a cell at least one time, or a plurality of times, i.e., a transduction or a transfection system. Where such a cell is in vivo, contacting the cell with a construct, viral vector, or synthetic, modified RNA includes administering the construct(s), viral vector(s), or synthetic, modified RNA(s) in a composition, such as a pharmaceutical composition, to a subject via an appropriate administration route, such that the compound contacts the cell in vivo.

[0278] The term "transfection" as used herein refers the use of methods, such as chemical methods, to introduce exogenous nucleic acids, such as synthetic, modified RNAs, into a cell, preferably a eukaryotic cell. As used herein, the term transfection does not encompass viral-based methods of introducing exogenous nucleic acids into a cell. Methods of transfection include physical treatments (electroporation, nanoparticles, magnetofection), and chemical-based transfection methods. Chemical-based transfection methods include, but are not limited to, cyclodextrin, polymers, liposomes, and nanoparticles. In some embodiments, cationic lipids or mixtures thereof can be used to transfect the synthetic, modified RNAs described herein, into a cell, such as DOPA, Lipofectamine and UptiFectin. In some embodi-

ments, cationic polymers such as DEAE-dextran or polyethylenimine, can be used to transfect a synthetic, modified RNAs described herein.

[0279] The term "transduction" as used herein refers to the use of viral particles or viruses to introduce exogenous nucleic acids, such as nucleic acid sequences encoding HSC inducing factors, into a cell.

[0280] As used herein, the term "transfection reagent" refers to any agent that induces uptake of a nucleic acid into a host cell. Also encompassed are agents that enhance uptake e.g., by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at least 99%, at least 1-fold, at least 2-fold, at least 5-fold, at least 10-fold, at least 25-fold, at least 500fold, at least 100-fold, at least 1000-fold, or more, compared to a nucleic acid sequence administered in the absence of such a reagent. In some embodiments, a cationic or non-cationic lipid molecule useful for preparing a composition or for coadministration with a synthetic, modified RNA is used as a transfection reagent. In other embodiments, the synthetic, modified RNA comprises a chemical linkage to attach e.g., a ligand, a peptide group, a lipophilic group, a targeting moiety etc. In other embodiments, the transfection reagent comprises a charged lipid, an emulsion, a liposome, a cationic or noncationic lipid, an anionic lipid, or a penetration enhancer as known in the art or described herein.

[0281] As used herein, the term "repeated transfections" refers to repeated transfection of the same cell culture with a nucleic acid, such as a synthetic, modified RNA, a plurality of times (e.g., more than once or at least twice). In some embodiments, the cell culture is transfected at least twice, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times, at least 11 times, at least 12 times, at least 13 times, at least 14 times, at least 15 times, at least 16 times, at least 17 times at least 18 times, at least 19 times, at least 20 times, at least 25 times, at least 30 times, at least 35 times, at least 40 times, at least 45 times, at least 50 times or more. The transfections can be repeated until a desired phenotype of the cell is achieved.

[0282] The time between each repeated transfection is referred to herein as the "frequency of transfection." In some embodiments, the frequency of transfection occurs every 6 h, every 12 h, every 24 h, every 36 h, every 48 h, every 60 h, every 72 h, every 96 h, every 108 h, every 5 days, every 7 days, every 10 days, every 14 days, every 3 weeks, or more during a given time period in any developmental potential altering regimen. The frequency can also vary, such that the interval between each dose is different (e.g., first interval 36 h, second interval 48 h, third interval 72 h etc). It should be understood depending upon the schedule and duration of repeated transfections, it will often be necessary to split or passage cells or change or replace the media during the transfection regimen to prevent overgrowth and replace nutrients. For the purposes of the methods described herein, transfections of a culture resulting from passaging an earlier transfected culture is considered "repeated transfection," "repeated contacting" or "contacting a plurality of times," unless specifically indicated otherwise.

[0283] As used herein, the terms "nucleic acid," "polynucleotide," and "oligonucleotide" generally refer to any polyribonucleotide or poly-deoxyribonucleotide, and includes unmodified RNA, unmodified DNA, modified RNA, and modified DNA. Polynucleotides include, without limitation, single- and double-stranded DNA and RNA polynucle-

otides. The term polynucleotide, as it is used herein, embraces chemically, enzymatically or metabolically modified forms of polynucleotides, as well as the naturally occurring chemical forms of DNA and RNA found in or characteristic of viruses and cells, including for example, simple (prokaryotic) and complex (eukaryotic) cells. A nucleic acid polynucleotide or oligonucleotide as described herein retains the ability to hybridize to its cognate complimentary strand.

[0284] Accordingly, as used herein, the terms "nucleic acid," "polynucleotide," and "oligonucleotide" also encompass primers and probes, as well as oligonucleotide fragments, and is generic to polydeoxyribonucleotides (containing 2-deoxy-D-ribose), to polyribonucleotides (containing D-ribose), and to any other type of polynucleotide which is an N-glycoside of a purine or pyrimidine base, or modified purine or pyrimidine bases (including, but not limited to, abasic sites). There is no intended distinction in length between the term "nucleic acid," "polynucleotide," and "oligonucleotide," and these terms are used interchangeably. These terms refer only to the primary structure of the molecule. An oligonucleotide is not necessarily physically derived from any existing or natural sequence, but can be generated in any manner, including chemical synthesis, DNA replication, DNA amplification, in vitro transcription, reverse transcription or any combination thereof

[0285] The terms "nucleotide" or "mononucleotide," as used herein, refer to a phosphate ester of a nucleoside, e.g., mono-, di-, tri-, and tetraphosphate esters, wherein the most common site of esterification is the hydroxyl group attached to the C-5 position of the pentose (or equivalent position of a non-pentose "sugar moiety"). The term "nucleotide" includes both a conventional nucleotide and a non-conventional nucleotide which includes, but is not limited to, phosphorothioate, phosphite, ring atom modified derivatives, and the like.

[0286] As used herein, the term "conventional nucleotide" refers to one of the "naturally occurring" deoxynucleotides (dNTPs), including dATP, dTTP (or TTP), dCTP, dGTP, dUTP, and dITP.

[0287] As used herein, the term "non-conventional nucleotide" refers to a nucleotide that is not a naturally occurring nucleotide. The term "naturally occurring" refers to a nucleotide that exists in nature without human intervention. In contradistinction, the term "non-conventional nucleotide" refers to a nucleotide that exists only with human intervention, i.e., an "artificial nucleotide." A "non-conventional nucleotide" can include a nucleotide in which the pentose sugar and/or one or more of the phosphate esters is replaced with a respective analog. Exemplary phosphate ester analogs include, but are not limited to, alkylphosphonates, methylphosphonates, phosphoramidates, phosphotriesters, phosphorothioates, phosphorodithioates, phosphoroselenoates, phosphorodiselenoates, phosphoroanilothioates, phosphoroanilidates, phosphoroamidates, boronophosphates, etc., including any associated counterions, if present. A non-conventional nucleotide can show a preference of base pairing with another non-conventional or "artificial" nucleotide over a conventional nucleotide (e.g., as described in Ohtsuki et al. 2001, Proc. Natl. Acad. Sci., 98: 4922-4925, hereby incorporated by reference). The base pairing ability may be measured by the T7 transcription assay as described in Ohtsuki et al. (supra). Other non-limiting examples of "non-conventional" or "artificial" nucleotides can be found in Lutz et al. (1998) Bioorg. Med. Chem. Lett., 8: 1149-1152); Voegel and Benner (1996) Helv. Chim Acta 76, 1863-1880; Horlacher et al.

(1995) Proc. Natl. Acad. Sci., 92: 6329-6333; Switzer et al. (1993), Biochemistry 32:10489-10496; Tor and Dervan (1993) J. Am. Chem. Soc. 115: 4461-4467; Piccirilli et al. (1991) Biochemistry 30: 10350-10356; Switzer et al. (1989) J. Am. Chem. Soc. 111: 8322-8323, all of which are hereby incorporated by reference. A "non-conventional nucleotide" can also be a degenerate nucleotide or an intrinsically fluorescent nucleotide.

[0288] As used herein the term "modified ribonucleoside" refers to a ribonucleoside that encompasses modification(s) relative to the standard guanine (G), adenine (A), cytosine (C), and uracil (U) nucleosides. Such modifications can include, for example, modifications normally introduced post-transcriptionally to mammalian cell mRNA, and artificial chemical modifications, as known to one of skill in the art.

[0289] As used herein, the terms "synthetic, modified RNA" or "modified RNA" or "modified mRNA" refer to an RNA molecule produced in vitro which comprises at least one modified nucleoside as that term is defined herein below. The modified mRNAs do not encompass mRNAs that are isolated from natural sources such as cells, tissue, organs etc., having those modifications, but rather only synthetic, modified RNAs that are synthesized using in vitro techniques, as described herein. The term "composition," as applied to the terms "synthetic, modified RNA" or "modified RNA," encompasses a plurality of different synthetic, modified RNA molecules (e.g., at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 25, at least 30, at least 40, at least 50, at least 75, at least 90, at least 100 synthetic, modified RNA molecules or more). In some embodiments, a synthetic, modified RNA composition can further comprise other agents (e.g., an inhibitor of interferon expression or activity, a transfection reagent, etc.). Such a plurality can include synthetic, modified RNA of different sequences (e.g., coding for different polypeptides), synthetic, modified RNAs of the same sequence with differing modifications, or any combination thereof.

[0290] As used herein the term "modified nucleoside" refers to a ribonucleoside that encompasses modification(s) relative to the standard guanine (G), adenine (A), cytidine (C), and uridine (U) nucleosides. Such modifications can include, for example, modifications normally introduced post-transcriptionally to mammalian cell mRNA, and artificial chemical modifications, as known to one of skill in the art.

[0291] As used herein, the term "polypeptide" refers to a polymer of amino acids comprising at least 2 amino acids (e.g., at least 5, at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 125, at least 150, at least 175, at least 200, at least 225, at least 250, at least 275, at least 300, at least 350, at least 400, at least 450, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 2000, at least 3000, at least 8000, at least 9000, at least 10,000 amino acids or more). The terms "protein" and "polypeptide" are used interchangeably herein. As used herein, the term "peptide" refers to a relatively short polypeptide, typically between about 2 and 60 amino acids in length.

BRIEF DESCRIPTION OF THE DRAWINGS

[0292] FIG. 1 depicts a schematic of hematopoietic differentiation showing populations (boxes) for which microarray data has been generated. Data generated herein is shown in thin-line boxes, and by other groups in thick-line boxes. Whereas hematopoietic differentiation normally proceeds from HSCs to differentiated blood effector cells, the results described herein aim to utilize HSC-enriched transcription factors to reprogram committed hematopoietic cells back to HSCs (large arrow). Throughout this proposal HSCs are purified by stringent cell surface criteria (e.g., ckit+Sca1+lineage-CD48-flk2-CD150+CD34-), as well as for fetal liver HSCs (e.g., ckit+Sca1+lineage-CD48-CD150+Mac1^{low}).

[0293] FIG. 2 depicts an overview of the approaches described herein for identifying factors capable of reprogramming committed hematopoietic cells back to HSCs.

[0294] FIG. 3 depicts gene discovery using the hematopoietic expression database. Heat map of expression of genes enriched in 6 different hematopoietic populations. Each column reflects microarray data from a hematopoietic subset (40 populations represented). Erythroid progenitors include MEP, pre-CFU-E and CFU-E. Expressed was visualized as red; Not expressed was visualized as blue. * Asterisk denotes genes with known roles in specifying the fate and/or function of the indicated cell type.

[0295] FIGS. 4A-4B depict an overview of experimental approaches and experimental populations. FIG. 4A depicts experimental approaches for screening induced HSCs (iH-SCs) through expression of multiple critical HSC-enriched transcription factors by in vitro and in vivo methods. CD45.2 transgenic (rtTA) mice are used to identify congenic donor cells in transplant experiments using recipient CD45.1 host mice. Common myeloid progenitors (CMPs) and Pro/Pre B Cells were sorted out of the bone marrow of CD45.2 transgenic mice. Sorted cells were incubated for 14 hours with ZsGreen control (VC) or a viral cocktail of HSC-specific factors. ZsGr+ cells were resorted two days post doxycycline addition. Resorted ZsGr+ CMPs and ProPreB Cells were put into a CFC myeloid colony forming assays (scored for colony numbers and morphology 20 days later) or transplanted into conditioned IR CD45.1+ recipient mice. Peripheral bleeds were performed up to 16 weeks as to define the short and long term reconstitution potential of cells. Mice identified with adequate multi-lineage reconstitution were euthanized and donor derived cells sorted from the bone marrow to be transplanted into conditioned secondary CD45.1 recipients; also full analysis of the bone marrow, spleen and thymus was performed. FIG. 4B depict CMPs and PrePro B cells that were predominately chosen as our starting populations so that we could demonstrate experimental reprogramming from the first defined committed blood cells in BOTH the B cell lineage and the myeloid lineage. These cell populations were identified using the phenotypic markers listed.

[0296] FIGS. 5A-5C depict heat maps of HSC-enriched transcription factors. The Rossi Lab and others put together a detailed database including mRNA expression profiles for over 248 defined progenitor and effector sub populations. FIG. 5A depicts an expression profile heat map for 37 HSC-enriched reprogramming factors. Columns represent microarray data for 40 distinct FACs sorted populations. * Denotes factors chosen because of their developmental importance. Expressed was visualized as red; Not expressed was visualized as blue. FIG. 5B shows that all HSC-enriched factors were placed into a doxycycline inducible tet-on sys-

tem based in the pHAGE2 lentiviral vector. Only exception to this vector map from addgene is that a CMV promoter is used in the systems described herein. Heat Map of expanded set of identified HSC-enriched Transcription Factors. FIG. 5C depicts an expression profile heat map for 46 HSC-enriched putative reprogramming factors. Columns represent microarray data for 40 distinct FACs sorted populations. * Expressed was visualized as red; Not expressed was visualized as blue. [0297] FIGS. 6A-6D depict isolation strategies for Pro and Pre B cells. FIG. 6A shows ProPre B cells that are sorted from the bone marrow by placing total bone marrow through a magnetic B220 enrichment column. Enrichment increases B220⁺CD19⁺ B cells from 15% to 85% in their respective populations; through Aria cell sorting the purity of the sample increases further to 99-100%. (RT stands for the B220⁻ run through from the column) FIG. 6B depicts a orting strategy to obtain ProPreB Cells that is demonstrated by flow histograms. FIG. 6C shows overall purity for each of the following samples: overall B220 enriched (top panel), reanalyzed sorted Pro B cells (Middle panel) and reanalyzed sorted Pre B cells (Bottom Panel). By showing CD25 expression vs. B220 expression we demonstrate not only that Pro and Pre B cells can be effectively sorted but can also be distinguished via phenotypic markers and sorting. FIG. 6D depicts overall sort purity of Pre B cells and Pro B Cells in each of the populations collected; indicating proficient sorting of ProPre B Cells (RT stands for the B220⁻ run through from the column).

[0298] FIGS. 7A-7B depict an isolation strategy for CMPs. FIG. 7A shows CMP cells that are sorted from the bone marrow by placing total bone marrow through a magnetic c-kit enrichment column. The indicated gating strategy isolated singlet, live, lineage negative, hematopoietic progenitors. FIG. 7B shows that enrichment increases CMP levels and furthermore that using aria cell sorting, a purity of 99-100% is achieved.

[0299] FIGS. 8A-8C demonstrate transduction and inducible expression of HSC-enriched transcription factors (TFs) in hematopoietic progenitors. FIG. 8A shows transduction of multi-potent progenitors (MPPs) with lentiviruses bearing 8 different TFs (LV1-LV-8). Cells were cultured in the presence of doxycycline (Dox) for 5 days followed by flow cytometry. FIG. 8B shows peripheral blood of a recipient transplanted with TF-transduced MPPs and maintained on Dox for 4 weeks (left panel), followed by 2 weeks Dox-off (right panel). FIG. 8C shows viral mediated expression of putative reprogramming factors in vitro. Quantitative RT-PCR for the indicated genes showing their relative expression within primary hematopoietic stem cells (HSCs) or multi-potent progenitors (MPPs), and in primary cells that were transduced with LV encoding the indicated factor and cultured for 1 week. The mRNA levels in overexpressing cells was calculated by dividing to the expression levels in primary HSCs. Results show Hlf at 8-fold, Nap113 at 110-fold, Rbpms at 20-fold and Runx1' at 40-fold above endogenous levels.

[0300] FIGS. 9A-9C demonstrate that Pro/Pre B Cells and CMPs can be transduced with doxycycline inducible viral cocktails. FIG. 9A shows B220+ CD19+ B Cells that were sorted from the bone marrow; cells were incubated for 14 hours with nothing (non trans), control ZsGr Virus (VC) or a viral cocktail that express 28 HSC-enriched factors (VM). Doxycycline (dox) was added for 24 hours. An increase in ZsGr+ cells is observed when the VM is used on cells in comparison to non transduced cells. FIG. 9B shows B220+ CD19+ B cells that were further analyzed in the presence and

absence of dox in three independent trials. In the absence of Dox few ZsGr+ cells are observed however regardless of using VC or VM the addition of Dox increases ZsGr expression in the population. Addition of dox tightly regulates ZsGr expression and therein gene expression. FIG. 9C shows pre B Cells, Pro B Cells, and CMPs that were sorted out of the bone marrow and incubated for 14 hours with VC or VM and left with Dox for two days before analysis. ProPreBCells and CMPs can be transduced with the viral cocktail to express HSC-enriched factors.

[0301] FIGS. 10A-10D demonstrate that combinatorial TF expression increases ProPreB and CMP CFC colony number and alters lineage potential. ProPre B Cells and CMPs were sorted using phenotypic markers on the Aria Sorter. Cells were incubated with ZsGr control virus (VC) or a viral cocktail (VM) for 14 hours in S-clone media containing SCF, TPO and IL-12 (In the case of ProPreB Cells, IL-7 and Flk3). Dox was added for 24 hours and cells were resorted for ZsGr+ cells. ZsGr+ cells were placed into methylcellulose media in a 6 well plate format containing SCF, TPO and IL-12 (For ProPreB Cells IL-7 and Flk3). Colony forming potential was assayed on day 20. FIG. 10A shows examples of types of cells observed during determination of colony morphology. FIG. 10B depicts representative pictures that were taken of the Transduced ProPreB ZsGreen control (VC) and Viral mixture of 37 factors (VM) CFC plates. FIG. 10C shows increasing number of cells that were plated to find an effective plating density of both ProPreBCells and CMPs. 2×10⁵ ProPre B Cells and 1×10^4 CMPs were used in further experiments. Experiments were repeated in two individual trials. FIG. 10D shows colony number and composition that were determined and noted for all colonies. Increased colony number is observed when ProPreB Cells and CMPs were transduced with the cocktail of 37 factors as compared to the ZsGreen control (VC). Experiments were done in duplicates for four trials.

[0302] FIG. 11 demonstrates that exposure to 18 putative reprogramming factors embues multi-potent progenitors with robust long-term multi-lineage engraftment potential in vivo. Multi-potent progenitors (MPP=Lineage^Sca1*ckit*CD150^) were sorted and transduced with either control virus of a lentiviral mix containing Hlf, MycN, Meis1, Irf6, Cdkn1c, Nfix, Dnmt3b, Zfp612, Prdm5, HoxB4, Lmo2, Nkx2-3, RarB, Ndn, Nap113, Runx1t1, Zfp467, Zfp532. Transduced cells were transplanted into irradiated congenic recipients along with competitive WBM. Peripheral-blood chimerism is indicated at timepoints post-transplant showing that exposure to these factors greatly improved long-term donor engraftment.

[0303] FIG. 12 demonstrates that exposure to 9 putative reprogramming factors embues multi-potent progenitors with robust long-term multi-lineage engraftment potential in vivo. MPPs from CD45.2 or congenic CD45.1 donors were sorted as LSKCD34+flk2+ and equal numbers of cells were transduced with either control virus (into CD45.1 cells) of a lentiviral mix containing 9 factors, including Evi-1, Glis2, HoxB5, HoxA9, HLF, Meis1, MycN, Prdm16, Runx1 (CD45.2 cells). Cells were transplanted into irradiated CD45. 1/CD45.2 F1 recipients along with CD45.1/CD45.2 competitor bone marrow (2e5 cells). Transgene-expression was sustained with doxycycline (dox-on) for 18 weeks (upper panel) followed by removal of Doxycycline for the remainder of the experiment (dox-off). Peripheral blood chimerism was measured at 20 and 25 weeks (lower panel) showing that in

contrast to control transduced MPPs (CD45.1), 9-factor transduced MPPS retained rebust long-term repopulating activity. Panel on lower right: Engraftment from 9-factor transduction is multi-lineage. Donor-derived cells were stained for Mac1, Gr-1, CD3, CD8 and B220 revealing the presence of donor-derived, macrophage/monocytes, granulocytes, T-cells and B-cells.

[0304] FIGS. 13A-13B demonstrate long-term multi-lineage reconstitution of multi-potent progenitors (MPPs) transduced with HSC-enriched transcription factors (TFs). FIG. 13A. Flow cytometry of peripheral blood of a recipient transplanted with MPPs (ckit+Sca1+lineage-CD150-flk2+ CD34+) transduced with control virus (top panel), or a cocktail of 17 different TFs (lower panel), 20 weeks posttransplant. Equal numbers of MPPs from the same initial sort were transplanted. FIG. 13B. Donor chimerism 20 weeks post-transplant of mice described in (FIG. 13A). Results show that only the TF-transduced MPPs yielded long-term multi-lineage reconstitution of T-cells, B-cells and myeloid cells, whereas control cells only gave rise to lymphoid cells as expected. All recipients receiving TF-transduced cells were multi-lineage reconstituted suggesting that reprogramming was not a rare event. n=4 recipients for each control and 17-TF. 17 factors in this experiment included: Hlf, MycN, Meis1, Irf6, Nfix, Dnmt3b, Zfp612, Prdm5, HoxB4, Lmo2, Nkx2-3, RarB, Ndn, Nap113, Runx1t1, Zfp467, Zfp532.

[0305] FIG. 14 demonstrates that exposure to 8 putative reprogramming factors embues multi-potent progenitors with robust long-term multi-lineage engraftment potential in vivo. Multi-potent progenitors (MPP=Lineage⁻Sca1⁺ckit⁺ CD150-flk2+CD34+) were sorted and transduced with with either control virus of a lentiviral mix containing Runx1t1, HLF Zfp467 Rbpms hoxb5 nap113 msi2 Irf6. Transduced cells were transplanted into irradiated congenic recipients along with competitive WBM. Peripheral-blood chimerism is indicated at 16 weeks post-transplant showing that exposure to these factors led to long-term donor multi-lineage engraftment (bottom panel) in contrast to control transduced cells (top panel). Doxycline was maintained on for 2 weeks posttransplant followed by dox-removal.

[0306] FIG. 15 depicts using peripheral bleeds to test donor derived chimerism. Shown here is an example gating strategy on a peripheral bleeds done at 8 weeks on a transplanted mouse with ProPreB cells transduced with a cocktail of viruses that individually encode for expression of 37 transcription factors.

[0307] FIGS. 16A-16C demonstrate that ProPreB Cell transplantation confers multi-lineage peripheral reconstitution when factors are expressed combinatorially. CD45.2+ ProPreB cells and CMPs transduced with control or VM were transplanted competitively into IR CD45.1+ recipients. Peripheral bleeds were performed at 4, 8, 12, and 16 weeks. FIG. **16**A. Flow histograms show 16 week peripheral bleeds for controls (VC-top panels) and cells expressing the mix of 37 factors (VM—bottom panels); demonstrated for ProPreB (Left) and CMP (Right). FIG. 16B. Quantitative results for each of the peripheral bleeds are shown for ProPreB Cells and CMPs. Chimerism above 1.0% was observed in 5/14 mice transplanted with ProPreB and 3/8 mice transplanted with CMP. FIG. 16C. Cellular composition of the peripheral bleeds of mice with chimerism over 1.0% is shown for mice transplanted with ProPreB Cells and CMPs.

[0308] FIG. 17 demonstrates that peripheral lymphoid organ and bone marrow reconstitution is observed from

CMPs and ProPreB Cells expressing combinatorial factors. The bone marrow, spleen, and thymus were harvested from mice transplanted with ProPreB Cells/CMPs transduced with control (VC) a viral cocktail (VM). Representative histograms of three ProPre B Cell transplanted mice (VC, VM4, VM14) and two CMP transplanted mice (VC and VM6)—VM#s are the same observed in FIG. 15. Varying degrees of donor derived chimerism can be observed in each lymphoid compartment; consistently VM expressing cells had higher reconstitution in all lymphoid compartments in comparison to controls.

[0309] FIGS. 18A-18D demonstrate that multi-lineage reconstitution is observed in peripheral lymphoid organs upon transplantation with combinatorial factor expression. FIG. 18A. The bone marrow, spleen, and thymus were harvested from mice that were transplanted with transduced ProPre B cells and CMPs. Quantitation of the data is graphically summarized. In all ProPreB cells transplanted mice with >1.0% peripheral blood chimerism, donor derived chimerism above control levels were observed in all lymphoid compartments analyzed. FIGS. 18B-18D. Composition of the bone marrow, spleen, and thymus for all control mice or experimental mice analyzed with >1% peripheral blood chimerism. [0310] FIGS. 19A-19D demonstrate that ProPreB Cells and CMPs expressing a cocktail of factors give rise to primitive hematopoietic progenitors. FIG. 19A. Flow plots have been previously gated on myeloid progenitors (top panel) or primitive hematopoietic progenitors (LSK (Lin-Sca+c-kit+) cells) (bottom panel). Only mice that received cells transduced with the viral cocktail give rise to donor (CD45.2+) derived cells hematopoietic progenitors or myeloid progenitors. Further break down of the myeloid progenitor gate (top panel) and hematopoietic progenitor (bottom panel) gates reveal a diversity of progenitor populations. FIG. 19B. Quantitation of the overall numbers of myeloid progenitors and hematopoietic progenitor cells in each of the transplanted VC (average of five mice) and VM mice with peripheral chimerism above 1.0%. In all cases there is increased numbers of cells with respect to controls. FIGS. 19C-19D. Composition of the compartments was analyzed and quantified. Each bar represents one mouse and the respective composition of the myeloid progenitor compartment (FIG. 19C) or the hematopoietic progenitor compartment (FIG. 19D).

[0311] FIGS. 20A-20C demonstrate that ProPre B Cells and CMPs have serial transplant potential only when factors in combination are expressed. 1000 LSK CD45.2+ Cells were sorted and transplanted competitively with 2×105 CD45.1+ Competitors into competent CD45.1+ hosts. FIG. 20A. At 4 weeks all the secondary transplants had distinguishable donor derived multi-lineage populations. Flow graphs representing each of those secondary transplants are shown. FIG. 20B. Quantitation of these results was calculated and reported here as the % CD45.2+ of total peripheral blood. Only ProPre B Cell VM #14 had sustainable (>0.1%) long-term multi-lineage reconstitution even at 16 weeks. FIG. 20C. The composition of the peripheral blood for all the mice referred to above at four weeks and at 16 weeks for PPBC#14. Multi-lineage reconstitution is observed for all bleeds.

[0312] FIGS. 21A-21B. PCR based strategies can be used to identify VDJ rearrangements in B-cell progenitors. FIG. 21A. B cells progenitors can be isolated based on the phenotypic markers shown in this schematic. FIG. 21B. Fraction A, B, C and D and IgM positive mature B cells were sorted and subjected to PCR for V-D-J recombination of heavy and light

chain. Heavy chain rearrangement begins as early as fraction B and continues to occur through Fraction C. Lambda and kappa light chain and rearrangement can occur as early as Fraction C and proceed through mature B cells. CD45.2 was used as a PCR loading control across all the samples. The experiments described herein demonstrate that we can effectively detect rearrangements in ProPreB Cells (Fractions B-D) in our system by PCR detection of rearrangement. Primers were adapted primers from Cobaleda et al. Nature 2007.

[0313] FIGS. 22A-22C demonstrate VDJ rearrangement confirms the B-lineage origin of reprogrammed cells. To determine if cell populations and colonies originated from a VDJ recombined cell we assayed for recombinational events using PCR. FIG. 22A. B cells (B220+), hematopoietic progenitor (Live, Lin-, c-kit+, Sca+), and myeloid progenitor (Live, Lin-, c-kit+, Sca-) bone marrow cells were FACs cell sorted and analyzed by PCR for heavy chain VDJ recombination. These populations provide a positive and two negative controls. Colonies arising from ProPreB cells expressing a mix of TFs were tested (GEMM colony); A myeloid colony taken from the control plate. FIG. 22B. CD45.2+ donor and CD45.1+ recipient Mac1+ cells were FACs sorted. PCR was performed to test heavy chain (J_{H558}), kappa light chain (JLk), lambda light chain (JL1); genomic CD45 as a loading control. This demonstrates rearrangement in Mac+ cells isolated from a mouse transplanted with ProPreB Cells transduced with the viral cocktail (ProPreB#4). FIG. 22C. Recombination analysis was performed and is summarized in table format for mice with CD45.2+ chimerism >1.0%. All mice with donor derived chimerism and transplanted with ProPre B Cells transduced with the viral cocktail had evidence of reprogramming on the heavy chain loci; a majority had either lambda or kappa light chain rearrangement. All recombinational events appear to be polyclonal and therefore reconstitution occurred from multiple clones.

[0314] FIGS. 23A-23B demonstrate that VDJ Rearrangement confirms the origin of the reprogrammed cells. Although summarized in FIG. 22C, further per testing of recombinational events in the peripheral blood of mice reconstituted by ProPreB Cells transduced with the viral cocktail. FIG. 23A. Rearrangement PCR testing Mac1+ cells isolated from mice reconstituted with reprogrammed Pre/Pro B-cells (mice #'s 3, 7, 14) by a viral cocktail. B220+ cells are used as the positive control and primitive hematopoietic progenitors (unrearranged LSK cells) as the negative control. In the last lane is a mixed myeloid lineage CFC colony (GEMM) that was tested for both heavy and light chain rearrangement. FIG. 23B. Rearrangement of Mac1+ cells sorted from the peripheral blood of a mouse reconstituted with reprogrammed Pre/ Pro B-cells (VM#5). B220+ cells isolated from the bone marrow (BM) and peripheral blood (PB) are used as the positive control; primitive hematopoietic progenitors (unrearranged LSK+ cells) as the negative control. In the last lane is a mixed myeloid lineage CFC colony (GEMM) that was tested for both heavy and light chain rearrangement.

[0315] FIG. 24 demonstrates that VDJ Rearrangement confirms the origins of peripheral blood cells. Although rearrangement was observed in Mac+ positive cells from the peripheral blood, further analysis was performed on other populations from mice reconstituted from transplanted Pro-Pre B cells transduced with the viral cocktail (#3 and #4). From these two mice the following donor (CD45.2+) populations were sorted: CD4/8+ T cells (T), B220+ B Cells (B),

Mac1+ Myeloid cells (M), and all other cells with none of those markers (N). Each population displayed evidence of B cell recombinational events.

[0316] FIGS. 25A-25D demonstrates that VDJ rearrangement confirms the origins of peripheral lymphoid cells and bone marrow populations. Tracking of VDJ B cell rearrangement in mice partially reconstituted by the proposed iHSC cells was taken one step further. When bone marrow of mice reconstituted from ProPreB cells transduced with the viral cocktail, aliquots of 50 cells were taken of donor derived hematopoietic progenitors [CD45.2+ LSK cells (LSK)], B cells [B220+ (B Cell)], myeloid cells [Mac1+ (Mac)], Myeloid progenitors [Lin-Sca-c-kit+=(MylPro)] and T cells [CD4+/8+/3+ T Cels (T cell)]. DNA was extracted from the samples and PCR performed to assay for recombination. FIG. 25A. PCR recombination testing of mouse (#4) reconstituted from ProPreB Cells transduced with the viral mix. PCR testing was performed for heavy chain (J_{H588}) , kappa light chain (J_k) , and lambda light chain (J_l) . FIG. **25**B. PCR recombination testing of mouse (#3) reconstituted from ProPreB Cells transduced with the viral mix. PCR testing was performed for heavy chain (J_{H588}) . FIG. 25C. PCR recombination testing of mouse (#14 and #7) reconstituted from ProPreB Cells transduced with the viral mix. PCR testing was performed for heavy chain (JH588). For mouse #14 that had high donor derived chimerism additional analysis was performed on the same populations from the spleen. Recipient CD45.1+ cells were included as a negative control. FIG. 25D. PCR recombination testing of mouse (#7) reconstituted from ProPreB Cells transduced with the viral mix. PCR testing was performed for heavy chain (J_{H588}). Analysis of CD3/CD4/CD8+ T cells from the thymus. The left lane is CD45.1+ control T cells and the right is CD45.2+ donor cells. Only donor cells expressed B cell recombinational events.

[0317] FIG. 26 demonstrates a strategy for reverse cloning of reprogramming factors that allows for distinction between endogenous loci (top panel) and integrated reprogramming factors. Primers were designed to straddle intron/exon boundaries such that PCR identification of virally introduced transcription factors could readily be resolved from the endogenous genes—with the reprogramming factors yielding a smaller PCR product in all cases. See Table 5 for primer sequences used for reverse cloning of all reprogramming factors.

[0318] FIG. 27 demonstrates reverse cloning identification of transcription factors. ProPreB Cells were sorted and transduced for 14 hours with ZsGr control virus (VC), A single virus listed (Only Vector), a viral mix of 37 different factors minus that listed virus (VM-Vector) or the viral cocktail of 37 factors (VM). Doxycycline was added for 24 hours and then cells were harvested, DNA isolated, and PCR analysis performed using the indicated primers.

[0319] FIG. 28 shows reverse cloning identification of transcription factors. ProPreB Cells were sorted and transduced for 14 hours with ZsGr control virus (VC), A single virus listed (Only Vector), a viral mix of 37 different factors minus that listed virus (VM-Vector) or the viral cocktail of 37 factors (VM). Doxycycline was added for 24 hours and then cells were harvested, DNA isolated, and PCR analysis performed using the indicated primers.

[0320] FIG. 29 shows reverse cloning of reprogramming factors from myeloid (macrophage and granulocyte) colonies derived from reprogrammed pre/pro B cells. Examples of Gels run looking at 30 of the 37 different factors present in the

cocktail. Notice that Evil, Msi2, Rux1t1, Hoxb3, and Pbx1 all have endogenous gene products present in every screen. White squares emphasize products that are at the correct size indicating integration of the factor listed.

[0321] FIG. 30 shows reverse cloning of reprogramming factors from myeloid (GEMM and B cell) colonies derived from reprogrammed pre/pro B cells. Examples of Gels run looking at 30 of the 37 different factors present in the cocktail. Notice that Evil, Msi2, Rux1t1, Hoxb3, and Pbx1 all have endogenous gene products present in every screen. White squares emphasize products that are at the correct size indicating integration of the factor listed.

[0322] FIG. 31 shows reverse cloning of reprogramming factors from myeloid (BFU) colonies derived from reprogrammed pre/pro B cells. Examples of Gels run looking at 30 of the 37 different factors present in the cocktail. Notice that Evil, Msi2, Rux1t1, Hoxb3, and Pbx1 all have endogenous gene products present in every screen. White squares emphasize products that are at the correct size indicating integration of the factor listed.

[0323] FIG. 32 shows frequency determination in which transcription factor combinations were reverse cloned in reprogrammed cells both intro (CFC colonies) and in vivo (donor-derived meyloid cells). To determine the individual factors contributing to the effects of the TF mix, integration primers were developed. ProPreB cells that gave rise to B cell (B cell), Macrophage (Mac), Granulocyte (Gran), Granulocyte-Macrophage (GM), Blast Forming Unit (BFU), GEMM, and those colonies not morphologically defined (Not Det) were collected and tested in the indicated n number. Similarly peripheral blood populations (B cell, macrophage, T cell, and other cells were tested for integration and grouped into the in vivo column. Results are summarized in a heat map. High prevalence in the population tested was visualized as red and low prevalence in the population was visualized as blue.

[0324] FIG. 33 shows reverse cloning of reprogramming factors from peripheral blood of mice reconstituted from ProPreB Cells expressing a combination of factors. Donor derived peripheral blood from the indicated mice (#4 and #5) reconstituted from ProPre B cells expressing a combination of factors was sorted and PCR analysis performed on the isolated DNA. Examples of two gels run looking at 30 of the 37 different factors present in the cocktail. Notice that Evil, Msi2, Rux1t1, Hoxb3, and Pbx1 all have endogenous gene products present in every screen. White squares emphasize products that are at the correct size indicating integration of the factor listed.

[0325] FIGS. 34A-34C demonstrate identity of factor combinations that are integrated into peripheral blood populations from a mouse reconstituted with ProPre B cells and CMPs transduced with the viral cocktail. For three of the transplanted mice (two originating from a transformed ProPre B cell and one from a CMP) that had peripheral chimerism >1.0% the peripheral blood was further sorted into B220+ (B cells), Mac+ (Mac) and CD3+ (T cells). FIG. 34A. Every peripheral bleed of donor derived cells originating from a reprogrammed ProPre B Cell or CMP contained Hlf, Zfp37, Runx1t1, Pbx1 and Lmo2. FIG. 34B. Additional factors identified in those populations are listed here. Notice that Prdm5 is present in all samples except those collect from the Mac1+ cells. Glis2 on the other hand was only found in Mac+ populations. FIG. 34C. Peripheral blood populations (B cell, macrophage, T cell, and other cells were tested for integration and grouped into the in vivo column for the n number of samples.

Results are summarized in a heat map. High prevalence in the population tested was visualized as red and low prevalence in the population was visualized as blue.

[0326] FIG. 35 shows transcription factor combination lists. Six combinations (C1-C6) of 4-6 factors were put together based on the integration testing (>75% prevalence). To each combination the additional factors that were 50%-75% prevalent in the samples were added as additional factors (++). Each combination was derived from a specific colony or population. C1: ProPreB to Mac/Gran/GM; C2: ProPreB to GEMM/BFU, C3: ProPreB to BCell; C4: CMP toGEMM; C5: Overall In vitro; C6: Overall In vivo.

[0327] FIGS. 36A-36B show combinatorial expression of factors in ProPre B Cells increases colony formation. ProPre B Cells and CMPs were sorted using phenotypic markers on the Aria Sorter. Cells were incubated with ZsGr control virus (VC) or a viral cocktail for 14 hours in S-clone media containing SCF, TPO and IL-12 (In the case of ProPreB Cells, IL-7 and Flk3). Dox was added for 24 hours and cells were resorted for ZsGr+ cells. ZsGr+ cells were placed into methylcellulose media in a 6 well plate format containing SCF, TPO and IL-12 (For ProPreB Cells IL-7 and Flk3). Colony forming potential was assayed on day 20. FIG. 36A. To ensure that all factors in the combinations were required; factors were singly subtracted out of the combination. Representative pictures of the wells are shown. FIG. 36B. Quantitation of the data is demonstrated here. The ZsGreen control (VC) and the all the combination groups were performed in duplicates four independent experiments.

[0328] FIGS. 37A-37B demonstrate defined combinations

of transcription factors can reprogram cells to different fates.

ProPre B Cells and CMPs were sorted using phenotypic

markers on the Aria Sorter. Cells were incubated with ZsGr

control virus (VC) or a viral cocktail for 14 hours in S-clone

media containing SCF, TPO and IL-12 (In the case of Pro-PreB Cells, IL-7 and Flk3). Dox was added for 24 hours and cells were resorted for ZsGr+ cells. ZsGr+ cells were placed into methylcellulose media in a 6 well plate format containing SCF, TPO and IL-12 (For ProPreB Cells IL-7 and Flk3). Colony forming potential was assayed on day 20. FIG. 37A. The morphology of each of the combinations is shown here. This again is an average of duplicate samples in four independent experiments. FIG. 37B. Representative pictures of transduced ProPreB cell CFC wells for combinations and controls are shown with composition break downs in pie charts for each combination (average of four experiments). Notice that C1 a myeloid promoting combination gave rise to predominantly myeloid cells. Which a B Cell promoting combination (C3) promoted predominantly B cell colonies. [0329] FIG. 38 shows factor combination minus one experiments to determine the requirement of individual factors for reprogramming ProPre B Cells and CMPs were sorted using phenotypic markers on the Aria Sorter. Cells were incubated with ZsGr control virus (VC) or a viral cocktail for 14 hours in S-clone media containing SCF, TPO and IL-12 (In the case of ProPreB Cells, IL-7 and Flk3). Dox was added for 24 hours and cells were resorted for ZsGr+ cells. ZsGr+ cells were placed into methylcellulose media in a 6 well plate format containing SCF, TPO and IL-12 (For Pro-PreB Cells IL-7 and Flk3). Colony forming potential was assayed on day 20. To ensure that all factors in the combinations were required; factors were singly subtracted out of the combination. For each combination listed in bold the factors were subtracted out singularly. As a control Pbx1 (a factor not in the required combination was included as a control, as expected this additional factor was not a required factor in C2). Consistently all other combinations appeared to have been narrowed down to only required factors. Singular factor controls are listed in the last Figure. Bars represent averages of double samples performed in duplicate experiments.

[0330] FIG. 39 demonstrates that a defined set of factors identified to give rise to in vivo reprogramming and GEMM formation in myeloid colony forming assays can increase colony formation and alter the lineage potential of both Pro-Pre B cells and CMPs.ProPre B Cells and CMPs were sorted using phenotypic markers on the Aria Sorter. Cells were incubated with ZsGr control virus (VC) or the defined combination C7 (C7) for 14 hours in S-clone media containing SCF, TPO and IL-12 (In the case of ProPreB Cells, IL-7 and Flk3). Dox was added for 24 hours and cells were resorted for ZsGr+cells. ZsGr+cells were placed into methylcellulose media in a 6 well plate format containing SCF, TPO and IL-12 (For ProPreB Cells IL-7 and Flk3). Colony forming potential was assayed on day 20.

[0331] FIGS. 40A-40B demonstrate that combination 6 leads to reprogramming of Pre-ProB cells into cells capable of giving rise to multi-lineage donor derived chimerism in vivo. ProPreB Cells and CMPs were sorted from CD45.2 rtTA transgenic bone marrow. Cells were then incubated with the indicated combination of factor expression viruses in equal concentrations. 10,000 Cells were then transplanted into congenic CD45.1+ mice. Mice were then bleed at 4, 8, 12, and 16 weeks. Only Combination 6 showed donor derived chimerism >1.0% in preliminary trials.

[0332] FIGS. 41A-41C demonstrate donor derived multilineage reconstitution from ProPre B Cells expressing a defined set of factors. ProPreB cells were transduced to express C6, C6 and the additional factors identified, ZsGr Control (VC). Cells were transplanted competitively into mice and peripheral bleeds performed at 4, 8 and 12 weeks. FIG. 41A. The gating strategy of mice transplanted with ProPre B Cells transduced with C6 and bleed at 4, 8, and 12 weeks. Donor-derived cells are observed over control level each bleed and are multi-lineage. FIG. 41B. Quantitations for all the bleeds for ProPreB cells are demonstrated. No benefit of the additional factors was observed. FIG. 41C. Cellular composition of the 12 week bleeds are shown in the graphs for ProPreB cells.

[0333] FIG. 42 demonstrates multi-lineage potential of reprogrammed B Cell progenitors by a defined set of factors (C6) is confirmed to have undergone recombination events and derived from B Cell origins. ProPreB cells were transduced to express C6, C6 and the additional factors identified, ZsGr Control (VC). Cells were transplanted competitively into mice and to demonstrate that the reconstitution was due to a cell that originated from a B cell, PCR analysis was performed on peripheral blood from the mouse that had long-term reconstitution in the peripheral blood. CD45.2+ donor Mac1+ cells had evidence of recombination events but recipient (CD45.1+) Mac1+ cells nor Fraction A B cells (B Cell Prog) had evidence of reprogramming.

[0334] FIG. 43 demonstrates a defined set of factors (C6) is expressed in peripheral blood derived from a reprogrammed ProPre B Cell. ProPreB cells were transduced to express C6, C6 and the additional factors identified, ZsGr Control (VC). Cells were transplanted competitively into mice and peripheral bleeds performed at 16 weeks. All the factors that were

present in the viral mix were found to have integrated into the donor derived peripheral blood.

[0335] FIGS. 44A-44C demonstrate donor derived multilineage reconstitution from CMPs expressing a defined set of factors. FIG. 44A. CMP cells were transduced to express C6, C6 and the additional factors identified, ZsGr Control (VC). Cells were transplanted competitively into mice and peripheral bleeds performed at 4, 8 and 12 weeks. Lineage break down is shown by flow diagrams below for each mouse. FIG. 44B. Quantitation for all the bleeds for both CMPs derived reconstituting mice are demonstrated. No benefit of the additional factors was observed. FIG. 44C. Cellular composition of the 12 week bleeds are shown in the graphs for ProPreB cells

[0336] FIG. 45 shows that reverse cloning confirms that donor derived peripheral blood originating from reprogrammed CMPs by C6 contains factors in Combination 6. CMP cells were transduced to express C6, C6 and the additional factors identified, ZsGr Control (VC). Cells were transplanted competitively into mice and a peripheral bleeds performed at 12 weeks. Peripheral blood was taken from both CMP originating iHSC reconstituting mice was taken and integration studies performed on the population. One mouse contained all factors used in the viral mix and the other was only missing Hlf.

[0337] FIGS. 46A-46C demonstrate a defined set of factors give rise to multi-lineage reconstitution from reprogrammed B Cells. Five additional factors were added to C6 that gave rise to GEMM colonies from either ProPre B cells or CMPs. This combination was coined C7. B220 enriched cells were magnetically separated from the bone marrow of CD45.2 rtTA mice. Cells were transduced with ZsGr control (VC) or C7 for 14 hours, kept for 24 hours with doxycycline and then transplanted competitively with 1×10⁵ whole bone marrow cells into CD45.1+ recipients. Bleeds were performed at 4, 8, 12, and 16 weeks. FIG. 46A. Flow plots are shown for both VC and C7 transduced and transplanted recipients at 8 weeks. FIG. 46B. Quantitation of peripheral bleeds for the B220 enriched cells transduced with ZsGr control (VC) or C7 at 4, 8, 12 and 16 weeks. Excluding one outlier all C7 transduced and transplanted mice are over VC transduced and transplanted cells. FIG. 46C. The average composition of peripheral blood at 4, 8, 12, and 16 weeks.

[0338] FIG. 47 shows multi-lineage reconstitution by reprogrammed B220 enriched cells has evidence of B cell recombination in 2/5 mice. Five additional factors were added to C6 that gave rise to GEMM colonies from either ProPre B cells or CMPs. This combination was coined C7. B220 enriched cells were magnetically separated from the bone marrow of CD45.2 rtTA mice. Cells were transduced with ZsGr control (VC) or C7 for 14 hours, kept for 24 hours with doxycycline and then transplanted competitively with 1×10⁵ whole bone marrow cells into CD45.1+ recipients. Bleed was performed at 16 weeks. To determine what reconstituted animals were derived from a B cell origin, peripheral blood was isolated, Mac1+ cells sorted, and tested by per analysis for B cell recombination. Two mice were found to have peripheral chimerism due to a transformed B cell. Those mice are shown in FIG. 40A by highlighting them in orange.

[0339] FIG. 48 shows that reverse cloning confirms that donor derived peripheral blood originating from reprogrammed CMPs by C7 contains factors in combination 7. Five additional factors were added to C6 that gave rise to GEMM colonies from either ProPre B cells or CMPs. This

combination was coined C7. B220 enriched cells were magnetically separated from the bone marrow of CD45.2 rtTA mice. Cells were transduced with ZsGr control (VC) or C7 for 14 hours, kept for 24 hours with doxycycline and then transplanted competitively with 1×10°5 whole bone marrow cells into CD45.1+ recipients. Bleed was performed at 16 weeks. Peripheral blood from the two B cell recombined mice was isolated and tested by per analysis for the integration of the factors in C7. Rbpms and Msi2 was missing from both analysis.

[0340] FIGS. 49A-49D show that peripheral lymphoid organ and bone marrow reconstitution is observed from CMPs and ProPreB Cells expressing a defined set of factors, combination 6. FIG. 49A. The bone marrow, spleen, and thymus were harvested from mice that were transplanted with C6 transduced ProPre B cells and CMPs. Quantitation of the data is graphically summarized. In all ProPreB cells transplanted mice with >1.0% peripheral blood chimerism, donor derived chimerism above control levels were observed in all lymphoid compartments analyzed. FIGS. 49B-49D. Composition of the bone marrow, spleen, and thymus for all control mice or experimental mice analyzed with >1% peripheral blood chimerism.

[0341] FIG. 50 demonstrates bone marrow reconstitution of the hematopoietic progenitor and myeloid progenitor compartments is observed when CMPs and ProPreB Cells expressing a defined set of factors, combination 6, are transplanted. The bone marrow was harvested from mice transplanted with ProPreB Cells/CMPs transduced with control (VC) a defined viral cocktail (C6). Representative histograms are shown of populations reprogrammed with C6: two CMP transplanted mice (CMP1 and CMP2) and one ProPre B Cell transplanted mouse (ProPreB1). Cells have been previously gated for singlets, live, lineage negative cells. Varying degrees of donor derived chimerism can be observed. The c-kit and sca graphs show that there is donor derived hematopoietic progenitors (LSK; c-kit+Sca+) and myeloid progenitors (Myl Pro; c-kit+Sca-).

[0342] FIGS. 51A-51C demonstrate that ProPreB Cells and CMPs expressing a defined set of factors (C6) give rise to primitive hematopoietic progenitors. The bone marrow was harvested from mice transplanted with ProPreB Cells/CMPs transduced with control (VC) a defined viral cocktail (C6). Representative histograms are shown of populations reprogrammed with C6: two CMP transplanted mice (CMP1 and CMP2) and one ProPre B Cell transplanted mouse (Pro-PreB1). Graphs represent donor (CD45.2+) derived hematopoietic progenitors (LSK; c-kit+Sca+) and myeloid progenitors (Myl Pro; c-kit+Sca-). FIG. 51A. Quantitation of the overall numbers of myeloid progenitors and hematopoietic progenitor cells in each of the transplanted VC (average of five mice) and C6 mice with peripheral chimerism above 1.0%. In all cases there is increased numbers of cells with respect to controls. FIGS. 51B-51C. Composition of the compartments was analyzed and quantified. Each bar represents one mouse and the respective composition of the myeloid progenitor compartment (FIG. 51B) or the hematopoietic progenitor compartment (FIG. 51C).

[0343] FIG. 52 demonstrates that reprogrammed CMPs by defined factors have serial transplantation potential. 16 weeks bone marrow analysis was performed and secondary transplants set up. The two CMP derived mice with donor derived chimerism underwent full bone marrow transplant of 5 million donor cells into five mice each. In the case of the mouse

having donor derived chimerism originating from a ProPre B cell transduced with C6, 1 million whole donor bone marrow cells were competitively transplanted with $2\times10^{\circ}5$ CD45.1+ whole bone marrow cells into two mice. Flow graphs of donor derived cells from each of these mice are shown. Donor cells are observed at 4 weeks.

[0344] FIGS. 53A-53C demonstrate that reprogrammed CMPs by defined factors have serial long-term transplantation potential. 16 weeks bone marrow analysis was performed and secondary transplants set up. The two CMP derived mice with donor derived chimerism underwent full bone marrow transplant of 5 million donor cells into five mice each. In the case of the mouse having donor derived chimerism originating from a ProPre B cell transduced with C6, 1 million whole donor bone marrow cells were competitively transplanted with 2×10⁵ CD45.1+ whole bone marrow cells into two mice. Flow graphs of donor derived cells from each of these mice are shown. Donor cells are observed at 4 weeks. FIG. 53A. An example of multilineage donor chimerism at 4 weeks in the peripheral blood of secondary transplants. FIG. 53B. Quantitation of CD45.2+ donor contributions in peripheral blood at 4 and 8 weeks. CMPs transduced with C6 gave rise to multilineage chimerism in primary recipients and in secondary transplants all the mice had donor cells. FIG. 53C. Quantitation of the composition of peripheral blood cells in secondary recipients.

[0345] FIG. 54 demonstrates that peripheral blood derived from CMP C6 reconstituted mice can be reprogrammed to give rise to in vitro colony forming potential. Peripheral blood from serially transplanted C6 transduced CMP cells was collected. B220+ and CD3+ and Mac1+ cells were sorted and incubated for 48 hours with doxycycline. Cells were then put into methylcellulose media containing SCF, TPO, IL-12, Flk3, and IL-7. Colonies in the CFCs assays were counted and morphology characterized 20 days later. Control sorted cells from primary VC recipients were blank but colonies were observed when cells were derived from CMPs previously transduced with C6.

[0346] FIG. 55 demonstrates that peripheral blood derived from reconstituted mice having been transplanted with B220 enriched cells expressing C7 mice can undergo secondary reprogrammed to give rise to in vitro colony forming potential. Peripheral blood from mice transplanted with B220 enriched cells expressing combination C7 was collected at 16 weeks. B220+ and CD3+ and Mac1+ cells were sorted and incubated for 48 hours with doxycycline. Cells were then put into methylcellulose media containing SCF, TPO, IL-12, Flk3, and IL-7. Colonies in the CFCs assays were counted and morphology characterized 20 days later. Control sorted cells from primary VC recipients were blank but colonies were observed when cells were derived from the peripheral blood of either mouse reconstituted from reprogrammed B220 enriched cells expressing C7.

[0347] FIGS. 56A-56C demonstrate that expression of defined factors in various populations can promote colony formation and altered lineage commitment in vitro. Various indicated populations were sorted from the bone marrow (FIG. 56A), spleen (FIG. 56B), thymus (FIG. 56C), and peripheral blood (FIG. 56C) of mice. Populations include: B220+ (B); Mac1+/Gr-1+ (M/G); CD3+/CD4+/CD8+ (T); NK1.1+ (NK); ProPreBCells as a control. In the case of peripheral blood (PB) B, T, and M/G was all sorted into one population. These populations were transduced with control (VC) or C7 viruses for 14 hours, dox added for 24 hours and

then put into a CFC assay. Colonies were counted and morphology determined on day 20. Colony numbers with more than control levels in almost all cases. Indicating that transformation of committed blood cells into iHSC like cells could occur from multiple compartments and in multiple cell types.

[0348] FIGS. 57A-57C demonstrate that expression of defined factors in human Jurkat cells can promote colony formation and altered lineage commitment in vitro. FIG. 57A. Human Jurkat cells were cultured and left untransduced, transduced with ZsGr control virus (VC) or with C6 for 14 hours. Doxycycline was added for 24 hours and cells were put in CFC assays. Colonies were counted and morphology determined on day 20. Only Jurkat cells transduced with C6 gave rise to colonies. FIG. 57B. Colonies that Jurkat cells transduced with C6 gave rise too are pictured. They included an erythroid like colony, granulocytes, and monocytes. FIG. 57C. To further distinguish the transformed cells, flow analysis for phenotypic markers including Ter119, Mac1, CD71, and Gr1 was performed on freshly cultured Jurkat cells and the Jurkat cell colonies observed when transduced with C6. Jurkat colonies that were transduced with C6 had apparent increases in immature erythroid cells (CD71+Ter119-), Granulocyte (Gr1+Mac1+) and monocyte (Mac1+) populations.

[0349] FIGS. 58A-58E show identification of factors capable of imparting alternative lineage potential in vitro. (FIG. 58A) Heat map showing relative expression (green; high, to purple; low) of 36 regulatory genes identified as HSCspecific in the indicated cell types. (FIG. 58B) Schematic representation of lentivirus transgene expression cassette (top), and flow cytometry plots showing reporter cassette (ZsGr) expression in Pro/Pre B-cells+/- doxycycline induction (48 hours post). (FIG. 58C) Schematic representation of in vitro screening strategy for cell fate conversion. (FIG. 58D) Representative images of wells showing colonies arising in methylcellulose from Pro/Pre B cells transduced with ZsGr or 36-factor cocktail. (FIG. 58E) Colony number and type arising in methylcellulose from Pro/Pre B cells transduced with ZsGr or 36-factor cocktail. Four independent experiments are shown and each condition performed in triplicate.

[0350] FIGS. 59A-59G show identification of factors capable of imparting multi-lineage engraftment potential onto committed progenitors in vivo. (FIG. 59A) Schematic of experimental strategy to identify factors capable of imparting multi-lineage engraftment potential on committed progenitors in vivo. (FIG. 59B) Representative flow cytometry plots showing donor (CD45.2) reconstitution of mice transplanted with control (ZsGr) or 36-factor transduced Pro/Pre B cells or CMPs 16-weeks post-transplant. (FIG. 59C) Donor reconstitution of mice transplanted with ZsGr or 36-factor transduced Pro/Pre B cells or CMPs at indicated time points post-transplantation. Only mice with >1% donor chimerism (dotted line) were considered reconstituted. Recipients transplanted; Pro/PreB; ZsGr n=15, Pro/PreB; 36-factor n=15, CMP; ZsGr n=8, and CMP; 36-factor n=8. (FIG. **59**D) Reconstitution of indicated peripheral blood cell lineages of individual recipients showing >1% donor chimerism presented as % of donor. (FIG. 59E) PCR analysis of immunoglobulin rearrangement showing heavy (J_H) , and light chain $(J_{L\lambda}, J_{LK})$ in bone marrow (BM) cells including B-cells (B220+), stem/progenitor (LSK) cells, myeloid progenitors (Myl Pro), and peripheral blood (PB) cells including B-cells (B220+), recipient myeloid cells (Mac1+ Rec), and donor myeloid cells (Mac1+ Donor) originating from Pro/Pre B cell; 36-factor experiment. Loading control; genomic PCR for CD45. (FIG. **59**F) PCR-based strategy to identify virally integrated factors and discriminate from endogenous genes. (FIG. **59**G) Summary of data showing presence (gray) or absence (black) of each of the indicated factors in donor B-, T-, and myeloid cells in each of the reconstituted mice shown in (FIG. **59**C).

[0351] FIGS. 60A-60G show transient ectopic expression of six transcription factors in committed progenitors is sufficient to alter lineage potential in vitro and impart long-term engraftment potential on committed progenitors in vivo. (FIG. 60A) Representative images of wells showing colonies arising in methylcellulose from Pro/Pre B cells transduced with ZsGr or 6-TF cocktail. (FIG. 60B) Colony number and indicated colony type arising in methylcellulose from Pro/Pre B cells transduced with ZsGr or 6-TF cocktail. 3 independent experiments are shown with each condition performed in triplicate. (FIG. 60C) Colony number and type arising in methylcellulose from Pro/Pre B cells transduced with ZsGr, 6-TF cocktail, or 6-TF minus the indicated factor. Each condition performed in triplicate. (FIG. 60D) Donor reconstitution of mice transplanted with ZsGr or 6-TF transduced Pro/ Pre B cells or CMPs at indicated time points posttransplantation. Only mice with >1% donor chimerism (dotted line) were considered reconstituted. Recipients transplanted; Pro/PreB; ZsGr n=10, Pro/PreB; 6-TF n=12, CMP; ZsGr n=9, and CMP; 6-TF n=9. (FIG. 60E) Representative flow cytometry plots showing donor reconstitution and lineage composition of mice transplanted with control (ZsGr) or 6-TF transduced Pro/Pre B cells or CMPs 16-weeks posttransplant. Lineage contribution to Mac1+ myeloid cells, B220+ B-cells, and CD3/4/8+ T-cells is shown. (FIG. 60F) Reconstitution of indicated peripheral blood cell lineages of individual recipients showing >1% donor chimerism presented as % of donor. (FIG. 60G) PCR analysis of immunoglobulin heavy (JH) chain rearrangement in recipient myeloid cells (Mac1+ Rec), and donor myeloid cells (Mac1+ Donor) originating from Pro/Pre B cell; 6-TF experiment. Loading control; genomic PCR for CD45.

[0352] FIGS. 61A-61E show inclusion of Meis1 and Mycn and use of polycistronic viruses improves in vivo reprogramming efficiency. (FIG. 61A) Schematic representation of RHL (Runxt1t1, Hlf, Lmo2) and PZP (Pbx1, Zfp37, Prdm5) polycistronic, and Meis1 and Mycn single factor viral constructs. (FIG. 61B) Donor reconstitution of mice transplanted with ZsGr, 8-TF (8 single factor viruses), or 8-TFPoly (RHL, PZP polycistronic viruses plus Meis1 and Mycn viruses), transduced Pro/Pre B cells at indicated time points posttransplantation. Only mice with >1% donor chimerism were considered reconstituted. Recipients transplanted; ZsGr; n=12, 8-TF; n=6, 8TFPoly; n=14. (FIG. **61**C) Representative flow cytometry plots showing donor reconstitution and lineage contribution of mice transplanted with control (ZsGr), 8-TF, or 8TFPoly transduced Pro/Pre B cells 16-weeks posttransplant. Lineage contribution to Mac1+GR1- myeloid cells, Mac+GR1+ granulocytes, B220+ B-cells, and CD3/4/ 8+ T-cells is shown. (FIG. 61D) Reconstitution of indicated peripheral blood cell lineages of individual recipients showing >1% donor chimerism presented as % of donor. (FIG. 61E) PCR analysis of immunoglobulin heavy (JH) chain rearrangement in recipient (Recip), and donor (Donor) myeloid cells. Loading control; genomic PCR for CD45.

[0353] FIGS. 62A-62I shows reprogrammed cells engraft secondary hematopoietic organs, bone marrow progenitor compartments and reconstitute secondary recipients. (FIG.

62A) Donor reconstitution of peripheral blood (PB), bone marrow (BM), spleen, and thymus of mice transplanted with 8-TF, or 8-TFPoly transduced Pro/Pre B cells 18-20 weeks post-transplantation. (FIG. 62B) PCR analysis of immunoglobulin heavy (J_H) chain rearrangement in recipient (R), and donor (D) cells. Cell types analyzed include Mac1+ myeloid cells (M), Mac1+GR1+ granulocytes (G), and T-cells (T). Loading control; genomic PCR for CD45. (FIG. 62C) Representative bone marrow stem and progenitor analysis of a recipient transplanted with 8-TFPoly transduced Pro/Pre B cells 18-weeks post-transplantation showing donor-reconstitution of myeloid progenitors (Myl Pro), megarkaryocyte/ erythrocyte progenitors (MEP), granulocyte/monocyte progenitors (GMP), common myeloid progenitors (CMP), megakaryocyte progenitors (MkP), erythroid progenitors (EP), common lymphoid progenitors (CLP), Lineage-negative Sca1+ckit+ multipotent progenitors (LSK), multipotent progenitors (MPP1, MPP2), and hematopoietic stem cells (HSC). All cells were pre-gated through doublet-discriminated, live (propidium iodide negative), and lineage negative cells. (FIG. 62D) Total donor reconstitution of the indicated populations in mice analyzed in (FIG. 62A). (FIGS. 62E-62F) Reconstitution of the indicated myeloid progenitor (E) and primitive multi-potent and stem cell (F) populations in mice analyzed in (A) presented as percentage of donor. (FIG. 62G) PCR analysis of immunoglobulin heavy (JH) chain rearrangement in the indicated recipient and donor populations. Loading control; genomic PCR for CD45. (FIG. 62H) Donor reconstitution of secondary recipient mice transplanted with whole bone marrow (WBM) or c-Kit positive bone marrow cells derived from primary transplants of 8-TF transduced Pro/Pre B cells analyzed at 12 and 8 weeks respectively. Number of recipients transplanted; WBM; n=5, c-Kit+; n=4. (FIG. 62I) Reconstitution of indicated peripheral blood cell lineages of individual recipients presented as % of donor.

[0354] FIGS. 63A-63H show transient expression of defined transcription factors in myeloid effector cells is sufficient instill them with progenitor activity in vitro, and longterm multi-lineage transplantation potential in vivo. (FIG. 63A) Schematic representation of experimental strategy for assaying the colony forming potential of 8-TF transduced peripheral blood cells. (FIG. 63B) Colony number and type arising in methylcellulose from peripheral blood cells from recipient (left-most lanes) or donor cells derived from a recipient transplanted with Pro/Pre B cells transduced with 8-TF or 8-TFPoly cocktail, plus (+) or minus (-) exposure to doxycycline. Results from individual mouse performed in triplicate are shown. (FIG. 63C) Colony number and type arising in methylcellulose from plated granulocytes, macrophages/monocytes (Myl), B-cells, and T-cells purified from the peripheral blood of cells pooled recipients transplanted with Pro/Pre B cells transduced with 8-TFPoly cocktail plus (+) or minus (-) exposure to doxycycline. (FIG. 63D) Representative colony types and cytospins stained with May Grunwald of colonies derived in (FIG. 63C). (FIG. 63E) Donor reconstitution of mice transplanted with ZsGr, 6-TF-Poly, 8-TF or 8-TFPoly transduced Mac1+cKit-myeloid effector cells at indicated time points post-transplantation. Only mice with >1% donor chimerism were considered reconstituted. Recipients transplanted; ZsGr; n=6, 6-TFPoly; n=7, 8-TF; n=6, and 8-TFPoly; n=8. (FIG. 63F) Reconstitution of indicated peripheral blood cell lineages of mice showing >1% donor chimerism presented as % of donor. (FIG. 63G) Donor reconstitution 12 weeks post-transplant of secondary recipient mice transplanted non-competitively with 5×10⁶ donor-derived (CD45.2+) bone marrow cells derived from primary recipients of 6-TF^{Poly}, 8-TF or 8-TF^{Poly} transduced Mac1+cKit- myeloid effector cells. Cells from individual primary donor mice (indicated by ID) were transplanted into N=5 secondary recipients each. (FIG. 63H) Average reconstitution of indicated peripheral blood cell lineages presented as % of donor. N=5 recipients per group.

[0355] FIGS. 64A-64D shows iHSCs reprogrammed via 8 transcription factors closely resemble endogenous HSCs at the molecular level. FIG. 64A shows phenotypic HSCs (doublet discriminated, live, lineage negative, c-kit+, Sca1+, CD34-, flk2- and CD150+) were FACS sorted from the bone marrow of mice reconstituted with Pro/Pre B cells transduced with 8-TF (Mouse #1) and 8-TF POLY (Mouse #10) viral cocktails. Cells were single cell sorted into 96 well plates and analyzed by qPCR for an array of transcription factors. Expression levels of individual cells were projected onto a three-dimensional space using principle component analysis. Recipient HSCs (HSC Host) and iHSCs derived from Pro/Pre B cells transduced with 8-TF (iHSC 8-TF) or 8-TF Poly (iHSC 8-TF Poly) were displayed with previously profiled and phenotypically characterized progenitor cells: HSC, MPP, CMP, GMP, MEP and CLP. Additionally, Pro/Pre B Cells were added as a control cell type. FIGS. 64B-C shows phenotypic HSCs isolated from bone marrow reconstituted from Pro/Pre B cells transduced with 8-TF (iHSC 8-TF) and 8-TF^{Poly} (iHSC 8-TF^{Poly}) were then hierarchically clustered with respect to the qPCR transcription factor array. Each leaf of the dendrogram represents a single cell as indicated in the legend in panel A. FIG. 64D shows analysis of indicated genes are shown for: phenotypic control HSCs (HSC), transplanted host HSCs (HSC host), iHSCs derived from Pro/Pre B Cells transduced with 8-TF (iHSC 8-TF) and 8-TF POLY (iHSC 8-TFPoly) and control Pro/Pre B Cells. Heat maps for expression levels in the indicated cell types are shown (high expression was visualized as red; low expression was visualized as blue). Violin plots show distribution patterns of each of the above transcription factors in one cell type. Expression level is on the y-axis.

[0356] FIGS. 65A-65B show a sorting strategy for Pro/Pre B cells (FIG. 65A) and CMPs (FIG. 65B) from the bone marrow of rtTA transgenic mice. Doublet discriminated and PI negative cells were pre-gated and Pro/Pre B Cells were gated as indicated: B220+ CD19+, AA4.1+ and IgM−. FIG. 65B shows doublet discriminated and PI negative cells were pre-gated and CMPs were gated as indicated: Lineage negative (Gr1−, Mac1−, B220−, CD3−, CD4−, CD8−, Ter119−), c-kit+, Sca1−, Fc□R3MID, and CD34+.

[0357] FIG. 66 shows Pro/Pre B cells and CMPs were transduced with the viral cocktail of 36-TFs. Dox is added after 16 hours for a period of 48 hours before cells were transferred to methylcellulose. 20 days later colonies were counted and characterized by morphology as indicated in FIGS. 59A-59G. Colonies were collected and DNA isolated. Identification of plasmid integration was performed as indicated in FIGS. 60A-60G for each of the 36 factors listed. Expression of the factors was clustered by the highest expression in GEMMs.

[0358] FIG. 67 shows Mac1+ bone marrow cells were isolated from transgenic rtTA mice. Cells were transduced for 16 hours with RHL+PZP (6-TF POLY), Runx1t1+Hlf+Lmo2+Pbx1+Zfp37+Prdm5+Mycn+Meis1 (8-TF) and RHL+PZP+Mycn+Meis1 (8-TF POLY). Dox was added in culture for 24

hours and 5.0×10^6 cells were transplanted into conditioned hosts with 1×10^5 Scat depleted support cells. Peripheral blood analysis was performed at 6 weeks. Representative flow demonstrating CD45.1+ (donor) gating from peripheral bleeds at 16 weeks is shown for each group.

[0359] FIGS. 68A-68D show Mac1+ bone marrow cells were FACS sorted, transduced with ZsGr control, 6-TF, 8-TF, or 8-TF POLY viruses. (FIG. 68A) Transplantation was done as indicated and 18 weeks post transplantation bone marrow, spleen, thymus, and peripheral blood was harvested from mice with peripheral blood reconstitution >5.0%. Donor contributions are shown graphically in the peripheral blood (PB), bone marrow (BM), spleen and thymus for a 6-TF POLY mouse, 8-TF mouse and four 8-TF POLY mice. The y-axis break marks 1.0% donor reconstitution. FIG. 68B shows the composition break down for donor-derived cells in the bone marrow, spleen, and thymus. B cells (B), Granulocytes (G), Myeloid (M) and T Cells (T) were phenotypically defined as previously described. FIG. 68C shows the % donor of each of the progenitor compartments was calculated by gating as previously shown but last through donor. Quantitation of these results is shown for mice reconstituted from Mac1+ bone marrow cells transduced with 6-TF POLY (1 mouse), 8-TF (1 mouse) and 8-TF POLY (4 mice). A break indicates a 1.0% donor composition. FIG. 68D shows compositional breakdown of the Hematopoietic progenitor compartment for each mouse reconstituted from Mac1+ bone marrow cells transduced with 6-TF POLY (1 mouse), 8-TF (1 mouse) and 8-TF POLY (4 mice). Populations were gated first by donor and then by previously defined phenotypic markers.

[0360] FIG. 69 shows phenotypic HSCs (doublet discriminated, live, lineage negative, c-kit+, Sca1+, CD34-, flk2- and CD150+) were FACS sorted from the bone marrow of mice reconstituted with Pro/Pre B cells transduced with 8-TF and 8-TF POLY viral cocktails. Cells were single cell sorted into 96 well plates and analyzed by qPCR for an array of transcription factors. A heat map displays transcription factor expression (columns) for indicated cell types (rows), including: previously profiled and phenotypically sorted progenitor control cell types (HSC, MPP, MEP, CMP, GMP, CLP), control Pro/Pre B cells, recipient derived HSCs (Host HSC), and iHSC cells isolated from mice reconstituted from Pro/Pre B Cells transduced with viral mixtures of 8-TF (iHSC 8-TF) and 8-TF POLY (iHSC 8-TF POLY). High expression was visualized as red; Low Expression was visualized as blue.

[0361] FIGS. 70A-70H shows reprogramming terminally differentiated myeloid cells to engraftable HSC-like cells. (FIG. 70A) Schematic for secondary reprogramming experiments. Peripheral blood post 16 weeks from mice reconstituted from ProPre B Cells transduced with viral mixes of 8-TFs were isolated. Peripheral blood cells, FACS sorted CD45.1+ (donor) or further purified on magnetic columns for B220+ (B Cells), Mac1+ (Myl), Gran (Mac1+ Gr1+) and T cells (CD3+). Cells were then plated into F12 media in the presence or absence of dox. Three days post dox administration, cells are transferred into methylcellulose. Colonies are counted and scored 20 days later. (FIG. 70B) Mice reconstituted with ProPre B Cells transduced with the viral cocktail 8-TF or 8-TF POLY were bled at 16-20 weeks and CD45.1+ (donor) and CD45.2+ (Recipient) cells were FACS sorted (8-TF) or unsorted (8-TF POLY), plated into F12 media in the presence/absence of dox for 3 days, transferred into methylcellulose, and counted/scored on day 20. Quantitation of the colony number and composition is shown for cells in the

presence and absence of dox. Each column represents one or three replicates per mouse. A representative GEMM colony and GM (Granulocyte-Myeloid) colony are shown to the right for donor sorted cells in the presence of dox. (FIG. 70C) Mice reconstituted with ProPre B Cells transduced with 8-TF POLY were bled at 16 weeks and CD45.1+ (donor) and CD45.2+ (recipient) cells were pooled, further enriched using magnetic columns for B220+ (B Cells), Mac1+ (Myl), Mac1+ Gr1+ (Gran) and CD3+ (T Cells). Cell populations were plated into F12 media in the presence/absence of dox for 3 days, transferred to methylcellulose, and counted/scored on day 20. Quantitation of the colony number and composition is shown for cells in the presence and absence of dox. (FIG. 70D) Representative 10x views of colonies [GEMM, GM, Granulocyte (G) and Myeloid (M)] derived from donor cells are shown. Cytospins were performed on each colony and shown to the right with prominent cell types labeled. (FIG. 70E) Mac1+bone marrow cells were isolated from transgenic rtTA mice. Cells were transduced for 16 hours with RHL+ PZP (6-TF POLY), Runx1t1+Hlf+Lmo2+Pbx1+Zfp37+ Prdm5+Mycn+Meis1 (8-TF) and RHL+PZP+Mycn+Meis1 (8-TF POLY). Dox was added in culture for 24 hours and 5.0×106 cells were transplanted into conditioned hosts with 1×10⁵ Sca1 depleted support cells. Peripheral blood analysis was performed at 4, 8, 12 and 16 weeks; donor contributions are summarized in the graph. Each circle represents a mouse and the 1% donor chimerism mark is represented by an axis break. (FIG. 70F) Composition of mice reconstituted over 1% are shown and broken into B cell, myeloid, granulocyte, and T cell as previously defined. (FIG. 70G) Secondary transplantation was performed by euthanizing and harvesting bone marrow from primary mice with donor reconstitutions over 5%. Five million FACS sorted donor (CD45.2+) whole bone marrow cells were transplanted non-competitively into five recipient pre-conditioned mice. Peripheral blood chimerism at 16 weeks is shown for each secondary recipient (each circle). (FIG. 70H) The average composition of the donorderived cells in the secondary transplant was calculated and graphically represented for 16 week bleed data.

[0362] FIGS. 71A-71B show donor-derived bone marrow, originating from transformed Pro/Pre B-Cells, was isolated from two primary reconstituting animals and one secondary animal. B220+ (B-Cells), CD3+ (T-Cells), Mac1+Gr1- (Myeloid) and Mac1+Gr1+ (Gran) cells were FACS sorted. VDJ analysis was performed on each of the lineages, similar size bands were selected and individual VDJ amplicons were sequenced to obtain information on individual recombination events in each of the lineages. Sequence data is show for each of the indicated donors/cell types. Using IgBlast (http://www. ncbi.nlm.nih.gov/igblast/) VDJ recombinational events were identified (VDJ ID) and listed according to the VH, DH or JH segment to which the sequence corresponds. (FIG. 71A) Sequences for Donor 1°-1 are disclosed as SEQ ID NOS 168-169, 168-169, 176, 176, 176, 176, 181, 181, 181 and 181 read from columns left to right. Sequences for Donor 1°-8 are disclosed as SEQ ID NOS 170, 170, 170, 170, 177, 177, 177, 177, 182, 182, 182 and 182 read from columns left to right. (FIG. 71B) Sequences for Donor 2°-1 are disclosed as SEQ IDNOS 168, 168, 168, 171-175, 176, 176, 176, 178-180, 180, 183, 183, 183-185, 185-186 and 186 read from columns left to right.

[0363] FIGS. 72A-72C Donor-derived MEP cells (Live, Lin-, c-kit+, Sca1-, CD34-, FcgR3-) were FACS sorted from the bone marrow of a primary recipient reconstituted

from a transformed Pro/Pre B-Cell (Mouse ID 6). MEP cells were transplanted into three irradiated recipients (50,000 cells/recipient). Controls were irradiated but not transplanted. (FIG. 72A) The survival of these mice is indicated graphically over time post transplant. At day 20 post transplant the peripheral blood of the remaining mice was tested for red blood cell counts (RBC Counts, FIG. 72B) and platelet numbers (Platelet Counts, FIG. 72C).

DETAILED DESCRIPTION

[0364] Provided herein are compositions, nucleic acid constructs, methods and kits thereof for hematopoietic stem cell induction or reprogramming cells to the hematopoietic stem cell multipotent state, based, in part, on the discoveries described herein of novel combinations of transcription factors that permit dedifferentiation and reprogramming of more differentiated cells the hematopoietic stem cell state. Such compositions, nucleic acid constructs, methods and kits can be used for inducing hematopoietic stem cells in vitro, ex vivo, or in vivo, and these induced hematopoietic stem cell can be used in regenerative medicine applications.

[0365] Hematopoietic stem cells (HSCs) are among the best-characterized and most experimentally tractable tissuespecific stem cells. HSCs reside at the top of hematopoietic hierarchy and give rise to a large repertoire of highly specialized effector cells by differentiating through a succession of increasingly committed downstream progenitor cells (FIG. 1). HSCs are the only cells in the hematopoietic system that possess the ability to both differentiate to all blood lineages and to self-renew for life. These properties, along with the ability of HSCs to engraft conditioned recipients upon intravenous transplantation, have established the clinical paradigm for stem cell use in regenerative medicine. Allogeneic and autologous HSC transplantation are routinely used in the treatment of patients with a variety of life-threatening disorders. Despite wide clinical use, HSC transplantation remains a high-risk procedure, with the number of stem cells available for transplantation being the strongest predictor of transplantation success. Although stem cell mobilization with G-CSF alone, or in combination with other drugs, increases the yield of hematopoietic stem cells for transplantation, an ability to induce, expand, or generate patient-specific HSCs de novo, as described herein, could be useful in a number of clinical settings, or be used to model hematopoietic diseases ex vivo or in xenotransplantation models.

[0366] The developmental process by which differentiated cell types arise from more primitive progenitor cells is guided in part by progressive epigenetic changes. In general, lineage specification is unidirectional and irreversible with differentiated cell types, and even intermediate progenitors, being remarkably fixed with respect to their cellular identity and developmental potential. Studies by Gurdon and others have demonstrated that the process of differentiation can be reversed in experiments that showed that the nuclei of differentiated cell types could be reprogrammed to totipotency when exposed to the primitive cellular milieu of enucleated oocytes. This process, known as "somatic cell nuclear transfer," was subsequently shown to be capable of reprogramming nuclei from differentiated mammalian cells back to pluripotency. That ectopic expression of defined transcription factors was sufficient to convert cell fate was first shown in 1987 with the demonstration that enforced expression of MyoD could reprogram fibroblasts to the myogenic lineage. Enormous progress in this field has been made over the past

40 years culminating with the striking demonstration by Yamanaka and colleagues that ectopic expression of four transcription factors (c-Myc, Oct4, Klf4, Sox2, the so-called "Yamanaka factors") also described in e.g., U.S. Pat. No. 7,964,401; U.S. Pat. No. 8,048,999; U.S. Pat. No. 8,058,065; U.S. Pat. No. 8,129,187; U.S. Pat. No. 8,211,697, can reprogram adult fibroblasts from mice and man into cells, termed iPS (induced pluripotent stem) cells, that possess the developmental potential of embryonic stem (ES) cells. These discoveries opened the possibility of generating patient-specific pluripotent cells from abundant somatic cells that could be used to model disease, or for autologous cell replacement therapies.

[0367] However, these factors do not replicate this process if the starting cell is a cell from hematopoietic lineage.

[0368] Despite their enormous promise, significant hurdles must be overcome before iPS-based cell therapies enter the clinic. It must also be recognized that iPS cells cannot be directly used clinically, since—as is the case with ES cells—useful cell types must first be generated by directed differentiation.

[0369] Thus, alternative approaches, in which abundant cell types are directly reprogrammed to alternative fates without first returning to a pluripotent state, as described herein for making induced HSCs, can be a more direct and efficient way to generate clinically useful cell types. For example, a recent report using OCT4 in combination with hematopoietic cytokines also showed that it was possible to generate myeloid lineage hematopoietic cells (though not HSCs) from human fibroblasts.

[0370] Differentiation of HSCs to fully differentiated blood cells is believed to be an irreversible process under normal physiological conditions. Hematopoietic lineage specification takes place within the bounds of strict lineal relationships: for example, megakaryocyte progenitors give rise to megakaryocytes and ultimately platelets, but not to any other blood lineages. Some studies, however, have demonstrated that hematopoietic cells are amenable to reprogramming to alternative fates under experimental manipulation.

[0371] Within the hematopoietic system, the most clinically useful cell type to strive to generate by reprogramming are HSCs, as they are the only cells which possess the potential to generate all blood cell types over a lifetime, and transplantation protocols for their clinical use are already established. To date, no reports describing the generation of HSCs by reprogramming have been published because the factor(s) needed to reprogram to HSCs have not yet been determined. This point is central to the experimental rationale and strategies described herein, which were designed to first identify and clone transcriptional activators important for specifying HSC fate and function, and then utilize such factors to reprogram committed blood cells back to an induced HSC fate (FIG. 2), as demonstrated herein.

[0372] Hematopoietic tissues contain cells with long-term and short-term regeneration capacities, and committed multipotent, oligopotent, and unipotent progenitors. Endogenous HSCs can be can be found in a variety of tissue sources, such as the bone marrow of adults, which includes femurs, hip, ribs, sternum, and other bones, as well as umbilical cord blood and placenta, and mobilized peripheral blood. Endogenous HSCs can be obtained directly by removal from, for example, the hip, using a needle and syringe, or from the blood following pre-treatment with cytokines, such as G-CSF (granulocyte colony-stimulating factors), that induce cells to

be released from the bone marrow compartment. However, such methods yield varying amounts of HSCs, which are oftentimes not enough for use in treatment options.

[0373] Accordingly, "hematopoietic stem cells," or "HSCs," as the terms are used herein, encompass all multipotent cells capable of differentiating into all the blood or immune cell types of the hematopoietic system, including, but not limited to, myeloid cells (monocytes and macrophages, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes/platelets, dendritic cells), and lymphoid lineages (T-cells, B-cells, NKT-cells, NK-cells), and which have multi-lineage hematopoietic differentiation potential and sustained self-renewal activity.

[0374] The term "stem cells," as used herein, refer to cells that retain the ability to renew themselves through mitotic cell division and can differentiate into a diverse range of specialized cell types. The two broad types of mammalian stem cells are: embryonic stem (ES) cells that are found in blastocysts, and adult stem cells that are found in adult tissues. In a developing embryo, stem cells can differentiate into all of the specialized embryonic tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing specialized cells, but also maintain the normal turnover of regenerative organs, such as blood, skin or intestinal tissues. Pluripotent stem cells can differentiate into cells derived from any of the three germ layers.

[0375] Stem cells are generally classified by their developmental potential as: (1) "totipotent," meaning able to give rise to all embryonic and extraembryonic cell types; (2) "pluripotent," meaning able to give rise to all embryonic cell types; (3) "multipotent," meaning able to give rise to a subset of cell lineages, but all within a particular tissue, organ, or physiological system (for example, hematopoietic stem cells (HSCs) can produce progeny that include HSCs (self-renewal), blood cell restricted oligopotent progenitors and the cell types and elements (e.g., platelets) that are normal components of the blood); (4) "oligopotent," meaning able to give rise to a more restricted subset of cell lineages than multipotent stem cells; and (5) "unipotent," meaning able to give rise to a single cell lineage (e.g., spermatogenic stem cells).

[0376] "Self-renewal" refers to the ability of a cell to divide and generate at least one daughter cell with the identical (e.g., self-renewing) characteristics of the parent cell. The second daughter cell may commit to a particular differentiation pathway. For example, a self-renewing hematopoietic stem cell divides and forms one daughter stem cell and another daughter cell committed to differentiation in the myeloid or lymphoid pathway. In contrast, a committed progenitor cell has typically lost the self-renewal capacity, and upon cell division produces two daughter cells that display a more differentiated (i.e., restricted) phenotype. True hematopoietic stem cells have the ability to regenerate long term multi-lineage hematopoiesis (e.g., "long-term engraftment") in individuals receiving a bone marrow or umbilical cord blood transplant, as described herein.

[0377] Hematopoietic stem cells are traditionally identified as being lineage marker negative, Sca1-positive, cKit-positive (or LSK cells), CD34-negative, Flk2-negative, CD48-negative, and CD150 positive. HSCs give rise to "multipotent progenitor cells" or "hematopoietic progenitor cells," which, as the terms are used herein, refer to a more differentiated subset of multipotent stem cells that while committed to the hematopoietic cell lineage generally do not self-renew. The terms "hematopoietic progenitor cells" or "multi-potent pro-

genitor cells" (MPPs) encompass short term hematopoietic stem cells (also known as ST-HSCs, which are lineage marker negative, Sca1-positive, cKit-positive, CD34-positive, and Flk2-negative); common myeloid progenitor cells (CMPs); lymphoid-primed progenitor cells (LMPPs), granulocytemonocyte progenitor cells (GMPs), and megakaryocyteerythrocyte progenitor cells (MEPs). Hematopoietic stem cells subsets are sometimes also identified and discriminated on the basis of additional cell-surface marker phenotypes, such as by using combinations of members of the SLAM family, or the "SLAM phenotype," such as, long-term multilineage repopulating and self-renewing hematopoietic stem cells (HSCs): CD150+CD48-CD244-; MPPs: CD150-CD48-CD244+; lineage-restricted progenitor cells (LRPs): CD150⁻CD48⁺CD244⁺; common myeloid progenitor cells (CMP): lin⁻SCA-1⁻c-kit⁺CD34⁺CD16/32^{mid}; granulocytemacrophage progenitor (GMP): lin⁻SCA-1⁻c-kit⁺CD34⁺ $CD16/32^{hi}$; and megakaryocyte-erythroid progenitor (MEP): lin⁻SCA-1⁻c-kit⁺CD34⁺CD16/32^{low}.

[0378] Accordingly, using the compositions, constructs, methods, and kits comprising the HSC reprogramming factors or HSC inducing factors described herein, induced hematopoietic stem cells or iHSCs can be generated that are multipotent and capable of differentiating into all the blood or immune cell types of the hematopoietic system, including, but not limited to, myeloid cells (monocytes and macrophages, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes/platelets, dendritic cells), and lymphoid lineages (T-cells, B-cells, NKT-cells, NK-cells), and which have multi-lineage hematopoietic differentiation potential and sustained self-renewal activity. In some embodiments of the compositions, constructs, methods, and kits comprising the HSC reprogramming factors or HSC inducing factors described herein, cells are dedifferentiated into one or more other hematopoietic progenitor cells types, such as short term hematopoietic stem cells, common myeloid progenitor cells, common lymphoid progenitor cells, lymphoid-primed progenitor cells, granulocyte-monocyte progenitor cells, and megakaryocyte-erythrocyte progenitor cells.

[0379] The successful identification of HSC inducing factors capable of reprogramming committed blood cells to induced HSCs, as described herein, can advance our basic understanding of HSC biology in a number of ways. Despite the fact that HSCs are the most well characterized tissuespecific stem cells, surprisingly little is known about the molecular mechanisms involved in regulating their central properties of self-renewal and multi-potency. Identification of factors capable of imparting self-renewal and multi-lineage potential onto otherwise non-self-renewing, lineagerestricted cells, as described herein, provide important insights into the molecular basis of these fundamental attributes and provide strategies on how best to therapeutically manipulate HSCs. Further, mature blood cell production is an ongoing process requiring profound homeostatic control mechanisms—the primary level of which resides with HSCs. Since hematopoietic malignancies arise through deregulation of homeostatic control mechanisms, identification of regulators responsible for specifying HSC function, such as the HSC inducing factors described herein, can also provide important insights into how homeostasis is regulated by stem cells, and in turn, how deregulation of such processes manifest in disease. Functional conservation of reprogramming factors between species is well-documented indicating that it the methods and compositions described herein are applicable for reprogramming human blood cells to induced HSCs, using homologues of the murine reprogramming factors described herein. The ability to derive functional human induced HSCs in such a manner represents a new experimental paradigm for deriving these important cells that can be translated clinically, or used to model hematopoietic diseases. Because one mechanism in which lineage specification has been shown to occur is by the active suppression of alternative fates, by identifying factors involved in re-establishing core HSC properties, factors that function by suppressing differentiation programs can also be identified. If so, identification of such factors could provide fundamental insights into hematopoietic lineage specification. Transcription factors play a critical role in the specification of all cell types during development. The success of reprogramming strategies using transcription factor-mediated de-differentiation of cells indicates that it is equally plausible to direct the differentiation of pluripotent ES/iPS cells to specific fates using such factors. Accordingly, using the HSC inducing factors identified herein, directed differentiation of ES/iPS cells to a definitive HSC fate by expression of the HSC-enriched transcription factors can be achieved.

[0380] The combinatorial introduction of HSC-enriched TFs into downstream progenitors and screening for the introduction of stem cell properties onto these committed cells in vivo has identified a core set of TFs, referred to herein as "HSC inducing factors" or "HSC reprogramming factors" able to mediate the reprogramming of committed cells back to an induced hematopoietic stem cell (iHSC) state. With the approaches described herein, advantage can be taken of the fact that HSCs are the only cells in the hematopoietic system capable of giving rise to long-term (>4 months) multi-lineage reconstitution in transplantation assays, whereas committed progenitors reconstitute recipient mice only transiently with restricted lineage potential depending upon their stage of differentiation. Only progenitors that have been successfully reprogrammed to an induced hematopoietic stem cell state are able to give rise to long-term multi-lineage reconstitution in transplant recipients, using the compositions, methods, and kits described herein.

[0381] To realize the goal of identifying transcription factors specifically expressed in HSCs within the hematopoietic system, a comprehensive system-wide approach was undertaken in which expression profiles of 40 FACS purified hematopoietic cell types, representing the vast majority of hematopoietic stem, progenitor and effector cells, were generated and compiled (FIG. 1). Since the success of the results described herein require a detailed knowledge of the molecular attributes of HSCs, the focus has been on defining these by expression profiling of purified HSCs from diverse settings ranging from steady state hematopoiesis through different stages of ontogeny (fetal development through to old age). Throughout the work described herein, HSCs are fluorescence activated cell sorted (FACS) purified by stringent cell surface phenotype, and defined through functional criteria (FIGS. 1-2). In total, 46 expression profiles for HSCs were generated, which lends enormous statistical power to the analyses described herein. In total, 248 expression profiles of hematopoietic populations have been generated and normalized into a single database (referred to as the "hematopoietic expression database") (FIG. 3).

[0382] Using the databases described herein, transcriptional factors (TFs) with HSC-enriched expression have been identified. In some embodiments of the aspects described

herein, in addition to the factors with strict HSC-enriched expression, TFs involved in specifying hematopoietic fate during fetal development such as SCL/TAL1, RUNX1, HOXB4, and LMO2, can be used as HSC inducing factors, even though they do not exhibit particularly HSC-specific expression in the adult. In total, as described herein, over 40 TFs that can be used in various combinations as "HSC inducing factors," as the term is used herein, have been identified and the expression profiles of each have been confirmed by qRT-PCR.

[0383] The production of cells having an increased developmental potential (e.g., iHSCs) is generally achieved by the introduction of nucleic acid sequences encoding genes identified herein as "HSC inducing factors" into an adult, somatic

cell, preferably, in some embodiments, a more differentiated cell of the hematopoietic lineage. Typically, nucleic acids encoding the HSC inducing factors, e.g., DNA or RNA, or constructs thereof, are introduced into a cell, using viral vectors or without viral vectors, via one or repeated transfections, and the expression of the gene products and/or translation of the RNA molecules result in cells that are morphologically, biochemically, and functionally similar to HSCs, as described herein. As used herein, "reprogramming" refers to a process of driving a cell to a state with higher developmental potential, i.e., backwards, to a less differentiated state. In some embodiments of the compositions, methods, and kits described herein, reprogramming encompasses a complete or partial reversion of the differentiation state to that of a cell having a multipotent state. In some embodiments of the compositions, methods, and kits described herein, reprogramming encompasses a complete or partial reversion of the differentiation state to that of a cell having the state of a hematopoietic progenitor cell, such as a CMP, a CLP, etc. The hematopoietic stem cells induced by the compositions, methods, and kits described herein are termed herein as "induced hematopoietic stem cells," "iHS cells," or "iHSCs." Compositions comprising amino acid or nucleic acid sequences or expression vectors thereof encoding these HSC inducing factors are referred to herein as "HSC inducing compositions." [0384] As demonstrated herein, over 40 transcription factors were identified that can be introduced into a cell in various combinations as "HSC inducing factors" to generate induced hematopoietic stem cells or iHSCs that are multipotent and capable of differentiating into all or a majority the blood or immune cell types of the hematopoietic system, including, but not limited to, myeloid cells (monocytes and macrophages, neutrophils, basophils, eosinophils, erythrocytes, megakaryocytes/platelets, dendritic cells), and lymphoid lineages (T-cells, B-cells, NKT-cells, NK-cells), and which have multi-lineage hematopoietic differentiation potential and sustained self-renewal activity. Thus, provided herein, in some aspects, are HSC inducing factors and combinations thereof comprising the genes listed in Table 1, which also provides exemplary sequences for making the identified proteins:

TABLE 1

HSC Inducing Factors					
GENE NAME	Human mRNA REF SEQ	SEQ ID NOs:	Murine mRNA REF SEQ	SEQ ID NOs:	
CDKN1C	NM_000076.2	SEQ ID	NM_001161624.1	SEQ ID	

TABLE 1-continued

Feb. 4, 2016

HSC Inducing Factors				
GENE NAME	Human mRNA REF SEQ	SEQ ID NOs:	Murine mRNA REF SEQ	SEQ ID NOs:
DNMT3B	NM_001207055.1	SEQ ID NO: 2	NM_001003960.4	SEQ ID NO: 48
EGR1	NM_001964.2	SEQ ID NO: 3	NM_133659.2	SEQ ID NO: 49
ETV6	NM_001987.4	SEQ ID NO: 4	NM_007961.3	SEQ ID NO: 50
EVI1	NM_001105078.3	SEQ ID NO: 5	NM_007963.2	SEQ ID NO: 51
GATA2	NM_032638.4	SEQ ID	NM_008090.5	SEQ ID
GFI1B	NM_001135031.1	NO: 6 SEQ ID	NM_001160406.1	NO: 52 SEQ ID
GLIS2	NM_032575.2	NO: 7 SEQ ID	NM_031184.3	NO: 53 SEQ ID
HLF	NM_002126.4	NO: 8 SEQ ID	NM_172563.3	NO: 54 SEQ ID
HMGA2	NM_003483.4	NO: 9 SEQ ID	NM_010441.2	NO: 55 SEQ ID
HOXA5	NM_019102.3	NO: 10 SEQ ID	NM_010453.5	NO: 56 SEQ ID
НОХА9	NM_152739.3	NO: 11 SEQ ID	NM_010456.2	NO: 57 SEQ ID
нохвз	NM_002146.4	NO: 12 SEQ ID	NM_001079869.1	NO: 58 SEQ ID
HOXB4	NM_024015.4	NO: 13 SEQ ID	NM_010459.7	NO: 59 SEQ ID
HOXB5	NM_002147.3	NO: 14 SEQ ID	NM_008268.2	NO: 60 SEQ ID
IGF2BP2	NM_001007225.1	NO: 15 SEQ ID	NM_183029.2	NO: 61 SEQ ID
IKZF2	NM_001079526.1	NO: 16 SEQ ID	NM_011770.4	NO: 62 SEQ ID
KLF12	NM_007249.4	NO: 17 SEQ ID	NM_010636.3	NO: 63 SEQ ID
KLF4	NM_004235.4	NO: 18 SEQ ID	NM_010637.3	NO: 64 SEQ ID
KLF9	NM_001206.2	NO: 19 SEQ ID	NM_010638.4	NO: 65 SEQ ID
LMO2	NM_005574.3	NO: 20 SEQ ID	NM_001142336.1	NO: 66 SEQ ID
MEIS1	NM_002398.2	NO: 21 SEQ ID	NM_00193271.1	NO: 67 SEQ ID
MSI2	NM_138962.2	NO: 22 SEQ ID	NM_054043.3	NO: 68 SEQ ID
MYCN	NM_005378.4	NO: 23 SEQ ID	NM_008709	NO: 69 SEQ ID
NAP1L3	NM_004538.5	NO: 24 SEQ ID	NM_138742.1	NO: 70 SEQ ID
NDN	NM_004538.5	NO: 25 SEQ ID	NM_010882.3	NO: 71 SEQ ID
NFIX	NM_001271044.1	NO: 26	NM_001081981.1	NO: 72
NKX2-3	NM_145285.2	NO: 27 SEQ ID	NM_008699.2	NO: 73 SEQ ID
NR3C2	NM_000901.4	NO: 28 SEQ ID	NM_001083906.1	NO: 74 SEQ ID
PBX1	NM_001204961.1	NO: 29 SEQ ID	NM_008783.2	NO: 75 SEQ ID
PRDM16	NM_199454.2	NO: 30 SEQ ID	NM_001177995.1	NO: 76 SEQ ID
PRDM5	NM_018699.2	NO: 31 SEQ ID	NM_027547.2	NO: 77 SEQ ID
RARB	NM_000965.3	NO: 32 SEQ ID	NM_011243.1	NO: 78 SEQ ID
RBBP6	NM_006910.4	NO: 33 SEQ ID	NM_011247.2	NO: 79 SEQ ID
RBPMS	NM_001008712.1	NO: 34 SEQ ID	NM_019733.2	NO: 80 SEQ ID
RUNX1	NM_001001890.2	NO: 35		NO: 81
		SEQ ID NO: 36	NM_0001111021.1	SEQ ID NO: 82
RUNX1T1	NM_001198625.1	SEQ ID NO: 37	NM_009822.2	SEQ ID NO: 83

TABLE 1-continued

HSC Inducing Factors				
GENE NAME	Human mRNA REF SEQ	SEQ ID NOs:	Murine mRNA REF SEQ	SEQ ID NOs:
SMAD6	NM_001142861.2	SEQ ID	NM_008542.3	SEQ ID
TAL1	NM_003189.2	NO: 38 SEQ ID NO: 39	NM_011527.2	NO: 84 SEQ ID NO: 85
TCF15	NM_004609.3	SEQ ID NO: 40	NM_009328.2	SEQ ID NO: 86
VDR	NM_000376.2	SEQ ID NO: 41	NM_009504.4	SEQ ID NO: 87
ZFP37	NM_003408.1	SEQ ID	NM_009554.3	SEQ ID
ZFP467	NM_207336.1	NO: 42 SEQ ID NO: 43	NM_001085415.1	NO: 88 SEQ ID NO: 89
ZFP521	NM_015461.2	SEQ ID NO: 44	NM_145492.4	SEQ ID NO: 90
ZFP532	NM_018181.4	SEQ ID	NM_207255.2	SEQ ID
ZFP612	NM_145911.1	NO: 45 SEQ ID NO: 46	NM_175480.4	NO: 91 SEQ ID NO: 92

[0385] In some embodiments, polypeptide variants or family members having the same or a similar activity as the reference polypeptide encoded by the sequences provided in Table 1 can be used in the compositions, methods, and kits described herein. Generally, variants of a particular polypeptide encoding a HSC inducing factor for use in the compositions, methods, and kits described herein will have at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99% or more sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.

[0386] Accordingly, in some embodiments, the HSC inducing factors for use in the compositions, methods, and kits described herein, are selected from the group consisting of: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612 (SEQ ID NOs: 1-46).

[0387] As demonstrated herein, for example at FIG. 11, exposure to 18 transcription factors from the genes listed in Table 1 provided MPP cells with robust long-term, multilineage engraftment properties, characteristic of HSCs, in vivo. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from: HLF, MYCN, MEIS1, IRF6, CDKN1C, NFIX, DNMT3B, ZFP612, PRDM5, HOXB4, LMO2, NKX2-3, RARB, NDN, NAP1L3, RUNX1T1, ZFP467, and ZFP532. Another grouping is a core 6 factors (Runx1t1, HLF, PRDM5, PBX1, LMO2, and ZFP37), and 8 factors (the 6 factors plus MEIS1, MYCN).

[0388] As demonstrated herein, for example at FIGS. 13A-13B, exposure to 17 transcription factors from the genes listed in Table 1 provided MPP cells with robust long-term, multi-lineage engraftment properties, characteristic of HSCs,

in vivo. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from: HLF, MYCN, MEIS1, IRF6, NFIX, DNMT3B, ZFP612, PRDM5, HOXB4, LMO2, NKX2-3, RARB, NDN, NAP1L3, RUNX1T1, ZFP467, and ZFP532. [0389] As demonstrated herein, for example at FIG. 12, exposure to 9 transcription factors from the genes listed in Table 1 provided MPP cells with robust long-term, multilineage engraftment properties, characteristic of HSCs, in vivo. Accordingly, in some embodiments of the composi-

tions, methods, and kits described herein, the HSC inducing factors are selected from: EVI-1, GLIS2, HOXB5, HOXA9,

HLF, MEIS1, MYCN, PRDM16, and RUNX1.

[0390] As demonstrated herein, for example at FIG. 14, exposure to 8 transcription factors from the genes listed in Table 1 provided MPP cells with robust long-term, multilineage engraftment properties, characteristic of HSCs, in vivo. In some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from: RUNX1T1, HLF, ZFP467, RBPMS, HOXB5, NAP1L3, MSI2, and IRF6.

[0391] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS. As demonstrated herein, the use of these 11 HSC inducing factors together, also referred to herein as "Combination 7" or "C7," resulted in increased colony formation, altered lineage potential, and multi-lineage reconstitution in vivo, from CMP cells or ProPreB cells. In addition, this combination was shown to have serial long-term transplantation potential in vivo. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0392] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5. As demonstrated herein, the use of these 6 HSC inducing factors together, also referred herein as "Combination 6" or "C6," was able to reprogram ProPreB or CMP cells into cells capable of giving rise to multi-lineage reconstitution in vivo. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from HLF, ZFP37, RUNX1T1, PBX1, LMO2, and PRDM5. In some embodiments, the compositions, methods, and kits described herein can further comprise one or more of the HSC inducing factors PRDM16, ZFP467, and VDR.

[0393] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of ZFP467, PBX1, HOXB4, and MSI2. As demonstrated herein, the use of these HSC inducing factors together, also referred herein as "Combination 1" or "C1," was able to reprogram ProPreB cells to myeloid cells. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from ZFP467, PBX1, HOXB4, and MSI2. In some embodiments, the compositions, methods, and kits described herein can further comprise one or more of the HSC inducing factors HLF, LMO2, PRDM16, and ZFP37.

[0394] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of MYCN, MSI2, NKX2-3, and RUNX1T1. As demonstrated herein, the use of these HSC inducing factors together, also referred herein as "Combination 2" or "C2," was able to reprogram ProPreB cells to iHSCs. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from MYCN, MSI2, NKX2-3, and RUNX1T1. In some embodiments, the compositions, methods, and kits described herein can further comprise one or more of the HSC inducing factors HOBX5, HLF, ZFP467, HOXB3, LMO2, PBX1, ZFP37, and ZFP521.

[0395] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of HOXB4, PBX1, LMO2, ZFP612, and ZFP521. As demonstrated herein, the use of these HSC inducing factors together, also referred herein as "Combination 3" or "C3," was able to promote the proliferation and survival of ProPreB cells. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from HOXB4, PBX1, LMO2, ZFP612, and ZFP521. In some embodiments, the compositions, methods, and kits described herein can further comprise one or more of the HSC inducing factors KLF12, HLF, and EGR1.

[0396] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of MEIS1, RBPMS, ZFP37, RUNX1T1, and LMO2. As demonstrated herein, the use of these HSC inducing factors together, also referred herein as "Combination 4" or "C4," was able to reprogram CMP cells to iHSCs. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from MEIS1, RBPMS, ZFP37, RUNX1T1, and LMO2. In some embodiments, the compositions, methods, and kits described herein can further comprise one or more of the HSC inducing factors KLF12 and HLF.

[0397] In some embodiments of the aspects described herein, the HSC inducing factors for use with the compositions, methods, and kits comprise, consist essentially of, or consist of ZFP37, HOXB4, LMO2, and HLF. As demonstrated herein, the use of these HSC inducing factors together, also referred herein as "Combination 5" or "C5," was able to reprogram the fates of CMP and ProPreB cells. Accordingly, in some embodiments of the compositions, methods, and kits described herein, the HSC inducing factors are selected from ZFP37, HOXB4, LMO2, and HLF. In some embodiments, the compositions, methods, and kits described herein can further comprise one or more of the HSC inducing factors MYCN, ZFP467, NKX2-3, PBX1, and KLF12ZFP37.

[0398] In some embodiments of the compositions, methods, and kids provided herein, the number of HSC inducing factors used or selected to generate iHSCs from a starting somatic cell, such as a fibroblast cell or hematopoietic lineage cell, is at least three. In some embodiments, the number of HSC inducing factors used or selected is at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least seventeen, at least eighteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, or more.

[0399] Also provided herein, in various aspects of the compositions, methods, and kits, are isolated amino acid sequences, and isolated DNA or RNA nucleic acid sequences encoding one or more HSC inducing factors for use in making iHSCS.

[0400] In some embodiments of the compositions, methods, and kits described herein, the nucleic acid sequence or construct encoding the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, is inserted or operably linked into a suitable expression vector for transfection of cells using standard molecular biology techniques. As used herein, a "vector" refers to a nucleic acid molecule, such as a dsDNA molecule that provides a useful biological or biochemical property to an inserted nucleotide sequence, such as the nucleic acid constructs or replacement cassettes described herein. Examples include plasmids, phages, autonomously replicating sequences (ARS), centromeres, and other sequences that are able to replicate or be replicated in vitro or in a host cell, or to convey a desired nucleic acid segment to a desired location within a host cell. A vector can have one or more restriction endonuclease recognition sites (whether type I, II or IIs) at which the sequences can be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a nucleic acid fragment can be spliced or inserted in order to bring about its replication and cloning. Vectors can also comprise one or more recombination sites that permit exchange of nucleic acid sequences between two nucleic acid molecules. Vectors can further provide primer sites, e.g., for PCR, transcriptional and/or translational initiation and/or regulation sites, recombination signals, replicons, additional selectable markers, etc. A vector can further comprise one or more selectable markers suitable for use in the identification of cells transformed with the vector.

[0401] Accordingly, in some aspects, provided herein are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors encoding at least one, two, three, four, five, six, seven, eight or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612.

[0402] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0403] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.

[0404] Also provided herein in some aspects are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising: a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5.

[0405] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a nucleic acid sequence encoding PRDM16; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR.

[0406] Also provided herein in some aspects are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising: a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS.

[0407] In some aspects, provided herein are hematopoietic stem cell (HSC) inducing compositions comprising one or

[0407] In some aspects, provided herein are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising: a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2.

[0408] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0409] Also provided herein in some aspects are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding NKX2-3; and a nucleic acid sequence encoding RUNX1T1.

[0410] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises a nucleic acid sequence encoding HOXB5; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding HOXB3; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP31.

[0411] In other aspects, provided herein are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors composition comprising: a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521.

[0412] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.

[0413] Also provided herein in some aspects are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising: a nucleic acid sequence encoding MEIS1; a nucleic acid sequence encoding RBPMS; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding RUNX1T1; and a nucleic acid sequence encoding LMO2.

[0414] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition fur-

ther comprises one or more of a sequence encoding KLF12; and a sequence encoding HLF.

[0415] Also provided herein in some aspects are hematopoietic stem cell (HSC) inducing compositions comprising one or more expression vectors comprising: a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF.

[0416] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding KLF4.

[0417] In some embodiments of the compositions, methods, and kits described herein, the expression vector is a viral vector. Some viral-mediated expression methods employ retrovirus, adenovirus, lentivirus, herpes virus, pox virus, and adeno-associated virus (AAV) vectors, and such expression methods have been used in gene delivery and are well known in the art.

[0418] In some embodiments of the compositions, methods, and kits described herein, the viral vector is a retrovirus. Retroviruses provide a convenient platform for gene delivery. A selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to target cells of the subject either in vivo or ex vivo. A number of retroviral systems have been described. See, e.g., U.S. Pat. No. 5,219,740; Miller and Rosman (1989) BioTechniques 7:980-90; Miller, A. D. (1990) Human Gene Therapy 1:5-14; Scarpa et al. (1991) Virology 180:849-52; Burns et al. (1993) Proc. Natl. Acad. Sci. USA 90:8033-37; Boris-Lawrie and Temin (1993) Curr. Opin. Genet. Develop. 3:102-09. In some embodiments of the compositions, methods, and kits described herein, the retrovirus is replication deficient. Retroviral vector systems exploit the fact that a minimal vector containing the 5' and 3' LTRs and the packaging signal are sufficient to allow vector packaging, infection and integration into target cells, provided that the viral structural proteins are supplied in trans in the packaging cell line. Fundamental advantages of retroviral vectors for gene transfer include efficient infection and gene expression in most cell types, precise single copy vector integration into target cell chromosomal DNA and ease of manipulation of the retroviral genome.

[0419] In some embodiments of the compositions, methods, and kits described herein, the viral vector is an adenovirus-based expression vector. Unlike retroviruses, which integrate into the host genome, adenoviruses persist extrachromosomally, thus minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham (1986) J. Virol. 57:267-74; Bett et al. (1993) J. Virol. 67:5911-21; Mittereder et al. (1994) Human Gene Therapy 5:717-29; Seth et al. (1994) J. Virol. 68:933-40; Barr et al. (1994) Gene Therapy 1:51-58; Berkner, K. L. (1988) BioTechniques 6:616-29; and Rich et al. (1993) Human Gene Therapy 4:461-76). Adenoviral vectors infect a wide variety of cells, have a broad host-range, exhibit high efficiencies of infectivity, direct expression of heterologous genes at high levels, and achieve long-term expression of those genes in vivo. The virus is fully infective as a cell-free virion so injection of producer cell lines is not necessary. With regard to safety,

adenovirus is not associated with severe human pathology, and the recombinant vectors derived from the virus can be rendered replication defective by deletions in the early-region 1 ("E1") of the viral genome. Adenovirus can also be produced in large quantities with relative ease. Adenoviral vectors for use in the compositions, methods, and kits described herein can be derived from any of the various adenoviral serotypes, including, without limitation, any of the over 40 serotype strains of adenovirus, such as serotypes 2, 5, 12, 40, and 41. The adenoviral vectors used herein are preferably replication-deficient and contain the HSC inducing factor of interest operably linked to a suitable promoter.

[0420] In some embodiments of the compositions, methods, and kits described herein, the nucleic acid sequences encoding the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, are introduced or delivered using one or more inducible lentiviral vectors. Control of expression of HSC inducing factors delivered using one or more inducible lentiviral vectors can be achieved, in some embodiments, by contacting a cell having at least one HSC inducing factor in an expression vector under the control of or operably linked to an inducible promoter, with a regulatory agent (e.g., doxycycline) or other inducing agent. When using some types of inducible lentiviral vectors, contacting such a cell with an inducing agent induces expression of the HSC inducing factors, while withdrawal of the regulatory agent inhibits expression. When using other types of inducible lentiviral vectors, the presence of the regulatory agent inhibits expression, while removal of the regulatory agent permits expression. As used herein, the term "induction of expression" refers to the expression of a gene, such as an HSC inducing factor encoded by an inducible viral vector, in the presence of an inducing agent, for example, or in the presence of one or more agents or factors that cause endogenous expression of the gene in a cell.

[0421] In some embodiments of the aspects described herein, a doxycycline (Dox) inducible lentiviral system is used. Unlike retroviruses, lentiviruses are able to transduce quiescent cells making them amenable for transducing a wider variety of hematopoietic cell types. For example, the pHAGE2 lentivirus system has been shown to transduce primary hematopoietic progenitor cells with high efficiency. This vector also carries a reporter cassette (IRES Zs-Green) that enables evaluation of viral transduction efficiencies and purification of transduced cells by FACS. The ability to inducibly turn off introduced transcription factors, as demonstrated herein, is important since the HSC-enriched expression pattern of these TFs indicates their continued enforced expression in induced HSCs can impair differentiation to all lineages. Having an inducible system also allows ascertainment of the stability of the reprogrammed state and assess the establishment and fidelity of HSC transcriptional programs and epigenetic marks once enforced expression of reprogramming factors is lifted.

[0422] In some embodiments of the methods described herein, the nucleic acid sequences encoding the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, are introduced or delivered using a non-integrating vector (e.g., adenovirus). While integrating vectors, such as retroviral vectors, incorporate into the host cell genome and can potentially disrupt normal gene function, non-integrating vectors control expression of a gene product by extra-chro-

mosomal transcription. Since non-integrating vectors do not become part of the host genome, non-integrating vectors tend to express a nucleic acid transiently in a cell population. This is due in part to the fact that the non-integrating vectors are often rendered replication deficient. Thus, non-integrating vectors have several advantages over retroviral vectors including, but not limited to: (1) no disruption of the host genome, and (2) transient expression, and (3) no remaining viral integration products. Some non-limiting examples of non-integrating vectors for use with the methods described herein include adenovirus, baculovirus, alphavirus, picornavirus, and vaccinia virus. In some embodiments of the methods described herein, the non-integrating viral vector is an adenovirus. Other advantages of non-integrating viral vectors include the ability to produce them in high titers, their stability in vivo, and their efficient infection of host cells.

[0423] The phrases "operably linked," "operatively positioned," "operatively linked," "under control," and "under transcriptional control" indicate that a nucleic acid sequence, such as a sequence encoding an HSC inducing factor, is in a correct functional location and/or orientation in relation to a promoter and/or endogenous regulatory sequences, such that the promoter and/or endogenous regulatory sequences controls transcriptional initiation and/or expression of that sequence.

[0424] The terms "promoter" or "promoter sequence," as used herein, refer to a nucleic acid sequence that regulates the expression of another nucleic acid sequence by driving RNA polymerase-mediated transcription of the nucleic acid sequence, which can be a heterologous target gene, such as a sequence encoding an HSC inducing factor. A promoter is a control region of a nucleic acid sequence at which initiation and rate of transcription of the remainder of a nucleic acid sequence are controlled. A promoter can also contain one or more genetic elements at which regulatory proteins and molecules can bind. Such regulatory proteins include RNA polymerase and other transcription factors. Accordingly, a promoter can be said to "drive expression" or "drive transcription" of the nucleic acid sequence that it regulates, such as a sequence encoding an HSC inducing factor.

[0425] Nucleic acid constructs and vectors for use in generating iHSCs in the compositions, methods, and kits described herein can further comprise, in some embodiments, one or more sequences encoding selection markers for positive and negative selection of cells. Such selection marker sequences can typically provide properties of resistance or sensitivity to antibiotics that are not normally found in the cells in the absence of introduction of the nucleic acid construct. A selectable marker can be used in conjunction with a selection agent, such as an antibiotic, to select in culture for cells expressing the inserted nucleic acid construct. Sequences encoding positive selection markers typically provide antibiotic resistance, i.e., when the positive selection marker sequence is present in the genome of a cell, the cell is sensitive to the antibiotic or agent. Sequences encoding negative selection markers typically provide sensitivity to an antibiotic or agent, i.e., when the negative selection marker is present in the genome of a cell, the cell is sensitive to the antibiotic or agent.

[0426] Nucleic acid constructs and vectors for use in making iHSCs in the compositions, methods, and kits thereof described herein can further comprise, in some embodiments, other nucleic acid elements for the regulation, expression, stabilization of the construct or of other vector genetic ele-

ments, for example, promoters, enhancers, TATA-box, ribosome binding sites, IRES, as known to one of ordinary skill in the art.

[0427] In some embodiments of the compositions, methods, and kits described herein, the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, are provided as synthetic, modified RNAs, or introduced or delivered into a cell as a synthetic, modified RNA, as described in US Patent Publication 2012-0046346-A1, the contents of which are herein incorporated by reference in their entireties. In those embodiments where synthetic, modified RNAs are used to reprogram cells to iHSCs according to the methods described herein, the methods can involve repeated contacting of the cells or involve repeated transfections of the synthetic, modified RNAs encoding HSC inducing factors, such as for example, at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, at least 20, at least 25, at least 30, or more transfections.

[0428] In addition to one or more modified nucleosides, the modified mRNAs for use in the compositions, methods, and kits described herein can comprise any additional modifications known to one of skill in the art and as described in US Patent Publications 2012-0046346-A1 and 20120251618A1. and PCT Publication WO 2012/019168. Such other components include, for example, a 5' cap (e.g., the Anti-Reverse Cap Analog (ARCA) cap, which contains a 5'-5'-triphosphate guanine-guanine linkage where one guanine contains an N7 methyl group as well as a 3'-O-methyl group; caps created using recombinant Vaccinia Virus Capping Enzyme and recombinant 2'-O-methyltransferase enzyme, which can create a canonical 5'-5'-triphosphate linkage between the 5'-most nucleotide of an mRNA and a guanine nucleotide where the guanine contains an N7 methylation and the ultimate 5'-nucleotide contains a 2'-O-methyl generating the Cap1 structure); a poly(A) tail (e.g., a poly-A tail greater than 30 nucleotides in length, greater than 35 nucleotides in length, at least 40 nucleotides, at least 45 nucleotides, at least 55 nucleotides, at least 60 nucleotide, at least 70 nucleotides, at least 80 nucleotides, at least 90 nucleotides, at least 100 nucleotides, at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, at least 900 nucleotides, at least 1000 nucleotides, or more) (SEQ ID NO: 93); a Kozak sequence; a 3' untranslated region (3' UTR); a 5' untranslated region (5' UTR); one or more intronic nucleotide sequences capable of being excised from the nucleic acid, or any combination thereof.

[0429] The modified mRNAs for use in the compositions, methods, and kits described herein can further comprise an internal ribosome entry site (IRES). An IRES can act as the sole ribosome binding site, or can serve as one of multiple ribosome binding sites of an mRNA. An mRNA containing more than one functional ribosome binding site can encode several peptides or polypeptides, such as the HSC inducing factors described herein, that are translated independently by the ribosomes ("multicistronic mRNA"). When nucleic acids are provided with an IRES, further optionally provided is a second translatable region. Examples of IRES sequences that can be used according to the invention include without limitation, those from picornaviruses (e.g. FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses

(ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SW) or cricket paralysis viruses (CrPV).

[0430] In some embodiments of the compositions, methods, and kits described herein, the synthetic, modified RNA molecule comprises at least one modified nucleoside. In some embodiments of the compositions, methods, and kits described herein, the synthetic, modified RNA molecule comprises at least two modified nucleosides.

[0431] In some embodiments of the compositions, methods, and kits described herein, the modified nucleosides are selected from the group consisting of 5-methylcytosine (5mC), N6-methyladenosine (m6A), 3,2'-O-dimethyluridine (m4U), 2-thiouridine (s2U), 2' fluorouridine, pseudouridine, 2'-O-methyluridine (Um), 2'deoxy uridine (2' dU), 4-thiouridine (s4U), 5-methyluridine (m5U), 2'-O-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N6,N6,2'-O-trimethyladenosine (m6Am), N6,N6,2'-O-methylguanosine (m7G), 2'-O-methylguanosine (Gm), N2,7-dimethylguanosine (m2,7G), N2,N2,7-trimethylguanosine (m2,2,7G), and inosine (I). In some embodiments, the modified nucleosides are 5-methylcytosine (5mC), pseudouracil, or a combination thereof.

[0432] Modified mRNAs need not be uniformly modified along the entire length of the molecule. Different nucleotide modifications and/or backbone structures can exist at various positions in the nucleic acid. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) can be located at any position(s) of a nucleic acid such that the function of the nucleic acid is not substantially decreased. A modification can also be a 5' or 3' terminal modification. The nucleic acids can contain at a minimum one and at maximum 100% modified nucleotides, or any intervening percentage, such as at least 50% modified nucleotides, at least 80% modified nucleotides, or at least 90% modified nucleotides.

[0433] In some embodiments, it is preferred, but not absolutely necessary, that each occurrence of a given nucleoside in a molecule is modified (e.g., each cytosine is a modified cytosine e.g., 5-methylcytosine, each uracil is a modified uracil, e.g., pseudouracil, etc.). For example, the modified mRNAs can comprise a modified pyrimidine such as uracil or cytosine. In some embodiments, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the uracil in the nucleic acid are replaced with a modified uracil. It is also contemplated that different occurrences of the same nucleoside can be modified in a different way in a given synthetic, modified RNA molecule. The modified uracil can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures). În some embodiments, at least 25%, at least 50%, at least 80%, at least 90% or 100% of the cytosine in the nucleic acid may be replaced with a modified cytosine. The modified cytosine can be replaced by a compound having a single unique structure, or can be replaced by a plurality of compounds having different structures (e.g., 2, 3, 4 or more unique structures) (e.g., some cytosines modified as 5mC, others modified as 2'-O-methylcytosine or other cytosine analog). Such multi-modified synthetic RNA molecules can be produced by using a ribonucleoside blend or mixture comprising all the desired modified nucleosides, such that when the RNA molecules are being

synthesized, only the desired modified nucleosides are incorporated into the resulting RNA molecule encoding the HSC inducing factor.

[0434] As used herein, "unmodified" or "natural" nucleosides or nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleosides include other synthetic and natural nucleobases such as inosine, xanthine, hypoxanthine, nubularine, isoguanisine, tubercidine, 2-(halo)adenine, 2-(alkyl)adenine, 2-(propyl)adenine, 2 (amino)adenine, 2-(aminoalkyll)adenine, 2 (aminopropyl) adenine, 2 (methylthio) N6 (isopentenyl)adenine, 6 (alkyl) adenine, 6 (methyl)adenine, 7 (deaza)adenine, 8 (alkenyl) adenine, 8-(alkyl)adenine, 8 (alkynyl)adenine, 8 (amino) adenine, 8-(halo)adenine, 8-(hydroxyl)adenine, 8 (thioalkyl) adenine, 8-(thiol)adenine, N6-(isopentyl)adenine, N6 (methyl)adenine, N6,N6 (dimethyl)adenine, 2-(alkyl)guanine, 2 (propyl)guanine, 6-(alkyl)guanine, 6 (methyl)guanine, 7 (alkyl)guanine, 7 (methyl)guanine, 7 (deaza)guanine, 8 (alkyl)guanine, 8-(alkenyl)guanine, 8 (alkynyl)guanine, 8-(amino)guanine, 8 (halo)guanine, 8-(hydroxyl)guanine, 8 (thioalkyl)guanine, 8-(thiol)guanine, N(methyl)guanine, 2-(thio)cytosine, 3 (deaza) 5 (aza)cytosine, 3-(alkyl)cytosine, 3 (methyl)cytosine, 5-(alkyl)cytosine, 5-(alkynyl)cytosine, 5 (halo)cytosine, 5 (methyl)cytosine, 5 (propynyl)cytosine, 5 (propynyl)cytosine, 5 (trifluoromethyl)cytosine, 6-(azo)cytosine, N4 (acetyl)cytosine, 3 (3 amino-3 carboxypropyl)uracil, 2-(thio)uracil, 5 (methyl) 2 (thio)uracil, 5 (methylaminomethyl)-2 (thio)uracil, 4-(thio)uracil, 5 (methyl) 4 (thio) uracil, 5 (methylaminomethyl)-4 (thio)uracil, 5 (methyl) 2,4 (dithio)uracil, 5 (methylaminomethyl)-2,4 (dithio)uracil, 5 (2-aminopropyl)uracil, 5-(alkyl)uracil, 5-(alkynyl)uracil, 5-(allylamino)uracil, 5 (aminoallyl)uracil, 5 (aminoalkyl)uracil, 5 (guanidiniumalkyl)uracil, 5 (1,3-diazole-1-alkyl) uracil, 5-(cyanoalkyl)uracil, 5-(dialkylaminoalkyl)uracil, 5 (dimethylaminoalkyl)uracil, 5-(halo)uracil, 5-(methoxy) uracil, uracil-5 oxyacetic acid, 5 (methoxycarbonylmethyl)-2-(thio)uracil, 5 (methoxycarbonyl-methyl)uracil, 5 (propynyl)uracil, 5 (propynyl)uracil, 5 (trifluoromethyl)uracil, 6 (azo)uracil, dihydrouracil, N3 (methyl)uracil, 5-uracil (i.e., pseudouracil, 2 (thio)pseudouracil, 4 (thio)pseudouracil, 2,4-(dithio)psuedouracil, 5-(alkyl)pseudouracil, 5-(methyl) pseudouracil, 5-(alkyl)-2-(thio)pseudouracil, 5-(methyl)-2-(thio)pseudouracil, 5-(alkyl)-4 (thio)pseudouracil, 5-(methyl)-4 (thio)pseudouracil, 5-(alkyl)-2,4 pseudouracil, 5-(methyl)-2,4 (dithio)pseudouracil, substituted pseudouracil, 1 substituted 2(thio)-pseudouracil, 1 substituted 4 (thio)pseudouracil, 1 substituted 2,4-(dithio) pseudouracil, 1 (aminocarbonylethylenyl)-pseudouracil, 1 (aminocarbonylethylenyl)-2(thio)-pseudouracil, 1 (aminocarbonylethylenyl)-4 (thio)pseudouracil, 1 (aminocarbonylethylenyl)-2,4-(dithio)pseudouracil, 1 (aminoalkylaminocarbonylethylenyl)-pseudouracil,

(aminoalkylaminocarbonylethylenyl)-2(thio)-pseudouracil, 1 (aminoalkylaminocarbonylethylenyl)-4 (thio)pseudouracil, 1 (aminoalkylaminocarbonylethylenyl)-2,4-(dithio) pseudouracil, 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl, 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 7-substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 7-substituted 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-substituted 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-substituted 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-(aminoalkylhydroxy)-1, 3-(diaza)-2-(oxo)-phenoxazin-1-yl, 7-(aminoalkylhydroxy)-1

1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl, 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl, 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl,

7-(guanidiniumalkyl-hydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl, 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl, 1,3,5-(triaza)-2,6-(dioxa)-naphthalene, inosine, xanthine, hypoxanthine, nubularine, tubercidine, isoguanisine, inosinyl, 2-aza-inosinyl, 7-deazainosinyl, nitroimidazolyl, nitropyrazolyl, nitrobenzimidazolyl, nitroindazolyl, aminoindolyl, pyrrolopyrimidinyl, 3-(methyl)isocarbostyrilyl, 5-(methyl)isocarbostyrilyl, 7-(aza)indolyl. 3-(methyl)-7-(propynyl)isocarbostyrilyl, 6-(methyl)-7-(aza)indolyl, imidizopyridinyl, 9-(methyl)imidizopyridinyl, pyrrolopyrizinyl, isocarbostyrilyl, 7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indolyl, 2,4,5-(trimethyl)phenyl, 4-(methyl)indolyl, 4,6-(dimethyl)indolyl, phenyl, napthalenyl, anthracenyl, phenanthracenyl, pyrenyl, stilbenyl, tetracenyl, pentacenyl, difluorotolyl, 4-(fluoro)-6-(methyl)benzimidazole, 4-(methyl)benzimidazole, 6-(azo) thymine, 2-pyridinone, 5 nitroindole, 3 nitropyrrole, 6-(aza) pyrimidine, 2 (amino)purine, 2,6-(diamino)purine, 5 substituted pyrimidines, N2-substituted purines, N6-substituted purines, 06-substituted purines, substituted 1,2,4-triazoles, pyrrolo-pyrimidin-2-on-3-yl, 6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2on-3-yl, bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl, para-(aminoalkylhydroxy)-6-phenyl-pyrrolopyrimidin-2-on-3-yl, ortho-(aminoalkylhydroxy)-6-phenylpyrrolo-pyrimidin-2-on-3-yl, bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3yl, pyridopyrimidin-3-yl, 2-oxo-7-amino-pyridopyrimidin-3-yl, 2-oxo-pyridopyrimidine-3-yl, or any O-alkylated or N-alkylated derivatives thereof.

[0435] In some embodiments of the compositions, methods, and kits described herein, modified nucleosides include 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-1-methyl-1-deaza-pseudoisocytidine, pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, and 4-methoxy-1-methyl-pseudoisocytidine.

[0436] In other embodiments of the compositions, methods, and kits described herein, modified nucleosides include 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine. 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8aza-2,6-diaminopurine, 1-methyladenosine, N6-methylad-N6-isopentenyladenosine, N6-(cishydroxyisopentenyl)adenosine, 2-methylthio-N6-(cishydroxyisopentenyl) adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthioadenine, and 2-methoxy-adenine.

[0437] In other embodiments of the compositions, methods, and kits described herein, modified nucleosides include inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deazaguanosine, 7-deaza-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-methyl-guanosine, 7-methyl-guanosine, 7-methyl-guanosine, N2-methylguanosine, N2-methylguanosine, N2-methylguanosine, N2-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine.

[0438] In certain embodiments it is desirable to intracellularly degrade a modified nucleic acid introduced into the cell, for example if precise timing of protein production is desired. Thus, in some embodiments of the compositions, methods, and kits described herein, provided herein are modified nucleic acids comprising a degradation domain, which is capable of being acted on in a directed manner within a cell.

[0439] Modified nucleosides also include natural bases that comprise conjugated moieties, e.g. a ligand. As discussed herein above, the RNA containing the modified nucleosides must be translatable in a host cell (i.e., does not prevent translation of the polypeptide encoded by the modified RNA). For example, transcripts containing s2U and m6A are translated poorly in rabbit reticulocyte lysates, while pseudouridine, m5U, and m5C are compatible with efficient translation. In addition, it is known in the art that 2'-fluoro-modified bases useful for increasing nuclease resistance of a transcript, leads to very inefficient translation. Translation can be assayed by one of ordinary skill in the art using e.g., a rabbit reticulocyte lysate translation assay.

[0440] Accordingly, provided herein, in some aspects are hematopoietic stem cell (HSC) inducing composition comprising modified mRNA sequences encoding at least one, two, three, four, five, six, seve, eight or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612, wherein each cytosine of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0441] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0442] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5

[0443] Also provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding LMO2; and a modified mRNA sequence encoding PRDM5; wherein each cytosine of each of the modified mRNA sequences is a modi-

fied cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0444] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a modified mRNA sequence encoding PRDM16; a modified mRNA sequence encoding ZFP467; and a modified mRNA sequence encoding VDR; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0445] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding RUNX1T1; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding PRDM5; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding MYCN; a modified mRNA sequence encoding MSI2; a modified mRNA sequence encoding NKX2-3; a modified mRNA sequence encoding MEIS1; and a modified mRNA sequence encoding RBPMS; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified mRNA sequence mRNA sequence encoding mRNA sequence en

[0446] Also provided herein are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding ZFP467; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding HOXB4; and a modified mRNA sequence encoding MSI2; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified was a modified uracil, or a combination thereof.

[0447] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding PRDM16; and a modified mRNA sequence encoding ZFP37, wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified cytosine, each uracil, or a combination thereof.

[0448] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding MYCN; a modified mRNA sequence encoding MSI2; a modified mRNA sequence encoding NKX2-3; and a modified mRNA sequence encoding RUNX1T1; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0449] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a modified mRNA sequence encoding HOXB5; a modified mRNA sequence encoding ZFP467; a modified mRNA sequence encoding HOXB3; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding ZFP37; and a modified mRNA sequence encoding ZFP521; wherein each cytosine of each of the modified mRNA

sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0450] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding HOXB4; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding ZFP467; and a modified mRNA sequence encoding ZFP521; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified was a modified uracil, or a combination thereof.

[0451] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a modified mRNA sequence encoding KLF12; a modified mRNA sequence encoding HLF; and a modified mRNA sequence encoding EGR; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0452] Also provided herein are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding MEIS1; a modified mRNA sequence encoding RBPMS; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding RUNX1T1; and a modified mRNA sequence encoding LMO2; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0453] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a modified mRNA sequence encoding KLF12; and a modified mRNA sequence encoding HLF; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0454] Also provided herein are hematopoietic stem cell (HSC) inducing compositions comprising: a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding HOXB4; a modified mRNA sequence encoding LMO2; and a modified mRNA sequence encoding HLF; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof

[0455] In some embodiments of these aspects and all such aspects described herein, the HSC inducing composition further comprises one or more of: a modified mRNA encoding MYCN; a modified mRNA encoding ZFP467; a modified mRNA encoding NKX2-3; a modified mRNA encoding PBX1; and a modified mRNA encoding KLF4; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0456] In some embodiments of these aspects and all such aspects described herein, the modified cytosine is 5-methyl-cytosine and the modified uracil is pseudouridine.

[0457] The modified mRNAs encoding HSC inducing factors described herein can be synthesized and/or modified by methods well established in the art, such as those described in "Current Protocols in Nucleic Acid Chemistry," Beaucage, S.

L. et al. (Edrs.), John Wiley & Sons, Inc., New York, N.Y., USA, which is hereby incorporated herein by reference in its entirety. In some embodiments of the compositions, methods, and kits described herein, the modified mRNAs encoding the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, are generated using the IVT templates and constructs, and methods thereof for rapidly and efficiently generating synthetic RNAs described in PCT Application No.: PCT/US12/64359, filed Nov. 9, 2012, and as described in US 20120251618 A1, the contents of each of which are herein incorporated by reference in their entireties. In some embodiments of the compositions, methods, and kits described herein, the synthetic, modified RNAs encoding the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, are delivered and formulated as described in US 20120251618 A1.

[0458] One of skill in the art can easily monitor the expression level of the polypeptide encoded by a synthetic, modified RNA using e.g., Western blotting techniques or immunocytochemistry techniques. A synthetic, modified RNA can be administered at a frequency and dose that permit a desired level of expression of the polypeptide. Each different modified mRNA can be administered at its own dose and frequency to permit appropriate expression. In addition, since the modified RNAs administered to the cell are transient in nature (i.e., are degraded over time) one of skill in the art can easily remove or stop expression of a modified RNA by halting further transfections and permitting the cell to degrade the modified RNA over time. The modified RNAs will degrade in a manner similar to cellular mRNAs.

[0459] Accordingly, in some embodiments of the compositions, methods, and kits described herein, a plurality of synthetic, modified RNAs encoding HSC inducing factors can be contacted with, or introduced to, a cell, population of cells, or cell culture simultaneously. In other embodiments, the plurality of synthetic, modified RNAs encoding HSC inducing factors can be contacted with, or introduced to, a cell, population of cells, or cell culture separately. In addition, each modified RNA encoding an HSC inducing factor can be administered according to its own dosage regime.

[0460] In some embodiments of the compositions, methods, and kits described herein, a modified RNA encoding an HSC inducing factor can be introduced into target cells by transfection or lipofection. Suitable agents for transfection or lipofection include, for example, calcium phosphate, DEAE dextran, lipofectin, lipofectamine, DIMRIE CTM, Super $fect^{TM}$, and $Effectin^{TM}$ (QiagenTM) UnifectinTM, MaxifectinTM, DOTMA, DOGSTM (Transfectam; dioctadecylami-DOPE doglycylspermine), (1,2-dioleoyl-sn-glycero-3phosphoethanolamine), **DOTAP** (1,2-dioleoyl-3trimethylammonium propane), DDAB (dimethyl dioctadecylammonium bromide), DHDEAB (N,N-di-nhexadecyl-N,N-dihydroxyethyl ammonium HDEAB (N-n-hexadecyl-N,N-dihydroxyethylammonium bromide), polybrene, poly(ethylenimine) (PEI), and the like. (See, e.g., Banerjee et al., Med. Chem. 42:4292-99 (1999); Godbey et al., Gene Ther. 6:1380-88 (1999); Kichler et al., Gene Ther. 5:855-60 (1998); Birchaa et al., J. Pharm. 183: 195-207 (1999)).

[0461] In some embodiments, a modified RNA can be transfected into target cells as a complex with cationic lipid

carriers (e.g., OLIGOFECTAMINETM) or non-cationic lipid-based carriers (e.g., Transit-TKOTMTM, Mirus Bio LLC, Madison, Wis.).

[0462] In some embodiments of the aspects described herein, the synthetic, modified RNA is introduced into a cell using a transfection reagent. Some exemplary transfection reagents include, for example, cationic lipids, such as lipofectin (Junichi et al, U.S. Pat. No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731). Examples of commercially available transfection reagents are known to those of ordinary skill in the art.

[0463] In other embodiments, highly branched organic compounds, termed "dendrimers," can be used to bind the exogenous nucleic acid, such as the synthetic, modified RNAs described herein, and introduce it into the cell.

[0464] In other embodiments of the aspects described herein, non-chemical methods of transfection are contemplated. Such methods include, but are not limited to, electroporation, sonoporation, the use of a gene gun, magnetofection, and impalefection, and others, as known to those of ordinary skill in the art. Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols, such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes, such as limonene and menthone.

[0465] In some embodiments of the compositions, methods, and kits described herein, a modified RNA encoding an HSC inducing factor is formulated in conjunction with one or more penetration enhancers, surfactants and/or chelators. Suitable surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. In some embodiments, combinations of penetration enhancers are used, for example, fatty acids/salts in combination with bile acids/salts. One exemplary combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether.

[0466] In some embodiments of the compositions, methods, and kits described herein, a modified RNA encoding an HSC inducing factor is formulated into any of many possible administration forms, including a sustained release form. In some embodiments of the compositions, methods, and kits described herein, formulations comprising a plurality of different synthetic, modified RNAs encoding HSC inducing factors are prepared by first mixing all members of a plurality of different synthetic, modified RNAs, and then complexing the mixture comprising the plurality of different synthetic, modified RNAs with a desired ligand or targeting moiety, such as a lipid. The compositions can be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions can further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension can also contain stabilizers.

[0467] The compositions described herein can be prepared and formulated as emulsions for the delivery of synthetic, modified RNAs. Emulsions can contain further components in addition to the dispersed phases, and the active drug (i.e., synthetic, modified RNA) which can be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants can also be present in emulsions as needed. Emulsions can also be multiple emulsions

that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Emulsifiers can broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (see e.g., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Allen, L V., Popovich N G., and Ansel H C., 2004, Lippincott Williams & Wilkins (8th ed.), New York, N.Y.; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

[0468] In some embodiments of the compositions, methods, and kits described herein, a modified RNA encoding an HSC inducing factor can be encapsulated in a nanoparticle. Methods for nanoparticle packaging are well known in the art, and are described, for example, in Bose S, et al (Role of Nucleolin in Human Parainfluenza Virus Type 3 Infection of Human Lung Epithelial Cells. J. Virol. 78:8146. 2004); Dong Y et al. Poly(d,1-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:6068. 2005); Lobenberg R. et al (Improved body distribution of 14C-labelled AZT bound to nanoparticles in rats determined by radioluminography. J Drug Target 5:171.1998); Sakuma S R et al (Mucoadhesion of polystyrene nanoparticles having surface hydrophilic polymeric chains in the gastrointestinal tract. Int J Pharm 177:161. 1999); Virovic L et al. Novel delivery methods for treatment of viral hepatitis: an update. Expert Opin Drug Deliv 2:707.2005); and Zimmermann E et al, Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm 52:203. 2001), the contents of which are herein incorporated in their entireties by reference.

[0469] While it is understood that iHSCs can be generated by delivery of HSC inducing factors in the form of nucleic acid (DNA or RNA) or amino acid sequences, in some embodiments of the compositions, methods, and kits described herein, iHSC induction can be induced using other methods, such as, for example, by treatment of cells with an agent, such as a small molecule or cocktail of small molecules, that induce expression one or more of the HSC inducing factors.

[0470] The term "agent" as used herein means any compound or substance such as, but not limited to, a small molecule, nucleic acid, polypeptide, peptide, drug, ion, etc. An "agent" can be any chemical, entity or moiety, including without limitation synthetic and naturally-occurring proteinaceous and non-proteinaceous entities. In some embodiments, an agent is nucleic acid, nucleic acid analogues, proteins, antibodies, peptides, aptamers, oligomer of nucleic acids, amino acids, or carbohydrates including without limitation proteins, oligonucleotides, ribozymes, DNAzymes, glycoproteins, siRNAs, lipoproteins, aptamers, and modifications and combinations thereof etc. In some embodiments, the nucleic acid is DNA or RNA, and nucleic acid analogues, for example can be PNA, pcPNA and LNA. A nucleic acid may be single or double stranded, and can be selected from a group comprising; nucleic acid encoding a protein of interest, oligonucleotides, PNA, etc. Such nucleic acid sequences include, for example, but not limited to, nucleic acid sequence encoding proteins that act as transcriptional repressors, antisense molecules, ribozymes, small inhibitory nucleic acid sequences, for example but not limited to RNAi, shRNAi, siRNA, micro RNAi (mRNAi), antisense oligonucleotides

etc. A protein and/or peptide agent or fragment thereof, can be any protein of interest, for example, but not limited to; mutated proteins; therapeutic proteins; truncated proteins, wherein the protein is normally absent or expressed at lower levels in the cell. Proteins of interest can be selected from a group comprising; mutated proteins, genetically engineered proteins, peptides, synthetic peptides, recombinant proteins, chimeric proteins, antibodies, humanized proteins, humanized antibodies, chimeric antibodies, modified proteins and fragments thereof.

[0471] Also provided herein, in some aspects, are methods of making, preparing, or generating induced hematopoietic stem cells using one or more expression vectors or one or more modified mRNA sequences encoding specific combinations of the HSC inducing factors described herein, such as at least one, two, three, four, five, six, seven, eight, or more of the HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612.

[0472] Accordingly, provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0473] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a promoter; and

[0474] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0475] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding PRDM16; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR.

[0476] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0477] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0478] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0479] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0480] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0481] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0482] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0483] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0484] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2, a nucleic acid sequence encoding NKX2-3; and a nucleic acid sequence encoding RUNX1T1; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0485] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0486] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HOXB5; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding HOXB3; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP521.

[0487] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0488] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0489] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0490] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.

[0491] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0492] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MEIS1; a nucleic acid sequence encoding RBPMS; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding RUNX1T1; and a nucleic acid sequence encoding LMO2; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0493] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0494] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.

[0495] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0496] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0497] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0498] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.

[0499] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0500] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0501] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0502] In some embodiments of these methods and all such method described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding KLF.

[0503] Also provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0504] a. repeatedly transfecting a somatic cell with one or more modified mRNA sequences encoding at least one, two, three, four, five, six, seve, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6,

TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612, wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof

[0505] b. culturing the transfected somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0506] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0507] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5. In some such embodiments, the at least one, two, three, four, or more HSC inducing factors of step (a) further comprise one or more of: PRDM16; ZFP467; and VDR.

[0508] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are HLF; RUNX1T1; PBX1; LMO2; PRDM5; ZFP37; MYCN; MSI2; NKX2-3; MEIS1; and RBPMS.

[0509] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are ZFP467; PBX1; HOXB4; and MSI2. In some such embodiments, the at least one, two, three, four, or more HSC inducing factors of step (a) further comprise one or more of: HLF; LMO2; PRDM16; and ZFP37.

[0510] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are MYCN; MSI2; NKX2-3; and RUNX1T1. In some such embodiments, the at least one, two, three, four, or more HSC inducing factors of step (a) further comprise one or more of: HOXB5; HLF; ZFP467; HOXB3; LMO2; PBX1; ZFP37; and ZFP521.

[0511] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are HOXB4; PBX1; LMO2; ZFP467; and ZFP521. In some such embodiments, the at least one, two, three, four, or more HSC inducing factors of step (a) further comprise one or more of: KLF12; HLF; and EGR.

[0512] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are MEIS1; RBPMS; ZFP37; RUNX1T1; and LMO2. In some such embodiments, the at least one, two, three, four, or more HSC inducing factors of step (a) further comprise one or more of: KLF12; and HLF.

[0513] In some embodiments of these methods and all such methods described herein, the at least one, two, three, four, or more HSC inducing factors of step (a) are ZFP37; HOXB4; LMO2; and HLF. In some such embodiments, the at least one, two, three, four, or more HSC inducing factors of step (a) further comprise one or more of: MYCN; ZFP467; NKX2-3; PBX1; and KLF4.

[0514] Detection of expression of HSC inducing factors introduced into cells or induced in a cell population using the compositions, methods, and kits described herein, can be achieved by any of several techniques known to those of skill

in the art including, for example, Western blot analysis, immunocytochemistry, and fluorescence-mediated detection. [0515] In order to distinguish whether a given combination

[0515] In order to distinguish whether a given combination of HSC inducing factors has generated iHSCs or other committed progenitors, one or more HSC activities or parameters can be measured, such as, in some embodiments, differential expression of surface antigens. The generation of induced HSCs using the compositions, methods, and kits described herein preferably causes the appearance of the cell surface phenotype characteristic of endogenous HSCs, such as lineage marker negative, Sca1-positive, cKit-positive (or LSK cells), CD34-negative, Flk2-negative, CD48-negative, and CD150-positive or as CD150+CD48-CD244-, for example.

[0516] HSCs are most reliably distinguished from committed progenitors by their functional behavior. Functional aspects of HSC phenotypes, or hematopoietic stem cell activities, such as the ability of an HSC to give rise to longterm, multi-lineage reconstitution in a recipient, can be easily determined by one of skill in the art using routine methods known in the art, and as described herein, for example, in the Examples and the Drawings, i.e., FIGS. 1-57C. In some embodiments of the aspects described herein, functional assays to identify reprogramming factors can be used. For example, in some embodiments, Colony forming cell (CFC) activity in methylcellulose can be used to confirm multilineage (granulocytes, macrophages, megakaryocytes and erythrocytes) potential of iHSCs generated using the compositions, methods, and kits thereof. Serial plating can be used to confirm self-renewal potential of iHSCs generated using the compositions, methods, and kits described herein. Lymphoid potential of iHSCs generated using the compositions, methods, and kits described herein can be evaluated by culturing transduced cells on OP9 and OP9delta stromal cells, followed by immunostaining on day 14 for B- and T-cells, respectively.

[0517] As used herein, "cellular parameter," "HSC parameter," or "hematopoietic stem cell activity" refer to measureable components or qualities of endogenous or natural HSCs, particularly components that can be accurately measured. A cellular parameter can be any measurable parameter related to a phenotype, function, or behavior of a cell. Such cellular parameters include, changes in characteristics and markers of an HSC or HSC population, including but not limited to changes in viability, cell growth, expression of one or more or a combination of markers, such as cell surface determinants, such as receptors, proteins, including conformational or posttranslational modification thereof, lipids, carbohydrates, organic or inorganic molecules, nucleic acids, e.g. mRNA, DNA, global gene expression patterns, etc. Such cellular parameters can be measured using any of a variety of assays known to one of skill in the art. For example, viability and cell growth can be measured by assays such as Trypan blue exclusion, CFSE dilution, and ³H incorporation. Expression of protein or polypeptide markers can be measured, for example, using flow cytometric assays, Western blot techniques, or microscopy methods. Gene expression profiles can be assayed, for example, using microarray methodologies and quantitative or semi-quantitative real-time PCR assays. A cellular parameter can also refer to a functional parameter or functional activity. While most cellular parameters will provide a quantitative readout, in some instances a semi-quantitative or qualitative result can be acceptable. Readouts can include a single determined value, or can include mean, median value or the variance, etc. Characteristically a range of parameter readout values can be obtained for each parameter from a multiplicity of the same assays. Variability is expected and a range of values for each of the set of test parameters will be obtained using standard statistical methods with a common statistical method used to provide single values.

[0518] In some embodiments of the compositions, methods, and kits described herein, additional factors can be used to enhance HSC reprogramming. For example, agents that modify epigenetic pathways can be used to facilitate reprogramming into iHSCs.

[0519] Essentially any primary somatic cell type can be used for producing iHSCs or reprogramming somatic cells to iHSCs according to the presently described compositions, methods, and kits. Such primary somatic cell types also include other stem cell types, including pluripotent stem cells, such as induced pluripotent stem cells (iPS cells); other multipotent stem cells; oligopotent stem cells; and (5) unipotent stem cells. Some non-limiting examples of primary somatic cells useful in the various aspects and embodiments of the methods described herein include, but are not limited to, fibroblast, epithelial, endothelial, neuronal, adipose, cardiac, skeletal muscle, hematopoietic or immune cells, hepatic, splenic, lung, circulating blood cells, gastrointestinal, renal, bone marrow, and pancreatic cells, as well as stem cells from which those cells are derived. The cell can be a primary cell isolated from any somatic tissue including, but not limited to, spleen, bone marrow, blood, brain, liver, lung, gut, stomach, intestine, fat, muscle, uterus, skin, spleen, endocrine organ, bone, etc. The term "somatic cell" further encompasses, in some embodiments, primary cells grown in culture, provided that the somatic cells are not immortalized. Where the cell is maintained under in vitro conditions, conventional tissue culture conditions and methods can be used, and are known to those of skill in the art. Isolation and culture methods for various primary somatic cells are well within the abilities of one skilled in the art.

[0520] In some embodiments of the compositions, methods, and kits described herein, a somatic cell to be reprogrammed or made into an iHSC cell is a cell of hematopoietic origin. As used herein, the terms "hematopoietic-derived cell," "hematopoietic-derived differentiated cell," "hematopoietic lineage cell," and "cell of hematopoietic origin" refer to cells derived or differentiated from a multipotent hematopoietic stem cell (HSC). Accordingly, hematopoietic lineage cells for use with the compositions, methods, and kits described herein include multipotent, oligopotent, and lineage-restricted hematopoietic progenitor cells, granulocytes (e.g., promyelocytes, neutrophils, eosinophils, basophils), erythrocytes (e.g., reticulocytes, erythrocytes), thrombocytes (e.g., megakaryoblasts, platelet producing megakaryocytes, platelets), monocytes (e.g., monocytes, macrophages), dendritic cells, and lymphocytes (e.g., T-lymphocytes, which carry T-cell receptors (TCRs), B-lymphocytes or B cells, which express immunoglobulin and produce antibodies, NK cells, NKT cells, and innate lymphocytes). As used herein, the term "hematopoietic progenitor cells" refer to multipotent, oligopotent, and lineage-restricted hematopoietic cells capable of differentiating into two or more cell types of the hematopoietic system, including, but not limited to, granulocytes, monocytes, erythrocytes, megakaryocytes, and lymphocytes B-cells and T-cells. Hematopoietic progenitor cells encompass multi-potent progenitor cells (MPPs), common myeloid progenitor cells (CMPs), common lymphoid progenitor cells (CLPs), granulocyte-monocyte progenitor cells (GMPs), and pre-megakaryocyte-erythrocyte progenitor cell. Lineage-restricted hematopoieticprogenitor cells include megakaryocyte-erythrocyte progenitor cells (MEP), roB cells, PreB cells, PreProB cells, ProT cells, double-negative T cells, pro-NK cells, pro-dendritic cells (pro-DCs), pre-granulocyte/macrophage cells, granulocyte/macrophage progenitor (GMP) cells, and pro-mast cells (ProMCs). A differentiation chart of the hematopoietic lineage is provided at FIG. 1

[0521] Cells of hematopoietic origin for use in the compositions, methods, and kits described herein can be obtained from any source known to comprise these cells, such as fetal tissues, umbilical cord blood, bone marrow, peripheral blood, mobilized peripheral blood, spleen, liver, thymus, lymph, etc. Cells obtained from these sources can be expanded ex vivo using any method acceptable to those skilled in the art prior to use in with the compositions, methods, and kits for making iHCSs described herein. For example, cells can be sorted, fractionated, treated to remove specific cell types, or otherwise manipulated to obtain a population of cells for use in the methods described herein using any procedure acceptable to those skilled in the art. Mononuclear lymphocytes may be collected, for example, by repeated lymphocytophereses using a continuous flow cell separator as described in U.S. Pat. No. 4,690,915, or isolated using an affinity purification step of common lymphoid progenitor cell (CLP)r method, such as flow-cytometry using a cytometer, magnetic separation, using antibody or protein coated beads, affinity chromatography, or solid-support affinity separation where cells are retained on a substrate according to their expression or lack of expression of a specific protein or type of protein, or batch purification using one or more antibodies against one or more surface antigens specifically expressed by the cell type of interest. Cells of hematopoietic origin can also be obtained from peripheral blood. Prior to harvest of the cells from peripheral blood, the subject can be treated with a cytokine, such as e.g., granulocyte-colony stimulating factor, to promote cell migration from the bone marrow to the blood compartment and/or promote activation and/or proliferation of the population of interest. Any method suitable for identifying surface proteins, for example, can be employed to isolate cells of hematopoietic origin from a heterogenous population. In some embodiments, a clonal population of cells of hematopoietic origin, such as lymphocytes, is obtained. In some embodiments, the cells of hematopoietic origin are not a clonal population.

[0522] Further, in regard to the various aspects and embodiments of the compositions, methods, and kits described herein, a somatic cell can be obtained from any mammalian species, with non-limiting examples including a murine, bovine, simian, porcine, equine, ovine, or human cell. In some embodiments, the somatic cell is a human cell. In some embodiments, the cell is from a non-human organism, such as a non-human mammal.

[0523] In general, the methods for making iHSCs described herein involve culturing or expanding somatic cells, such as cells of hematopoietic origin, in any culture medium that is available and well-known to one of ordinary skill in the art. Such media include, but are not limited to, Dulbecco's Modified Eagle's Medium® (DMEM), DMEM F12 Medium®, Eagle's Minimum Essential Medium®, F-12K Medium®, Iscove's Modified Dulbecco's Medium®, RPMI-1640 Medium®, and serum-free medium for culture and expansion of progenitor cells SFEM®. Many media are also available as

low-glucose formulations, with or without sodium. The medium used with the methods described herein can, in some embodiments, be supplemented with one or more growth factors. Commonly used growth factors include, but are not limited to, bone morphogenic protein, basic fibroblast growth factor, platelet-derived growth factor and epidermal growth factor, Stem cell factor, and thrombopoietin. See, for example, U.S. Pat. Nos. 7,169,610; 7,109,032; 7,037,721; 6,617,161; 6,617,159; 6,372,210; 6,224,860; 6,037,174; 5,908,782; 5,766,951; 5,397,706; and 4,657,866; all incorporated by reference herein in their entireties for teaching growing cells in serum-free medium.

[0524] For example, as described herein, primary cultures of mouse hematopoietic cells were kept a total of three days ex vivo during the transduction process. Cells were maintained in minimal growth S-clone media supplemented with $20\,\text{ng/}\mu\text{L}\,\text{IL-}12$, TPO, SCF, $5\,\text{ng/}\mu\text{L}\,\text{IL-}7$, $2\,\text{ng/}\mu\text{L}\,\text{FLK-}3$, and 100 ng/ml Penicillin/streptomycin in a 5% $\rm CO_2$ 37° C. incubator. Transduction with concentrated and titered viruses was performed for 16 hours, in some embodiments, and then a24 hour incubation with doxycycline, in some embodiments. At this time ZsGr+ cells were re-sorted and put into CFCs assays or in vivo transplantation. Doxycycline induction can be maintained for 2 weeks post-transplant, in some embodiments. In some embodiments, when using an inducible expression vector, the inducing agent, such as doxycycline, can be maintained for at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 7 days or a week, at least 10 days, at least 2 weeks, or more, following transplantation of a induced iHSC population into

[0525] Cells in culture can be maintained either in suspension or attached to a solid support, such as extracellular matrix components or plating on feeder cells, for example. Cells being used in the methods described herein can require additional factors that encourage their attachment to a solid support, in some embodiments, such as type I and type II collagen, chondroitin sulfate, fibronectin, "superfibronectin" and fibronectin-like polymers, gelatin, poly-D and poly-Llysine, thrombospondin and vitronectin. In some embodiments, the cells are suitable for growth in suspension cultures. Suspension-competent host cells are generally monodisperse or grow in loose aggregates without substantial aggregation. Suspension-competent host cells include cells that are suitable for suspension culture without adaptation or manipulation (e.g., cells of hematopoietic origin, such as lymphoid cells) and cells that have been made suspension-competent by modification or adaptation of attachment-dependent cells (e.g., epithelial cells, fibroblasts).

[0526] Also provided herein, in some aspects, are isolated induced hematopoietic stem cells (iHSCs) produced using any of the HSC inducing compositions or methods of preparing iHSCs described herein.

[0527] Also provided herein, in some aspects, are cell clones comprising a plurality of the induced hematopoietic stem cell (iHSCs) produced using any of the HSC inducing compositions or methods of preparing iHSCs described herein.

[0528] In some embodiments of these aspects and all such aspects described herein, the isolated induced hematopoietic stem cells (iHSCs) or cell clones thereof further comprise a pharmaceutically acceptable carrier for administration to a subject in need.

[0529] Also provided herein, in some aspects, are methods of treating a subject in need of treatment for a disease or disorder in which one or more hematopoietic cell lineages are deficient or defective using the HSC inducing compositions and methods of preparing iHSCs described herein, or using the isolated induced hematopoietic stem cells (iHSCs) and cell clones thereof produced using any of the combinations of HSC inducing factors, HSC inducing compositions, or methods of preparing iHSCs described herein. In such methods of treatment, somatic cells, such as fibroblast cells or hematopoietic lineage cells, can first be isolated from the subject, and the isolated cells transduced or transfected, as described herein with an HSC inducing composition comprising expression vectors or synthetic mRNAs, respectively. The isolated induced hematopoietic stem cells (iHSCs) and cell clones thereof produced using any of the combinations of HSC inducing factors, HSC inducing compositions, or methods of preparing iHSCs described herein, can then be administered to the subject, such as via systemic injection of the iHSCs to the subject.

[0530] The reprogrammed iHSCs generated using the compositions, methods, and kits described herein can, in some embodiments of the methods of treatment described herein, be used directly or administered to subjects in need of cellular therapies or regenerative medicine applications or, in other embodiments, redifferentiated to other hematopoietic cell types for use in or administration to subjects in need of cellular therapies or regenerative medicine applications. Accordingly, various embodiments of the methods described herein involve administration of an effective amount of an iHSC or a population of iHSCs, generated using any of the compositions, methods, and kits described herein, to an individual or subject in need of a cellular therapy. The cell or population of cells being administered can be an autologous population, or be derived from one or more heterologous sources. Further, such iHSCs or differentiated cells from iHSCs can be administered in a manner that permits them to graft to the intended tissue site and reconstitute or regenerate the functionally deficient area. In some such embodiments, iHSCs can be introduced to a scaffold or other structure to generate, for example, a tissue ex vivo, that can then be introduced to a patient.

[0531] A variety of means for administering cells to subjects are known to those of skill in the art. Such methods can include systemic injection, for example, i.v. injection, or implantation of cells into a target site in a subject. Cells may be inserted into a delivery device which facilitates introduction by injection or implantation into the subject. Such delivery devices can include tubes, e.g., catheters, for injecting cells and fluids into the body of a recipient subject. In one preferred embodiment, the tubes additionally have a needle, e.g., through which the cells can be introduced into the subject at a desired location. The cells can be prepared for delivery in a variety of different forms. For example, the cells can be suspended in a solution or gel or embedded in a support matrix when contained in such a delivery device. Cells can be mixed with a pharmaceutically acceptable carrier or diluent in which the cells remain viable.

[0532] Accordingly, the cells produced by the methods described herein can be used to prepare cells to treat or alleviate at least the following diseases and conditions wherein hematopoietic stem cell transplants have proven to be one effective method of treatment: leukemia such as acute myeloid leukemia, acute lymphoblastic leukemia, myelodys-

plastic/myeloproliferative syndromes, chronic myeloid leukemia, chronic lymphocytic leukemia, and other leukemia; lymphoproliferative disorders such as plasma cell disorders, Hodgkin disease, non-Hodgkin lymphoma, and other lymphoma; solid tumors such as neuroblastoma, germinal cancer, breast cancer, and Ewing sarcoma; Nonmalignant disorders such as bone marrow failures, hemoglobinopathies, immune deficiencies, inherited diseases of metabolism, and autoimmune disorders.

[0533] In addition to the above, the methods of the invention can be used for the treatment of the following diseases and conditions: Angiogenic Myeloid Metaplasia (Myelofibrosis); Aplastic Anemia; Acquired Pure Red Cell Aplasia; Aspartylglucosaminuria; Ataxia Telangiectasia; Choriocarcinoma; Chronic Lymphocytic Leukemia (CLL); Chronic Myelogenous Leukemia (CML); Common Variable Immunodeficiency; Chronic Pulmonary Obstructive Disease; Desmoplastic small round cell tumor; Diamond-Blackfan anemia; DiGeorge syndrome; Essential Thrombocythemia; Haematologica Ewing's Sarcoma; Fucosidosis; Gaucher disease; Griscelli syndrome; Hemophagocytic lymphohistiocytosis (HLH); Hodgkin's Disease; Human Immunodeficiency Virus (HIV); Human T-lymphotropic Virus (HTLV); Hunter syndrome (MPS II, iduronidase sulfate deficiency); Hurler syndrome (MPS I H, α-L-iduronidase deficiency); Infantile neuronal ceroid lipofuscinosis (INCL, Santavuori disease); Jansky-Bielschowsky disease (late infantile neuronal ceroid lipofuscinosis); Juvenile Myelomonocytic Leukemia (JMML); Kostmann syndrome; Krabbe disease (globoid cell leukodystrophy); Maroteaux-Lamy syndrome (MPS VI); Metachromatic leukodystrophy; Morquio syndrome (MPS IV); Mucolipidosis II (I-cell disease); Multiple Myeloma; Myelodysplasia; Neuroblastoma; NF-Kappa-B Essential Modulator (NEMO) deficiency; Niemann-Pick disease; Non-Hodgkin's Lymphoma; paroxysmal nocturnal hemoglobinuria (PNH); Plasma Cell Leukemia; Polycythemia Vera; Radiation Poisoning; Sanfilippo syndrome (MPS III); Severe combined immunodeficiency (SCID), all types; Shwachman-Diamond syndrome; Sickle cell disease; Sly syndrome (MPS VII); Thalassemia; Wilm's tumors; Wiskott-Aldrich syndrome; Wolman disease (acid lipase deficiency); and X-linked lymphoproliferative disorder

[0534] Pharmaceutically acceptable carriers and diluents include saline, aqueous buffer solutions, solvents and/or dispersion media. The use of such carriers and diluents is well known in the art. The solution is preferably sterile and fluid. Preferably, prior to the introduction of cells, the solution is stable under the conditions of manufacture and storage and preserved against the contaminating action of microorganisms such as bacteria and fungi through the use of, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.

[0535] It is preferred that the mode of cell administration is relatively non-invasive, for example by intravenous injection, pulmonary delivery through inhalation, topical, or intranasal administration. However, the route of cell administration will depend on the tissue to be treated and may include implantation. Methods for cell delivery are known to those of skill in the art and can be extrapolated by one skilled in the art of medicine for use with the methods and compositions described herein.

[0536] Direct injection techniques for cellular administration of iHSCs can also be used to stimulate transmigration of cells through the entire vasculature, or to the vasculature of a

particular organ. This includes non-specific targeting of the vasculature. One can target any organ by selecting a specific injection site, e.g., a liver portal vein. Alternatively, the injection can be performed systemically into any vein in the body. This method is useful for enhancing stem cell numbers in aging patients. In addition, the cells can function to populate vacant stem cell niches or create new stem cells to replenish those lost through, for example, chemotherapy or radiation treatments, for example. If so desired, a mammal or subject can be pre-treated with an agent, for example an agent is administered to enhance cell targeting to a tissue (e.g., a homing factor) and can be placed at that site to encourage cells to target the desired tissue. For example, direct injection of homing factors into a tissue can be performed prior to systemic delivery of ligand-targeted cells.

[0537] A wide range of diseases in which one or more blood cell populations are deficient or defective are recognized as being treatable with HSCs Accordingly, also provided herein are compositions and methods comprising iHSCs for use in cellular therapies, such as stem cell therapies. Non-limiting examples of conditions or disorders that can be treated using the compositions and methods described herein include aplastic anemia, Fanconi anemia, paroxysmal nocturnal hemoglobinuria (PNH); acute leukemias, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), acute biphenotypic leukemia and acute undifferentiated leukemia; chronic leukemias, including chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), juvenile chronic myelogenous leukemia (JCML) and juvenile myelomonocytic leukemia (JMML); myeloproliferative disorders, including acute myelofibrosis, angiogenic myeloid metaplasia (myelofibrosis), polycythemia vera and essential thrombocythemia; inherited platelet abnormalities, including amegakaryocytosis/congenital thrombocytopenia; plasma cell disorders, including multiple myeloma, plasma cell leukemia, and Waldenstrom's macroglobulinemia; lung disorders, including COPD and bronchial asthma; congenital immune disorders, including ataxia-telangiectasia, Kostmann syndrome, leukocyte adhesion deficiency, DiGeorge syndrome, bare lymphocyte syndrome, Omenn's syndrome, severe combined immunodeficiency (SCID), SCID with adenosine deaminase deficiency, absence of T & B cells SCID, absence of T cells, normal B cell SCID, common variable immunodeficiency and X-linked lymphoproliferative disorder, and HIV (human immunodeficiency virus) and AIDS (acquired immune deficiency syndrome).

[0538] Efficacy of treatment is determined by a statistically significant change in one or more indicia of the targeted disease or disorder, as known to one of ordinary skill in the art. For example, whole blood of a subject being treated with iHSCs generated using the compositions, methods, and kits described herein can be analyzed using a complete blood count (CBC). A CBC test can comprise one or more of the following:

- a. White blood cell (WBC) count: A count of the actual number of white blood cells per volume of blood.
- b. White blood cell differential: A count of the types of white blood cells present in the blood: neutrophils, lymphocytes, monocytes, eosinophils, and basophils.
- c. Red blood cell (RBC) count: A count of the actual number of red blood cells per volume of blood.
- d. Hemoglobin level: A measure of the amount of oxygen-carrying protein in the blood.

- e. Hematocrit level: A measures of the percentage of red blood cells in a given volume of whole blood.
- f. Platelet count: A count of the number of platelets in a given volume of blood.
- g. Mean platelet volume (MPV): A measurement of the average size of platelets. Newly produced platelets are larger and an increased MPV occurs when increased numbers of platelets are being produced in the bone marrow.
- h. Mean corpuscular volume (MCV): A measurement of the average size of RBCs (e.g. whether RBCs are larger than normal (macrocytic) or RBCs are smaller than normal (microcytic)).
- i. Mean corpuscular hemoglobin (MCH): A calculation of the average amount of oxygen-carrying hemoglobin inside a red blood cell.
- j. Mean corpuscular hemoglobin concentration (MCHC): A calculation of the average concentration of hemoglobin inside a red cell (e.g. decreased MCHC values (hypochromia) or increased MCHC values (hyperchromia)),
- k. Red cell distribution width (RDW): A calculation of the variation in the size of RBCs {e.g. amount of variation (anisocytosis) in RBC size and/or variation in shape (poikilocytosis) may cause an increase in the RDW).

[0539] In some embodiments of the compositions, methods, and kits described herein, additional factors can be used to enhance treatment methods using the iHSCs described herein, such as G-CSF, e.g. as described in U.S. Pat. No. 5,582,823; AMD3100 (1,1[1,4-phenylene-bis(methylene)]-bis-1,4,8,11-tetraazacyclotetradecane), granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-1 (IL-I), Interleukin-3 (IL-3), Interleukin-8 (IL-8), PIXY-321 (GM-CSF/IL-3 fusion protein), macrophage inflammatory protein, stem cell factor (SCF), thrombopoietin, flt3, myelopoietin, anti-VLA-4 antibody, anti-VCAM-1 and growth related oncogene (GRO).

[0540] Provided herein, in some aspects are hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors encoding at least one, two, three, four, five, six, seven, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612.

[0541] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0542] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, and MEIS1.

[0543] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.

[0544] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, and LMO2.

```
[0545] Also provided herein, in some aspects, are hemato-
poietic stem cell (HSC) inducing compositions comprising
one or more expression vectors comprising:
[0546] a nucleic acid sequence encoding HLF;
[0547]
        a nucleic acid sequence encoding RUNX1T1;
[0548]
        a nucleic acid sequence encoding ZFP37;
[0549]
        a nucleic acid sequence encoding PBX1;
[0550]
        a nucleic acid sequence encoding LMO2; and
[0551]
        a nucleic acid sequence encoding PRDM5.
[0552] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0553] a nucleic acid sequence encoding HLF;
[0554] a nucleic acid sequence encoding RUNX1T1;
[0555] a nucleic acid sequence encoding ZFP37;
[0556] a nucleic acid sequence encoding PBX1:
[0557] a nucleic acid sequence encoding LMO2:
[0558] a nucleic acid sequence encoding PRDM5;
[0559] a nucleic acid sequence encoding MYCN; and
[0560] a nucleic acid sequence encoding MEIS1.
[0561] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0562] a nucleic acid sequence encoding HLF;
[0563] a nucleic acid sequence encoding RUNX1T1;
[0564] a nucleic acid sequence encoding ZFP37;
[0565] a nucleic acid sequence encoding PBX1; and
[0566] a nucleic acid sequence encoding LMO2;
[0567] In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0568] a nucleic acid sequence encoding PRDM16;
[0569]
       a nucleic acid sequence encoding ZFP467; and
[0570]
        a nucleic acid sequence encoding VDR.
[0571] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0572] a nucleic acid sequence encoding HLF;
        a nucleic acid sequence encoding RUNX1T1;
[0573]
[0574]
        a nucleic acid sequence encoding PBX1;
[0575]
        a nucleic acid sequence encoding LMO2;
[0576]
       a nucleic acid sequence encoding PRDM5
[0577] a nucleic acid sequence encoding ZFP37:
[0578] a nucleic acid sequence encoding MYCN;
[0579] a nucleic acid sequence encoding MSI2;
[0580] a nucleic acid sequence encoding NKX2-3;
        a nucleic acid sequence encoding MEIS1; and
[0581]
        a nucleic acid sequence encoding RBPMS.
[0583] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0584] a nucleic acid sequence encoding ZFP467;
[0585]
        a nucleic acid sequence encoding PBX1;
        a nucleic acid sequence encoding HOXB4; and
[0586]
[0587]
        a nucleic acid sequence encoding MSI2.
       In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0589] a nucleic acid sequence encoding HLF;
[0590]
        a nucleic acid sequence encoding LMO2;
```

a nucleic acid sequence encoding PRDM16; and

[0592] a nucleic acid sequence encoding ZFP37.

[0591]

```
[0593] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0594] a nucleic acid sequence encoding MYCN;
        a nucleic acid sequence encoding MSI2;
[0595]
[0596]
        a nucleic acid sequence encoding NKX2-3; and
[0597]
        a nucleic acid sequence encoding RUNX1T1.
[0598] In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0599] a nucleic acid sequence encoding HOXB5;
[0600]
        a nucleic acid sequence encoding HLF;
[0601]
        a nucleic acid sequence encoding ZFP467;
[0602]
        a nucleic acid sequence encoding HOXB3;
[0603]
        a nucleic acid sequence encoding LMO2;
[0604]
        a nucleic acid sequence encoding PBX1;
[0605]
        a nucleic acid sequence encoding ZFP37; and
[0606]
        a nucleic acid sequence encoding ZFP521.
[0607] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[8090]
        a nucleic acid sequence encoding HOXB4;
[0609]
        a nucleic acid sequence encoding PBX1;
[0610]
        a nucleic acid sequence encoding LMO2;
[0611]
        a nucleic acid sequence encoding ZFP467; and
[0612]
        a nucleic acid sequence encoding ZFP521.
[0613]
        In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0614] a nucleic acid sequence encoding KLF12;
[0615]
        a nucleic acid sequence encoding HLF; and
[0616]
        a nucleic acid sequence encoding EGR1.
[0617]
        Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0618] a nucleic acid sequence encoding MEIS1;
        a nucleic acid sequence encoding RBPMS;
[0619]
        a nucleic acid sequence encoding ZFP37;
[0620]
[0621]
        a nucleic acid sequence encoding RUNX1T1; and
[0622]
        a nucleic acid sequence encoding LMO2.
[0623] In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0624] a sequence encoding KLF12; and
[0625] a sequence encoding HLF;
[0626] Provided herein, in some aspects, are hematopoietic
stem cell (HSC) inducing compositions comprising one or
more expression vectors comprising:
[0627] a nucleic acid sequence encoding ZFP37;
[0628]
        a nucleic acid sequence encoding HOXB4;
[0629]
        a nucleic acid sequence encoding LMO2; and
[0630]
        a nucleic acid sequence encoding HLF.
[0631]
        In some embodiments of these aspects and all such
aspects described herein, the composition further comprises
one or more expression vectors comprising:
[0632]
        a nucleic acid sequence encoding MYCN;
[0633]
        a nucleic acid sequence encoding ZFP467;
[0634]
        a nucleic acid sequence encoding NKX2-3
[0635]
        a nucleic acid sequence encoding PBX1; and
[0636]
        a nucleic acid sequence encoding KLF4.
[0637]
        In some embodiments of these aspects and all such
aspects described herein, the one or more expression vectors
are retroviral vectors.
```

[0638] In some embodiments of these aspects and all such aspects described herein, the one or more expression vectors are lentiviral vectors. In some embodiments, the lentiviral vectors are inducible lentiviral vectors. In some embodiments, the lentiviral vectors are polycistronic inducible lentiviral vectors. In some embodiments, the polycistronic inducible lentiviral vectors express three or more nucleic acid sequences. In some embodiments, each of the nucleic acid sequences of the polycistronic inducible lentiviral vectors are separated by 2A peptide sequences.

[0639] Also provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising modified mRNA sequences encoding at least one, two, three, four, five, six, seven, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, ZFP612, and ZFP467, wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0640] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0641] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, and MEIS1.

[0642] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.

[0643] In some embodiments of these aspects and all such aspects described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, and LMO2.

[0644] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0645] a modified mRNA sequence encoding HLF;

[0646] a modified mRNA sequence encoding RUNX1T1;

[0647] a modified mRNA sequence encoding ZFP37;

[0648] a modified mRNA sequence encoding PBX1;

[0649] a modified mRNA sequence encoding LMO2; and

[0650] a modified mRNA sequence encoding PRDM5;

[0651] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0652] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0653] a modified mRNA sequence encoding HLF;

[0654] a modified mRNA sequence encoding RUNX1T1;

[0655] a modified mRNA sequence encoding ZFP37;

[0656] a modified mRNA sequence encoding PBX1;

[0657] a modified mRNA sequence encoding LMO2;

[0658] a modified mRNA sequence encoding PRDM5;

[0659] a modified mRNA sequence encoding MEIS1; and

[0660] a modified mRNA sequence encoding MYCN;

[0661] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0662] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0663] a modified mRNA sequence encoding HLF;

[0664] a modified mRNA sequence encoding RUNX1T1;

[0665] a modified mRNA sequence encoding ZFP37;

[0666] a modified mRNA sequence encoding PBX1; and

[0667] a modified mRNA sequence encoding LMO2;

[0668] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0669] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0670] a modified mRNA sequence encoding PRDM16;

[0671] a modified mRNA sequence encoding ZFP467; and

[0672] a modified mRNA sequence encoding VDR;

[0673] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0674] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0675] a modified mRNA sequence encoding HLF;

[0676] a modified mRNA sequence encoding RUNX1T1;

[0677] a modified mRNA sequence encoding PBX1;

[0678] a modified mRNA sequence encoding LMO2;

[0679] a modified mRNA sequence encoding PRDM5

[0680] a modified mRNA sequence encoding ZFP37; [0681] a modified mRNA sequence encoding MYCN;

[0682] a modified mRNA sequence encoding MSI2;

[0683] a modified mRNA sequence encoding NKX2-3;

[0684] a modified mRNA sequence encoding MEIS1; and

[0685] a modified mRNA sequence encoding RBPMS;

[0686] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0687] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0688] a modified mRNA sequence encoding ZFP467;

[0689] a modified mRNA sequence encoding PBX1;

[0690] a modified mRNA sequence encoding HOXB4; and

[0691] a modified mRNA sequence encoding MSI2;

[0692] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0693] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0694] a modified mRNA sequence encoding HLF;

[0695] a modified mRNA sequence encoding LMO2;

[0696] a modified mRNA sequence encoding PRDM16; and

[0697] a modified mRNA sequence encoding ZFP37.

[0698] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0699] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0700] a modified mRNA sequence encoding MYCN;

[0701] a modified mRNA sequence encoding MSI2;

[0702] a modified mRNA sequence encoding NKX2-3; and

[0703] a modified mRNA sequence encoding RUNX1T1;

[0704] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0705] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0706] a modified mRNA sequence encoding HOXB5;

[0707] a modified mRNA sequence encoding HLF;

[0708] a modified mRNA sequence encoding ZFP467;

[0709] a modified mRNA sequence encoding HOXB3;

[0710] a modified mRNA sequence encoding LMO2;

[0711] a modified mRNA sequence encoding PBX1;

[0712] a modified mRNA sequence encoding ZFP37; and

[0713] a modified mRNA sequence encoding ZFP521;

[0714] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0715] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0716] a modified mRNA sequence encoding HOXB4;

[0717] a modified mRNA sequence encoding PBX1;

[0718] a modified mRNA sequence encoding LMO2;

[0719] a modified mRNA sequence encoding ZFP467; and

[0720] a modified mRNA sequence encoding ZFP521;

[0721] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0722] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0723] a modified mRNA sequence encoding KLF12;

[0724] a modified mRNA sequence encoding HLF; and

[0725] a modified mRNA sequence encoding EGR;

[0726] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0727] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0728] a modified mRNA sequence encoding MEIS1;

[0729] a modified mRNA sequence encoding RBPMS;

[0730] a modified mRNA sequence encoding ZFP37;

[0730] a modified mixtyA sequence encoding ZFF37,

[0731] a modified mRNA sequence encoding RUNX1T1;

[0732] a modified mRNA sequence encoding LMO2.

[0733] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0734] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0735] a modified mRNA sequence encoding KLF12; and

[0736] a modified mRNA sequence encoding HLF;

[0737] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0738] Provided herein, in some aspects, are hematopoietic stem cell (HSC) inducing compositions comprising

[0739] a modified mRNA sequence encoding ZFP37;

[0740] a modified mRNA sequence encoding HOXB4;

[0741] a modified mRNA sequence encoding LMO2; and

[0742] a modified mRNA sequence encoding HLF;

[0743] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0744] In some embodiments of these aspects and all such aspects described herein, the composition further comprises one or more of:

[0745] a modified mRNA encoding MYCN;

[0746] a modified mRNA encoding ZFP467;

[0747] a modified mRNA encoding NKX2-3

[0748] a modified mRNA encoding PBX1; and

[0749] a modified mRNA encoding KLF4;

[0750] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof.

[0751] In some embodiments of these aspects and all such aspects described herein, the modified cytosine is 5-methyl-cytosine and the modified uracil is pseudouracil.

[0752] In some embodiments of these aspects and all such aspects described herein, the modified mRNA sequences comprise one or more nucleoside modifications selected from the group consisting of pyridin-4-one ribonucleoside, 5-azauridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluri-5-carboxymethyl-uridine, 1-carboxymethyldine, pseudouridine, 5-propynyl-uridine, 1-propynylpseudouridine, 5-taurinomethyluridine, 1-taurinomethylpseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methylpseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine. dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-4-thio-1-methyl-1-deaza-1-methyl-pseudoisocytidine, pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-ad-7-deaza-2-aminopurine, 7-deaza-8-aza-2aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2, 6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenos-

ine, N6-glycinylcarbamoyladenosine, N6-threonylcarbam-

oyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine, inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deazaguanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-gua-1-methyl-6-thionosine. 7-methyl-8-oxo-guanosine, guanosine, N2-methyl-6-thio-guanosine, and N2,N2dimethyl-6-thio-guanosine, and combinations thereof.

[0753] Also provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0754] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a promoter; and [0755] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0756] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0757] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding MYCN, wherein each said nucleic acid sequence is operably linked to a promoter; and

[0758] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0759] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0760] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a promoter; and [0761] culturing the transduced somatic cell in a cell media

that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0762] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding PRDM16 a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR.

[0763] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0764] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0765] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0766] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0767] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0768] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0769] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0770] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0771] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2, a nucleic acid sequence encoding NKX2-3; and a nucleic acid sequence encoding RUNX1T1; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0772] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0773] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HOXB5; a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding HOXB3; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP521.

[0774] Provided herein in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0775] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0776] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0777] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding EGR1.

[0778] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0779] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MEIS1; a nucleic acid sequence encoding RBPMS; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding RUNX1T1; and a nucleic acid sequence encoding LMO2; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0780] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0781] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.

[0782] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0783] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0784] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0785] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.

[0786] Provided herein, in some aspects, are methods for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:

[0787] transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0788] culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.

[0789] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding KLF4.

[0790] In some embodiments of these aspects and all such aspects described herein, the somatic cell is a fibroblast cell.

[0791] In some embodiments of these aspects and all such aspects described herein, the somatic cell is a hematopoietic lineage cell.

[0792] In some embodiments of these aspects and all such aspects described herein, the hematopoietic lineage cell is selected from promyelocytes, neutrophils, eosinophils, basophils, reticulocytes, erythrocytes, mast cells, osteoclasts, megakaryoblasts, platelet producing megakaryocytes, platelets, monocytes, macrophages, dendritic cells, lymphocytes, NK cells, NKT cells, innate lymphocytes, multipotent hematopoietic progenitor cells, and lineage restricted hematopoietic progenitors.

[0793] In some embodiments of these aspects and all such aspects described herein, the hematopoietic lineage cell is selected from a multi-potent progenitor cell (MPP), common myeloid progenitor cell (CMP), granulocyte-monocyte progenitor cells (GMP), common lymphoid progenitor cell (CLP), and pre-megakaryocyte-erythrocyte progenitor cell.

[0794] In some embodiments of these aspects and all such aspects described herein, the hematopoietic lineage cell is selected from a megakaryocyte-erythrocyte progenitor cell (MEP), a ProB cell, a PreB cell, a PreProB cell, a ProT cell, a double-negative T cell, a pro-NK cell, a pro-dendritic cell (pro-DC), pre-granulocyte/macrophage cell, a granulocyte/macrophage progenitor (GMP) cell, and a pro-mast cell (ProMC).

[0795] Also provided herein, in some aspects, are methods of promoting transdifferentiation of a ProPreB cell to the myeloid lineage comprising:

[0796] transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0797] culturing the transduced ProPreB cell in a cell media that supports growth of myeloid lineage cells, thereby transdifferentiating the ProPreB cell to the myeloid lineage.

[0798] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0799] Also provided herein, in some aspects, are methods of increasing survival and/or proliferation of ProPreB cells, comprising:

[0800] transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and

[0801] culturing the transduced ProPreB cell in a cell media that supports growth of ProPreB cells, thereby increasing survival and/or proliferation of ProPreB cells.

[0802] In some embodiments of these aspects and all such aspects described herein, the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.

[0803] Also provided herein, in some aspects, are isolated induced hematopoietic stem cells (iHSCs) produced using any of the HSC inducing compositions or methods described herein.

[0804] In some aspects, provided herein are cell clones comprising a plurality of the induced hematopoietic stem cells (iHSCs) produced using any of the HSC inducing compositions or methods described herein. In some embodiments of these aspects and all such aspects described herein, the cell clones further comprise a pharmaceutically acceptable carrier.

[0805] Also provided herein, in some aspects, are kits for making induced hematopoietic stem cells (iHSCs), the kits comprising any of the HSC inducing compositions comprising one or more expression vector components described herein.

[0806] Provided herein, in some aspects, are kits for making induced hematopoietic stem cells (iHSCs), the kits comprising any of the HSC inducing compositions comprising modified mRNA sequence components described herein.

[0807] Also provided herein, in some aspects, are kits comprising one or more of the HSC inducing factors described herein as components for the methods of making the induced hematopoietic stem cells described herein.

[0808] Accordingly, in some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors encoding at least one, two, three, four, five, six, seven, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, ZFP612, and ZFP467; and (b) packaging and instructions therefor.

[0809] In some embodiments of these kits and all such kits described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0810] In some embodiments of these kits and all such kits described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.

[0811] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors comprising: a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5; and (b) packaging and instructions therefor.

[0812] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a nucleic acid sequence encoding PRDM16; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR.

[0813] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors comprising: a nucleic acid sequence encoding HLF; a nucleic acid

sequence encoding RUNX1T1; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS; and (b) packaging and instructions therefor.

[0814] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors comprising: a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; and (b) packaging and instructions therefor.

[0815] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

[0816] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors comprising: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding NKX2-3; and a nucleic acid sequence encoding RUNX1T1; and (b) packaging and instructions therefor.

[0817] In some embodiments of these kits and all such kits described herein, the kit further comprises a nucleic acid sequence encoding HOXB5; a nucleic acid sequence encoding HLF; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP521.

[0818] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors composition comprising: a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; and (b) packaging and instructions therefor.

[0819] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.

[0820] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors comprising: a nucleic acid sequence encoding MEIS1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding RUNX1T1; and a nucleic acid sequence encoding LMO2; and (b) packaging and instructions therefor.

[0821] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of a sequence encoding KLF12; and a sequence encoding HLF.

[0822] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) one or more expression vectors comprising: a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence

encoding LMO2; and a nucleic acid sequence encoding HLF; and (b) packaging and instructions therefor.

[0823] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding KLF4.

[0824] In some embodiments of these kits, the expression vector is a viral vector. In some embodiments of these kits, the viral vector is a retroviral vector, adenoviral vector, lentiviral vector, herpes virus vector, pox virus vector, or an adenoassociated virus (AAV) vector. In some embodiments, the expression vector is inducible.

[0825] Also provided herein, in some aspects, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) modified mRNA sequences encoding at least one, two, three, four, five, six, seven, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612, wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0826] In some embodiments of these kits and all such kits described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.

[0827] In some embodiments of these kits and all such kits described herein, the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5

[0828] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding RUNX1T1; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding LMO2; and a modified mRNA sequence encoding PRDM5; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof and (b) packaging and instructions therefor.

[0829] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a modified mRNA sequence encoding PRDM16; a modified mRNA sequence encoding ZFP467; and a modified mRNA sequence encoding VDR; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0830] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding RUNX1T1; a modified mRNA sequence encoding PBX1; a modified

mRNA sequence encoding LMO2; a modified mRNA sequence encoding PRDM5; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding MYCN; a modified mRNA sequence encoding MSI2; a modified mRNA sequence encoding NKX2-3; a modified mRNA sequence encoding MEIS1; and a modified mRNA sequence encoding RBPMS; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof and (b) packaging and instructions therefor.

[0831] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding ZFP467; a modified mRNA sequence encoding PBX1; a modified mRNA sequence encoding HOXB4; and a modified mRNA sequence encoding MSI2; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof; and (b) packaging and instructions therefor.

[0832] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a modified mRNA sequence encoding HLF; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding PRDM16; and a modified mRNA sequence encoding ZFP37, wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0833] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding MYCN; a modified mRNA sequence encoding MSI2; a modified mRNA sequence encoding NKX2-3; and a modified mRNA sequence encoding RUNX1T1; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof; and (b) packaging and instructions therefor.

[0834] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a modified mRNA sequence encoding HOXB5; a modified mRNA sequence encoding TEP467; a modified mRNA sequence encoding HOXB3; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding ZFP37; and a modified mRNA sequence encoding ZFP37; and a modified mRNA sequence encoding ZFP521; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0835] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding HOXB4; a modified mRNA sequence encoding LMO2; a modified mRNA sequence encoding ZFP467; and a modified mRNA sequence encoding ZFP521; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof; and (b) packaging and instructions therefor.

[0836] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a modified mRNA sequence encoding KLF12; a modified mRNA sequence encoding HLF; and a modified mRNA sequence encoding EGR; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0837] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding MEIS1; a modified mRNA sequence encoding RBPMS; a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding RUNX1T1; and a modified mRNA sequence encoding LMO2; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof; and (b) packaging and instructions therefor.

[0838] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a modified mRNA sequence encoding KLF12; and a modified mRNA sequence encoding HLF; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0839] In some aspects, provided herein, are kits for preparing induced hematopoietic stem cells comprising the following components: (a) a modified mRNA sequence encoding ZFP37; a modified mRNA sequence encoding HOXB4; a modified mRNA sequence encoding LMO2; and a modified mRNA sequence encoding HLF; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof; and (b) packaging and instructions therefor.

[0840] In some embodiments of these kits and all such kits described herein, the kit further comprises one or more of: a modified mRNA encoding MYCN; a modified mRNA encoding ZFP467; a modified mRNA encoding NKX2-3; a modified mRNA encoding PBX1; and a modified mRNA encoding KLF4; wherein each cytosine of each of the modified mRNA sequences is a modified cytosine, each uracil of each of the modified mRNA sequences is a modified uracil, or a combination thereof.

[0841] In some embodiments of these kits and all such kits described herein, the modified cytosine is 5-methylcytosine and the modified uracil is pseudouridine.

[0842] In some embodiments of these kits and all such kits described herein, one or more of the synthetic, modified mRNAs can further comprise one or more of a poly(A) tail, a Kozak sequence, a 3' untranslated region, a 5' untranslated regions, and a 5' cap, such as 5' cap analog, such as e.g., a 5' diguanosine cap, tetraphosphate cap analogs having a methylene-bis(phosphonate) moiety, cap analogs having a sulfur substitution for a non-bridging oxygen, N7-benzylated dinucleoside tetraphosphate analogs, or anti-reverse cap analogs. The kits can also comprise a 5' cap analog. The kit can also comprise a phosphatase enzyme (e.g., Calf intestinal phosphatase) to remove the 5' triphosphate during the RNA modification procedure. Optionally, the kit can comprise one or more control synthetic mRNAs, such as a synthetic, modified RNA encoding green fluorescent protein (GFP) or other marker molecule.

[0843] In other embodiments, the kit can further comprise materials for further reducing the innate immune response of a cell. For example, the kit can further comprise a soluble interferon receptor, such as B18R. In some embodiments, the kit can comprise a plurality of different synthetic, modified RNA molecules.

[0844] The kits described herein can also comprise, in some aspects, one or more linear DNA templates for the generation of synthetic mRNAs encoding the HSC inducing factors described herein.

[0845] The kits described herein, in some embodiments, can further provide the synthetic mRNAs or the one or more expression vectors encoding HSC inducing factors in an admixture or as separate aliquots.

[0846] In some embodiments, the kits can further comprise an agent to enhance efficiency of reprogramming. In some embodiments, the kits can further comprise one or more antibodies or primer reagents to detect a cell-type specific marker to identify cells induced to the hematopoietic stem cell state.

[0847] In some embodiments, the kits can further comprise a buffer. In some such embodiments, the buffer is RNase-free TE buffer at pH 7.0. In some embodiments, the kit further comprises a container with cell culture medium.

[0848] All kits described herein can further comprise a buffer, a cell culture medium, a transduction or transfection medium and/or a media supplement. In preferred embodiments, the buffers, cell culture mediums, transfection mediums, and/or media supplements are DNAse and RNase-free. In some embodiments, the synthetic, modified RNAs provided in the kits can be in a non-solution form of specific quantity or mass, e.g., $20~\mu g$, such as a lyophilized powder form, such that the end-user adds a suitable amount of buffer or medium to bring the components to a desired concentration, e.g., $100~n g/\mu l$.

[0849] All kits described herein can further comprise devices to facilitate single-administration or repeated or frequent infusions of the cells generated using the kits components described herein, such as a non-implantable delivery device, e.g., needle, syringe, pen device, or an implantable delivery device, e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracisternal or intracapsular), or reservoir. In some such embodiments, the delivery device can include a mechanism to dispense a unit dose of a pharmaceutical composition comprising the iHSC clone. In some embodiments, the device releases the composition continuously, e.g., by diffusion. In some embodiments, the device can include a sensor that monitors a parameter within a subject. For example, the device can include pump, e.g., and, optionally, associated electronics.

[0850] The induced hematopoietic stem cells in some aspects of all the embodiments of the invention, while similar in functional characteristics, differ significantly in their gene expression or methylation pattern from the naturally occurring endogenous hematopoietic stem cells. For example, compared to the endogenous HSC gene expression pattern, exemplary genes of which are shown in Tables 2 and 3, the induced hematopoietic stem cells differ by showing about 1-5%, 5-10%, 5-15%, or 5-20% increased expression of about 1-5%, 2-5%, 3-5%, up to 50%, up to 40%, up to 30%, up to 25%, up to 20%, up to 15%, or up to 10% of the genes in endogenous HSCs, for example, those set forth in Tables 2 and 3. Specifically, the expression in the iHSCs of genes the expression of which is reduced or insignificant in the natu-

rally occurring HSCs (see, selected examples in Table 2), is increased or the expression of the genes the expression of which is significant in the naturally occurring HSCs (see, selected examples of highly expressed genes in isolated HSCs in Table 3) is decreased in iHSCs.

[0851] In some aspects of all the embodiments of the invention, while similar in functional characteristics, the induced pluripotent stem cells differ significantly in their methylation pattern from the naturally occurring or endogenous HSCs. For example, compared to the endogenous methylation pattern of genes as exemplified in Table 4, the iHSCs differ by showing about 1-5%, in some aspects 1-10%, in some aspects 5-10% difference in the methylation of at about 1-5%, 1-10%, 5-10%, up to 50%, up to 40%, up to 30%, up to 25%, up to 20%, up to 15%, or up to 10% of the methylation sites of naturally occurring HSCs, which are exemplified in Table 4. The difference may be increased or decreased methylation compared to endogenous HSCs. In some aspects, some methylation sites are methylated and some unmethylated in iHSCs compared to the endogenous HSCs methylation sites as exemplified in Table 4.

[0852] Table 4 includes 35 exemplary profiles from each chromosome (1-19, x and y) as profiled in naturally occurring or endogenous HSCs. The screening was done by randomizing the most and least methylated sites (i.e. the top/bottom 20%) where 100 were taken from each group (except the Y chromosome which had a very small number of sites and only 35 random sites were selected). Of the mid (20-80%) percentiles, 3000 methylation sites were randomly selected. From this pool of 3000 sites, 35 methylation sites were randomly selected. These examples were selected to represent the methylation status of the entire chromosome but enrich for those mid-range sites of methylation which, without wishing to be bound by theory, may be more characteristic of the naturally occurring HSC.

HSC Expression Analysis

[0853] Genome-wide gene expression analysis was performed on purified LSKCD34-Flk2-using the Affymetrix GeneChip Mouse Genome 430 2.0 Array platform. RNA was isolated using TRIzol (Life Technologies) and purified RNA was amplified, labeled, hybridized, and scanned according to Affymetrix's. Raw data was normalized using gcRMA together with 383 other hematopoietic cell types. These data were log transformed and average of the four biological replicates of are presented as expression levels.

DNA Methylation Analysis of HSCs

[0854] RRBS libraries for DNA methylation analysis were prepared from 30 ng input DNA per biological replicate of LSKCD34-FLk2-HSCs following a published protocol (Gu et al Nat. Protoc, 6 (2011), pp. 468-481) and sequenced by the Broad Institute's Genome Sequencing Platform on Illumina Genome Analyzer II or HiSeq 2000 machines. Bioinformatic data processing and quality control were performed as described in Bock et al (Cell, 144 (2011), pp. 439-452). The raw sequencing reads were aligned using Maq's bisulfite alignment mode and DNA methylation calling was performed using custom software (Gu et al, Nat Methods 7(2010) 133-136). DNA methylation levels were calculated for 1-kilobase tiling regions throughout the genome as coverage-weighted means of the DNA methylation levels of individual CpGs. Only regions with at least two CpGs with at

least 5 independent DNA methylation measurements per CpG were retained, giving rise to a list of genomic regions with high-confidence DNA methylation measurements. In the initial filtering step, all 1-kb tiles of DNA methylation were excluded for which the two biological replicates were not sufficiently consistent with each other. Any measurement was excluded if the absolute divergence between biological replicates exceeded 0.2 and if the relative divergence between biological replicates exceeded 0.05. These absolute thresholds were selected based on our previous experience with RRBS data analysis, and the relative thresholds were calculated such that the absolute and relative thresholds became equivalent for values close to the center of the spectrum, i.e. around 0.5. Identification of significant differentially methylated regions were based on the average DNA methylation difference between the biological replicates of two cell types, requiring a minimum absolute difference of 0.1 for 1-kb tiles, and a more stringent threshold of 0.2 for single CpGs. The relative difference thresholds were calculated from the absolute difference thresholds as described above. The combined use of relative and absolute difference thresholds resulted in robust identification of relevant differences across the spectrum of genes and genomic regions with high, medium and low DNA methylation.

TABLE 2

Examples of transcripts showing reduced/

insignificant expression in endogenous HSCs

Probeset	Expression (Average of 4 datasets of purified HSCs)	Gene Symbol
1425771 at	4.65	Akr1d1
1425772 at	4.65	Col4a4
1425773 s at	4.65	Nmnat1
1425774 at	4.65	Srrm4
1425775_at	4.65	Zfp820
1425776 a at	4.65	C87436
1425777 at	4.65	Caenb1
1425778 at	4.65	Ido2
1425779_a_at	4.65	Tbx1
1425780_a_at	4.65	Tmem167
1425781_a_at	4.65	Plcb1
1425782_at	4.65	Plcb1
1425783_at	4.65	Tc2n
1425784_a_at	4.65	Olfm1
1425785_a_at	4.65	Txk
1425786_a_at	4.65	Hsf4
1425787_a_at	4.65	Sytl3
1425788_a_at	4.65	Echdc2
1425789_s_at	4.65	Anxa8
1425790_a_at	4.65	Grik2
1425791_at	4.65	Pon2
1425792_a_at	4.65	Rorc
1425793_a_at	4.65	Rorc
1425794_at	4.65	Pola2
1425795_a_at	4.65	Map3k7
1425796_a_at	4.65	Fgfr3
1425797_a_at	4.65	Syk
1425808_a_at	4.65	Myocd
1425798_a_at	4.65	Recql
1425800_at	4.65	Rad9b
1425801_x_at	4.65	Cotl1
1425802_a_at	4.65	Ferla
1425803_a_at	4.65	Mbd2
1425804_at	4.65	Hmx2
1425806_a_at	4.65	Med21
1425807_at	4.65	BC021891
1425809_at	4.65	Fabp4
1425810_a_at	4.65	Csrp1

TABLE 2-continued

TABLE 2-continued

	Expression			Expression	
'robeset	(Average of 4 datasets of purified HSCs)	Gene Symbol	Probeset	(Average of 4 datasets of purified HSCs)	Gene Symbol
425811_a_at	4.65	Csrp1	1425893_a_at	4.65	Fhit
425811_a_at 425812_a_at	4.65	Cacna1b	1425895_a_at	4.65	Id1
425813_at	4.65	Pign	1425897_at	4.65	
425814_a_at	4.65	Calcrl	1425898_x_at	4.65	Olfm3
425815_a_at	4.65	Hmmr	1425899_a_at	4.65	Itsn1
425816_at	4.65	Zfp287	1425901_at	4.65	Nfatc2
425817_a_at	4.65	Slc8a1	1425903_at	4.65	Sema6a
425818_at	4.65	4930520O04Rik	1425904_at	4.65	Satb2
425819_at	4.65	Zbtb7c	1425905_at	4.65	_
425820_x_at	4.65	Gpatch4	1425906_a_at	4.65	Sema3e
425821_at	4.65	Clen7	1425907_s_at	4.65	Amot
425822_a_at	4.65	Dtx1	1425908_at	4.65	Gnb1
426032_at	4.65	Nfatc2	1425910_at	4.65	Dnajc2
425823_at	4.65	Cfhr2	1425911_a_at	4.65	Fgfr1
425825_at	4.65	Eml6	1425912_at	4.65	Cep164
425826_a_at	4.65	Sorbs1	1425913_a_at	4.65	Spats21
425827_at	4.65	Nkx2-3	1425914_a_at	4.65	Armex1
425828_at	4.65	Nkx6-1	1425915_at	4.65	Slc26a8
425829_a_at	4.65	Steap4	1425916_at	4.65	Capn8
425830_a_at	4.65	Cinp /// LOC640972	1425917_at	4.65	H28
425831_at	4.65	Zfp101	1425918_at	4.65	— Ndufa12
425832_a_at	4.65	Cxcr6	1425919_at	4.65	Ndufa12
425833_a_at	4.65 4.65	Нрса	1425920_at 1425921 a at	4.65 4.65	Cuedc1 1810055G02Rik
425834_a_at	4.65	Gpam Bbx		4.65	
425835_a_at 425836_a_at	4.65	Limk1	1425922_a_at 1425923_at	4.65	Mycn Mycn
425830_a_at 425837_a_at	4.65	Cern4l	1425925_at	4.65	Feamr
425837_a_at 425838_at	4.65	Atp9a	1425926_a_at	4.65	Otx2
425839 at	4.65	Fkbp11	1425927_a_at	4.65	Atf5
425840_a_at	4.65	Sema3f	1425928_at	4.65	Xkr6
425842_at	4.65	Edil3	1425929_a_at	4.65	Rnf14
425843_at	4.65	Mrpl33	1425931_a_at	4.65	Arntl2
425845 a at	4.65	Shoc2	1425932_a_at	4.65	Celf1
425846_a_at	4.65	Caln1	1425934_a_at	4.65	B4galt4
425848_a_at	4.65	Dusp26	1425935_at	4.65	Hspb11
425849_at	4.65	Chrnb4	1425936_a_at	4.65	Ankmy2
425850_a_at	4.65	Nek6	1425937_a_at	4.65	Hexim1
425851_a_at	4.65	Amigo1	1425939_at	4.65	Rad50
425852_at	4.65	Catsperg1	1425940_a_at	4.65	Ssbp3
425855_a_at	4.65	Crk	1425941_a_at	4.65	Fanci
425857_at	4.65	Fbxw9	1425942_a_at	4.65	Gpm6b
425858_at	4.65	Ube2m	1425943_at	4.65	Nmur2
425859_a_at	4.65	Psmd4	1425944_a_at	4.65	Rad5113
425861_x_at	4.65	Cacna2d1	1425945_at	4.65	Zfp626
425863_a_at	4.65	Ptpro	1425946_at	4.65	Gstm7
425864_a_at	4.65	Sores1	1425947_at	4.65	Ifng
425865_a_at	4.65	Lig3	1425949_at	4.65	Slc25a30
425866_a_at	4.65	Plekha4 Plekha4	1425950_at	4.65	Slc17a9
425867_at 425868_at	4.65 4.65	Hist2h2bb	1425951_a_at 1425952_a_at	4.65 4.65	Clec4n Gcg
+23868_ai 425869_a_at	4.65	Psen2	1425952_a_at 1425953_at	4.65	Gcg —
425870_a_at	4.65	Kenip2	1425955_at 1425954_a_at	4.65	Apex2
425870_a_at 425871_a_at	4.65	Igk-V28	1425955_at	4.65	Cav2
425874_at	4.65	Hoxc13	1425958_at	4.65	Il1f9
425875 a at	4.65	Lepr	1425959_x_at	4.65	Klra16
425876_a_at	4.65	Glce	1425960_s_at	4.65	Pax6
425877_at	4.65	Hyal3	1425962_at	4.65	Klrb1f
425878_at	4.65	Cabp4	1425963_at	4.65	Cabp7
425879_at	4.65	Zfp352	1425964_x_at	4.65	Hspb1
425880_x_at	4.65	Zfp352	1425965_at	4.65	Ubc
425881_at	4.65	Psg28	1425966_x_at	4.65	Ubc
425882_at	4.65	Gdf2	1425967_a_at	4.65	Mcpt4
425883_at	4.65	Smg6	1425968_s_at	4.65	Speg
425884_at	4.65	Rpf2	1425969_a_at	4.65	Htt
425885_a_at	4.65	Kcnab2	1425970_a_at	4.65	Ros1
425888_at	4.65	Klra17	1425971_at	4.65	Naip3
425889_at	4.65	Wnt9a	1425972_a_at	4.65	Zfx
425890_at	4.65	Ly6i	1425973_at	4.65	Lyst

Gene Symbol Elk1

Snap29
Dpf1
Src
Pstpip2
Opn4

Vmn1r50 Mphosph6 Vpreb1///Vpreb2 Ndufs8 Wisp2 Azin1 Use1 Rab10 Papss2 More3

Nfix
Chmp4c
Bnip2
Dab2
Tpp2
Etv1
Dock2
Eif3l
Vsig2

Vsig2 Gpr83 Prc1 Atm Mak

Capn9 Slu7 Derl1

Psmf1 Ubtd1 Ccl4 Pcdhb10 4930444A02Rik Mx2

Dnmt1 — Pnlip

TABLE 2-continued

TABLE 3-continued

	Expression (Average of 4		Probeset	Expression (Average of 4 datasets of purified HSCs)	Ger
Probeset	datasets of purified HSCs)	Gene Symbol	1421896_at	58579.47	
1426022+	4.65	D -b 1	- 1423355_at	57569.64 57554.85	
1426023_a_at		Rabep1 Dbn1	1420529_at	57379.26	
1426024_a_at	4.65 4.65	Laptm5	1423240_at	56489.03	
1426025_s_at 1425976 x at	4.65	Zfp353	1421410_a_at 1421584_at	54335.88	
1425970_x_at 1425977_a_at	4.65	Slk	1420202_at	54182.06	
1425977_a_at 1425979 a at	4.65	Fbf1	1420202_at 1422376 at	54014.33	V
			_		M
1425980_at	4.65	Wdr54	1423848_at	53959.70	
1425981_a_at	4.65	Rbl2	1422416_s_at	53943.95 53750.78	Vpre
1425983_x_at	4.65	Hipk2	1423907_a_at	53750.78	
1425985_s_at	4.65	Masp1	1419015_at	52526.85	
1425986_a_at	4.65	Dcun1d1	1422702_at	52048.42	
1425987_a_at	4.65	Kenma1	1423817_s_at	51920.82	
1425988_a_at	4.65	Hipk1	1422664_at	51789.77	
1425989_a_at	4.65	Eya3	1421988_at	51730.79	
1425990_a_at	4.65	Nfatc2	1420092_at	51443.43	
1425991_a_at	4.65	Kank2	1419919_at	50903.42	
1425992_at	4.65	Slc6a5	1423493_a_at	50864.75	
1425994_a_at	4.65	Asah2	1420517_at	49770.55	(
1425995_s_at	4.65	Wt1	1422490_at	49492.67	
1425996_a_at	4.65	Hltf	1423805_at	49225.38	
1425997_a_at	4.65	Pign	1421893_a_at	49082.98	
1425998_at	4.65	Sytl4	1422607_at	48373.32	
1426001_at	4.65	Eomes	1422808_s_at	48260.89	
1426004_a_at	4.65	Tgm2	1423728_at	47793.86	
1426005_at	4.65	Dmp1	1422634_a_at	47057.45	
1426006_at	4.65	Kenq2	1423415_at	46829.97	
1426008_a_at	4.65	Slc7a2	1423774_a_at	46597.55	
1426009_a_at	4.65	Pip5k1a	1421205_at	46410.24	
1426010_a_at	4.65	Epb4.113	1422725_at	46373.82	
1426011_a_at	4.65	Ggnbp2	1422876_at	46000.03	
1426012_a_at	4.65	2610301G19Rik	1420030_at	45773.96	
1426013_s_at	4.65	Plekha4	1423082_at	45717.01	
1426014_a_at	4.65	Cdhr5	1424369_at	45609.09	
1426017_a_at	4.65	0610011L14Rik	1424432_at	45430.90	
1426018_a_at	4.65	Sox6	1421578_at	45382.12	
1426019 at	4.65	Plaa	1422729_at	45325.62	I
1426021_a_at	4.65	Cdc7	1424004_x_at	45166.17	4930
1426022 a at	4.65	Vill	1419676_at	45159.39	
1426022_a_at 1426026_at	4.65	Prpf6	1422946_a_at	45067.84	
1426020_at 1426027_a_at	4.65	Arhgap10	1420200_at	44965.21	
			1421868_a_at	44891.20	
1426028_a_at	4.65	Cit	1420217_x_at	44808.32	
			- 1419864_x_at	44771.30	
			1432675_at	44721.78	
			1423206_s_at	44538.34	23100

1-12-002-0_4_4	1.03		142021/_x_at	44808.32	
			1419864_x_at	44771.30	Tnpo1
			1432675_at	44721.78	Mdn1
			1423206_s_at	44538.34	2310003F16Rik///
	TABLE 3				Serf2
			1423402_at	44427.28	Creb1
E	xamples of transcripts showing expre-	ssion/	1420539_a_at	43572.89	Chrd12
	ignificant expression in endogenous I		1423072_at	43569.21	6720475J19Rik
			1423348_at	43334.95	Fzd8
	Expression (Average of 4 datasets		1422152_at	43301.54	Hmx1
Probeset	of purified HSCs)	Gene Symbol	1420955_at	42958.08	Vsnl1
	F		1422534_at	42719.81	Cyp51
1424256_at	100879.78	Rdh12	1421514_a_at	42690.03	Scml2
1424539_at	79795.71	Ubl4	1420573_at	42424.32	Hoxd1
1420954_a_at	76447.45	Add1	1422139_at	42321.56	Plau
1421742_at	75395.99	_	1423193_at	42255.15	Pspc1
1424295_at	72899.90	Dppa3	1422949_at	41969.65	Nos1
1423567_a_at	72869.27	Psma7	1422585_at	41579.30	Odf1
1423106_at	70905.48	Ube2b	1421685_at	41540.59	Clec4b1
1424391_at	69677.87	Nrd1	1421144_at	41368.55	Rpgrip1
1424069_at	69512.25	Napg	1422038_a_at	41364.86	Tnfrsf22
1424721_at	67140.32	Mfap3	1425165_at	41318.16	Gzmn
1422960_at	65644.79	Srd5a2	1425101_a_at	41263.26	Fkbp6
1421948_a_at	64085.44	Ccdc123	1421858_at	40782.82	Adam17
1423089_at	62549.13	Tmod3	1424361_at	40305.18	Tti2
1424335_at	62005.99	Ppcdc	1432026_a_at	39842.37	Herc6
1423792_a_at	60183.19	Cmtm6	1421877_at	39450.73	Mapk9
1422398_at	58720.84	Hist1h1e	1424168_a_at	39344.00	Capzb

TABLE 3-continued

TABLE 3-continued

	nples of transcripts showing expre- ificant expression in endogenous I			xamples of transcripts showing expresignificant expression in endogenous	
Probeset	Expression (Average of 4 datasets of purified HSCs)	Gene Symbol		Expression (Average of 4 datasets	
1423746 at	39125.86	Txndc5	Probeset	of purified HSCs)	Gene Symbol
1421784_a_at	39087.91	Efna4	1419908_at	28487.43	Ferla
1422216_at	38969.12	Mid2	1416576_at	27695.03	Socs3
1437495_at	38891.23 38621.58	Mbtps2///Yy2	1422574_at	27639.56	Mxd4
422193_at 424209_at	38397.04	Gucy2e Rars2	1433622 at	27471.80	Gemin4///Glod4///
.421734_at	38265.53	Cxcr2			Gm6330
.422764_at	38046.45	Mapre1	1438263_at	27434.33	9430020K01Rik
1422461_at	37752.66	Atad3a	1425220_x_at	27306.78	LOC100038937
.422319_at	37656.70		1422454_at	27268.17	Krt13
.421828_at	37384.32	Kpna3	1422240 s at	26926.68	Sprr2h
.422947_at	37379.83	Hist1h4a	1433942_at	26894.49	Myo6
.417187_at .420237_at	37147.52 37138.69	Ube2k		26870.76	=
1421111_at	37129.17	Rybp	1437613_s_at		Ptpdc1
.421762_at	36844.59	Kenj5	1418969_at	26582.64	Skp2
.425001_at	36814.72	Rnf146	1421818_at	26510.49	Bcl6
422763_at	36738.09	Gipc1	1422017_s_at	26492.47	4833439L19Rik
.421198_at	36633.80	Itgav	1422088_at	26321.36	Mycl1
.423022_at	36619.85	Adra2a	1424911_a_at	26252.42	Lyzl4
.425460_at	36318.33	Mtmr2	1415812_at	26042.95	Gsn
423718_at	35541.24	Ak3	1422592_at	25974.74	Ctnnd2
424746_at	35456.02 35371.38	Kifle	1421422_at	25602.36	5033411D12Rik
.422791_at .443492_at	35371.28 35208.55	Pafah1b2	1422511_a_at	25483.54	Ogfr
.422154_at	35197.92	Gpr27	1432823_at	25438.68	Sypl2
423232_at	35156.06	Etv4	1421211_a_at	25380.22	Ciita
434987_at	34983.28	Aldh2	1416578_at	25267.25	Gm9840///Rbx1
421928_at	34894.19	Epha4	1425535 at		
421276_a_at	34783.78	Dst	_	25144.30	Repin1
418807_at	34723.24	3110070M22Rik	1420466_at	25061.79	Mucl1
421357_at	34509.96	Gtf2a1	1437720_at	24921.64	Eif2d
.420450_at	33787.26	Mmp10	1422435_at	24867.70	2210010C04Rik
.425562_s_at .422137_at	33760.26 33732.68	Trnt1 Duoxa2	1420648_at	24760.09	Trim12a
420882_a_at	33268.28	Acd	1421382_at	24658.48	Prlr
420792_at	32727.55	4930433N12Rik	1416404_s_at	24652.70	Rps16
428618_at	32608.49	Hcfc2	1424118_a_at	24646.84	Spc25
423324_at	32498.13	Pnn	1425180_at	24391.49	Sgip1
1421066_at	32380.36	Jak2	1422621_at	24276.19	Ranbp2
421767_at	32357.95	Adk	1421265_a_at	24108.68	Rbm38
1423465_at	32223.80	Frrs1	1423590 at	23955.37	Napsa
1420412_at	32006.60	Tnfsf10 Gm12597	1431842_at	23948.99	4930422C21Rik
422403_at 420644_a_at	31627.13 31555.81	Sec61a2	1428567_at	23851.44	Hspbap1
.424157_at	31355.35	Ehd2	1424928_at	23715.06	2210018M11Rik
425678_a_at	31211.98	Snrk		23697.49	
419171_at	30993.36	Fam174a	1421894_a_at		Tpp2
.424059_at	30975.22	Suv420h2	1420489_at	23628.96	Mrps14
423390_at	30941.65	Siah1a	1425406_at	23574.24	Clec4a2
.430244_at	30636.46	4921509J17Rik	1419907_s_at	23407.93	Ferla
424356_a_at	30596.60	Metrnl	1421139_a_at	23222.94	Zfp386
.422035_at .424763_at	30526.30 30455.13	Serpinb9c	1420219_at	23098.02	Dnajc21
420242_at	30259.70	Rsph9	1420714_at	23021.11	Lbx2
423292_a_at	30255.63	Prx	1419571_at	23014.90	S1c28a3
425719 a at	30011.99	Nmi	1424501_at	22942.41	Utp6
422891_at	29811.27	H2-Ea-ps	1423777_at	22813.47	Usp20
433073_at	29755.02	4933425E08Rik	1424712_at	22776.38	Ahctf1
424874_a_at	29586.89	Ptbp1	1421693_a_at	22651.12	Gpr98
421795_s_at	29485.47	Klrc2///Klrc3	1437991_x_at	22601.85	Rusc1
424781_at	29441.10	Reep3		22593.56	
420106_at	29316.87	Siah1a	1418666_at		Ptx3
423735_a_at	29115.24	Wdr36	1420348_at	22525.87	Lhx5
421132_at 423440_at	28979.38 28884.32	Pvrl3 Fam33a	1422735_at	22457.19	Foxq1
423440_at 424619_at	28807.35	Sf3b4	1424455_at	22297.49	Gprasp1
420359_at	28678.72	Sva	1420446_at	22176.11	Odf3
422121_at	28666.64	Oprd1	1420207_at	22023.74	_
424773_at	28663.97	Fam125a	1421363_at	21974.00	Cyp2c39
422217_a_at	28522.13	Cyp1a1			

TABLE 4

				ADEE 4		
	E	xemplary me	thylation	sites in isolated	/endogenous HSCs	
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC
						0.071
chr1 chr1	38475000 174135000	38476000 174136000	35378 168890	Rev1 Dcaf8	ENSMUSG00000026082 ENSMUSG00000026554	0.971 0.663
chr1	187516000	187517000	181864	Slc30a10	ENSMUSG00000026614	0.540
chr1	190087000	190088000	184435	Ush2a	ENSMUSG00000026609	0.974
chr1	38011000	38012000	34914	Lyg2	ENSMUSG00000061584	0.612
chr1	36290000	36291000	33193	Hs6st1	ENSMUSG00000045216	0.522
chr1	91946000	91947000	86834	Asb18	ENSMUSG00000067081	0.576
chr1	91825000	91826000	86713	Agap1	ENSMUSG00000055013	0.365
chr1	12966000	12967000	9967	Sulf1	ENSMUSG00000016918	0.596
chr1	191714000	191715000	186062	Ptpn14	ENSMUSG00000026604	0.994
chr1	94962000	94963000	89850	Aqp12	ENSMUSG00000045091	0.604
chr1	36355000	36356000	33258	Neurl3	ENSMUSG00000047180	0.539
chr1	34593000	34594000	31496	Cfc1	ENSMUSG00000026124	0.211
chr1	185803000	185804000	180151	Tlr5	ENSMUSG00000079164	0.213
chr1 chr1	74195000 90736000	74196000 90737000	71098 85624	Rufy4 Arl4c	ENSMUSG00000061815 ENSMUSG00000049866	0.610 0.653
chr1	191658000	191659000	186006	Ptpn14	ENSMUSG000000049800 ENSMUSG000000026604	0.033
chr1	191661000	191662000	186009	Ptpn14	ENSMUSG00000026604	0.968
chr1	38579000	38580000	35482	Rev1	ENSMUSG00000026082	0.969
chr1	127809000	127810000	122697	Lypd1	ENSMUSG00000026344	0.213
chr1	25234000	25235000	22137	Lmbrd1	ENSMUSG00000073725	0.550
chr1	191952000	191953000	186300	Smyd2	ENSMUSG00000026603	0.658
chr1	91954000	91955000	86842	Asb18	ENSMUSG00000067081	0.980
chr1	188658000	188659000	183006	Rrp15	ENSMUSG00000001305	0.000
chr1	34308000	34309000	31211	Dst	ENSMUSG00000026131	0.365
chr1	137815000	137816000	132703	Pkp1	ENSMUSG00000026413	0.035
chr1	191583000	191584000	185931	Ptpn14	ENSMUSG00000026604	0.979
chr1	14812000 94547000	14813000	11813 89435	Msc	ENSMUSG000000025930	0.587
chr1 chr1	36327000	94548000 36328000	33230	Otos Uggt1	ENSMUSG00000044055 ENSMUSG00000037470	0.795 0.150
chr1	90701000	90702000	85589	Ar14c	ENSMUSG00000037470	0.190
chr1	40212000	40213000	37115	Il1r2	ENSMUSG00000026073	0.970
chr1	140473000	140474000	135361	Atp6v1g3	ENSMUSG00000026394	0.599
chr1	90565000	90566000	85453	Glrp1	ENSMUSG00000062310	0.564
chr1	51516000	51517000	48419	Sdpr	ENSMUSG00000045954	0.707
chr2	163597000	163598000	351938	Ada	ENSMUSG00000017697	0.588
chr2	29297000	29298000	217736	Med27	ENSMUSG00000026799	0.969
chr2	170120000	170121000	358461	O24-1	ENSMUSG00000084013	0.640
chr2 chr2	170332000 63809000	170333000	358673 252199	Cyp24a1	ENSMUSG00000038567	0.553
chr2	143610000	63810000 143611000	331951	Pcsk2	ENSMUSG00000065837 ENSMUSG00000027419	0.612 0.894
chr2	163321000	163322000	351662	R3hdml	ENSMUSG000000027419	0.795
chr2	147874000	147875000	336215	Foxa2	ENSMUSG00000037025	0.030
chr2	151719000	151720000	340060	Rspo4	ENSMUSG00000032852	0.482
chr2	170107000	170108000	358448	Zfp217	ENSMUSG00000052056	0.650
chr2	101484000	101485000	289874	•	ENSMUSG00000027165	0.969
chr2	157964000	157965000	346305	Rprd1b	ENSMUSG00000027651	0.974
chr2	162773000	162774000	351114	L3mbtl	ENSMUSG00000035576	0.573
chr2	82981000	82982000	271371		ENSMUSG00000075248	0.640
chr2	165999000	166000000	354340	Sulf2	ENSMUSG00000006800	0.795
chr2	29061000	29062000	217500	Setx	ENSMUSG00000043535	0.622
chr2	173161000	173162000	361500	Pmepal Chat1	ENSMUSG00000038400	0.036
chr2	92582000	92583000	280972	Chst1 Emilin3	ENSMUSG00000027221	0.381
chr2 chr2	160803000 57034000	160804000 57035000	349144 245473	Emilin3 Nr4a2	ENSMUSG00000050700 ENSMUSG00000026826	0.976 0.002
chr2	153116000	153117000	341457	Pofut1	ENSMUSG00000020820 ENSMUSG00000046020	0.510
chr2	37898000	37899000	226337	Crb2	ENSMUSG000000035403	0.971
chr2	78788000	78789000	267178	Ube2e3	ENSMUSG00000027011	0.640
chr2		152738000	341078	Mylk2	ENSMUSG00000027470	0.465
chr2	127978000	127979000	316319	Bcl2111	ENSMUSG00000027381	0.532
chr2	34060000	34061000	222499	Fam125b	ENSMUSG00000038740	0.990
chr2	38079000	38080000	226518	Crb2	ENSMUSG00000035403	0.621
chr2		152832000	341172	Ttll9	ENSMUSG00000074673	0.971
chr2	151272000	151273000	339613	a t	ENSMUSG00000083391	0.645
chr2	32730000	32731000	221169	Stxbp1	ENSMUSG00000026797	0.115
chr2	35302000	35303000	223741	Ggta1	ENSMUSG00000035778	0.402
chr2		173252000	361590	Pmepa1 Sec16a	ENSMUSG00000038400 ENSMUSG00000026924	0.643
chr2 chr2	26338000	26339000 131779000	214777 320119	Sec16a Prnd	ENSMUSG000000027338	0.530 0.131
chr2	26436000	26437000	214875	Egf17	ENSMUSG00000027338 ENSMUSG00000026921	0.131
chr3		102265000	469052	Vangl1	ENSMUSG00000027860	0.600
chr3	149018000	149019000	515708	Gm5149	ENSMUSG00000069803	0.894
chr3	98205000	98206000	464993	Zfp697	ENSMUSG00000050064	0.830
				•		

TABLE 4-continued

	TABLE 4-continued							
	E	xemplary me	thylation	sites in isolated	d/endogenous HSCs			
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC		
chr3	130829000	130830000	497568	Lefl	ENSMUSG00000027985	0.973		
chr3	99341000	99342000	466129	M6pr-ps	ENSMUSG00000078549,	0.648		
	4 5 44 40000			*1.0	ENSMUSG00000080832			
chr3 chr3	154140000 68330000	154141000 68331000	520830 435118	Lhx8 Schip1	ENSMUSG00000028201 ENSMUSG00000027777	0.489 0.540		
chr3	50817000	50818000	417605	Slc7a11	ENSMUSG00000027777 ENSMUSG00000027737	0.973		
chr3	152572000	152573000	519262	Pigk	ENSMUSG00000039047	0.655		
chr3	159417000	159418000	526107	Rpe65	ENSMUSG00000028174	0.887		
chr3 chr3	96723000 97116000	96724000 97117000	463511 463904	Gpr89 Bcl9	ENSMUSG00000028096 ENSMUSG00000038256	0.780 0.519		
chr3	38101000	38102000	404942	DC19	ENSMUSG000000038230 ENSMUSG000000064315	0.211		
chr3	149189000	149190000	515879	Gm5149	ENSMUSG00000069803	0.979		
chr3	45185000	45186000	412022	Pcdh10	ENSMUSG00000049100	0.035		
chr3	102460000	102461000	469248	Ngf	ENSMUSG00000027859	0.781		
chr3 chr3	51629000 96493000	51630000 96494000	418417 463281	Maml3 Ankrd35	ENSMUSG00000061143 ENSMUSG00000038354	0.978 0.385		
chr3	129255000	129256000	495994	Elovl6	ENSMUSG00000041220	0.201		
chr3	44165000	44166000	411002	D3Ertd751e	A,ENSMUSG00000025766	0.990		
chr3	130507000	130508000	497246	Rpl34	ENSMUSG00000062006	0.366		
chr3 chr3	130921000 153483000	130922000 153484000	497660 520173	Lefl	ENSMUSG00000027985 ENSMUSG00000062046	0.380 0.968		
chr3	96332000	96333000	463120	Hfe2	ENSMUSG000000038403	0.566		
chr3	41372000	41373000	408209	Phf17	ENSMUSG00000025764	0.980		
chr3	68780000	68781000	435568		ENSMUSG00000046999	0.969		
chr3	63843000	63844000	430631	Gmps	ENSMUSG00000027823	0.061		
chr3 chr3	41391000 68524000	41392000 68525000	408228 435312	Phf17 Il12a	ENSMUSG00000025764 ENSMUSG00000027776	0.096 0.614		
chr3	8717000	8718000	375607	Hey1	ENSMUSG00000027770 ENSMUSG00000040289	0.014		
chr3	43890000	43891000	410727	D3Ertd751e	A,ENSMUSG00000025766	0.975		
chr3	53171000	53172000	419959	Lhfp	ENSMUSG00000048332	0.781		
chr3	51163000	51164000	417951	Elf2	ENSMUSG00000037174	0.124		
chr3 chr3	51001000 102264000	51002000 102265000	417789 469052	Slc7a11 Vangl1	ENSMUSG00000027737 ENSMUSG00000027860	0.578		
chr4	109103000	109104000	632057	Ttc39a	ENSMUSG00000027800	0.531		
chr4	71043000	71044000	594086		ENSMUSG00000061903,	1.000		
					ENSMUSG00000083914			
chr4 chr4	62267000 116947000	62268000 116948000	585310 639901	Rgs3 Tmem53	ENSMUSG00000059810 ENSMUSG00000048772	0.536 0.968		
chr4	82154000	82155000	605197	Nfib	ENSMUSG000000048772 ENSMUSG000000008575	0.614		
chr4	47445000	47446000	570636	Tgfbr1	ENSMUSG00000007613	0.968		
chr4	116828000	116829000	639782	Rps8	ENSMUSG00000047675,	0.077		
.14	112600000	112 (01000	626644	G1.1-4.5	ENSMUSG00000064457	0.655		
chr4 chr4	113690000 138656000	113691000 138657000	636644 661461	Skint5 Nbl1	ENSMUSG00000078598 ENSMUSG00000041120	0.655 0.982		
chr4	137949000	137950000	660754	Cda	ENSMUSG00000028755	0.707		
chr4	47398000	47399000	570589	Tgfbr1	ENSMUSG00000007613	0.977		
chr4	106926000	106927000	629880	Hspb11	ENSMUSG00000028617,	0.031		
-11	154374000	154375000	676931	D1-4	ENSMUSG00000063172 ENSMUSG00000029056	0.640		
chr4 chr4	116976000	116977000	639930	Pank4 Rnf220	ENSMUSG00000029036 ENSMUSG00000028677	0.640 0.473		
chr4		137308000	660112	Rap1gap	ENSMUSG00000041351	0.347		
chr4		116952000	639905	Tmem53	ENSMUSG00000048772	0.893		
chr4	138649000	138650000	661454	Nbl1	ENSMUSG00000041120	0.474		
chr4 chr4		115826000 149288000	638779 671844	Pomgnt1 Spsb1	ENSMUSG00000028700 ENSMUSG00000039911	0.984 0.584		
chr4	47014000	47015000	570205	Gabbr2	ENSMUSG00000039911 ENSMUSG00000039809	0.492		
chr4	153893000	153894000	676450	Arhgef16	ENSMUSG00000029032	0.043		
chr4		116986000	639939	Rnf220	ENSMUSG00000028677	0.602		
chr4	62847000	62848000	585890	Kif12	ENSMUSG00000028357	0.105		
chr4 chr4		141377000 119964000	664181 642917	Casp9 Foxo6	ENSMUSG00000028914 ENSMUSG00000052135	0.976 0.492		
chr4	52456000	52457000	575647	Smc2	ENSMUSG00000032133	0.472		
chr4	137218000	137219000	660023	Usp48	ENSMUSG00000043411	0.593		
chr4	46837000	46838000	570028	Gabbr2	ENSMUSG00000039809	0.344		
chr4		140222000	663026	Arhgef101 Errfi1	ENSMUSG00000040964	0.582		
chr4 chr4	150263000 46606000	150264000 46607000	672820 569797	Erm1 Coro2a	ENSMUSG00000028967 ENSMUSG00000028337	0.589 0.654		
chr4		138061000	660865	Camk2n1	ENSMUSG00000028337	0.536		
chr4	155029000	155030000	677586	Mmp23	ENSMUSG00000029061	0.178		
chr4		107244000	630197	Glis1	ENSMUSG00000034762	0.548		
chr4	150514000	150515000	673071	Camta1	ENSMUSG00000014592	0.114		
chr5 chr5	44595000 66887000	44596000 66888000	718679 740971	Prom1 Apbb2	ENSMUSG00000029086 ENSMUSG00000029207	0.606 0.972		
omb	00007000	00000000	1702/1	2 1p002	LI10111CBG00000029207	0.212		

TABLE 4-continued

TABLE 4-continued							
	E	xemplary me	thylation	sites in isolated	l/endogenous HSCs		
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC	
chr5	122493000	122494000	796432		ENSMUSG00000072641	0.994	
chr5	116454000	116455000	790393	Cit	ENSMUSG00000029516	0.706	
chr5	116427000	116428000	790366	Cit	ENSMUSG00000029516	0.614	
chr5 chr5	110977000 110987000	110978000 110988000	784951 784961	Galnt9 Galnt9	ENSMUSG00000033316 ENSMUSG00000033316	0.519 0.106	
chr5	146283000	146284000	819726	Cyp3a16	ENSMUSG00000033510	0.781	
chr5	140407000	140408000	814100	Elfn1	ENSMUSG00000048988	0.517	
chr5	151234000	151235000	824622	Fry	ENSMUSG00000056602	0.975	
chr5	66886000	66887000	740970	Apbb2	ENSMUSG00000029207	0.613	
chr5	24096000	24097000	699235	Chpf2	ENSMUSG00000038181	0.538	
chr5	140986000	140987000	814679	Chst12 Elfn1	ENSMUSG00000036599	0.516 0.514	
chr5 chr5	140449000 74283000	140450000 74284000	814142 748367	Spata18	ENSMUSG00000048988 ENSMUSG00000029155	0.514	
chr5	38746000	38747000	712830	Drd5	ENSMUSG00000039358	0.975	
chr5	125772000	125773000	799620	Ncor2	ENSMUSG00000029478	0.968	
chr5	75642000	75643000	749715	Pdgfra	ENSMUSG00000029231	0.974	
chr5	75356000	75357000	749429	Gm6116	ENSMUSG00000072874	0.380	
chr5	66444000	66445000	740528		ENSMUSG00000054598	0.975	
chr5	66141000	66142000	740225	Pds5a	ENSMUSG00000029202	0.968	
chr5 chr5	128822000 75544000	128823000 75545000	802670 749617	Glt1d1 Gsx2	ENSMUSG00000049971 ENSMUSG00000035946	0.707 0.089	
chr5	29591000	29592000	703830	Rnf32	ENSMUSG000000033340	0.968	
chr5	148458000	148459000	821851	Pan3	ENSMUSG00000029647	0.117	
chr5	135031000	135032000	808854	Clip2	ENSMUSG00000063146	0.027	
chr5	147572000	147573000	820965	Gpr12	ENSMUSG00000041468	0.971	
chr5	125751000	125752000	799599	Ncor2	ENSMUSG00000029478	0.592	
chr5	112852000	112853000	786826	Asphd2	ENSMUSG00000029348	0.516	
chr5 chr5	116048000 71808000	116049000 71809000	789987 745892	Gen111 Gabra2	ENSMUSG00000041638 ENSMUSG00000000560	0.980 0.894	
chr5	129288000	129289000	803130	Piwil1	ENSMUSG00000000300 ENSMUSG000000029423	0.657	
chr5	74256000	74257000	748340	Spata18	ENSMUSG00000029155	0.571	
chr5	8930000	8931000	684118	Abcb4	ENSMUSG00000042476	0.970	
chr5	36741000	36742000	710905	Sorcs2	ENSMUSG00000029093	0.129	
chr6	113592000	113593000	936418	Irak2	ENSMUSG00000060477	0.612	
chr6	35312000 113622000	35313000	858188	Fam180a Irak2	ENSMUSG00000047420	0.645 0.646	
chr6 chr6	93644000	93645000	936448 916470	11a.K2	ENSMUSG00000060477 ENSMUSG00000077180	0.984	
chr6	71485000	71486000	894311	Rnf103	ENSMUSG00000052656	0.976	
chr6	56967000	56968000	879793	V1rc20	ENSMUSG00000058923	0.646	
chr6	114459000	114460000	93728	5Hrh1	ENSMUSG00000053004	0.606	
chr6	52152000	52153000	874978	Hoxa3	ENSMUSG00000079560	0.894	
chr6 chr6	114167000 52140000	114168000 52141000	936993 874966	Slc6a11 Hoxa3	ENSMUSG00000030307 ENSMUSG00000079560	0.506 0.575	
chr6	120083000	120084000	942909	Ninj2	ENSMUSG000000079300 ENSMUSG000000041377	0.981	
chr6	114576000	114577000	937402	Hrh1	ENSMUSG00000053004	0.655	
chr6	91642000	91643000	914468	S1c6a6	ENSMUSG00000030096	0.974	
chr6	113892000	113893000	936718	Atp2b2	ENSMUSG00000030302	0.619	
chr6	115569000	115570000	938395	Mkrn2	ENSMUSG000000000439	0.147	
chr6	88868000 121007000	88869000	911694 943833	Tpra1	ENSMUSG00000002871 ENSMUSG00000052437	0.538	
chr6	93016000	121008000 93017000	943833	Adamts9	ENSMUSG00000032437 ENSMUSG00000030022	0.984 0.184	
chr6	55531000	55532000	878357	Adcyap1r1	ENSMUSG000000029778	0.659	
chr6	120015000	120016000	942841	Wnk1	ENSMUSG00000045962	0.612	
chr6	121857000	121858000	944683	Mug1	ENSMUSG00000059908	0.641	
chr6		120063000	942888	Ninj2	ENSMUSG00000041377	0.089	
chr6	71930000	71931000	894756	Polr1a	ENSMUSG00000049553	0.581	
chr6		113234000	936059	Cpne9	ENSMUSG00000030270 ENSMUSG00000041460	0.055 0.509	
chr6 chr6	95698000	119271000 95699000	942096 918524	Cacna2d4 Suc1g2	ENSMUSG00000041460 ENSMUSG00000061838	0.309	
chr6		119077000	941902	Cacnalc	ENSMUSG000000051331	0.980	
chr6		114479000	937304	Hrh1	ENSMUSG00000053004	0.595	
chr6	120922000	120923000	943748	Bid	ENSMUSG00000004446	0.970	
chr6	90569000	90570000	913395	S1c41a3	ENSMUSG00000030089	0.536	
chr6	37476000	37477000	860352	Creb312	ENSMUSG00000038648	0.567	
chr6	92560000 133994000	92561000	915386 956820	Prickle2 Etv6	ENSMUSG00000030020 ENSMUSG00000030199	0.622 0.275	
chr6 chr6	97236000	133995000 97237000	930820	Lmod3	ENSMUSG00000044086	0.275	
chr6	114568000	114569000	937394	Hrh1	ENSMUSG00000053004	0.587	
chr7	63706000	63707000		Oca2	ENSMUSG00000030450	0.578	
chr7		148204000		Ifitm6	ENSMUSG00000059108	0.255	
chr7	80664000	80665000		Chd2	ENSMUSG00000025788	0.973	
chr7	29529000	29530000	998369	Sars2	ENSMUSG000000070699	0.977	
chr7	120001000	150662000	1112219	Slc22a18	ENSMUSG00000000154	0.559	

TABLE 4-continued

TABLE 4-continued Exemplary methylation sites in isolated/endogenous HSCs						
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC
chr7 chr7	28261000	28262000 138082000	997101	Sertad3 Htra1	ENSMUSG00000055200 ENSMUSG00000006205	0.978 0.487
chr7	86133000	86134000		Isg20	ENSMUSG0000000039236	0.487
chr7	25919000	25920000	994759	Pou2f2	ENSMUSG000000098496	0.512
chr7	135532000	135533000	1097268	BC017158	ENSMUSG00000030780	0.575
chr7	139909000	139910000		Lhpp	ENSMUSG00000030946	0.566
chr7	64394000	64395000		Gabrg3	ENSMUSG000000055026	0.653
chr7 chr7	31251000 137155000	31252000 137156000		Nphs1 Brwd2	ENSMUSG00000006649 ENSMUSG00000042055	0.115 0.564
chr7	30000000	30001000	998840	Catsperg1	ENSMUSG00000049676	0.539
chr7	30010000	30011000	998850	Catsperg1	ENSMUSG00000049676	0.579
chr7	52120000	52121000		Pnkp	ENSMUSG00000002963	0.510
chr7	134528000 29957000	134529000 29958000	1096264 998797	Zfp747	ENSMUSG00000054381	0.968
chr7 chr7	118165000	118166000		Ggn Mrvi1	ENSMUSG00000031493 ENSMUSG00000005611	0.652 0.556
chr7	80522000	80523000		Rgma	ENSMUSG00000070509	0.541
chr7	142677000	142678000	1104363	Foxi2	ENSMUSG00000048377	0.104
chr7	26388000	26389000	995228	Ceacam2	ENSMUSG00000054385	0.968
chr7	53048000 52679000	53049000 52680000		Lmtk3 Lhb	ENSMUSG00000062044 ENSMUSG00000038194	0.658
chr7 chr7	25941000	25942000	994781	LHO	ENSMUSG000000074274	0.968 0.489
chr7	127450000	127451000		Abca14	ENSMUSG00000062017	0.969
chr7	148124000	148125000	1109781	Nlrp6	ENSMUSG00000038745	0.579
chr7	148031000	148032000		Scgb1c1	ENSMUSG00000038801	0.362
chr7	72838000	72839000		Tm2d3	ENSMUSG00000078681	0.031
chr7 chr7	36472000 52615000	36473000 52616000		Pdcd5 Ppfia3	ENSMUSG00000030417 ENSMUSG00000003863	0.213 0.525
chr7	30719000	30720000	999559	Zfp27	ENSMUSG000000062040	0.981
chr7	52128000	52129000		Ptov1	ENSMUSG00000038502	0.585
chr7	92172000	92173000		Vmn2r66	ENSMUSG00000072241	0.893
chr8	119062000	119063000		Dynlrb2	ENSMUSG00000034467	0.591
chr8 chr8	24265000 119147000	24266000 119148000		Nkx6-3 Cdyl2	ENSMUSG00000063672 ENSMUSG00000031758	0.582 0.969
chr8	18034000	18035000		Csmd1	ENSMUSG000000051736	0.781
chr8		116491000		Adamts18	ENSMUSG00000053399	0.609
chr8	119154000	119155000		Cdyl2	ENSMUSG00000031758	0.496
chr8	107998000	107999000		Tppp3	ENSMUSG00000014846	0.554
chr8 chr8	25462000 11605000	25463000 11606000		Ing1	ENSMUSG00000053979 ENSMUSG00000045969	0.186 0.969
chr8	109135000	109136000		Cdh1	ENSMUSG00000000303	0.596
chr8	117689000	117690000	1224893	Wwox	ENSMUSG00000004637	0.077
chr8	109576000	109577000		Pdf	ENSMUSG00000078931	0.971
chr8 chr8	11476000 28267000	11477000 28268000		Col4a2 Brf2	ENSMUSG00000031503 ENSMUSG00000031487	0.048 0.969
chr8	8319000		1119462	B112	ENSMUSG000000077378	0.979
chr8	109363000	109364000		Tmco7	ENSMUSG00000041949	0.581
chr8	117268000	117269000	1224472	Wwox	ENSMUSG000000004637	0.496
chr8	16794000	16795000		Csmd1	ENSMUSG00000060924	0.980
chr8 chr8	109034000 26081000	109035000 26082000		Cdh3 Adam32	ENSMUSG00000061048 ENSMUSG00000037437	0.036 0.974
chr8		117124000		Wwox	ENSMUSG000000037437 ENSMUSG000000004637	0.645
chr8		124848000		Zfpm1	ENSMUSG00000049577	0.641
chr8		117232000		Wwox	ENSMUSG00000004637	0.344
chr8		109203000		Cdh1	ENSMUSG00000000303	0.106
chr8 chr8	15029000 18751000	15030000 18752000		Kbtbd11 Angpt2	ENSMUSG00000055675 ENSMUSG00000031465	0.510 0.978
chr8	11464000	11465000		Col4a2	ENSMUSG00000031503	0.591
chr8	11421000	11422000	1122564	Col4a2	ENSMUSG00000031503	0.646
chr8		114535000		Kars	ENSMUSG00000031948	0.000
chr8	119606000	119607000		Pkd112	ENSMUSG00000034416	0.647
chr8 chr8	19090000 12467000	19091000 12468000		Defb39 Gm5607	ENSMUSG00000061847 ENSMUSG00000047935	0.795 0.532
chr8		108694000		Slc7a6	ENSMUSG000000031904	0.043
chr8		124580000		Banp	ENSMUSG00000025316	0.662
chr8		125040000		Fam38a	ENSMUSG00000014444	0.973
chr9	64478000	64479000		Megfl1	ENSMUSG00000036466	0.780
chr9 chr9	5029000 30371000	5030000 30372000		Gria4 Snx19	ENSMUSG00000025892 ENSMUSG00000031993	0.993 0.616
chr9	14477000	14478000		Amotl1	ENSMUSG000000013076	0.830
chr9	20712000	20713000		Eif3g	ENSMUSG00000070319	0.969
chr9	20548000	20549000	1256440	Olfm2	ENSMUSG00000032172	0.183
chr9	78369000	78370000		Eef1a1	ENSMUSG00000037742	0.060
chr9	71465000	71466000	130/307	Gcom1	ENSMUSG00000041361	0.588

TABLE 4-continued

Exemplary methylation sites in isolated/endogenous HSCs							
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC	
chr9	98765000	98766000	1334495		ENSMUSG00000032460	0.488	
chr9	54281000	54282000	1290123	Dmxl2	ENSMUSG00000041268	0.697	
chr9	119542000	119543000		Sen5a	ENSMUSG00000032511	0.533	
chr9	26749000	26750000		Gm1110	ENSMUSG00000079644	0.548	
chr9	27108000	27109000		Igsf9b	ENSMUSG00000034275	0.037	
chr9 chr9	100740000 3199000	100741000 3200000		Stag1	ENSMUSG00000037286 ENSMUSG00000042360	0.648 0.337	
chr9	87134000	87135000			ENSMUSG000000042300 ENSMUSG000000056919	0.970	
chr9	46251000	46252000			ENSMUSG00000056617	0.035	
chr9	107803000	107804000		Mon1a	ENSMUSG00000032583	0.242	
chr9	119441000	119442000		Exog	ENSMUSG00000042787	0.659	
chr9	23786000	23787000		Bmper	ENSMUSG00000031963	0.780	
chr9	99010000	99011000		Gm1123	ENSMUSG00000044860	0.602	
chr9	119469000	119470000		Exog	ENSMUSG00000042787	0.610	
chr9	63818000	63819000 21906000		Smad3	ENSMUSG00000032402	0.546	
chr9 chr9	21905000 86648000	86649000		Cnn1 Prss35	ENSMUSG00000001349 ENSMUSG00000033491	0.547 0.968	
chr9	60719000	60720000		1 18855	ENSMUSG00000052143	0.980	
chr9	59450000	59451000		Brunol6	ENSMUSG00000032297	0.365	
chr9	57505000	57506000		Cyp1a1	ENSMUSG00000032315	0.661	
chr9	121210000	121211000	1356866	Trak1	ENSMUSG00000032536	0.662	
chr9	11634000	11635000			ENSMUSG00000077550	0.975	
chr9	49014000	49015000		Tmprss5	ENSMUSG00000032268	0.391	
chr9	17002000	17003000		Fat3	ENSMUSG00000074505	0.602	
chr9	119508000 99371000	119509000		Scn5a	ENSMUSG000000032511	0.411 0.581	
chr9 chr9	76105000	99372000 76106000		Gfral	ENSMUSG00000046242 ENSMUSG00000059383	0.556	
chr10	85249000	85250000		Btbd11	ENSMUSG000000039363	0.655	
chr10	75416000	75417000		Vpreb3	ENSMUSG00000000903	0.616	
chr10	51662000	51663000		1	ENSMUSG00000062224	0.894	
chr10	115215000	115216000	1471759	LgrS	ENSMUSG00000020140	0.363	
chr10	83855000	83856000		Appl2	ENSMUSG00000020263	0.254	
chr10	90735000	90736000		Tmpo	ENSMUSG00000019961	0.548	
chr10		117326000		Rap1b	ENSMUSG00000052681	0.573	
chr10 chr10	75345000 85194000	75346000 85195000		Mif Btbd11	ENSMUSG00000033307 ENSMUSG00000020042	0.549 0.619	
chr10	44176000	44177000		Atg5	ENSMUSG000000038160	0.476	
chr10	76133000	76134000		Col6a2	ENSMUSG00000020241	0.588	
chr10	92841000	92842000	1449385	Elk3	ENSMUSG00000008398	0.975	
chr10	94048000	94049000		Tmcc3	ENSMUSG00000020023	0.970	
chr10	84220000	84221000		Rfx4	ENSMUSG00000020037	0.211	
chr10	118113000	118114000		Ifng	ENSMUSG00000055170	0.600	
chr10	45400000	45401000 111080000		Hacel	ENSMUSG00000038822	0.977	
chr10 chr10	111079000 92739000	92740000		Phlda1 Cdk17	ENSMUSG00000020205 ENSMUSG00000020015	0.973 0.385	
chr10	82467000	82468000		Chst11	ENSMUSG00000020013 ENSMUSG000000034612	0.107	
chr10	93294000	93295000		Usp44	ENSMUSG00000020020	0.341	
chr10	80415000	80416000	1436959	Gadd45b	ENSMUSG00000015312	0.644	
chr10	92997000	92998000	1449541	Hal	ENSMUSG00000020017	0.055	
chr10	83995000	83996000			ENSMUSG00000020033	0.337	
chr10	42742000	42743000		Scml4	ENSMUSG00000044770	0.181	
chr10	76421000	76422000	1432965	Col6a1	ENSMUSG00000001119,	0.975	
chr10	70862000	70863000	1427406	Ipmk	ENSMUSG00000078445 ENSMUSG00000060733	0.404	
chr10	44149000	44150000		Atg5	ENSMUSG00000000753	0.404	
chr10	6199000	6200000		Akap12	ENSMUSG00000038587	0.973	
chr10	115629000			Ptprr	ENSMUSG00000020151	0.604	
chr10	80291000	80292000	1436835	Oaz1	ENSMUSG00000035242	0.547	
chr10	42639000	42640000		Scml4	ENSMUSG00000044770	0.972	
chr10	83854000	83855000		Appl2	ENSMUSG00000020263	0.366	
chr10	93508000	93509000		Fgd6	ENSMUSG000000020021	0.969	
chr10 chr10	59002000 58540000	59003000 58541000		Ccdc109a Sh3rf3	ENSMUSG00000009647 ENSMUSG00000037990	0.574 0.572	
chr11	4029000	4030000		Sec1412	ENSMUSG000000037990 ENSMUSG00000003585	0.968	
chr11	45926000	45927000		Adam19	ENSMUSG000000011256	0.981	
chr11	106891000	106892000			ENSMUSG00000078607	0.494	
chr11	117984000	117985000		Dnahc17	ENSMUSG00000033987	0.649	
chr11	48650000	48651000		Trim7	ENSMUSG00000040350	0.502	
chr11	66988000	66989000		Myh2	ENSMUSG00000033196	0.986	
chr11	75765000	75766000		Rph3al	ENSMUSG00000020847	0.969	
chr11	75450000	75451000		Inpp5k	ENSMUSG00000006127	0.214	
chr11 chr11	69666000 65271000	69667000 65272000		Plscr3	ENSMUSG00000019461 ENSMUSG00000020542	0.780 0.978	
CHILI	032/1000	03272000	1346/39	Myocd	Enamoacououou20342	0.9/8	

TABLE 4-continued

	Exemplary methylation sites in isolated/endogenous HSCs							
	E	xemplary me	thylation:	sites in isolated	/endogenous HSCs			
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC		
chr11	61115000	61116000		Aldh3a2	ENSMUSG00000010025	0.524		
chr11 chr11	67489000 68767000	67490000 68768000		Gas7 Arhgef15	ENSMUSG00000033066 ENSMUSG00000052921	0.278		
chr11	3404000	3405000		Inpp5j	ENSMUSG00000032921 ENSMUSG00000034570	0.591		
chr11	69218000	69219000		Tmem88	ENSMUSG00000045377	0.968		
chr11	45870000	45871000		Adam19	ENSMUSG00000011256	0.043		
chr11	48982000	48983000	1532470	Olfr1394	ENSMUSG00000048378	0.088		
chr11	61166000	61167000		S1c47a2	ENSMUSG00000069855	0.650		
chr11	3578000		1487116	Morc2a	ENSMUSG00000034543	0.977		
chr11	96207000	96208000		Hoxb3	ENSMUSG00000048763	0.655		
chr11 chr11	121247000 32129000	121248000 32130000		Wdr451 Mpg	ENSMUSG00000025173 ENSMUSG00000020287	0.591 0.985		
chr11	70029000	70030000		Slc16a11	ENSMUSG00000040938	0.473		
chr11	69831000	69832000		Dlg4	ENSMUSG00000020886	0.516		
chr11	67611000	67612000	1551099	Dhrs7c	ENSMUSG00000033044	0.707		
chr11	61891000	61892000		Cytsb	ENSMUSG00000042331	0.027		
chr11	65240000	65241000		Myocd	ENSMUSG00000020542	0.983		
chr11	115195000	115196000		Otop2	ENSMUSG00000050201	0.143		
chr11 chr11	73078000 77698000	73079000 77699000		Trpv1 Myo18a	ENSMUSG000000005952 ENSMUSG00000000631	0.655 0.615		
chr11	17184000	17185000		C1d	ENSMUSG000000000581	0.561		
chr11	85104000	85105000		Appbp2	ENSMUSG000000018481	0.970		
chr11	58948000	58949000		Obsen	ENSMUSG00000061462	0.043		
chr11	32168000	32169000	1515706	Mare	ENSMUSG00000020289	0.610		
chr11	117062000	117063000		Sept9	ENSMUSG00000059248	0.546		
chr12	110498000	110499000		Begain	ENSMUSG00000040867	0.970		
chr12	110272000	110273000		Wdr25 Tssc1	ENSMUSG00000040877 ENSMUSG00000036613	0.616		
chr12 chr12	29768000 32516000	29769000 32517000		Gpr22	ENSMUSG00000044067	0.577		
chr12	27219000	27220000		Cmpk2	ENSMUSG000000044007 ENSMUSG000000020638	0.510		
chr12		106916000		Bdkrb1	ENSMUSG00000041347	0.985		
chr12	109577000	109578000	1711067	Cyp46a1	ENSMUSG00000021259	0.554		
chr12	71553000	71554000		Trim9	ENSMUSG00000021071	0.002		
chr12		109210000			ENSMUSG00000060375	0.565		
chr12	77414000	77415000		Mthfd1	ENSMUSG00000021048	0.984		
chr12 chr12	3366000 16075000	3367000 16076000		Kif3c Trib2	ENSMUSG00000020668 ENSMUSG00000020601	0.362 0.973		
chr12	70859000	70860000		Atp5s	ENSMUSG00000054894	0.105		
chr12	77317000	77318000		Esr2	ENSMUSG00000021055	0.516		
chr12	106372000	106373000	1707862	Glrx5	ENSMUSG00000021102	0.211		
chr12	111900000	111901000		Dync1h1	ENSMUSG00000018707	0.987		
chr12	120161000	120162000		Sp8	ENSMUSG00000048562	0.612		
chr12 chr12	12558000	12559000 110310000		Fam49a	ENSMUSG00000020589 ENSMUSG00000040867	0.554 0.132		
chr12	29483000	29484000		Begain Tssc1	ENSMUSG00000040807 ENSMUSG000000036613	0.132		
chr12	25412000	25413000		Rrm2	ENSMUSG00000020649	0.585		
chr12	25595000	25596000		Mboat2	ENSMUSG00000020646	0.984		
chr12	22990000	22991000	1625063		ENSMUSG00000073164	0.117		
chr12	41126000	41127000		Ifrd1	ENSMUSG00000001627	0.979		
chr12		105457000		Serpina3f	ENSMUSG00000066363	0.795		
chr12 chr12	70858000	70859000 109190000		Atp5s	ENSMUSG00000054894 ENSMUSG00000060375	0.160 0.527		
chr12	53846000	53847000		Akap6	ENSMUSG000000001603	0.527		
chr12	4880000	4881000		P	ENSMUSG00000051721	0.539		
chr12	72398000	72399000			ENSMUSG00000034601	0.609		
chr12		109857000		Evl	ENSMUSG00000021262	0.551		
chr12	71368000	71369000		Pygl	ENSMUSG00000021069	0.477		
chr12 chr12	74638000 35345000	74639000 35346000		Hdaan	ENSMUSG00000056359 ENSMUSG00000004698	0.588		
chr12	59370000	59371000		Hdac9 Clec14a	ENSMUSG000000045930	0.510		
chr13	59765000	59766000		Naa35	ENSMUSG000000043930 ENSMUSG000000021555	0.979		
chr13	76000000	76001000		Glrx	ENSMUSG00000021591	0.781		
chr13	38751000	38752000		Eefle1	ENSMUSG00000001707	0.343		
chr13	40990000	40991000		Gent2	ENSMUSG00000021360	0.658		
chr13	77139000	77140000		Mctp1	ENSMUSG00000021596	0.604		
chr13 chr13	49415000 56077000	49416000 56078000		Fgd3 Pitx1	ENSMUSG00000037946 ENSMUSG00000021506	0.346 0.830		
chr13	82225000	82226000		Cetn3	ENSMUSG00000021537	0.830		
chr13	55020000	55021000		Tspan17	ENSMUSG00000025875	0.510		
chr13	43483000	43484000		Sirt5	ENSMUSG00000054021	0.969		
chr13	54894000	54895000	1774463	Tspan17	ENSMUSG00000025875	0.131		
chr13	95993000	95994000		Pde8b	ENSMUSG00000021684	0.061		
chr13	56101000	56102000	1775670	Pitx1	ENSMUSG00000021506	0.664		

TABLE 4-continued

	Exemplary methylation sites in isolated/endogenous HSCs						
	E	xemplary me	thylation s	sites in isolated	1/endogenous HSCs		
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC	
chr13	86771000 53330000	86772000 53331000		Cox7c	A,ENSMUSG00000017778	0.920	
chr13 chr13	48812000	48813000		Nfil3 Barx1	ENSMUSG00000056749 ENSMUSG00000021381	0.489 0.697	
chr13	73397000	73398000		Irx4	ENSMUSG00000021581 ENSMUSG00000021604	0.036	
chr13	96324000	96325000		F2rl1	ENSMUSG00000021678	0.550	
chr13	54940000	54941000		Tspan17	ENSMUSG00000025875	0.279	
chr13	86554000	86555000	1806074	Cox7c	A,ENSMUSG00000017778	0.920	
chr13	54925000	54926000	1774494	Tspan17	ENSMUSG00000025875	0.116	
chr13	55274000	55275000		Fgfr4	ENSMUSG00000005320	0.576	
chr13	55709000	55710000		B4galt7	ENSMUSG00000021504	0.980	
chr13 chr13	100412000 73653000	100413000 73654000		Mtap1b Lpcat1	ENSMUSG00000052727 ENSMUSG00000021608	0.485 0.970	
chr13	52665000	52666000		Diras2	ENSMUSG00000021008 ENSMUSG00000047842	0.978	
chr13		117105000		Isl1	ENSMUSG00000042258	0.030	
chr13	24788000	24789000		Fam65b	ENSMUSG00000036006	0.657	
chr13	47211000	47212000	1766793	Dek	ENSMUSG00000021377	0.977	
chr13	108636000	108637000		Zswim6	ENSMUSG00000032846	0.178	
chr13	61026000	61027000		Tpbpb	ENSMUSG00000062705	0.830	
chr13	102732000	102733000		Pik3r1	ENSMUSG00000041417	0.968	
chr13	24954000	24955000 114101000		Gamle	ENSMUSG00000006711 ENSMUSG00000042385	0.619	
chr13 chr13	51526000	51527000		Gzmk S1pr3	ENSMUSG00000042383 ENSMUSG000000067586	0.971	
chr14	57183000	57184000		Rnf17	ENSMUSG00000000365	0.978	
chr14		106320000		Spry2	ENSMUSG00000022114	0.123	
chr14	105999000	106000000	1941577	1 2	ENSMUSG00000022116	0.981	
chr14	56719000	56720000		Mcpt8	ENSMUSG00000022157	0.795	
chr14	60590000	60591000		Shisa2	ENSMUSG00000044461	0.974	
chr14		111265000		Slitrk6	ENSMUSG00000045871	0.580	
chr14 chr14	81960000 70216000	81961000 70217000		Olfm4 Rhobtb2	A,ENSMUSG00000022026 ENSMUSG00000022075	0.620 0.583	
chr14	57752000	57753000		Gjb6	ENSMUSG00000022073 ENSMUSG00000040055	0.035	
chr14	32114000	32115000		Bap1	ENSMUSG00000021901	0.968	
chr14		122034000		S1c15a1	ENSMUSG00000025557	0.603	
chr14	121197000	121198000	1956775	Rap2a	ENSMUSG00000051615	0.618	
chr14	33421000	33422000		Prrxl1	ENSMUSG00000041730	0.662	
chr14	81245000	81246000		Olfm4	A,ENSMUSG00000022026	0.620	
chr14 chr14	120198000 73245000	120199000 73246000		Hs6st3 Fndc3a	ENSMUSG00000053465 ENSMUSG00000033487	0.974 0.489	
chr14	119647000	119648000		Hs6st3	ENSMUSG00000053465	0.469	
chr14	49199000	49200000		1150565	ENSMUSG00000036339	0.663	
chr14	70567000	70568000			ENSMUSG00000044551	0.492	
chr14	32461000	32462000	1868188	Btd	ENSMUSG00000021900	0.969	
chr14	121311000	121312000		IpoS	ENSMUSG00000030662	0.000	
chr14	32930000	32931000		Oxnad1	ENSMUSG00000021906	0.254	
chr14	56445000	56446000 80125000		Nfatc4	ENSMUSG00000023411	0.650	
chr14 chr14	80124000 122785000	122786000		Lect1 Clybl	ENSMUSG00000022025 ENSMUSG00000025545	0.545	
chr14	84828000	84829000		Olfm4	ENSMUSG00000023343 ENSMUSG00000022026	0.781	
chr14	58417000	58418000		Sap18	ENSMUSG00000021963	0.097	
chr14	47600000	47601000		Samd4	ENSMUSG00000021838	0.566	
chr14	47833000	47834000		Gch1	ENSMUSG00000037580	0.646	
chr14	121037000			Rap2a	ENSMUSG00000051615	0.507	
chr14		104873000		Pou4f1	ENSMUSG00000048349	0.035	
chr14 chr14	121905000 57183000	121906000 57184000		Slc15a1 Rnf17	ENSMUSG00000025557 ENSMUSG00000000365	0.357 0.978	
chr14		106320000		Spry2	ENSMUSG00000000363 ENSMUSG000000022114	0.978	
chr14	105999000	106000000		Spijz	ENSMUSG00000022114 ENSMUSG00000022116	0.123	
chr14	56719000	56720000		Mcpt8	ENSMUSG00000022157	0.795	
chr15	8666000	8667000		Slc1a3	ENSMUSG00000005360	0.031	
chr15	5586000	5587000		Ptger4	ENSMUSG00000039942	0.985	
chr15	89152000	89153000		Sbf1	ENSMUSG00000036529	0.617	
chr15	93058000	93059000		Pdzm4 Pdzd2	ENSMUSG00000036218	0.612	
chr15 chr15	12613000 11848000	12614000 11849000		Paza2 Npr3	ENSMUSG00000022197 ENSMUSG00000022206	0.894 0.706	
chr15	92836000	92837000		Pdzm4	ENSMUSG00000022200 ENSMUSG00000036218	0.700	
chr15	93229000	93230000		Pphln1	ENSMUSG00000036167	0.077	
chr15	84494000	84495000		Ldoc11	ENSMUSG00000055745	0.391	
chr15	64125000	64126000			ENSMUSG00000078299	0.979	
chr15	10965000	10966000		Slc45a2	ENSMUSG00000022243	0.620	
chr15		100963000		Acyrl1	ENSMUSG00000000530	0.567	
chr15	89231000	89232000		Odf3b	ENSMUSG00000047394	0.480	
chr15 chr15	62051000 76363000	62052000 76364000		H2afy3 Scrt1	ENSMUSG00000056590 ENSMUSG00000048385	0.535	
CH 13	10505000	7050 4 000	2007002	Selti	TT49141C9G000000040303	0.565	

TABLE 4-continued

Exemplary methylation sites in isolated/endogenous HSCs						
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC
chr15	89194000	89195000	2046913	Ncaph2	ENSMUSG00000008690	0.975
chr15	35232000	35233000	1993001	Osr2	ENSMUSG00000022330	0.097
chr15	55228000	55229000		Col14a1	ENSMUSG00000022371	0.781
chr15	12305000	12306000		Golph3	ENSMUSG00000022200	0.150
chr15 chr15	103014000 92920000	103015000		Smug1 Pdzm4	ENSMUSG00000036061	0.147
chr15	102996000	92921000 102997000		Smug1	ENSMUSG00000036218 ENSMUSG00000036061	0.214
chr15	76468000	76469000		Vps28	ENSMUSG00000062381	0.970
chr15	96238000	96239000		Arid2	ENSMUSG00000033237	0.970
chr15	103145000	103146000	2060864	Gpr84	ENSMUSG00000063234	0.578
chr15	81531000	81532000	2039250	Chadl	ENSMUSG00000063765	0.794
chr15	80282000	80283000		Cacna1i	ENSMUSG00000022416	0.502
chr15	100304000	100305000		Letmd1	ENSMUSG00000037353	0.969
chr15	60989000	60990000		Albg	ENSMUSG000000022347	0.574
chr15	62397000 86070000	62398000 86071000		H2afy3 Tbc1d22a	ENSMUSG00000056590 ENSMUSG00000051864	0.500 0.610
chr15	35317000	35318000		Vps136	ENSMUSG00000037646	0.972
chr15	84189000	84190000		Parvg	ENSMUSG00000022439	0.340
chr15	98957000	98958000		Spats2	ENSMUSG00000051934	0.036
chr15	96201000	96202000	2053920	Ârid2	ENSMUSG00000033237	0.972
chr16	72990000	72991000	2131115	Robo1	ENSMUSG00000022883	0.970
chr16	46495000	46496000		Pvrl3	ENSMUSG00000022656	0.069
chr16	44680000	44681000		Boc	ENSMUSG00000022687	0.646
chr16	69797000	69798000		Cadm2	ENSMUSG00000064115	0.580
chr16	70668000 44795000	70669000 44796000		Cd200r1	ENSMUSG00000062087 ENSMUSG00000022667	0.894 0.569
chr16	37957000	37958000		Gpr156	ENSMUSG00000022007 ENSMUSG000000046961	0.657
chr16	70376000	70377000		Gbe1	ENSMUSG000000022707	0.973
chr16	35185000	35186000		Adcy5	ENSMUSG00000022840	0.969
chr16	69612000	69613000		Cadm2	ENSMUSG00000064115	0.980
chr16	48993000	48994000	2107158	Dzip3	ENSMUSG00000064061	0.037
chr16	28517000	28518000		Fgf12	ENSMUSG00000022523	0.557
chr16	94552000	94553000		Ripply3	ENSMUSG00000022941	0.980
chr16	88506000	88507000		Grik1	ENSMUSG00000022935	0.970
chr16 chr16	37078000 38432000	37079000 38433000		Polq Popdc2	ENSMUSG00000034206 ENSMUSG00000022803	0.971 0.650
chr16	44632000	44633000		Boc	ENSMUSG00000022687	0.060
chr16	37684000	37685000		Ndufb4	ENSMUSG00000022820	0.185
chr16	93116000	93117000		Runx1	ENSMUSG00000022952	0.971
chr16	77115000	77116000	2135240	Usp25	ENSMUSG00000022867	0.980
chr16	36199000	36200000		Gm5483	ENSMUSG00000079597	0.390
chr16	35230000	35231000		Adey5	ENSMUSG00000022840	0.574
chr16	65629000	65630000		Chmp2b	ENSMUSG00000004843	0.516
chr16 chr16	95680000 44099000	95681000 44100000		Erg Gramd1c	ENSMUSG00000040732 ENSMUSG00000036292	0.000 0.969
chr16	91321000	91322000		Olig1	ENSMUSG000000030292 ENSMUSG000000046160	0.780
chr16	94342000	94343000		Sim2	ENSMUSG000000062713	0.642
chr16	96621000	96622000		Pcp4	ENSMUSG00000000159	0.608
chr16	87843000	87844000	2145968	•	ENSMUSG00000055972	0.393
chr16	91248000	91249000		Olig2	ENSMUSG00000039830	0.656
chr16	44308000	44309000		Gm608	ENSMUSG00000068284	0.482
chr16	35156000	35157000		Adcy5	ENSMUSG000000022840	0.043
chr16 chr16	95822000 77077000	95823000 77078000		Erg Usp25	ENSMUSG00000040732 ENSMUSG00000022867	0.655 0.972
chr16	48449000	48450000		Usp25 Morc1	ENSMUSG000000022652	0.972
chr17	87535000	87536000		Socs5	ENSMUSG000000022032 ENSMUSG000000037104	0.982
chr17	14106000	14107000		Gm7168	ENSMUSG00000067941	0.894
chr17	73266000	73267000		Ypel5	ENSMUSG00000039770	0.001
chr17	25014000	25015000		Hagh	ENSMUSG00000024158	0.589
chr17	49153000	49154000		Lrfn2	ENSMUSG00000040490	0.654
chr17	24950000	24951000		Hs3st6	ENSMUSG00000039628	0.524
chr17	64898000	64899000		Pja2	ENSMUSG00000024083	0.519
chr17 chr17	27336000 56616000	27337000 56617000		Ip6k3	ENSMUSG00000024210 ENSMUSG00000013236	0.522 0.588
chr17	87778000	87779000		Ptprs Ttc7	ENSMUSG00000013236 ENSMUSG00000036918	0.588
chr17	8201000		2161321	Rsph3a	ENSMUSG00000030918	0.658
chr17	29571000	29572000		Fgd2	ENSMUSG00000024013	0.985
chr17	71600000	71601000		Lpin2	ENSMUSG00000024052	0.215
chr17	25366000	25367000		Ûnkl	ENSMUSG00000015127	0.655
chr17	40678000	40679000		Crisp1	ENSMUSG00000025431	0.781
chr17	76215000	76216000		Fam98a	ENSMUSG00000002017	0.595
chr17	32967000	32968000		Zfp799	ENSMUSG00000059000	0.000
chr17	86656000	86657000	2239317	Prkce	ENSMUSG00000045038	0.660

TABLE 4-continued

			111111	TABLE 4-continued							
	Е	xemplary m	ethylation s	sites in isolated	d/endogenous HSCs						
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC					
chr17	68263000	68264000	2221173	Lama1	ENSMUSG00000032796	0.587					
chr17	32541000	32542000	2185558	Rasal3	ENSMUSG00000052142	0.968					
chr17	86148000	86149000	2239009	Six2	ENSMUSG00000024134	0.645					
chr17	86663000	86664000	2239524	Prkce	ENSMUSG00000045038	0.986					
chr17	27338000	27339000	2180355	Ip6k3	ENSMUSG00000024210	0.531					
chr17	86702000	86703000	2239563	Prkce	ENSMUSG00000045038	0.507					
chr17 chr17	31418000 88122000	31419000 88123000	2184435 2240983	Rsph1 Msh2	ENSMUSG00000024033 ENSMUSG00000024151	0.607 0.968					
chr17	69736000	69737000	2222646	Zfp161	ENSMUSG00000049672	0.970					
chr17	86358000	86359000	2239219	Six2	ENSMUSG00000024134	0.361					
chr17	87846000	87847000	2240707	Calm2	ENSMUSG00000036438	0.002					
chr17	29497000	29498000	2182514	Fgd2	ENSMUSG00000024013	0.035					
chr17	28669000	28670000	2181686		ENSMUSG00000024223	0.601					
chr17	8453000	8454000	2161573	Ccr6	ENSMUSG00000040899	0.530					
chr17	15929000	15930000	2168949	Chd1	ENSMUSG000000023852	0.893					
chr17 chr17	43106000 6988000	43107000 6989000	2196123 2160163	Cd2ap Ezr	ENSMUSG00000061665 ENSMUSG00000052397	0.659 0.510					
chr18	6345000	6346000	2251479	EZI	ENSMUSG000000032597	0.981					
chr18	64653000	64654000	2309787	Fech	ENSMUSG00000075040	0.592					
chr18	7719000	7720000	2252853	Mpp7	ENSMUSG00000057440	0.493					
chr18	82658000	82659000	2327623	Mbp	ENSMUSG00000041607	0.608					
chr18	56728000	56729000	2301862	Aldh7a1	ENSMUSG00000053644	0.184					
chr18	57189000	57190000	2302323		ENSMUSG00000024592	0.498					
chr18	66564000	66565000	2311698	Ccbe1	ENSMUSG00000046318	0.132					
chr18	81827000 24166000	81828000 24167000	2326824	Sall3	ENSMUSG00000024565	0.989					
chr18 chr18	37646000	37647000	2269300 2282780	Zfp35 Pcdhb17	ENSMUSG00000063281 ENSMUSG00000046387	0.992 0.620					
chr18	53553000	53554000	2298687	Snx24	ENSMUSG000000024535	0.968					
chr18	67296000	67297000	2312430	Gnal	ENSMUSG00000024524	0.657					
chr18	39029000	39030000	2284163	Fgf1	ENSMUSG00000036585	0.781					
chr18	11424000	11425000	2256558	Gata6	ENSMUSG00000005836	0.795					
chr18	46970000	46971000	2292104	Ap3s1	ENSMUSG00000024480	0.969					
chr18	62149000	62150000	2307283	Sh3tc2	ENSMUSG00000045629	0.980					
chr18 chr18	56754000	56755000 78135000	2301888 2323131	Potnin?	ENSMUSG00000032900	0.642 0.178					
chr18	78134000 36124000	36125000	2323131	Pstpip2 Psd2	ENSMUSG00000025429 ENSMUSG00000024347	0.178					
chr18	9472000	9473000	2254606	Ceny	ENSMUSG00000024286	0.972					
chr18	11169000	11170000	2256303	Gata6	ENSMUSG00000005836	0.558					
chr18	77108000	77109000	2322112	Smad2	ENSMUSG00000024563	0.660					
chr18	56618000	56619000	2301752	Gramd3	ENSMUSG00000001700	0.384					
chr18	66627000	66628000	2311761	Pmaip1	ENSMUSG00000024521	0.603					
chr18	12706000	12707000	2257840	Lama3	ENSMUSG00000024421	0.887					
chr18 chr18	11905000 67438000	11906000 67439000	2257039 2312572	Rbbp8	ENSMUSG00000041238 ENSMUSG00000062526	0.969 0.202					
chr18	10324000	10325000	2255458	Mppe1 Rock1	ENSMUSG00000002320 ENSMUSG000000024290	0.487					
chr18	70663000	70664000	2315797	Stard6	ENSMUSG00000079608	0.582					
chr18	13223000	13224000	2258357	Hrh4	ENSMUSG00000037346	0.490					
chr18	80559000	80560000	2325556	Keng2	ENSMUSG00000059852	0.036					
chr18	57380000	57381000	2302514	Megf10	ENSMUSG00000024593	0.978					
chr18	37424000	37425000	2282558	Pcdhb1	ENSMUSG00000051663	0.132					
chr18	12631000	12632000	2257765	Lama3	ENSMUSG000000024421	0.664					
chr18 chr19	61534000 32517000	61535000 32518000	2306668 2365055	Sgms1	ENSMUSG00000069367 ENSMUSG00000040451	0.992 0.978					
chr19	19316000	19317000	2351854	Rorb	ENSMUSG00000040431 ENSMUSG000000036192	0.780					
chr19	28813000	28814000	2361351	Glis3	ENSMUSG00000052942	0.780					
chr19	26228000	26229000	2358766	Dmrt2	ENSMUSG00000048138	0.609					
chr19	53632000	53633000	2386170	Dusp5	ENSMUSG00000034765	0.255					
chr19	53728000	53729000	2386266	Smc3	ENSMUSG00000024974	0.593					
chr19	53403000	53404000	2385941	Mxi1	ENSMUSG00000025025	0.001					
chr19	30525000	30526000	2363063	Mbl2	ENSMUSG00000024863	0.659					
chr19 chr19	47520000 53067000	47521000 53068000	2380058 2385605	Gm5098 Ins1	ENSMUSG00000078104 ENSMUSG00000035804	0.551 0.522					
chr19	53914000	53915000	2386452	Rbm20	ENSMUSG000000033804 ENSMUSG000000043639	0.322					
chr19	18952000	18953000	2351490	Trpm6	ENSMUSG00000024727	0.642					
chr19	8912000	89130002	341450	Hnmpul2	ENSMUSG00000071659	0.061					
chr19	45107000	45108000	2377645	Pdzd7	ENSMUSG00000074818	0.652					
chr19	41372000	41373000	2373910	Tm9sf3	ENSMUSG00000025016	1.000					
chr19	25488000	25489000	2358026	Kank1	ENSMUSG00000032702	0.571					
chr19	58750000	58751000	2391288	Pnlip	ENSMUSG00000046008	0.974					
chr19 chr19	53756000 46835000	53757000 46836000	2386294 2379373	Rbm20 As3mt	ENSMUSG00000043639 ENSMUSG00000003559	0.339					
chr19	55585000	55586000	2388123	Vti1a	ENSMUSG000000033339	0.974					
chr19	17507000	17508000	2350045	Rfk	ENSMUSG00000024712	0.978					
	1,00,000	1,00000		~ ~***		5.575					

TABLE 4-continued

	_			E 4-Continu		
	Е	xemplary me	thylation s	sites in isolated	/endogenous HSCs	
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC
chr19	10366000	10367000	2342904	Gm98	ENSMUSG00000036098	0.482
chr19	55149000	55150000	2387687	Adra2a	ENSMUSG00000033717	0.970
chr19	47857000	47858000			ENSMUSG00000044948	0.593
chr19	36132000	36133000		Htr7	ENSMUSG00000024798	0.130
chr19	41675000	41676000		AI606181	ENSMUSG00000074873	0.570
chr19 chr19	30565000 9018000	30566000 9019000		Mbl2	ENSMUSG00000024863 ENSMUSG00000072030	0.211 0.089
chr19	45891000	45892000		Kenip2	ENSMUSG000000072030 ENSMUSG000000025221	0.565
chr19	16673000	16674000		Gna14	ENSMUSG00000024697	0.403
chr19	53895000	53896000		Rbm20	ENSMUSG00000043639	0.617
chr19	46545000	46546000	2379083	Sufu	ENSMUSG00000025231	0.664
chr19	37765000	37766000		Cyp26c1	ENSMUSG00000062432	0.535
chr19	46399000	46400000		Psd	ENSMUSG00000037126	0.600
chr19 chrX	33836000 49967000	33837000 49968000		AI747699	ENSMUSG00000024766 ENSMUSG00000055653	0.077 0.030
chrX	78812000	78813000		Gpc3	ENSMUSG000000033033 ENSMUSG000000060673	0.590
chrX	6577000	6578000		Dgkk	ENSMUSG000000062393	0.893
chrX	35994000	35995000		Clgalt1c1	ENSMUSG00000048970	0.584
chrX	87250000	87251000	2476929	Ü	ENSMUSG00000035387	0.660
chrX	72445000	72446000			ENSMUSG00000073094	0.893
chrX	96789000	96790000		Pja1	ENSMUSG00000034403	0.104
chrX	73119000	73120000 46066000		Pls3	ENSMUSG00000016382	0.160
chrX chrX	46065000 83469000	83470000		Rbmx2 Nr0b1	ENSMUSG00000031107 ENSMUSG00000025056	0.971 0.920
chrX	153966000	153967000		Sms	ENSMUSG00000071708	0.617
chrX	7721000	7722000		Wdr13	ENSMUSG00000031166	0.420
chrX	45948000	45949000	2435786	Zfp280c	ENSMUSG00000036916	0.571
chrX	71527000	71528000	2461206	Dnase111	ENSMUSG00000019088	0.000
chrX	50266000	50267000		Phf6	ENSMUSG00000025626	0.000
chrX	35838000	35839000		Lamp2	ENSMUSG00000016534	0.561
chrX chrX	159421000 35953000	159422000 35954000		Ctps2 Mcts1	ENSMUSG000000031360 ENSMUSG00000000355	0.972 0.001
chrX	39260000	39261000		IVICISI	ENSMUSG0000000081918	0.980
chrX	7650000	7651000			ENSMUSG00000082572	0.000
chrX	37253000	37254000	2427091	Cypt14	ENSMUSG00000079618	0.780
chrX	49033000	49034000	2438871		ENSMUSG00000082968	0.031
chrX	11069000	11070000		Gm4906	ENSMUSG00000069038	0.185
chrX	48194000	48195000		TT+-+C1	ENSMUSG00000031112	0.002
chrX chrX	54306000 7459000	54307000 7460000		Htatsfl Pim2	ENSMUSG00000067873 ENSMUSG00000031155	0.002 0.972
chrX	68810000	68811000		Hmgb3	ENSMUSG000000031133	0.043
chrX	6356000	6357000		Dgkk	ENSMUSG00000062393	0.043
chrX	136406000	136407000	2525887	Morc4	ENSMUSG00000031434	0.037
chrX	133634000	133635000			ENSMUSG00000080718	0.083
chrX	12410000	12411000		Med14	ENSMUSG00000064127	0.344
chrX	91367000	91368000		Tmem28	ENSMUSG00000081055	0.117
chrX chrX	97016000 46847000	97017000 46848000		11111111128	ENSMUSG00000071719 ENSMUSG00000036198	0.069 0.069
chrX	39421000	39422000		Xiap	ENSMUSG00000036136	0.031
chrY	293000		2556276	Kdm5d	ENSMUSG00000056673	0.826
chrY	325000	326000	2556308	Kdm5d	ENSMUSG00000056673	0.784
chrY	334000		2556317		ENSMUSG00000075874	0.851
chrY	335000		2556318	T102.0	ENSMUSG00000075874	0.778
chrY chrY	456000 699000		2556439 2556682	Eif2s3y	ENSMUSG00000069049 ENSMUSG00000077793	0.818 0.959
chrY	817000		2556800	Usp9y	ENSMUSG000000077793 ENSMUSG000000069044	0.939
chrY	818000		2556801	Usp9y	ENSMUSG000000069044	0.878
chrY	917000		2556900	Usp9y	ENSMUSG00000069044	0.626
chrY	936000	937000	2556919	Usp9y	ENSMUSG00000069044	0.940
chrY	948000		2556931	Usp9y	ENSMUSG00000069044	0.820
chrY	956000		2556939	Usp9y	ENSMUSG00000069044	0.870
chrY chrY	961000 1109000	962000 1110000	2556944	Usp9y Usp9y	ENSMUSG00000069044 ENSMUSG00000069044	0.859 0.870
chrY	1126000		25571092	Usp9y Usp9y	ENSMUSG000000069044 ENSMUSG00000069044	0.870
chrY	1146000	1147000		Usp9y	ENSMUSG000000069044	0.925
chrY	1156000		2557139	Usp9y	ENSMUSG00000069044	0.725
chrY	1310000	1311000		Usp9y	ENSMUSG00000069044	0.910
chrY	1420000	1421000		Usp9y	ENSMUSG00000069044	0.910
chrY	1454000	1455000		Zfy2	ENSMUSG00000000103	0.945
chrY chrY	1460000 1464000	1461000 1465000		Zfy2 Zfy2	ENSMUSG00000000103 ENSMUSG00000000103	0.785 0.865
chrY	1537000	1538000		Zfy2 Zfy2	ENSMUSG00000000103 ENSMUSG000000000103	0.850
chrY	1617000		2557600	Zfy2	ENSMUSG000000000103	0.905
	,			J - -		

TABLE 4-continued

	Exemplary methylation sites in isolated/endogenous HSCs									
Chr.	Chr. Start	Chr. End	Name	Gene Name	EnsemblId	HSC				
chrY	1618000	1619000	2557601	Zfy2	ENSMUSG00000000103	0.870				
chrY	1664000	1665000	2557647	Zfy2	ENSMUSG00000000103	0.830				
chrY	1779000	1780000	2557762	Zfy2	ENSMUSG00000000103	0.865				
chrY	1801000	1802000	2557784	Zfy2	ENSMUSG00000000103	0.945				
chrY	1839000	1840000	2557822	Zfy2	ENSMUSG00000000103	0.900				
chrY	1840000	1841000	2557823	Zfy2	ENSMUSG00000000103	0.910				
chrY	1858000	1859000	2557841	Zfy2	ENSMUSG00000000103	0.920				
chrY	1875000	1876000	2557858	Zfy2	ENSMUSG00000000103	0.875				
chrY	1973000	1974000	2557956	Sry	ENSMUSG00000069036	0.915				
chrY	2016000	2017000	2557999	Sry	ENSMUSG00000069036	0.835				
chrY	2035000	2036000	2558018	Sry	ENSMUSG00000069036	0.935				

[0855] Induced hematopoietic stem cells are made by the hand of man by, e.g., modifying the gene expression of at least one of the factors disclosed herein of a somatic cell, a pluripotent cell, a progenitor cell or a stem cell, or by exposing any one of these cell types to at least one protein or RNA that produces at least one protein as disclosed herein. The cells can further be made by exposing them to small molecules that turn on at least one of the factors disclosed herein. In some aspects at least two, three, four, five, six, seven, or eight factors are used to make the induced hematopoietic stem cells

[0856] The induced hematopoietic stem cells as described herein differ from naturally occurring hematopoietic stem cells by both their posttranslational modification signatures and their gene expression signatures. These differences are passed along to their progeny. Therefore, also their progeny, whether clonal or differentiated, differs from the naturally occurring differentiated cells.

[0857] Induced hematopoietic stem cell as it is defined in

some aspects of all the embodiments of the invention comprise, consist essentially of or consist of cells that are functionally capable of copying themselves as well as differentiating into various cells of hematopoietic lineage. In other words, they can be defined as having multilineage potential. [0858] Induced hematopoietic stem cell is also defined as comprising a gene expression signature that differs from naturally occurring hematopoietic stem cells. One can experimentally show the difference by comparing the gene expression pattern of a naturally occurring hematopoietic stem cell to that of the induced hematopoietic stem cells. For example, the gene expression signature can differ in regard to the genes as shown in Tables 2 or 3. Therefore, in some aspects of all the embodiments of the invention, the induced hematopoietic stem cells comprise an expression signature that is about 1-5%, 5-10%, 5-15%, or 5-20% different from the expression signature of about 1-5%, 2-5%, 3-5%, up to 50%, up to 40%, up to 30%, up to 25%, up to 20%, up to 15%, or up to 10% of the genes of Tables 2 or 3.

[0859] Induced hematopoietic stem cell is further defined as comprising a posttranslational modification signature that differs from naturally occurring hematopoietic stem cells. In some embodiments, the posttranslational modification is methylation. For example, the methylation pattern of the induced hematopoietic stem cells is in some aspects about 1-5%, in some aspects 1-10%, in some aspects 5-10% different from the methylation pattern at about 1-5%, 1-10%, 5-10%, up to 50%, up to 40%, up to 30%, up to 25%, up to 20%, up to 15%, or up to 10% of the methylation sites shown

in Table 4. In some aspects, the amount of methylation in the iHSC differs from the isolated or endogenous HSCs by no more than 1%, 2%, 3%, 4% or no more than 5%, for example as compared to the amount of methylation in the example loci listed in Table 4. Other methylation sites can naturally be used as well in any comparison for differentiating the iHSCs from HSCs.

[0860] It should be understood that this invention is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such may vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention, which is defined solely by the claims.

[0861] As used herein and in the claims, the singular forms include the plural reference and vice versa unless the context clearly indicates otherwise. The term "or" is inclusive unless modified, for example, by "either." Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term "about."

[0862] All patents and other publications identified are expressly incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be used in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason. All statements as to the date or representation as to the contents of these documents is based on the information available to the applicants and does not constitute any admission as to the correctness of the dates or contents of these documents.

[0863] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as those commonly understood to one of ordinary skill in the art to which this invention pertains. Although any known methods, devices, and materials may be used in the practice or testing of the invention, the methods, devices, and materials in this regard are described herein.

[0864] Some embodiments of the invention are listed in the following paragraphs:

[0865] 1. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors encoding at least one, two, three, four, five, six, seven,

- eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612.
- [0866] 2. The HSC inducing composition of paragraph 1, wherein the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.
- [0867] 3. The HSC inducing composition of paragraph 1, wherein the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.
- [0868] 4. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors comprising:
 - [0869] a. a nucleic acid sequence encoding HLF;
 - [0870] b. a nucleic acid sequence encoding RUNX1T1;
 - [0871] c. a nucleic acid sequence encoding ZFP37;
 - [0872] d. a nucleic acid sequence encoding PBX1;
 - [0873] e. a nucleic acid sequence encoding LMO2; and
- [0874] f. a nucleic acid sequence encoding PRDM5.
- [0875] 5. The HSC inducing composition of paragraph 4, further comprising one or more of:
 - [0876] a. a nucleic acid sequence encoding PRDM16;
 - [0877] $\,$ b. a nucleic acid sequence encoding ZFP467; and
- [0878] c. a nucleic acid sequence encoding VDR.
- [0879] 6. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors comprising:
 - [0880] a. a nucleic acid sequence encoding HLF;
 - [0881] b. a nucleic acid sequence encoding RUNX1T1;
 - [0882] c. a nucleic acid sequence encoding PBX1;
 - [0883] d. a nucleic acid sequence encoding LMO2;
 - [0884] e. a nucleic acid sequence encoding PRDM5
 - [0885] f. a nucleic acid sequence encoding ZFP37;
 - [0886] g. a nucleic acid sequence encoding MYCN;
 - [0887] h. a nucleic acid sequence encoding MSI2;
 - [0888] i. a nucleic acid sequence encoding NKX2-3;
 - [0889] j. a nucleic acid sequence encoding MEIS1; and
 - [0890] k. a nucleic acid sequence encoding RBPMS.
- [0891] 7. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors comprising:
 - [0892] a. a nucleic acid sequence encoding ZFP467;
 - [0893] b. a nucleic acid sequence encoding PBX1;
 - [0894] c. a nucleic acid sequence encoding HOXB4; and
 - [0895] d. a nucleic acid sequence encoding MSI2.
- [0896] 8. The HSC inducing composition of paragraph 7, further comprising one or more of:
 - [0897] a. a nucleic acid sequence encoding HLF;
 - [0898] b. a nucleic acid sequence encoding LMO2;

- [0899] c. a nucleic acid sequence encoding PRDM16;
- [0900] d. a nucleic acid sequence encoding ZFP37.
- [0901] 9. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors comprising:
 - [0902] a. a nucleic acid sequence encoding MYCN;
 - [0903] b. a nucleic acid sequence encoding MSI2;
 - [0904] c. a nucleic acid sequence encoding NKX2-3;
 - [0905] d. a nucleic acid sequence encoding RUNX1T1.
- [0906] 10. The HSC inducing composition of paragraph 9, further comprising one or more of:
 - [0907] a. a nucleic acid sequence encoding HOXB5;
 - [0908] b. a nucleic acid sequence encoding HLF;
 - [0909] c. a nucleic acid sequence encoding ZFP467;
 - [0910] d. a nucleic acid sequence encoding HOXB3;
 - [0911] e. a nucleic acid sequence encoding LMO2; [0912] f. a nucleic acid sequence encoding PBX1;
 - [0913] g. a nucleic acid sequence encoding ZFP37;
- [0914] h. a nucleic acid sequence encoding ZFP521.
- [0915] 11. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors composition comprising:
 - [0916] a. a nucleic acid sequence encoding HOXB4;
 - [0917] b. a nucleic acid sequence encoding PBX1;
 - [0918] c. a nucleic acid sequence encoding LMO2;
 - [0919] d. a nucleic acid sequence encoding ZFP467; and
 - [0920] e. a nucleic acid sequence encoding ZFP521.
- [0921] 12. The HSC inducing composition of paragraph 11, further comprising one or more of:
 - [0922] a. a nucleic acid sequence encoding KLF12;
 - [0923] b. a nucleic acid sequence encoding HLF; and
- [0924] c. a nucleic acid sequence encoding EGR1.
- [0925] 13. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors comprising:
 - [0926] a. a nucleic acid sequence encoding MEIS1;
 - [0927] b. a nucleic acid sequence encoding RBPMS;
 - [0928] c. a nucleic acid sequence encoding ZFP37;
 - [0929] d. a nucleic acid sequence encoding RUNX1T1; and
 - [0930] e. a nucleic acid sequence encoding LMO2.
- [0931] 14. The HSC inducing composition of paragraph 13, further comprising one or more of:
 - [0932] a. a sequence encoding KLF12; and
 - [0933] b. a sequence encoding HLF;
- [0934] 15. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vectors comprising:
 - [0935] a. a nucleic acid sequence encoding ZFP37;
 - [0936] b. a nucleic acid sequence encoding HOXB4;
 - [0937] c. a nucleic acid sequence encoding LMO2; and
- [0938] d. a nucleic acid sequence encoding HLF.
- [0939] 16. The HSC inducing composition of paragraph 15, further comprising one or more of:
 - [0940] a. a nucleic acid sequence encoding MYCN;
 - [0941] b. a nucleic acid sequence encoding ZFP467;
 - [0942] c. a nucleic acid sequence encoding NKX2-3
 - [0943] d. a nucleic acid sequence encoding PBX1; and
 - [0944] e. a nucleic acid sequence encoding KLF4.

- [0945] 17. The HSC inducing compositions of any one of paragraphs 4-16, wherein the one or more expression vectors are retroviral vectors.
- [0946] 18. The HSC inducing compositions of any one of paragraphs 4-16, wherein the one or more expression vectors are lentiviral vectors.
- [0947] 19. The HSC inducing composition of paragraph 18, wherein the lentiviral vectors are inducible lentiviral vectors.
 - [0948] 20. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising: [0949] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a pro-
 - [0950] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
 - [0951] 21. The method of paragraph 20, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding PRDM16 a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR.
 - [0952] 22. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising: [0953] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM5; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MSI2; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0954] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
 - [0955] 23. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising: [0956] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0957] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
 - [0958] 24. The method of paragraph 23, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.

- [0959] 25. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:
 - [0960] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding MSI2, a nucleic acid sequence encoding NKX2-3; and a nucleic acid sequence encoding RUNX1T1; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0961] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0962] 26. The method of paragraph 25, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HOXB5; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding HOXB3; a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding ZFP37; and a nucleic acid sequence encoding ZFP521.
- [0963] 27. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:
 - [0964] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0965] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0966] 28. The method of paragraph 27, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.
- [0967] 29. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:
 - [0968] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding MEIS1; a nucleic acid sequence encoding RBPMS; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding RUNX1T1; and a nucleic acid sequence encoding LMO2; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0969] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0970] 30. The method of paragraph 29, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.

- [0971] 31. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:
 [0972] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0973] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0974] 32. The method of paragraph 31, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; and a nucleic acid sequence encoding HLF.
- [0975] 33. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising: [0976] a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding HLF; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0977] b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- [0978] 34. The method of paragraph 33, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding ZFP467; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding PBX1; and a nucleic acid sequence encoding KLF4.
- [0979] 35. The method of any one of paragraphs 20-34, wherein the somatic cell is a fibroblast cell.
- [0980] 36. The method of any one of paragraphs 20-34, wherein the somatic cell is a hematopoietic lineage cell.
- [0981] 37. The method of paragraph 36, wherein the hematopoietic lineage cell is selected from promyelocytes, neutrophils, eosinophils, basophils, reticulocytes, erythrocytes, mast cells, osteoclasts, megakaryoblasts, platelet producing megakaryocytes, platelets, monocytes, macrophages, dendritic cells, lymphocytes, NK cells, NKT cells, innate lymphocytes, multipotent hematopoietic progenitor cells, oligopotent hematopoietic progenitor cells, and lineage restricted hematopoietic progenitors.
- [0982] 38. The method of paragraph 36, wherein the hematopoietic lineage cell is selected from a multi-potent progenitor cell (MPP), common myeloid progenitor cell (CMP), granulocyte-monocyte progenitor cells (GMP), common lymphoid progenitor cell (CLP), and pre-megakaryocyte-erythrocyte progenitor cell.
- [0983] 39. The method of paragraph 36, wherein the hematopoietic lineage cell is selected from a mega-karyocyte-erythrocyte progenitor cell (MEP), a ProB cell, a PreB cell, a ProT cell, a double-negative T cell, a pro-NK cell, a pro-dendritic cell (pro-DC), pre-granulocyte/macrophage cell, a granulocyte/macrophage progenitor (GMP) cell, and a pro-mast cell (ProMC).

- [0984] 40. A method of promoting transdifferentiation of a ProPreB cell to the myeloid lineage comprising:
 - [0985] a. transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0986] b. culturing the transduced ProPreB cell in a cell media that supports growth of myeloid lineage cells, thereby transdifferentiating the ProPreB cell to the myeloid lineage.
- [0987] 41. The method of paragraph 40, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.
- [0988] 42. A method of increasing survival and/or proliferation of ProPreB cells, comprising:
 - [0989] a transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding HOXB4; a nucleic acid sequence encoding PBX1, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding ZFP521; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - [0990] b. culturing the transduced ProPreB cell in a cell media that supports growth of ProPreB cells, thereby increasing survival and/or proliferation of ProPreB cells.
- [0991] 43. The method of paragraph 42, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding KLF12; a nucleic acid sequence encoding HLF; and a nucleic acid sequence encoding EGR1.
- [0992] 44. An isolated induced hematopoietic stem cell (iHSC) produced by the method of any one of paragraphs 20-39.
- [0993] 45. A cell clone comprising a plurality of the induced hematopoietic stem cells (iHSCs) of paragraph 44.
- [0994] 46. The cell clone of paragraph 45, further comprising a pharmaceutically acceptable carrier.
- [0995] 47. A kit for making induced hematopoietic stem cells (iHSCs) comprising the HSC inducing compositions comprising one or more expression vector components of any one of paragraphs 1-19.
- [0996] 48. An induced pluripotent stem cell.
- [0997] 49. An induced hematopoietic stem cell induced by contacting a somatic cell, a pluripotent cell, a progenitor cell or a stem cell with at least one of the factors selected from the group consisting of nucleic acid encoding a gene encoding CDKN1C, DNMT3B, EGR1, ETV6, EV11, GATA2, GF11B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15,

- VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612 or a protein encoded by such gene.
- [0998] 50. The induced hematopoietic stem cell of paragraph 49, wherein the at least one factor is selected from the group consisting of HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.
- [0999] 51. The induced hematopoietic stem cell of paragraph 49, wherein the at least one factor is selected from the group consisting of HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.
- [1000] 52. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least two of the factors.
- [1001] 53. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least three of the factors.
- [1002] 54. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least three of the factors.
- [1003] 55. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least four of the factors.
- [1004] 56. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least five of the factors.
- [1005] 57. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least six of the factors.
- [1006] 58. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least seven of the factors.
- [1007] 59. The induced hematopoietic stem cell of any of paragraphs 49-51, wherein the somatic cell, the pluripotent cell, the progenitor cell or the stem cell is contacted with at least eight of the factors.
- [1008] 60. The induced hematopoietic stem cell of any of paragraphs 49-59, comprising at least one vector.
- [1009] 61. The induced hematopoietic stem cell of paragraph 60, wherein the vector is integrated in the genome of the stem cell.
- [1010] 62. The induced hematopoietic stem cell of any of paragraphs 49-61, wherein the somatic cell is a fibroblast cell.
- [1011] 63. The induced hematopoietic stem cell of any of paragraphs 49-61, wherein the somatic cell is a hematopoietic lineage cell.
- [1012] 64. The induced hematopoietic stem cell of paragraph 63, wherein the hematopoietic lineage cell is selected from promyelocytes, neutrophils, eosinophils, basophils, reticulocytes, erythrocytes, mast cells, osteoclasts, megakaryoblasts, platelet producing megakaryocytes, platelets, monocytes, macrophages, dendritic cells, lymphocytes, NK cells, NKT cells, innate lymphocytes, multipotent hematopoietic progenitor cells, oligopotent hematopoietic progenitor cells, and lineage restricted hematopoietic progenitors.

- [1013] 65. The induced hematopoietic stem cell of paragraph 63, wherein the hematopoietic lineage cell is selected from a multi-potent progenitor cell (MPP), common myeloid progenitor cell (CMP), granulocytemonocyte progenitor cells (GMP), common lymphoid progenitor cell (CLP), and pre-megakaryocyte-erythrocyte progenitor cell.
- [1014] 66. The induced hematopoietic stem cell of paragraph 63, wherein the hematopoietic lineage cell is selected from a megakaryocyte-erythrocyte progenitor cell (MEP), a ProB cell, a PreB cell, a PreProB cell, a ProT cell, a double-negative T cell, a pro-NK cell, a pro-dendritic cell (pro-DC), pre-granulocyte/macrophage cell, a granulocyte/macrophage progenitor (GMP) cell, and a pro-mast cell (ProMC).
- [1015] 67. The induced hematopoietic cell of any of paragraphs 49-61, wherein the stem cell is an embryonic stem cell or a progeny thereof
- [1016] 68. The induced hematopoietic cell of any of paragraphs 49-61, wherein the stem cell is an induced pluripotent stem cell or a progeny thereof
- [1017] 69. An induced hematopoietic stem cell induced by increasing or inducing in a somatic cell, a pluripotent cell, a progenitor cell or a stem cell the expression of at least one of the factors selected from the group consisting of nucleic acid encoding a gene encoding CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612.
- [1018] 70. The induced hematopoietic stem cell of paragraph 69, wherein the increasing or inducing is performed by contacting the somatic cell, the pluripotent cell, the progenitor cell or the stem cell with at least one small molecule capable of increasing or inducing the expression of at least one of the factors of paragraph 69.
- [1019] 71. An induced hematopoietic stem cell made by any one of the methods of paragraphs 20-43.
- [1020] 72. A clone or progeny of any of the induced hematopoietic stem cells of paragraphs 48-71.
- [1021] 73. A differentiated progeny cell differentiated from any of the induced hematopoietic stem cells of paragraphs 48-72.
- [1022] 74. A hematopoietic stem cell (HSC) inducing composition comprising modified mRNA sequences encoding at least one, two, three, four, five, six, seven, eight, or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, and ZFP612, wherein each cytosine of each said modified mRNA sequence is a modified uracil, or a combination thereof
 - [1023] 75. The HSC inducing composition of paragraph 74, wherein the at least one, two, three, four, or more

- HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.
- [1024] 76. The HSC inducing composition of paragraph 74, wherein the at least one, two, three, four, or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5
- [1025] 77. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1026] a. a modified mRNA sequence encoding HLF;[1027] b. a modified mRNA sequence encoding RUNX1T1;
 - [1028] c. a modified mRNA sequence encoding ZFP37;
 - [1029] d. a modified mRNA sequence encoding PBX1;
 - [1030] e. a modified mRNA sequence encoding LMO2; and
 - [1031] f. a modified mRNA sequence encoding PRDM5;
 - [1032] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1033] 78. The HSC inducing composition of paragraph 77, further comprising one or more of:
 - [1034] a. a modified mRNA sequence encoding PRDM16;
 - [1035] b. a modified mRNA sequence encoding ZFP467; and
 - [1036] c. a modified mRNA sequence encoding VDR;
 - [1037] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1038] 79. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1039] a. a modified mRNA sequence encoding HLF;[1040] b. a modified mRNA sequence encoding RUNX1T1;
 - [1041] c. a modified mRNA sequence encoding PBX1;
 - [1042] d. a modified mRNA sequence encoding LMO2;
 - [1043] e. a modified mRNA sequence encoding PRDM5
 - [1044] f. a modified mRNA sequence encoding ZFP37;
 - [1045] g. a modified mRNA sequence encoding MYCN;
 - [1046] h. a modified mRNA sequence encoding MSI2;
 - [1047] i. a modified mRNA sequence encoding NKX2-3;
 - [1048] j. a modified mRNA sequence encoding MEIS1; and
 - [1049] k. a modified mRNA sequence encoding RBPMS;
- [1050] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof

- [1051] 80. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1052] a. a modified mRNA sequence encoding ZFP467;
 - [1053] b. a modified mRNA sequence encoding PBX1;
 - [1054] c. a modified mRNA sequence encoding HOXB4; and
 - [1055] d. a modified mRNA sequence encoding MSI2;
- [1056] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1057] 81. The HSC inducing composition of paragraph 80, further comprising one or more of:
 - [1058] a. a modified mRNA sequence encoding HLF;[1059] b. a modified mRNA sequence encoding LMO2;
 - [1060] c. a modified mRNA sequence encoding PRDM16; and
 - [1061] d. a modified mRNA sequence encoding ZFP37.
- [1062] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1063] 82. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1064] a. a modified mRNA sequence encoding MYCN:
 - [1065] b. a modified mRNA sequence encoding MSI2;
 - [1066] c. a modified mRNA sequence encoding NKX2-3; and
 - [1067] d. a modified mRNA sequence encoding RUNX1T1:
- [1068] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1069] 83. The HSC inducing composition of paragraph 82, further comprising one or more of:
 - [1070] a. a modified mRNA sequence encoding HOXB5;
 - [1071] b. a modified mRNA sequence encoding HLF;
 - [1072] c. a modified mRNA sequence encoding ZFP467:
 - [1073] d. a modified mRNA sequence encoding HOXB3;
 - [1074] e. a modified mRNA sequence encoding LMO2;
 - [1075] f. a modified mRNA sequence encoding PBX1;
 - [1076] g. a modified mRNA sequence encoding ZFP37; and
 - [1077] h. a modified mRNA sequence encoding ZFP521;
- [1078] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof

- [1079] 84. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1080] a. a modified mRNA sequence encoding HOXB4;
 - [1081] b. a modified mRNA sequence encoding PBX1;
 - [1082] c. a modified mRNA sequence encoding LMO2:
 - [1083] d. a modified mRNA sequence encoding ZFP467; and
 - [1084] e. a modified mRNA sequence encoding ZFP521;
- [1085] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1086] 85. The HSC inducing composition of paragraph 84, further comprising one or more of:
 - [1087] a. a modified mRNA sequence encoding KLF12:
 - [1088] b. a modified mRNA sequence encoding HLF; and
 - [1089] c. a modified mRNA sequence encoding EGR;
- [1090] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1091] 86. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1092] a. a modified mRNA sequence encoding MEIS1;
 - [1093] b. a modified mRNA sequence encoding RBPMS;
 - [1094] c. a modified mRNA sequence encoding ZFP37;
 - [1095] d. a modified mRNA sequence encoding RUNX1T1; and
 - [1096] e. a modified mRNA sequence encoding LMO2.
- [1097] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1098] 87. The HSC inducing composition of paragraph 86, further comprising one or more of:
 - [1099] a. a modified mRNA sequence encoding KLF12; and
 - [1100] b. a modified mRNA sequence encoding HLF;
- [1101] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1102] 88. A hematopoietic stem cell (HSC) inducing composition comprising:
 - [1103] a. a modified mRNA sequence encoding ZFP37;
 - [1104] b. a modified mRNA sequence encoding HOXB4;
 - [1105] c. a modified mRNA sequence encoding LMO2; and
 - [1106] d. a modified mRNA sequence encoding HLF;

- [1107] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1108] 89. The HSC inducing composition of paragraph 88, further comprising one or more of:
 - [1109] a. a modified mRNA encoding MYCN;
 - [1110] b. a modified mRNA encoding ZFP467;
 - [1111] c. a modified mRNA encoding NKX2-3
 - [1112] d. a modified mRNA encoding PBX1; and
 - [1113] e. a modified mRNA encoding KLF4;
- [1114] wherein each cytosine of each said modified mRNA sequence is a modified cytosine, each uracil of each said modified mRNA sequence is a modified uracil, or a combination thereof
- [1115] 90. The HSC inducing compositions of any one of paragraphs 74-89, wherein the modified cytosine is 5-methylcytosine and the modified uracil is pseudouracil.
- [1116] 91. The HSC inducing compositions of any one of paragraphs 74-90, wherein the modified mRNA sequences comprise one or more nucleoside modifications selected from the group consisting of pyridin-4one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methylpseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-2-thio-5-methyl-cytidine, cytidine. 4-thiopseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine, 7-deaza-8aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine, inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine,

7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine, and combinations thereof

[1117] 92. A kit for making induced hematopoietic stem cells (iHSCs) comprising the HSC inducing compositions comprising modified mRNA sequence components of any one of paragraphs 74-91.

EXAMPLES

[1118] HSC reprogramming necessitates imparting both self-renewal potential and multi-lineage capacity onto otherwise non-self-renewing, lineage-restricted cells. Induced HSCs must also be able to interact with the stem cell niche in order to sustain productive hematopoiesis, and be able to regulate long periods of dormancy (quiescence) and yet retain the capacity to generate downstream progenitors when called into cycle. The approaches described herein permit transducing committed cells with cocktails of lentiviruses bearing multiple transcriptional factors and permit efficient combinatorial screening of thousands of combinations of these factors. Moreover, the in vivo transplantation approaches described herein, in which stem cell functional potential to be imparted onto downstream progenitors is screened, allows even rare reprogramming events to be identified due to the inherent self-selecting nature of the assay system: only cells reprogrammed to functional HSCs will be able to contribute to long-term multi-lineage reconstitution, whereas cells that are not reprogrammed will only contribute to transient reconstitution of specific lineages upon transplantation (depending upon which progenitor is used). It has been recognized that one of the challenges to reprogramming mature cells is that they are inherently stable. This is, however, not necessarily true of the populations we will first attempt to reprogram which include multi-potent, oligo-potent, and lineage-restricted progenitors in the process of differentiation. Moreover, progenitors that are developmentally proximal to HSCs are likely to be more epigenetically related and therefore more permissive to reprogramming to an induced stem cell fate. At the same time clinical translation of blood cell reprogramming to HSCs may benefit most from an ability to reprogram differentiated cell types that can be readily obtained from the peripheral blood of patients.

[1119] Identification of candidate genes that mediate HSC reprogramming necessitates a detailed knowledge not only of the gene expression profile of HSCs, but also of all downstream hematopoietic progenitor and effector cells. Towards this, we have undertaken a microarray expression profiling approach in which we compared expression profiles of highly purified HSCs to the majority of downstream cell types involved in hematopoietic differentiation (FIG. 1). Microarray analysis was performed as previously described. In total, 248 expression profiles from 40 populations were generated and compiled including unpublished and published data, in addition to datasets carefully curated from available databases (FIG. 1). All datasets were subjected to stringent quality control using the ArrayQualityMetrics package of R/Bioconductor, and data not meeting these standards were discarded. Unsupervised hierarchical clustering analysis of normalized data showed that lineal relationships and the hierarchical structure of the hematopoietic hierarchy could be recapitulated confirming the biological robustness of the data.

[1120] Although expression datasets of selected hematopoietic populations have been published, the dataset we have generated, and described herein, represents the most comprehensive database of the molecular attributes of hematopoiesis from stem cells through to effector cells available. Using this database we are readily able to identify genes specifically expressed in any hematopoietic cell type (FIG. 3). Analysis of such cell type-specific gene lists indicates that functionally important genes can be identified.

[1121] To clone HSC-enriched TFs, a cDNA library we generated from FACS purified HSCs is used, which allow cloning of splice variants that uniquely operate in HSCs. Consistent with this we have cloned splice variants for Nkx2-3, Msi2, Runx1, and Prdm16 and Zfp467 that are either minor variants, or have not been previously reported. To date, we have successfully cloned these TFs and confirmed their integrity by sequencing.

[1122] To test the viability of the approaches described herein for identifying HSC reprogramming factors, experiments were conducted in which progenitors were transduced with 22 individual TFs and evaluated by the phenotypic and functional assays detailed above. To show one example, enforced expression of HLF in MPPs (ckit+Sca1+lin-flk2+ CD34⁺CD150⁻CD48⁺) or myeloid progenitors (ckit⁺Sca1⁻ lin⁻CD150⁻CD48⁺) was able to endow a significant fraction of the transduced cells with a primitive CD150+lin-surface phenotype (consistent with primitive stem/progenitor cells) over a time course of ex vivo culturing. After 30 days in culture in the presence of Dox, the cells were cytospun and stained, which revealed that the HLF-transduced cultures contained multiple cell types including megakaryocytes, macrophages, granulocytes and progenitor cells, whereas control cultures contained only macrophages. Functional evaluation in serial CFC assays showed that HLF conferred extensive self-renewal potential onto all progenitors tested. Examination of colony composition at each successive plating revealed that HLF expression led to diverse colony types including primitive CFU-GEMM. Importantly, withdrawal of Dox led to loss of both self-renewal and multi-lineage potential indicating that HLF (not insertional mutagenesis) was responsible for functional activity. Multiple independent experiments have confirmed these results. In vivo assays were then performed that demonstrated that HLF was able to endow long-term multi-lineage potential onto otherwise short-term reconstituting MPPs in transplantation assays.

[1123] FACS sorted progenitors from Rosa26-rtTA donors are transduced with cocktails of TF-bearing lentiviruses at multiplicities of infection intended to deliver multiple different viruses to individual cells. Assuming equivalence of viral titers, independence of infection, and viral titers sufficient for infecting 20% of the cells by each virus, we have calculated that to be reasonably confident of transducing each cell with at least 3 different viruses (3,276 permutations for 28 factor transductions) requires transduction of 4×10⁴ cells. This calculation does not take into account cells that are infected with more than 3 viruses, although cells transduced with more viruses can occur and may be required for reprogramming Since tens or even hundreds of thousands of downstream hematopoietic progenitors can readily be sorted from a single donor mouse, high numbers of cells can be transduced in

order to maximize the chance that one or more cells is transduced with a combination of factors capable of re-establishing the stem cell state.

[1124] Different progenitor populations can be more or less amenable to reprogramming depending upon their epigenetic state and developmental proximity to HSCs. To account for this and to maximize our chances of success, FACS purified multi-potent, oligo-potent and lineage-restricted progenitors from all branches of the hematopoietic hierarchy including MPPflk2⁻, MPPflk2⁺, CLPs, Pro-B cells, Pro-T cells, CMPs, MEPs, and GMPs have been used in different experiments. Transduced progenitors (CD45.2) are transplanted into irradiated congenic (CD45.1) recipients along with a radio-protective dose of CD45.1 marrow cells to ensure survival of recipients. As noted, the lentiviral system being used is Doxinducible, and doxycycline is administered to transplanted mice for a period of 1-4 weeks post-transplant as this should be long enough to reprogram even the most distal blood cells to HSCs. In contrast, reprogramming of blood cells to induced pluripotency takes 3 to 4 weeks.

[1125] Transplant recipients were evaluated at 4-week intervals for 24 weeks by peripheral blood analysis staining for donor-derived B-cells, T-cells and granulocytes/monocytes. Control transduced or unsuccessfully reprogrammed progenitor cells are expected to transiently reconstitute specific lineages, whereas cells successfully reprogrammed to an induced stem cell state are identified by their ability to support long-term multi-lineage reconstitution in primary recipients. In this way, the approaches described herein have a strong selection criteria for identifying reprogramming factors. Importantly, if the induced HSCs generated using the compositions and methods described herein function as endogenous HSCs do, then even the presence of a small number of induced HSCs should read out in this assay system as single HSCs can read out and be detected in transplantation assays. Thus, even if the efficiency of reprogramming is low, induced HSCs can still be identified.

[1126] To control for unintentional transplantation of contaminating HSCs from our progenitor sorts being identified as false positives, sorted progenitors were transduced with control virus and transplanted alongside test recipients. Definitive demonstration that downstream cells can be reprogrammed to HSCs can achieved when progenitors that have undergone V(D)J recombination such as Pro-B cells are used as the starting cell type, as described herein, since all blood cells derived from such induced HSCs will have, and can be screened for the recombined locus, and this can serve as a "bar code" for identifying iHSCs.

[1127] The in vivo strategies described herein are designed to screen the potential of thousands of combinations of TFs for the ability to affect reprogramming. However, since cells transfected with multiple viruses are being screened, additional steps are necessary to determine which TFs mediated activity in successful reprogramming experiments. To achieve this, donor-derived granulocytes from recipients exhibiting stable long-term multi-lineage reconstitution can be FACS sorted, DNA extracted, and TFs cloned out by factor specific PCR, as demonstrated herein. Granulocytes are used since they are short-lived and their continued production results from ongoing stem cell activity. Primer pairs for each TF have been designed and tested, as described herein.

[1128] Experiments were performed to determine the minimum complement of TFs required for reprogramming, as described herein. Removing individual TFs from subsequent

transduction/transplantation experiments and then assaying for loss of reprogramming ability achieves this, as shown herein. Once a minimal set of TFs capable of reprogramming a given progenitor was determined, whether the same set of factors is also able to mediate reprogramming of different blood lineages can be tested, as described herein. Experiments have been carried out using different oligo-potent progenitor cells, and depending upon the success of these experiments, terminal effector blood cells including B-cells, T-cells, and monocyte/macrophages are tested.

[1129] A key issue related to all reprogramming studies is the efficiency with which reprogramming can be affected. To determine this, limited dilution transplantation experiments were performed with blood cells transduced with validated reprogramming factors. To do this effectively, a polycistronic lentivirus containing the core complement of reprogramming factors is constructed. Use of such a polycistronic virus is important to ensure that all cells are transduced with all factors thereby allowing an accurate determination of limit dilution frequency, and by extension, reprogramming efficiency. Primary purified HSCs are used as a control in these experiments.

[1130] In some embodiments of the compositions, methods, and kits described herein, the nucleic acid sequences encoding the HSC inducing factor(s), such as HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS, are introduced or delivered using one or more inducible lentiviral vectors. Control of expression of HSC inducing factors delivered using one or more inducible lentiviral vectors can be achieved, in some embodiments, by contacting a cell having at least one HSC inducing factor in an expression vector under the control of or operably linked to an inducible promoter, with a regulatory agent (e.g., doxycycline) or other inducing agent. When using some types of inducible lentiviral vectors, contacting such a cell with an inducing agent induces expression of the HSC inducing factors, while withdrawal of the regulatory agent inhibits expression. When using other types of inducible lentiviral vectors, the presence of the regulatory agent inhibits expression, while removal of the regulatory agent permits expression. As used herein, the term "induction of expression" refers to the expression of a gene, such as an HSC inducing factor encoded by an inducible viral vector, in the presence of an inducing agent, for example, or in the presence of one or more agents or factors that cause endogenous expression of the gene in a cell.

[1131] In some embodiments of the aspects described herein, a doxycycline (Dox) inducible lentiviral system is used. Unlike retroviruses, lentiviruses are able to transduce quiescent cells making them amenable for transducing a wider variety of hematopoietic cell types. For example, the pHAGE2 lentivirus system has been shown to transduce primary hematopoietic progenitor cells with high efficiency. This vector also carries a reporter cassette (IRES Zs-Green) that enables evaluation of viral transduction efficiencies and purification of transduced cells by FACS. The ability to inducibly turn off introduced transcription factors, as demonstrated herein, is important since the HSC-enriched expression pattern of these TFs indicates their continued enforced expression in induced HSCs can impair differentiation to all lineages. Having an inducible system also allows ascertainment of the stability of the reprogrammed state and assess the establishment and fidelity of HSC transcriptional programs and epigenetic marks once enforced expression of reprogramming factors is lifted.

[1132] As demonstrated herein, the use of polycistronic viral expression systems can increase the in vivo reprogramming efficiency of somatic cells to iHSCs. Accordingly, in some embodiments of the aspects described herein, a polycistronic lentiviral vector is used. In such embodiments, sequences encoding two or more of the HSC inducing factors described herein, are expressed from a single promoter, as a polycistronic transcript. Polycistronic expression vector systems use internal ribosome entry sites (IRES) elements to create multigene, or polycistronic, messages. IRES elements are able to bypass the ribosome scanning model of 5'-methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988). IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, thus creating polycistronic messages. By virtue of the IRES element, each open reading frame is accessible to ribosomes for efficient translation. Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message. See, for example, U.S. Pat. Nos. 4,980,285; 5,925,565; 5,631,150; 5,707,828; 5,759,828; 5,888,783; 5,919,670; and 5,935,819; and Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Press (1989).

[1133] The experiments described herein indicate that the approaches described herein are a viable approach to affect HSC reprogramming. As described herein, purified MPPs (ckit+Sca1+lin-flk2+CD34+CD150-) transduced with control, or a pool of 17 different TF viruses were transplanted into irradiated congenic recipients. As expected, MPPs transduced with control virus gave rise to long-lived B- and T-cells but their myeloid lineage potential was quickly extinguished by 8 weeks post-transplant consistent with the fact that MPPs do not self-renew. MPPs transduced with the 17-factor cocktail however gave rise to long-term myeloid, B- and T-cell reconstitution in recipient mice, indicating successful reprogramming of these progenitors to an induced HSC fate. The fact that all transplant recipients in this experiment were multi-lineage reconstituted indicates that reprogramming was not a rare event.

[1134] To rigorously test multi-potency and self-renewal, induced HSCs are FACS purified from the bone marrow (BM) of primary transplant recipients 4 months post-transplant by stringent cell surface criteria, as described herein. These cells are serially transplanted at varying doses (10, 50, 250 cells) into secondary (2°) recipients (along with radio-protective BM cells), to gauge their functional potential in comparison to endogenous, unmanipulated HSCs. Peripheral blood analysis of recipients is performed at monthly intervals for 4 months to evaluate multi-potency and long-term-self renewal. In addition, 3° and 4° transplants can be performed to establish the absolute replicative capacity of induced HSCs. BM analysis 4 months post-transplant of 1° and 2° recipients is done to determine the extent to which induced HSCs reconstitute the primitive stem cell compartment. At the same time, donor-derived myeloid, thrombo-erythroid, and lymphoid progenitor compartments are quantified to evaluate the ability of induced HSCs to give rise to different progenitor compartments.

[1135] Single HSCs that are rigorously purified are able to reconstitute irradiated recipients at a frequency of about 40%

of transplant recipients. To clonally evaluate induced HSCs, single reprogrammed HSCs are sorted from the BM of primary recipients and transplanted into irradiated secondary recipients along with radio-protective BM cells, as described herein. Peripheral blood analysis of donor-chimerism is done as described above to evaluate the functional capacity of individual clones. CFC activity in methylcellulose is also used to assess clonal ability of induced HSCs. Purified unmanipulated HSCs are used as controls in these assays.

[1136] To examine the fidelity of reprogramming at the molecular level, donor-derived induced HSCs can be FACS purified from the BM of recipient mice 4 months post-transplant, as described herein, and RNA extracted, and microarray analysis performed as described. Resulting data is normalized to our hematopoietic expression database and unsupervised hierarchical clustering analysis is performed to determine the extent to which induced HSCs recapitulate the molecular signature of endogenous HSCs, as described herein. qRT-PCR analysis is performed to confirm the integrity of the microarray data as described.

[1137] Finally, stringent evaluation of reprogramming at the molecular level is best achieved by determining how faithfully epigenetic marks are re-established. To examine this, sorted induced HSCs and endogenous HSCs are subjected to genome-wide methylation analysis using reduced representation bi-sulfite deep sequencing, which provides nucleotide level resolution of CpG methylation status at genome scale.

[1138] As described herein, we have employed doxycycline to achieve relatively high levels of expression of individual TFs as measured by qRT-PCR, and reporter activity. However, successful reprogramming can require expression levels to be within a certain range. In consideration of this, doxycycline can be titered to achieve different levels of expression. Lentiviral integration can inadvertently activate genes contributing to reprogramming and in such a way confound interpretations regarding the reprogramming activity of introduced TFs. Subsequent validation experiments however can be designed to control for this.

[1139] An important consideration for the compositions and methods described herein is that induced HSCs must be capable of homing to and occupying a suitable niche to mediate long-term multi-lineage reconstitution. Transplanting transduced progenitors cells into lethally irradiated recipients can enable this homing, since irradiation acts, at least in part, to clear endogenous HSCs from their bone marrow niche facilitating occupancy by transplanted HSCs. Further, since HSCs have the ability to exit their niches, circulate, and then re-home to niches in the normal course of their biology, induced HSCs should be capable of homing to, and establishing residency in a productive niche. However, should induced HSCs fail to properly engraft within the bone marrow, alternative strategies of direct intra-femoral injection can be applied to directly deposit transduced progenitors into the bone marrow of irradiated recipients. Alternatively, co-transduction with Cxcr4, a critical HSC homing receptor can be used to facilitate proper homing of induced HSCs.

[1140] The inducible TF expression in the systems described herein require the presence of doxycycline (Dox) and the tet-transactivator, rtTA. Towards this, an rtTA lentivirus has been cloned that can be co-transduced with the TF containing viruses. We have also obtained a transgenic strain in which rtTA is constitutively expressed from the Rosa26 locus. Using cells isolated from these mice obviates the need

for rtTA co-transduction. All viruses are titered using Jurkat cells. Experiments show that high titer viruses can be generated that routinely transduce purified hematopoietic progenitors with high efficiency (50-90%), and that the system is tightly Dox-inducible in vivo.

[1141] HSC inducing factors capable of reprogramming progenitors to an HSC state can be capable of introducing phenotypic properties of HSCs onto transduced progenitors through continued enforced expression. To evaluate this, TF-transduced progenitors were monitored for markers associated with HSCs by flow cytometry during ex vivo culturing. Experiments can first be conducted using single TF-transductions, followed by experiments in which TFs are co-transduced. For these experiments FACS purified progenitors are transduced for 2 days with virus followed by resorting the

transduced cells (Zs-Green positive). 200-500 cells are seeded into wells for culturing in an HSC supportive media. Flow cytometry is performed at weekly intervals for a month Immunostaining of cells can be performed with antibodies for CD150, and lineage markers (cocktail of antibodies against differentiated cells) since these have been shown to be reliable for HSC identification under diverse conditions. Transcription factors scoring positively with these markers can be examined using additional HSC markers including Sca1, CD48, CD105 and CD20127. On day 30, cultures are cytospinned, stained (May-Grunwald), and cell types scored. [1142] Depending upon which starting cell is being reprogrammed, in some embodiments, it can be required to knockdown lineage specific factors to convert downstream progenitors back to an induced HSC fate, such as, for example when using B-lineage committed cells.

TABLE 5

P:	rimer Sequences Used For	Reverse	Cloning of HSC Induci	ng Factor	s
Factor	5' Primer	SEQ ID NO:	3' Primer	SEQ ID NO:	Size
Hoxb5	CCTGTCCTCGCCCGAGTCCCT GCC	94	CGTCGCCGCCGGGTCAGG TAGCGATTG	131	465
Rarb	CTCGTCCCGAGCCCACCATC TCCACTTCCTCC	95	GCAAAGGTGAACACAAG GTCAGTCAGAGG	132	696
Ndn	CAACAACCGTATGCCCATGA CAGG	96	CATCCTCTTCTGGTCCTTC ACCAAC	133	275
Evi1	GGAGGTGGGATGGAGGGAA TCCTTG	97	CAATTTCATCGGGAACAG CAACCATG	134	313
Nap1l3	GGGAAATTGAAGTCCAGCCA AGAGTG	98	CTGCACCCGATTTCTTACG GCTTG	135	1000
Mycn	CCCGGTGAACAAGCGAGAGT CGGCGTC	99	GTTGACGCTCCAGGATGT TGTGGTTG	136	385
Meis1	GCATGGGTTCCTCGGTCAAT GACG	100	GTCCTTATCAGGGTCATC ATCGTC	137	622
Hlf	GCGCCCTCGGTCATGGATCT CAGC	101	CCATGTTGTTCTTTCTGCG CCTCGCCC	138	354
Rbpms	GACCCTATTTGTCAGCGGTC TGCCTC	102	GAAAGCGGCAGGAGGAG GAAGAGC	139	432
Msi2	CTCCAGAGGCTTCGGTTTCG TCAC	103	CTGCCATAGGTTGCCACA AAGTTG	140	503
Irf6	GTGGAGACCGGAAAGTACCA GGAAGG	104	GTTTGCCCATACTCCTTCC CACGATAC	141	535
Prdm16	GGAGGCCGACTTTGGATGGG AGCAG	105	CTTCTCGTTGGTGATATGC TCTGGACCTG	142	510
Zfp467	GGATGGGTTCAGTAATGCCC AGGAGAAG	106	CCACCCGGACAGCGCGAT TCCACC	143	375
Zfp37	CAGGTTTAGATGGAGTACGG CAGTGTG	107	GCAAGGCCCAAGACAGCA GGAACAAG	144	506
Vdr	CATCACCAAGGACAACCGGC GACAC	108	CAGCATGGAGAGCGGAG ACAGGTC	145	465
Nkx2-3	CGAGGAAGAAGAGGGAGAG AAACTGTC	109	CTGCCGCTGTCTCTTGCAC TTGTACC	146	432
Zfp612	GGTGACCTTTGAGGACGTGG CTGTG	110	GACTAAACAAACACCCTT CCACAGAGC	147	433

TABLE 5-continued

Pı	Primer Sequences Used For Reverse Cloning of HSC Inducing Factors									
Factor	5' Primer	SEQ ID NO:	3' Primer	SEQ ID NO:	Size					
Runx1t1	CAACGGGCCTTCTTCTTCCTC TTCCTC	111	CATTATTTGGACTGTACC GCTGGCCTGG	148	533					
Runx1	CTGCTCCGTGCTACCCACTC ACTG	112	GAGGCTGAGGGTTAAAGG CAGTGGAG	149	496					
Hoxb4	CGATTACCTACCCAGCGACC ACTC	113	CGTCAGGTAGCGATTGTA GTGAAACTCC	150	483					
Nr3c2	CCAACACTTGAGTTCCTTTCC GCCTGTC	114	GCAGGACAGTTCTTTCTC CGAATC	151	405					
Tcf15	CCGAAAGCTGTCTAAGATCG AGACG	115	CTGCCCCCAGGTCACGA CGGCTGC	152	331					
Hoxa5	GGCAGCACCCACATCAGCAG CAGAG	116	CGCCGAAGAAGGATCGAA ATAGCTC	153	291					
Hoxb3	CTGGATGAAAGAGTCGAGGC AAAC	117	GGTAGTTGGAAGGCAGCG CGTAGGC	154	318					
Pbx1	GAGTTTGGATGAAGCGCAGG CCAG	118	GATGCCGCACTTCTTGGC TAACTC	155	433					
Klf2	CAAGGGTCTCCAAACGTCCA CAAC	119	GTCACATTTGGCAGGTCA TCATCG	156	605					
Lmo2	GCCATCGAAAGGAAGAGCCT GGAC	120	CCACTCGTAGATGTCTTGT TCACACAC	157	443					
Etv6	GAGCAGAGATGACGTAGCCC AGTG	121	GTGGTTGTTCTCCTGCTGT AGCCTGG	158	507					
Hoxa9	CGCTCTCCTTCGCGGGCTTAC CCTCC	122	GTGGAGCGAGCATGTAGC CAGTTGG	159	239					
Igf2BP2	GAACTGGGCCATCCGCGCCA TCGAGAC	123	CTTCAGGTTTCTGCCTTCT TTGCCAATC	160	703					
Gata2	GTCTTCTTCAACCATCTCGAC TCGCAGG	124	GGTATCGGGTGGTGTTT GCAGGCTGGG	161	574					
Zfp521	GGGTTTCGTTGTGTGTGTGT ATGCAG	125	GAACAAACACTGTGAAAC AGACGGG	162	406					
Glis2	CGGCAGCGGGAAGGTGAAC GGGAGCTAC	126	GCACAGGGTGAGGAGGA GGCTGAAGAG	163	488					
Zfp532	CGGTCCCGGCAGACCAGATG ATAGTTC	127	CTCCTCCTCCTCATCGTTG GTAACATC	164	518					
Nfix	GCACGAGAAGCGGATGTCAA AGGACGAG	128	CACATCATCTACTGGACT CTCCATCTC	165	723					
Prdm5	CTGATGTGGGAGGTACGTGG GAGCAAG	129	CAGGCAAAGTCCTCTTCA CAGCCAAGG	166	314					
Egr1	GAGCGAGGACCAGTCACTAT TTGAG	130	CCATATTCTTTCACCGCCC ACTCC	167	416					

[1143] *Homo sapiens* hepatic leukemia factor (HLF), mRNA (SEQ ID NO: 9) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1144] Homo sapiens LIM domain only 2 (rhombotin-like 1) (LMO2), transcript variant 1, mRNA (SEQ ID NO: 21) and a codon optimized, or different codons encoding the same

amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1145] Homo sapiens Meis homeobox 1 (MEIS1), mRNA (SEQ ID NO: 22) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1146] Homo sapiens musashi RNA-binding protein 2 (MSI2), transcript variant 1, mRNA (SEQ ID NO: 23) and a

codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1147] Homo sapiens v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) (MYCN), mRNA (SEQ ID NO: 24) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1148] Homo sapiens NK2 homeobox 3 (NKX2-3), mRNA (SEQ ID NO: 28) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1149] *Homo sapiens* pre-B-cell leukemia homeobox 1 (PBX1), transcript variant 2, mRNA (SEQ ID NO: 30) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1150] Homo sapiens PR domain containing 5 (PRDM5), mRNA (SEQ ID NO: 32) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1151] Homo sapiens RNA binding protein with multiple splicing (RBPMS), transcript variant 3, mRNA (SEQ ID NO: 35) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1152] Homo sapiens runt-related transcription factor 1; translocated to, 1 (cyclin D-related) (RUNX1T1), transcript variant 5, mRNA (SEQ ID NO: 37) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

[1153] Homo sapiens ZFP37 zinc finger protein (ZFP37), mRNA (SEQ ID NO: 42) and a codon optimized, or different codons encoding the same amino acids, are naturally also contemplated to be covered by the reference to the nucleic acid as set forth herein.

Example 2

Identification of Factors Capable of Imparting Alternative Lineage Potential In Vitro and Multi-Lineage Engraftment Potential on Committed Progenitors In Vivo

[1154] Experimental strategies for reprogramming diverse cell types generally rely on the action of one or more genes able to impart the cellular and molecular properties of one cell type onto a different cell type. We hypothesized that regulatory factors with relatively restricted expression in HSCs in relation to their downstream hematopoietic progeny are likely to be involved in defining the functional identity of HSCs through regulation of the gene networks underlying their fundamental properties which include self-renewal and multi-lineage differentiation potential. We reasoned that transient ectopic expression of such factors in committed blood cells might therefore instill them with the functional properties of HSCs and potentially stably reprogram them back to an HSC-like state. To identify such factors we analyzed microarray data of 40 different purified hematopoietic cell types that we and others have generated that comprise the vast majority of hematopoietic progenitor and effector cells in addition to HSCs. These datasets (142 arrays in total) were normalized together into a single database providing a comprehensive molecular overview of hematopoiesis from stem cells through to effector cells. Using this database we identified 36 regulatory factors with relatively restricted expression in HSCs in relation to their downstream progeny. These included 33 genes encoding transcription factors, and 3 genes encoding translational regulators (FIG. 58A). Consistent with our hypothesis, multiple genes with known roles in regulating the core properties of HSCs were identified which included Ndn (Kubota et al., 2009), Evil (Yuasa et al., 2005), Meis1 (Hisa et al., 2004), HLF (Gazit et al.), Egrl (Min et al., 2008) and others. We also identified multiple regulatory proteins that remain unstudied in HSC biology. Each of the 36 factors was then cloned into doxycycline-inducible lentiviruses bearing a reporter cassette (Zs-Green) (Mostoslaysky et al., 2005) and high-titer viruses were produced (FIG. 58B).

[1155] It has been recognized that one of the challenges to reprogramming mature cells is that they are inherently stable (Zhou and Melton, 2008). This is not necessarily true of oligo-potent and lineage-committed hematopoietic progenitors, which are transient cell types in the process of differentiation. Moreover, since progenitor cells proximal to HSCs are more epigenetically related to HSCs (Bock et al., 2012), we reasoned that these might be more amenable to reprogramming back to an HSC-like state. Thus we first sought to determine if we could impart alternative lineage potentials onto lineage-restricted progenitors by assaying the ability of the 36 factors to instill myeloid lineage potential onto otherwise B-cell restricted progenitors in colony forming assays. We purified Pro/Pre B-cells (CD19+B220+AA4.1+IgM-) from mice expressing the reverse tetracycline-controlled transactivator (rtTA) from the Rosa26 locus (Rosa26rtTA) (FIG. 65), and transduced them with control virus (Zs-green), or the 36-factor viral cocktail. Transduced cells were then exposed to doxycycline followed by plating into methylcellulose in the presence of myeloid promoting cytokines (FIG. 58C). These experiments showed that whereas control-transduced Pro/Pre B-cells were unable to form myeloid colonies as expected, cells transduced with the 36-factor cocktail readily gave rise to colonies bearing diverse myeloid lineages including granulocytes, erythrocytes, megakaryocytes and macrophages (FIG. 58D-E).

[1156] We next determined if transient ectopic expression of the 36-factor cocktail imparted HSC-like potential onto lineage-restricted lymphoid or myeloid progenitors in vivo. We took advantage of the fact that HSCs are the only hematopoietic cells capable of long-term multi-lineage reconstitution in myeloablated recipients upon transplantation, whereas downstream progenitors only transiently reconstitute recipient mice with restricted lineage potential depending upon their stage of differentiation (FIG. 59A). Moreover, we reasoned that the sensitivity of the transplantation assay, in which even a single HSC can give rise to detectable multilineage engraftment, would permit detection of even rare reprogramming events. Thus, only progenitors transduced with a combination of factors capable of instilling them with long-term reconstitution potential would be read out in this assay. Towards this we purified Pro/Pre B-cells or common lin-c-kit+Sca1-(CMPs: myeloid progenitors Fc rlowCD34+) from Rosa26rtTA mice (CD45.2) and following a 2-day transduction protocol with control (Zs-green) or viruses bearing the 36-factors in the presence of doxycycline, we transplanted them into lethally irradiated congenic recipients (CD45.1) along with radio-protective bone marrow cells (CD45.1) (FIG. 59A). Doxycycline was maintained in the drinking water for 2 weeks post-transplant to maintain ectopic expression of the introduced factors, followed by doxycycline withdrawal. Peripheral blood analysis of the reconstituted mice over the 16-week course of the experiment revealed that, as expected, control-transduced Pro/Pre B-cells or CMPs did not give rise to donor-derived long-term engraftment (FIG. 59B-C). By contrast, a few of the recipients transplanted with the 36-factor transduced B-cell progenitors (3/15) or CMPs (2/8) exhibited long-term donor-derived reconstitution (FIG. 59B-C). All but one of the reconstituted mice showed multi-lineage engraftment of B-, T- and myeloid cells though the degree of engraftment of each lineage varied amongst the different recipients (FIG. 59D). Analysis of V(D)J recombination of sorted donor-derived myeloid cells from the Pro/Pre B-cell arm of the experiment confirmed the B-lineage origin of the reconstituting cells as evidenced by recombination of the heavy chain of the IG locus (FIG. 59E). The observation of multiple heavy chain bands in the gel indicated that the reconstituting cells were polyclonal.

[1157] These experiments indicated that one or more factors from the 36-factor cocktail could imbue long-term multilineage reconstituting potential onto otherwise committed lymphoid and myeloid progenitors. To determine which factors might be involved in conferring this potential, we sorted donor-derived myeloid, B-cells and T-cells to test for the presence of each of the 36 factors using a PCR-based strategy (FIG. 59F, Table 5). This analysis revealed that whereas multiple factors could be identified in the donor-derived cells from each of the reconstituted mice, 6 transcription factors, HIf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5 were consistently detected in all of the reconstituted recipients in multiple lineages (FIG. 59G).

[1158] Six transcription factors (Hlf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5) are sufficient to reprogram progenitor potential in vitro and impart long-term multi-lineage engraftment potential in vivo.

[1159] We next assessed if the 6 transcription factors we had identified in our in vivo screen were sufficient to confer myeloid colony forming potential onto Pro/Pre B-cells in methylcellulose. As we had observed with the 36-factor cocktail (FIG. 58D-E), transduction with the viral combination of Hlf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5 was able to imbue lineage-restricted B-cell progenitors with myeloid lineage potential in these assays (FIG. 60A-B). To test the requirement for each of the 6 transcription factors (6-TF) we employed "N minus 1" experiments in which each of the factors was sequentially omitted from the transduction cocktail (FIG. 60C). These experiments revealed that whereas Hlf, Runx1t1, Pbx1, Lmo2, and Zfp37 were all required for instilling myeloid colony forming potential onto Pro/Pre B-cells in vitro, the 5-factor cocktail minus Prdm5 still gave rise to myeloid colonies albeit at lower numbers than the 6-TF combination (FIG. 60C).

[1160] We next tested whether the 6-TF cocktail was sufficient to impart long-term multi-lineage reconstituting potential onto committed myeloid or B-cell progenitors in transplantation assays. Purified Pro/Pre B-cells (CD45.2) were transduced with control (Zs-green) virus or the 6-TF cocktail followed by transplantation into congenic recipients (CD45.1). In contrast to control-transduced cells, long-term multi-lineage reconstitution was observed in 1/13 and 2/12 recipients transplanted with 6-TF transduced Pro/Pre cells or CMPs

cells, respectively (FIG. 60D). Peripheral blood analysis of recipient mice throughout the course of the experiment revealed that in all cases, donor-derived cells from the reconstituted recipients showed multi-lineage engraftment (FIG. 60D-F). Heavy chain rearrangement was observed in donor-derived myeloid cells sorted from the Pro/Pre B-cell reconstituted mouse confirming the B-cell origin of the reconstituting cells (FIG. 60G). These results indicate that transient ectopic expression of HIf, Runx1t1, Pbx1, Lmo2, and Zfp37, and Prdm5 is sufficient to impart long-term, multi-lineage transplantation potential onto otherwise committed myeloid and lymphoid progenitors.

[1161] Inclusion of Meis1 and Mycn and use of polycistronic viruses improves in vivo reprogramming efficiency.

[1162] The absence of donor-derived reconstitution in many of the recipient mice in our 6-TF transplantation experiments (FIG. 60D) suggested that the efficiency of imparting this long-term multi-lineage potential onto committed progenitors was low. To try to improve this we developed polycistronic doxycycline-inducible lentiviruses bearing three transcription factors each separated by 2A peptide sequences (Runx1T1.Hlf.Lmo2 (RHL), Pbx1.Zfp37.Prdm5 (PZP)). We also included two additional transcription factors (Mycn and Meis1) that we had repeatedly identified from primitive colonies generated in in vitro colony forming experiments (FIGS. 61A, 66, and data not shown). To test the utility of these strategies we transduced purified Pro/Pre B-cells with control virus, or the 8-transcription factor cocktail as individual viruses (8-TF), or using the RHL and PZP polycistronic viruses along with viruses bearing Mycn, and Meis1 (8-TF-Poly), and transplanted them into irradiated congenic recipients at greater numbers than in previous experiments. Peripheral blood analysis of transplanted mice over the course of 16 weeks revealed that in contrast to the control-transduced cells that showed no donor-derived chimerism (0/12), multiple recipients transplanted with either the 8-TF (3/6) or the 8-TF-Poly (9/14) transduced cells exhibited donor-derived chimerism (FIG. 61B). All recipients showed multi-lineage reconstitution 18-22 weeks post-transplant though again the degree of B-cell, T-cell and myeloid chimerism varied amongst recipients (FIG. 61C-D). The B-cell origin of the reconstituting cells was confirmed through evidence of IG heavy chain rearrangement in donor-derived myeloid cells, with the presence of many bands indicating that the reconstituting cells were polyclonal (FIG. 61E).

[1163] Reprogrammed cells engraft bone marrow progenitor compartments and can reconstitute secondary recipients. [1164] In addition to reconstituting the peripheral blood, HSCs efficiently engraft secondary hematopoietic organs and bone marrow progenitor cell compartments upon transplantation. To determine if the B-cell progenitors transduced with the 8-TF or 8-TFPoly cocktails possessed this ability, reconstituted mice were sacrificed and analyzed 18-20 weeks posttransplant, which showed that all the mice had donor-derived chimerism of the bone marrow, spleen and thymus though the level of varied between recipients as we had observed in the periphery (FIG. 62A). The Pro/Pre B-cell origin of the engrafting cells was confirmed through analysis of IG rearrangement from DNA isolated from granulocytes and myeloid cells purified from the bone marrow and spleen, and T-cells derived from the thymus (FIG. 62B) Immunophenotyping of bone marrow cells revealed donor contribution to common lymphoid progenitors (CLPs: lin-Flk2+IL7R□+ ckitlowSca1low), CMPs, granulocyte/monocyte progenitors

(GMPs: lin-ckit+Sca1-Fc□rhighCD34+), megarkaryocyte/ erythrocyte progenitors (MEPs: lin-ckit+Sca1-Fc□r-CD34-), and primitive LSK progenitors (lin-Sca1+ckit+) (FIGS. 62C-F). Importantly, we also observed donor contribution to megakaryocyte progenitors (MkPs: lin-c-kit+ Sca1-CD41+), and erythroid progenitors (EPs: lin-ckit+ Scal-Endoglin+) suggesting that the reconstituting cells were able of give rise to precursor cells of platelets and erythrocytes, lineages which we could not track in the peripheral blood in the congenic CD45-based transplantation system we used. Subfractionation of the LSK compartment revealed donor-derived reconstitution of the multi-potent progenitor (MPP1: lin-ckit+Sca1+CD34+Flk2-, MPP2: linc-kit+Sca1+CD34+Flk2+) and HSC (lin-c-kit+Sca1+ CD34-Flk2-) compartments (FIGS. 62C-62F). Donormarked progenitors and HSCs were found to be heavy chain rearranged confirming their B-cell origin (FIG. 62G).

[1165] A defining property of HSCs is their ability to selfrenewal, a potential that can be evidenced by an ability to reconstitute secondary recipients upon serial transplantation. To test if the cells generated in our experiments possessed this potential we sacrificed primary recipient mice 18 weeks posttransplant and transplanted whole bone marrow or donorderived c-kit+ cells into irradiated secondary congenic recipients. Peripheral blood analysis at 4, 8 and 12 weeks posttransplant reveled robust donor reconstitution of B-, T- and myeloid cells in all secondary recipient mice (FIGS. 62H-I). Taken together, these results indicate that transient ectopic expression of 8 transcription factors imparts multi-lineage reconstituting potential, reconstitutes bone marrow progenitor compartments, and enables long-term self-renewal potential—the functional hallmarks of HSCs—onto lineage-restricted B-cell progenitors.

Reprogramming Terminally Differentiated Myeloid Cells to Transplantable HSC-Like Cells.

[1166] Eventual clinical translation of blood cell reprogramming to derive HSCs would likely benefit from an ability to reprogram cell types that can be readily and non-invasively obtained from the peripheral blood. We therefore sought to determine if multi-lineage progenitor activity could be conferred onto terminally differentiated blood cells using the transcription factors we identified. Recipient and donor-derived peripheral blood was sorted from mice engrafted with Pro/Pre B-cells transduced with the 8-factor cocktail (8-TF or 8TFPoly) 16-22 weeks post-transplant (ie. 14-20 weeks postdoxycycline induction). Sorted cells were then cultured in the absence or presence of doxycycline—with the latter condition intended to lead to re-expression of the transduced factors—followed by plating the cells in methylcellulose (FIG. 63A). As expected, neither the recipient-marked cells, nor the donor-derived cells cultured and plated in the absence of doxycycline gave rise to colonies, consistent with low-level progenitor activity in the peripheral blood of mice (FIG. 63B). By contrast, plates seeded with donor cells that had seen reactivation of the 8 transcription factors by exposure to doxycycline gave rise to mixed myeloid lineage colonies that included primitive GEMM colonies (FIG. 63B). To determine which lineage(s) in the peripheral blood had the potential to give rise to these colonies upon re-expression of the transcription factors, we sorted donor-derived B-cells, T-cells, myeloid cells and granulocytes from the 8-TF reconstituted mice, and tested their colony forming potential following culturing and plating in the absence or presence of doxycycline. These experiments revealed that essentially all colony-forming potential originated from the myeloid and granulocyte cell fractions (FIG. 63C-63D). Interestingly, the colonies generated from the sorted myeloid cells were much larger than those derived from granulocytes though a greater number of colonies arose from the latter.

[1167] Encouraged by these results we next determined if the transcription factors we identified impart multi-lineage reconstituting potential onto terminally differentiated myeloid cells in transplantation assays. We sorted Mac1+ckit- myeloid effector cells from Rosa26rtTA mice and transduced them with either 6-factor (6-TFPoly), or 8-factor cocktails (8-TF and 8-TFPoly) and transplanted them into irradiated congenic recipients. Peripheral blood analysis at monthly intervals revealed that, whereas none of mice transplanted with cells transduced with control virus were reconstituted, multiple recipients transplanted with cells transduced with 6-TFPoly (4/7), 8-TF (3/6), and 8-TFPoly (7/8) exhibited long-term donor-derived engraftment (FIG. 63F, 66). Lineage analysis of the reconstituted mice revealed donor-derived contribution to B-cell, T-cell, myeloid, and granulocyte lineages with the contribution to each lineage varying between recipients (FIG. 63F). Donor-derived contribution to secondary hematopoietic organs, and bone marrow progenitor cell compartments was observed in mice sacrificed and analyzed 20 weeks post-transplant (FIGS. 68A-D). Serial transplantation of donor-derived bone marrow cells demonstrated that the 6-TF or 8-TF transduced myeloid effectors could engraft secondary recipients in all lineages to 12 weeks post-transplant (FIG. 63G-63H).

[1168] Based on the functional data presented in FIGS. 58-63, we conclude that transient ectopic expression of 6 (Hlf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5) or 8 (Hlf, Runx1t1, Pbx1, Lmo2, and Zfp37, Prdm5, Mycn, and Meis1) transcription factors reprograms differentiated hematopoietic progenitors and effector cells to cells that possess the functional properties of HSCs. We term these reprogrammed cells induced-HSCs (iHSCs).

[1169] Single cell expression profiling of iHSCs reveals evidence of partial and full reprogramming.

[1170] To assess the extent to which reprogrammed iHSCs recapitulate the molecular properties of endogenous HSCs, we employed a recently developed single cell gene expression profiling methodology that accurately defines hematopoietic stem and progenitor identity through the simultaneous quantification of expression of 152 lineage-specific transcription factors, epigenetic modifiers, cell surface molecules, and cell-cycle regulators (Guo et al., 2013). We sorted and analyzed donor-derived iHSCs by immunophenotype (CD45.2+ lineage-ckit+Sca1+Fk2-CD34-/lowCD150+) from two different experiments in which Pro/Pre B cells had been transduced with the 8-TF cocktail as single viruses (8-TF), or with polycistronic viruses (8-TFPoly) (FIG. 61). In both settings mice exhibiting long-term multi-lineage donor-derived reconstitution were sacrificed at 18 weeks post-transplantation. We also sorted and analyzed host-derived HSCs (CD45. 1+lineage-ckit+Sca1+Fk2-CD34-/lowCD150+) from the same mice to serve as controls. Single cell expression data generated from iHSCs and host HSCs was then analyzed in comparison to data generated from Pro/Pre B-cells (the starting cell type), and also to data previously generated from HSCs, MPPs, CLPs, CMPs, GMPs, and MEPs purified at steady-state (Guo et al., 2013). Analysis of the raw data revealed high correlation between gene expression for the vast majority of the control and test cell types (FIG. 69, Tables 6-8). To further interrogate the transcriptional relationships amongst all the cell types analyzed, we performed principal component analysis (PCA) to define the transcriptional distances between the cells. As expected, steady-state HSCs and progenitor cells were largely positioned in agreement with established lineal relationships where HSCs forming a clearly defined cluster, with MPPs positioned proximal, and oligopotent progenitors (MEPs, GMPs, CLPs) positioned more distal to HSCs (FIG. 64A). Pro/Pre B-cells positioned closely to CLPs consistent with the lineal relationship between these cell types, while the host-derived HSCs were positioned within the steady-state HSC cluster as expected (FIG. 64A). Interestingly, iHSCs derived from the two experiments (8-TF or 8-TFPoly) exhibited very distinct patterns of expression with the iHSCs derived from the 8-TF single virus experiment being more heterogeneous than the iHSCs derived from the 8-TFPoly transduced cells (FIGS. 64A, 69, Tables 6-8). As a result, PCA analysis of these cells showed that whereas some of the iHSCs 8-TF positioned closely or within the HSC cluster, others mapped closer to MPPs while others yet positioned closely to the Pro/Pre B cluster (FIG. 64A). By contrast, all of the iHSCs derived using the polycistronic viruses (iHSC 8-TFPoly) homogenously clustered within the HSC node (FIG. 64A). Unsupervised hierarchical clustering analysis confirmed that whereas approximately equal numbers of iHSCs derived using single viruses mapped closely to HSCs (7/23), others mapped closely to MPPs (7/23), while the remainder mapped more closely to Pro/Pre B cells (10/23) (FIG. 64B). In contrast, all of the iHSCs derived using the polycistronic approach showed very high similarity to host and control HSCs (35/35).

[1171] The inclusion of five (Mycn, Hlf, Lmo2, Meis1 and Pbx1) of the eight reprogramming factors amongst the 152 genes analyzed in these experiments allowed us to address how endogenous levels of these factors was reestablished in iHSCs post-reprogramming Consistent with their known roles in regulating HSCs, high levels of each of MycN, Hlf, Lmo2, and Meis1 were observed in steady-state HSCs, which contrasted the low levels observed in Pro/Pre B cells (FIG. 64D). Pbx1 expression was lower in the majority of HSCs and absent in Pro/Pre B cells. Conversely, Ebf1 and Pax5, which are critical transcription factors for B-cell development were expressed at high levels in Pro/Pre B cells and negligible levels in HSCs. Analysis of the expression of these genes in iHSCs again revealed distinct differences depending upon whether or not single or polycistronic viruses were used for their derivation. Whereas high levels of endogenous MycN, Hlf, Lmo2, Meis1 and moderate levels of Pbx1 was reestablished in many of the iHSCs derived using single viruses, low levels of these genes and high levels of Ebf1 and Pax5 were still observed in a significant fraction of the cells (FIG. 64D). By contrast, the expression of each of these genes in iHSCs derived using the polycistronic viruses fully recapitulated the expression patterns observed in the control HSCs (FIG. 64D), as was the expression of all other genes analyzed known to be critical for HSCs function including the transcription factors Gfi1b, Gata2, and Ndn, and the cytokine receptors Mpl, and c-kit (FIG. 64D, Tables 6-8). Taken together, these results demonstrate that 8-TF reprogramming of Pro/Pre B using single viruses generates iHSCs with transcriptional properties consistent with either full or partial reprogramming,

whereas iHSCs derived under optimal polycistronic viral conditions exhibit an expression profile synonymous with HSCs.

Discussion

[1172] Within the hematopoietic system, HSCs are the only cells with the functional capacity to differentiate to all blood lineages, and to self-renew for life. These properties, in combination with the ability of HSCs to engraft conditioned recipients upon transplantation, have established the paradigm for stem cell use in regenerative medicine. Allogeneic and autologous HSC transplantation is used in the treatment of ~50,000 patients/year for congenital and acquired hematopoietic diseases and other malignancies (Gratwohl et al., 2010). Current challenges to transplantation therapies include the availability of histocompatible donor cells and associated graft versus host disease. De novo generation of isogenic HSCs from patient derived cells would obviate these issues, and extend transplantation to all patients as opposed to those for whom a histocompatible donor can be identified. Deriving HSCs from alternative cell types has thus has been a long sought after goal in regenerative medicine. Here we report the generation of induced-HSCs via reprogramming from committed hematopoietic progenitor and effector cells. Through identification and functional screening of 36 HSCenriched factors, we identified 6 transcription factors Hlf, Runx1t1, Pbx1, Lmo2, Zfp37, and Prdm5 whose transient ectopic expression was sufficient to impart HSC functional potential onto committed blood cells. Inclusion of two additional transcription factors, Mycn, and Meis1, and the use of polycistronic viruses increased reprogramming efficacy. These findings demonstrate that ectopic expression of a small number of defined transcription factors in committed blood cells is sufficient to activate the gene regulatory networks governing HSC functional identity. The derivation of iHSCs therefore represents a novel cell-based system for exploring the mechanisms underlying the establishment and maintenance of fundamental HSC properties such as self-renewal and multi-lineage differentiation potential. Moreover, our results demonstrate that blood cell reprogramming is a viable strategy for the derivation of transplantable stem cells that could serve as a paradigm for eventual clinical application.

[1173] Despite the fact that HSCs are the most well characterized tissue-specific stem cells, surprisingly little is known about the molecular mechanisms involved in regulating their central properties. The identification of a defined set of transcription factors capable of stably imparting self-renewal and multi-lineage differentiation potential onto otherwise non-self-renewing, lineage-restricted cells, demonstrates that these factors are critically involved in regulating the transcriptional networks underlying HSC functional identity. Consistent with this, several of the factors that we identified have previously been shown to be important for regulating diverse aspects of HSC biology. For example, PBX1 and MEIS1, which interact and can form heterodimeric and heterotrimeric complexes with HOX proteins, have both been shown to regulate HSC self-renewal by maintaining HSC quiescence (Ficara et al., 2008; Kocabas et al., 2012; Unnisa et al., 2012). LMO2 is required for hematopoiesis and in its absence, neither primitive or definitive blood cells form (Warren et al., 1994; Yamada et al., 1998). And while MYCN is dispensable for HSC activity due to the functional redundancy of MYC, combined ablation of both Myc and MycN severely disrupts HSC self-renewal and differentiation potential (Laurenti et al., 2008). In contrast to these well-characterized genes, Prdm5 and Zfp37 remain unstudied in HSC biology, and though the role of RUNX1T1 (as known as ETO) as a fusion partner with RUNX1 in acute myeloid leukemia is well established, its role in normal hematopoiesis remains unclear. Defining the roles that each of the reprogramming factors play in normal HSC biology will be critical for understanding their function in blood cell reprogramming.

[1174] Going forward it will also be important to elucidate how the reprogramming factors activate and maintain the transcriptional networks underlying HSC functional identity in other cell types during reprogramming Given that 6 of the 8 factors we identified, Hlf (Inaba et al., 1992), Meis1 (Moskow et al., 1995), Lmo2 (Boehm et al., 1991), Mycn (Brodeur et al., 1984; Marx, 1984), Pbx1 (Kamps et al., 1991), and Runx1t1 (Erickson et al., 1992) are proto-oncogenes, suggests that blood cell reprogramming to iHSC likely involves the activation and/or repression of gene networks that are common to stem cells and transformed cells. This is also consistent with the finding that virtually all the transcription factors required for HSC formation, maintenance, or lineage commitment are targeted by somatic mutation or translocation in heme malignancy {Orkin, 2008 #5327}. Some insights into how the individual reprogramming factors mediate their activity has been provided by recent studies. For example, LMO2 overexpression in committed T-cell progenitors led to a preleukemic state characterized by sustained self-renewal activity yet without blocking T-cell differentiation potential, and this was associated with upregulation of a cadre of genes normally expressed by primitive hematopoietic stem and progenitor cells (HSPCs) (McCormack et al., 2010). Similarly, ectopic expression of HLF in downstream multi-potent and oligo-potent myeloid progenitors imbued them with potent self-renewal activity ex vivo without blocking their differentiation potential, which was associated with expression of CD150, and sustained repression of lineage commitment markers, phenotypes consistent with HSCs (Gazit et al.). HLF expression alone was nonetheless insufficient to impart HSC transplantation potential onto downstream progenitors (RG, BG, DJR unpublished). These studies show that while ectopic expression of HLF or LMO2 can instill at least some of the functional and molecular properties of HSCs onto committed blood cells, alone they cannot access the full repertoire of transcriptional programs needed to establish and maintain HSC function. In these regards, it is interesting that whereas iHSCs generated using polycistronic viruses all exhibited expression profiles that were indistinguishable from control HSCs, iHSCs generated using monocistronic viruses were heterogeneous at the molecular level with many of the cells analyzed showing clear evidence of partial reprogramming That some of these partially reprogrammed cells clustered closely to the Pro/Pre B cells from which they were derived suggests that these cells retained an epigenetic memory of their cell of origin despite being purified by an immunophenotype consistent with HSCs. It is likely that the partially reprogrammed iHSCs in the 8-TF single virus experiments did not receive the full complement of reprogramming factors. If so, further study of fully reprogrammed versus partially reprogrammed cells may provide mechanistic insights into how the reprogramming factors collaborate to activate the gene regulatory networks underlying HSC functional identity.

[1175] Although the transcriptional properties of iHSCs derived under optimal 8-TF polycistronic conditions were

indistinguishable from endogenous HSCs, further analysis will be required to determine if the epigenetic landscape of these cells is fully reset to that of HSCs. In this regard, it was interesting that the lineage potential observed in our experiments in mice reconstituted with iHSCs sometimes, though not always, evolved over time post-transplantation, with donor-derived chimerism showing lineage skewing at early time points post-transplant, and more balanced output at later time points. These results suggest that iHSCs may need time to fully reset their epigenetic landscape to achieve balanced HSC potential, in a manner similar to the erasure of epigenetic memory observed with continued passage of iPS cells (Polo et al., 2010). Whether or not cell passage influences epigenetic resetting during iHSC derivation is at this point unclear. It is plausible that iHSCs may require a period of "maturation" in the stem cell niche to achieve full HSC potential. It is notable that some of the partially reprogrammed iHSCs we analyzed had not appropriately upregulated the MPL or KIT receptors suggesting an inability to transduce signals in response to TPO or SCF emanating from the niche. [1176] Transcription factors play a critical role in the specification of different lineages during development, and as such the discovery of a set of transcription factors capable of activating the gene regulatory networks underlying HSC functional identity suggests that it may be possible to use these factors on cells derived from pluripotent stem cells to facilitate the generation of definitive HSCs. Along these lines, a recent study showed that expression of 5 transcription factors HOXA9, RORA, ERG, SOX4, and MYB was able to impart transient myeloerythroid engraftment potential onto iPS-derived blood cell progenitors, though these factors were unable to instill HSC potential onto the cells (Doulatov et al., 2013). It will also be important to test if the reprogramming factors we identified can be used to convert cell types outside of the hematopoietic system to an iHSC fate in a manner similar to the ability of the Yamanaka factors to bestow pluripotency onto cells of diverse lineages, though it remains possible that iHSCs derivation using the factors we defined will be limited to the blood system. Nonetheless, the generation of iHSCs via blood cell reprogramming represents a powerful new experimental paradigm for studying the fundamental mechanisms underlying HSC identity that might eventually be lead to the derivation of transplantable stem cells with clinical potential.

Materials and Methods

[1177] Microarray: Microarray data was generated on the Affymetrix 430 2.0 platform and included previously published data generated in our lab in addition to datasets that were curated from GEO. Overall the database consists of 142 expression profiles from 40 FACs purified hematopoietic cell populations based on known cell surface phenotypes. All datasets were subjected to quality control (QC) measures provided in the ArrayQualityMetrics package of R/Bioconductor (http://www.bioconductor.org). Datasets were normalized (gcRMA) using R bioconductor. To identify potential regulators of HSCs, we applied a filter in which the ratio of expression in HSCs to all others had to be greater than 2.5-fold. The list of potential regulators was finalized by cross-referencing the literature to identify factors with known transcriptional/translation regulatory roles.

[1178] Mice: B6.SJL-Ptprca/BoyAiTac1 (Taconic Farms; Hudson, N.Y.) and C57BL/6N (Charles River Laboratories; Cambridge, Mass.) recipient mice and B6.CgGt(ROSA) 26Sortm1(rtTA*M2)Jae/J donor mice (Jackson, Bar Harbor,

Me.) were used. For some experiments, B6.CgGt(ROSA) 26Sortm1(rtTA*M2)Jae/J mice crossed to the CD45.1 background were used. All mice were maintained according to protocols approved by Harvard Medical School Animal Facility and all procedures were performed with consent from the local ethics committees.

[1179] Pro/pre B-cell, CMP and HSC purification: Antibodies used in FACs purification included: CD34, Sca1, c-kit, AA4.1 from eBioscience (San Diego, Calif.); Fc □R from BD Bioscience (San Jose, Calif.); IgM Sigma Aldrich (St. Louis, Mo.); IL-7R□, Ter119, CD45.1, CD45.2, Mac1, CD3, CD4, CD8, Gr1, CD150, CD19, CD25 and B220 from BioLegend (San Diego, Calif.). 6-12 week old B6 CD45.2+rtTA heterozygous mice were sacrificed and the bone marrow harvested as previously described (Rossi et al. PNAS 2005). To obtain Pro/Pre B cells, a B220 enrichment was performed using biotin B220 (BD Bioscience), streptavidin magnetic beads and a magnetic column (Milteny Biotec). Enrichment was performed according to published protocols. To obtain CMPs, a c-kit enrichment using directly conjugated magnetic beads (BD Bioscience) was performed on whole bone marrow cells. Cells were sorted directly into sample media containing 2% FBS. All cells were sorted on a FACS Aria II (Becton Dickinson).

[1180] Virus Production: Factors were cloned into the pHage2 dox inducible system under the TRE reporter using restriction site directional (Not1 and BamH1) cloning as previously described (Gazit et al. 2013). Importantly, a number of these constructs were cloned out of a cDNA library created from FACS sorted HSCs. All constructs were checked by restriction diagnostics and fully sequenced. Constructs (FIG. **58**B) include an IRES that enables ZsGr reporter expression. Polycistronics (FIG. 61A) combined individual viruses to create RHL and PZP. Individual factors (RUNX1T1, HLF and LMO2) and (PBX1, ZFP37 and PRDM5) were linked using non directional cloning and stepwise insertion into the respective restriction sites Sal1, Spe1, BamH1 separated by 2A sequences. All constructs were checked by restriction digest diagnostics and sequenced. Viruses for all the 36 factors were produced according to a previously established protocol (Mostoslaysky et al., 2005). All viruses are titered on Jurkat cells to an approximated working MOI ~5.0.

[1181] Pro/PreB and CMP CFC assays: Sorted Pro/Pre B cells and CMPs were isolated from rtTA transgenic CD45.2+ and when indicated CD45.1+ donors. 60,000 cells/200 uL media are incubated with the indicated viruses for 16 hours. Media used is Sclone supplemented with 10 ng/mL SCF, 10 ng/ml IL-12, 10 ng/ml TPO, 5 ng/mL Flk-3, and 5 ng/mL IL-7. After transduction, 1.0 mg/ml Doxacycline is added for 48 hours and then transferred to methylcellulose or transplanted. In the case of FIGS. 4-6, a 24 hour ex vivo dox induction was implemented because more cells appeared viable at this time point.

[1182] In CFC assays, 10,000 Pro/PreB or 1,000 CMP cells were transferred from the dox containing media to be diluted and mixed with 1.75 mL per well of M3630 methylcellulose (Stem Cell Technology) and plated into a 6 well dish. 20 days later the colonies were counted and characterized by morphology.

[1183] CFC secondary reprogramming ex vivo was accomplished by plating 60,000 donor-derived FACS sorted cells into a 12 well plate with 500 uL of F12 media supplemented with 10 ng/mL SCF, 10 ng/ml IL-12, 10 ng/ml TPO, 5 ng/mL Flk-3, and 5 ng/mL IL-7. When indicated 1.0 mg/ml dox was

added for 72 hours. 10,000 cells were then directly transferred to 1.0 mL of methylcellulose in a 12 well format. 20 days later colonies were counted and characterized by classically defined morphologies.

[1184] Pro/Pre B cell Transplantation: Transplants were performed by combining 10,000 ZsGr+ resorted cells or 2.0× 10^6 unsorted Pro/Pre B/CMP cells with 2×105 B6 CD45.1+ competitor cells and transplanted intravenously into IR B6 CD45.1+ recipients. Alternatively, sorted and transduced Pro/Pre B cells and CMPs were injected non competitively with 2×10⁵ Sca1 depleted bone marrow cells (depletion performed with the Macs magnetic depletion columns previously described according to manufactures instructions). Peripheral bleeds were performed at 4, 8, 12, and 16 weeks. Post 16 weeks, the same analysis as peripheral blood was performed on the bone marrow, spleen, and thymus.

[1185] Serial transplantation was performed by isolating bone marrow from primary mice with reconstitution from either CD45.1+ Pro/Pre B cells (>1.0%) or CD45.2+ Mac1+ bone marrow cells (>5.0%). In the case of Pro/Pre B cells, whole bone marrow was counted and 107 cells were noncompetitively transplanted into CD45.2+ recipients. Alternatively (c-kit secondary), 10,000 FACS sorted doublet discriminated, live, lineage negative, c-kit+ donor CD45.1+ cells were transplanted non-competitively with 2×10⁵ Sca1 depleted cells into IR and conditioned recipients. Mac1+ bone marrow reconstituted whole bone marrow cells were FACS sorted on donor (CD45.2+). Generally, 5.0×10⁶ donor-derived FACs sorted cells were transplanted noncompetitively into conditioned and IR recipients. Peripheral bleeds were performed at 4, 8 and 12 weeks.

[1186] Peripheral Blood Analysis and Bone Marrow Analysis: Flk2, CD34, c-kit and Sca1 antibodies were purchased from eBioscience (San Diego, Calif.). FcgR3 (CD16) was purchased from BD Bioscience (San Jose, Calif.). IL-7R□, SLAM (CD150), Ter119, CD45.1, CD45.2, B220, Mac1, CD3, CD4, CD8, Gr1 (Ly-6G/Ly-6C) were purchased from Biolegend (San Diego, Calif.)

[1187] Staining for both the peripheral blood and the progenitor compartments was done as previously described (Beerman, Rossi, Bryder). Examples of cell stains and gating strategies are described for peripheral blood (FIGS. 59B, 60E, 61C and 63G) and bone marrow analysis (FIGS. 62A-62I and 67). In general, peripheral blood populations include: B cells (B220+), Myeloid cells (Mac1+ and Gr1-), Granulocyte (Mac1+ and Gr1+), T Cells (CD3+/CD4+/CD8+).

[1188] Progenitor populations are defined as such: All are doublet discriminated, live (PI negative) and lineage negative (Gr1−, Mac1−, B220−, CD3−, CD4−, CD8−, Ter119−−). Hematopoietic progenitors (HSC, MPP1, and MPP2) were gated c-kit+Sca1+ then defined by flk2 and CD34 expression. Common lymphoid progenitors (CLPs) were gated flk2+IL-7R+ then defined by c-kit and Sca1 status. Myeloid Progenitors (GMP, CMP, and MEP) were gated c-kit+Sca1− and defined by Fc□R3 and CD34 expression. Erythroid progenitors (EP) and Megakaryocyte Precursors (MkP) were both gated c-kit+Sca1− but defined respectively by Endoglin and CD41 expression.

[1189] VDJ Rearrangement—Heavy and light chain (kappa and lambda) recombinational events were tested using a PCR based assay established by Brisco et al. (British Journal of Hematology 1990; 75:163-167) and Busslinger et al. (Nature 2007; 449:473-481). In overview, the strategy spans the region from VH2 to JH4, Therefore, covering the pre-

dominant recombinational events of heavy chain rearrangement. All PCR based strategies were confirmed on both bone marrow and peripheral blood positive and negative controls.

[1190] Transcription Factor Integration—To test for viral integration of the factor to be expressed primers were designed to generate products over intron-exon barriers (FIG. 59F). Endogenous products are eliminated by their larger size or that the primers will not extend over the intron. Rigorous controls were performed to ensure that false positives would not be detected. All primers proved negative when they singly were subtracted from the 36 factor mix and when ZsGr control virus is used, only when the factor is present does the band appear. Primers are listed in the Supplementary Table 1. PCR conditions were performed according to manufactures instructions (Kappa Biosystems).

[1191] High throughput single cell qPCR and computational analysis: Individual primer sets were pooled to a final concentration of 0.1 μ M for each primer. Individual cells were sorted directly into 96 well PCR plates loaded with 5 μ L RT-PCR master mix (2.5 μ L CellsDirect reaction mix, Invitrogen; 0.5 μ L primer pool; 0.1 μ L RT/Taq enzyme, Invitrogen; 1.9 μ L nuclease free water) in each well. Sorted plates were immediately frozen on dry ice. After brief centrifugation at 4° C., the plates were immediately placed on PCR machine. Cell lyses and sequence-specific reverse transcription were performed at 50° C. for 60 minutes. Then reverse transcriptase inactivation and Taq polymerase activation was achieved by heating to 95° C. for 3 min. Subsequently, in the same tube, cDNA went through 20 cycles of sequence-spe-

cific amplification by denaturing at 95° C. for 15 sec, annealing and elongation at 60° C. for 15 min After preamplification, PCR plates were stored at –80° C. to avoid evaporation. Pre-amplified products were diluted 5-fold prior to analysis. Amplified single cell samples were analyzed with Universal PCR Master Mix (Applied Biosystems), EvaGreen Binding Dye (Biotium) and individual qPCR primers using 96.96 Dynamic Arrays on a BioMark System (Fluidigm). Ct values were calculated using the BioMark Real-Time PCR Analysis software (Fluidigm).

[1192] Gene expression levels were estimated by subtracting the background level of 28 by the Ct level, which approximately represent the Log 2 gene expression levels. Principal component analysis (PCA) was performed in Matlab to project all the control and experimental cells onto a three dimensional space to aid visualization. An unsupervised hierarchical clustering was used to cluster representative control cells and all the iHSC 8-TF or iHSC 8-TFPoly cells. The analysis was done with R using the average linkage method and a correlation-based distance. The representative control cells were selected as those whose expression levels were closest to the median based on Euclidean distance. Eight HSC cells, eight HSC Host cells, all six Pro/Pre B-cells, and four from each of the remaining control cell types were selected. The dendrogram branches were color-coded by cell type, as in the PCA analysis. Violin plots and the correlation heatmaps were generated with Matlab. The master heatmap of all the raw data (Supplement to FIGS. 64A-64D) was generated with MultiExperiment Viewer (MeV) program (http://www.tm4. org/mev.html) using the default setting.

TABLE 6-1

	Single cell expression data (reduced list)Control							
Factor	HSC-Host1	HSC-Host2	HSC-Host3	HSC-Host4	HSC-Host5	HSC-Host6		
Actb	13.2775869	14.168841	13.9178852	14.0751018	14.3746391	14.7443427		
Aebp2	6.28419787	6.32255813	7.19444936	5.65953541	6.95783404	7.26360494		
Ahr	0	7.57209355	0	0	0	0		
Akt1	9.4500759	0	10.0765631	9.94327921	10.6548673	10.0745346		
Akt2	6.22818312	0	6.70532413	0.8889789	6.47748177	5.95383663		
Akt3	7.51547845	0	6.07943514	6.17938762	6.4222982	7.17078745		
APC	7.79584916	0	6.19688147	0	0	0		
Bad	0	0	0	0	0	0		
Bax	8.2648093	9.18808438	6.51775922	9.27759397	6.43362681	9.23990229		
Bel11a	0	3.15885611	0	5.12533276	4.04738876	0		
Bcl11b	0	0	0	0	0	0		
Bcl2	6.98611579	5.59253753	5.86437743	5.82350133	5.38565841	6.25071983		
Bcl2l1	6.3386176	7.46201946	5.95513383	7.54053745	8.78325414	9.89410694		
Bcl2l11	0	0	6.94600503	6.87358216	4.32552584	7.85341182		
Bmi1	6.84030124	7.45817288	8.3898639	8.30544124	8.55457965	9.47756119		
Brd3	7.90377097	0	7.95461448	5.59030834	9.00631299	9.052141		
Casp8	7.51030052	8.02616926	4.9493906	8.5494905	8.91073923	7.93953605		
Casp9	0	0	8.5609996	1.67117364	4.0331817	9.80298865		
Cbx2	2.56416415	5.63988167	5.00035293	0	7.4548439	5.99738299		
Cbx8	0	0	0	0	0	0		
Cene	0	7.05018411	6.61535219	7.14719604	0	0		
Cend1	9.03626766	0	10.6728171	9.38229874	9.65405424	11.2577639		
Ccne2	6.17995523	0	0	7.11543157	3.58571536	6.20681303		
CD34	9.47324504	4.55399303	0	6.67982887	8.80998961	8.42129488		
CD41	6.83783924	0	0	7.46208028	5.97956704	7.65198306		
CD48	0	5.56947557	0	0	0	0		
CD52	3.35679477	11.0232754	4.14631098	2.71474755	0	0		
CD53	8.20861996	9.55294311	10.642603	0	10.0045947	8.2383003		
CD55	5.73982206	7.34724526	0	8.36090066	0	6.70252191		
CD63	7.99968851	3.87874565	8.90775134	6.61989086	7.62771038	8.83849433		
CD9	7.44138139	6.21616714	6.50446133	8.246429	7.64906334	8.63028596		
Cdc42	12.1710731	11.0591526	12.4549519	11.9800985	12.2018552	11.6731426		
Cdk1	0	0	0	6.25722026	8.10356032	0		
Cdk4	7.18574541	0	8.80614599	8.60901532	8.72742091	8.91034066		
Cdkn2b	0	3.88923712	0	0	3.6614691	0		

TABLE 6-1-continued

Factor		S	ingle cell expre	ession data (red	uced list)Co	Single cell expression data (reduced list)Control						
Cebpa 0 0 0 0 2.11474663 0 Ceffr 0 0 0 0 0 0 0 Cres 9.45352333 8.2862581 9.69867329 9.15788233 8.5747268 11.0355992 11.0355992 9.15788233 8.5747268 11.0355992 9.15788233 8.5747268 11.0355992 9.15788233 8.5747268 11.0355992 9.73255565 0 0 0 9.7325556 0 0 0 9.7325556 0 0 0 9.7325556 0	Factor						HSC-Host6					
CsTir 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Clmbb 6.77574215 5.5561107 8.53644908 6.17550279 8.17135019 8.9081073728 Dachl 10.8615494 0 9.31769339 9.0281771 8.02501106 10.7915469 Dumtl 7.9760193 7.79010706 9.93934161 9.46573455 10.184542 9.325669 Dumtl 7.9760193 7.79010706 9.959934161 9.46573455 10.184542 9.3256660 Dumtl 0 0 0 8.883210 0 6.41659753 10.5256696 Dixt 0 0 8.6883801 0 2.6684805 0 Epor 8.68447169 7.66763276 7.2432974 7.04722818 8.24346093 6.54478382 Erg 9.02284562 0 7.31156712 8.243350392 8.54381125 0 10.184466 10.0567225 Erg 9.02284562 0 7.31156712 8.24335392 8.54381125 0 7.74727818 8.24346493 6.54478382 Erg 9.022846059 7.4878888 8.7421791												
Dach 10.8615494 0							8.90801971					
Dammta	Cycs	9.45352333	8.28562581	9.69867329	9.15788233	8.5747268	11.0355392					
Damris	Dach1											
Damris												
Dix1												
Dixal												
Ep300 9,71487536 9,16729643 9,43974794 9,62406494 8,10311513 8,261497139 2,64476892 2,64476892 2,64476892 2,64476892 2,64476892 2,64476892 2,64478882 2,64478382 2,64483812 2,6448274 3,644826 3,6448274 3,644826 3,6448274	Dtx4											
Epor	Ebf1	0			0	0	0					
Ebg 9_20284562 0 8_877410211 11,13P691 11,1384466 10,0567225 ETS1 0 7,93156712 8_243503126 0 7,93156712 8_24336392 8_54381125 0 7,97895885 ETS2 7.69340588 10,4359154 7.88475206 9,15565609 9,36749887 9_44827774 Efv6 10.9918334 8_3432591 12,062043 10,496967 11,0891387 10,5930954 Erb2 0 0 0 0 7,2175748 0 Fegr3 3,08395665 0 0 0 6,89220045 4,43817889 Fil1 10,9830573 8,5586827 11,2140047 10,3178185 11,6619233 12,1483502 Fil3 6,00637493 0 0 0 0 0 0 Fox1 4,69007508 0 0 9,8657691 10,5194737 10,086124 Fox2 3,0799276 0 0 9,8657691 10,5194737 10,086124 Fox3 4,5744												
ExT 8.43503126 0 9.11129812 10.8937654 8.57545747 8.3829273 7.97856712 7.793156712 8.43812912 0 7.793156712 0 4.64796195 0 4.71186206 0.9191076 4.932626547 Etv6 10.9918334 8.3432591 12.062043 0 0 6.34199177 10.990679 7.2175748 0 6.34199177 10.990679 7.2175748 0 6.34199177 0 6.34199177 0.63199175 6.3199177 0 6.34199177 0.61199175 6.3197073 0 0 6.89220045 0 6.34199177 0 6.34199177 0 6.89220045 0 6.34199177 0 6.34199177 0 6.34199173 0 0 6.34199173 0 0 6.34199173 0 0 6.34199173 0<												
ETSI 0 7,93165712 8,24336392 8,54481125 0 7,9789888 ETYS2 7,69340598 10,4359154 7,88475206 9,15565690 9,36749687 9,44827774 EtyG 10,98334 8,3432591 12,062043 10,496697 11,0891387 10,5930954 Exb2 0 0 0 0 6,6199137 10,5930954 Fas 0 0 0 0 6,89220045 0 Fegral 3,08395665 0 5,1508941 0 6,689220045 4,4317889 Fili 10,9830573 0												
Eiv3 0 4,64796195 0 4,71186206 6,09191076 4,93262547 Ezh2 0 0 6,2199413 10,496967 11,0891387 10,5930954 Fas 0 0 0 6,2199413 0 7,2175748 0 Fas 7,06819715 0 6,31957073 0 0 6,89220045 0 Fegr3 3,08395665 0 5,1508941 0 5,42301679 4,43817889 Fit1 10,9830573 0 0 0 0 0 0 0 Fox1 4,69007508 0 0 9,8657691 10,5194737 10,0861124 Fox3 9,0799276 0 9,7189551 7,41765548 8,73488596 7,939231339 Gata1 5,60159574 0,66279515 5,86590598 7,1349751 0 0 0 Gata2 5,74244502 0 7,41208662 7,07920199 7,70780961 8,0067346 Ghit 0 0 0	ETS1											
Elyc 10.9918334 8.3432591 12.062043 10.4969697 11.0801387 10.5930954 Ezh2 0 0 6.2199413 0 7.2175748 0 Fegr2 3.08395665 0 5.1508941 0 6.88220045 0 Fili 10.9830573 8.55863827 11.2140047 10.3178185 11.6619233 12.1483502 Fili 10.9830573 8.55863827 11.2140047 10.3178185 11.6619233 12.1483502 Foxol 1.69007508 0 0 0 0 0 Foxol 1.09799276 0 9.7189551 7.47165548 8.73488566 7.96186755 Gapdh 8.55078867 5.52545622 9.00242399 8.73312904 8.521774 9.92323339 Gata2 5.74244502 0 7.41208662 7.07900199 7.7789061 8.0674346 Gitla 0 0 0 0 1.617243 7.54787108 8.22556613 Gitla 0 0 0	ETS2	7.69340598			9.15565609	9.36749687						
Exhz 0 0 6.2199413 0 7.2175748 0 Fas 0 0 0 0 6.34199177 Fegr3 3.08395665 0 5.1508941 0 6.89220045 0 Fili 10.9830573 8.55868827 11.2140047 10.3178185 11.6619233 12.1483502 Fili 6.20637493 0 0 0 0 0 0 Foxol 4.69007508 0 0 0 0 0 0 Foxo3 9.0799276 0 9.7189551 8.74165548 8.7348896 7.9618675 Gapdh 5.60159574 0.06279515 5.85690598 7.1439751 0 0 0 Gata1 5.60159574 0.06279515 5.85690598 7.1439751 0	Etv3											
Fas 0 0 0 0 6.34199177 Fegr2b 7.068197165 6.31957073 0 0 6.89220045 9 Fili 10.9830573 8.55863827 11.2140047 10.3178185 11.6619233 12.1483502 Fili 6.20637493 0 0 0 0 0 0 Foxol 10.3454599 7.31474333 10.967598 9.8657691 10.519473 10.0861124 Foxoa 9.0799276 0 9.7189551 7.47165548 8.73488596 7.96186755 Gatal 5.66159574 0.06279515 5.86590598 7.143971 0 0 Gatal 5.74244502 0 0 7.4120862 7.07920109 7.07089061 8.00674346 Gatal 5.74244502 0 0 0 7.0720109 7.07089061 8.00674346 Gatal 5.74244502 0 0 0 0 0 0 Gilal 5.74244502 0 0 0 <td>Etv6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Etv6											
Fegr2b 7,06819715 6,31957073 0 0 6,89220045 0 Fegr3 3,08395655 0 5,1508941 0 5,42301679 4,43817889 Fli1 10,9830573 8,55863827 11,2140047 10,3178185 11,6619233 12,1483502 Fox01 10,3454599 7,31474333 10,967598 9,8657691 10,5194737 10,0861124 Fox03 9,0799276 0 9,7189551 7,47165548 8,73488596 7,96186755 Gapdh 5,60159574 0,06279515 5,86590598 7,1439751 0 0 1,70186755 Gata2 5,74244502 0 7,1420866 7,1439751 0 0 1,70186755 0 0 1,70186755 0												
Fegral 3.08395655 0 5.1508941 0 5.42301679 4.43817889 Fli1 10.9830573 8.55863827 11.2140047 10.3178185 11.6619233 12.1483502 Fli3 4.69007508 0 0 0 0 0 0 Fox03 9.0799276 0 9.7189551 7.47165548 8.73488596 7.96186755 Gabdh 8.55078967 5.52545622 9.00242399 8.73312904 8.2821277 9.39231339 Gata1 5.60159574 0.06279515 5.86590598 7.1439751 0 0 Gata2 5.74244502 0 7.41208662 7.07920109 7.07089061 8.00674346 Gfil 0 10.6772434 5.50809971 8.12295844 8.25560613 Gfil 0 0 0 0 0 0 Hey5 0 0 0 0 0 0 0 Hey5 0 0 0 0 0 0 0<												
Fili 10.9830573 8.55863827 11.2140047 10.3178185 11.6619233 12.1483502 Fil3 6.20637493 0 0 0 0 0 0 Foxol 10.3454599 7.31474333 10.967598 9.8657691 10.5194737 10.0861124 Foxol 9.0799276 0 9.7189551 7.47165548 8.73488596 7.99287333 Gatal 5.60159574 0.06279515 5.86590598 7.4319751 0 0 8.00674346 Gata2 5.74244502 0 7.41208662 7.07920109 7.7089061 8.00674346 Gata3 8.00418853 7.18159892 8.43773446 5.50080971 8.12295844 8.25560613 Gfil 0 6.18652121 10.6772443 7.54787108 7.83956553 0 Gfilb 0 0 0 0 0 0 0 Hes5 0 0 0 0 0 0 0 0 0 0 0 <	Fegr3						-					
Fost	Fli1		-									
Foxol 10.3454599 7.31474333 10.967598 9.8657691 10.5194737 10.0861124 Foxo3 9.0799276 7.7165548 7.74165548 8.73488596 7.96186755 Gapdh 8.55078967 5.52545622 9.00242399 8.73312904 8.52812774 9.39231339 Gatal 5.60159574 0.06279515 5.86590598 7.1439751 0 0 Gatal 5.74244502 0.06279515 5.86590598 7.1439751 0 0 Gfala 8.00418853 7.18159892 8.43773446 5.00080971 8.12295844 8.25560613 Gfilb 0 0 0 0 0 0 0 Gfilb 0 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 6.51341399 Hey1 0 0 0 0 0 6.51341399 Hifl 10.44305 7.1801159 11.3716491 11.0104458 12.63	Flt3											
Foxo3 9.0799276 0 9.7189551 7.47165548 8.73488596 7.96186755 Gapdth 8.55078967 5.52545622 9.00242399 8.73312904 8.52812774 9.39231339 Gata2 5.74244502 0 7.41208662 7.07920109 7.70789061 8.00674346 Gata3 8.00418853 7.18159892 8.43773446 5.50080971 8.12295844 8.25560613 Gfilb 0 0 0 0 0 0 0 Gfilb 0 0 0 0 0 0 0 Hes5 0 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 0 Hey2 0 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 0 Hey2 4.67282232 0 7.2488034 0 0 0 0 </td <td>Fosl1</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>	Fosl1				-	-	-					
Gapdh Gatal 8.55078967 5.5245622 9.00242399 8.73312904 8.52812774 9.39231339 Gatal 5.60159574 0.06279515 5.86590598 7.1439751 0 0 Gata2 5.74244502 0 7.41208662 7.07920109 7.70789061 8.00674346 Gata3 8.00418853 7.18159892 8.43773446 5.50080971 8.12295844 8.25560613 Gfilb 0 0 0 0 0 0 0 Gfilb 0 0 0 0 0 0 0 Gfilb 0 0 0 0 0 0 0 Hes5 0 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 0 0 Hey1 10.44305 0 10.7025095 9.93038235 10.4823111 12.2258256 Id2 5.87344248 0 7.71801139 11.3716491												
Gata1 5.60159574 0.06279515 5.86590598 7.1439751 0 0 Gata2 5.74244502 0 7.41208662 7.07920109 7.07789061 8.00674346 Gata3 8.00418853 7.18159892 8.43773446 5.50080971 8.12295844 8.25560613 Gfil 0 6.18652121 10.6772443 7.54787108 7.83956553 0 Hes5 0 0 0 0 0 0 0 Hey1 0 0 0 0.93938235 10.4823111 12.22582526 1d2 5.87344248 0 7.19031139 5.96142885 0 6.513441399 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
Gata2 5.74244502 0 7.41208662 7.07920109 7.70789061 8.00674346 Gata3 8.00418853 7.18159892 8.43773446 5.50080971 8.12295844 8.25560613 Gfilb 0 6.18652121 10.6772443 7.54787108 7.8995653 0 Hes5 0 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 0 HIf 10.44305 0 10.7025095 9.93038235 10.4823111 12.2258256 Id2 5.87344248 0 7.19031139 5.96142885 0 6.51341399 If6203 11.7852987 9.71801159 11.3716491 11.0104458 12.6373979 11.6777944 If6205 4.67282232 0 7.24886334 0 0 0 6.51341399 Ikzrl 8.64469135 7.7972697 7.8568542 8.12528579 9.68635073 8.48962708 Ikzrl 7.81120077 0	Gapan Gata1											
Gfi1 0 6.18652121 10.6772443 7.54787108 7.83956553 0 Gfi1b 0 0 0 5.51370457 0 0 Hey1 0 0 0 0 0 Hiff 10.44305 0 10.7025095 9.93038235 10.4823111 12.2258256 Id2 5.87344248 0 7.19031139 5.96142885 0 6.51341399 If6203 1.7825987 9.71801159 11.3716491 11.0104458 12.6373979 11.6777944 If6203 4.67282232 0 7.24586334 0 0 0 0 Ikzf1 8.64469135 7.79726997 7.85685422 8.12528579 7.26836862 0 Ilr7R 0 0 0	Gata2		0			7.70789061	8.00674346					
Gfilb 0 0 0 5.51370457 0 0 Hes5 0 0 0 0 0 0 0 Hey1 10 0 0 0 0 0 0 Hlf 10.44305 0 10.7025095 9.93038235 10.4823111 12.2258256 Id2 5.87344248 0 7.19031139 5.96142885 0 6.51341399 Iff203 11.7852987 9.71801159 11.3716491 11.0104458 12.6373979 11.6777944 If6205 4.67282232 0 7.24586334 0 0 0 0 Ifkzf1 8.64469135 7.79726997 7.85685442 8.12528879 9.68635073 8.48962708 Ikzf2 7.81120077 0 9.37252819 8.30677295 7.26836862 0 I17R 0 0 0 0 0 0 0 Irf4 0 0 0 4.2551755 4.88594856 3.0817	Gata3	8.00418853	7.18159892		5.50080971		8.25560613					
Hes5												
Hey1												
Hif 10.44305												
Ifi203 11.7852987 9.71801159 11.3716491 11.0104458 12.6373979 11.6777944 Ifi205 4.67282232 0 7.24586334 0 0 0 Ifitm1 12.1471017 4.92118909 13.4884472 12.662214 12.5615878 13.0294612 Ikzf2 8.64469135 7.79726997 7.85685442 8.12528579 9.68635073 8.48962708 Ikzf2 7.81120077 0 9.37252819 8.30677295 7.26836862 0 Il7R 0 0 0 0 0 0 0 Irf4 0 0 0 0 0 0 0 Irf8 0 8.68822939 0 0 0 6.53060321 0 6.53060321 0 0 6.53060321 0 0 6.53060321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Hlf											
Ifi205	Id2	5.87344248	0	7.19031139	5.96142885	0	6.51341399					
Hitm1	Ifi203											
Ikzf1 8.64469135 7.79726997 7.85685442 8.12528579 9.68635073 8.48962708 Ikzf2 7.81120077 0 9.37252819 8.30677295 7.26836862 0 IlTR 0 0 0 0 0 0 Irf4 0 0 0 0 0 0 Irf6 0 0 0 0 0 6.53060321 Kdr 0 0 0 0 0 6.53060321 Kdr 0 0 0 0 0 0 Kif1 6.92350949 1.98980206 0 4.56789131 0.13589585 0 Klf12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Ldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902												
Ikzf2												
ITTR												
Irf6 0 0 4.20551755 4.88594856 3.08177568 Irf8 0 8.68822939 0 0 0 6.53060321 Kdr 0 0 0 0 0 0 Kir 11.2070686 0 11.6440993 11.4804292 12.2611324 12.206451 Klf1 6.92350949 1.98980206 0 4.56789131 0.13589585 0 Klf12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Ldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.35550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Ly11 0 2.97622608 1.79806679 7.18080529	II7R											
Irf8 0 8.68822939 0 0 0 6.53060321 Kdr 0 0 0 0 0 0 0 Kit 11.2070686 0 11.6440993 11.4804292 12.2611324 12.206451 Kif1 6.92350949 1.98980206 0 4.56789131 0.13589585 0 Kif12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Ldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Lyll 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415<	Irf4	0	0	0	0		0					
Kdr 0 0 0 0 0 0 Kit 11.2070686 0 11.6440993 11.4804292 12.2611324 12.206451 Klf1 6.92350949 1.98980206 0 4.56789131 0.135898585 0 Klf12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Ldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7920696 8.28647953 12.6717193 10.3350604 Ly11 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29993013	Irf6											
Kit 11.2070686 0 11.6440993 11.4804292 12.2611324 12.206451 Klf1 6.92350949 1,98980206 0 4.56789131 0.13589585 0 Klf12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Lldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717130 10.3350604 Ly11 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29993013 0 0 6.69623752 4.4179384 3.79041107 Mpl <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
Klf1 6.92350949 1.98980206 0 4.56789131 0.13589585 0 Klf12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Ldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Lyfa 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Lyll 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29093013 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.509936 9.03000686 11.3155121 Myb <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-										
Klf12 7.06267367 0 4.57402202 6.08382143 7.94374986 3.9594648 Ldb1 10.4073068 7.3896168 10.1500409 10.0911962 10.7267532 11.0127515 Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Lyl1 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29093013 0 7.29725525 7.26528892 8.67247017 9.42229127 Mllt3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121												
Lin28a 7.17248465 0 5.58873198 6.56573609 6.38615843 3.82188034 Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Ly11 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064335 Meis1 8.29093013 0 7.29725525 7.26528892 8.67247017 9.42229127 Mllt3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Muc13 8.25899032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834												
Lmo2 10.9902154 6.18088066 10.6616656 10.3550894 11.1327095 10.9913151 Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Lyll 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29093013 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Myc 8.25899032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfikb1	Ldb1											
Ly6a 9.77053874 11.2332276 11.7270289 8.28647953 12.6717193 10.3350604 Ly11 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29093013 0 7.29725525 7.26528892 8.67247017 9.42229127 Milt3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Muc13 8.25899032 0 8.64152378 9.29492519 10.7390115 9.9839177 Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Nfat <td>Lin28a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Lin28a											
Lyl1 0 2.97626088 1.79806679 7.18080529 6.9416814 6.73671636 Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29093013 0 7.29725525 7.26528892 8.67247017 9.42229127 Millt3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Muc13 8.25899032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Mycn 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.445334 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfik0<												
Mbd2 8.49739572 8.19189415 8.04081234 9.76536757 9.15455462 8.59064535 Meis1 8.29093013 0 7.29725525 7.26528892 8.67247017 9.42229127 Millt3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Muc13 8.25899032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Mgh 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfiab 9.61905092 0 7.82309617 10.1397415 0 10.3055652 Nfkb1												
Meis1 8.29093013 0 7.29725525 7.26528892 8.67247017 9.42229127 Mllt3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Muc13 8.25899032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Nfat 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfikb1 0 0 0 0 0 2.96900953 Notch1 0 0												
Milit3 5.89848994 0 0 6.69623752 4.4179384 3.79041107 Mpl 11.2861484 0 11.0645033 10.5099396 9.03000686 11.3155121 Muc13 8.2589032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Nfat 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.1397415 0 10.3055652 Nfkb1 0 0 0 0 10.3055652 Nfkb1 0 0 0 7.82309617 10.1397415 0 10.3055652 Nfkb1 0 0 0 <	Meis1											
Muc13 8.25899032 0 8.64152378 9.29492519 10.7390115 9.98391777 Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Ndn 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfika 9.61905092 0 7.82309617 10.1397415 0 10.3055652 Nfkb1 0 0 0 0 2.96900953 Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 3.25862559 0 0 0 Pax5 0 8.92648494 0 0 0 5.05	Mllt3	5.89848994	0	0	6.69623752	4.4179384	3.79041107					
Myb 12.4569362 0 12.2263569 12.4668319 11.4934181 12.0411759 Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Ndn 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfia 9.61905092 0 0 0 10.3055652 Nfkb1 0 0 0 0 2.96900953 Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 3.25862559 0 0 0 Pax5 0 8.92648494 0 0 0 5.05619592												
Myc 7.58661569 6.21232154 9.20695093 8.73071418 9.41854475 10.7856834 Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Nfat 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.579754 Nfia 9.61905092 0 7.82309617 10.1397415 0 10.3055652 Nfkb1 0 0 0 0 2.96900953 Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 3.25862559 0 0 Pax5 0 8.92648494 0 0 0 5.05619592												
Mycn 12.9947643 0 13.0918794 13.9626228 12.9338862 12.4445334 Ndn 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfia 9.61905092 0 7.82309617 10.1397415 0 10.3055652 Nfkb1 0 0 0 0 2.96900953 Notch1 0 9.29999671 0 7.33702794 0 Pax4 0 0 3.25862559 0 0 Pax5 0 8.92648494 0 0 0 0 Pax9 2.08863054 0 0 0 5.05619592												
Ndn 8.80844917 6.48582533 0 10.4252572 8.84853759 9.65347239 Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfia 9.61905092 0 7.82309617 10.1397415 0 10.3055652 Nfkb1 0 0 0 0 2.96900953 Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 3.25862559 0 0 0 Pax5 0 8.92648494 0 0 0 0 5.05619592												
Nfat5 10.4466948 9.45749742 10.690876 10.0164749 10.9448261 10.5579754 Nfia 9.61905092 0 7.82309617 10.1397415 0 10.3055652 Nfkb1 0 0 0 0 2.96900953 Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 3.25862559 0 0 0 Pax5 0 8.92648494 0 0 0 0 5.05619592	Ndn											
Nfkb1 0 0 0 0 2.96900953 Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 0 3.25862559 0 0 Pax5 0 8.92648494 0 0 0 0 Pax9 2.08863054 0 0 0 5.05619592	Nfat5				10.0164749	10.9448261	10.5579754					
Notch1 0 0 9.29999671 0 7.33702794 0 Pax4 0 0 0 3.25862559 0 0 Pax5 0 8.92648494 0 0 0 0 Pax9 2.08863054 0 0 0 5.05619592	Nfia											
Pax4 0 0 0 3.25862559 0 0 Pax5 0 8.92648494 0 0 0 0 Pax9 2.08863054 0 0 0 0 5.05619592												
Pax5 0 8.92648494 0 0 0 0 Pax9 2.08863054 0 0 0 0 5.05619592												
Pax9 2.08863054 0 0 0 5.05619592												
	Pax9											
	Pbx1											

TABLE 6-1-continued

	S	ingle cell expre	ession data (red	uced list)Co	ntrol	
Factor	HSC-Host1	HSC-Host2	HSC-Host3	HSC-Host4	HSC-Host5	HSC-Host6
PIk3ca	8.96748889	6.64436068	9.27732513	8.90571616	7.62247587	8.4100092
PIk3R2	9.65824684	0	9.22847732	7.39263343	0	4.40944775
Plag1	0	0	7.01820576	7.02904616	3.5641265	0
Prf1	0	0	0	0	1.57408799	0
Pten	10.9497819	0	10.2918594	8.92771496	10.4641876	10.3191806
Rb1	8.96820297	10.0038452	9.14142412	9.85888737	8.18977625	9.89607842
Rora	5.35194121	4.24098601	5.85010593	4.61334456	5.97348017	8.17380426
Runx1	0	7.58178739	8.9334852	0	7.0497458	0
Runx2	4.95241455	0	0	0	5.41048102	5.81273837
Satb1	0	0	0	0	7.86361531	0
Sdpr	0	0	0	0	2.58354882	3.26451236
Sell	0	0	2.34457587	0	0	0
Sfpi1	9.71796118	7.47768178	8.88184673	7.30312418	8.77086956	10.3270219
Slamf1	8.97990603	0	3.04564598	8.47261051	7.18152704	8.21009783
Smarca4 Sos1	10.4765281 4.33343207	3.61354971	10.1872564	10.8633232	8.60015526 5.53536226	10.9354338 6.14254392
Stat1	3.23775129	0.21307953	3.63532361 7.58861399	3.02927896	8.80721388	3.51485392
Stat3	10.6966168	7.76941207	10.6364369	10.0799192	10.5294486	3.31483392
Stat4	9.20300453	7.76941207 0	7.8248698	9.2674567	8.94657563	9.64694998
Stat6	9.20300433	8.52947719	9.97364377	9.05233066	9.64957237	11.0757572
Suz12	6.16330105	5.48666925	9.32289767	8.71099601	7.89367605	8.06855486
Tal1	8.36403791	0	2.33394532	0	1.38047772	0
Tcf3	10.4218407	9.72305906	0	0	8.61448405	0
Tcf4	9.16127496	9.85224012	11.534616	11.3598757	5.53155003	8.0963221
Tcf7	0	0	0	0	0	1.57791407
Tek	Ö	0	ő	7.32114021	Ö	6.95981526
Tfre	9.28718925	7.02384574	ő	8.22631353	Ö	9.43880717
Tgfb1	5.88177291	0	ŏ	0	ő	0
Tgfb2	0	0	0	0	0	0
Tgfb3	ŏ	Ŏ	7.27300183	0	Ŏ	7.34148597
Tnfrsf1a	8.90379373	7.13050062	8.48751907	8.869291	10.08512	9.56614844
Tnfrsf1b	8.00152361	6.49040287	9.95513535	9.15449888	2.53578357	6.5261916
Tnfrsf21	4.84351147	0	4.60229475	4.67842921	5.52125012	6.58500292
Tnfsf10	5.57895478	Ö	0	6.17029357	8.11110849	3.52628697
Tnfsf12	0	0	0	5.66296916	5.15470027	2.81029519
Tob1	6.60883404	4.71028925	6.61940548	0	7.53391259	0
vWF	6.42109411	0	7.67992352	6.67113351	6.93148562	7.2346756
Zbtb20	9.18932471	11.395783	9.15649836	8.61284336	8.06915897	9.60060809
Zbtb38	7.24785674	4.49081527	7.78800121	7.85959557	7.66905166	8.13608089
Zfp532	0	0	0	0	0	0
Zfp612	9.06730892	6.8781252	7.30966311	9.19853084	2.55278286	8.83891365
Zfpm1	0	0	7.6939382	5.55204554	0	8.02880897
Zhx2	0	6.41697281	7.21040835	0	5.66262749	9.35665478

TABLE 6-2

Single cell expression data (reduced list)-Control							
Factor	HSC-Host7	HSC-Host8	HSC-Host9	HSC- Host10	CLP1	CLP2	
Actb	14.6718473	13.3708842	14.0765648	14.5363732	15.5720296	15.6020418	
Aebp2	6.934218	5.38858023	6.92870369	6.83990914	6.91310458	6.13397519	
Ahr	6.67106288	0	0	0	0	0	
Akt1	8.78938258	10.6910195	9.8127768	10.8956807	10.5882487	9.71594698	
Akt2	6.75253581	3.62756205	0	6.81240671	0	5.50111064	
Akt3	8.32305076	5.46246892	6.80790868	6.46650561	8.93439362	7.9618537	
APC	0	6.36004551	0	6.14208966	3.44926722	0	
Bad	0	0	0	0	0	0	
Bax	0	8.20505106	7.76032108	10.25022	10.2921476	8.60030468	
Bcl11a	7.92077667	3.60167833	0	0	0	0	
Bcl11b	0	0	0	0	0	0	
Bcl2	4.96817114	5.18391882	5.86834513	4.77451604	0	0	
Bcl211	10.2036955	9.4735452	9.29507619	9.23047931	10.060975	7.87502531	
Bcl2111	0	0	0	8.25557161	0	0	
Bmi1	9.60604305	6.56999362	7.5702476	8.14038399	7.42571732	7.00110773	
Brd3	2.43074124	7.93247983	5.487038	7.62759044	11.1411249	9.66763681	
Casp8	8.13383235	8.73409	8.17193114	9.06003622	9.92872956	9.74113972	
Casp9	8.4257186	7.57293558	7.8464349	7.80792483	8.37487536	0	
Cbx2	7.07511053	4.48424451	5.84700109	6.23176944	0	6.13244563	

TABLE 6-2-continued

	TABLE 0-2-continued								
-	Single cell expression data (reduced list)-Control								
Factor	HSC-Host7	HSC-Host8	HSC-Host9	HSC- Host10	CLP1	CLP2			
Cbx8	0	0	0	4.43331023	2.09486638	0			
Cene	0	6.2797398	0	6.38691873	6.07677146	7.90773679			
Cend1	10.0212014	0	9.34071635	0	8.62709974	0			
Ccne2 CD34	0 0.01674269	6.53512964 7.67391972	6.54945811 0	6.0438482 10.7870089	7.34684561 0	6.25723346 0			
CD41	0.01074209	0	Ö	8.09312343	0	0			
CD48	0	0	0	8.10107986	10.5431066	4.18270305			
CD52	0	3.64518416	0	0	5.65535037	8.4769989			
CD53	8.91469588	0	10.1863121	10.1806135	11.1188968	10.5349358			
CD55 CD63	7.2980864 8.51246386	7.31878302 6.54126666	0 7.37134704	6.29391433 6.37418902	1.43412606 0	6.99636364 0			
CD03	8.74271831	0.34120000	8.72127967	8.8170788	0	0			
Cdc42	11.9094394	11.5894082	11.1126665	12.1006451	13.0861829	12.2864927			
Cdk1	2.68752057	0	0	11.8397661	11.3123555	0			
Cdk4	8.12335302	7.87079584	7.5720236	9.24576955	10.3762179	10.4600518			
Cdkn2b	0	0	0	0.35740427	0	0			
Cebpa Csf1r	0	0	5.63552878 0	0	0 6.27133994	0 5.26584779			
Ctnnb1	6.79339335	7.40629301	6.87918414	8.36101904	5.95935578	8.05082722			
Cycs	10.0442638	7.54030732	9.0344585	10.6654921	11.2529958	11.2582352			
Dach1	0	9.84505342	7.97799952	11.9672696	0	0			
Dnmt1	8.50686835	7.570001	3.23481103	10.5464652	12.6178625	12.0559888			
Dnmt3a	10.0573123	9.34977288	8.47634202	10.5147996	8.06454655	9.25761414			
Dnmt3b Dtx1	8.08236706 0	7.77693525 1.20990211	7.43902731 0	6.35981456 2.35858319	8.61270517 0	0			
Dtx1 Dtx4	0	0.84530668	0	8.42626641	0	0			
Ebf1	0	0	0	0	10.5975489	11.2372886			
Ep300	8.67464583	9.2042527	8.90097872	9.29742804	8.73799831	8.9933198			
Epor	7.4651798	7.99907556	7.67252065	7.98170347	0.10277376	4.78402129			
Erg Esr1	11.1082009 8.54768834	7.23780514 7.99110915	10.3502921 6.24818597	10.2615194 9.62048384	12.9408351 10.4231044	11.0993994 0			
EST1 ETS1	6.86365699	4.84774761	8.3168225	6.6480974	13.8494997	11.6438204			
ETS2	7.64755071	7.54891501	0.5100225	8.17449216	0	0			
Etv3	5.78507161	0	5.75634937	3.75032653	4.76128972	2.70875229			
Etv6	8.82488989	10.4027054	10.0840126	12.226941	10.5939014	9.97978593			
Ezh2	6.34735252	4.06993896	5.66118811	8.83156708	11.5011279	10.4172165			
Fas Fcgr2b	0 5.48237699	0 1.56950279	5.0587006 6.50908621	0 6.14234211	0 3.36211875	0 0			
Fegr3	0	0	0.50500021	0.14254211	0	o o			
Fli1	10.6505478	9.64542823	11.1441998	11.6211551	10.9483997	10.3713463			
Flt3	0	0	0	9.55475223	0	0			
Fosl1	0	0	0	1.86707308	0	8.47337507			
Foxo1	7.87606422	9.05152117 7.7040044	9.80912191	11.1420747	11.6728318	10.918137 6.92529651			
Foxo3 Gapdh	8.4243012 7.84932494	8.15466782	9.07363846 8.21027854	9.75726551 8.00493653	6.51553987 12.3780006	11.3641618			
Gata1	0	0	1.32627298	4.99268331	0	0			
Gata2	7.1358369	7.84253879	7.5357683	4.15447711	0	0			
Gata3	9.23864702	7.08926856	7.70423652	9.1691048	6.33257429	0			
Gfi1	8.4722437	0	2.45881453	8.01637799	0	6.71345188			
Gfi1b Hes5	9.78145684 0	0	0	7.14731375 0	0	0			
Hey1	0	0	0	0.50104001	0	0			
Hlf	10.4196373	7.93837692	9.25512238	9.64501202	0	0			
Id2	0	0	0	0.37307203	0	0			
Ifi203	11.2385326	10.675148	11.1293957	11.5993821	13.2875382	10.2274453			
Ifi205	0	0	0	0	0	0			
Ifitm1 Ikzf1	11.8294232 10.4603278	11.1006374 7.9081258	12.8299047 8.39039117	11.7081516 9.30500104	11.2708394	0 10.4757841			
Ikzf2	8.66069698	0	8.07815335	9.24251035	0	0			
Il7R	0	0	0	0	3.86371591	4.80700829			
Irf4	0	0	0	0	9.2290601	10.2309003			
Irf6	2.64609076	0	4.55767937	4.22209488	0	0			
Irf8	0	1.57386134	0	8.84149401	0	8.81600274			
Kdr Kit	0 12.2681758	0 11.1853776	0 11.5755541	0 11.3487544	0 10.3091102	0 9.16742564			
Klf1	0	0	5.19001782	2.69496283	0.3091102	9.10742364			
Klf12	8.99195223	6.89401764	0	0	4.77266959	7.98400431			
Ldb1	10.7730297	9.4520141	9.55889768	9.47012092	8.99931122	10.47084			
Lin28a	6.21043595	5.10100157	8.34850576	7.64045938	7.50871774	9.03894646			
Lmo2	11.5565524	9.01389959	10.9404097	10.1650659	4.46826015	6.2900714			
Ly6a	10.274331	8.62489906	10.9730888	0.67547765	0	0			
Lyl1	3.44144381	7.53639677	6.92249445	8.41401114	7.99916677	8.4577076			

83

TABLE 6-2-continued

	Single cell expression data (reduced list)-Control								
			(2	HSC-					
Factor	HSC-Host7	HSC-Host8	HSC-Host9	Host10	CLP1	CLP2			
Mbd2	7.07180263	8.80305911	9.83435118	7.32171913	11.0889587	11.1378285			
Meis1	7.80771805	6.57260088	8.3801574	6.64771096	0	5.32655256			
Mllt3	5.27987488	4.98216842	0	4.98006428	0	0.43104733			
Mpl Muc13	9.95026098 9.58693895	9.29878047 5.98850625	10.5382189 10.5817646	8.92503515 10.34105	0	0 0			
Myb	11.9113929	11.3263068	9.38747922	12.0083232	13.2716596	13.3551636			
Myc	0	7.55865639	5.71326556	9.60742235	0	7.03978632			
Mycn	9.2475789	11.2225067	12.0059366	9.17037192	0	0			
Ndn	9.34022589	8.94700354	8.72830108	7.25627641	0	0			
Nfat5	10.9266838	10.3886042	10.2456748	9.51279929	3.18257792	0			
Nfia	9.8356555	8.60236457	8.92289712	10.0014286	8.2885559	0			
Nfkb1	0	0	4.48890776	0	3.74973604	0			
Notch1	7.66102275	0	6.91201627	8.32291131	7.91814495	7.36965349			
Pax4 Pax5	0	0	0 0	0	0 9.67689902	0 11.6203933			
Pax9	0	0	0	0.57036927	4.48973549	0			
Pbx1	5.69269047	ő	5.43069763	0.57050527	0	0			
PIk3ca	0	7.18092062	7.27208139	9.05710063	9.40185149	9.55052543			
PIk3R2	0	0	7.5160141	8.56807024	9.73539407	0			
Plag1	7.73898932	7.96365738	8.07352148	0	0	0			
Prf1	0	0	0	0	0	0			
Pten	10.1342741	9.78469549	9.33811703	11.1785408	10.1894192	10.4359312			
Rb1	9.29604621	9.27765839	7.51678183 8.15836998	8.27880038	11.9054276	10.9424567			
Rora Runx1	6.10890584 0	7.3877893 7.76888704	8.78603048	5.4939429 7.67062362	0 8.305547	0			
Runx2	0	3.79386494	3.6008219	5.35557258	0	0			
Satb1	0	0	0	8.99400379	10.1837922	8.39346313			
Sdpr	5.78136407	4.21076733	0	0.82691288	0	0			
Sell	0	0	1.61946707	0	0	0			
Sfpi1	10.0042663	9.37371199	9.15518065	9.65832452	0	9.26882608			
Slamfl	7.81411202	6.8594725	7.95128279	0	0	0			
Smarca4	10.3380905 0	7.42905599	9.2510329	11.5218685	14.4938783 0	13.4081997			
Sos1 Stat1	1.71494059	0 0	6.5261554 0	6.79179662 3.42562416	5.64062199	5.43289492 0			
Stat3	10.7412032	8.92068828	8.96113036	10.4989945	8.68504508	8.21020662			
Stat4	9.21395012	9.36252836	9.57705104	8.5317536	0	0.65364229			
Stat6	8.27498229	8.51520973	8.34381559	8.60680209	10.1139186	9.61023286			
Suz12	8.36186765	7.85222591	8.01568165	9.19083991	12.1912291	10.7847116			
Tal1	1.22646608	0	0	0.85919234	8.29002547	0			
Tcf3	0	10.0641005	0	0	10.2329064	9.57044442			
Tcf4 Tcf7	10.3945958 1.59196764	8.86390901 0	9.93214915 0.92915579	10.6432336 0	11.5584564 0	11.0576929 5.45500333			
Tek	0	0	0.92913379	7.77878275	0	0			
Tfre	4.90970417	8.02894875	7.93433882	7.81882114	10.1158882	10.2735536			
Tgfb1	0	3.32919416	5.90260252	3.25808206	3.7705399	0			
Tgfb2	0	0	0	3.22432655	0	3.37538454			
Tgfb3	0	6.69135338	1.40782238	3.95650619	0	0			
Tnfrsf1a	9.92981833	7.3738534	8.64338251	8.24251812	0	0			
Tnfrsf1b	8.93673702	9.48765082	9.5506678	6.21083423	3.78885776	3.73572941			
Tnfrsf2l	4.89969433	0	6.93921933	7.10963898	0	0			
Tnfsf10	7.10728827	0	0	1.58582089	7.14613579	8.05630727			
Tnfsf12	3.38261217	0	2.19082075	0	0	0			
Tob1	0	5.20593174	0 5 43604051	0	0	0			
vWF Zbtb20	4.95948597 9.61893778	6.28053967 9.81916761	5.43694051	0 7.72955135	0	0 0			
Zbtb38	9.01893778	6.185996	9.00655347 7.56423848	6.82663886		3.84361329			
Zfp532	9.10026874	0.183990	7.30423848 0	0.82003880	7.73312626 0.10416971	3.84301329 0			
Zfp612	5.28324577	6.48139199	8.74136356	5.56744079	0.10416971	6.50143494			
Zfpm1	8.58664951	6.0911617	8.1830324	0	6.44606012	5.62364305			
Zhx2	7.56629134	7.63051187	0.1050524	5.24483627	0	0			
			-		-	-			

TABLE 6-3

	Single cell expression data (reduced list)-Control								
Factor	CLP3	CLP4	CLP5	CLP6	CLP7	CLP8			
Actb Aebp2	13.4721085 4.45141147	15.2351724 4.38441532	15.2719547 7.10616819	16.31177 6.49378333	16.919695 7.1531144	17.0516789 5.6116867			

TABLE 6-3-continued

	Single cell expression data (reduced list)-Control							
Factor	CLP3	CLP4	CLP5	CLP6	CLP7	CLP8		
Ahr	0	0	7.00481198	0	0	0		
Alli Akt1	7.3884758	9.17609503	9.55146467	10.0057847	10.2031478	11.1623017		
Akt2	1.87065597	0	0	0	7.27787365	0		
Akt3	7.14641592	0	0	8.91809255	8.53101085	8.95553865		
APC	0	0	7.27741159	0	9.72461612	0		
Bad	0	0	0	0	0	0		
Bax Bcl11a	5.64368167 0	7.7793443 0	7.96170511 0	9.7217077 0	11.9875259 8.6331668	11.9783765 9.1297033		
Bcl11b	0	0	0	8.64946621	0	0		
Bcl2	Ō	0	0	4.47644651	4.63608396	0		
Bcl211	4.6189348	0	10.2286999	10.9686351	10.604158	11.3030776		
Bcl2111	4.8989012	0	8.32168555	0	0	0		
Bmi1	3.17094341	6.36759845	5.13831255	6.9969786	8.36369633	7.04410175		
Brd3	6.59116273 9.02211423	8.85891039 8.05947856	10.3417165 9.77788318	10.3202288 10.1196359	11.5288449 11.9218075	11.1568732 10.3568659		
Casp8 Casp9	5.06149028	0.03947830	0	0	8.30557433	9.75192608		
Cbx2	4.42759599	7.57182896	2.65329776	8.35205791	6.1484868	7.77479327		
Cbx8	0	0	0	7.10684953	0	0		
Cene	3.70061852	7.15959988	8.92627786	8.61131431	9.6072497	9.48325249		
Ccnd1	0	2.93758213	0	0	10.6400803	0		
Ccne2	5.21666008	7.17885114	11.5186474	0	9.77794018	10.5222899		
CD34	0	0	0	0	0	0		
CD41 CD48	6.34043371 0	0 7.57200005	9.20489806	0 9.11301325	12.225357	9.60365514		
CD52	7.65018871	7.48017023	7.43352856	0	12.104936	12.1008653		
CD53	10.1411695	7.84826499	9.96783218	10.4527685	10.929522	11.4800078		
CD55	7.0314255	0	0	0	0	0		
CD63	0	0	0	0	0	0		
CD9	0	0	0	0	0	7.60428115		
Cdc42	11.4392736	12.714625	12.1761207	13.5034801	13.8493379	13.7053792		
Cdk1 Cdk4	6.69762232 5.98607517	0 6.97494046	9.85122167 9.31645941	11.4158803 10.220209	12.1196679 12.7159863	12.4467872 12.2210916		
Cdkn2b	0	0.97494040	0	0	0	0		
Cebpa	Ö	3.58268727	0	ő	0	0		
Csf1r	0	0	1.65538427	3.97435095	8.52442108	0		
Ctnnb1	3.62240099	6.62276734	7.86637465	7.51682333	9.83553487	10.0053905		
Cycs	9.02261009	11.2219931	12.0781554	10.7960042	14.1072249	14.0649415		
Dach1	0	0	0 12.0119534	0	0	0		
Dnmt1 Dnmt3a	9.22693253 10.1899327	9.45595878 10.0717063	9.85756039	12.2094736 6.45117101	13.5638023 8.59850296	13.6951805 10.3104357		
Dnmt3b	0	0	0	8.47080648	9.14187427	5.69957905		
Dtx1	1.994687	4.40399225	3.53694035	1.04383263	0.47312172	3.02752053		
Dtx4	3.40004889	0	2.47750396	0	9.02141488	8.78305504		
Ebf1	9.85337813	10.0549087	10.0192028	10.3755802	10.3006671	10.0964241		
Ep300	8.7177225	7.49266991	9.85202509	10.4082795	9.68961902	9.97406922		
Epor	2.12061309 9.92070322	0 10.2435688	3.84685187 11.5232616	4.15570632 11.7222598	3.80975151 12.279183	5.26571959 12.5339555		
Erg Esr1	8.69677383	10.4600212	10.205356	8.31154408	7.71734777	0		
ETS1	11.3057093	12.1559856	12.6586051	12.5933092	12.1381441	12.9889476		
ETS2	0	0	9.6997688	8.36290987	8.2095168	0.73462164		
Etv3	0	3.38933838	0	3.43657627	6.61600906	2.44247804		
Etv6	0	0	8.65286731	10.7013694	10.9628988	10.3361814		
Ezh2	8.02471927	8.50978683	12.1912021	10.8533753	11.493762	11.5119798		
Fas Fcgr2b	0 7.6797349	0	0	0	0	0		
Fcgr3	0	0	0	6.10259634	0	0		
Fli1	9.93711884	10.9464019	11.1285519	9.54487089	10.8365241	11.5533691		
Flt3	0	0	0	0	9.56640355	10.3432711		
Fosl1	0	0	0	0	0	0		
Foxo1	11.0966868	8.79275995	11.8050162	12.7164993	12.8446053	12.3408678		
Foxo3	3.57817888	6.51216426	0	6.58016006	7.771922	8.46989317		
Gapdh Gata1	5.85168672 6.47274743	10.6505893 0	12.1850341 0	12.4040061 2.62704169	13.3572594 3.52126724	13.192243 0		
Gata1 Gata2	0.47274743	0	0.36206896	0	0	0		
Gata2 Gata3	Ö	ő	0.50200050	ŏ	ő	ő		
Gfi1	5.89645562	0	8.17908872	Ö	4.89958389	2.83324318		
Gfi1b	7.35569282	0	0	0	0	0		
Hes5	2.85354691	0	0	0	6.33604471	0		
Hey1	0	0	0	0	0	0		
Hlf	0	0 0	0	0	0	0		
Id2 Ifi203	0 11.7954894	10.973362	0 11.001131	0 11.4270334	0 12.5609017	0 10.7759677		
Ifi203 Ifi205	0	0	0	0	0	8.09318704		

TABLE 6-3-continued

	TABLE 0-3-continued								
		Single ce	ll expression data (re	educed list)-Control					
Factor	CLP3	CLP4	CLP5	CLP6	CLP7	CLP8			
Ifitm1	0	0	0	2.84027402	0	0			
Ikzf1	9.73388122	8.31161283	9.89390965 0	8.89596541	11.5318373	11.7353046 0			
Ikzf2 II7R	7.68319581 3.50218592	0 3.36711209	5.2921046	0 4.8044562	0 5.550561	6.76651483			
Irf4	9.79482653	0	9.58168074	8.08809386	7.5643288	2.25516181			
Irf6	0	4.76893306	4.55078055	0	2.82795862	2.04839193			
Irf8	7.95992816	10.1806094	7.75876351	8.80670344	11.7480118	9.73229364			
Kdr	0	0	0	0	0	0			
Kit Klf1	0.53419079	0	9.96379129 0	10.7375717 1.0024718	10.2201977 0	9.16826777 0			
Klf12	6.82013214 0	0	0	0	0	0			
Ldb1	9.90431329	9.96028836	11.2260518	9.83927772	11.895041	11.7935625			
Lin28a	5.35085436	7.33632529	6.44890786	6.34118404	6.36516284	9.37400697			
Lmo2	6.46868712	4.61214257	5.14599266	5.60258194	6.56246105	3.9775212			
Ly6a	0	3.53194881	0	0.37013501	7.4460115	10.5913393			
Lyl1 Mbd2	9.3983485 8.94182953	8.54480739 9.36449253	7.34706955 10.2060984	9.10668449 9.52243477	11.3876375 11.5407023	7.64786048 12.2595821			
Meis1	0	0	5.21224582	5.79085752	5.40464488	0			
Mllt3	Ö	ŏ	0	2.11014429	0	2.59630677			
Mpl	0	0	0	4.02311498	0	0			
Muc13	0	2.57260911	0	0	0	0			
Myb	12.3033699	12.488897	12.3730793	12.3171025	13.0048416	12.7052775			
Myc	5.93099913 0	11.6265583 0	0	0	14.0060868	10.9410236			
Mycn Ndn	0	0	0	0	0	0			
Nfat5	7.24590475	5.59931195	10.8263667	6.57678171	8.07891887	6.14435558			
Nfia	8.37013642	8.26157976	10.2847505	8.23082089	0	8.96451019			
Nfkb1	0	0	4.99179474	0	3.6973326	6.1512888			
Notch1	8.10251427	0	0	0	8.45173916	8.82084626			
Pax4	0	0 02404452	0 77204	4.36397603	3.43221858	0			
Pax5 Pax9	9.34367693 0	9.92404452 0	9.77304 5.18709971	11.0122144 0	10.3872408 3.29966428	10.8331107 0			
Pbx1	0	0	0	0	0	0			
PIk3ca	9.63937118	6.79728215	11.3857624	10.7462144	9.15262138	10.9538129			
PIk3R2	7.90901728	7.26209506	8.54304817	8.37704722	9.50572232	9.62140977			
Plag1	0	0	0	5.97796547	0	0			
Prf1	0 72285222	0	0	0	0	0			
Pten Rb1	9.72285323 9.00979222	11.0091543 8.85052189	10.636038 11.0074341	10.0259098 12.0368206	11.7798461 11.2827	10.8939695 12.2052216			
Rora	0	0.05052105	0	0	0	0			
Runx1	3.35520365	8.41018156	0	7.20098788	10.3169336	7.21605593			
Runx2	0	0	0	0	0	0			
Satb1	10.3474498	0	10.4087951	10.4125548	11.5917762	10.8352979			
Sdpr Sell	0 0	0	0	0 9.4220848	0 11.0820261	0			
Sfpi1	0	6.01015121	9.2965798	0	9.91399926	8.59032855			
Slamfl	Ö	0	0	5.98712463	0	0			
Smarca4	13.439393	12.5294897	14.6724616	15.0680818	14.5786721	13.7911882			
Sos1	0.97380716	6.19138786	0	5.38334215	7.45674234	7.50591767			
Stat1	0.7689796	6.50704145	0	0.30611506	2.57411315	0			
Stat3	0	8.93991247	0 7.27133959	6.7379161	10.502702	0			
Stat4 Stat6	6.56531371 7.7239777	6.26156325 8.43459593	9.892434	8.37209933 9.03877839	7.78457398 10.1786368	6.6457098 3.86022053			
Suz12	9.22489651	0.45457575	10.0290041	12.3349832	12.611291	13.0733851			
Tal 1	0	0	6.67626014	6.82238434	7.45135976	3.68581347			
Tcf3	3.3752031	0	7.69136582	8.65824457	9.6940747	8.57311453			
Tcf4	11.1561631	9.47548756	10.1792855	11.8284673	11.6158594	10.8851719			
Tcf7	0	0	1.68581989	0	1.46116868	6.50226768			
Tek Tfrc	0 8.384231	0 8.62609735	0 8.72228476	0 9.79712611	0 12.2298851	0 12.6617066			
Tgfb1	0.564251	1.30714129	0.72220470	0	8.57409133	4.42951853			
Tgfb2	ŏ	0	0	ŏ	0	0			
Tgfb3	0	0	0	5.906968	6.8247631	0			
Tnfrsf1a	0	0	8.13776036	0	6.6654212	0			
Tnfrsf1b	5.48788691	0	0	0	8.83222639	0			
Tnfrsf21	0 0	3.83171313 0	4.44763219	5.66301599 0	6.31162299	5.70640904 0			
Tnfsf10 Tnfsf12	0	0	7.49803338 0	0	7.18042827 0	0			
Tob1	0	4.40571001	0	0	0	0			
vWF	0	0	0	0	0	Ö			
Zbtb20	8.29135619	0	8.47708838	0	0	8.27839243			
Zbtb38	8.58554038	0.99042294	8.02102069	0	0	7.24565903			
Zfp532	0	3.87621119	2.9154077	0	4.19402652	3.24319594			

TABLE 6-3-continued

Single cell expression data (reduced list)-Control								
Factor	CLP3	CLP4	CLP5	CLP6	CLP7	CLP8		
Zfp612	1.03716649	0	2.11894576	6.50227904	7.64231508	7.61374585		
Zfpm1	6.66189343	0	3.0682001	0	0	0		
Zhx2	8.44133547	0	0	0	0	9.15911003		

TABLE 6-4

Factor		Single cell expression data (reduced list)-Control							
Achpo	Factor	CLP9	CLP10	CMP1	CMP2	CMP3	CMP4		
Ahr 7.89043699 0 0 0 0 0 0 7.8914524 Akt2 0 0 4.75623883 5.90460679 0 5.31671468 Akt2 0 0 4.75623883 5.90460679 0 5.31671468 Akt2 0 0 5.31671468 Akt2 0 0 5.31671468 Akt2 0 <	Actb	16.7472085	16.8352612	16.8602626	16.1110931	14.4827986	15.0603357		
Aktr1 8.18148335 8.76663238 9.8206378 10.7068971 8.0750109 9.71182542 Aktr2 0 0 4.73623383 5.90466679 0 5.31671466 Aktr3 7.62109377 8.60100117 10.3161486 9.89323892 7.25420238 7.80506854 Bad 0 0 0 6.42364613 0 0 0 Bad 0 0 0 0 0 0 0 Bad 0 0 0 0 0 0 0 Bell 18 0.1762585 0 0 0 0 0 0 Bell 18 4.17625904 3.95544552 0 0 0 0 7.99225602 Bell 211 4.95609125 9.99775747 9.90050891 0 7.99225602 Brid 1 7.02747752 7.05528898 0.4374747 9.90050891 0 5.6125633 Brid 3 1.0402324 1.0356616 9.0125098 1.1375884	Aebp2	5.10557045	3.3120632	5.90217636	5.99828664	4.16296449	5.95408203		
Akt2 0 0 4,73623383 5,90460679 0 5,31671466 Akt3 7,62109377 8,60100117 10,3161486 9,89323892 7,25420238 7,85006854 APC 0 0 0 0 0 0 0 0 Bax 9,20238441 8,3822507 9,02204677 9,89324281 0 8,05690985 Bcl11a 10,3227685 0 0 0 0 0 6,67178744 Bcl211 8,3489033 9,55544552 0 9,9775747 8,3969119 0 7,99225602 Bcl211 8,3489033 9,55544552 0 9,9775747 8,3969119 0 7,99225602 Brd3 10,4902324 10,3566216 9,1026308 11,3736884 9,5182217 10,013732 Casp8 10,3220679 0 0 0 8,91438552 0 9,50719509 Cbx 5,63357469 5,25126348 0 6,2240923 0 4,93663648 Cbx	Ahr		•	~	•		•		
Akr3 7.62109377 8.60100117 10.3161486 9.89323892 7.2240238 7.89506854 Bad 0 0 0 642364613 0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
APC 0 0 6.42264613 0 1.66166347 Bax 9.292384411 8.3822907 9.0204677 9.89324281 0 8.0569085 Bell1a 10.3227685 0 0 0 0 0 0 Bel2 5.16525658 0 0 0 0 0 7.99225602 Bel2111 8.3489033 9.55544552 0 0 0 0 7.99225602 Bel2111 7.02747752 7.05528888 6.44377861 6.35815343 0 7.99225602 Bel2111 0.04902324 10.3566216 9.10263098 11.3736884 9.5182217 10.017372 Casp8 10.3220679 0 0 0 8.91438552 0 9.50719599 Cbx2 5.63357469 0 0 8.91438552 0 9.50719590 Cbx8 0 4.8985443 0 0 0 0 0 Cbx8 0 9.44462333 8.71442109 10.4720419		ŭ.							
Bad									
Bax		0	•	~		•			
Bel11a 10.3227685 0 0 0 0 0 0 0 6.8718744 Bel21 5.16525658 0 0 0 0 7.99225602 0 0 7.99225602 0 0 7.99225602 0 0 7.99225602 0 0 7.99225602 0 0 7.99225602 0 0 7.99225602 0 0 7.99225602 0 0 0 7.99225602 0 0 8.39669119 0 0 7.99225602 0 2.8536974 0 3.966011 0 0 8.9162018 0 5.6256253 0 3.644602 0 5.6256253 0 3.5652625 0			-		•				
Bel1									
Bel2			•	~	0				
Bel2111									
Bel2111			•	-	-	-			
Bmil							2.85336974		
Casp8 10.3220679 10.7369556 9.56591918 12.353426 10.3690709 10.4324467 Casp9 0 0 8.91438552 0 9.50719509 Cbx2 5.63357469 5.32126348 0 6.26420923 0 4.8863048 Cbx8 0 4.8885443 0 0 0 0 Ccnc 9.44462333 10.6012883 8.71922383 8.09887133 7.39164169 7.88535554 Cmd1 13.1309938 8.71442109 10.4720419 7.63908907 0 7.37626749 Ccne2 0 8.35161245 0 7.74541722 0 0 7.37626749 CD34 0 0 0 11.07838464 0 10.99563356 CD41 0 0 0 11.0838464 0 10.6626378 0 CD41 0 0 0 11.5893766 10.3906592 0 7.66889187 CD53 11.7226951 10.1539175 11.257362 13.1982289		7.02747752							
Casp8 10,3290679 10,7369556 9,56591918 12,353426 10,3690709 10,4324467 Casp9 0 0 8,91438552 0 9,50719509 Cbx2 5,63357469 5,32126348 0 6,26420923 0 4,88635048 Cbx8 0 4,8885443 0 0 0 0 Ccnc 2,44462333 10,6012883 8,71922383 7,39164169 7,88535554 Cend1 13,1309938 8,71442109 10,4720419 7,63908907 0 7,37626749 Cene2 0 8,35161245 0 0 11,0938464 0 10,9563356 CD41 0 0 0 11,0788464 0 10,9563356 CD41 0 0 0 11,05878671 10,6626378 0 CD41 0 0 0 11,5393787 11,257362 13,0892289 7,0003657 10,4526615 CD53 12,8012579 11,5337875 11,257362 13,34982289 0 <td>Brd3</td> <td>10.4902324</td> <td>10.3566216</td> <td>9.01263098</td> <td>11.3736884</td> <td>9.51822117</td> <td>10.0173723</td>	Brd3	10.4902324	10.3566216	9.01263098	11.3736884	9.51822117	10.0173723		
Cb½ 5.63357469 5.32126348 0 6.26420923 0 4.88635048 Cbx8 0 4.8985443 0 0 0 0 Ccnc 9.44462333 10.6012883 8.71922383 8.09587133 7.39164169 7.88535554 Ccnd1 13.1309938 8.71442109 10.4720419 7.63908907 0 7.37626749 Ccne2 0 8.35161245 0 0 7.74541722 0 0 CD34 0 0 0 11.0938464 0 10.9563356 CD41 0 0 0 10.857871 10.6626378 0 CD44 10.1531953 9.61840884 11.7599349 12.6456392 7.70003657 10.4526615 CD52 11.7226951 11.1539779 11.237362 13.1982289 0 11.0963127 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD53 12.8012579 11.3313485126 14.1395004 13.573	Casp8	10.3220679	10.7369556	9.56591918	12.353426		10.4324467		
Cbx8 0 4.8985443 0 0 0 0 Cenc 9.44462333 10.6012883 8.71922383 8.09587133 7.39164169 7.88535554 Cencl 0 8.71442109 10.4720419 7.63908907 0 7.37626749 Cencl 0 8.35161245 0 7.74541722 0 0 CD41 0 0 0 11.0953856 0 0 CD41 0 0 0 11.0953856 0 0 10.9563356 CD52 11.1726951 10.1559179 12.0658796 10.3906592 0 7.66859187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD55 0 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 <td>Casp9</td> <td>0</td> <td>0</td> <td>0</td> <td>8.91438552</td> <td>0</td> <td>9.50719509</td>	Casp9	0	0	0	8.91438552	0	9.50719509		
Cene 9.44462333 10.6012883 8.71922383 8.09587133 7.39164169 7.8853554 Cend1 13.1309938 8.71442109 10.4720419 7.63908907 0 7.37626749 Cene2 0 8.35161245 0 7.74541722 0 0 CD34 0 0 11.0938464 0 10.9563356 CD41 0 0 0 10.8578871 10.6626378 0 CD48 10.1531953 9.61840884 11.7599349 12.6456392 7.70003657 10.4526615 CD52 11.7226951 10.1559179 12.0658796 10.3906592 0 7.66859187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD55 0 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdk2 12.9539909 13.4145126 14.1395004 13.5734692	Cbx2	5.63357469	5.32126348	0	6.26420923	0	4.88635048		
Cendl 13,1309938 8,71442109 10,4720419 7,63908907 0 7,37626749 Cene2 0 8,35161245 0 7,74541722 0 0 10,9563356 CD41 0 0 0 110,938464 0 10,9563356 CD41 0 0 0 10,8578571 10,6626378 0 CD48 10,1531953 9,61840884 11,7599349 12,66465392 7,70003657 10,4526615 CD52 11,7226951 10,1559179 12,0658766 10,3906592 0 7,66859187 CD53 12,8012579 11,5337875 11,257362 13,1982289 0 11,0963127 CD55 0 0 0 8,8819203 0 6,92519888 CD9 7,17538049 0 8,11834259 0 0 7,63859446 Cdc42 12,9539990 13,4145126 14,1395004 13,5734692 12,5791339 12,8894502 Cdk1 11,2702793 11,3939722 0,20875207			4.8985443		0	0	0		
Ccne2 0 8.35161245 0 7.74541722 0 0 CD34 0 0 0 11.0938464 0 10.9563356 CD48 0 0 0 11.08578571 10.6626378 0 CD48 10.1531953 9.61840884 11.7599349 12.6456392 7.70003657 10.4526615 CD52 11.7226951 10.1559179 12.0658796 10.3906592 0 7.66859187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD53 0 0 0 0 8.8819203 0 CD63 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 0 0 0 Cdk1 11.2702793 11.3939722 0.20875207 11.148913 0 <									
CD34 0 0 0 11.0938464 0 10.9563356 CD41 0 0 0 10.8578571 10.6626378 0 CD48 10.1531953 9.61840884 11.7599349 12.64563922 7.70003657 10.4526615 CD52 11.7226951 10.1559179 12.0658796 10.3906592 0 7.66859187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD55 0 0 0 0 8.8819203 0 CD63 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 0 Cdk1 11.2702793 11.396614 10.9598136 <t< td=""><td></td><td>13.1309938</td><td></td><td></td><td></td><td></td><td>7.37626749</td></t<>		13.1309938					7.37626749		
CD41 0 0 0 10.8578571 10.6626378 0 CD48 10.1531953 9.61840884 11.7599349 12.6456392 7.70003657 10.452615 CD52 11.7226951 10.1559179 12.0658796 10.3906592 0 7.66889187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD55 0 0 0 0 8.8189203 0 CD63 0 0 6.94398394 9.24084619 0 6.522519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 0 Cdka 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2ba 0.89723358 0 10.2311173									
CD48 10.1531953 9.61840884 11.7599349 12.6456392 7.70003657 10.4526615 CD52 11.7226951 10.1559179 12.0658796 10.3906592 0 7.66859187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.063127 CD55 0 0 0 0.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 6.94398394 9.24084619 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 0 Cdk1 11.270405 11.076971 6.87263164 10.9598136 9.6088668 10.582767 Cdkn2b 0 0 0 0 0 0 0 Csf1r 0.68220487 0 8.91048876 8.52043829 7.87011519 9.68797102 Ctmb		-		-					
CD52 11.7226951 10.1559179 12.0658796 10.3906592 0 7.66859187 CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD55 0 0 0 0 8.8819203 0 CD63 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 0 Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0.89723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csflr 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctmbl 6.632855 7.6007667				-					
CD53 12.8012579 11.5337875 11.257362 13.1982289 0 11.0963127 CD55 0 0 0 0 8.8819203 0 CD55 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 0 Csf1r 0.68220487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.6632459 0 0 0 11.6632459									
CD55 0 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.7702793 11.3939722 0.20875207 11.1428913 0 0 Cdka2 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 0 Cebpa 0.89723358 0 10.2311173 13.4808053 8.18762349 11.652459 Csf1r 0.68220487 0 8.91048376 8.52043829 7.87015199 9.68797102 Ctmbl 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926<									
CD63 0 0 6.94398394 9.24084619 0 6.92519888 CD9 7.17538049 0 8.11834259 0 0 7.63859446 CD4 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 0 Ceflar 0.89723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csf1r 0.68320487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctmb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.325774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
CD9 7.17538049 0 8.11834259 0 0 7.63859446 Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 0 Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 0 Ceftpa 0.88723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csf1r 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctmb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 11.8661392 9.7950635 0 Dmmt1 10.963917 1			-				~		
Cdc42 12.9539909 13.4145126 14.1395004 13.5734692 12.5791339 12.8894502 Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 Cebpa 0.89723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csf1r 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctmb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 11.8661392 9.79500635 0 Dmmt3 10.1312258 10.6116941 0.01680684 11.2120f1 10.1685075 9.93533932 Dnmt3a 10.1312258 10.611694			-						
Cdk1 11.2702793 11.3939722 0.20875207 11.1428913 0 0 Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 Cebpa 0.89723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csf1r 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctmb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 11.8661392 9.79500635 0 Dmmt3 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dmmt3b 6.02587145 0 0.2803125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.9230552					-				
Cdk4 8.41570405 11.076971 6.87263164 10.9598136 9.6088668 10.5827767 Cdkn2b 0 0 0 0 0 0 Cebpa 0.89723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csflr 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctmb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 11.8661392 9.7950635 0 Dmmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dmmt3 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dmt3 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0									
Cebpa Csfir 0.89723358 0 10.2311173 13.4808053 8.18762349 11.6632459 Csfir 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctnnb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 11.8661392 9.79500635 0 Dnmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dmmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 9.68534196 5.647952 0 4.77885166 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 6.27167952	Cdk4		11.076971		10.9598136	9.6088668	10.5827767		
Csfir 0.68220487 0 8.91048376 8.52043829 7.87011519 9.68797102 Ctnnb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.91966287 13.2793334 7.61714986 10.43771 Dach1 0 0 0 11.8661392 9.79500635 0 Dnmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 0 4.77885166 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 0 Ep300 10.43022	Cdkn2b	0	0	0	0	0	0		
Ctnnb1 6.632855 7.60076967 4.83416648 8.15260001 5.67395641 6.9102424 Cycs 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 0 11.8661392 9.79500635 0 Dnmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.92305529 0 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 0 6.27167952 6.600713 0 0 0 6.27167952 6.31948929 5.15194981 4.40969335 2.82619662 2.827 6.31948929 5.15194981 4.40969335 2.82619662 2.827 6.27167952 <td>Cebpa</td> <td>0.89723358</td> <td>0</td> <td>10.2311173</td> <td>13.4808053</td> <td>8.18762349</td> <td>11.6632459</td>	Cebpa	0.89723358	0	10.2311173	13.4808053	8.18762349	11.6632459		
Cyes 10.3257774 11.5926 11.9196287 13.2793334 7.61714986 10.435771 Dach1 0 0 0 11.8661392 9.79500635 0 Dnmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.92305529 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 Ebf1 0 0 0 0 6.27167952 10.090532 10.0078637 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.090532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0	Csf1r	0.68220487	0	8.91048376	8.52043829	7.87011519			
Dach1 0 0 0 11.8661392 9.79500635 0 Dnmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.92305529 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 Ebf1 0 0 0 0 0 6.27167952 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017	Ctnnb1	6.632855	7.60076967	4.83416648	8.15260001	5.67395641	6.9102424		
Dnmt1 10.9639197 10.9779133 9.7927147 13.2742978 6.43285115 11.5344213 Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.92305529 0 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 Ebf1 0 0 0 0 0 6.27167952 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esrl 10.9412325 8.69857347 0 8.23822017 0 8.23908889 ETS1 12.3373625 12.1142197 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Dnmt3a 10.1312258 10.6116941 0.01680684 11.2120611 10.1685075 9.93533932 Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.92305529 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 Ebf1 0 0 0 0 0 6.27167952 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017 0 8.23908889 ETS1 12.3373625 12.1142197 0 0 0 0 0 Etv3 4.3355231 4.42802306 5.32393809 5.87942		-	-	-			-		
Dnmt3b 6.02587145 0 0.28023125 10.9143614 8.14598611 11.5847104 Dtx1 0 0 1.92305529 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 Ebf1 0 0 0 0 0 6.27167952 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017 0 8.239908889 ETS1 12.3373625 12.1142197 0 0 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.32502									
Dtx1 0 0 1.92305529 0 0 2.30151059 Dtx4 9.68534196 5.647952 0 4.77885166 0 0 Ebf1 0 0 0 0 0 6.27167952 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017 0 8.23908889 ETS1 12.3373625 12.1142197 0 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-						
Ebf1 0 0 0 0 0 6.27167952 Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esrl 10.9412325 8.69857347 0 8.23822017 0 8.239908889 ETS1 12.3373625 12.1142197 0 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527		-	-		-				
Ep300 10.430224 10.5649677 10.9844624 11.2861422 10.0900532 10.0078637 Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017 0 8.2390889 ErS1 12.3373625 12.1142197 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0									
Epor 6.0607173 5.65375289 6.31948929 5.15194981 4.40969335 2.82619662 Erg 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017 0 8.2390889 ErS1 12.3373625 12.1142197 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 <t< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td></t<>			•						
Erg 0 0 0 12.0363518 10.0931312 10.5218299 Esr1 10.9412325 8.69857347 0 8.23822017 0 8.23908889 ETS1 12.3373625 12.1142197 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.54									
Esrl 10.9412325 8.69857347 0 8.23822017 0 8.23908889 ETS1 12.3373625 12.1142197 0 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282									
ETS1 12.3373625 12.1142197 0 0 0 0 0 ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.8502888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282		10.9412325	8.69857347						
ETS2 6.29583632 0 0 0.68650314 0 6.35073519 Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282									
Etv3 4.3355231 4.42802306 5.32393809 5.87942342 0 3.92981296 Etv6 8.83941501 0 8.61360798 12.0360378 10.3250242 10.9028847 Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282					0.68650314		6.35073519		
Ezh2 8.85028888 10.0605202 7.27389146 9.32121342 7.38296829 10.0425905 Fas 0 0 4.30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282	Etv3	4.3355231	4.42802306	5.32393809	5.87942342	0	3.92981296		
Fas 0 0 0 4,30798527 7.17965527 0 Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282	Etv6	8.83941501		8.61360798	12.0360378	10.3250242			
Fcgr2b 0 0 7.77302706 7.68233416 0 0 Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282	Ezh2	8.85028888	10.0605202	7.27389146			10.0425905		
Fcgr3 0 0 2.16280252 7.43345552 0 0 Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282		0		•					
Fli1 10.3126762 11.0853737 8.11430154 9.84452071 11.0778188 10.5409282	-					-			
Fit5 10.8/35/88 11.8851/59 10.4953/95 8.72900327 0 11.9407693									
	rit3	10.8/33/88	11.8851/59	10.4953/95	8.72900327	U	11.940/693		

TABLE 6-4-continued

	Single cell expression data (reduced list)-Control								
	CI DO				CI ID2	C) (D)			
Factor	CLP9	CLP10	CMP1	CMP2	CMP3	CMP4			
Fosl1	0	0	0	0	0	0			
Foxo1	12.9862277	0 17912522	9.12833227 7.75264584	10.3210046	8.57814146	10.4483982			
Foxo3 Gapdh	9.35939781 12.0414546	9.17812532 10.6649131	8.59496634	8.79843273 13.2322627	7.38358954 9.24678558	9.91435082 10.5425893			
Gapun Gata1	2.47237968	5.18777488	0.39490034	0	9.92586716	0.3423893			
Gata1 Gata2	0	1.70095059	ő	5.59893348	5.27123302	2.16028386			
Gata3	Ö	5.17595033	o o	0	0	6.05524501			
Gfi1	3.35012985	0	0	5.30002147	3.26363882	6.13120183			
Gfi1b	0	8.53467602	0	10.0611223	11.6926351	8.75372639			
Hes5	0	0	0	0	0	0			
Hey1	0	1.04367745	0	0	0	0			
Hlf	0	0	0	7.97611682	7.82618822	9.46609084			
Id2	8.21405404	0	9.70225491	5.84854144	0	4.38699582			
Ifi203	13.121305	11.7715254	13.5766403	10.4527001	10.3475725	11.3925667			
Ifi205 Ifitm1	0 9.57706163	0	12.6181685 0	0 9.63434379	0 11.5761744	0 11.1838971			
Ikzf1	12.4531104	12.1544134	10.0753763	10.6241986	9.99327753	10.5079787			
Ikzf2	0	0	0	11.2294386	10.0871853	10.8948866			
II7R	2.6756414	3.11340227	ŏ	0	0	0			
Irf4	10.9460654	0	7.83866655	0	0	0			
Irf6	3.75002159	0	0	0	0	0			
Irf8	0	14.7096031	14.2888668	0	0	8.8628089			
Kdr	0	0	0	0	0	0			
Kit	0.24445292	0.50621599	11.0295653	12.5726203	12.3791378	12.0919625			
Klf1	5.84397562	0	0	0	8.46482083	0			
Klf12	8.05086964	0	0	0	0	0			
Ldb1 Lin28a	11.2686965	8.12945947	8.68054007	11.6527152	12.2469401	11.316521			
Lm28a Lmo2	1.96158082 3.89774451	6.99342123 8.38732066	5.60046956 8.20469078	8.55574345 10.3169241	6.63350297 5.11243451	8.68718725 9.84586404			
Lilioz Ly6a	8.85142518	0.38732000	0.20409078	0.3169241	4.09411947	9.84380404			
Lyl1	0.03142310	9.75810271	0	0	0	9.50789901			
Mbd2	11.5068886	11.2014367	11.5257283	11.0058202	9.54315445	10.0659452			
Meis1	8.51879687	0	0	4.87021647	0	0			
Mllt3	1.72128743	0	0	0	0	1.98967093			
Mpl	0	5.37493792	0	0	4.57579908	8.42884537			
Muc13	0	0	7.94365244	12.3910631	9.66287501	9.27532572			
Myb	8.92481613	11.9021578	7.74778663	13.4608829	13.6082862	12.5062084			
Myc	0	0	9.66579628	13.1468373	11.1237836	12.2368797			
Mycn	0	0	0	0	4.71550783	0			
Ndn Nfat5	0 1.68337396	0 6.42382445	0 8.11771068	0 8.50241858	0 8.29542914	0 6.81510443			
Nfia	11.1966351	0.51538312	8.76871243	10.4414063	8.37541044	0.81310443			
Nfkb1	6.28053175	4.20047424	7.24237126	3.02501649	0.57511011	0			
Notch1	9.23968393	9.80621601	0	0	Ö	9.04276389			
Pax4	0	4.30341437	0	0	4.67280508	3.18275178			
Pax5	0	0	0	0	0	0			
Pax9	0	5.11348672	0	0	0	0			
Pbx1	0	0	0	0	0	2.85814132			
PIk3ca	10.7501901	10.4597043	8.71137418	8.63082063	10.2150339	9.12110399			
PIk3R2	0	0	0	8.41565889	0	8.86044462			
Plag1	0	0	0	5.73253318	0	0			
Prf1 Pten	0 10.402978	0 10.7323361	0 8.45327824	0 15804063	0 8.02557223	0 9.55214218			
Rb1	11.5095723	10.3228048	11.0518462	9.15804062 8.80830469	10.975973	10.2070756			
Rora	0	0	0	10.3525123	0	0			
Runx1	ŏ	10.5448042	8.49404453	9.79896396	8.32589216	o o			
Runx2	9.55408881	8.83337957	8.58263825	5.6671043	0	6.59981576			
Satb1	10.6618569	10.6425259	11.0333257	10.4623762	5.50666657	11.6829394			
Sdpr	0	0	0	0	0	0			
Sell	13.3986811	12.636786	11.8418847	12.1758077	8.32310492	10.6231619			
Sfpi1	10.755918	10.840172	10.234157	11.6285965	4.19803029	10.180779			
Slamf1	0	0	0	0	0	0			
Smarca4	12.4059967	12.3958203	10.7430601	12.6426923	9.78305678	11.6074547			
Sos1	1.96984274	7.60327488	8.55093991	7.00950203	7.97175828	7.25923732			
Stat1	0.57217994	4.66285063	8.17622822	7.02260834	5.60396427	6.85302887			
Stat3	12.1553826 11.2376366	10.5962174 0	10.1047053 0	10.4043949	10.6890265 0	11.1026336			
Stat4 Stat6	10.4721199	9.57987162	0	8.1182282 10.8577127	8.31312981	6.31665833 8.9859846			
Stato Suz12	8.50068008	11.8114564	10.0842116	11.4415014	8.88768825	10.3591033			
Tal1	0	0	7.35199805	7.41118762	0	3.34846603			
Tcf3	6.0690736	6.37460317	0	0	7.14327082	10.0950413			
Tcf4	13.9829509	13.2477205	11.1633078	10.5566707	10.2373849	11.9154368			
Tcf7	12.5483718	0	0	0	0	0			
		•	-	-	-	-			

TABLE 6-4-continued

	Single cell expression data (reduced list)-Control							
Factor	CLP9	CLP10	CMP1	CMP2	CMP3	CMP4		
Tek	0	0	0	0	0	0		
Tfrc	11.5310872	13.6794866	8.69647395	10.1124605	9.94594668	8.66198046		
Tgfb1	0	0	0	8.39098114	0	0		
Tgfb2	2.54299473	0	0	0	0	0		
Tgfb3	1.83073988	0	0	0	0	0		
Tnfrsf1a	0	0	10.5575923	10.2288397	5.8586183	10.085531		
Tnfrsf1b	5.27266462	0	0	10.3201112	0.95315427	0.80836534		
Tnfrsf21	0.70732573	0	6.05902828	7.64675137	0	7.86021375		
Tnfsf10	4.81322759	0	3.8552827	7.3711495	0	0		
Tnfsf12	0	0	4.39444523	0	0	0		
Tob1	3.38203155	0	7.3702815	8.22337837	0	5.83579043		
vWF	0	0	0	0	0	0		
Zbtb20	6.49874585	8.98366904	7.76355827	7.5019406	9.51185133	9.03587558		
Zbtb38	6.31337663	0	8.66735889	8.88619321	8.85030113	7.99157356		
Zfp532	0	0	4.28968013	0	2.01705667	3.84180886		
Zfp612	5.14316607	0	1.45139554	6.82565849	0	4.40273428		
Zfpm1	0	0	0	0	0	0		
Zhx2	0	1.36199848	9.44707427	0	0	6.34007356		

TABLE 6-5

	Single cell expression data (reduced list)-Control								
Factor	CMP5	CMP6	CMP7	CMP8	CMP9	CMP10			
Actb	17.3394053	14.6706888	15.3006859	15.6706136	16.2161296	16.2031528			
Aebp2	7.48010576	4.52217501	4.85718391	6.22489648	6.15542349	6.65750054			
Ahr	0	0	0	0	8.48248567	0			
Akt1	11.0295746	9.13888127	8.50202567	9.48522978	9.83325343	10.1423732			
Akt2	5.6982268	6.43649925	0	6.54782485	5.67097403	6.91885001			
Akt3	10.7535896	5.05597233	8.96329552	9.39938997	8.41514892	8.63112027			
APC	0	0	5.85738488	0	0	8.00067699			
Bad	0	0	0	0	0	0			
Bax	10.7709938	7.60268797	9.74661453	9.46994606	10.0956302	9.66835081			
Bcl11a	7.25102747	0	3.44256113	0	0	0			
Bcl11b	0	0	0	0	0	0			
Bcl2	0	0	5.71221572	8.46600782	4.51709175	7.63420792			
Bcl211	0	0	8.642915	9.8449129	9.83242806	11.727409			
Bcl2111	4.94361446	6.96342995	0	8.82547082	7.49063229	0			
Bmi1	8.04079881	6.47044397	6.99413119	7.02301797	5.66629178	7.29852135			
Brd3	11.7497296	9.48652042	10.2279983	10.7336706	9.99622743	10.5589239			
Casp8	11.4458868	9.37414266	10.730553	11.5737089	10.042092	11.3341723			
Casp9	8.60157869	0.43486175	8.11116214	8.49830047	8.46979801	0			
Cbx2	8.14298572	5.42369511	0	2.02852747	6.14976979	0			
Cbx8	0	0	0	0	0	6.5352377			
Cene	9.337732	0	0	0	8.74862406	8.05461177			
Ccnd1	12.3424395	0	0	5.08950715	10.3980334	9.67251383			
Ccne2	10.6836164	0	0	8.88454106	7.76036683	0			
CD34	13.0466336	0	10.0606452	11.7867314	8.70281995	11.9349176			
CD41	7.22234749	9.88958898	0	8.74031169	13.4959806	11.1372918			
CD48	12.0992452	10.568177	7.88392396	10.8210925	8.89620358	11.2734612			
CD52	11.0838001	0	5.49447739	8.00130213	7.2008291	7.95395412			
CD53	12.7670824	0	10.9959227	11.3777197	0	0			
CD55	0	8.42133148	0	0	9.29531826	0			
CD63	9.14519387	0	7.74259128	9.32290779	9.53162102	7.281967			
CD9	0	0	0	0	9.68777068	0			
Cdc42	14.6585333	12.6841565	13.4268211	13.5192656	13.4441459	13.1256535			
Cdk1	10.9097239	6.60224216	0	9.60826336	9.2659687	11.8683968			
Cdk4	12.2911932	9.86090165	7.8025631	11.0577815	11.3768742	11.0385295			
Cdkn2b	0	0	0	0	0	0			
Cebpa	12.8418824	0	10.2324455	13.6075773	8.81482957	11.9755884			
Csflr	11.0511238	0	0	10.585565	7.27360003	3.88021025			
Ctnnb1	8.35670072	4.81362741	5.97188813	5.22508782	8.07136491	8.28703889			
Cycs	14.5377046	11.2691463	10.1789357	13.0405966	12.4297442	13.3283287			
Dach1	4.97803655	4.14474045	10.5451334	8.59226416	11.9267309	13.5465833			
Dnmt1	12.8726368	10.4919004	0	12.5203344	12.4834927	12.7064491			
Dnmt3a	11.0265538	11.1062288	10.9186344	5.45624458	10.3948879	8.98758434			
Dnmt3b	10.5790239	0	8.38337161	9.97828774	10.4507647	10.9212224			
Dtx1	4.3790403	0	0	0.78348056	4.24129098	0			
Dtx4	11.1502546	0	10.8469873	8.96806057	8.43544431	0			

TABLE 6-5-continued

	Single cell expression data (reduced list)-Control								
	CN FDS		,	,		CN (TN10			
Factor	CMP5	CMP6	CMP7	CMP8	CMP9	CMP10			
Ebf1	0	0	0	0	0	0			
Ep300	10.4632229	10.6518923	9.84642833	10.2654483	11.2467128	10.6061578			
Epor	3.12221538 10.3534511	5.0756706 0	5.30043509 10.8266427	0.65533034	5.10260705 10.8159451	2.33815245			
Erg Esr1	10.3334311	0	7.69419665	10.3592454 9.81964633	0.8139431	10.2449054 10.7394097			
ETS1	0	0	0	0	8.4833129	0			
ETS2	4.07083276	8.45916169	8.45527663	0	7.1341973	0.7101611			
Etv3	4.43481527	0.43310103	0.43327003	6.56778632	4.52654183	4.69321163			
Etv6	11.1448929	9.69394925	11.1261285	10.0656969	11.7161763	11.8183036			
Ezh2	10.8670738	7.48291356	6.20161136	8.65707232	9.49516932	9.8783733			
Fas	0	0	0	0	6.62884488	0			
Fcgr2b	9.85267441	0	0	8.23013247	0	0			
Fcgr3	0	0	8.119839	6.61788198	0	0			
Fli1	11.1890149	7.33814185	10.2757687	12.4967795	12.0912236	10.2473636			
Flt3	12.6574132	0	8.78397217	8.19832375	0	0			
Fosl1	8.40640045	0	0	0	0	0			
Foxo1	10.3981463	8.56491822	10.2557995	8.32166089	10.0603533	10.0759643			
Foxo3	9.39347931	8.64471911	10.6380669	10.7062816	10.0359107	9.78384345			
Gapdh	13.8965059	9.81728739	8.9549559	10.5129808	11.6006197	11.7863478			
Gata1	0	11.2237171	8.02113847	0	9.99443513	10.5689067			
Gata2	2.95452348	2.89363096	3.76227155	4.70253038	7.1084613	7.11132825			
Gata3 Gfi1	0	0	7.93855591 0	0 6.53413949	5.10350469 0	2.65446248 0			
Gfi1b	0	9.24282738	8.39289491	9.64648209	0	0			
Hes5	0	1.45446472	0.39289491	0	0	0			
Hey1	0	0	0	0	0	0			
Hlf	10.1384281	0	12.7210851	9.7255738	ŏ	7.72908307			
Id2	0	o O	0	0	0	0			
Ifi203	12.0764195	0	11.9267051	9.88952822	9.82976425	11.7604599			
Ifi205	0	0	0	0	0	0			
Ifitm1	10.026959	13.4455145	10.1142515	9.62949447	7.52584164	9.35647384			
Ikzf1	11.1162893	10.1776721	9.8444204	9.56063417	9.76312629	10.2802226			
Ikzf2	9.29677615	9.26597898	10.0113973	10.6548835	0	11.7095844			
II7R	0	0	0	0	0	0			
Irf4	0	0	0	0	0	0			
Irf6	0	4.07511467	4.21960052	0	3.38207598	1.77623393			
Irf8	11.496976	0.64529505	8.3919475	9.72740536	0	5.4029575			
Kdr Kit	0 12.5171017	0 12.5279914	0 12.8127026	0 13.3103212	0 12.0370385	0 12.3472302			
Klf1	0	10.8766523	0	0	7.07393535	0			
Klf12	0	0	0	0	0	ő			
Ldb1	12.6976636	12.9835097	12.2468903	12.365463	12.0631399	10.863801			
Lin28a	6.74728963	7.35105581	6.84975068	6.51455602	4.68753784	6.94552367			
Lmo2	10.5379436	9.34407841	10.2403324	11.0343922	11.009923	9.20928647			
Ly6a	0	0	0	0	0	0			
Lyl1	8.51165848	0	7.37416084	9.52238028	0	8.2113635			
Mbd2	10.784295	10.4108785	10.1955821	10.6851427	10.63494	9.7729213			
Meis1	1.70692163	0	8.17244297	7.73150896	9.6859662	9.65905238			
Mllt3	0	0	0	0	0	0			
Mpl	0	0	8.32138383	9.02983537	10.6949276	9.03531377			
Muc13	10.0268838	10.6859087	10.408149	10.9764924	10.4182397	10.4076086			
Myb Myc	13.3352034 14.3568801	13.5300503 13.271873	12.2422918 11.7486234	13.8875021 13.7517564	12.5291358 13.3585202	12.9438126 13.2342566			
Mycn	0	3.51516181	8.22715916	0	12.5856289	9.69546069			
Ndn	ő	0	0.22713510	ő	0	0			
Nfat5	6.28186815	5.14468333	9.22002325	8.30051998	6.00790584	7.26449937			
Nfia	7.45568183	8.69437239	0	9.99729448	0	0			
Nfkb1	4.00335392	1.98855259	4.45405858	4.48909452	5.48703027	4.4024728			
Notch1	8.69453625	0	7.51819143	9.54735802	0	0			
Pax4	0	0.4697586	0	0	1.82857332	0			
Pax5	0	0	0	0	0	0			
Pax9	1.81855969	0	0	0	0	6.9598383			
Pbx1	0	4.33008847	0	0	0	0			
PIk3ca	11.4126663	7.92679365	10.1322248	10.2563679	10.571161	10.2438679			
PIk3R2	10.1509326	7.23727926	10.6194334	0	10.0876344	8.17463706			
Plag1	0	8.268993 0	0	0	8.61635192 0	8.90930204			
Prf1 Pten	0 10.0980102	8.44584924	10.8389704	0 10.0450831	9.96600275	0 9.11441299			
Rb1	10.5049014	11.035184	10.8389704	8.28260838	11.2325685	9.11441 <i>2</i> 99 0			
Rora	0.3049014	0	9.40803685	0.20200036	0	0			
Runx1	9.80351196	9.89394529	11.2310772	10.8511201	9.61241397	11.260184			
Runx2	7.14600662	0	6.60312795	6.31525159	5.12629061	5.98996282			
Satb1	11.6190523	0	10.5185268	9.31688989	0	0			
					-	•			

TABLE 6-5-continued

	Single cell expression data (reduced list)-Control								
Factor	CMP5	CMP6	CMP7	CMP8	CMP9	CMP10			
Sdpr	0	0	0	0	3.41819471	0			
Sell	13.4721541	2.89807481	11.2017393	12.147405	7.52145725	11.8940425			
Sfpi1	12.1814824	0	10.3051236	11.135862	10.6759176	8.61401742			
Slamf1	0	0	0	0	8.27576355	0			
Smarca4	13.4159099	12.6986337	11.0603738	12.4208763	11.5131011	13.1672711			
Sos1	7.05920683	6.93067259	7.46342294	7.99375888	8.94290202	8.2090476			
Stat1	6.96525561	3.0714838	3.32406997	6.73484676	2.55117066	1.90884457			
Stat3	10.2805664	7.3966824	11.052227	11.4922447	9.33437336	11.3081762			
Stat4	7.45961139	0	8.01611823	6.16856977	7.27293514	9.2165467			
Stat6	9.84695626	7.3258474	10.0351652	9.04651696	9.68468703	9.93759651			
Suz12	12.160067	9.36880984	10.4227735	11.2065549	11.719744	11.4025496			
Tal1	4.01061915	6.6880475	7.39995658	0	0	0			
Tcf3	9.28106881	8.46463489	10.0783131	6.78607403	8.04893309	7.02457762			
Tcf4	11.9822362	10.7280242	10.8947009	10.4060663	9.61927383	10.7021269			
Tcf7	5.23267198	1.68626678	0	0	2.66766182	2.23952747			
Tek	0	0	0	0	0	8.15055552			
Tfre	11.5315055	10.3078535	8.70556098	0	10.6282683	10.1053058			
Tgfb1	8.61614955	5.35612843	0	0	6.65768412	6.16568389			
Tgfb2	0	0	0	0	0	0			
Tgfb3	8.18570265	0	6.23265555	6.9879955	0	6.47320472			
Tnfrsf1a	11.3960482	9.71137069	10.5553381	10.0882949	8.80578171	9.01361307			
Tnfrsf1b	9.21806977	0	9.61506083	8.80892599	9.64596728	4.62484099			
Tnfrsf21	7.08978321	5.63889855	3.52361608	5.13475364	7.18706943	6.49011462			
Tnfsf10	0	0	0	7.44776059	0	4.80467952			
Tnfsf12	0	0	4.92147767	0	0	6.45276939			
Tob1	0	0	4.87096526	0	0	0			
vWF	0	0	0	0	0.92959921	0			
Zbtb20	8.91468776	7.47378037	8.65801097	6.07085525	7.77205018	9.83080899			
Zbtb38	7.61532556	8.16188767	7.21002151	9.37139278	9.52940602	7.19300308			
Zfp532	0	4.20413936	0	0	0	2.33025492			
Zfp612	6.36251023	0	0	5,89338537	5.72389563	0			
		7.38814478	0	6.75057183	4.81492174	0			
Zfpm1 Zhx2	0	10.0153129	0	10.0672844	4.81492174 ()	0			
Z:IXZ	U	10.0155129	U	10.00/2844	U	U			

TABLE 6-6

		Single ce	ll expression data (r	educed list)-Control		
Factor	GMP1	GMP2	GMP3	GMP4	GMP5	GMP6
Actb	17.1489215	17.1987952	17.0261935	17.386841	16.8304269	16.7489209
Aebp2	7.38412472	7.37000886	7.67068492	8.3165713	5.4136843	7.57713129
Ahr	0	0	0	0	8.2586416	2.48178389
Akt1	11.235626	11.370018	11.2228314	11.4580108	9.35433585	11.3917982
Akt2	0	5.65369871	6.60168541	7.30834154	7.09194507	7.27954511
Akt3	9.2040554	6.42589774	7.76683642	10.3335	0	0
APC	0	0	10.3835517	0	8.371236	0
Bad	0	0	0	0	0	0
Bax	12.3982935	11.548933	11.7457261	12.5304908	9.63819013	9.58757022
Bcl11a	0	4.8496745	5.5277101	0	0	0
Bcl11b	2.47388586	0	0	3.3676317	4.51519907	0
Bcl2	8.67205883	4.74052395	7.4793676	9.81638057	0	0
Bcl211	11.2985207	10.9107736	8.31831953	10.0601684	7.45200039	0
Bcl2111	9.91590871	8.18472841	7.91574582	8.84722554	10.1748095	6.43500489
Bmi1	7.65085777	4.83187475	9.02271832	6.18509638	7.09454308	7.56761362
Brd3	12.2200241	8.5222524	12.5897181	12.3613327	12.0766338	11.4340477
Casp8	11.9935864	12.4728177	11.2081299	11.7931878	10.6330727	9.95275872
Casp9	9.85784236	9.2795417	10.4608042	9.30079864	8.68972348	8.67710004
Cbx2	8.13468181	6.26338723	4.15904155	2.80402938	0	4.90815454
Cbx8	0	0	0	0	0	0
Cene	6.54457096	7.80869339	10.2612515	10.5944974	9.89068237	8.39273481
Ccnd1	8.58525018	9.07320206	0.44602581	11.6985658	0	8.4714389
Ccne2	10.2847235	10.3613222	10.2263111	7.68162663	7.00126105	7.38398862
CD34	9.76737788	11.3493653	12.3762338	12.665751	0.7308249	0
CD41	0	0	9.92285908	10.1379171	0	0
CD48	11.1755703	12.3720324	11.2216769	13.1172131	8.98467946	11.1712268
CD52	12.214887	11.4843836	6.92750614	10.055469	9.88050006	9.66769309
CD53	13.734581	12.9470142	11.5566919	12.0795346	11.4796107	11.6332867
CD55	0	0	0	0	0	1.98400237
CD63	5.83669083	10.6791061	11.1660619	9.5002936	11.8417986	11.5674632

TABLE 6-6-continued

	Single cell expression data (reduced list)-Control								
Factor	GMP1	GMP2	GMP3	GMP4	GMP5	GMP6			
CD9	7.33502006	0	10.0478265	0	9.8535396	9.37192294			
Cdc42	15.071603	14.9063997	14.4251672	15.2700451	14.1058059	14.2812027			
Cdk1	11.1089539	12.565398	10.0640308	12.9451584	8.92252913	10.3979323			
Cdk4 Cdkn2b	12.1492532 0	12.2049096 1.8448054	11.3481552 0	12.5805625 0	10.3340466 0	10.1996484 0			
Cebpa	13.5582841	13.0751849	14.1307094	14.8662046	13.3279428	12.940603			
Csflr	13.2965977	9.82859309	9.7227165	12.1147466	7.15970464	7.14539069			
Ctnnb1	9.16188305	7.52545352	8.60919966	9.20385918	8.67653144	9.17983079			
Cycs	14.5117323	15.5509006	14.3926146	14.8500674	13.3320521	13.6650347			
Dach1	10.9910945	8.44938041	12.3883714	8.79080043	10.4536266	10.6691965			
Dnmt1	12.9020312	12.4369612	12.7558873	12.902768	11.6602754	11.0715158			
Dnmt3a Dnmt3b	10.7289813 9.58857441	6.56627584 6.44688601	10.702069 10.7118482	11.2807594 10.5910128	10.0406974 8.18039351	10.0659832 7.21703334			
Dimiso Dtx1	3.0913916	0.44088001	3.91641931	0	0	0			
Dtx4	10.1882254	11.1715529	12.6766112	13.3330567	12.3246264	12.2398755			
Ebf1	0	0	0	0	0	6.35563108			
Ep300	11.0646985	5.51844512	10.4585713	10.8818586	10.7818993	10.2687707			
Epor	4.1948605	5.82587694	4.04624715	4.16263046	4.31309197	5.7777581			
Erg	10.0476497	10.8998172	8.31856172	10.7787749	8.41282235	8.00315491			
Esr1	0	9.61295568	7.43332756	11.6298664	9.26139595	0			
ETS1 ETS2	0	8.49664543 7.04070704	0 8.18875575	0 0.30773145	11.774333 9.76422043	10.8678821 0			
Etv3	0	5.70625189	4.29581374	5.43089153	4.8703617	1.40350183			
Etv6	12.0523052	11.0382089	9.74143581	13.0923382	0	9.61119192			
Ezh2	11.652838	11.5860694	11.1993861	11.4872376	10.1109725	10.4391363			
Fas	0	0	0	0	0	8.72358173			
Fcgr2b	9.19136771	8.72106918	9.14865833	8.70635442	10.0101786	7.27372444			
Fcgr3	10.5154928	11.1483415	9.97180324	10.3691572	10.0558965	10.006567			
Fli1	12.1113098	10.2964886	11.1111683	13.0309888	12.5529343	13.2435265			
Flt3 Fosl1	0 9.14818795	0	0	8.20154666 0	0	0 8.95584384			
Foxo1	10.6678286	7.11027738	10.5639142	11.4065349	7.68627588	8.03189028			
Foxo3	8.6581534	8.83051249	9.05928824	10.1872797	8.17891127	9.65874783			
Gapdh	14.5697489	14.8364814	14.4841585	15.2948511	12.4951942	11.7288864			
Gata1	2.68117413	5.3286228	2.40405255	0	6.20074437	0			
Gata2	0	0	1.18893452	5.03280609	0	0			
Gata3	0	0 9.95120128	0	0	0	0 9.63774464			
Gfi1 Gfi1b	0	9.93120128	10.4607555 0	10.4250456 0	10.2403166 0	9.03774404			
Hes5	ő	0	ő	Ö	0	0			
Hey1	0	0	0	0	0	0			
Hlf	0	0	0	8.36237805	0	0			
Id2	0	0	0	0	8.92503527	6.47603665			
Ifi203	12.4820599	10.2059101	9.66114357	10.9751352	0	8.43723516			
Ifi205	0	4.02559453	0	0	0	0			
Ifitm1 Ikzf1	0 12.0462915	7.59695531 11.0027006	9.85532823 10.1806326	0 12.6066347	7.57013634 10.1787075	0 9.1812643			
Ikzf2	8.42131399	6.66467431	9.37167983	0	0	0			
II7R	0	0	0	Ö	Ö	Ö			
Irf4	0	0	0	0	0	0			
Irf6	0	2.58748455	0	0	3.59687181	0			
Irf8	13.8990229	12.7012696	0.47691932	14.1636759	1.98646599	0			
Kdr	0	0	0	0	0	0			
Kit Klf1	11.4828646 0	10.9088944 0	12.3859747 1.53786674	13.5844173 0	11.2619077 1.35001333	12.5333324 0			
Klf12	Ö	0	0	Ö	0	0			
Ldb1	11.6022208	12.5920203	10.6653308	12.5336097	11.495488	12.3066988			
Lin28a	7.90392609	3.12320396	6.33237234	1.79305028	6.59839184	7.06652167			
Lmo2	9.87792981	9.91993508	11.2848458	11.9924048	10.0290151	10.1483392			
Ly6a	7.86019166	0	0	7.73891186	7.84163194	0			
Lyl1	0	8.217674	9.1254904	9.44826214	8.82368626	8.22225726			
Mbd2 Meis1	12.0598914 0	12.2588426 0	11.112991 4.25525076	11.5901371 7.0666261	9.15035566 0	11.3382915 0			
Mllt3	0	0	0	0	0	0			
Mpl	ő	ő	ő	ŏ	ő	Ö			
Muc13	6.21902111	6.09924564	10.3554653	9.73058449	0	9.36857432			
Myb	12.6635861	11.8365941	14.2028029	14.5090875	13.301967	14.4078534			
Myc	9.1352006	14.8322048	14.0818035	15.1689656	10.5951842	12.5380787			
Mycn	5.64989123	0	0	0	0	0			
Ndn Nfot5	0	0 3 69452734	0 02020727	0	0 57236112	0 7 70240307			
Nfat5 Nfia	10.8366496 8.66284129	3.68452734 9.64290212	8.92920727 8.28353384	10.0 449498 0	9.57236112 0	7.70240307 0			
Nna Nfkb1	4.1409895	1.10789555	6.0665323	2.33679964	4.16758728	3.4944722			
TAIROI	サ.1 サックのクジ	1.10/07333	0.0003323	2.3301 3 30 1	7.10/30/20	J. TJTT 122			

TABLE 6-6-continued

		Single ce	ll expression data (r	educed list)-Control		
Factor	GMP1	GMP2	GMP3	GMP4	GMP5	GMP6
Notch1	9.67689195	7.78055521	10.5333446	10.0774827	10.2196335	10.5378767
Pax4	0	2.69956228	4.5651786	0	0	0
Pax5	0	0	0	0	0	0
Pax9	0	0	0	0	0	0
Pbx1	0	0	0	1.84774739	0	0
PIk3ca	11.6583177	9.35235227	10.3476041	11.0004673	9.86525632	11.9782697
PIk3R2	10.3431352	9.62249368	9.03318404	11.2354698	0	9.21073238
Plag1	2.1446229	0	0	0	0	0
Prf1	0	0	0	0	0	0
Pten	11.4197765	9.13702301	10.7392588	12.0713175	10.7961825	11.0569877
Rb1	12.3671936	9.29319202	10.4219806	10.1129328	11.381463	10.889451
Rora	0	0	0	0	0	7.95341913
Runx1	13.783041	11.1039612	11.2727924	14.2307475	10.5352512	12.0416809
Runx2	5.65817302	5.03497789	4.41480127	5.28240362	5.90471616	6.86059385
Satb1	9.63218514	0	9.35749111	10.3868222	10.9890151	9.27731882
Sdpr	0	0	0	0	0	0
Sell	13.346662	14.2717617	11.4404307	12.6975062	10.7600258	10.916911
Sfpi1	12.9675055	11.9210703	12.4452889	13.2408628	11.6645721	12.6354578
Slamf1	0	0	0	0	0	0
Smarca4	12.6576943	11.1882941	13.3524008	13.9464355	12.5556067	12.548269
Sos1	8.75240526	4.47302434	9.76938074	9.21626024	5.77526698	8.46060551
Stat1	7.83159291	5.19471875	1.94245366	3.19107626	3.69538692	4.99541136
Stat3	9.94864616	8.03134798	12.2126573	12.2361408	12.6530163	11.4027843
Stat4	7.30783486	6.44025276	8.04438756	6.41767238	7.74175516	9.24847993
Stat6	11.4183952	7.63189419	11.402629	11.427093	11.1296225	11.0864028
Suz12	12.0645852	9.97123248	12.3070014	12.586926	11.1205885	11.9182639
Tal 1	0	0	3.6852286	7.53257554	7.0164346	6.40585349
Tcf3	8.17529451	8.44265648	0.46728578	7.69609118	0.32105529	7.98262856
Tcf4	10.7240061	10.8374419	11.2234939	12.5413021	9.18774076	9.58716005
Tcf7	0	0	0	0	0	0
Tek	0	0	0	0	0	0
Tfre	11.0749821	12.561574	12.1280736	13.583871	11.1008997	11.8397881
Tgfb1	6.27914163	9.26600463	9.08857843	9.47356083	4.49109661	0
Tgfb2	3.56183374	0	0	0	0	0
Tgfb3	0	0	5.7011227	0.46458839	8.34339661	0
Tnfrsf1a	12.297425	11.7846035	11.7957289	13.0383546	11.8629069	12.0139251
Tnfrsf1b	12.4247113	8,90867624	12.1885403	11.8433223	10.5206013	10.2570003
Tnfrsf21	7.44931949	6.46752449	7.14549464	7.31352162	7.9695614	7.76578158
Tnfsf10	0	1.68498558	6.44830699	5.74757111	6.17892222	0
Tnfsf12	0	0	0.44830099	0	0.17892222	0
		0			0	
Tob1	0	-	0	6.10049513	-	0
vWF	0	0	0	0	0	0
Zbtb20	0	0	0	8.30629918	0	0
Zbtb38	8.27537196	8.75347218	10.5074098	10.1488632	9.05482607	10.0593391
Zfp532	0	1.56494117	0	0	0	2.30677569
Zfp612	0	3.91554231	1.00265837	6.21466929	7.67481421	0.57219649
Zfpm1	0	0	0	5.38371259	0	0
Zhx2	0	6.85838682	0	3.16109771	8.51542476	0

TABLE 6-7

		Single ce	ll expression data (re	educed list)-Control		
Factor	GMP7	GMP8	GMP9	GMP10	HSC1	HSC2
Actb	16.9514796	17.399739	17.2637454	16.9850638	14.2167236	14.6194148
Aebp2	7.35505455	4.38592355	5.1807596	7.51562781	2.42975426	4.97605754
Ahr	0	8.88485487	10.3510122	0	0	0
Akt1	12.2492506	10.7788814	9.09878888	11.5407814	8.96092519	8.92881088
Akt2	7.07125847	6.57841965	5.05613909	8.09120983	0	5.44823903
Akt3	9.84112573	10.6234887	8.79800603	10.3335926	0	9.31021549
APC	0	0	8.16762557	8.43918267	0	0
Bad	0	0	0	0	0	0
Bax	11.0109809	11.0453066	9.34116544	11.9634436	7.34390449	8.34746535
3cl11a	0	9.41212409	0	0	8.75277008	0
Bcl11b	0	0	0	1.88740222	0	0
Bcl2	0	0	0	8.52796043	5.87135064	0
3cl211	9.44244435	10.1472452	0	11.1322976	8.66094346	9.94832245
3cl2111	10.1673298	0	0	0	0	8.69198824
3mi1	8.07353481	7.72482902	4.98516188	8.47434036	6.82657462	7.46085956

TABLE 6-7-continued

Single cell expression data (reduced list)-Control							
Factor	GMP7	GMP8	GMP9	GMP10	HSC1	HSC2	
Brd3	12.6394847 11.8613695	11.2028078 9.99564976	7.11480939 9.21248114	11.8951694 11.5898934	9.33404025 0	8.63333449 8.6154989	
Casp8 Casp9	8.59054116	8.91150088	8.46508701	8.65641125	8.2106278	0.0134989	
Cbx2	4.51981855	0.51150000	0.40500701	0.03041123	0.2100276	Ö	
Cbx8	7.59923933	0	0	5.95563266	4.01892229	0	
Cene	5.81056153	1.75012419	6.70114967	7.82322872	0	7.8085882	
Ccnd1	11.5505776	0	10.1157016	9.71290948	0	8.62150748	
Ccne2	11.303028	9.04842269	0	9.50031357	0	4.39863781	
CD34	12.2237971	0	8.89631259	13.6407341	9.50379181	9.06540049	
CD41	0	0	0	0	0	0	
CD48 CD52	11.4659003 9.60985547	9.71355517 9.93196311	10.4133748 12.5022437	11.4910927 10.7028269	0 0	0	
CD52 CD53	12.1131339	12.7875274	11.5957042	12.2029543	0	0	
CD55	0	0	0	0	6.89471557	7.36408685	
CD63	8.93841954	12.146554	Ŏ.	5.48306679	9.19375582	7.65368115	
CD9	0	10.1324772	7.67704046	0	7.8387743	0	
Cdc42	14.4664142	14.2907989	14.0122499	15.0649621	11.9634665	12.0459978	
Cdk1	11.3777802	8.11959637	0	12.7269855	0	0	
Cdk4	12.784903	10.8753402	6.80400834	12.6121689	9.62020787	8.49447754	
Cdkn2b	0	0.00701553	0	0	0	0	
Cebpa	13.8746339	13.8824666	0	14.641417	0	8.06551113	
Csf1r Ctnnb1	11.5330216	3.88795501	7.38801037	12.5028245	0.17278247	0	
	8.77284547 14.9720652	8.15585683 13.8929845	7.63240721 11.7488184	9.49085314 14.6315404	7.84991528 9.69074953	6.63261919 9.01652869	
Cycs Dach1	10.0139282	11.094158	0	0	0	9.34452255	
Dach1	13.8203577	13.062377	8.93180003	12.6151647	8.13040287	8.73259462	
Dnmt3a	11.5907989	10.5082482	8.16704073	12.2259286	0	9.03600947	
Dnmt3b	10.3460639	8.40852444	0	11.6532099	8.08118305	9.0180945	
Dtx1	0	0	0	0	0	0	
Dtx4	12.3828586	12.8400604	9.87791515	12.95339	0	0	
Ebf1	0	0	0	0	0	0	
Ep300	9.94498424	10.2010752	9.23583811	10.6282941	10.4403515	8.59444295	
Epor	5.16793546	5.09166176	6.07340251 0	5.10546348	0	2.7151266	
Erg Esr1	11.0543498 11.6199962	8.41211355 10.7508391	0	12.089156 10.3804934	10.1146713 10.0633516	11.7537883 0	
ETS1	0	11.8060427	0	2.87560829	10.507867	0	
ETS2	0	8.07791161	2.28329408	0.76338635	0	8.47008891	
Etv3	5.74740043	7.36604372	0	5.34860303	4.23394023	5.05619729	
Etv6	12.9684077	11.0021541	9.73755797	13.9096409	3.98851235	10.7091763	
Ezh2	11.2994093	9.96948763	8.77091516	11.243305	0	9.25661058	
Fas	0	0	0	0	0	0	
Fcgr2b	9.44038194	9.26444191	8.49671511	0	0	7.5507537	
Fcgr3	8.9878976	11.2705376	0 72000286	7.10105394	0	2.57719687	
Fli1 Flt3	12.3237708	12.3248589 0	9.73909286	12.1105145	10.3593911 0	9.96450923	
Fosl1	12.2416095 0	0	12.2385762 0	12.4225757 8.07129215	0	7.96248373 0	
Foxo1	11.0340434	9.06969139	10.1546488	12.3061817	9.40775249	10.5472402	
Foxo3	9.90987077	7.70047424	0	11.2129013	10.4052826	9.57989143	
Gapdh	14.3410656	13.3216214	6.17605235	13.0958987	9.71964182	8.2639086	
Gata1	0	1.6059749	0	0	0	0	
Gata2	4.56581362	0	0	3.24897579	5.55356347	6.52542185	
Gata3	8.22656643	0	0	0	8.13700583	7.25082557	
Gfi1	9.06056316	11.6538294	0	9.16221659	4.02040206	0	
Gfi1b	0	0	0	0	0.25126544	0	
Hes5 Hev1	0	0	0	0	5.25748063 0	0	
Hlf	8.11935658	7.41139148	0	0	11.998899	13.3665089	
Id2	0	9.73284535	11.8927611	Ŏ	0	0	
Ifi203	10.9125767	1.56076385	10.965723	10.6623233	11.8059937	12.2738519	
Ifi205	0	7.49013979	11.8971931	0	0	0	
Ifitm1	9.61917406	0	0	11.9413193	13.1252834	12.4718304	
Ikzf1	11.9046539	11.2671835	10.14486	12.5650158	8.82268993	9.28321375	
Ikzf2	8.46869314	0	0	8.47986869	8.78289078	10.6878177	
II7R	0	0	0	0	0	0	
Irf4 Irf6	0 4 12000642	0 2 27502361	0	0	0 5.77682646	0	
Irio Irf8	4.12909642 12.9456699	2.27592361 0	13.624962	13.7405608	5.77082040 0	0	
Kdr	0	0	0	0	0	0	
Kit	14.0868279	13.592776	11.2221993	14.0164883	12.0391773	12.8744425	
Klf1	0	0	0	0	0	0	
Klf12	2.66660298	0	0	6.20104085	0	7.38482289	
Ldb1	12.285869	11.2819471	10.3063821	12.5631382	10.866794	10.6556867	
Lin28a	5.33704681	6.88472231	6.51112264	2.23418642	0.05736793	4.0435655	

TABLE 6-7-continued

		Single ce	ll expression data (r	educed list)-Control		
Factor	GMP7	GMP8	GMP9	GMP10	HSC1	HSC2
Lmo2	10.4881207	9.5635547	7.59010325	11.8118436	10.8803219	11.4475084
Ly6a	0	0	0	0	11.3195152	10.5870103
Lyl1	8.61035099	7.73468542	0	10.6447346	0	7.65003858
Mbd2	11.2505579	10.5919527	10.3145503	11.3020134	0	10.1428358
Meis1	4.34410862	0	0	7.55516029	8.67866413	9.02711955
Mllt3	0	0	0	0	7.12963107	2.87940553
Mpl	8.28694489	0	0	0	10.2778907	10.3627362
Muc13	8.74153092	9.29662392	0	11.121408	5.14911074	8.76580934
Myb	13.9147396	14.2812014	0	14.2295701	10.5024756	11.003359
Myc	13.6235281	13.0901273	9.58950863	15.1619084	10.3020722	9.29939524
Mycn	0	7.0328665	0	0	7.93226454	8.80500295
Ndn	0	0	0	0	9.24126109	0
Nfat5	9.56450436	10.5541109	5.24115849	7.8400374	7.82456966	9.32565577
Nfia	10.4800163	0	0	8.6877674	8.3554248	9.44711328
Nfkb1	4.11854617	4.55346432	4.3546122	6.00282408	5.32088492	4.27063216
Notch1	11.0427965	7.69294924	7.4684003	9.6813143	0	9.14014597
Pax4 Pax5	0	0	0	0	0	0
Pax9	0	0	0	0	0	0
Pbx1	0	2.41999393	0	4.60427348	0	0
PIk3ca	10.5133138	10.9351105	8.30194999	11.8682584	8.19933736	7.15189306
PIk3R2	10.800657	9.31109965	8.14508176	9.89144953	0	8.29464733
Plag1	0	0	0	0	8.62119125	8.41624245
Prf1	6.25999009	0	0	0	0.02115125	0.41024245
Pten	9.85373481	10.1046387	8.4375715	11.8662431	8.3775621	9.78100476
Rb1	11.4058642	10.524729	9.64537306	10.6398779	0	0
Rora	0	0	0	9.2194702	0	9.92254216
Runx1	12.5823583	11.612649	0	13.1810639	8.13980404	0
Runx2	6.07520491	4.62008078	3.85299235	8.15725883	5.48807374	4.3288158
Satb1	10.3473077	10.4586335	0	12.8507889	0	0
Sdpr	0	0	0	0	0	0
Sell	13.1615763	11.0919349	8.27837081	12.9352801	0	0
Sfpi1	12.2685432	12.3834981	11.8275651	12.5999867	9.7600535	0
Slamf1	0	0	0	0	0	0
Smarca4	13.9278719	12.4252093	11.4331679	14.0406109	10.7650413	10.4302513
Sos1	7.08440665	9.19453302	0	8.82410076	0	7.80818117
Stat1	7.33456058	8.62844753	3.26903654	4.37970726	2.44310501	2.24193334
Stat3	11.6046184	12.0058285	10.4937808	10.7199143	10.1332837	11.4837559
Stat4	9.89970671	8.7484529	0	10.0534291	7.14597799	8.52079622
Stat6	10.0340055	7.76884318	9.26899604	8.52011684	0	0
Suz12	12.1917303	10.6415578	0	11.4192066	0	10.1796014
Tal1	3.27202494	2.33635462	5.43421365	1.99510515	3.23551253	7.24054415
Tcf3	8.95886195	9.27584441	7.18949224	7.95247356	0	5.94183007
Tcf4	11.7535018 0	10.7218079 0	5.87396176 0	13.0570735 0	10.2194603 0	10.2598245 0
Tcf7 Tek	0	0	0	0	8.12191874	0
Tfre	11.1276806	11.6773601	0	9.99135979	0.12191874	2.48510433
Tgfb1	8.59999451	7.86082222	0	7.41061996	0	0
Tgfb2	0.555555	0	0	5.61040412	0	0
Tgfb3	0	1.64625868	0	0	8.66536386	0
Tnfrsf1a	12.1075835	11.7893286	10.2883436	12.9872996	9.70789834	10.0685048
Tnfrsf1b	11.1644655	10.6687255	0	10.8829595	0	8.01385336
Tnfrsf21	7.9588553	8.25912716	0	6.93837391	5.31291687	0
Tnfsf10	7.2217542	0	0	6.57504105	0	6.42935948
Tnfsf12	6.10886882	0	0	5.7030187	0	0
Tob1	4.89785115	0	4.30862997	1.32359285	1.07788382	0
vWF	0	0	0	0	0	6.1655458
Zbtb20	7.51328071	0	8.49995327	7.62054695	8.85871267	9.72768241
Zbtb38	9.44025595	10.3426011	7.11037442	10.7447144	8.87190914	8.84029249
Zfp532	0	0	0	0	0	0
Zfp612	0	5.18701551	7.05359804	3.11635926	0	5.7890343
Zfpm1	0	0	0	0	0	0
Zhx2	0	5.27170259	0	0	0	0
	~	0.2.1.0209	•	ŭ.	v	~

TABLE 6-8

Single cell expression data (reduced list)—Control							
Factor	HSC3	HSC4	HSC5	HSC6	HSC7	HSC8	
Actb	13.577974	14.0296483	14.1103469	15.5819895	15.4017467	14.5186085	
Aebp2	6.10559528	5.88912085	4.6132596	6.72522268	6.54183737	6.53821191	
Ahr	0	8.48413666	0	8.64794663	0	0	
Akt1	5.7101674	8.39335711	8.11021366	10.2087847	8.77360611	9.23696389	
Akt2 Akt3	0 8.79551486	0 1.55468933	0 8.24574153	5.73394549 9.13533117	4.95527812 9.22444783	5.5482851 8.23443739	
ARC	0.79331480	0	0.24374133	9.15333117	8.26372086	0.23443739	
Bad	o o	ő	0	0	0.20372000	0	
Bax	10.4587872	7.84637341	8.21704944	10.5910972	9.05419378	8.1433208	
Bcl11a	0	0	0	0	0	8.71685996	
3cl11b	0	0	0	0	0	0	
3cl2	0	0	0	6.60286713	0	0	
3cl2l1	0	8.15463837	0	8.81750986	9.51798174	9.26348136	
3cl2l11	0	7.08014318	0	0	8.80771493	0	
3mi1	6.37303271	6.75760763	6.40723471	8.78539598	6.73467101	0	
Brd3	8.10648223 8.60911844	9.12195615 8.67718647	0 8.08973581	10.313197 8.8351678	9.04032119 8.29348209	8.4172914 10.4887846	
Casp8 Casp9	8.50198655	0	0.06973361	8.0906086	8.93408591	0	
Cbx2	2.12580066	0	1.37858473	0	6.38626502	3.95391221	
Cbx8	0	ő	0	ő	0.56626562	0	
Cene	8.0612119	7.75585225	0	8.0425277	7.97210372	4.50082307	
Cend1	0	9.44185728	0	10.806783	0	9.84865359	
Ccne2	0	0	0	0	0	0	
D34	8.17751775	5.00363076	7.74656357	7.72536834	7.31850948	0	
CD41	0	0	0	10.2838042	0	10.3942665	
CD48	0	0	0	0	0	0	
CD52	0	8.30090194	0	0	0	0	
CD53	0	0	0	0	0	0	
CD55	7.69179367 8.84869188	4.79347239 9.80818054	6.9936477	9.05205329	0 8.91902336	8.21658095	
CD63 CD9	7.96692234	7.15928214	8.85251987 7.1345801	10.377284 8.5320473	3.5188154	8.99037439 8.2765401	
Cdc42	11.8342425	11.274525	11.5477464	12.9667945	11.216272	12.9992851	
Odk1	0	0	1.70469042	9.19399937	0	8.58515514	
Cdk4	6.80715808	7.17264944	2.02643408	11.1452163	9.41268282	6.45109978	
Cdkn2b	0	0	0	0	0	0	
Cebpa	8.66392034	0	8.58072977	6.63194812	0	0	
Csf1r	0	0	8.74066681	1.70542256	7.47370204	0	
Ctnnb1	6.45093961	6.80576451	7.03105301	8.66585445	4.63621377	6.42492055	
Cycs	7.76931122	8.17385953	9.1062029	11.5938916	10.2963567	10.5610571	
Dach1	8.32689948	9.6993744	0	10.5160163	11.5555411	12.1784951	
Onmt1	0	0	0	11.5088913	0	10.870094	
Onmt3a	10.0217648 0	11.1560578	9.24043447	10.2575566	10.2648603 0	12.1222467	
Onmt3b Otx1	3.63908589	0 0.2314944	0 3.28281301	8.90491552 0	0	9.12251996 1.84006193	
Otx4	0	0.2314244	0	Ö	1.19632544	0	
Ebfl	0	0	o o	Ö	0	Ö	
Ep300	11.0845039	8.98243523	10.7104073	9.62872537	9.96024059	9.41340549	
por	4.04169265	5.05457514	6.15980606	4.89038806	5.63286624	5.89050554	
Erg	11.8077154	11.2396194	11.3083977	11.0154674	10.8697562	10.0863194	
Esr1	8.38535842	0	9.45876416	0	8.20146951	9.59278249	
ETS1	7.78767496	8.3813926	8.32316912	0	0	0	
ETS2	0	5.54640271	0	9.236687	0	10.2058893	
Etv3	1.54998505	6.21266641	4.23572008	6.55515366	0	3.67608709	
Etv6	10.2492298	11.658684	11.1884801	12.4484167	10.2573908	11.513336	
Ezh2	0	6.45902485	8.45850492	9.86622345	6.62197678	0	
as Facult	0	0	0	0 3.00096067	0	0	
egr2b egr3	0	0	0	0	0	0	
Fli1	10.825293	10.3056342	10.1656639	12.7030871	9.81370266	10.7815026	
It3	0	0	0	0	8.83959351	0	
osl1	Ö	5.63779061	0	9.84241504	0	Ŏ	
oxo1	11.1098742	10.8687068	10.3544835	11.2304826	9.6589649	11.609313	
oxo3	8.96881644	9.34207286	0	10.574468	7.95875599	10.5612825	
Japdh	10.3938142	10.020788	9.78199569	11.7324163	11.2583198	10.2840324	
Fata1	3.66598041	1.2604332	0	0	0	8.0389608	
Jata2	4.10700961	5.22811433	6.14699434	5.75841883	6.0549266	5.76445634	
Fata3	6.39172576	0	8.61417098	7.96956347	7.63953107	8.62787032	
ifi1	0	0	0	0 76914191	0	0	
ifi1b	10.6982479	8.35858247	0	9.76814181	0	9.06455865	
Hes5 Hev1	0 2.14957956	0 0	0 0	0 5.41172737	0 3.30247516	0 0	
Hey1 Hlf	12.2869167	12.3244122	12.7023562	11.4515454	12.4604982	12.6666107	
.111	12.200910/	12.3244122	12.7023302	11.4313434	12.4004982	12.000010/	

TABLE 6-8-continued

	Single cell expression data (reduced list)—Control							
	Haco					Haco		
Factor	HSC3	HSC4	HSC5	HSC6	HSC7	HSC8		
Ifi203 Ifi205	12.5769615	12.1345502 0	12.0725801	11.3590361	12.2927044 0	11.1325428		
Ifitm1	0 13.1901123	12.7092713	0 11.5835195	0 13.4449774	11.4136686	0 13.2554104		
Ikzf1	9.7363741	9.85625177	0	10.250229	9.90890256	8.72152915		
Ikzf2	10.2835862	9.22641485	0	8.77854263	0	7.21339614		
II7R	0	0	0	0	0	0		
Irf4	0	0	0 3.18045922	0	0	0 4.43165432		
Irf6 Irf8	3.19293607 0	0 7.94066203	3.180 4 3922 0	3.89301413 0	3.20245453 7.94125807	2.2099363		
Kdr	0	0	ő	ő	0	10.4341118		
Kit	11.6075917	11.3831769	13.0210319	12.1707632	12.6193513	11.9124539		
Klf1	0	0	0	0	0	0		
K1f12	0	8.1606124	0	8.75728664	2.77952504	8.68882167		
Ldb1 Lin28a	10.7018656 0	10.5501009 0.65022055	10.3395739 8.32375974	11.8108028 0	11.1819378 0	11.9298611 8.92276223		
Lmo2	11.1260842	11.2055555	11.2304278	11.1718854	10.0919978	9.95604882		
Ly6a	11.6807743	13.0059956	0	11.8972718	9.8150555	8.15846371		
Lyl1	7.71114163	0	9.39299973	5.87215945	0	7.14723677		
Mbd2	4.92840001	0	9.40592756	8.95643535	8.35525208	10.4778257		
Meis1 Mllt3	9.33744894 4.39596095	7.24719639 0	8.11655673 0	9.24808657 4.84582581	9.02869584 2.28189221	8.20607406 1.22539492		
Mpl	8.37937771	11.6344232	10.240321	9.1484092	9.92137235	11.7759292		
Muc13	5.85943592	8.69171484	5.79478348	8.86606586	8.08439421	5.87402461		
Myb	11.4543645	11.6634674	11.813638	12.4301573	11.6054666	10.9746986		
Myc	0	9.07187777	10.4973302	12.1156989	11.1821332	0		
Mycn	10.0040447	1.76067461	8.7209187	11.9081484	9.172818	13.4121675		
Ndn Nfat5	11.413717 8.80140323	0 8.27575413	0 8.94488444	11.1011159 10.4915077	8.47770715 7.87669831	0 8.9488905		
Nfia	9.26039859	8.37576634	8.54427003	9.80432597	10.4688522	9.95162743		
Nfkb1	4.28180114	1.0386031	0	4.30632205	4.27397363	0		
Notch1	0	0	7.85740045	0	0	0		
Pax4	0	0	0	0	0	0		
Pax5 Pax9	0 0	0	0	0.34067989 0	0	0		
Pbx1	0	0	0	0	0	0		
PIk3ca	9.48126253	8.2821557	10.3094662	8.07275737	0	8.54082063		
PIk3R2	0	0	9.46846214	8.95184962	0	0		
Plag1	8.44717703	0	8.62974666	6.40451656	10.2884491	9.70437763		
Prf1 Pten	0 9.35030834	0 5.62716649	0 8.59897884	0 8.41844617	3.42401778 9.21702967	0 8.85833533		
Rb1	9.73808815	0	9.45856621	10.3613325	5.17427811	4.88975979		
Rora	0	8.26236355	10.2950769	9.73645132	0	0		
Runx1	9.69584379	8.40584267	10.6007548	0	10.9238866	8.69978638		
Runx2	4.75896314	5.38267048	0	6.2671313	7.04999695	0		
Satb1	9.80742018	0	0	8.57255153	0	0		
Sdpr Sell	0	0	0	0	0	3.04221011 0		
Sfpi1	10.1339723	10.3780048	10.4866679	0	10.0355372	9.31766744		
Slamf1	7.9591016	0	0	0	0	9.42150329		
Smarca4	9.57780054	9.85977591	10.4104054	11.7238705	9.46298092	11.1339334		
Sos1	0	8.2843901	0	7.22160003	7.53838311	7.29089291		
Sta1 Stat3	2.50659523 8.29378181	6.02858174 10.7345608	2.36927337 9.55246631	3.71643375 10.8963074	2.2740799 10.3681668	12.52689091 8.97518786		
Stat4	8.4227657	7.83127215	8.8192144	10.1874616	9.68055604	7.69477544		
Stat6	0	10.5487746	9.40667371	9.72923693	9.87383314	9.84674959		
Suz12	9.05894393	0	8.44467624	10.0115616	8.21144523	9.0031541		
Tal1	0	3.75390852	0	7.11083842	5.49903472	3.85114596		
Tcf3 Tcf4	0	0	0	0	3.17986266	4.49147102		
Tcf7	10.6387202 0	9.81058079 0	10.1324014 4.14707011	10.7265873 0	9.19540096 0	11.280981 0		
Tek	8.14772158	0	7.22964189	6.69314683	7.21296798	ő		
Tfrc	5.69240635	8.85266347	0	8.37463351	0	0		
Tgfb1	0	0	0	0	7.01325075	0		
Tgfb2	0	0	0	0	0	0		
Tgfb3 Tnfrsf1a	0 9.20893254	0 7.99674932	0 8.49210484	0 9.09094768	5.62887852 8.72598965	0 8.95788173		
Tnfrsf1b	10.4438284	7.99074932 0	8.3857973	3.73738697	8.30125396	0.93/001/3		
Tnfrsf2l	4.92370115	6.91456141	5.18164833	6.87061679	0	5.73392501		
Tnfsf10	0	0	7.01737198	4.03273131	0	5.00807925		
Tnfsf12	0	0	0	0	0	0		
Tob1	5.71122498	7.95080155	0	6.10121099	7.42164007	0		
vWF Zbtb20	3.86680517 8.16491305	0 7.28441527	0 7.64424277	0 3.60015575	4.46829427 8.29513002	8.91506154 8.35006537		
∠00020	0.10491303	1.20441321	/.U 11 242//	5.00013573	0.27313002	6.55000557		

TABLE 6-8-continued

Single cell expression data (reduced list)—Control							
Factor	HSC3	HSC4	HSC5	HSC6	HSC7	HSC8	
Zbtb38	0	7.67871493	9.19649825	8.51227823	9.98861231	7.66701854	
Zfp532	0	4.08592807	3.77146991	4.36860224	0	2.64992417	
Zfp612	5.04540623	1.29781735	6.43562895	1.81941986	0	5.71057878	
Zfpm1	0	0	0	0	7.43302501	0	
Zhx2	0	3.17433055	0	0	0	10.2241584	

TABLE 6-9

		Single cel	l expression data (re	duced list)—Contro	1	
Factor	HSC9	HSC10	MEP1	MEP2	MEP3	MEP4
Actb	14.9725561	15.5430056	16.6739018	17.1798405	16.7754755	16.9120965
Aebp2	5.34272666	2.46759537	7.60291615	5.68775766	8.40647947	8.15032471
Ahr	0	0	0	0	0	0
Akt1	8.71552396	9.04361278	10.8964237	10.6593665	10.5554637	10.4625715
Akt2	1.6860339	0	5.40370098	7.79517803	7.18806974	6.57237902
Akt3	9.27378957	9.16410517	0	7.90778801	7.25351311	8.6899408
APC	0	0	0	0	0	8.92917564
Bad	0	0	0	0	0	0
Bax	9.57334173	9.01870701	13.1654553	12.6147597	11.6763189	11.8499785
Bcl11a	0	6.38030957	8.61622865	0	0	6.50601386
Bcl11b	0	0	0	3.99048372	0	0
Bcl2	6.53694296	5.97214969	0	0	0	0
Bcl2l1	10.5706275	2.81256542	0	9.90189687	7.93964747	0
Bcl2l11	0	0	11.4930521	9.68858479	11.1719166	11.744598
Bmi1	8.0356025	5.71483882	8.52931514	8.55595556	10.0673986	8.43810889
Brd3	11.4628865	8.46832128	11.0280089	11.2582907	10.1577315	11.3931352
Casp8	9.80815784	10.7239994	8.89508957	6.21772996	7.84127145	10.4709266
Casp9	0	0	5.82312549	10.5005325	10.3674251	10.8167842
Cbx2	2.20378454	5.19558249	5.96803494	4.9871259	0	1.36472366
Cbx8	0	0	0	0	Ö	0
Cene	7.14555417	9.54460991	9.10840098	7.7775943	9.69822219	10.7463612
Cend1	10.3147623	8,43483043	12.5806504	10.1616065	0	9.50499479
Ccne2	2.11634283	0.45465645	12.3632828	11.5458361	7.65370744	11.8196672
CD34	8.7300738	7.56097552	0	0	0	0
CD34 CD41	9.90770066	10.2820486	0	0	0	0
CD41 CD48	0	0	8.8519551	0	0	10.2839816
CD46 CD52	0	0	0.6319331	0	0	0
CD52 CD53	0	0	0	0	0	0
CD55	0	0	9.35100587	9.53334636	6.17916642	8.52837797
CD53	9.95525539	9.13287496	0	9.33334030	0.17910042	0.32837797
CD63 CD9	8.19006868	8.93484354	0	0	0	0
			-	14.5300457	-	-
Cdc42	12.8484097	12.3557558	14.0139592		13.7188884	14.3827631
Cdk1	8.40315409	0	10.2066902	12.0503625	11.856245	10.4737341
Cdk4	9.36174345	9.55697505	12.4311347	12.9555662	12.0600059	13.2462207
Cdkn2b	0	0	0	7.13192772	0	0
Cebpa	0	0	4.83137386	0	6.06861889	0
Csf1r	0.78905294	5.76347829	7.35935898	0	0	0.43693507
Ctnnb1	6.91786038	7.30835446	9.09223561	9.17717471	8.27674053	9.66975154
Cycs	9.20845458	9.97537598	14.4833117	14.8868575	14.3632329	14.6822205
Dach1	11.8391027	11.4620792	0	8.08586478	0	8.85421269
Dnmt1	0	0	13.0436858	12.9585708	12.173667	12.6846992
Dnmt3a	10.6627832	10.9853226	0	0	8.14594383	11.3793103
Dnmt3b	8.4439035	7.87008545	9.13349446	10.0430891	0	8.58078692
Dtx1	0	0	0	0	0	0
Dtx4	0	8.77381733	0	3.59988975	0	0
Ebf1	0	0	0	0	0	0
Ep300	10.2826339	9.35773902	9.97912263	9.64315597	7.04223723	9.25408444
Epor	5.62014836	3.32438848	6.0772899	6.71011031	7.0106626	6.12830238
Erg	11.4258262	11.2053622	0	0	0	0
Esr1	9.13193309	9.35521874	0	0	0	0
ETS1	8.08986929	4.00036102	0	0	0	3.28475493
ETS2	8.93566794	8.12463187	8.26008629	7.11961974	8.01954074	9.00778633
Etv3	4.73179257	6.37769317	0	0	0	0
Etv6	10.868184	11.7795506	0	0	0	9.64836021
Ezh2	0	2.07633721	11.8577244	11.7699702	9.0854248	11.235091
Fas	0	0	0	0	0	0
Fcgr2b	0	0	0	0	0	0
_	0	0	0	0	0	0

TABLE 6-9-continued

Single cell expression data (reduced list)—Control							
		•		•			
Factor	HSC9	HSC10	MEP1	MEP2	MEP3	MEP4	
Fli1	12.2531926	10.9251156	0	0	0	1.16488259	
Flt3 Fosl1	0 0	0 0	0 20021482	0 9.04736396	0 0	0	
Foxo1	9.01385813	10.4459955	0.29931482 5.73742257	9.04/30390	0	9.36919814	
Foxo3	8.79125674	8.68822067	9.68364766	10.649167	11.0869714	10.3601155	
Gapdh	11.7285693	11.1757682	13.63523	13.4830598	13.1943802	11.9720384	
Gata1	5.94283713	0	12.3245112	13.7649949	12.797531	13.2227802	
Gata2	6.83304794	6.87340412	2.25249885	0	0	3.77741299	
Gata3	9.24060916	9.14520142	0	0	0	0	
Gfi1	3.34268315	0	0	0	0	4.24919213	
Gfi1b Hes5	9.56101095 0	9.49767669 0	13.5283046 0	14.1818634 2.29471695	13.7733661 0	14.9174041 0	
Hey1	ő	0	0	1.95932422	0	ő	
Hlf	12.1074683	11.9161928	0	0	0	0	
Id2	0	0	0	0	0	0	
Ifi203	12.278004	11.192533	0	0	0	0	
Ifi205	0	0	0	0	0	0	
Ifitm1 Ikzf1	13.0046432	12.4025715 0	0.31225789	0 12.9519677	0 12.6541472	0 12.6965722	
Ikzf1 Ikzf2	9.53642019 0	8.56779353	12.6360198 5.40027468	0	0	0	
II7R	ŏ	0.50775555	0	ő	ŏ	ő	
Irf4	0	0	0	0	0	0	
Irf6	4.10562562	0	0	0	0	0	
Irf8	0	0	6.12370867	8.41676829	0	0	
Kdr	0 12.3160333	0 9.89526777	0 12.0150326	0 00117073	0	0	
Kit Klf1	0	0	13.1692563	9.98117872 13.8873887	11.4951247 13.1692722	12.8352736 13.1308469	
Klf12	9.72448024	0	0	0	0	7.34581981	
Ldb1	12.4178652	11.01075	13.0390188	13.7874605	13.1564759	13.2168482	
Lin28a	3.82329997	6.81496961	7.33729444	6.61281699	0	6.08888311	
Lmo2	11.5637423	9.92019304	11.5030529	11.9384772	12.6434079	10.6947974	
Ly6a	7.06884075	8.44508253	0	0	0	0	
Lyl1 Mbd2	8.88014622 9.13439987	8.35784347 8.56907105	6.95117372 13.0509809	9.77435583 13.9543519	0 12.6665248	9.20859202 13.1243311	
Meis1	9.80331618	8.1571184	0	0	0	0	
Mllt3	4.15938546	0	4.12160509	7.79510244	o o	4.48253793	
Mpl	10.996255	9.44406546	0	0	0	0	
Muc13	6.82422246	7.13195827	0	0	5.01336678	1.81337571	
Myb	11.5244445	12.4461891	13.2111197	12.8071283	12.9764179	13.9759288	
Myc Mycn	0 14.4756491	10.9160751 11.6026038	11.9866355 0	11.2429304 0	12.3999539 0	13.9029694 0	
Ndn	11.2837686	10.4369415	0	0	0	0	
Nfat5	9.61855366	6.82014528	6.59682409	7.27479713	0	8.74499807	
Nfia	9.41329393	10.6171397	13.5009826	14.0902354	12.9714138	13.0254549	
Nfkb1	0	2.2519501	3.25804287	2.4908206	0	5.47964873	
Notch1	8.12991025	0	0	0	0	0	
Pax4 Pax5	6.1516811 0	0	4.85665083 0	0	0	3.3619616 0	
Pax9	0	0	0	0	0	0	
Pbx1	Ö	0	0	Ö	Ö	Ö	
Plk3ca	9.25738741	8.96174345	10.7256565	10.8683249	9.65150968	11.2464339	
PIk3R2	9.30544358	0	12.2128948	12.2784314	11.0187609	12.287832	
Plagl	8.64324095	0	9.06569451	0	0	0	
Prf1 Pten	0 9.60478178	0 9.6731031	0 10.2929626	6.84326582 10.3569939	0 10.4823987	0 9.95159857	
Rb1	10.2970029	8.60735432	12.6978008	13.4211639	10.6504251	12.7561166	
Rora	0	0	0	0	0	0	
Runx1	10.1584718	9.33038616	10.7805682	8.07026179	0	9.37272993	
Runx2	4.28423467	4.26402635	0	0	0	0	
Satb1	0	0	0	0	0	0	
Sdpr Sell	4.32744503 0	1.7057899 0	0	0	0	0	
Sfpi1	6.83682861	11.0545418	0	5.45218154	2.04252139	0	
Slamf1	9.49023226	0	0	0	0	0	
Smarca4	12.2973535	11.2507486	13.5426414	13.619892	12.1620756	12.8704926	
Sos1	8.06475892	6.27720781	9.19936975	7.36566754	6.8048466	9.35683189	
Stat1	4.52662558	0.99719233	2.64761229	4.45186216	3.7746722	7.81972053	
Stat3 Stat4	11.0439439 9.34715798	11.5366037 6.79032745	8.88331309 6.31260327	0	9.64846927 0	9.55859823 0	
Stat4 Stat6	11.0298664	7.72102603	11.0611639	8.69939135	9.35073565	2.30375272	
Suz12	9.21902863	9.76884858	13.4162816	13.3069763	12.1189393	12.8721225	
Tal 1	3.5749488	2.63840682	5.48831658	5.90135703	5.14302435	6.08051416	
Tcf3	8.19970314	7.80579899	10.3443653	9.82695879	7.84599927	11.004031	

TABLE 6-9-continued

Single cell expression data (reduced list)—Control							
Factor	HSC9	HSC10	MEP1	MEP2	MEP3	MEP4	
Tcf4	11.8040378	9.82961636	10.260851	11.3188496	11.2508544	11.653967	
Tcf7	0	4.73697982	1.43010499	0	0	0	
Tek	9.36503436	0	0	0	0	0	
Tfrc	0	8.8168966	13.9704118	14.578062	12.3681007	13.856442	
Tgfb1	0	5.44659661	0	6.89639764	0	7.19033201	
Tgfb2	0	0	5.36997264	0	0	0	
Tgfb3	8.5895152	11.83410769	0	0	0	0	
Tnfrsfla	11.0327854	10.3930716	0	0	0	9.18248017	
Tnfrsf1b	8.64142351	8.04393607	0	0	0	0	
Tnfrsf21	6.97043206	6.09809349	0	5.3555269	0	4.45599329	
Tnfsf10	6.74936749	5.83080275	6.33722942	0	0	6.31492348	
Tnfsf12	0	0	0	0	0	0	
Tob1	5.23114212	0	7.58798007	0	8.41045357	8.34798458	
vWF	8.26879091	5.5354592	3.98254277	0	0	0	
Zbtb20	6.7194969	9.77047876	0	6.66889471	0	0	
Zbtb38	9.66819933	8.29751972	10.3083101	9.74280335	8.68702379	10.8279681	
Zfp532	0	0	3.7690821	2.38462111	0	4.07815427	
Zfp612	6.99532728	0	0	0	0	6.43937583	
Zfpm1	6.81923051	6.31482951	8.84469315	0	7.30319601	10.1270265	
Zhx2	8.4994904	0	0	1.62381423	0	0	

TABLE 6-10

Single cell expression data (reduced list)—Control							
Factor	MEP5	MEP6	MEP7	MEP8	MEP9	MEP10	
Actb	17.2576396	17.1978808	15.5072422	17.1016623	17.0883469	16.1373068	
Aebp2	8.8914175	8.24109539	5.927731	8.12926334	6.58436041	7.2192823	
Ahr	0	0	0	0	0	7.10578696	
Akt1	11.6018488	11.5146864	4.42998334	11.601648	10.7522773	10.3129742	
Akt2	7.900821	1.74602406	4.64739684	7.50740455	6.69059007	7.16770014	
Akt3	0	7.96018226	0	7.35315614	2.17729258	7.80192128	
APC	8.39335253	8.06797773	0	1.75142305	1.8927044	0	
Bad	0	0	0	0	0	0	
Bax	13.6760247	13.3176728	10.1228648	12.4537506	12.065459	11.730697	
Bcl11a	0	0	0	0	2.71314006	0	
Bcl11b	0	0	0	0	0	0	
Bc12	0	0	0	5.96566948	0	0	
Bcl2l1	8.42050716	8.5397273	8.24768464	7.86215744	7.9016606	7.95497919	
Bcl2l11	12.229686	10.1662961	8.73177655	9.85270326	8.51815048	10.7405021	
Bmi1	10.2387084	9.31396694	6.36310467	6.09634272	7.60876135	5.56419831	
Brd3	12.1884423	11.3821336	9.16931971	11.5847665	10.3403875	11.440292	
Casp8	9.45558864	9.60183486	0	8.96045034	9.60483639	9.81855927	
Casp9	10.983114	11.2997749	4.1377792	3.19674834	10.6397827	5.83890378	
Cbx2	3.91898214	6.93850275	2.68444976	5.77648185	4.81078818	5.84443483	
Cbx8	0	0	0	0	0	0	
Cene	10.1627738	9.76965727	1.35355046	10.8327556	10.2251453	8.87207477	
Ccnd1	9.06711014	9.78697864	3.39014804	7.92433606	3.63100877	1.61547934	
Ccne2	10.0835116	11.319821	3.31015618	11.1288883	10.1332622	10.1575498	
CD34	0	0	0	0	2.43527288	0	
CD41	0	0	0	0	0	0	
CD48	7.9867099	4.18399936	9.74423407	0	4.67729616	10.3311682	
CD52	0	0	11.240447	0	0	0	
CD53	0	0	10.718297	0	0	3.47755329	
CD55	8.72944056	7.02423588	0.47752312	7.30323746	8.24842184	6.71445599	
CD63	0	0	0	0	0	8.48127545	
CD9	0	0	9.11541164	0	0	0	
Cdc42	14.5293724	14.6486438	12.7027151	14.5111753	13.888067	13.4366617	
Cdk1	13.1448472	11.9598095	4.7963663	12.1075135	9.74103341	9.76908148	
Cdk4	13.7494226	13.5258502	5.39347158	13.2132059	11.559049	12.3004943	
Cdkn2b	0	7.45318318	2.03311382	0	0	0	
Cebpa	0	0	1.93783554	4.65819114	0	5.14048555	
Csflr	0	0	1.18696511	7.77368454	0	4.57700679	
Ctnnb1	9.37096958	9.83654035	7.40506371	9.20900353	8.84284741	8.21343097	
Cycs	15.3928254	15.4217364	9.00426594	14.9998511	14.3770315	13.6916743	
Dach1	10.0101828	8.37636957	1.87676967	8.46157503	8.37438306	10.2033785	
Dnmt1	13.5752055	13.5629832	0	13.1496695	12.9313015	12.2958028	
Dnmt3a	10.9466601	8.51255715	2.35640024	11.4731999	8.29952651	10.4041202	
Dnmt3b	8.48193549	10.1968081	0	0	8.25040799	9.82871253	

TABLE 6-10-continued

		a' 1 1	1 1 2	1 11 2 6 4	1	
		Single cel	l expression data (re	duced list)—Contro	l	
Factor	MEP5	MEP6	MEP7	MEP8	MEP9	MEP10
Dtx1	2.92606728	0	0	0	0	0
Dtx4	0	7.82554643	4.92304422	0	0	0
Ebf1	0	0	0	0	0	4.67430018
Ep300 Epor	10.0634333 7.16021518	9.34942163 6.62083976	8.21967146 4.26609394	10.5762593 6.51806867	10.121413 5.52700029	8.87201287 6.09748073
Erg	0	0.02083970	0	0.31800807	0	5.68555987
Esr1	Ö	0	ő	0	0	2.51533896
ETS1	3.76571695	0	13.1369479	0	0	6.54848086
ETS2	5.16493701	9.76053928	3.59712435	8.2969717	8.32663081	0
Etv3	5.60165087	4.73300606	0	3.87270615	3.64676519	5.18534646
Etv6	10.2693757	10.3333581	3.69074449	10.0372574	8.50609787	9.04344531
Ezh2	11.9461386	11.3539663	3.95203132	11.7590423	11.3908077	10.6007943
Fas	0	0	0	0	0	0 22425105
Fcgr2b Fcgr3	0 0	0	0 8.07918835	1.52130196	0	0.23425105 0
Fli1	0	3.18894624	9.44502726	5.01815175	3.11865062	10.9846923
Flt3	Ö	0	0	0	0	0
Fosl1	3.90147912	9.28797126	0	8.52770733	0	8.71529532
Foxo1	10.1059327	9.46825613	9.87277386	9.5068882	6.79088829	9.52716774
Foxo3	11.880669	10.5592031	7.72876079	11.0684154	9.43154757	9.25402338
Gapdh	13.9931627	13.3857099	10.5346589	14.1082473	12.92779	11.113379
Gata1	13.6190358	13.9835206	5.62359022	13.9713491	12.5041093	12.511952
Gata2 Gata3	3.92449227 0	2.84914463	0	1.01456852	0	6.83641959 0
Gatas Gfi1	0	2.25413244 0	7.84794279 3.85434754	0 6.19324658	0.26378938	0
Gfi1b	13.6114909	13.5975417	5.17245225	13.9889482	13.039689	12.8606179
Hes5	0	0	0	0	0	0
Hey1	0	5.28516598	0	1.81677056	0	0
Hlf	0	0	0	0	0	9.91303577
Id2	0	0	11.4964505	0	0	0
Ifi203	0	0	11.6357055	0	7.02168865	6.48869747
Ifi205	0	0.48785466	0	0	0	0.04446014
Ifitm1 Ikzf1	0 14.3275555	0 14.0316022	0 9.42911846	3.39877768 13.1119643	0 12.6313804	0 12.3162902
Ikzf2	5.2858744	0	0	0	4.28650806	10.7927559
II7R	0	0	0	0	0	0
Irf4	0	0	0	0	0	3.75675557
Irf6	4.47123029	3.22821179	4.339607	1.36832553	0	0
Irf8	3.37099886	2.31508294	0	6.44379002	0	0
Kdr	0	0	0	0	0	0
Kit	13.3537238	12.8580221	11.7556361	11.3366407	12.6638144	13.3561223
Klf1 Klf12	14.2979136 3.98365645	13.6308232 0	5.96653235 0	13.5935874 0	12.7713044 0	12.127983 0
Ldb1	14.5635445	14.0908295	8.35195984	14.3971418	13.093488	13.9731006
Lin28a	4.24471852	6.991793	0	6.53901741	3.59537839	7.3031128
Lmo2	12.9830675	12.5177653	4.67072022	12.0390668	11.5425664	10.1528281
Ly6a	0	0	0	0	0	0
Lyl1	8.76148245	9.87461972	0	8.97801904	1.61425898	0
Mbd2	14.3088686	14.1788793	10.6850909	13.7604538	13.6786771	12.4484023
Meis1	0	0	0 26628070	0	0	0
Mllt3 Mpl	6.75437066 0	4.87929073 0	0.36628079 0	7.04238465 0	1.04227285 7.82872486	0
Muc13	6.50258482	9.17003155	2.94436572	6.93025842	0	8.96811757
Myb	14.5775089	14.3566219	6.22959734	13.1602938	13.678872	15.059386
Myc	14.0547532	13.3673906	5.6369054	14.4815067	12.1006266	13.6012191
Mycn	0	0	5.97826269	0	0	0
Ndn	0	0	0	3.30758821	0	4.50321309
Nfat5	6.8997464	8.60819523	8.05163374	9.06664427	5.40897018	6.6641746
Nfia	14.4761658	14.140814	5.89547833	14.0665307	13.4354033	12.1410189
Nfkb1 Notch1	5.0181859 0	2.309416 0	3.98387116 0	4.10351957 0	4.95579258 0	0
Pax4	0	0	0	0	0	0
Pax5	Ö	ő	0	ő	ő	0.97924165
Pax9	0	0	0	5.83889268	0	0
Pbx1	0	0	0	0	0	0
PIk3ca	11.0496351	11.3740226	8.25771166	9.9484021	8.3447194	0
PIk3R2	13.0336384	11.9086806	4.45143877	12.6406896	12.5663171	10.6748968
Plag1	0	0	0	8.62527154	8.27129457	0
Prf1	0	0	7.95861297	0	5.64429588	0
Pten Rb1	10.8777303 13.3531695	10.2906901 12.8920186	8.05284894 8.68520402	10.7251068 12.4552038	10.0886075 12.5020608	10.5809166 11.9804354
Rora	0	0	0	0	0	0
Runx1	10.3327309	10.1695965	2.15987744	8.22784853	8.33584994	8.47230462

TABLE 6-10-continued

		Single cell	expression data (re	duced list)—Contro	1	
Factor	MEP5	MEP6	MEP7	MEP8	MEP9	MEP10
Runx2	4.49773995	0	0	3.58458245	0	0
Satb1	0	0	8.06753085	0	0	2.71209422
Sdpr	0	0.18954202	0	0	0	0
Sell	0	7.67225672	9.98123205	0	0	0
Sfpi1	0	0	0	0.46212458	0	8.14790234
Slamf1	0	0	0	0	0	0
Smarca4	14.0639422	13.68311	5.6018656	13.0990363	13.3134848	12.9739128
Sos1	9.61043591	9.24302377	0.84637826	9.30907613	8.92422084	9.07163316
Stat1	5.06501781	7.57488158	2.81371618	2.88085862	1.86966235	1.68793237
Stat3	6.91429151	7.407193	8.67732684	7.75419499	8.30889661	10.0828057
Stat4	0	0	8.79727168	0	1.92039891	0
Stat6	10.7036377	10.9195918	7.52472475	9.55035514	8.28177793	10.9191881
Suz12	13.538197	13.0876648	8.23876575	13.2750979	12.6890707	11.8669775
Tal 1	5.4291009	6.69589556	0	7.56623027	4.77147026	4.69263937
Tcf3	10.9470082	10.4293296	0	10.598365	9.91291781	2.59346866
Tcf4	11.9008105	11.8187116	7.59295834	11.3626835	10.2619576	10.2854661
Tcf7	0	0.93440846	6.96284694	0	0	0
Tek	5.48770868	0	0	7.34302092	0.55382256	0
Tfrc	15.1003637	14.1185956	6.68189103	13.6781033	14.0561821	11.5817117
Tgfb1	0	5.9321715	3.29941964	6.77315808	8.10258704	0
Tgfb2	0	0	0	0	0	0
Tgfb3	0	0	0	8.05286418	2.7676147	0
Tnfrsf1a	0	0	9.44208849	0	0	7.52151547
Tnfrsf1b	0	7.33777528	8.96218157	0	4.27782113	0
Tnfrsf21	0	5.97030087	1.15224807	4.81031941	3.82725759	5.22821771
Tnfsf10	0	0	7.50776293	6.28059236	0	0.19985742
Tnfsf12	0	0	0	0	0	0
Tob1	7.49341793	9.775516	4.53888952	7.30658141	5.12736672	0
vWF	4.76480777	5.8950733	0	0	0	0
Zbtb20	7.31711148	6.7543605	6.09700763	0	0	3.99093784
Zbtb38	10.5208922	8.98561327	8.24763973	10.833188	9.72578991	9.49544458
Zfp532	0.3208922	0	0	0	9.7237 899 1 0	9.49344438
		-		-	0	0
Zfp612	2.66699095	0	5.65730748	3.15028498	· ·	· ·
Zfpm1	9.91367246	8.38424838	0	7.63005335	5.88946627	8.04762332
Zhx2	8.58545196	0	6.98674013	9.3468461	5.30923464	9.33665392

TABLE 6-11

		Single cel	l expression data (re	duced list)—Contro	1	
Factor	MPP1	MPP2	MPP3	MPP4	MPP5	MPP6
Actb	15.9338457	15.4232208	16.2711873	14.6823	14.2918152	15.8659118
Aebp2	7.21100476	5.2867401	6.93025793	5.90925673	5.25462477	9.18427092
Ahr	0	0	8.34801326	0	0	0
Akt1	10.720231	9.40876898	11.0220046	9.04411511	9.0996424	11.2217446
Akt2	2.21487307	5.4868309	0	0	5.35510644	0
Akt3	8.87303458	8.64995993	8.90809022	8.03436457	0	10.0275887
APC	9.11114608	0	8.0871966	1.98598274	8.73132197	4.78295182
Bad	0	0	0	0	0	8.89131665
Bax	8.98329445	10.498022	9.02157645	9.45119586	0	9.14566934
Bcl11a	0	0	0	8.89978638	0	8.82676654
Bcl11b	0	0	0	0	0	0
Bcl2	5.4456877	6.76850037	8.56326925	0	0	6.41872246
Bcl2l1	8.77442328	9.4903021	8.32482213	8.37825811	0	9.68984903
Bcl2l11	8.65261883	0	8.55329576	0	0	0
Bmi1	7.92005647	8.96348283	7.6988806	5.99607904	8.09101102	10.2547476
Brd3	11.0992941	10.6513546	9.61291134	9.43861553	6.3757271	10.8237539
Casp8	11.3348993	11.0515753	10.9825524	9.29875931	8.5871616	10.8985747
Casp9	8.73428375	10.0497654	0	0	0	2.43946663
Cbx2	7.57992406	6.71714066	0	0	0	0.6708544
Cbx8	0	0	0	0	0	0
Cene	8.35164492	0	6.07511496	9.13555725	0	7.33770601
Cend1	8.60823223	0	9.93021361	0	9.80132789	8.95924036
Ccne2	7.6057764	10.4324496	10.1697513	7.75985448	0	10.6399418
CD34	11.1537947	12.1750274	11.4199898	10.0501247	10.5540352	11.3151543
CD41	0	5.28178356	0	0	0	0
CD48	9.48857003	11.0978106	11.3892976	8.80517983	0	9.56184962
CD52	9.67070973	9.66597181	10.8936843	7.05264794	7.44343937	10.2105126
CD53	11.1467937	11.241697	10.1035022	11.4194355	0	11.4433546

TABLE 6-11-continued

Single cell expression data (reduced list)—Control						
Factor	MPP1	MPP2	MPP3	MPP4	MPP5	MPP6
				0		
CD55 CD63	0 6.93667918	0 10.6830361	0 7.91059718	7.48471238	0 4.0814483	0 0
CD03	0.55007518	0	0	9.13917551	0	0
Cdc42	13.4222253	12.5348596	13.56969	12.3378718	11.7636509	12.8887671
Cdk1	10.9643801	11.4007291	9.70754751	0	0	10.4661432
Cdk4	11.8074379	10.3164272	12.5018024	9.48804452	6.81583478	11.7800185
Cdkn2b	0	0	2.77346992	0	0	0
Cebpa	9.22772932	10.0275028	11.2952199	11.0642013	9.09418965	10.4493234
Csf1r Ctnnb1	0 8.32067527	8.45310432 5.00574303	8.99182682 8.39061689	7.91613811 8.19898063	10.0723015 4.79592084	0 8.46222031
Cycs	13.0347923	12.4656213	14.3162078	9.98439188	9.65986044	12.6497946
Dach1	0	13.3892767	0	7.3947807	9.10470453	0
Dnmt1	12.8259216	12.6055461	12.7124172	10.1043631	0	12.0574902
Dnmt3a	11.5381376	7.80820219	11.1160495	10.4359516	9.17576912	10.796858
Dnmt3b	10.7508563	11.1492963	9.71848489	10.1049899	8.03011401	10.8681675
Dtx1	0	0	0.31107154	0	0	0
Dtx4	11.1069971 0	7.43011153 0	12.4091038 0	0	0	0
Ebf1 Ep300	8.75076257	8.59075653	9.62468843	9.68032474	0 9.58816102	0 8.39625294
Epor	4.91252317	3.1681373	2.6614969	0	3.60216649	0.57025254
Erg	9.15107944	12.1140199	10.0602319	8.05974652	9.1838276	7.70552462
Esr1	11.9774405	8.93512079	9.30574164	10.8765411	0	10.0872926
ETS1	10.5968066	10.5087649	0	8.1786786	0	10.9157853
ETS2	8.80623923	5.91625835	6.07444663	8.44682963	1.07952469	8.81372256
Etv3	5.042175	0	6.17334389	5.48927278	0	4.47456273
Etv6 Ezh2	11.2690271 10.9805883	11.8468993 10.1182621	10.1410346 9.56833692	10.3082532 8.93691074	10.7932873 5.75295828	11.5654449 11.0075626
Fas	0	0.1182021	9.30833092	0.93091074	0 0	0
Fcgr2b	ő	0	7.59523747	0	0	0
Fcgr3	Ö	Ö	0	Ŏ	Ö	Ö
Fli1	10.0608425	11.8155209	11.4638535	11.1403327	11.1245373	11.1412932
Flt3	13.4713208	10.9848512	12.2344582	12.3865902	11.8521808	13.8892265
Fosl1	9.53355426	0	0	0	0	0
Foxo1	10.3135469	10.291036	8.38726315	8.71085607	9.18316568	10.070319
Foxo3 Gapdh	8.99316696 11.6345343	10.5108484 12.8310252	7.44733165 11.770259	8.87606497 9.91293629	8.84685185 9.88727626	10.0201581 10.8114969
Gata1	0	0	0	5.30872103	0	0
Gata2	Ō	6.25587723	0	0	0	5.46348074
Gata3	8.22743301	6.73112619	0	7.17096276	7.71368531	0
Gfi1	7.2915492	8.85268611	0	0	8.61482142	8.29984645
Gfi1b	0	10.9458698	7.94961583	0	0	9.2539235
Hes5	0	0	0	0	0	0
Hey1 Hlf	11.6107089	11.3506889	0 8.23973525	11.1220263	12.3616717	0 9.67605941
Id2	0	0	0.23773323	3.01634284	0	0
Ifi203	12.2933836	13.4311987	12.3810812	11.2387169	11.1057026	13.854702
Ifi205	1.46825299	0	0	0	0	0
Ifitm1	10.3158671	12.2548019	1.80612474	9.53491036	11.6097006	10.8254147
Ikzf1	12.2449774	10.9137692	11.8885062	9.44640906	10.0772827	11.7883861
Ikzf2 Il7R	8.72612533 0	10.5247685 0	0	9.54996851 0	9.19777951 0	0
Irf4	8.88932449	0	0	0	0	0
Irf6	0	2.28451212	3.12345728	ő	2.94453997	7.03646954
Irf8	10.1140031	9.69303494	12.6201361	Ö	0	7.96421851
Kdr	0	0	0	0	0	0
Kit	10.3323157	13.290097	10.3759975	11.6752403	11.4546255	9.73802765
Klf1	0	0	0	0	0	0
K1f12 Ldb1	0 11.7920145	7.5771355	0 11.7984669	0 10.9682206	0 10.6778344	0 11.0742708
Lin28a	7.77696226	11.5152136 2.72948667	3.67493945	7.0652472	9.08749361	0
Lmo2	10.6837852	10.8046961	10.6266379	10.9303176	10.719542	11.3314271
Ly6a	11.5474621	10.2394989	7.73593565	8.32586298	10.6491694	9.60404877
Lyl1	8.11242278	0	10.1020158	0	0	8.83335686
Mbd2	10.0753161	10.3506985	11.4298385	9.11525309	10.5529714	10.6747769
Meis1	8.19052316	9.67159559	6.53658539	0	9.3704605	8.58771639
Mllt3	0	7.01032363	0	0	0	0
Mpl Muc13	0 9.18176099	11.6188289 10.7974567	0	0 10.159424	0	0 0
Myb	13.8600806	13.3102917	13.8966992	11.8930023	12.3157054	12.0374473
Myc	12.4572692	12.7756443	13.0591357	10.6719002	0	11.658761
Mycn	4.48759571	12.0648986	7.88422472	10.1149438	10.4601304	12.3658929
Ndn	0	8.73723256	0	0	0	9.05565846
Nfat5	9.23389178	8.43831408	5.08317626	7.08881328	7.14783983	9.11031201

TABLE 6-11-continued

Single cell expression data (reduced list)—Control						
Factor	MPP1	MPP2	MPP3	MPP4	MPP5	MPP6
Nfia	8.22536613	10.3181464	0	0	0	0
Nfkb1	0	4.25773876	6.36053701	6.28335202	0	0
Notch1	10.5411213	0	10.0596251	9.15986762	7.79669562	10.5613034
Pax4	0	0	0	0	0	0
Pax5	0	0	0	0	0	0
Pax9	0	4.39855399	0	0	7.47812976	0
Pbx1	0	0	3.98886737	0	0	0
PIk3ca	9.98779925	8.66693277	8.36771159	8.07241137	8.11823529	10.7576739
PIk3R2	0	8.41914228	11.2909208	9.22643964	0	10.8038558
Plag1	8.91111651	0	0	0	0	0
Prf1	0	0	0	0	0	0
Pten	9.73746823	8.52844961	10.3610336	9.7554549	8.9576986	9.39466925
Rb1	10.56726	11.135636	10.6281849	9.77464462	9.64300093	8.52928352
Rora	0	0	0	0	8.95379549	0
Runx1	0	7.57506234	11.3878361	9.64485117	0	8.01381659
Runx2	8.01374944	6.92871391	8.2119077	5.88438904	6.41322446	7.86904824
Satb1	12.19321	9.07418197	12.4338909	11.4331637	8.41406481	11.7354143
Sdpr	0	0	0	0	0	0
Sell	0	11.4107566	11.5576376	0	0	9.39436203
Sfpi1	10.4751592	10.2858722	10.7956608	10.7612319	8.28792429	9.65907002
Slamf1	0	0	0	0	0	0
Smarca4	13.0055606	11.8353641	12.3437472	11.4881732	11.951662	11.9434175
Sos1	2.66805577	7.04399519	7.54270055	7.21891711	7.15270243	6.4810902
Stat1	3.79515281	3.7506045	2.42604397	7.25585273	2.19651358	5.20779754
Stat3	0	7.35454462	0	11.4070872	9.90639954	0
Stat4	8.61934296	8.48689909	0	7.19354193	6.92208828	8.11912795
Stat6	8.38514449	9.97948225	10.91246	10.0950254	10.3501987	11.7262422
Suz12	12.1314037	11.5904284	12.2840569	10.4055215	6.87697186	12.3236445
Tal 1	0	5.08496506	2.73114378	0	7.48698209	0
Tcf3	6.67565349	8.31215232	2.15386392	0	0	8.29747218
Tcf4	11.1250971	9.46376933	11.7038871	11.1179238	9.78786393	11.7491444
Tcf7	0	0	0	0	0	0
Tek	0	9.20065767	0	0	0	0
Tfre	11.1514151	9.64401783	12.0859674	9.26164167	0	10.1615771
Tgfb1	0	0	7.66944594	0	0	7.04752663
Tgfb2	0	0	0	0	0	0
Tgfb3	0	0	0	0	0	0
Tnfrsf1a	10.4658528	3.19243814	1.74940044	9.34788925	9.69155039	8.79792759
Tnfrsf1b	9.13020949	8.49093408	9.13944664	0	5.57625399	0
Tnfrsf2l	6.50412724	7.08061356	6.13813065	6.59804131	5.91417667	6.16646549
Tnfsf10	0.19476122	0	0	0	6.29693535	7.28794504
Tnfsf12	0	0	0	0	0	0
Tob1	0	0	0	5.53534788	6.34080934	0
vWF	0	0	0	0	0.54080954	0
Zbtb20	7.26349348	7.01562217	0	0	7.96980448	9.33850376
		10.1472497		7.6851333	8.72294732	
Zbtb38	6.57611355		8.96566992			7.63005742
Zfp532	3.74373752	0	0	0	0 5.761.42002	0
Zfp612	0	7.24390911	0	0	5.76142983	0
Zfpm1	4.4433929	4.77658905	4.37031599	6.57885334	4.4872645	5.50679362
Zhx2	0	0	0	0	0	0

TABLE 6-12

Single cell expression data (reduced list)-Control							
Factor	MPP7	MPP8	MPP9	MPP10			
Actb	15.5799561	16.4231342	14.9413529	16.4806567			
Aebp2	4.74041619	5.79768478	4.60544211	5.70833163			
Ahr	0	0	0	0			
Akt1	8.28402993	10.5440223	8.94826142	10.0634546			
Akt2	0	0	0	5.73559526			
Akt3	9.55466835	7.76861222	7.22498152	9.10794373			
APC	0	0	3.09166097	7.5684068			
Bad	0	0	0	0			
Bax	7.56956863	10.0339298	9.18437556	10.0584079			
Bcl11a	0	8.73822897	0	0			
Bcl11b	0	0	0	0			
Bcl2	0	6.49304714	0	0			
Bcl2l1	0	9.34594529	0	9.25723428			

TABLE 6-12-continued

	Single cell expression data (reduced list)-Control						
		en expression data (
Factor	MPP7	MPP8	MPP9	MPP10			
Bcl2l11	0	8.61453833	8.08425995	9.37832844			
Bmi1 Brd3	0 9.25530682	8.32976055 11.2819662	8.25021212 8.12620738	7.88080894 10.4587875			
Casp8	10.6378139	11.1806726	10.2895215	11.39495			
Casp6 Casp9	0	0	0	0.01340377			
Cbx2	6.79558984	8.59803667	7.0009243	8.51339363			
Cbx8	0	0	0	0			
Cene	0	9.44435886	0	9.60093989			
Ccnd1	0	9.91482334	8.70488465	9.74960081			
Ccne2	8.92637293	10.6434763	0	11.3631899			
CD34	10.913548	11.4119115	10.4402497	11.0324695			
CD41 CD48	0 9.32813788	8.7488255 11.6576097	0 3.44806841	0 10.543773			
CD52	9.61936432	8.73437329	8.14742149	10.7452684			
CD53	11.2776098	11.1779516	9.29476445	11.5298596			
CD55	0	0	0	0			
CD63	0	7.40996888	7.37062015	0			
CD9	0	0	0	0			
Cdc42	13.2349309	13.2478421	11.8304766	13.479261			
Cdk1 Cdk4	3.55141534 10.9902569	10.9443851 12.2074899	7.01908412 10.5113998	0 11.5285061			
Cdkn2b	0	0	0	0			
Cebpa	9.95273834	9.17238843	9.49773051	10.1225975			
Csflr	9.04324667	0.80192533	7.08749126	10.0144786			
Ctnnb1	5.98292685	8.32930377	7.13625717	8.62467592			
Cycs	11.4299521	13.7723272	10.3832219	13.3171266			
Dach1	0	0	0	0			
Dnmt1	11.4993032	13.0255564	11.8407164	12.2146515			
Dnmt3a Dnmt3b	10.7606522 7.92873762	10.2684942 10.0182754	8.39313135 10.504402	11.1114075 10.6600185			
Diffication Dix1	0	4.7728077	0	0			
Dtx4	11.6922822	0	0	10.7071			
Ebf1	0	0	0	0			
Ep300	9.37108183	9.81215211	7.97358115	9.71578584			
Epor	4.28849905	5.02706212	5.93378806	2.52024536			
Erg	11.0872096	10.9417369	12.2901755	10.555884			
Esr1 ETS1	11.6554563 11.9723848	8.57331038 3.46036603	9.75278719 3.47419373	10.1047334 11.9193271			
ETS2	8.55484649	0	0	1.48502139			
Etv3	6.2991095	3.863445	5.31929463	3.86067028			
Etv6	9.37003784	11.6844245	12.2546514	11.8922382			
Ezh2	8.86828602	10.9599669	8.96305659	10.2990075			
Fas	0	0	0	0			
Fcgr2b	0	6.76599483	0	5.22192452			
Fcgr3 Fli1	0 11.8629795	0 11.3479034	0	0 11.4859541			
Flt3	13.2221419	13.2364137	10.9761779 12.1561632	13.2561177			
Fosl1	0	0	0	0			
Foxo1	10.1123954	10.2137253	10.6020045	10.7842805			
Foxo3	5.59015224	9.10555731	11.3588563	10.8953427			
Gapdh	11.0477044	13.1655109	11.4008552	13.1404894			
Gata1	0.94564173	0	0	0			
Gata2 Gata3	3.65013785 1.39088214	3.51256127 6.3891916	5.2315933 0	0			
Gfi1	8.84634557	6.27872603	6.48893372	0			
Gfi1b	0	8.82811597	10.2832164	9.20982917			
Hes5	4.64107681	0	6.957973	0			
Hey1	0	0	0	0			
Hlf	0	9.33667569	11.9867391	9.23572861			
Id2	0	8.21997193	0	4.79088829			
Ifi203 Ifi205	13.6649212 0	12.9454442 0	12.6378994 0	13.2045669 0			
Ifitm1	0	11.8326933	9.99492608	8.92490776			
Ikzf1	12.3564729	11.2597407	11.3032006	10.227332			
Ikzf2	10.0349533	9.92808204	8.40270492	0			
II7R	8.47052626	0	0	4.98728556			
Irf4	0	0	0	0			
Irf6	0	0	0	0			
Irf8 Kdr	8.35824062 0	10.9054686 0	0 0	11.9512698 0			
Kit	10.6608131	11.4159407	11.8825308	10.6648273			
Klf1	0	6.3799233	0	0			
Klf12	0	0	0	0			

TABLE 6-12-continued

	Single o	cell expression data (1	reduced list)-Contro	1
Factor	MPP7	MPP8	MPP9	MPP10
Ldb1	11.0037537	10.768767	11.3221586	11.5395242
Lin28a	0	0	8.71671372	8.10538829
Lmo2	9.8811249	11.1975103	11.572644	10.6241439
Ly6a	10.5512136	8.03714344	10.4350633	10.3456629
Lyl1	9.23026917	7.59193214	0	9.49619226
Mbd2	11.6682738	11.3388742	10.0098962	10.6943395
Meis1	6.79368245	8.42564079	8.98994745	7.80483069
Mllt3 Mpl	0	0	0 9.17845367	0
Muc13	0	9.30164297	7.01923521	0
Myb	13.4971968	13.3599043	12.082765	13.8765431
Myc	11.6030817	12.0932166	8.10743215	11.4606205
Mycn	8.2487794	0	10.0709306	0
Ndn	0	0	10.0775359	0
Nfat5	7.09690528	8.60254985	7.31614621	7.43938448
Nfia	0	0	10.937255	0
Nfkb1	3.83053939	4.11240597	5.24127431	3.64341386
Notch1	11.1593775	8.27953256	7.48014451	9.14338513
Pax4	0	0	0	0
Pax5	0	0	0	0
Pax9	0	0	0	0
Pbx1	0	4.9309508	0	0
PIk3ca	8.96893649	10.6627449	8.54724566	9.22944916
PIk3R2	8.65643169	11.8510785	10.1724212	0
Plag1	0	0	0	0
Prf1	0	0	0	0
Pten	8.25469691	9.67626184	6.97446432	9.5307241
Rb1	9.59233164	11.5007352	9.77688089	11.1455471
Rora	0	0	8.65726707	0
Runx1	0	10.0522268	8.31416339	9.56394879
Runx2	7.48955293	5.94137868	5.7987657 7.60722496	7.28443718
Satb1	12.4017526	9.90535075 0	7.60722496 0	12.7657794 0
Sdpr	0		9.51107337	9.17958828
Sell Sfpi1	11.5341189 9.55284835	11.4001825 10.8357053	8.89491205	10.3685731
Slamfl	9.33284833	0	0	0
Smarca4	12.3428509	13.5642625	10.6464189	11.9223443
Sos1	8.19189077	0	7.3490338	8.77541216
Stat1	4.94305767	3.60841055	0	6.83329035
Stat1	9.23352711	10.6650348	11.2676229	0.65525055
Stat4	9.73904725	9.11900076	8.47015672	7.05959532
Stat6	9.78343857	10.2042159	9.87121731	10.0443104
Suz12	10.3249963	12.0359278	10.0398783	11.7614625
Tal1	0	0	8.600419	7.76085711
Tcf3	8.03699653	5.45181491	9.06930734	0
Tcf4	11.8413493	11.1111843	9.69541167	12.2817037
Tcf7	0	0	0	6.54941349
Tek	0	0	0	0
Tfrc	10.6830	9029.59395121	0	10.8582641
Tgfb1	0	8.23296021	0	0
Tgfb2	0	0	0	0
Tgfb3	0	0	0	0
Tnfrsfla	8.68589512	10.7994818	0	9.35978037
Tnfrsf1b	7.9316098	8.07814768	0	2.48402645
Tnfrsf21	5.70122301	7.82568809	6.38571982	6.05359643
Tnfsf10	4.37639922	6.48140769	0	0
Tnfsf12	0	0	0	0
Tob1	9.18275412	0	5.06745741	5.90038553
vWF	0	0	0	0
Zbtb20	10.0142217	8.86759709	9.14684532	6.41102139
Zbtb38	8.26590238	9.71780996	10.6136333	8.51332267
Zfp532	3.78349621	0	4.01404165	4.28805397
Zfp612	6.67634499	0	0	0
Zfpm1	0	6.52079531	0	0
Zhx2	0	8.45764455	7.05698459	0

TABLE 7-1

			TABLE 7			
		Single cell e	expression data (redu	iced list)—iHSC-8-	ΓF	
Factor	iHSC-8- TF1	iHSC-8- TF2	iHSC-8- TF3	iHSC-8- TF4	iHSC-8- TF5	iHSC-8- TF6
Actb	15.3406135	15.3198955	12.6214841	13.9265913	14.907027	15.0828458
Aebp2	5.851253	6.91015329	6.18045816	6.13677942	6.31619136	6.55729075
Ahr	0	0	0	0	0	0
Akt1	10.3432926	10.2118447	8.44749976	8.43295768	11.0465135	11.5937761
Akt2	3.80481193	4.13073296	3.84759163	4.37730874	4.24877633	0
Akt3	6.26062374	5.80767709 0	0 0	6.66877618 0	0	7.28666292
APC Bad	7.75143555 0	0	0	0	6.70926589 0	6.91997434 0
Bax	10.0841523	8.99852595	8.53670881	7.1491247	9.41403376	10.0713208
Bcl11a	0	3.57733258	0	0	0	0
Bcl11b	0	0	0	5.03025421	0	0
Bc12	3.78836066	7.35286615	6.11642851	5.60720562	0	4.75013415
Bcl2l1	6.11017227	0	0	8.25842512	8.41053397	10.5350727
Bcl2l11	7.53158421	0	0	5.97717038	6.54979563	7.23702656
Bmi1	8.99154721	8.57213633	1.00536134	7.1259908	7.77630502	9.13913696
Brd3	9.63555762	6.68960269	5.68713764	7.26905043	7.53751543	8.54151772
Casp8	8.69580853	7.82250438	7.27391311	7.12647247	8.13689545 0	8.33966066 0
Casp9 Cbx2	7.50634956 7.63597293	7.89665585 0	8.78122572 0	8.22640477 2.88451144	6.55755634	7.70632981
Cbx8	0	0	0	0	6.58332722	1.23705272
Cene	7.07744906	7.39096581	7.05379006	0	8.19654082	8.46919791
Cend1	7.17456113	0	3.67561661	9.15556129	0	0
Ccne2	8.84703835	6.74398849	0	0	0	0
CD34	7.76800322	10.2510414	2.42976374	6.94679739	7.33591375	0
CD41	0	7.75482846	0	0	8.70769069	0
CD48	0	7.17814996	8.01816633	0	0	9.55567614
CD52	10.0135314	0	11.8982735	8.81778186	7.57773901	11.0136116
CD53	10.0270236	10.1725729	10.2462871	7.3567463	0	10.7604721
CD55 CD63	4.54836488 5.17005936	6.25337777 7.47563153	0 3.07832198	6.26516647 6.44407765	4.55684724 5.26499364	5.44238382 5.17350267
CD03	0	9.46828366	8.37563384	6.77430086	9.39342697	0
Cdc42	11.4639526	11.5821246	9.83848584	11.2577485	10.7756615	12.9047404
Cdk1	10.9656852	10.4158817	0	2.26172673	7.6531999	12.2460627
Cdk4	8.77324798	9.12698531	5.45837872	7.85877388	6.28997376	9.83593049
Cdkn2b	0	0.21758523	0	0	0	0
Cebpa	0	4.87998831	0	0	0.53841585	0
Csf1r	8.20143195	0	0	3.50945636	0	0
Ctnnb1	8.29419721	8.94929575	5.66620169	7.85504317	8.48239691	9.80654905
Cycs	11.9286577	10.5773877	9.78151272	9.24318367	10.6036621 0	13.1484729
Dach1 Dnmt1	0 12.431398	11.8938366 10.6797953	0 5.10859902	7.85242012 8.60332571	8.90303261	0 11.5573084
Dnmt3a	9.31238906	0.66595298	9.50580001	9.36857301	8.96311662	9.41823059
Dnmt3b	0	0.00333230	6.81942467	4.98217548	7.49626958	7.95317289
Dtx1	0	0	5.32869997	0	1.98980211	0
Dtx4	0	0	8.14939517	0	2.92777138	8.31531242
Ebf1	10.1697266	0	0	0	0	10.6720985
Ep300	9.00180094	9.44219254	8.29306018	8.55233656	8.84559399	7.94463523
Epor	7.5372094	7.39704832	8.33400054	7.37800353	7.68712078	7.35168775
Erg	10.1327499	9.75516364	0	7.70627287	8.62033362	12.0140747
Esr1	8.88296212	9.04098261	0	6.92108807	0	8.4763699
ETS1 ETS2	9.58515675	7.76396965	6.09305906 0	0 8 15364763	5.02126265	10.27795
Etv3	0	0 5.70016295	0	8.15364762 4.23406152	0 2.35483367	0
Etv6	7.93361831	11.1215646	0	7.27988804	7.89445014	8.88475474
Ezh2	8.77165156	7.66705207	4.30929244	0	0	9.57003012
Fas	0	0	5.64848062	0	0	0
Fcgr2b	0.30420554	0.45440292	5.15394181	0	0	6.8494956
Fcgr3	0	0	4.41247907	0	1.24977442	4.25323357
Fli1	10.6596619	11.3769697	9.56699345	9.82489406	11.1881229	9.43156848
Flt3	0	8.59953308	0	0	0	0
Fosl1	0	7.74223892	0	0	0	0
Foxo1	10.5153363	9.99673903	9.6360569	8.19670491	6.62389626	11.7131359
Foxo3 Gapdh	6.94925231 8.94923539	8.89744564 7.63885103	8.17471245 6.1114181	8.28738773 6.39966913	8.1441656 8.06887865	7.11214992 9.83613157
Gapun Gata1	6.93311607	1.95105225	4.1024026	6.71747066	9.80051859	7.32322012
Gata1	0.93311007	6.84778411	0	6.48936067	7.0603346	3.31930144
Gata3	0	8.07886909	0	6.09390185	6.13467871	0
Gfi1	Ö	1.65773111	0	0	0	6.42475488
Gfi1b	0	0	0	8.76265343	10.5244821	0
Hes5	6.16742566	0	0	0	0	0
Hey1	0	0	0	0	0	0
Hlf	0	10.1536689	0	8.17012499	8.27321734	0

TABLE 7-1-continued

Single cell expression data (reduced list)—iHSC-8-TF						
		Single cell e	expression data (redi	iced list)—iHSC-8-	I'F	
Factor	iHSC-8- TF1	iHSC-8- TF2	iHSC-8- TF3	iHSC-8- TF4	iHSC-8- TF5	iHSC-8- TF6
Id2	0	0	0	0	4.45263385	4.84341023
Ifi203	11.7002151	11.6173765	10.7830968	11.2037766	8.89825585	10.7833025
Ifi205	0	0	0	0	0	0
Ifitm1 Ikzf1	8.79797577 9.06085707	9.30388568 9.97570248	0 9.51200603	9.61640866 8.72018894	9.63355399 8.01748442	0 10.3459707
Ikzf1	0	9.19579333	0	8.34323416	0.01746442	0
II7R	Ö	0	0	0	0	2.82350147
Irf4	6.24028863	0	11.2249245	0	0	0
Irf6	3.86697265	4.68374949	0	0	2.8135202	0
Irf8	8.6858537	4.6101286	8.99498491	0	4.89636707	9.36420702
Kdr Kit	0 8.06121617	0 11.9083565	0 7.88520732	0 10.3475565	0 11.5383331	0 7.96739286
Klf1	1.36227074	7.02627962	0	0.3473303	0	0
Klf12	0	3.7799555	3.59391415	6.64529932	0	0
Ldb1	8.95380125	8.26779513	6.67202901	7.76543805	8.512649	10.3751947
Lin28a	5.97666173	0	0	7.2842936	4.1303577	4.23775192
Lmo2	0	9.90783707	4.1601552	8.76750141	9.49745795	6.40470448
Ly6a	6.49157656	9.20829801	11.7720222	8.78675489	6.61460984	8.7967369
Lyl1 Mbd2	3.47100366 10.1353897	8.3783465 9.91842346	0 7.76162024	0 8.01621694	0 8.98629969	0 11.7384075
Meis1	0.1333897	7.58467677	7.76162024 4.18043129	6.15361674	7.3922156	0
Mllt3	0	0	0	0.15501074	0	0
Mpl	Ö	7.78365781	0	7.84750206	9.14807149	Ö
Muc13	1.28725247	10.3687609	0	8.47827528	8.95782857	6.65183597
Myb	11.2938204	11.7723867	0	10.7012638	10.0192772	12.3107218
Myc	6.57202892	9.18538633	0	8.83016864	9.14318076	10.0463899
Mycn	0	7.76977355	5.06288392	6.8514822	10.8400837	0
Ndn Nfot5	8.3289328 9.5189948	7.37671042 10.536889	0 9.07919517	5.16705845	7.20854243	7.11546949
Nfat5 Nfia	7.94744233	7.71267144	0	9.36357896 8.18008257	8.84740478 5.13480173	8.99109512 8.01727058
Nfkb1	4.49309052	0	0	3.48186805	0.74786804	0.01727030
Notch1	0	7.53698774	7.22766077	0	0	0
Pax4	0	0	0	0.90906537	0	0
Pax5	10.5019087	0	0	0	0	10.127363
Pax9	0	0	0	0	0	0
Pbx1	0	0 50446353	0	0	0	0
PIk3ca PIk3R2	8.87496334 0	9.59446253 9.01075671	8.38080955 7.65058108	7.92496672 0	7.19725366 0	8.34649914 8.8251932
Plag1	6.21437664	0	0	o o	ő	0
Prf1	5.13052494	0	0	5.10255205	1.86255408	0
Pten	10.4209011	9.40062124	8.96322075	9.10909358	9.71271677	11.3745533
Rb1	11.498329	7.96524059	9.94840657	8.51800071	8.72633492	10.2612969
Rora	4.6565537	4.45455454	4.29766187	0	6.78445169	0
Runx1	0	3.59548673	0	0	8.70903268	8.69444499
Runx2 Satb1	0 9.58445099	4.8737639 0	0	2.43317885 0	2.69308191 0	0 10.0568223
Sdpr	0	0	0	3.31280029	5.62934476	0
Sell	Ö	9.75709978	0	6.9298617	0	8.38589128
Sfpi1	7.63770596	10.0783626	7.41813664	9.49550468	7.19133526	0
Slamf1	0	0	0	6.06097964	6.25642952	0
Smarca4	13.0953186	10.9600388	9.46765173	9.90759459	9.19212961	12.8606875
Sos1	5.40387814	5.43895529	0 07241004	2.67690483	5.14978146	4.18611634
Stat1 Stat3	0 8.81593264	2.91513401 10.0143888	0.07241094 8.51673559	0 5.70612457	2.60150676 9.26273642	0.29458547 8.62967589
Stat4	7.59462882	7.57005869	4.91836386	6.5553935	7.72874787	8.74767888
Stat6	0	9.26322869	9.00041636	9.18130068	9.26639055	10.2390779
Suz12	10.8674987	9.11262594	8.17970692	0	7.7627513	10.4085025
Tal 1	0	1.8367319	0	5.71521273	1.96056078	0
Tcf3	10.5687751	0	9.21497368	0	0	10.0481927
Tcf4	8.34840792	10.2104083	9.82698659	10.0410063	8.76568475	11.7542786
Tcf7	0	3.71590064	0	0	0	3.04107777
Tek Tfrc	0 10.7744689	7.63031049 9.18072216	0	0 6.62621094	8.79573534 7.8677122	0 12.4601279
Tgfb1	0.7744089	5.93085307	0	5.17968196	6.39280849	12.4601279 0
Tgfb2	0	0	0	0	0.39280849	0
Tgfb3	Ö	4.2326363	o o	Ö	o o	0
Tnfrsfla	0	10.0793196	7.131272	8.00451161	8.93391961	6.97464589
Tnfrsf1b	0	7.84101337	0	6.33601316	7.87941437	0
Tnfrsf21	5.0514495	5.18842864	0	5.90203138	3.76922431	5.16498449
Tnfsf10	5.74118369	4.73595896	0	0	0	0
Tnfsf12	0	0	0	0	0	0
Tob1	0	0	0	0	0	0

TABLE 7-1-continued

	Single cell expression data (reduced list)—iHSC-8-TF						
Factor	iHSC-8- TF1	iHSC-8- TF2	iHSC-8- TF3	iHSC-8- TF4	iHSC-8- TF5	iHSC-8- TF6	
vWF	0	0	0	0	0	0	
Zbtb20	0	8.54271536	10.2199855	6.6588198	6.37611928	0	
Zbtb38	6.56462732	6.67014526	8.73007335	7.61868645	7.62865123	0	
Zfp532	0	0	0	0	0	4.60375818	
Zfp612	0	0	0	0	0	7.16346579	
Zfpm1	5.66600566	0	0	0	0	0	
Zhx2	0	7.63580107	9.72406195	1.95086519	0	7.13427169	

TABLE 7-2

		Single cell of	expression data (red	uced list)—iHSC-8-	ΓF	
Factor	iHSC-8- TF7	iHSC-8- TF8	iHSC-8- TF9	iHSC-8- TF10	iHSC-8- TF11	iHSC-8- TF12
Actb	14.1168122	14.2687572	15.8641756	14.4381106	14.3257382	14.6272225
Aebp2	6.58743305	5.66417136	5.22379812	5.95905614	7.01711608	6.02218741
Ahr	0	0	0	0	0	0
Akt1	10.4975255	8.19356615	10.0511812	9.94944796	10.0904307	9.78983507
Akt2	0	5.90204274	5.55935143	0	0	0
Akt3	4.44707058	0	5.01641454	5.89301145	6.31601984	2.88783769
APC	0	0	6.72226741	7.01362759	0	0
Bad	0	0	0	0	0	0
Bax	9.21290548	10.3301544	9.28539174	6.90668957	8.43007045	7.04487576
Bcl11a	0	0	7.05226632	6.95413316	0	0
Bcl11b	0	6.70827939	0	0	2.52118042	0
Bcl2	0	6.16765619	5.32242768	3.97203709	4.00080172	6.6941012
Bcl2l1	8.66402847	0	9.00530066	8.98651494	9.26985486	0
Bcl2l11	0	0	3.75189301	7.10582142	6.50890906	7.33360294
Bmi1	0	6.89348049	7.29668045	5.02457691	7.99433734	5.36245978
Brd3	7.71511488	6.04924659	9.23743083	7.95074744	8.60723746	6.91699201
Casp8	7.12754238	0	8.13700313	7.47959123	7.47348015	7.66051539
Casp9	9.29896423	7.90126543	0	8.30432388	5.33319179	6.17992512
Cbx2	0	6.43063067	0	6.62363681	7.67267315	3.20105562
Cbx8	0	0	0	0	0	0
Cenc	0	6.40890962	7.63555762	6.20647804	0	6.24921005
Cend1	0	0	0	8.82298676	3.76604926	7.56671747
Ccne2	0	0	1.01221314	6.17859245	9.00851145	0
CD34	9.13922982	0	0	10.584104	0	0
CD41	7.61145278	0	0	7.90679374	0	0
CD48	7.21190179	8.92159518	8.98615136	10.0247552	6.7930497	8.02173906
CD52	9.13495653	13.2787307	10.360447	10.8185364	10.295746	10.2005651
CD53	0	10.4873969	10.0471444	10.0930693	10.8734016	10.6865731
CD55	5.57901574	4.03055026	4.3185467	0	2.08180138	6.99084057
CD63	5.12554231	0	4.77761362	7.17726095	5.43373369	4.70694381
CD9	0	5.59346873	0	6.80671919	0	6.82472844
Cdc42	10.5111244	11.2158271	11.7756836	11.2231375	11.759242	11.3052155
Cdk1	0	6.83989229	11.7557885	8.64473028	11.1023897	7.79953619
Cdk4	6.35473944	6.496508	8.83507662	8.83931041	9.36294383	5.64163688
Cdkn2b	0	0	0	0	0	0
Cebpa	9.04823476	0	2.69352882	9.40045224	0	0
Csflr	0	1.30677937	6.92694177	0	0	5.59152648
Ctnnb1	6.57811297	7.88039783	9.34406389	9.25901152	7.83045263	7.02810979
Cycs	9.94917515	11.6037181	10.8649283	11.5428262	10.6576893	10.8861042
Dach1	9.69728721	0	0	8.33375194	0	0
Dnmt1	8.82661641	8.89078551	11.301271	10.5172729	11.1892253	8.83847491
Dnmt3a	7.83006841	7.52705094	9.67344982	11.0465423	6.51186067	9.32316712
Dnmt3b	0	0	0	8.62689966	4.86534252	6.40167463
Dtx1	Ö	0	ů.	0.59861137	0	0
Dtx4	0	8.83830171	8.41636566	0.55001157	0	0
Ebfl	o o	0	9.22197094	o o	6.9679956	o o
Ep300	8.5523291	8.04374842	8,98301466	10.1771185	10.3582779	9.66613489
Epor	6.61213076	6.94262834	7.09878512	8.50640442	7.91438576	6.14148414
Erg	8.01216895	0.94202834	10.904728	10.0129949	10.7400648	9.32820082
Esr1	0	7.15035885	7.57306955	8.35236198	9.77947514	0
ETS1	0	3.60473663	11.2257118	7.54149304	10.6508588	8.51473144
ETS2	0	0	0	2.44626873	0	0.31473144
Etv3	0	3.45927904	4.8894594	4.37811575	0	0
Etv6	9.45530062	5.9105115	7.89766842	9.28460759	9.35002095	0
LIVO	2. 4 3330002	3.3103113	1.02100042	7.20 1 00/39	7.33002073	V

TABLE 7-2-continued

Hisc.s.		Single cell expression data (reduced list)—iHSC-8-TF						
Earlor		'IIGO 8			•		'TIGO 0	
Fas 0 6.29945666 0 0 0 0 0 2.46788098 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Factor							
Fegr2b 0								
Fight								
Filt								
Fost								
Fox01 8,18173307 7,09923615 11,1745002 8,28818064 10,4449886 7,1518785	Flt3	0	0	0	0	0	0	
Foxo								
Gapth 6.89740048 4.87578711 8.93535347 8.19662939 8.71071609 6.0484422 Gatal 6.91468987 0 5.9071982 2.11048209 5.4250803 6.89996511 Gatal 6.51624104 0 0 0 0 6.0354429 Gfil 0 0 0 0 0 0 Gfil 0 0 0 0 0 0 Hes 0 0 0 0 0 0 0 Hes 0 0 0 0 0 0 0 0 Hes 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Grainal 9.61468987 0 S.9071982 2.11048309 5.4250803 6.8999511 Grata2 6.52628814 0 0 7.20652789 0 6.15745412 Gfil 0 0 8.24022584 8.3162082 8.54743017 0 Gfilb 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 Hey1 0 0 0 0 0 0 Id2 0 8.47672002 0 0 0 0 If203 8.71443714 8.16468581 11.2916134 12.25224623 0 7.9891841 Ikzr 6.4222039 0 0 0 0 0 0 0 Ikzr 6.42292039 0 0 3.7996169 4.54349931 1 Ikr 0 0 0 0								
Gata3 6.51624104 0 5.81915409 7.20652789 0 6.15745412 Gfilb 0 0 0 0 0 0 0 Gfilb 0 0 0 0 0 0 0 Heyl 0 0 0 0 0 0 0 Heyl 0 0 0 0 0 0 0 Heyl 0 0 0 0 0 0 0 Id2 0 0 0 0 0 0 0 Id203 0 0 0 0 0 0 0 0 Id205 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Gfill 0 0 8,24022584 8,33162082 8,54743017 0 Gfilb 0 0 0 0 0 0 0 Hest 0 0 0 0 0 0 0 Hiff 0 0 0 0 0 0 0 Hiff 0 0 0 0 0 0 0 Hiff 0 0 0 0 0 0 0 IEQUAL 0 0 0 0 0 0 0 IEGR 9,34781477 8,16468581 10,0890344 8,27576881 5,59828783 9,99149712 12,117 IEGR 2,34781477 8,16468581 10,0890344 8,27576881 5,59828783 9,99149712 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 12,117 <td>Gata2</td> <td>6.95268834</td> <td>1.92704567</td> <td>0</td> <td>0</td> <td>0</td> <td>4.03544209</td>	Gata2	6.95268834	1.92704567	0	0	0	4.03544209	
GRID 0								
Hest								
Hey1			-					
Hif			-					
In In In In In In In In		0	-	0	9.32403067	0	0	
Initian		-				-		
Himm								
Ikzfi		-	-	-	-			
I17R								
IrF4 0 0 6.02386675 0	Ikzf2	6.24292039	0	0	8.36452991	0	6.57569221	
Irf6 2,86463898 0 0 2,12737397 0 1,02930007 Irf8 6,58557808 8,00355731 7,93428618 7,19297404 3,05664681 7,37397995 Kdr 0 0 0 0 0 0 0 Kir 10,2589067 7,85501741 7,73411021 11,0726033 6,84977833 3,48477947 Kirl 0 0 0 0 0 0 0 Kirl 0 0 0 0 0 0 0 Kirl 0 0 0 0 0 3,384877978 7,54315374 6,6611673 8,6930828 5,55717398 6,52150568 Lmo2 8,85722605 0 3,81100563 9,91085057 2,29006541 0 Lyf1 6,96600063 0 7,38272032 0 7,10726678 0 Ly11 6,96600063 10,7184582 7,17557655 10,2817993 6,91322033 Meisl 6,6721765		-	-					
IrR 6.58557808 8.00355731 7.93428618 7.19297404 3.05664681 7.373797995 Kdr 0 0 0 0 0 0 0 Kir 10.2589067 7.85501741 7.73411021 11.0726033 6.84977833 3.48477947 Kirl 0 0 0 0 0 0 3.8487195 Kirl 0 0 0 0 0 5.38786195 Ldb1 8.48024052 7.15652923 8.13838568 9.97532882 8.59067702 7.61339925 Lmo2 8.85722605 0 3.81100563 9.91085057 2.29006541 0 Ly6a 7.16972478 12.3658436 0 10.1051955 0 0 Ly1 0.66600063 0 7.38272032 0 7.10726678 0 Mbel 2.743236082 8.00969676 10.7184582 7.17557555 10.2817993 6.91322033 Misit 2.756806472 3.87482965 3.75675909 0 <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td>			-		-		-	
Kdr 0			-					
Kit 10.2589067 7.85501741 7.73411021 11.0726033 6.84977833 3.48477947 Kif1 0 0 0 0 0 0 0 Kif12 0 0 0 0 5.38786195 Lidb1 8.48024052 7.15652923 8.13838568 9.97532882 8.5906702 7.61339925 Lim2a 4.37557978 7.54315374 6.6611673 8.6930828 5.55717398 6.52150568 Lmo2 8.85722605 0 3.8100563 9.91085057 2.29006541 0 Ly6a 7.16972478 12.3655436 0 0 10.1051955 0 0 Ly1 6.96600063 0 7.38272032 0 7.10726678 0 Mbd2 7.44236082 8.0969676 10.7184882 7.17557655 10.2817993 6.91322033 Misia 6.6721765 0 0 7.96516188 0 0 0 Mill3 2.78686472 3.87482965 3.75675099 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
KIF12 0 0 0 0 5.38786195 Ldb1 8.48024052 7.15652923 8.13838568 9.97532882 8.59067702 7.61339925 Lin28a 4.37557978 7.54315374 6.6611673 8.6930828 5.55717398 6.52150568 Lm02 8.85722605 0 3.8110063 9.91085057 2.29006541 0 Lyl 6.96600063 0 7.38272032 0 7.10726678 0 Mbd2 7.44236082 8.0969676 10.7184882 7.17557655 10.2817993 6.91322033 Mcisi 6.6721765 0 0 7.89126204 0 0 Mili3 2.76806472 3.87482965 3.75675909 0 0 0 Milc13 9.22434143 2.95206595 0 0 0 0 Myc 7.93764864 0 0 6.9817147 0 0 Myc 7.93764864 0 0 6.9817147 0 0 Nfai <td></td> <td>10.2589067</td> <td>7.85501741</td> <td>7.73411021</td> <td>11.0726033</td> <td>6.84977833</td> <td>3.48477947</td>		10.2589067	7.85501741	7.73411021	11.0726033	6.84977833	3.48477947	
Ldb1 8.48024052 7.15652023 8.13838568 9.97532882 8.59067702 7.61339925 Lin28a 4.37557978 7.54315374 6.6611673 8.6930828 5.55717398 6.52150568 Lmo2 8.85722605 0 3.81100563 9.91088057 2.29006541 0 Ly6a 7.16972478 12.3655436 0 10.1051955 0 0 Mbd2 7.44236082 8.00969676 10.7184582 7.17557655 10.2817993 6.91322033 Meisl 6.6721765 0 0 7.89126204 0 0 Mill3 2.76806472 3.87482965 3.75675909 0 0 0 Mpl 0 3.87482965 3.75675909 0 0 0 Mpl 1.12843335 0 11.8407814 11.6847867 0 0 Myb 1.12843335 0 11.8407814 11.6847867 0 0 Mycn 8.50979223 0 0 8.87104756 0 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>			-					
Lin28a 4,37557978 7,54315374 6,6611673 8,6930828 5,5717398 6,52150568 Lmo2 8,85722605 0 3,81100563 9,91085057 2,29006541 0 Ly6a 7,16972478 12,3655436 0 10,1051955 0 0 Ly1 6,9660063 0 7,38272032 0 7,10726678 0 Mbd2 7,44236082 8,00969676 10,7184582 7,17557655 10,2817993 6,91322033 Meis1 6,6721765 0 0 7,89126204 0 0 Mll13 2,76806472 3,87482965 3,75675909 0 0 0 Mll13 2,22434143 2,95206595 0 9,00435575 4,86915097 6,41388415 Myb 11,2843335 0 11,8407814 11,6847567 10,6838134 9,98616175 Myc 7,93764864 0 0 6,871447 0 0 Myc 7,93764864 9,22514461 9,53936508 10,725362		-	-					
Lmo2 8.85722605 0 3.81100563 9.91085057 2.29006541 0 Ly6a 7.16972478 12.3655436 0 10.1051955 0 0 Ly11 6.96600063 0 7.38272032 0 7.10726678 0 Mbd2 7.44236082 8.00969676 10.7184582 7.17557655 10.2817993 6.91322033 Meis1 6.6721765 0 0 7.89126204 0 0 Mill3 2.76806472 3.87482965 3.75675909 0 0 0 0 Mpl 0 3.370133444 0 7.96516188 0 0 0 Mpl 11.2843335 0 0 9.0435575 4.86915097 6.41388415 Myc 7.93764864 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 8.87104756 0 0 Nfat 9.67674286 9.22514461 9.5393936508 10.725362 10.3961199								
Ly6a 7.16972478 12.3655436 0 10.1051955 0 0 Ly11 6.96600063 0 7.38272032 0 7.10726678 0 Meist 7.44236082 8.00969676 10.7184582 7.17557655 10.2817993 6.91322033 Meist 6.6721765 0 0 7.89126204 0 0 Milt3 2.76806472 3.87482965 3.75675909 0 0 0 Milt3 2.22434143 2.95206595 0 9.00435575 4.86915097 6.41388415 Myb 11.2843335 0 11.8407814 11.6847567 10.6838134 9.98616175 Myc 7.93764864 0 0 6.9817147 0 0 Myc 7.93764864 0 0 8.87104756 0 0 Nfat 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfab 0 0 0 7.88576867 0 0 <								
Mbd2 7.44236082 8.00969676 10.7184582 7.17557655 10.2817993 6.91322033 Meist 6.6721765 0 0 7.89126204 0 0 Mills 2.76806472 3.87482965 3.75675909 0 0 0 Mpl 0 3.70133444 0 7.96516188 0 0 Mucl3 9.22434143 2.95206595 0 9.00435575 4.86915097 6.41388415 Myc 7.93764864 0 0 6.9817147 0 0 Myc 7.93764864 0 0 6.9817147 0 0 Myc 7.93764864 0 0 0 8.87104756 0 0 Myc 7.93764864 0 0 0 8.87104756 0 0 Myc 7.93764864 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nflat 0 0 0 7.8855687 0 0 0	Ly6a		12.3655436			0	0	
Meis1 6.6721765 0 0 7.89126204 0 0 Mill3 2.76806472 3.87482965 3.75675909 0 0 0 Muc13 9.22434143 2.95206595 0 9.00435575 4.86915097 6.41388415 Myb 11.2843335 0 11.8407814 11.6847567 10.6838134 9.98616175 Myc 7.93764864 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 8.87104756 0 0 Nfat5 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfia 0 0 0 7.88567867 0 0 0 Nfib1 0 0 0 7.88567867 0 0 0 Nfib1 0 0 0 7.4117428 0 0 0								
Milt3 2.76806472 3.87482965 3.75675909 0 0 0 Mpl 0 3.70133444 0 7.96516188 0 0 Muc13 9.22434143 2.95206595 0 9.00435575 4.86915097 6.41388415 Myb 11.2843335 0 11.8407814 11.6847567 10.6838134 9.98616175 Myc 7.93764864 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 6.88171475 0 0 Ndn 0 2.31950644 6.46122501 0 8.52326206 0 Nfas 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfas 0 0 0 7.88567867 0 0 0 Nfas 0 0 0 7.88567867 0 0 0 Nfas 0 0 0 7.4117428 0 0 0								
Mpl 0 3.70133444 0 7.96516188 0 0 Mucl3 9.22434143 2.95206595 0 9.00435575 4.86915097 6.41388415 Myb 11.2843335 0 11.8407814 11.6847567 10.6838134 9.98616175 Myc 7.93764864 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 8.87104756 0 0 Nfat 0 2.31950644 6.46122501 0 8.52326206 0 Nfat 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfia 0 0 0 7.88567867 0 0 0 Nfib1 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notchil 0 0 0 0 0 0 Pax4 0 0 0 0 0 Pax5 0 0								
Myb 11.2843335 0 11.8407814 11.6847567 10.6838134 9.98616175 Myc 7.93764864 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 8.87104756 0 0 Ndn 0 2.31950644 6.46122501 0 8.52326206 0 Nfat 0 0 2.31950644 6.46122501 0 8.52326206 0 Nfia 0 0 0 7.88567867 0 0 Nfia 0 0 0 7.88567867 0 0 Nfikbl 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notch1 0 0 0 0 0 0 0 Pax4 0 0 0 0 0 0 0 Pax5 0 0 0 0 0 0 0 Pax5 0 0								
Myc 7.93764864 0 0 6.9817147 0 0 Mycn 8.50979223 0 0 8.87104756 0 0 Ndn 0 2.31950644 6.46122501 0 8.52326206 0 Nfat5 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfia 0 0 0 7.88567867 0 0 Nfikb1 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notch1 0 0 0 7.4117428 0 0 Pax4 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 Pbx1 4.77796595 0 0 0 0 0 0 Plk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3g2 0 0 0 </td <td>Muc13</td> <td>9.22434143</td> <td>2.95206595</td> <td></td> <td>9.00435575</td> <td></td> <td>6.41388415</td>	Muc13	9.22434143	2.95206595		9.00435575		6.41388415	
Mycn 8.50979223 0 0 8.87104756 0 0 Ndn 0 2.31950644 6.46122501 0 8.52326206 0 Nfat5 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfab 0 0 7.88567867 0 0 0 Nfkb1 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notch1 0 0 0 0 0 0 Pax4 0 0 0 0 0 0 Pax5 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 0 Pax9 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Ndn 0 2.31950644 6.46122501 0 8.52326206 0 Nfat5 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfia 0 0 0 7.88567867 0 0 Nfkb1 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notchl 0 0 0 7.4117428 0 0 Pax4 0 0 0 0 0 0 Pax5 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 0 0 Pax9 0 7.20794908 0 7.60310033 0								
Nfat5 9.67674286 9.22514461 9.53936508 10.725362 10.3961199 9.48647076 Nfia 0 0 0 7.88567867 0 0 Nfkb1 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notch1 0 0 0 7.4117428 0 0 Pax4 0 0 0 0 0 0 Pax5 0 0 0 0 0 0 Pax9 0 0 0 0 0 0 Pkx1 4.77796595 0 0 0 0 0 0 Pkx3 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3R2 0 0 0 0 0 0 0 Plk3R32 0 0 0 0 0 0 0 Plk3R32 0 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Nfkb1 0 4.11255372 3.3186588 4.06803019 3.53872344 0 Notch1 0 0 0 7.4117428 0 0 Pax4 0 0 0 0 0 0 Pax5 0 0 10.6232231 0 10.2526594 9.85425333 Pax9 0 0 0 0 0 0 Pbx1 4.77796595 0 0 5.89394817 0 0 Plk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3ra 0 0 0 0 0 0 0 Plk3ra 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3ra 0 0 0 0 0 0 0 Plk3ra 0 0 0 0 0 0 0 7.24036714 1 1 1								
Notch1 0 0 0 7.4117428 0 0 Pax4 0 0 0 0 0 0 Pax5 0 0 10.6232231 0 10.2526594 9.85425333 Pax9 0 0 0 0 0 0 0 Pbx1 4.77796595 0 0 5.89394817 0 0 0 Plk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3R2 0 7.20794908 0 7.60310033 0 0 0 Plag1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.53304996 0 0 0 7.53304996 0 0 0 7.53304996 0 0 0 7.53304996 0 0 0 7.53304996 0 0 <td< td=""><td>Nfia</td><td>0</td><td>0</td><td>0</td><td>7.88567867</td><td>0</td><td>0</td></td<>	Nfia	0	0	0	7.88567867	0	0	
Pax4 0 0 0 0 0 0 Pax5 0 0 10.6232231 0 10.2526594 9.85425333 Pax9 0 0 0 0 0 0 Pbx1 4.77796595 0 0 5.89394817 0 0 Plk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3R2 0 7.20794908 0 7.60310033 0 0 Plag1 0 0 0 0 0 0 0 Prln 0 6.93683892 0 0 0 7.53304996 Pten 9.40099595 7.481518 10.9944646 10.6633747 9.16883013 10.6424771 Rb1 7.82300867 10.1428432 10.6672492 8.80739047 10.7566543 7.64031183 Rora 5.26511699 4.55919881 3.56025341 0 0 0 0 Rumx1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Pax5 0 0 10.6232231 0 10.2526594 9.85425333 Pax9 0 0 0 0 0 0 Pbx1 4.77796595 0 0 5.89394817 0 0 Plk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3R2 0 7.20794908 0 7.60310033 0 0 Plag1 0 0 0 0 0 0 0 Print 0 6.93683892 0 0 0 7.53304996 0 7.53304996 0 0 7.53304996 0 0 0 7.53304996 0 0 0 7.53304996 0 0 0 0 7.53304996 0 0 0 7.64031183 10.6424771 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	-	-		-	-	
Pax9 0 0 0 0 0 0 Pbx1 4.77796595 0 0 5.89394817 0 0 Plk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 Plk3R2 0 7.20794908 0 7.60310033 0 0 Plag1 0 0 0 0 0 0 0 Prf1 0 6.93683892 0 0 0 7.53304996 0 0 7.53304996 0 0 7.53304996 0 0 7.53304996 0 0 0 7.53304996 0 0 0 7.53304996 0 0 0 0 7.53304996 0 0 0 0 7.53304996 0 0 0 0 0 7.53304996 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <								
PIk3ca 7.06910008 7.7317113 9.10120998 7.88352097 7.35188556 7.24036714 PIk3R2 0 7.20794908 0 7.60310033 0 0 Plag1 0 0 0 0 0 0 Prf1 0 6.93683892 0 0 0 7.53304996 Pten 9.40099595 7.481518 10.9944646 10.6633747 9.16883013 10.6424771 Rb1 7.82300867 10.1428432 10.6672492 8.80739047 10.7566543 7.64031183 Rora 5.26511699 4.55919881 3.56025341 0 0 0 0 Runx1 9.23271499 0 3.36917166 8.86537555 9.39215951 7.72407872 Runx2 0.81275604 0 0 8.23134552 9.39921429 Sdpr 0 0 8.23134552 9.39921429 Sdpr 0 0 3.18733123 0 0 Sell 8.88207346 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
PIk3R2 0 7.20794908 0 7.60310033 0 0 Plag1 0 0 0 0 0 0 0 Prf1 0 6.93683892 0 0 0 7.53304996 Pten 9.40099595 7.481518 10.9944646 10.6633747 9.16883013 10.6424771 Rb1 7.82300867 10.1428432 10.6672492 8.80739047 10.7566543 7.64031183 Rora 5.26511699 4.55919881 3.56025341 0 0 0 0 Runx1 9.23271499 0 3.36917166 8.86537555 9.39215951 7.72407872 Runx2 0.81275604 0 0 5.00576119 0 0 0 Satb1 0 0 8.24704373 0 8.23134552 9.39921429 Sdpr 0 0 3.18733123 0 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Plag1 0 0 0 0 0 0 Prf1 0 6.93683892 0 0 0 7.53304996 Pten 9.40099595 7.481518 10.9944646 10.6633747 9.16883013 10.6424771 Rb1 7.82300867 10.1428432 10.6672492 8.80739047 10.7566543 7.64031183 Rora 5.26511699 4.55919881 3.56025341 0 0 0 Runx1 9.23271499 0 3.36917166 8.86537555 9.39215951 7.72407872 Runx2 0.81275604 0 0 5.00576119 0 0 Satb1 0 0 8.24704373 0 8.23134552 9.39921429 Sdpr 0 0 3.18733123 0 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962								
Prfi 0 6.93683892 0 0 0 7.53304996 Pten 9.40099595 7.481518 10.9944646 10.6633747 9.16883013 10.6424271 Rb1 7.82300867 10.1428432 10.6672492 8.80739047 10.7566543 7.64031183 Rora 5.26511699 4.55919881 3.56025341 0 0 0 Runx1 9.23271499 0 3.36917166 8.86537555 9.39215951 7.72407872 Runx2 0.81275604 0 0 5.00576119 0 0 Satb1 0 0 0 8.23134552 9.39921429 Sdpr 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02							-	
Pten 9.40099595 7.481518 10.9944646 10.6633747 9.16883013 10.6424771 Rb1 7.82300867 10.1428432 10.6672492 8.80739047 10.7566543 7.64031183 Rora 5.26511699 4.55919881 3.56025341 0 0 0 Runx1 9.23271499 0 3.69025341 0 0 0 Runx2 0.81275604 0 0 5.00576119 0 0 Satb1 0 0 8.23134552 9.39921429 Sdpr 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sos1 0								
Rora 5.26511699 4.55919881 3.56025341 0 0 0 Runxl 9.23271499 0 3.36917166 8.86537555 9.39215951 7.72407872 Runx2 0.81275604 0 0 5.00576119 0 0 Satb1 0 0 8.24704373 0 8.23134552 9.39921429 Sdpr 0 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sosl 0 0 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Runx1 9.23271499 0 3.36917166 8.86537555 9.39215951 7.72407872 Runx2 0.81275604 0 0 5.00576119 0 0 Satb1 0 0 8.24704373 0 8.23134552 9.39921429 Sdpr 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sosl 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0	Rb1	7.82300867	10.1428432	10.6672492	8.80739047	10.7566543	7.64031183	
Rum2 0.81275604 0 0 5.00576119 0 0 Satb1 0 0 8.24704373 0 8.23134552 9.39921429 Sdpr 0 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sos1 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								
Satb1 0 0 8.24704373 0 8.23134552 9.39921429 Sdpr 0 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sos1 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								
Sdpr 0 0 0 3.18733123 0 0 Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sos1 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								
Sell 8.88207346 0 9.44019649 0 7.16166271 0 Sfpi1 7.84155525 7.29077483 8.68860268 7.60080318 0 7.23304962 Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sosl 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								
Slamf1 6.22492877 0 0 0 0 0 Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sos1 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0		8.88207346	0	9.44019649		7.16166271	0	
Smarca4 8.02041815 8.75617101 13.1046438 11.1511994 13.0182874 12.8133987 Sos1 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								
Sos1 0 0 5.69285508 5.55998031 2.30626703 3.42009457 Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								
Stat1 1.97314588 1.73607307 0 3.86647267 2.39385509 0								

TABLE 7-2-continued

	Single cell expression data (reduced list)—iHSC-8-TF						
Factor	iHSC-8- TF7	iHSC-8- TF8	iHSC-8- TF9	iHSC-8- TF10	iHSC-8- TF11	iHSC-8- TF12	
Stat4	0	0	7.10054367	6.547509	9.30748517	9.01247436	
Stat6	7.61361468	7.70780272	9.10788213	10.06886	8.46082693	7.60385028	
Suz12	8.66924158	7.78426963	9.89026714	9.23254249	10.4123574	0	
Tal 1	2.37117102	0	6.30535461	6.58054019	0	7.16548188	
Tcf3	0	9.80006797	10.7038707	0	10.1748615	9.50402931	
Tcf4	10.6046337	10.677077	11.3483408	2.06873405	10.6701323	10.3793339	
Tcf7	0	2.81355742	0	0	0	0	
Tek	0	0	0	0	0	0	
Tfrc	7.64318103	0	8.74634259	10.161451	9.22544138	9.23442125	
Tgfb1	0	0	5.68279082	0	0	5.63076967	
Tgfb2	0	6.35582439	0	0	3.41038781	0	
Tgfb3	0	0	6.50340017	6.4796621	0	3.14159544	
Tnfrsf1a	9.13753474	8.30559171	6.21261252	8.77734771	0	0	
Tnfrsf1b	6.8202573	0	0	8.45197156	7.39481301	2.16712637	
Tnfrsf21	4.9636023	0	3.88334514	7.04685483	5.86000083	1.87974929	
Tnfsf10	5.83655197	0	5.38524996	5.6592177	0	6.87832602	
Tnfsf12	0	0	0	0	0	0	
Tob1	0	5.42079899	0	0	5.55304429	0	
vWF	0	0	0	0	0	0	
Zbtb20	0	11.116707	0	7.47693235	7.16188955	0	
Zbtb38	6.05752543	7.56440082	7.45865121	7.69697887	7.27478686	2.68202784	
Zfp532	0	0	0	0	0	0	
Zfp612	0	0	0	7.66883285	0.41563857	6.98993492	
Zfpm1	o o	ů.	ů.	0	0.11303037	0	
Zhx2	0	7.97860435	7.16760698	0	0	2.5744204	

TABLE 7-3

	Single cell expression data (reduced list)iHSC-8-TF					
Factor	iHSC-8- TF13	iHSC-8- TF14	iHSC-8- TF15	iHSC-8- TF16	iHSC-8- TF17	iHSC-8- TF18
Actb	15.4534796	15.0457213	14.7547847	15.7050081	14.3181958	15.2330791
Aebp2	6.93704471	4.91542799	7.05506882	6.86348616	6.24968398	5.62877356
Ahr	0	6.43180668	0	0	0	0
Akt1	9.16365108	9.30008467	10.763603	10.9936127	9.4294317	0
Akt2	6.73569225	0	6.4766602	0	4.80553304	0
Akt3	6.11863003	6.64875353	5.17305023	0	0	0
APC	0	0	0	0	0	0
Bad	0	0	0	0	0	0
Bax	10.2213052	9.11498692	0	9.44119327	7.49341326	8.82070706
Bcl11a	0	0	6.11771712	0	0	0
Bcl11b	0	0	0	0	0	0
Bcl2	7.93705313	5.59605449	6.02070196	4.81608191	6.50918987	6.69771435
Bcl2l1	9.7231417	8.58128508	10.0362848	10.2067064	0	11.066282
Bcl2l11	7.37172881	7.69830505	7.17734172	9.34606481	0	6.72034529
Bmi1	7.34695691	7.21167775	6.05530861	8.46478884	8.08106641	7.75522788
Brd3	8.02785515	5.00010534	8.51144277	9.52747453	6.80545653	0
Casp8	8.37321188	7.75230575	8.13985014	8.57969582	8.23333205	8.00637905
Casp9	7.68090941	2.32375499	0	6.320208	8.96183861	0
Cbx2	6.504426	1.54049084	7.04621731	7.72437829	2.30499009	0.11481278
Cbx8	0	0	0	0	0	0
Cene	0	0	7.36621375	6.70170152	6.00327617	6.24461652
Cend1	6.62265505	7.4467213	7.52700713	6.9456186	9.35651788	0
Ccne2	8.90201474	0	9.03686227	8.45653951	4.11742928	0
CD34	8.79163706	9.8829815	0	0	7.5325444	0.57823047
CD41	10.2235313	0	10.1703794	0	0	0
CD48	7.97202788	8.9224792	8.76089598	9.39765892	0	8.03809749
CD52	0	9.99964113	10.2992003	9.8539851	8.86491007	12.4913694
CD53	0	10.8351065	0	10.056315	9.14134727	10.1859346
CD55	5.74807313	0	6.03533722	4.24146883	0	0
CD63	7.74519483	7.00827947	6.94140733	5.72566979	7.10413036	4.56443151
CD9	8.90957851	7.49731749	8.92034488	0	8.64862026	5.6361667
Cdc42	10.9823548	11.4094614	11.4173435	12.0104029	10.8763938	12.158319
Cdk1	10.1932253	0	10.4913805	0	0	0
Cdk4	8.9755164	8.35943257	8.53085097	8.9627628	8.36068234	5.6036139
Cdkn2b	0	0	1.36381366	0	0	0
Cebpa	5.893276	9.70964699	8.88909053	0	8.03529285	0

TABLE 7-3-continued

	Single cell expression data (reduced list)iHSC-8-TF					
Factor	iHSC-8- TF13	iHSC-8- TF14	iHSC-8- TF15	iHSC-8- TF16	iHSC-8- TF17	iHSC-8- TF18
Csf1r	0	0	0	1.44879467	3.67785521	0
Ctnnb1	7.48981199	8.1336946	9.20156778	8.61320717	7.43105241	7.17682577
Cycs Dach1	10.8157891 8.37404548	10.720996 11.5809914	11.7664034 10.0147913	12.1637591	8.54219495 0	10.5592201 0
Dnmt1	12.1405773	8.76320326	11.4721676	10.43018	8.16086858	8.31332046
Dnmt3a	8.03355106	10.3047393	10.4905211	7.34945749	9.69684484	8.09559308
Dnmt3b	7.76598102	7.12399038	7.7635638	5.62611906	0	0
Dtx1	0	0	0	3.00328203	3.57731956	0
Dtx4 Ebf1	0	0	3.31637812 0	0 7.91519142	2.0047145 0	0
Ep300	8.3902995	8.72299654	7.98001879	8.27110318	8.43022421	8.55383003
Epor	3.5885028	6.89489217	8.24303376	7.15203704	8.10722751	8.67458521
Erg	8.06240346	8.91508586	8.37991482	10.1830057	9.48944314	0
Esr1 ETS1	7.72434085 0	8.96175574 3.98233032	0 6.85509411	0 10.3680088	8.66618842 3.46823602	0 10.4743299
ETS2	Ö	0	0.65505411	0	7.34802596	0
Etv3	4.37702979	3.36062871	4.09342768	4.95938064	5.16369302	0
Etv6	10.5013427	9.98804513	10.0093729	8.59292994	10.687523	2.49925909
Ezh2	7.69398439	5.90756213	7.75922202	8.50519978	5.14578313	5 50086323
Fas Fcgr2b	0 5.67144377	0 6.33265476	0	0 3.2724894	0 6.59136946	5.59986323 0
Fegr3	1.78683374	0.55205470	ő	0	0.35130540	Ö
Fli1	12.6094269	10.2126474	11.3348213	5.58078903	10.5075133	10.1080811
Flt3	0	8.58695173	6.08980954	0	8.01264279	0
Fosl1 Foxo1	0 9.24339118	0 9.00386695	0 9.38862847	0 11.2318159	0 9.69497736	0 8.21951707
Foxo3	8.23726385	8.41088091	8.38255114	5.96599129	7.30821346	7.64232189
Gapdh	8.1689278	7.39978258	9.08120856	9.85054865	7.02681009	7.07904214
Gata1	9.82252363	2.06392862	8.7659977	0	0	1.37647648
Gata2	7.82083798	0	5.11254203	0	6.83205962	3.78221217
Gata3 Gfi1	7.8976454 0	7.41211086 8.55495398	6.99172072 0	0	6.53375566 9.00701704	7.34314284 7.3926737
Gfi1b	9.48743661	8.40675043	8.43006036	0	0	0
Hes5	0	0	0	0	0	0
Hey1	0	0	0	0	0	0
Hlf Id2	7.97486047 0	5.83601979 0	7.98213905 7.30919327	0	10.5637188 0	0 11.4618755
Ifi203	8.94723689	10.879845	10.187699	11.3297255	11.4247052	11.6820609
Ifi205	0	0	4.25940374	0	0	0
Ifitm1	9.9243259	12.4987853	9.54492255	0	12.3039462	0
Ikzf1 Ikzf2	8.1181871 7.07471442	9.10399583 9.59931945	8.67459587 8.68627507	10.7026464	8.28318113 6.74038185	8.02649557
II7R	0	0	0.08027307	0 3.30157767	0.74036163	7.10072297 0
Irf4	ŏ	Ö	o o	6.54858531	ŏ	o o
Irf6	4.17514012	0	1.48026891	0	0.90882603	0
Irf8	0	7.73738742	0	7.77087801	0	8.75705818
Kdr Kit	0 10.468969	0 10.2388187	0 11.4153206	0 10.0405697	0 10.0963359	0 10.0173351
Klf1	0	0	0	0	0	0
Klf12	2.45882665	0	0	0	0.45168356	0
Ldb1	9.26322757	8.316956	9.33639067	9.61680777	9.26471492	8.37672695
Lin28a Lmo2	3.6669966 8.01911171	6.33329084 9.39935871	6.0896607 8.30261571	6.57376149 4.75634564	0 10.0755277	7.17664498 4.24162405
Ly6a	9.3661827	9.11566635	0.30201371	5.99007554	10.942034	11.0081547
Lyl1	8.42712124	0	0	7.18926092	5.77433467	1.48922057
Mbd2	9.41810563	8.88421488	9.50400444	9.47109869	6.09034145	8.48104688
Meis1 Mllt3	7.83156174 2.67198941	6.93022589 0	8.37207046 2.16275894	0	5.60921016 0	0
Mpl	9.75089216	7.35694857	9.44891837	0	8.66269181	0
Muc13	9.13568741	8.32054225	7.72893994	0	7.20741875	0
Myb	10.2082629	11.5128574	11.7486723	12.2596713	11.0720251	0
Myc	7.83057978 8.6004619	9.42868399	9.41309135 9.28449734	0	9.98070807 7.96551367	4.55264807
Mycn Ndn	7.1716298	6.86525583 2.63847367	9.28449734	0	7.96551367 0	0 2.27428691
Nfat5	10.104519	9.08807257	8.54046796	8.4835257	9.84582546	9.01999895
Nfia	9.95835509	7.45899512	7.64708656	0	9.2845695	7.85053506
Nfkb1	0	4.7667181	1.41310845	0	4.77499935	0
Notch1 Pax4	8.1980529 0	0 0	0 0	6.53133175 0	0 0	5.39606879 6.14490349
Pax5	0	0	0	10.708211	0	0.14490349
Pax9	0	0	2.19025952	0	0	0
Pbx1	5.99597205	0	0	0	0	0

TABLE 7-3-continued

	Single cell expression data (reduced list)iHSC-8-TF							
Factor	iHSC-8- TF13	iHSC-8- TF14	iHSC-8- TF15	iHSC-8- TF16	iHSC-8- TF17	iHSC-8- TF18		
PIk3ca	7.88230828	7.47696985	7.5500399	9.55020565	6.23869048	0		
PIk3R2	0	8.24510008	5.82312994	8.02116203	8.93406942	0		
Plag1	0	0	4.73744613	0	0	0		
Prf1	0	0	0	0	0	8.73382677		
Pten	9.55201959	9.3026472	9.49894524	11.3146776	9.82256436	9.31971728		
Rb1	9.83548418	7.73051188	10.3125708	10.4278048	7.92474575	8.22490833		
Rora	4.4155683	6.32539597	0	0	7.55184114	7.19241896		
Runx1	0	5.18013526	0	9.10402185	7.60847018	0		
Runx2	0	5.23198449	4.54870316	0	4.71944112	3.96352253		
Satb1	0	8.30286654	5.48340999	9.87087431	8.3878369	8.22536909		
Sdpr	3.37708308	0	2.17164004	0	0	0		
Sell	0	9.64179428	7.32622835	8.59354275	8.72934132	0		
Sfpi1	9.45330676	9.91279299	8.0266668	8.88627935	8.00223079	0		
Slamf1	6.39337217	0	0	0	0	0		
Smarca4	8.7128158	8.97012069	10.9947025	12.3094648	9.47484623	10.0915303		
Sos1	4.95670739	0	4.42734538	4.56448493	4.86048311	0		
Stat1	2.59737419	0.92027174	2.88493807	0.05319102	3.02184606	6.8812924		
Stat3	8.06315119	9.21638478	9.06430179	0	8.13669425	8.30721918		
Stat4	7.76112821	8.49004979	8.31123322	8.314415	9.29957534	9.64865985		
Stat6	9.09210898	9.16948618	9.52175835	7.90699543	8.80158849	6.97978077		
Suz12	10.3161732	7.41216521	10.0021849	9.25973518	7.31107544	7.00993321		
Tal1	6.27023033	4.03587018	1.91607573	4.92820293	0	6.45443658		
Tcf3	0	9.72331909	0	9.28003491	0	0		
Tcf4	9.95842877	8.92609345	10.0138544	9.69802767	9.51627828	0		
Tcf7	0	0	3.75075381	0	0	6.71655185		
Tek	0	0	8.51364933	0	6.50570444	0		
Tfrc	9.36631796	7.95001878	9.55542439	10.7476449	8.42531067	6.36552267		
Tgfb1	0	0	0	0	0	0		
Tgfb2	0	0	0	0	0	6.33693857		
Tgfb3	0	0	0	0	0	4.26158858		
Tnfrsf1a	8.85163318	8.0786507	8.1845794	7.00521923	8.5460922	8.06973511		
Tnfrsf1b	7.55637493	0	7.74358799	0	5.00485983	10.174932		
Tnfrs21	6.24363175	5.64683619	5.81156194	2.03622926	5.64009919	0		
Tnfsf10	0.24303173	0	4.63222478	2.26191299	6.65398125	6.60294222		
	-	-						
Tnfsf12	0	0	0	0	0	3.81293855		
Tob1	5.67117711	5.63664714	0	0	0	0		
vWF	0	0	0	0	0	0		
Zbtb20	5.79959989	8.65423374	6.14739537	0	8.35748709	4.4844404		
Zbtb38	8.10033265	8.58157099	6.34336723	7.98028306	7.8341961	0.56648659		
Zfp532	0	0	0	0	0	0		
Zfp612	5.9361768	6.93547371	7.20224287	6.60794851	1.35609575	2.25216372		
Zfpm1	0	0	6.47136166	0	7.35425474	6.44185159		
Zhx2	0	0	7.18849248	6.69019455	8.13323938	8.15233325		

TABLE 7-4

	S	ingle cell expression	ı data (reduced list)-	-iHSC-8-TF	
Factor	iHSC-8-TF19	iHSC-8-TF20	iHSC-8- TF21	iHSC-8-TF22	iHSC-8- TF23
Actb	15.5949722	14.7271674	14.9192297	14.8524722	13.742072
Aebp2	6.02657711	6.46555858	0	6.77047	5.81780576
Ahr	0	0	0	0	0
Akt1	11.1358482	10.4380466	1.18490888	10.7142832	7.65650276
Akt2	3.53699864	6.27657983	0	0	4.99455434
Akt3	4.67734217	6.17450015	4.49098184	7.31178082	1.69186959
APC	0	6.39404584	0	8.12096298	0
Bad	0	7.94551754	0	0	0
Bax	9.7269672	9.53189139	9.22347188	8.98116411	8.92650111
Bcl11a	2.68677282	0	7.45791631	4.52048937	0
Bcl11b	0	0	0	5.10896278	0
Bcl2	6.32982374	5.73745116	6.26778953	4.96019175	4.06183255
Bcl2l1	8.58581684	8.25950033	0	8.61267991	8.15193143
Bcl2l11	4.23328455	0	0	8.33934299	6.38428587
Bmi1	8.09215612	6.82056434	7.88053812	9.25859235	7.3067493
Brd3	6.26049404	8.40584215	7.39130082	8.74987977	6.56313183
Casp8	8.55881676	9.01946362	8.89797827	7.89925135	7.36966954
Casp9	5.69785323	6.80005229	0	0	0

TABLE 7-4-continued

Factor IHSC-8-TF19		TABLE 7-4-continued							
Eactor IHSC-8-TF19 IHSC-8-TF20 TF21 IHSC-8-TF22 TF23		2	ingle cell expression	i data (reduced list)-	1HSC-8-1F				
Coxe 5,68144375 7,04800476 0	Factor	iHSC-8-TF19	iHSC-8-TF20		iHSC-8-TF22				
Cene 5,68144375 7,04800476 0 7,33402583 6,47052476 Cened 6,81736138 6,12179616 4,01880047 7,80879037 8,0618874 CD24 9,1085124 1,08245974 8,030799 0 9,9933084 CD41 9,18976923 8,06311742 6,29822743 0 8,58124579 CD41 9,18976923 8,06311742 6,29822743 0 8,28124579 CD52 9,55607491 9,32703404 0 1,1238367 10,7706642 CD53 7,47457010 1,09421001 5,69235652 10,1462312 9,7742959 CD53 7,4745800 4,8519758 6,43605016 6,48765801 CD53 7,464500 8,20311072 7,4448600 4,8519758 6,43605016 CD60 7,39378017 8,69852575 0 0 0 6,48765892 Cdk4 9,0876243 9,33369417 7,80946054 9,48909263 8,12248444 Cdk4 8,9386466 11,8672846 0 0 6,									
Cend1 7,32501662 0 9,1479317 7,80790367 8,06188774 Cenc2 6,81736138 6,12179616 4,01580047 9,6011654 7,32828462 CD34 9,10085124 10,8248794 8,030799 0 0,858124570 CD44 9,10085124 10,8248794 8,030799 0 0 8,58124570 CD48 9,66357797 8,92273352 0 8,222433 0 8,2249808 9,97655942 CD52 9,55607491 9,32703404 0 11,1238167 10,706642 CD53 7,4753101 10,9421001 5,62923652 10,1462312 9,7742959 CD53 7,4753101 10,9421001 7,4468906 4,45819758 6,43605916 CD55 6,6075077 7,5759903 3,89364423 0 0 0 CD56 7,39378017 8,69853575 0 0 0 6,45815589 Cd42 11,6616377 11,8297355 11,3272877 12,0401101 11,7498088 6,47101758 Cd42 11,6616377 11,8297355 11,3272877 12,0401101 11,7498088 6,7710175 Cd42 8,9388406 11,8072804 0 0 0 0 0 0 Cd42 8,9388406 11,8072804 0 0 0 0 0 0 0 Cd42 8,9388406 11,8072804 0 0 0 0 0 0 0 Cd42 8,9388406 11,8072804 0 0 0 0 0 0 0 0 Cd42 8,9388406 11,8072804 0 0 0 0 0 0 0 0 0 Cd42 Cd42 8,9388406 11,8072804 0 0 0 0 0 0 0 0 0 Cd42 Cd520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cd520 Cd520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
CD34									
CD41			6.12179616						
CDAS									
CDS2									
CDSS 7.4753101 10.9421001 5.6923652 10.1462312 9.7742959 CDS5 6.0757077 5.775529023 3.89364423 0 0 6.4869516 CDP 7.39378017 8.69852575 0 0 6.4869516 CD42 11.6616377 11.8297355 11.3272877 12.0401101 11.7498088 Cdk1 8.9380406 11.8672804 0 10.8047988 6.770175 Cdk1 8.92876243 9.33369417 7.80946054 9.48909263 8.12248444 Cdkab 9.02876243 9.33369417 7.80946054 9.48909263 8.12248444 Cdkab 9.51613005 7.67127586 0 0 7.87753488 Csclpa 9.51613005 7.67127586 0 0 7.89753488 Csclpa 9.51613005 7.67127586 0 0 7.87953488 Csclpa 9.51613005 7.67127586 0 0 8.09503157 8.19325132 Cycs 12.2270781 12.1772717 7.87677331									
CD63				5.62923652					
CDQ									
Cd-642 11.6616377 11.8297355 11.3272877 12.0401101 11.7498088 Cdk1 8.9380406 0 10.8047988 6.7710175 Cdk4 9.02876243 9.33369417 7.80946054 9.48909263 8.12248444 Cdkn2b 0 0 0 0 7.89753488 Csf1r 2.62276601 8.12277306 0 0 7.89753488 Csf1r 2.62276601 8.12277310 0 8.09503157 8.19325132 Cycs 12.2270781 12.1725171 10.077783 12.1894717 10.1903946 Dach1 8.9706084 9.54223727 7.78677331 0 11.0376368 Damt13 10.0508273 9.21718083 8.22085764 10.709976 7.9890194 Dmt14 0 0 0 5.24802196 0 10.4583774 0 Drx1 0 0 0 0 7.99107678 7.02438034 Drx1 0 0 0 0 7.6276166 7.5739171									
Cdk1 8.9388/0466 11.8672804 0 10.8047988 6.7710175 Cdka 9.02876243 9.33369417 7.80946054 9.48909263 8.12248444 Cdkn2b 0 0 0 0 0 0 Cebpa 9.51613005 7.67127586 0 0 0 7.89753488 Csfir 2.62376601 8.122777366 0 0 0 7.89753488 Cmbl 8.7487327 8.44525294 5.35747893 8.09503157 8.19325132 Cycs 2.2270781 12.1725171 10.077783 2.1894717 10.1903946 Damtl 1.4798219 11.2665469 7.840440793 11.510141 9.05733118 Damtlab 8.3035469 8.51151681 0 7.95017678 7.02438034 Dix1 0 0 0 0 0 0 0 Ebf1 0 0 0 0 0 0 0 Epgor 7.4276166 7.5739171 7.091491									
Cdknabb 0 0 0 0 0 0 0 7.89753488 Csflr 2.62576601 8.12277306 0 8.02931482 6.8366434 Csflr 2.62576601 8.12277380 0 8.02931482 6.8366434 Csflr 2.62576601 8.1227781 0 8.02931482 6.8366434 Csflr 2.2270781 0 8.0233482 6.8366434 Csflr 2.2270781 0 1.130737368 8.1923132 0 1.130736368 Dannal 8.9706084 9.4223727 7.78677331 0 1.10376368 Dannal 1.1478219 1.12665469 7.8404049793 11.501541 9.0573178 7.02438034 Datt 0 0 0 7.9890194 0				0					
Cebpa 9.51613005 7.67127586 0 0 7.89753488 Cefir 2.62576601 8.122773706 0 8.02931482 6.83664384 Crmb1 8.87487327 8.44525294 5.35747893 8.09503157 8.19325132 Cycs 12.2270781 12.1725171 10.077783 12.1894717 10.1903946 Dmm1 8.9766984 9.54223727 7.78677331 0 11.0375678 Dmm13 10.0508273 9.21718083 8.2088764 10.709976 7.980194 Dmt1 0 0 0 7.95017678 7.02438034 Dtx1 0 0 0 5.24802196 0 Dtx1 0 0 0 5.24802196 0 Dtx1 0 0 0 5.24802196 0 Ebf1 0 0 0 0 0 0 0 Ebf2 7.74276166 7.5739171 7.0915349 9.02871727 8.54713076 Err 6.07339555<									
CsrIr 2.62576601 8.12277306 0 8.02931482 6.8366434 Cmnb1 8.87487327 8.44525294 5.35747893 8.09503157 8.19325132 Cycs 12.2270781 12.1725171 10.077783 12.1894717 10.1903946 Dach1 8.9766084 9.54223727 7.78677331 0 11.0376368 Dmmt3a 10.0508273 9.21718083 8.22085764 10.709976 7.9890194 Dmmt3b 8.3035469 8.51151681 0 0 7.95017678 7.02438034 Dtx1 0 0 0 0 0 0 0 Ebf1 0 0 0 0 0 0 0 Epor 7.74276166 7.5739171 7.09149108 7.66734299 7.34116306 Erg 9.42302499 10.0003759 9.88764997 11.1477312 10.1170711 Est 6.07339556 7.67273366 7.53899788 8.109266 7.19142983 Ery2 7.99052669 9.335081									
Clmbl 8.87487327 8.44525294 5.35747893 8.09503157 8.19325132 Cycs 12.270781 12.1725171 10.077783 12.1894717 10.1903946 Dach1 8.9706084 9.54223727 7.78677331 0 11.0376368 Dnmt13 10.0508273 9.2171803 8.22085764 10.709976 7.9890194 Dmm13b 8.3035469 8.51151681 0 7.9501678 7.02438034 Dtx1 0 0 0 0 0 0 Ebf1 0 0 0 0 0 0 Ebf1 0 0 0 0 0 0 Epor 7.74276166 7.5739171 7.09149108 7.66734299 7.34316306 Erg 4.2302499 10.0003759 9.88764997 11.1477312 10.1170711 Esr1 6.07339556 7.6727366 7.5389738 8.109266 7.19142983 ErS2 7.99052669 9.33508118 7.04822799 9.598729189 7.					-				
Dach1 8.9706084 9.54223727 7.78677331 0 11.0376368 Dmmt1 11.4798219 11.2665469 7.84049793 11.501541 9.05733118 Dmmt3b 10.0508273 9.21718083 8.22085764 10.709976 7.9890194 Dmt3b 8.3035469 8.51151681 0 7.9501678 7.02438034 Dtx4 8.40755097 0 0 0 0 0 Ebf1 0 0 0 0 0 0 Ebf1 0 0 0 0 0 0 0 Ebf1 0 <td></td> <td></td> <td></td> <td>5.35747893</td> <td></td> <td></td>				5.35747893					
Dmmtl									
Dmm13a 10.0508273 9.21718083 8.22085764 10.709976 7.9801044 Dmm13b 8.3035469 8.51151681 0 7.95017678 7.02438034 Dmx14 8.40755097 0 0 0 0 0 0 0 0 0									
Dnmt3b 8.3035469 8.51151681 0 7.95017678 7.02438034 Dtx1 0 0 5.24802196 0 Dtx1 0 0 0 0 Beft 0 0 0 0 Epho 7.74276166 7.5739171 7.0915349 9.02871727 8.54713076 Epor 7.74276166 7.5739171 7.09149108 7.66734299 7.34316306 Erg 9.42302499 10.0003759 9.88764997 11.1477312 10.1170711 Erg 9.42302499 10.0003759 9.88764997 11.1477312 10.1170711 Ers1 0 5.65065592 4.26833184 11.1615476 5.093839 ETS2 7.99052669 9.33508118 7.04822799 5.98729189 7.4612499 Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.763508973 0 8.62988794 Fas 0 0 0 0									
Dixal									
Ebfi									
Ep300 8.46322899 8.98779971 7.79215349 9.02871727 8.54713076 Epor 7.74276166 7.5739171 7.09149108 7.66734299 7.34316306 Erg 9.42302499 10.0003759 9.88764997 11.1477312 10.1170711 Esr1 6.07339556 7.67273366 7.53899738 8.109266 7.19142983 ETS2 7.99052669 9.33508118 7.04822799 5.98729189 7.4612499 Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.76350897 0 8.62985794 Exb2 6.16548689 8.22342442 4.15641592 9.95784542 0 Fas 0 0 0 0 0 0 Fegr3 0 6.13773377 0 0 0 0 Fegr3 0 6.13773377 0 0 0 9.49158073 Fostal 10.3284821 11.6513954 11.2427712 11.02107									
Epor 7.74276166 7.5739171 7.09149108 7.66734299 7.34316306 Erg 9.42302499 10.0003759 9.88764997 11.1477312 10.1170711 Esr1 6.07339556 7.67273366 7.53899738 8.109266 7.19142983 ETS1 0 5.65065592 4.2683184 11.1615476 5.0938395 ETS2 7.99052669 9.33508118 7.04822799 5.98729189 7.4612499 Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.76350897 0 8.62985794 Ezh2 6.16546689 8.22342424 4.15641592 9.95784542 0 Fas 0 0 0 0 0 Fegr3 0 6.13773377 0 0 0 Fegr3 0 6.13773377 0 0 9.49158073 Fish 7.14138117 9.90006307 8.60740057 0 9.49158073 Foxli		-							
Esr1 6.07339556 7.67273366 7.53899738 8.109266 7.19142983 ETS1 0 5.65065592 4.26833184 11.1615476 5.0983995 ETS2 7.99052669 9.33508118 7.04822799 5.98729189 7.4612499 Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.76350897 0 8.62985794 Fas 0 0 0 0 0 0 Fas 0 0 0 0 0 0 Fas 0 6.31986343 0 2.15906025 5.75272607 Fegr2b 0 6.13773377 0 0 0 0 Fili 10.3284821 11.6513954 11.2427712 11.0210733 9.6653856 Fili3 7.14138117 9.90006307 8.60740057 0 9.49158073 Fox1 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055									
ETS1 0 5.65065592 4.26833184 11.1615476 5.0938395 ETS2 7.99052669 9.33508118 7.04822799 5.98729189 7.4612499 Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.76350897 0 8.62985794 Ezh2 6.16548689 8.22342442 4.15641592 9.95784542 0 Fsas 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
ETS2 7.99052669 9.33508118 7.04822799 5.98729189 7.4612499 Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.76350897 0 8.62985794 Ezh2 6.16548689 8.22342442 4.15641592 9.95784542 0 Fas 0 0 0 0 0 Fegr3 0 6.31986343 0 2.15906025 5.75272607 Fegr3 0 6.13773377 0 0 0 0 Fili 10.3284821 11.6513954 11.2427712 11.0210733 9.6653856 Fil3 7.14138117 9.90006307 8.60740057 0 0 9.49158073 Foxol 8.6898455 10.7307691 8.78369362 10.3774981 7.14678055 Foxol 8.6898455 10.7307691 8.78369362 10.3774981 7.14678055 Foxol 8.6988455 10.73307691 8.78369362 10.3774981 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Etv3 2.614744 3.42408061 0 2.0997937 3.65980713 Etv6 8.97419088 10.9666148 8.76350897 0 8.62985794 Exh2 6.16548689 8.22342442 4.15641592 9.95784542 0 Fas 0 0 0 0 0 Fegr3 0 6.31986343 0 2.1596025 5.75272607 Fegr3 0 6.13773377 0 0 0 9.6653856 Flt3 7.14138117 9.90006307 8.60740057 0 9.49158073 Fox01 0 2.54124545 0 0 9.49158073 Fox03 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Fox03 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726 9.49765691 6.77752673 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0									
Ezh2 6.16548689 8.22342442 4.15641592 9.95784542 0 Fas 0 0 0 0 0 Fegr3b 0 6.31986343 0 2.15906025 5.75272607 Fegr3 0 6.13773377 0 0 0 Fli1 10.3284821 11.6513954 11.2427712 11.0210733 9.6653856 Fli3 7.14138117 9.9006307 8.60740057 0 9.49158073 Fosol 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Foxo3 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.8107493 7.38188726 9.49765691 6.77752673 Gata1 6.60958193 6.00088041 0 6.68660622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gata3 3.13422163 5.1062862 0 0 6.86901934 Gfil									
Fas 0 0 0 0 0 Fegr2b 0 6.31986343 0 2.15906025 5.75272607 Fegr3 0 6.13773377 0 0 0 Fli1 10.3284821 11.6513954 11.2427712 11.0210733 9.6653856 Fli3 7.14138117 9.90006307 8.60740057 0 9.49158073 Fox01 0 2.54124545 0 0 0 0 Fox03 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Fox03 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726 9.49765691 6.77752673 Gata1 6.60958193 6.00088041 0 6.68660622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gfi1b 7.080742 9.20777369 10.2560592 0 8.52865693 Gfi1b<									
Fegr2b 0 6.31986343 0 2.15906025 5.75272607 Fegr3 0 6.13773377 0 0 0 Fili 10.3284821 11.6513954 11.2427712 11.0210733 9.6653856 Fili 7.14138117 9.90006307 8.60740057 0 9.49158073 Fosl1 0 2.54124545 0 0 0 9.49158073 Fox01 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Fox03 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726									
Fegr3 0 6.13773377 0 0 0 Fli1 10.3284821 11.6513954 11.2427712 11.0210733 9.6653856 Flt3 7.14138117 9.90006307 8.60740057 0 9.49158073 Fost1 0 2.54124545 0 0 0 Fox01 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Fox03 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726 9.49765691 6.77752673 Gata1 6.60958193 6.00088041 0 6.68860622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gfil 7.080742 9.20777369 10.2560592 0 8.52865693 Gfilb 0 0 6.33030041 0 0 0 Hey1 0 0 0 0 5.84689612 Hey1									
Fit3									
Fosl1 0 2.54124545 0 0 0 Fox01 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Fox03 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726 9.49765691 6.77752673 Gata1 6.60958193 6.00088041 0 6.68660622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gata3 3.13442163 5.1062862 0 0 6.86901394 Gfil 7.080742 9.20777369 10.2560592 0 8.52865693 Gfilb 0 0 6.30300041 0 0 0 Hes5 3.28111377 0 0 0 0 0 Hey1 0 0 0 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 If6205 0									
Foxo1 8.68988455 10.7307691 8.78369362 10.3774981 7.14678055 Foxo3 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726 9.49765691 6.77752673 Gata1 6.60958193 6.00088041 0 6.68660622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gata3 3.13442163 5.1062862 0 0 6.86901394 Gfi1 7.080742 9.20777369 10.2560592 0 8.52865693 Gfi1b 0 0 6.30300041 0 0 0 Hey1 0 0 0 0 0 0 0 Hey1 0 0 0 0 0 6.89130613 1 If203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0									
Foxo3 8.43953086 9.53817626 7.34342736 7.20503849 9.38714958 Gapdh 9.35145628 8.81107493 7.38188726 9.49765691 6.77752673 Gata1 6.60958193 6.00088041 0 6.68660622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gata3 3.13442163 5.1062862 0 0 6.86901394 Gfil 7.080742 9.20777369 10.2560592 0 8.52865693 Gfilb 0 0 6.30300041 0 0 Hess 3.28111377 0 0 0 5.84689612 Heyl 0 0 0 0 0 Heyl 0 0 0 0 0 Ifilf 8.16750889 9.01107414 9.44716816 0 6.8367949 Id2 0 1.59283696 0 0 6.89130613 Ifi203 10.5868051 11.9050857 11.7792822 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Gata1 6.60958193 6.00088041 0 6.68660622 0 Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gata3 3.13442163 5.1062862 0 0 6.86901394 Gfi1 7.080742 9.20777369 10.2560592 0 8.52865693 Gfi1b 0 0 6.30300041 0 0 Hes5 3.28111377 0 0 0 0 Hey1 0 0 0 0 0 Hey1 0 0 0 0 0 Hir 8.16750889 9.01107414 9.44716816 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 16203 Ifi203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Gata2 5.15938223 6.18940099 6.94627744 1.11995453 0 Gata3 3.13442163 5.1062862 0 0 6.86901394 Gfi1 7.080742 9.20777369 10.2560592 0 8.52865693 Gfi1b 0 0 6.30300041 0 0 Hes5 3.28111377 0 0 0 0 Hey1 0 0 0 0 6.3367949 Hd2 0 1.59283696 0 0 6.89130613 16203 10.6719015 161205 0 0 6.89130613 161203 10.6719015 161205 0 0 0 6.89130613 10.6719015 161205 0 0 12.8492636 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Gata3 3.13442163 5.1062862 0 0 6.86901394 Gfi1 7.080742 9.20777369 10.2560592 0 8.52865693 Gfi1b 0 0 6.30300041 0 0 Hes5 3.28111377 0 0 0 5.84689612 Hey1 0 0 0 0 0 Hif 8.16750889 9.01107414 9.44716816 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 Ifi203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 0 0 Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Ifr8 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>				-					
Gfil 7.080742 9.20777369 10.2560592 0 8.52865693 Gfilb 0 0 6.30300041 0 0 Hes5 3.28111377 0 0 0 5.84689612 Hey1 0 0 0 0 0 Hlif 8.16750889 9.01107414 9.44716816 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 Ifi203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 0 0 Ifixth1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Ifr8 0 0 0 4.64255927 0 Irf6 4.29929913 4.17383383									
Hes5 3.28111377 0 0 0 5.84689612 Hey1 0 0 0 0 0 Hlf 8.16750889 9.01107414 9.44716816 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 Ifi203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 0 Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Il7R 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 0 9.									
Hey1 0 0 0 0 0 Hlf 8.16750889 9.01107414 9.44716816 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 If6203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 0 0 Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 1kzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 1kzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 1lTR 0 0 7.86617002 1lTR 0 0 4.64255927 0 0 Irf4 0 0 0 6.71439284 0 0 1rf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 1rf8 0 0 0 0 0 0 0 0 0 0 0									
HIΓ 8.16750889 9.01107414 9.44716816 0 6.3367949 Id2 0 1.59283696 0 0 6.89130613 Ifi203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 0 0 Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Ifr8 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf8 0 0 0 6.71439284 0 Irf8 0 0 0 9.04754663 0 Kdr 0 0 0 0 0 Kif1 0 0 0 0 0									
Id2 0 1.59283696 0 0 6.89130613 If203 10.5868051 11.9050857 11.7792822 11.263719 10.6719015 Ifi205 0 0 0.57526313 0 0 Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Il7R 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf8 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 9.04754663 0 Kdr 0 0 9.04754663 0 Kdr 0 0 0 0 Kif1 0 0 0 0 Kif1 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>						-			
Ifi205 0 0 0.57526313 0 0 Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Il7R 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 9.0475463 0 Kdr 0 0 0 0 Kdr 0 0 0 0 Kirt 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.									
Ifitm1 12.8767036 12.1154443 12.6189753 0 12.8492636 Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Il7R 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 0 9.0475463 0 Kdr 0 0 0 0 0 Kir 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.507924									
Ikzf1 8.97220393 10.0637995 5.78319283 10.2519422 9.26900298 Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 Il7R 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 0 9.04754663 0 Kdr 0 0 0 0 0 Kir 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494									
Ikzf2 9.22178598 8.10492715 8.78007149 0 7.86617002 II7R 0 0 0 4.64255927 0 Irf4 0 0 0 6.71439284 0 Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 9.04754663 0 Kdr 0 0 0 0 Kir 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Irf4 0 0 0 6.71439284 0 Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 9.04754663 0 Kdr 0 0 0 0 Kit 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Irf6 4.29929913 4.17383383 4.16212746 5.11342417 2.29092324 Irf8 0 0 0 9.04754663 0 Kdr 0 0 0 0 0 Kit 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Irf8 0 0 0 9.04754663 0 Kdr 0 0 0 0 0 Kit 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Kdr 0 0 0 0 Kit 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Kit 10.8452909 11.46819 10.6310949 8.0844973 10.702966 Klf1 0 0 0 0 Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Klf12 0 6.98159901 0 6.91529257 0 Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161	Kit								
Ldb1 9.6599478 9.52797416 8.80192696 9.71715245 9.66305984 Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Lin28a 7.69345152 5.72024396 7.45549962 3.50792444 6.18530259 Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Lmo2 9.1278825 10.7135692 9.55065494 0 9.24867161									
Ly6a 8.52775889 9.24169784 10.4450327 10.1506563 9.23981383									
	Ly6a	8.52775889	9.24169784	10.4450327	10.1506563	9.23981383			

TABLE 7-4-continued

	Single cell expression data (reduced list)-iHSC-8-TF							
		-			inco o			
Factor	iHSC-8-TF19	iHSC-8-TF20	iHSC-8- TF21	iHSC-8-TF22	iHSC-8- TF23			
Lyl1	0	9.23687977	6.01993559	1.85529048	0.14133291			
Mbd2	9.00365197	9.32705014	7.01222795	10.2980675	0			
Meis1	7.35816194	7.96386677	7.8940322	0	5.75544333			
Mllt3	0	0	1.20748749	3.26279787	0			
Mpl Musi 2	7.07285751	8.83332562	9.28099881	0 5.02420112	9.71165465 9.95951444			
Muc13 Myb	8.910028 12.1660716	10.4501608 12.3866801	9.66072897 10.9652485	5.93439112 11.4963858	11.9435595			
Myc	10.5226652	8.50048408	6.80094773	0	8.29035189			
Mycn	10.2559863	7.33715811	8.69237062	0	10.7681053			
Ndn	0	6.24114931	0	0	0			
Nfat5	0	9.94482313	9.4521204	9.25617131	9.31963903			
Nfia	0	7.75199021	8.40775952	0	7.32732142			
Nfkb1	5.05715116	3.70671963	5.59515553	0	3.68175399			
Notch1	0	0	0	7.42247038	7.51617552			
Pax4	1.35750393	0	0	0	0			
Pax5	0	0	0	10.7836978	0			
Pax9	0	4.82495586 0	0	0	0			
Pbx1 PIk3ca	0 7.79947633	9.12079212	5.33285433	2.22267062 8.74513804	6.2959762			
PIk3R2	9.94903409	0	7.55937679	4.93743794	8.18553433			
Plag1	6.97544118	0	6.53760217	0	0			
Prf1	0	0	0	0	0			
Pten	10.0437172	11.1348822	9.70193974	10.5813312	10.666182			
Rb1	7.83303543	9.28805228	8.58914181	11.1046418	9.02986546			
Rora	5.99045132	4.57639061	4.8566497	0	6.30205008			
Runx1	0	0	7.72374854	9.29351398	9.35240374			
Runx2	3.63268457	5.76424475	6.13835151	0	3.93338711			
Satb1	7.27713223	8.13179502	0	9.00538844	9.07324987			
Sdpr	0	0	0	0	0			
Sell Serit	7.51974568 10.3537335	0 10.3438079	0 9.35308484	7.51639506 7.34210532	8.23065964 10.1166949			
Sfpi1 Slamf1	0	0	0	0	0			
Smarca4	10.6216587	11.4880312	7.91879599	12.7228124	10.1231921			
Sos1	4.77662362	5.70044036	6.6446615	5.15475115	4.08108678			
Stat1	3.68097567	3.18143788	2.33007484	0	1.70796503			
Stat3	9.6835973	10.9736276	9.82324679	8.88395426	10.1030436			
Stat4	8.89602699	8.66526465	8.61546176	9.97092626	9.15162945			
Stat6	8.03975516	9.68534085	7.65197427	8.88963802	8.72505432			
Suz12	9.2920734	9.9317102	5.55351096	11.0088039	6.92957444			
Tal1	0	0.5321352	0	0	0			
Tcf3	0	0	0	10.0357268	0			
Tcf4	8.55403838	11.1342293	9.5053365	11.1326587	9.23590743			
Tcf7	0	0	0	2.09395859	0			
Tek	0	0	0	0	0			
Tfre	8.92977574	10.3347741	0	11.2959377	0			
Tgfb1	4.99360374	0	0	0	0			
Tgfb2	6.02165975	0	0	0	0			
Tgfb3	0	3.95433485	6.38152066	7.26386529	0			
Tnfrsf1a	8.32699141	9.38371569	8.98684403	0	9.01007344			
Tnfrsf1b	7.71407597	7.24025508	0	7.84690402	7.6973118			
Tnfrsf21	5.10082829	5.74389161	5.35986658	0	5.6231703			
Tnfsf10	0	5.61139944	3.95505967	0	0			
Tnfsf12	0	0	0 6 45804508	0	0 5.48264167			
Tob1	0	0	6.45804508	0	5.48264167			
vWF Zbtb20	6.89389913	0 7.17608138	3.92489179 0	6.53831854	0 6.98907536			
Zbtb38	6.02485068	8.58071957	7.5954863	5.38002324	7.47434598			
Zfp532	5.25185019	0	7.3934863 0	3.38002324 0	7.47434398 0			
Zfp612	6.35234454	2.37453437	6.42837344	3.48387397	6.69808578			
Zfpm1	0.55254454	0	0.42837344	0	0.09808378			
Zhx2	0	0	0	5.58795878	5.46898073			
∠IIX∠	U	U	U	3.30/938/8	J.40898U/J			

TABLE 8-1

	Single cell expression data (reduced list)iHSC-8-TF-Poly						
Factor	iHSC-8- TF-Poly1	iHSC-8- TF-Poly2	iHSC-8- TF-Poly3	iHSC-8- TF-Poly4	iHSC-8- TF-Poly5	iHSC-8- TF-Poly6	
Actb	14.4017745	14.2732193	15.1526286	13.8643652	13.9815065	14.3047991	
Aebp2	5.95955683 9.54980521	6.89726869 8.51756005	6.24332431	6.30280532 0	6.9095424 0	7.47978946 0	
Ahr Akt1	9.2199823	10.5771332	7.1706196 10.3125839	10.115699	8.64780047	8.65031952	
Akt2	5.38910968	4.02386518	4.9461932	0	5.38465875	0	
Akt3	7.03433438	6.15943216	7.67195681	7.81890549	9.32598867	7.96268327	
APC Bad	0	6.92782146 0	6.85867754 0	0	0	7.94220629 0	
Bax	9.05413463	10.0987868	10.8354331	9.74710118	7.76338529	8.52100861	
Bcl11a	7.41102372	0	7.15076275	8.58322415	8.20030062	0	
Bcl11b	7.64367926	0	3.66716509	0	1.93636742	0	
Bcl2 Bcl2l1	3.57531389 9.07993883	5.85403867 8.03643261	0 9.87966794	3.16043824 0.83585263	5.61646233 8.58326585	5.76077245 8.40210943	
Bcl2l11	0	0	7.06374493	8.39612427	0	8.4773465	
Bmi1	9.07560792	8.22518209	8.42569938	0	9.40851644	7.96975432	
Brd3	6.95890888	6.24785555	7.56579491	6.62403459	6.88629365	7.85394619	
Casp8	7.8559411 0	8.60926927 8.33784339	8.8582654 7.33820605	6.01680512 8.25717213	9.44420835 8.44629053	8.42884993 8.27100862	
Casp9 Cbx2	5.65213624	0.33704339	0	2.18365236	7.0766812	3.66755176	
Cbx8	0	0	0	0	0	0	
Cene	7.23528126	7.86231075	0	7.38487279	8.84791023	0	
Ccnd1 Ccne2	0	9.72602652 4.88759578	7.48420059 7.32135738	8.30654599 6.93922401	11.8053072 0	11.1237592 6.77972753	
CD34	0	8.05101797	3.40774581	8.23829804	0	0.77972733	
CD41	5.41030089	9.39327537	7.15100623	8.76650086	7.87007098	8.71774229	
CD48	0	0	0	0	0	0	
CD52 CD53	0 9.89133699	0	0	0 8.96185069	0	0	
CD55	8.79899388	7.63015791	5.88277643	7.59780097	7.37088799	7.76280542	
CD63	8.65376387	8.79228248	9.15870494	6.99196008	7.38940631	9.44747605	
CD9	8.16707472	7.77311627	9.13626418	7.43428177	6.47201397	6.79388862	
Cdc42 Cdk1	10.6693066 0	12.1804797 8.11620358	11.8620482 7.60561917	10.497805 0	11.8021081 0	11.9762404 2.42017354	
Cdk4	8.95820807	9.15744736	11.0338829	8.57125161	9.69513549	10.0356562	
Cdkn2b	0.46087622	0	0	0	0	0	
Cebpa	0	0	0	0	0	0	
Csf1r Ctnnb1	0 8.44935695	0 10.0514987	0	6.04286637 9.05018407	0 7.94648144	0 9.18714944	
Cycs	6.68979802	10.8213383	10.6404742	9.78073283	10.3505161	9.81337298	
Dach1	9.47386037	8.81206403	7.5999307	6.57582267	6.70986766	7.32706794	
Dnmt1	10.1960231 4.24750121	7.65655217 7.63469215	8.31004681 9.34742168	8.92673119 10.0524941	9.2261255 10.4262419	9.71151883 9.47291437	
Dnmt3a Dnmt3b	9.14843642	7.69961419	7.21411913	0	8.70429266	0	
Dtx1	0	0	0	5.01837469	4.02137797	Ō	
Dtx4	2.30088686	7.91425669	4.17934489	7.92978791	0	7.80407419	
Ebf1	0	0 9 1 6 0 0 0 5 3 3	0 11271025	0 50005316	0 7.6395129	0 21701660	
Ep300 Epor	8.42978448 6.2878854	8.16009533 6.64044771	8.11371035 6.75920564	8.59805316 8.02055392	7.0393129	8.21791669 6.20584516	
Erg	8.62942227	10.521998	10.168764	9.83912345	9.13177011	8.6111314	
Esr1	9.06471078	9.18829675		11.4378777	9.44975997	10.8199014	
ETS1 ETS2	0 5.11680482	8.87124698 8.0568843	0 8.65044922	8.10142716 9.01833153	7.23106564	6.79930712 7.94602145	
Etv3	0	0	0.03044922	0	8.46467898 4.82743292	0	
Etv6	9.79251329	9.35978258	0	10.0075324	11.5885534	10.1921514	
Ezh2	5.41817556	7.64667858	6.75543645	0	6.4159182	6.97011891	
Fas Fegr2b	0	0	0	6.6771592 0	0	0	
Fegr3	0	0	2.86176005	0	0	1.9110038 2.44845107	
Fli1	10.5336811	12.3667862	11.7858238	12.4608812	10.493611	12.4773028	
Flt3	0	0	0	0	0	0	
Fosl1 Foxo1	1.44076501 8.43424564	0 8.28876873	0 8.26229198	0 9.69686347	3.94928081 10.3959606	0 9.55451527	
Foxo3	7.99528032	8.67713907	8.99464508	8.9062438	9.10399053	8.60034284	
Gapdh	9.3099242	9.15763066	10.6029147	9.65043692	9.00857274	9.93076521	
Gata1	0.63672388	0	10.3113521	7.1250339	4.80520903	8.55590577	
Gata2 Gata3	6.28005196	7.16819061 8.50826002	7.23533947 6.98895568	7.77620156 9.32797131	8.04600994 8.9982892	5.86169735 8.78943303	
Gata3 Gfi1	10.2558503 8.68722923	8.50826002 0	3.61351347	9.32797131 8.08251783	8.9982892 9.37851925	8.78943303 7.53665623	
Gfi1b	0	7.82299121	10.8795811	9.55418491	0	10.141432	
Hes5	0	0	0	0	0	0	
Hey1	0	0 7 90202654	0 07220225	0	0	0	
Hlf	10.7996121	7.80302654	8.07339235	10.3328103	10.1642256	10.9369893	

TABLE 8-1-continued

Single cell expression data (reduced list)iHSC-8-TF-Poly						
		·	•	•		TIGO 2
Factor	iHSC-8- TF-Poly1	iHSC-8- TF-Poly2	iHSC-8- TF-Poly3	iHSC-8- TF-Poly4	iHSC-8- TF-Poly5	iHSC-8- TF-Poly6
Id2	0	7.19510114	0	0	7.34117982	6.73327638
Ifi203	11.2049311	11.7941593	10.6750846	11.8592034	11.3822198	11.0667002
Ifi205	0	0	0	0	5.12094266	0
Ifitm1 Ikzf1	13.6239128 8.02126587	12.8211493 9.04043972	12.5380217 7.72357321	13.5860342 9.05398182	12.7310037 9.50868305	12.7572775 7.99342233
Ikzf2	0	7.54783051	6.77079194	7.44755496	8.52813905	8.80116026
II7R	Ö	0	0	0	0	0
Irf4	0	0	5.95460689	0	0	0
Irf6	5.93922618	6.29386942	6.10533594	5.63670862	6.21974252	6.69067944
Irf8	6.34567669	6.763163	0	0	0	0
Kdr Kit	0 11.5010613	7.90283794 10.5293391	6.7399962 7.24957866	6.04306679 12.1134045	7.693852 11.2585393	0 10.0523104
Klf1	0	0	0	0	5.80555786	5.1540702
Klf12	7.55975795	7.04089627	7.935156	Ö	8.409808	3.6068298
Ldb1	10.8094981	10.8874078	10.0963676	10.4803974	10.0508605	10.1714957
Lin28a	0	2.05211875	7.65136108	8.44983026	4.23628819	0
Lmo2	11.5045036	11.4654604	12.7062374	11.6099483	11.790659	11.6996282
Ly6a	11.0781952	10.7918825	0	9.61026549	10.6187689	9.77041941
Lyl1 Mbd2	6.9228556 8.86366453	7.88957298 9.83898085	7.41124593 11.2188215	7.57483786 9.25784881	0 10.0178474	0.11188596 10.0634688
Meis1	8.59070238	10.0819024	8.56901622	8.96918024	9.55460124	8.92762134
Mllt3	0.55070256	5.19972913	6.98132487	4.33487907	3.43331896	4.72749687
Mpl	10.6098091	10.2976387	9.44740225	9.50399788	10.1164058	10.0146934
Muc13	8.22110323	10.3149031	10.5075791	10.121513	6.38829389	9.90926088
Myb	11.3740645	11.6070815	0	11.252238	11.1854878	11.6427141
Myc	7.58773767	6.92502957	11.0745262	0	10.1593651	7.81411074
Mycn Ndn	12.3961119 7.95802745	13.821477 10.8486792	11.2941091 9.89395444	13.4141112 9.10341388	13.2655937 9.93546083	13.4922153 10.1963811
Nfat5	10.2193279	10.6492324	8.61806674	10.6812757	9.93346083	9.75117783
Nfia	8.65330763	7.06341868	7.38701122	9.59475644	9.95424844	8.85076252
Nfkb1	4.446709	0	6.6481504	0	2.89270377	3.94764604
Notch1	0	0	8.69218776	9.10479408	0	6.95197356
Pax4	0	0	0	1.44235065	0	0
Pax5	0	0	0	0	6.66633311	0
Pax9 Pbx1	0 5.79433853	5.03638998 2.40166484	3.19142852 0	0 6.25602965	0	0 0
PIk3ca	0	8.94646056	8.24915927	9.68680408	8.07553724	9.42366483
PIk3R2	7.86660372	7.73972411	7.38377942	8.09713775	8.00818253	8.75992262
Plag1	0	7.49123813	5.82502843	7.76160342	1.23953556	9.47539828
Prf1	2.80996555	0	0	1.55094842	0	0
Pten	10.4165886	9.60432119	10.2437146	9.90287857	10.8245223	9.89550714
Rb1	9.09620227	10.2509564	7.03917768 8.22163059	10.0166256 8.40806013	9.88895181	10.011227
Rora Runx1	5.67210945 10.0392064	8.16786484 9.36216612	0	10.0169963	8.20332033 7.55675639	4.82153142 1.95995368
Runx2	3.02975474	0	0	4.00168042	4.49363883	3.39036905
Satb1	0	0	6.72850441	0	0	0
Sdpr	6.47855527	7.37567768	5.18752317	5.78827462	4.5789996	7.14989941
Sell	0	0	0	0	0	0
Sfpi1	7.93492701	1.16071284	8.97426329	9.01058427	8.8542142	8.64133779
Slamf1	7.5910261 9.2280708	8.53583734	7.18007615	8.00938404	7.5562505	8.6742552 10.5475105
Smarca4 Sos1	2.79113487	10.369666 5.88655824	8.2235885 7.60011468	10.7058201 6.41704302	10.261829 6.34226658	10.5475105 5.65496301
Stat1	2.30720619	2.35055788	6.29759725	3.85091293	5.28729455	2.53753709
Stat3	10.5102227	11.654284	7.98961351	9.69221977	10.9831963	9.46455273
Stat4	9.73148085	9.19610287	8.40332968	9.9249724	8.15997772	9.14000192
Stat6	8.08137592	8.26948638	7.50391096	0	10.2215169	8.55245944
Suz12	9.3961376	9.96724283	7.37908318	9.47883474	9.42011558	8.32573094
Tal1 Tcf3	1.72237282 8.96333241	0 9.31481932	6.69073047 0	3.11164048 0	1.32936699 9.07224108	0.00662202 10.1220054
Tcf4	8.80005664	9.41908139	10.3132992	8.69843764	8.97235944	9.3667886
Tcf7	0	0	2.25026637	0	3.89585347	4.39562419
Tek	4.43072212	0	0	0	0	8.57224426
Tfrc	0	8.54731767	6.89401888	9.74317989	5.81615029	0
Tgfb1	0	0	0	0	0	0
Tgfb2	0 7 17363033	0	6.42618862	0 8 16262704	0	8.02240011
Tgfb3 Tnfrsf1a	7.17263032 9.12239254	0 9.94871547	6.69764691 10.5626763	8.16263704 8.3415255	7.62575941 8.80960043	3.60618469 8.44697988
Tnfrsf1b	7.57265388	2.1044987	5.61187541	9.91624698	7.9098197	8.62491508
Tnfrsf21	4.87454812	3.46004955	0	4.70959999	4.73578778	4.96266939
Tnfsf10	0	6.11608237	7.18551286	8.23570855	7.29990668	6.85883769
Tnfsf12	0	0	0	0	0	0
Tob1	0	0	0	7.63203105	5.15771067	0

TABLE 8-1-continued

Single cell expression data (reduced list)iHSC-8-TF-Poly							
Factor	iHSC-8- TF-Poly1	iHSC-8- TF-Poly2	iHSC-8- TF-Poly3	iHSC-8- TF-Poly4	iHSC-8- TF-Poly5	iHSC-8- TF-Poly6	
vWF	7.28131553	7.6135713	8.13113957	7.42453844	8.00520062	8.84927559	
Zbtb20	9.1393088	8.47880681	7.90821765	8.9457529	8.12571437	10.22509	
Zbtb38	7.37904176	9.35075276	7.06713579	8.59650634	6.5271098	7.65089916	
Zfp532	0	0	7.67157289	0	0	0	
Zfp612	3.43885333	8.66672996	0	6.73462534	0	5.03501087	
Zfpm1	0	0	7.24131733	0	0	0	
Zhx2	1.94879631	0	7.81335591	8.46235816	8.2166298	0	

TABLE 8-2

MBEE 0 2							
	Single	e cell expression	n data (reduced	list)iHSC-8	-TF-Poly		
Factor	iHSC-8- TF-Poly7	iHSC-8- TF-Poly8	iHSC-8- TF-Poly9	iHSC-8- TF-Poly10	iHSC-8- TF-Poly11	iHSC-8- TF-Poly12	
Actb	14.5566982	13.615687	13.2557353	13.9045548	13.625207	13.6632976	
Aebp2	7.46754461	6.09082663	7.88599221	3.70216827	6.20483355	6.71566468	
Ahr	7.777933	8.74434412	8.10667368	7.49909044	7.20337973	0	
Akt1	10.2515898	10.0377805	10.6829232	9.27077113	10.266825	10.5734114	
Akt2	5.61051736	0	5.3893609	5.11237848	5.46400025	5.08512838	
Akt3	6.93473018	6.61452163	7.44026837	7.77588506	7.14760449	5.28506516	
APC	8.24864591	7.30804883	6.70709773	0	0	2.08510464	
Bad	0	7.83220622	0	0	0	0	
Bax	9.48202132	8.9969831	10.9826718	9.37331185	9.48416241	8.8896616	
Bcl11a	5.55206094	0	9.30842622	0	0	8.16251064	
Bcl11b	0	0	4.04933387	0	6.56686767	0	
Bcl2	5.48513078	5.01756113	7.17323639	4.60865583	6.53959776	6.15098683	
Bcl2l1	8.40580553	2.85422793	8.83253241	9.37360231	8.97631666	7.51350228	
Bcl2l11	7.06672118	0	0	7.28322794	6.13979045	2.83394681	
Bmi1	10.1062229	8.64380505	8.99015684	7.21992126	8.87436353	0	
Brd3	7.25721075	0	7.0965374	0	7.48140966	7.08332896	
Casp8	7.10606382	7.11213334	9.13994663	8.261719	7.95659871	4.65164926	
Casp9	0	8.75571495	0	1.70805493	0	2.58327705	
Cbx2	2.75579197	0	4.17954883	2.44741358	4.393594	5.87793163	
Cbx8	0	0	0	0	0	0	
Cene	7.23061803	9.11473694	7.78622312	2.54536069	6.92719273	6.83659195	
Ccnd1	10.6653784	8.89949686	9.37926846	9.10837155	10.9590543	9.95508055	
Ccne2	0	0	6.67129745	0	6.26507974	7.44075399	
CD34	7.84002032	6.14401226	2.96413812	0	0	7.08263627	
CD41	0	0	0	6.79226229	1.8891056	7.90833057	
CD48	0	0	0	0	0	0	
CD52	0	0	0	0	0	0	
CD53	10.2116886	10.7187208	7.08173192	0	7.86597872	9.01398982	
CD55	6.98771698	2.38132592	7.08507818	7.89992021	7.15246355	6.12899081	
CD63	9.35889467	8.34609702	7.4525258	8.40948734	8.52745636	9.28338595	
CD9	0	0	0	0	0	7.73063553	
Cdc42	11.5785879	10.5894656	10.8671101	11.1168037	11.7063764	11.8716066	
Cdk1	0	7.59230634	4.57373649	8.26530963	0	2.79902594	
Cdk4	10.4501041	9.38183794	9.45444547	9.17523295	8.69628583	10.0283801	
Cdkn2b	0	0	0	0	0	2.20414523	
Cebpa	7.67068515	0	0	3.00431304	0	0	
Csflr	0 00505110	0	0	0	0	0	
Ctnnb1	8.98595118	8.61438975	8.0072686	8.55085327	8.3102969	8.76868574	
Cycs	10.5867211	9.35280265	9.4126619	8.77371577	8.18994032	9.55716753	
Dach1	7.9702221	8.18463035	10.0236829	9.42554937	8.13824416	10.359611	
Dnmt1	7.80846616	7.40084034	8.85990662	4.70802589	7.27623299	9.44760185	
Dnmt3a	8.89119048	9.27747566	10.2871952	9.54112251	9.5508204	10.4670722	
Dnmt3b	7.3240984	7.49715046	0	7.22284209	8.54691735	5.83497538	
Dtx1	0	0	4.9945392	0	0	0	
Dtx4	4.11683447	0	0	4.01331301	0	2.68856134	
Ebf1	0 75000732	0 22004845	7 22040051	0 6 04738140	0	0 7 87430334	
Ep300	8.75880732 0	8.22004845	7.22949951	6.94738149	8.43564543	7.87430334	
Epor	0	7.59352322	7.74083769	7.95447845	6.07198618	8.08667718	
Erg Ecr1	10.8478089	10.1398615 7.43499017	9.1558768 3.58070546	9.52550271	9.47527555	9.24391502 7.34656788	
Esr1	9.72073813	7.43499017 0	0	9.16795158	11.0351211		
ETS1	8.67731549 0	8.91107552	7.23512522	8.84936082 7.43400303	5.14149904 2.1535625	6.25528985 8.78478124	
ETS2	3.30675555	5.24405155	3.81620636	6.12231898	4.75328706	5.44221188	
Etv3 Etv6	10.8163092	9.32897355	10.6859753	11.9313243	10.2425034	11.6285131	
PILLO	10.0103092	7.54071333	10.0039733	11.7313243	10.2423034	11.0203131	

TABLE 8-2-continued

						
	Single	cell expression	n data (reduced	list)iHSC-8	-TF-Poly	
Factor	iHSC-8- TF-Poly7	iHSC-8- TF-Poly8	iHSC-8- TF-Poly9	iHSC-8- TF-Poly10	iHSC-8- TF-Poly11	iHSC-8- TF-Poly12
Ezh2	0	0	2.21554199	0	5.32363089	0
Fas	0	0	0	0	2.16604599	0
Fcgr2b	3.47793	0	1.71970146	2.23921869	0	5.04737267
Fcgr3 Fli1	0 10.8345473	0 11.5409772	0 10.5318652	0 10.662109	0 11.4388002	2.18806711 10.1671415
Flt3	0	0	0	0	0	0
Fosl1	0	0	5.8347835	0	7.70592608	7.84850811
Foxo1	9.4405956	8.63244642	9.95832224	11.215797	9.9252048	10.7941741
Foxo3	9.38655913	8.08321966	8.07438022	8.8867453	7.74085669	8.93178924
Gapdh Gata1	8.63027458 0	8.73797671 0	8.14527812 1.55162308	9.4866405 0	7.33039136 0	9.67482926 0
Gata1 Gata2	5.47644994	6.97088567	8.20284665	8.01626434	5.91147422	6.88724501
Gata3	9.08511237	9.31182071	0	9.62706291	9.32930381	6.65922323
Gfi1	0	7.22139719	6.85380432	8.35817389	7.00712317	0
Gfi1b	0	0	7.2469058	7.45722502	6.87129889	6.92216504
Hes5	0	0 67601229	0	0	0 1.09702737	0
Hey1 Hlf	10.4853838	0.67601338 10.1092492	0 9.53028437	9.80884657	9.89274135	11.105232
Id2	7.46080895	0	0	0	7.18836307	4.4396478
Ifi203	11.1510789	10.5179013	12.3149838	11.1576976	10.6080303	11.3037035
Ifi205	0	0	0	5.11004436	0	0
Ifitm1	13.4850079 8.54385455	14.3779702	11.310825	12.3177214 6.77958196	13.3652001	12.6945896
Ikzf1 Ikzf2	8.26817651	6.97196539 1.0114979	8.4861291 0	8.04160023	8.19579315 8.17715371	6.83946026 7.37397864
II7R	0	0	ő	0	0	0
Irf4	0	0	0	0	0	0
Irf6	6.51071164	5.62197926	1.33986609	3.6512894	5.74729803	6.27874544
Irf8	7.35064711	0	5.67817332	0	0	0
Kdr Kit	0 9.44396168	7.43990645 9.99654642	0 9.05604605	0 10.7370375	7.74287744 11.1484528	0 9.48452903
Klf1	0	0	0	0	0	2.66895857
Klf12	7.83284751	1.79551807	8.02838739	8.41667992	7.31689315	8.22947494
Ldb1	10.8649416	11.0311014	10.2531103	9.96867512	9.44479733	10.237399
Lin28a	0.07648021	5.44206338	2.28808923	0	4.26911442	7.49478468
Lmo2 Ly6a	10.3300198 11.0261252	11.4044966 9.19365169	10.8122837 0	12.0024401 11.2822375	10.8122958 10.9680129	11.5354295 10.2245897
Lyl1	0	0	0	0	8.1627394	6.9405754
Mbd2	9.778048	7.88381457	9.85411747	8.93004612	9.84729194	9.50047741
Meis1	9.79079972	9.26553519	9.47724048	9.11875429	7.83230069	9.28003396
Mllt3	4.95820732	6.82834374	3.31729194	4.78671361	5.72656509	5.03058026
Mpl Muc13	10.5885966 6.47555273	10.2036925 4.0744404	10.3769602 0.74602045	9.29493118 9.11384586	10.1733655 9.74461615	10.194539 9.05918759
Myb	10.7442288	9.96147288	10.993789	10.1482872	11.1603183	11.6769893
Myc	7.89827193	9.71889144	8.37756333	6.2345676	8.71491271	9.57514794
Mycn	13.0888737	11.9671485	14.0143762	12.1914809	11.9099683	12.4213923
Ndn Nfot5	8.94858448 10.3527976	10.4219509	7.73679165 9.78500077	7.97014772	9.18715689	9.75918486 10.0570506
Nfat5 Nfia	8.77963768	9.84044429 9.1388192	9.78300077	9.69671217 7.88222414	9.49142498 8.46281343	10.5459452
Nfkb1	4.42634987	0	4.92034792	4.79418239	5.49712885	5.77034407
Notch1	7.75076794	0	0	0	9.00866938	7.22412965
Pax4	0	0	0	0	0	0
Pax5	0	5.51060272	0	0	0	0
Pax9 Pbx1	0	0	0 5.27140189	0	0 5.62172032	0 6.67462266
PIk3ca	9.62050132	9.28712078	9.2982715	8.72600436	8.2306778	6.59758348
PIk3R2	6.02135145	0	0	0	0	7.90960372
Plag1	0	6.72260382	7.03486336	7.18387794	4.17261924	6.64273979
Prf1	0 26000246	3.90415649	0	0 50022492	0.63556078	0 0020414
Pten Rb1	9.26090346 9.66749617	10.2405116 7.6292368	10.3794127 8.71116734	9.50933483 8.9432676	10.4712953 4.68235943	8.8938414 9.80937685
Rora	0	4.97514677	7.9587669	7.68976191	4.34907105	5.02881742
Runx1	10.1268518	0	7.85747808	5.75506403	9.96928817	8.24404878
Runx2	5.5286143	0	3.79093014	4.65939933	4.88754632	0
Satb1	0 5 27002622	8.4748954	0 6 5 3 3 2 1 6 6	0	0 7.17050601	0 4 50949613
Sdpr Sell	5.27902633 0	6.32635852 0	6.5332166 0	0	7.17059601 0	4.59848613 0
Sfpi1	9.46010411	7.75399359	7.72602312	9.76515629	9.72539923	7.02277564
Slamf1	8.20190825	8.19833438	0	5.55930467	0	0
Smarca4	9.4413014	10.1563545	8.79018319	8.8549291	10.3361654	11.228265
Sos1	4.54939546	6.56343031	5.6282784	3.49839747	6.033343	7.34548491
Stat1	1.6954329 9.7980754	2.46606654	4.59411276	3.22835285	3.56380291	2.65186982
Stat3	J./70U/34	9.90644603	10.0618227	10.0057991	9.46974309	11.2477057

TABLE 8-2-continued

	Single cell expression data (reduced list)iHSC-8-TF-Poly						
Factor	iHSC-8- TF-Poly7	iHSC-8- TF-Poly8	iHSC-8- TF-Poly9	iHSC-8- TF-Poly10	iHSC-8- TF-Poly11	iHSC-8- TF-Poly12	
Stat4	10.1144294	8.47352328	8.70582293	8.52494598	8.72233963	8.2171884	
Stat6	7.86406378	0	0	8.26236445	9.0629236	7.69535411	
Suz12	8.39719356	7.93784732	8.38043045	8.85608556	9.42803983	9.28167431	
Tal1	0	0.681281	0	2.08441416	0	1.70076747	
Tcf3	0	0	9.9455106	9.29810349	9.8282128	9.54784562	
Tcf4	0	8.51908255	9.24863486	10.5880166	7.28528289	7.66941102	
Tcf7	4.32833396	0	0	0	6.36792384	2.47636179	
Tek	7.42071469	0	7.43721036	0	0	7.67578104	
Tfre	8.06611575	7.71886079	8.5698818	0	0	8.80876058	
Tgfb1	0	5.94187127	4.16958245	1.7066482	0	7.44368223	
Tgfb2	0	3.64491004	0	8.61953374	0	4.82967208	
Tgfb3	7.96037916	2.36951015	3.0455015	0	8.1575853	0	
Tnfrsf1a	9.58272277	8.66151272	9.23558302	8.67592568	9.37894037	9.03022699	
Tnfrsf1b	8.90229636	7.93923169	5.29156723	7.81247487	8.26692579	8.39371317	
Tnfrs21	0	0	0	5.44213484	4.19136877	5.44890931	
Tnfsf10	0	0	0	5.44208502	6.0556815	5.34683032	
Tnfsf12	0	0	4.3913846	0	0	0	
Tob1	0	0	6.16399931	0	0	6.29096864	
vWF	6.35040864	6.82666845	7.07089703	5.30969082	6.82119478	7.28636659	
Zbtb20	8.54677311	8.62567076	8.34955811	8.95833222	8.46048893	10.0348575	
Zbtb38	8.6859832	6.69172463	7.38375805	6.45223583	8.91459553	8.06672637	
Zfp532	0	0	0	0	0	0	
Zfp612	8.55308069	8.49590308	7.30051048	0	8.54459297	8.15113011	
Zfpm1	0	0	7.83370461	0	7.67338465	0	
Zhx2	0	0	4.36096658	9.52701148	7.8156659	7.69538745	

TABLE 8-3

Single cell expression data (reduced list)iHSC-8-TF-Poly						
Factor	iHSC-8- TF-Poly13	iHSC-8- TF-Poly14	iHSC-8- TF-Poly15	iHSC-8- TF-Poly16	iHSC-8- TF-Poly17	iHSC-8- TF-Poly18
Actb	14.2727767	12.7280483	14.0956291	13.7082256	13.0574175	13.8899065
Aebp2	6.11070016	7.67413704	5.4199737	5.67517041	6.12979862	6.39309702
Ahr	0	7.60162142	8.68953508	7.22521443	0	7.80170326
Akt1	10.5537808	10.2359843	10.1876416	10.2045296	9.32528266	11.2037137
Akt2	6.04771205	5.46968411	4.61114177	0.36361906	5.15470193	6.76905664
Akt3	7.46685201	8.87527885	6.41367312	6.57064203	7.42714251	8.82945036
APC	5.47404929	0	0	3.30240815	0	0
Bad	0	0	0	8.25308495	0	0
Bax	9.58600628	7.72059484	8.90118521	9.0595556	8.89711711	10.2420317
Bcl11a	0	7.2152692	0	9.99754542	8.21413322	8.37765853
Bcl11b	0	0	0	0	0	5.9803208
Bcl2	6.3930411	6.07276828	6.16216896	7.49388797	5.68656739	0
Bcl2l1	8.95652025	7.10261013	9.81018845	5.27192178	8.28376117	7.94107304
Bcl2l11	6.33813274	0	0	5.92621331	0	0
Bmi1	8.66147977	8.96414419	8.75077682	8.37533133	8.69114053	9.23230416
Brd3	8.28803382	6.3971659	6.25298854	7.15381467	7.6478676	8.17779551
Casp8	8.45968253	8.1712985	7.71775573	7.76600997	8.57602393	7.87394894
Casp9	4.45260333	0	0	0	4.29714485	0
Cbx2	2.07247445	4.80091864	2.61905814	0	1.54064757	4.53169391
Cbx8	0	0	0	0	0	0.67434266
Cene	0	8.28176951	8.20203458	0.20286217	7.36331044	7.27287576
Cend1	11.3129135	10.4797236	8.88976756	7.2170424	8.33377627	9.15479719
Ccne2	0	0	1.50040192	0	0	0
CD34	8.22979468	0	0	6.91091458	8.44625303	7.87973307
CD41	0	7.16278626	0	7.18437958	0	0
CD48	0	0	0	0	0	0
CD52	0	0	0	0	0	0
CD53	0	8.91427674	8.44378297	9.13656802	0	9.74428678
CD55	6.01147624	5.07787524	7.69978384	2.8938614	7.50395162	8.09488889
CD63	9.97144686	8.71949217	8.16499862	8.98186831	6.4416781	9.43079454
CD9	9.65832099	5.7460499	8.59279056	7.41372418	8.48726798	7.98386084
Cdc42	12.0879567	10.9317607	11.4005236	11.0823193	10.9521574	11.5405133
Cdk1	0	2.72753967	0	2.05216916	0	0
Cdk4	8.5419578	8.78105981	9.25298713	7.52696871	8.30059711	9.43641662
Cdkn2b	0	0	0	0	0	5.12306489
Cebpa	0	0	0	0	8.64186061	0

TABLE 8-3-continued

	TABLE 6-5-continued						
Single cell expression data (reduced list)iHSC-8-TF-Poly							
Factor	iHSC-8- TF-Poly13	iHSC-8- TF-Poly14	iHSC-8- TF-Poly15	iHSC-8- TF-Poly16	iHSC-8- TF-Poly17	iHSC-8- TF-Poly18	
Csf1r	0	0	0	0	0	0	
Ctnnb1	8.20473117	8.50969794	8.69357555	9.73103801	5.608402	9.62623328	
Cycs	10.355627	8.70346871	9.62459322	8.44123772	8.67759939	9.25455509	
Dach1	9.82088619	7.86150494	9.96350332	8.99831455	0	10.570503	
Dnmt1 Dnmt3a	8.77747907 10.9895968	7.53562918 8.80508017	0 9.0263749	7.44505386 9.03931586	8.60952809 9.52116455	10.0209151 9.94330249	
Dnmt3b	9.0938017	1.17472267	3.10327969	0	2.84001275	8.34532121	
Dtx1	0	0	0	0	0	0	
Dtx4	4.43088049	3.87028229	4.43041562	7.35767066	0	5.6117422	
Ebf1	0	0	0	0	0	0	
Ep300	9.017599 5.61905305	6.78903265 6.57651712	7.43151301 6.697122	7.60373336 7.72336468	8.45575033 7.6721107	7.95781099 7.16092395	
Epor Erg	11.2267843	11.2338502	8.98943025	8.67311388	10.5300473	10.3920801	
Esr1	9.88779417	9.5988785	10.7077127	9.32817858	9.04585226	0	
ETS1	7.00604522	8.10866426	8.03570905	7.99879785	4.90118407	7.96807866	
ETS2	9.43655065	7.58250039	8.78658622	7.59607589	7.77738844	8.52035769	
Etv3	6.23826064	3.83649683	5.71839126	3.62372678	5.97641387	4.51702701	
Etv6 Ezh2	11.5745983 5.31268746	9.67915008 0	11.1480528 4.20179525	9.02130654 6.18588773	10.2698644 0	11.1857554 6.62582331	
Fas	0	0	0	0.18388//3	1.51519502	0.02382331	
Fcgr2b	6.48856047	4.94876599	o o	0	0	Ö	
Fcgr3	3.61683637	0.44366131	0	0	0	0	
Fli1	11.8751419	11.3361252	12.1903114	11.2030884	11.240247	11.2863366	
Flt3	0	0	0	0	0	0	
Fosl1	9.57090972	0 2667249	7.58226569	0 00406806	0	7.82360513	
Foxo3	10.3871499 8.47876623	9.3667248 9.50744661	10.4078656 9.2592793	9.09496896 7.51365588	10.2176456 7.19553746	10.0456512 9.10509162	
Gapdh	9.38324817	7.33400257	8.80742103	7.06433381	7.70747783	9.59697776	
Gata1	5.31073843	0	0	0	1.26264701	7.26109145	
Gata2	6.68669869	6.50786707	7.6104304	3.89707824	6.63102054	8.2588868	
Gata3	7.04848734	8.94414597	8.45487627	9.75563278	9.27170655	10.8195073	
Gfi1	9.73235707 0	9.86036822	8.40070436	4.05484467 0	5.30647504	8.60826828	
Gfi1b Hes5	0	0 0	0	0	0	7.65342243 0	
Hey1	Ö	Ö	0	7.33170389	0	0	
Hlf	9.04765144	10.6533675	10.5269011	9.04230199	9.56488914	9.70383891	
Id2	7.62991754	0	4.23111706	0	0	0	
Ifi203	11.2501676	11.914907	11.8653931	11.1350751	12.3322589	11.9786983	
Ifi205 Ifitm1	0 13.6024841	0 13.2671579	0 13.1559778	0 14.6147998	0 12.3940005	0 13.0506359	
Ikzf1	8.99227257	0	6.59952389	4.22155675	8.51392841	8.28888823	
Ikzf2	7.97202071	9.3328216	8.73462182	7.32657718	7.08686654	9.84110991	
Il7R	0	0	0	0	0	0	
Irf4	4.70292121	0	0	0	0	0	
Irf6 Irf8	5.54666139	6.23688513	0	5.97785483	5.02049373	4.96109854 0	
Kdr	7.86823205 5.53840288	8.15367383 0	2.63621427 8.15341571	6.83354507 7.01205599	0 7.4642774	7.1326176	
Kit	11.2607047	10.3606009	8.79628445	11.5915902	10.481916	11.5872617	
Klf1	0	3.25860663	7.84616118	0	0	0	
Klf12	8.51276514	0	7.11967734	0	6.76070903	7.21735901	
Ldb1	10.1909279	10.4320215	9.54439153	10.2617076	9.04575239	10.805799	
Lin28a	5.62179949 11.3839154	3.31473014 11.4034046	1.92780466	0	6.68984894	3.16561904	
Lmo2 Ly6a	11.3839154	8.56680086	11.3907002 10.4469799	10.8211784 10.6032693	10.7792744 9.78976088	11.5849622 10.5262032	
Lyl1	7.72600868	7.4205871	7.75834476	0	2.04943398	5.36599153	
Mbd2	7.18160941	0	8.37079723	8.40944262	7.72922325	9.44956043	
Meis1	8.38029564	9.48751454	8.92807614	9.17214844	9.24061666	9.66150816	
Mllt3	5.70832826	4.43853888	6.41671792	3.9945214	3.62889877	5.44463465	
Mpl Muo12	9.80451345	10.0432958 5.59560036	9.24266526 5.88707405	8.79519105	8.10182066	11.1002171	
Muc13 Myb	8.98196707 12.229057	5.59560036 11.105609	5.88707405 10.5930915	8.6485199 11.6502743	9.85981222 11.2030698	8.758467 12.0392037	
Myc	5.94054515	8.26431355	0	0	9.23698786	0	
Mycn	12.9133833	12.0386919	12.9135442	11.3734877	12.9094945	13.2019114	
Ndn	10.1539124	10.0168565	10.2371109	10.6363452	9.55015746	10.2823756	
Nfat5	10.0281421	9.33420441	9.33337438	9.24446933	9.36691113	10.2854003	
Nfia	9.50780688	9.55882506	9.20366745	10.0443654	8.63527972	8.37856563	
Nfkb1	4.40547181	0	6.72539404	5.68195326	3.69104625	2.61534874	
Notch1 Pax4	7.92730103 0	0 0	0 2.75717363	0 0	1.91842901 0	7.254093 0	
Pax5	0	0	0	0	0	0	
Pax9	0	0	0	0	7.51446706	0	
Pbx1	0	0	0	0	7.35355438	0	

TABLE 8-3-continued

	Single cell expression data (reduced list)iHSC-8-TF-Poly					
Factor	iHSC-8- TF-Poly13	iHSC-8- TF-Poly14	iHSC-8- TF-Poly15	iHSC-8- TF-Poly16	iHSC-8- TF-Poly17	iHSC-8- TF-Poly18
PIk3ca	9.36193609	10.1573699	8.69135241	7.22797069	9.350244	9.7945183
PIk3R2	9.08458317	7.31464789	0	7.23501761	0	8.77459895
Plag1	9.35742205	9.87687278	6.76687433	9.21256194	7.60654426	9.96667624
Prf1	0	0	8.2323039	0	0	0
Pten	10.0306742	10.2227214	9.46793062	8.97227711	10.0315494	10.1169538
Rb1	9.14716883	8.05715458	9.38141621	7.77964535	8.78223278	9.78773033
Rora	7.18374293	8.46056013	5.83820968	8.93757151	4.90427489	0
Runx1	10.9790323	6.4366202	7.3434187	9.02591347	7.456308	8.6424525
Runx2	5.06108884	4.73894347	3.57947524	0	4.71767067	4.01213338
Satb1	0	0	6.988754	0	0	0
Sdpr	7.25321831	1.49255939	5.03703907	7.36858199	5.63016034	4.99059297
Sell	0	0	0	0	0	0
Sfpi1	8.23548593	9.30951305	8.23896762	9.70211776	9.06710973	9.02501417
Slamf1	8.97871652	7.69050245	8.12971792	8.19661263	6.49955824	9.49238402
Smarca4	9.16368267	8.86000678	7.42507799	10.3635361	8.42813404	9.89775871
Sos1	6.95641434	6.76871668	5.24577661	4.77916419	5.28495752	5.60242229
Stat1	2.55560167	1.57984978	2.47684151	3.53475743	5.10154814	2.60129708
Stat3	10.050798	10.319077	10.6594607	10.4305246	8.82047476	11.132745
Stat4	9.33292587	6.1179188	9.39461735	8.20558579	8.85019502	10.5591988
Stat6	9.12089244	9.48439599	8.23719382	8.55868133	9.07236102	8.98821013
Suz12	9.38104801	6.98601382	9.13046142	8.52416999	7.65310844	8.32511917
Tal1	0	0	3.47169406	0	2.67263762	7.4198786
Tcf3	10.5584	9.01499115	9.3657276	0	9.47219667	9.8412718
Tcf4	9.215939	9.39183959	7.54261135	9.26545368	9.99166629	10.0227825
Tcf7	0	0	0	3.59122317	0	0
Tek	0	0	9.1484583	3.17123575	7.42337143	5.89012912
Tfrc	8.51963706	8.20530652	8.13700044	0	8.25042927	0
Tgfb1	2.78186927	6.42869806	5.89270974	0	1.05785152	6.22071528
Tgfb2	0	0	0	0 7.42980658	0 7.51930126	0 8 10204004
Tgfb3	3.34813	-	7.79588299			8.10294994
Tnfrsf1a	8.97610513	9.40934119	9.51740906	8.73586007	7.77034164	8.68220529
Tnfrsf1b	7.7581593	7.64845624	8.38084662	0	9.10235665	9.03749186
Tnfrsf21	2.71798644	0	1.74571738	2.68827623	3.04822159	5.61552431
Tnfsf10	6.81258092	7.05606832	4.88500889	6.08129458	4.45443159	7.17866012
Tnfsf12	0	0	0	0	3.42201447	3.17042749
Tob1	6.08956479	0	1.0254279	0	4.07499239	0
vWF	8.69641471	7.83148927	5.7541953	7.51750945	6.84122876	8.68209545
Zbtb20	10.7465428	8.11584272	10.0666657	8.72759216	8.97604308	9.84825138
Zbtb38	7.4776121	7.71700408	8.82991017	6.57384818	2.72358522	8.69891554
Zfp532	0	0	0	0	0	0
Zfp612	5.94153564	6.7720852	7.52351011	7.44920631	6.39354799	7.81847435
Zfpm1	7.42741579	6.64520623	8.37192116	0	0	6.62040347
Zhx2	0	0	2.08517851	8.18192171	8.6593969	7.86530332

TABLE 8-4

	Single cell expression data (reduced list)iHSC-8-TF-Poly					
Factor	iHSC-8- TF-Poly19	iHSC-8- TF-Poly20	iHSC-8- TF-Poly21	iHSC-8- TF-Poly22	iHSC-8- TF-Poly23	iHSC-8- TF-Poly24
Actb Aebp2 Ahr Akt1 Akt2 Akt3 APC Bad Bax Bel111a Bel111a Bel2 Bel211 Bel2111 Bmi1 Brd3 Casp8	14.0222957 6.09276785 0 10.1537514 5.37628872 6.43567703 0 9.62042258 8.25024263 0 5.80097299 7.19137797 7.10099787 0 7.81963512 8.16002179	14.9852165 5.91339645 7.35656431 9.0396397 5.62239369 0 6.02993274 7.95577502 10.1007541 0 0 6.96327952 9.09460414 0 8.89333432 6.53346079 7.41674663	14.7231936 7.15748106 0 10.8518586 4.54633859 8.32809947 7.1076109 0 9.93762446 6.13142565 0 5.50955358 8.68585536 0 8.82500517 8.46718639 9.68556501	13.0780412 7.15006465 0 10.0130998 4.9627968 7.77517295 0 0 10.5704358 8.06182977 0 6.14344881 8.37559007 8.66530941 8.04845917 6.63970649 8.98596978	13.1822769 6.44734708 7.39042048 9.0677075 0 7.00340875 0 0 8.58778402 0 0 6.33146119 7.91961022 7.92945207 7.27905634 3.58678146	14.7520851 7.56825651 0 10.2965742 6.55702093 6.69568826 7.41151949 0 9.82062487 0 0 8.64834323 9.1222599 7.29055975 7.66241462 8.79527153 8.16507587
Casp9	8.12191839	0	0	8.20184923	6.86433721	0.10307307

TABLE 8-4-continued

	Single cell expression data (reduced list)iHSC-8-TF-Poly					
	iHSC-8-	iHSC-8-	iHSC-8-	iHSC-8-	iHSC-8-	iHSC-8-
Factor	TF-Poly19	TF-Poly20	TF-Poly21	TF-Poly22	TF-Poly23	TF-Poly24
Cbx2	5.83990951	7.17824899	1.13974563	0	1.69623499	5.47697139
Cbx8 Cene	0 6.44758404	0.94186577 7.56469246	4.35885212 7.28657546	0.62378639 0	0 3.55530815	0 7.0627638
Cend1	10.2579337	10.3894912	10.1044493	9.85934264	7.70190072	10.2600958
Ccne2	4.05061191	7.82199556	0	0	0	0
CD34	5.35839334	1.30106581	7.35425184	6.61374857	6.44471518	1.61234414
CD41 CD48	5.77643219 0	0	10.4393533 0	0	0	10.3495091 0
CD52	Ō	0	0	3.01619125	0	0
CD53	8.03999469	0	0	7.50341317	10.1028594	0
CD55 CD63	7.33579923 8.37023042	5.27016862 8.80391232	7.79008222 9.66493806	7.56180434 8.10475976	6.90429703 6.51700946	7.62824401 8.24520437
CD03	7.12446184	0	7.78614293	0.104/32/0	8.48314556	7.50038252
Cdc42	11.193945	11.5997344	12.2211899	11.14451	9.02347781	11.8346973
Cdk1	3.82114993	0	0	0	0	8.8707332
Cdk4 Cdkn2b	8.72490443 0	9.2366055 0	9.21810563 0	8.92536239 0	7.92269766 0	9.0715251 0
Cebpa	0	0.92340397	0	0	1.00115542	3.07355052
Csflr	0	0	0	0	0	4.67306388
Ctnnb1	9.02013289	8.1995723	8.88842654	7.35118018	7.79633098	9.06433317
Cycs Dach1	4.40114607 9.36485262	10.7395371 8.82201919	9.31670975 0	9.50564127 8.05339981	8.73967132 0	10.179991 10.8270759
Dnmt1	0	9.58140407	10.0497632	8.2793687	6.63806785	8.17811462
Dnmt3a	10.9905048	9.19877847	7.56408268	9.58520501	8.76598997	11.0073815
Dnmt3b	6.12321822 0	5.91369116 0	6.74621053	8.79572673 0	0	8.46193889
Dtx1 Dtx4	0	0	4.45860491 0	0	4.40787301 0	2.92452083 4.65526374
Ebf1	Ō	0	0	0	Ō	0
Ep300	8.31116148	9.22743592	7.7293946	8.80009368	7.48345043	9.03015668
Epor Erg	6.59886102 9.78578531	8.36411013 7.35912985	6.46843364 11.1497111	7.45226452 10.1003655	6.61055385 10.2588034	8.51394952 10.1895405
Esr1	10.7256327	11.2332794	8.62974835	10.714868	9.12800318	7.71830109
ETS1	9.50337181	9.15865955	8.17116294	8.01408055	7.45017515	0
ETS2	7.42626021	9.43167027	7.78315302	9.20343927	9.3179479	8.01612975
Etv3 Etv6	1.3458142 10.6179622	5.98695328 10.4118422	4.79867027 10.2187025	2.51010934 9.96156985	4.92346803 10.038584	3.7511546 9.91374759
Ezh2	0	7.4963002	5.11451697	0	4.27019431	5.00451192
Fas	0	0	6.38955508	0	0	6.53357255
Fcgr2b Fcgr3	0	0	0	0	0	0 4.03293964
Fli1	11.3359409	10.6665214	12.2098328	11.3839786	12.0700831	12.5969288
Flt3	0	0	5.17872234	0	0	0
Fosl1	0	0 10.0233787	0	7.88407638 8.69958676	0	0
Foxo1 Foxo3	10.6157657 8.75455393	8.2202859	10.3312339 9.4323668	8.96146302	10.0863135 8.37704731	8.75473743 9.54868349
Gapdh	9.39063578	9.6332912	9.01611712	8.48869618	7.45420386	9.51346889
Gata1	2.29550385	0	2.19508312	0	0	7.81928617
Gata2 Gata3	7.90701459 9.25625641	6.57337507 9.59194441	7.74249758 7.96562707	7.39810444 9.02739686	5.78754669 9.24201171	7.21810544 5.54111636
Gfi1	8.16247965	9.05106935	1.53883386	9.20704112	8.86848623	1.74671367
Gfi1b	7.48261818	0	9.01407569	7.92225525	0	10.4544307
Hes5	0	0	0	0	0	0
Hey1 Hlf	0 10.0172951	8.57271376	0.23980869 9.52837203	0 9.19521494	3.99694016 10.1704945	0 8.00758435
Id2	3.69016431	6.66309649	0	8.09079275	0	0
Ifi203	10.7615272	11.4665288	9.34620527	12.029167	12.0276813	12.3753844
Ifi205 Ifitm1	0 12.52963	0 14.056977	6.21186981 12.1062642	0 14.4446358	0 13.0043214	0 11.5613877
Ikzf1	9.49333946	8.39564132	6.74977708	7.60909535	7.65040476	9.02382942
Ikzf2	8.34635213	6.9536272	8.61475235	6.86277574	6.23476562	7.53972582
II7R	0	0	0	0 5 22296190	0	0
Irf4 Irf6	0 4.23055125	0 6.62986325	0 5.38490108	5.32286189 4.90732154	0 1.6439306	0 3.52949201
Irf8	0	7.03460532	0	2.07699694	0	6.38053878
Kdr	0	0	0	8.31606549	0	1.78210879
Kit Klf1	10.3885328 0	6.36619186 5.96327424	9.89600505 0	10.6754558 0	10.6599878 3.13498357	12.0390472 0
Klf12	0	5.07853345	0	0	5.94120823	7.42134808
Ldb1	10.1606712	9.4851491	10.5743575	10.1071175	9.70318406	9.85749521
Lin28a	7.17967747	5.7551298	0	6.67444585	0	7.1800316
Lmo2 Ly6a	11.3790886 9.90063146	10.9990795 10.425202	11.1248884 9.30350233	10.5434856 10.6994618	10.8867459 9.83374053	11.3916155 7.67564131
∟у∪а	2.20003140	10.723202	y.50350233	10.0224010	2.0331 4 033	1.07304131

TABLE 8-4-continued

	Single cell expression data (reduced list)iHSC-8-TF-Poly						
Factor	iHSC-8- TF-Poly19	iHSC-8- TF-Poly20	iHSC-8- TF-Poly21	iHSC-8- TF-Poly22	iHSC-8- TF-Poly23	iHSC-8- TF-Poly24	
Lyl1	7.14647222	8.82469566	7.29100041	7.01495401	8.09680593	0	
Mbd2	10.0576916	9.28619721	9.17962218	9.39666712	0	8.99242891	
Meis1	9.19612035	7.20888322	9.3457055	8.41585689	8.18293381	9.0030273	
Mllt3	6.32843166	0.74266874	4.39498203	3.39205835	6.23365027	3.44437544	
Mpl	8.94809398	10.5780332	10.4781264	10.277185	8.87490577	9.39242946	
Muc13	8.27790617	0	10.4076758	6.76806625	5.00295934	10.3973791	
Myb	11.7453163	11.8586016	11.7506552	11.1696323	10.9979778	11.7377404	
Мус	9.36837161	7.05635853	8.52793183	9.28427723	0	11.6017931	
Mycn	13.2729086	13.0027169	11.5828444	12.1822321	11.3420486	10.4739711	
Ndn	10.1608893	0	9.76813472	10.8699711	6.85887785	7.86045035	
Nfat5	9.33700148	9.37171439	9.61477453	10.0347254	9.16012698	11.0068399	
Nfia	9.19929579	8.60111942	9.05469309	8.45114924	7.63071837	10.4493102	
Nfkb1	5.80357529	3.19392376	5.18644292	2.62506816	4.67722842	4.73163984	
Notch1	0	0	7.11863629	0	0	0	
Pax4	5.85834965	0	0	0	0	0	
Pax5	1 40067007	0	0 6 40012116	0	0	0	
Pax9	1.49067007	1.89512232	6.48812116	0 5 65706056	4.05075553	0 5 75004417	
Pbx1 PIk3ca	0 8.51982982	6.44666705 7.20799174	1.43020832	5.65796056 0	0	5.75884417 6.46020226	
PIk3Ca PIk3R2			6.37633123	0	7.61404741	8.48818785	
	8.38136327 0	8.97464344 0	9.98572262 6.4230689	7.11287226	7.01404741 0	0.48818783	
Plag1 Prf1	0	0	0.4230089	0	0	0	
Pten	10.540168	9.73816633	10.8896648	9.24580983	9.87665899		
Rb1	7.31833258	9.73810033	9.69069735	10.0839906	8.40316967	10.9693546 8.99999716	
Rora	6.73484556	0	0	0	9.2605019	9.02226435	
Runx1	0.75484550	10.6851969	8.05120975	9.13766939	0	7.96523554	
Runx2	4.65669851	4.87793717	0	4.53994772	5.95340157	5.22261949	
Satb1	0	0	Ö	7.42656655	7.19081992	0	
Sdpr	4.8919743	5.24630781	5.31896107	5.91836204	4.45600583	6.97989467	
Sell	1.98131911	0	0	0	0	0	
Sfpi1	7.85387748	7.69052148	0	0	6.83763769	0	
Slamf1	0	8.49168885	0	8.17041428	8.03774087	8.97604844	
Smarca4	10.9295084	10.7537022	10.631709	7.01755625	0	11.2935237	
Sos1	6.74790018	4.84633913	6.25614779	5.08932828	5.99132703	7.55749624	
Stat1	4.09438953	3.12874153	0.0136088	7.49778073	3.08878778	4.41941405	
Stat3	10.6461698	10.1970393	11.6374187	10.6737607	10.7089761	10.407426	
Stat4	7.94643022	7.77936924	7.15328942	9.69556223	8.59968281	10.8890815	
Stat6	10.6283289	9.39699663	7.46878642	10.3247299	8.10965668	9.61146029	
Suz12	8.47536799	7.00434943	7.22403444	9.07440769	6.61891321	9.26075033	
Tal 1	0	0.78562075	0.32304358	0	1.05194194	3.12802446	
Tcf3	8.71121837	8.47702552	9.5832776	9.51241599	0	0	
Tcf4	8.74989108	10.019422	9.67827255	9.15887745	9.0850838	11.1528985	
Tcf7	0	1.52995296	0	0	0	5.98283478	
Tek	8.29344896	0	0	0	7.0599381	6.9286127	
Tfre	8.98222729	0	8.46857397	0	0	9.30593475	
Tgfb1	5.18251178	0	1.45806631	6.10276766	6.19575758	4.43408052	
_	0	0	0	0.10270700	0.19575758	6.69513523	
Tgfb2			0	0			
Tgfb3	4.31080402	7.71403034			8.43808726	7.6392649	
Tnfrsfla	8.37097875	9.75633627	9.2929424	8.88457116	9.33603379	9.21302132	
Tnfrsf1b	8.69059649	8.23787663	9.40938599	8.83717215	8.39065647	10.0362648	
Tnfrsf21	3.20614275	6.19102698	5.06049798	3.05259086	3.46771395	6.05459577	
Tnfsf10	0	0	5.97171916	0	7.59819331	7.31664485	
Tnfsf12	0	0	0	0	0	0	
Tob1	6.69079448	6.00223918	0	3.73540562	0	5.02457741	
$\mathbf{v}\mathbf{W}\mathbf{F}$	7.03390478	7.00183766	6.76991781	7.90167655	7.3503261	8.19082768	
Zbtb20	8.75751032	8.56608423	7.87546645	9.54728999	9.08834794	8.98417896	
Zbtb38	8.42709931	6.65368752	8.31325825	7.64612461	5.85086359	7.6993122	
Zfp532	0	2.57549982	0	0	0	0	
Zfp612	7.39496006	9.86263779	8.6174037	6.07547603	7.44714339	7.42549287	
Zfpm1	0	0	7.32419209	0	0	7.09081266	
Zhx2	5.14338261	7.9453336	7.54993366	7.52150615	0	0	

TABLE 8-5

IABLE 8-3						
	Single cell expression data (reduced list)iHSC-8-TF-Poly					
Factor	iHSC-8- TF-Poly25	iHSC-8- TF-Poly26	iHSC-8- TF-Poly27	iHSC-8- TF-Poly28	iHSC-8- TF-Poly29	iHSC-8- TF-Poly30
Actb	15.1467264	15.0603057	14.7898411	13.7224541	13.1728469	12.9889544
Aebp2	7.22454633	8.054577	6.2934136	5.40380392	6.94511987	6.23324236
Ahr	0	0	0	8.0387708	6.82981017	0 8447304
Akt1 Akt2	10.4393078 5.46798025	11.2053361 4.36096146	10.3315581 0	9.52591131 0	8.93069445 6.22509388	9.8447304 5.58121685
Akt3	8.54577868	9.10928289	6.11061488	5.23070804	7.20403999	7.48254296
APC	7.54219167	8.23602617	0	3.26916842	7.12783167	7.33873364
Bad	0	0	0	0	0	0
Bax	9.50825239 0	10.7263374	10.1709333 0	8.9480305	7.02132481	9.08482722 5.64855342
Bcl11a Bcl11b	0	0	4.08334085	0	5.41177469 0	0
Bcl2	3.68995409	7.32318474	7.06144794	6.58939055	3.18869428	4.94548147
Bcl2l1	6.81430281	9.83800287	9.83067128	9.33405878	1.18529944	0
Bcl2l11	9.18689234	4.87995875	2.32073334	7.05754987	7.15679605	0
Bmi1 Brd3	9.41703263 7.40062986	10.590967 8.45229557	8.13517912 7.37805192	8.21207019 6.73549941	7.89416001 6.38937753	8.36530966 0
Casp8	9.06859401	9.89552232	7.64299925	9.08071818	6.57464487	8.31311348
Casp9	3.44991217	6.93448309	0	9.05103431	7.48305696	8.79567172
Cbx2	5.65665485	4.81978051	5.01321494	7.38009168	6.31186522	7.25681223
Cbx8	7.51395854	5.26741788	0	0	0	0
Cene Cend1	3.40126563 10.8599552	7.17806544 11.4320536	7.78283799 11.3331975	8.63152446 7.53991341	8.813967 0	6.58765669 9.29046471
Ccne2	7.83759047	8.65858417	0	0	3.32687121	0
CD34	6.63187034	9.7565564	7.40591115	8.39371742	6.77659879	5.99841538
CD41	2.14023125	8.47542727	6.69580828	4.98782898	0	0
CD48 CD52	0 7.91998753	0 8.98451985	0	0 4.94138545	0	0 5.93717087
CD52 CD53	6.94204489	10.5301752	0	7.40829181	6.96255155	9.16158967
CD55	2.67695364	7.24868997	0	6.8723678	6.65669014	0
CD63	7.9251335	9.70346434	8.76574443	8.18049221	7.4946542	8.16601991
CD9	5.82915993	0	7.99497783	0	0	7.22604682
Cdc42 Cdk1	12.2364611 0	12.3344896 0	12.0159112 0	11.7559163 6.53350976	10.3539974 4.26316228	9.97336176 0
Cdk4	9.99908798	10.1349512	9.51946578	8.41035443	8.08864468	8.77958527
Cdkn2b	0	0	0	0	0	0
Cebpa	0	0	0	0	2.49157455	0
Csflr Ctmmh1	0 8.99986283	0	0	7.64542858 7.874021	0	0 7.30650645
Ctnnb1 Cycs	10.4684479	10.3367688 10.2719616	8.5457773 11.6179928	8.6873144	8.83840174 8.85811424	9.08493865
Dach1	10.2351588	10.5375086	5.28114978	7.94289632	9.06367016	8.61751831
Dnmt1	10.4609244	10.9431578	9.49692678	8.00548457	4.47880176	8.89034639
Dnmt3a	10.1900028	10.2175853	10.5489199	10.1873262	8.0649379	8.61671847
Dnmt3b Dtx1	10.4287559 2.87373766	7.64484667 0	7.66846002 4.45487641	7.47190296 0	7.46314199 3.39237286	0
Dtx4	8.30188881	ő	3.76809623	8.90387752	7.33254088	ő
Ebf1	0	0	0	0	0	0
Ep300	9.27663432	10.1042304	9.68113841	8.5374249	8.21206612	9.24606331
Epor	7.85270065 8.55265099	8.04294538 10.2669084	9.16962943 10.2169225	8.54759033 7.63186499	7.35632339 8.95845922	6.14561167 10.2164651
Erg Esr1	9.38768526	9.97524679	0	10.8874494	7.8990261	7.59868432
ETS1	6.6308345	8.37613488	6.37681253	7.42772803	0	0
ETS2	8.17680732	10.0653554	3.38470303	8.81529422	0	7.77351284
Etv3	6.11040493	0 11.5277743	3.98584882	3.26053429	4.70577394	4.48214929
Etv6 Ezh2	9.8608361 7.709826	6.54832	11.4810765 0	8.43992379 4.52144944	9.20838366 0	11.0463499 0
Fas	0	0	0	0	ŏ	Ö
Fcgr2b	1.90741417	0	0	0	4.85415356	1.74014502
Fcgr3	0	0	1.08750014	0	3.68471648	0
Fli1 Flt3	11.0534143 0	13.0298511 4.16157253	11.2583348	10.8538562 0	11.3158563 8.03117137	10.8772294 0
Fosl1	0	0	0	8.2455383	0	0
Foxo1	9.70714029	10.6720909	10.3788241	9.80708641	8.26507304	10.6496396
Foxo3	9.48634989	9.86647621	7.51118011	8.70034889	7.37972878	8.55743355
Gapdh Gata1	8.86227153	8.45555869	8.72625477	8.41917922	8.02370137	6.10600952
Gata1 Gata2	0 5.91383797	3.80535399 8.18298805	0 7.06534352	0 6.42930963	6.75158933 4.69341126	0 5.21404746
Gata3	9.11573842	10.3308833	8.31030094	9.17077025	8.17912775	9.3094042
Gfi1	0	0	1.23659601	6.90153413	8.4360923	6.0672508
Gfi1b	0	7.73951118	0	8.27925976	2.60027956	0
Hes5	0	0	0	0	0	0
Hey1 Hlf	0 11.6008005	4.03507957 10.3681868	0 8.12581134	0 9.33949169	0 9.74960861	0 9.90445603
****	11.0000003	10.5001000	0.12301134	ン	J., 1 J00001	2.20 11 2003

TABLE 8-5-continued

HISC-8	Single cell expression data (reduced list)iHSC-8-TF-Poly						
Factor							
16205	Factor						iHSC-8- TF-Poly30
Infinite 13.859025	Id2	0	0	0	0	7.98559854	0
Iffimal							11.1266634
Ikarl							
Ikar 2							
IJTR							
Irifa							
IrR 8.36267886 0 8.28087448 0						0	3.13466963
Kdr 0 0 0 7.11467704 0 0 Kiti 7.33440621 11.676319 12.0482852 10.3613984 10.8447689 9.718370 Kifi2 7.16079482 7.39809865 7.38280606 7.94377101 8.65600956 7.1165571 Lin28a 8.59487815 7.9674739 9.9361095 9.96631695 3.3406218 8.235561 Lin28a 8.59487815 7.9674739 8.9742122 4.11702404 8.12470644 8.732868 Lin28a 8.9487815 7.9674739 8.9742122 4.11702404 8.12470644 8.732868 Ly6a 11.3320064 10.8896747 11.6269362 10.750255 8.734268 8.9413833 Ly1 0 8.45036073 2.211615 8.710464 0 8.713898 Meisi 8.7228621 9.27316327 7.7021466 8.5045734 8.410805 7.111872 Mpl 8.16713987 11.382076 8.8413873 9.5152322 7.4587579 9.1405109 Mpl 1.9506559	Irf6	0	4.45135084		4.45935177	2.34298554	3.11901816
Kirt 7.3344/0621 11.676319 2.048/2852 10.361/3894 10.8447689 9.7183702 Kirl1 7.16079482 7.39809865 7.38280606 7.94577018 8.65600956 7.116557 Lib1 11.0650833 10.7394902 9.39179179 9.69631695 9.34063818 8.235561 Lim28 8.59487815 7.9674739 8.97421223 1.11702404 8.12470644 8.718047 Lim2 10.8175242 11.0371363 9.96662941 10.9024038 10.303006 9.6704825 Liyl1 0 8.45036073 8.31542245 7.1453941 6.7886757 0 8.911333 Meist 8.72386921 9.274163127 7.7021466 8.50453784 8.4108095 7.111872 Milit3 1.20911588 2.90532993 3.24157892 6.04227027 3.56250704 3.415697 Muc13 3.84864206 10.6660629 10.1548311 7.8264378 7.5633928 8.4404323 Myc 10.870635 12.29395207 12.3545001 11.477311 11.3147311 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Kiff1 4.6113579 0 0 7.07231232 0 0 Lift12 7.16079482 7.39809865 7.3828060 7.74577018 8.65600956 7.116557 Lin28a 8.59487815 7.9674739 9.391079 9.69631695 9.34063818 8.235561 Lin28a 8.59487815 7.9674739 8.97421223 4.11702404 8.12470644 8.718084 Lin28a 11.3320064 10.8896747 11.6269362 10.7750255 8.734268 8.941383 Lyfa 0 8.45036073 8.15182945 7.1453941 6.78867557 8.911838 Mbd2 9.828150303 7.77519918 9.72316715 8.7106444 0 8.713884 Mili3 1.20911888 2.90532993 3.24157892 6.04227027 3.56250704 3.416697 Mpl 8.16713987 11.1382076 8.84138738 9.5152352 6.45757591 9.1405109 Mpl 11.950659 12.679687 2.254001 11.6763394 11.1472311 10.831667 Myc							
Kif12 7.16079482 7.39809865 7.38280606 7.94577018 8.55600955 7.1165784 8.23481815 7.3736902 9.391079 9.96931695 3.24065818 8.2335561 Line2 10.8175242 11.0371363 9.96662941 10.9024038 10.303006 9.670482 Liyl 0 0.88896747 11.6629362 0.07750255 8.734268 8.941383 Liyl 0 8.45036073 8.31542245 7.1453941 6.7886757 0 Meisl 8.72386921 9.27416327 7.7021466 8.50435744 0 8.813898 Mill3 1.20911588 2.90532993 3.24157892 6.04227027 3.56250704 3.4156974 Mill3 1.19506659 1.1182076 8.84138738 9.51523532 6.45757591 9.140510 Myc 10.870635 1.20995270 12.151591 12.053502 17.84577514 7.527800 Ndri 6.66958267 11.0533765 9.97984923 10.6782945 9.95523149 10.251884 Nfab 4.92416192							
Ldb1 11.0650833 10.7394902 9.391079 9.6631695 9.34063818 8.2535501 Lim28a 8.59487815 7.9674739 8.97421223 4.11702404 8.12470644 8.7180475 Lim2 10.8175242 11.0371363 9.96662941 10.9024038 10.303066 9.87816557 Ly6a 11.3320064 10.8896747 11.6269362 10.7750255 8.734268 9.431383 Ly11 0 8.45036073 8.31542245 7.1453941 6.78867557 0 Mbd2 9.82815303 7.77519918 9.72316715 8.71004644 0 8.7138988 Mili3 1.20911588 2.90532993 3.24157892 6.04227027 3.56250704 3.4156976 Mpl 8.16713987 11.182076 8.84138738 9.1523332 6.45757591 9.140510 Myb 11.950659 12.679687 12.354001 11.6763344 11.1472311 10.831567 Myc 0 0.0093188 8.34807296 2.583322 7.84757514 7.5236896							
Lin28a 8,59487815 7,9674739 8,97421223 4,11702404 8,12470644 8,7180478 Lmo2 10,8175242 11,0371363 9,96662941 10,9024038 10,3030060 9,670482* Lyl1 0 8,45036073 8,31542245 7,1453941 0,78687557 0 Meist 8,72386921 9,274161327 7,721466 8,50453784 8,4108095 7,111872* Milc3 3,84864206 10,666029 11,1382076 8,4138738 9,51523532 6,45757591 9,1405109* Mph 1,159506599 10,2679687 11,1872* 11,1872* 11,1872* Myc 0 10,0093188 8,34807296 9,25839322 7,8457751 7,527800 Myc 0 10,0093188 8,34807296 9,25839322 7,4457751 7,527800 Myc 0 10,0093188 8,34807296 9,25839322 7,4457714 7,527800 Myc 0 10,0093188 8,34807296 9,25839322 7,4457714 7,527800 Nfai							8.23556142
Ly6a	Lin28a			8.97421223			8.71804793
Lyll 0 8.45036073 8.31542245 7.1453941 6.78867557 0 8.7138981 Meisl 9.82815030 7.77519918 9.72316715 8.71004644 0 8.7138987 Meisl 8.72386921 9.27416327 7.7021466 8.50453784 8.4108095 7.1118722 Milci 1.20911588 2.90532993 3.24157892 6.04227027 3.56250704 3.415697 Mucl 3.84864206 10.6660629 10.148311 7.8264378 7.56339286 8.4040323 Myc 0 10.0993188 8.34807296 9.25839322 7.65339286 8.4040323 Myc 0 10.870635 12.939207 12.315191 12.053302 12.6255533 8.685907 Ndn 0.875502 11.0533765 9.97984923 10.6783945 9.9523149 10.2518547 Nfab 4.92161927 7.85783734 0 5.31107579 0 5.418846 Nikhi 4.92161927 7.85783734 0 5.31107579 0 5.418846	Lmo2	10.8175242	11.0371363	9.96662941	10.9024038	10.303006	9.67048273
Mbd2 9.82815303 7.7519918 9.72316715 8.71004644 0 8.713898 Meis1 8.72386921 9.27416327 7.7021466 8.50453784 8.4108095 7.111872 Mpl 8.16713987 11.1382076 8.48138738 9.5123532 6.445757591 9.140510 Mpl 11.9506659 12.679687 12.354001 11.6763394 11.1472311 10.831567 Myc 0 10.0993188 3.4804296 9.25839322 7.84877514 7.527800 Myc 0.870635 12.9395207 12.315191 12.053502 12.6255532 2.6855253 9.6852539 16.6733190 2.7880782 11.1472311 10.831567 7.527800 Nfat 6.69958267 11.2092172 8.79798885 10.1009021 4.07328976 8.994634 Nfat 4.92161927 7.88783734 0 0.3677089 9.02919232 7.97805043 7.236896 Nfbh 4.92161927 7.88783734 0 0.3677089 9.02919232 7.97805043 7.236896							8.94138397
Meisl 8.72386921 9.27416327 7.7021466 8.50453784 8.4108095 7.111872 Milt3 1.20911588 2.90532933 3.24157892 6.04227027 3.6250704 3.4156970 Mucl3 3.84864206 10.6660629 10.158311 7.8264378 7.56339286 8.440432 Myc 0 10.0093188 8.34807296 9.25839322 7.84577514 7.527800 Myc 0 10.876635 12.9395207 12.3151911 11.0533502 12.6255533 9.688907 Ndn 6.69958267 11.0533765 9.97984923 10.1009021 4.07328976 8.946819 Nfia 8.76693228 11.1566945 10.3677089 10.009021 4.07328976 8.946819 Notchl 0 6.9738767 9.74874 0 5.31107579 0 5.418491 Pax 0 0 6.97371909 6.50607693 8.20930046 7.14314591 8.7774916 Pax 0 0 0 0 1.78594162 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Milts							
Mpl 8.16713987 11.1382076 8.84138738 9.51523532 6.45757591 9.1405106 Mucl3 3.84864206 10.6660629 10.1548311 7.8264378 7.56339286 8.440432 Myc 0 10.0093188 8.34807296 9.25839322 7.8577514 7.527800 Myc 0 10.0093188 8.34807296 9.25839322 7.84577514 7.527800 Myc 0 10.876352 12.305207 12.315191 12.053502 12.625533 9.685907 Nfat 6.69988267 11.209217 2.97984923 10.6782945 9.95523149 10.251854 Nfat 7.6693228 11.1506945 10.3677089 9.02919232 7.97805043 7.236804 Nfabl 4.92161927 7.85783734 0 0 0 5.31107579 0 5.418884 Notch1 0 6.97331909 5.05077693 8.20930046 7.14314591 8.7774916 Pax9 0 1.29709712 5.34825344 0 0 1.787462							
Muc13 3.84864206 10.6660629 10.1548311 7.8264378 7.56339286 8.440432: Myb 11.9506659 12.679687 12.354001 11.1676334 11.1472311 10.831567 Myc 0 10.0093188 8.34807296 9.25839322 7.84577514 7.5275714 Myc 0 10.009318 8.34807296 9.25839322 7.84577514 7.5275714 Ndn 6.69958267 11.2092172 8.79795885 10.1009021 4.07328976 8.994634 Nfaf 0.4275502 11.1506945 10.3677089 9.02919232 7.97805043 7.236896 Nfab 4.92161927 7.85783734 0 5.31107579 0 5.418844 Notch1 0 6.97371909 6.50677693 8.20930046 7.14314591 8.7774916 Pax4 0 0.41579145 0 0 0 0 0 0 Pax9 0 1.29709712 5.34825344 0 0 0 0 Plk3re							
Myb 11,9506659 12,679687 12,354001 11,6763394 11,1472311 10,8315677 Myc 0 10,0093188 83,4807296 9,25839322 7,84577514 7,527800 Ndn 6,69958267 11,2092172 8,79795885 10,1009021 4,07328976 8,994634 Nfat5 10,4275502 11,05033765 9,97984923 10,6782945 9,952319 10,251854 Nfat61 4,92161927 7,85783734 0 5,31107579 0 5,418884 Nfbt1 4,92161927 7,85783734 0 5,31107579 0 5,418884 Notch1 0 6,97371909 6,50677693 8,20930046 7,14314591 8,7774916 Pax5 0 0 0 0 0 2,2481549 0 0 Pax9 0 1,2970712 5,34825344 0 0 0 0 Pkb1 0 0 2,54668408 0 0 0 0 Pkb3 0 9,672331							8.44043237
Myen 10.870635 12.3935207 12.3151591 12.053502 12.6255533 9.6889073 Ndn 6.69958267 11.2029172 8.79795885 10.1009021 4.07328976 8.994634 Nfa5 10.4275502 11.0533765 9.97984923 10.106782945 9.95523149 10.251884 Nfab1 4.92161927 7.85783734 0 5.31107579 0 5.418844 Notch1 0 6.97371909 6.50677693 8.20930046 7.14314591 8.7774916 Pax5 0 0 0 0 0 0 0 Pax5 0 0 0 0 0 0 0 Pax5 0 0 2.26701666 8.77108696 7.8137764 8.0687455 Pbx1 0 9.54668408 0 4.03560663 7.63724867 8.028939 Plag1 4.05714178 7.17110365 7.47615183 6.7826953 6.68706596 8.1128530 Prf1 0 9.67233193 10.8750		11.9506659					10.8315677
Ndn 6.69958267 11.2092172 8.79795885 10.1009021 4.07328976 8.994634 Nfat5 10.4275502 11.0533765 9.97984923 10.6782945 9.95523149 10.251884 Nfkb1 4.92161927 7.85783734 0 5.31107579 9.798805043 7.236896 Notch1 0 6.97371909 6.50677693 8.20930046 7.14314591 8.7774916 Pax4 0 0.41579145 0 0 0 7.78594162 0 Pax5 0 0 0 0 0 0 0 Pax5 0 0 0 4.99498393 0 4.3948675 0 Plk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.8137764 8.068745: Plk3R2 0 9.54668408 0 4.03560663 7.63174867 8.092893 Plk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.8137764 8.06289553 6.68616856 6.6861856 8.11	Мус	0	10.0093188	8.34807296	9.25839322	7.84577514	7.52780084
Nfat5 10.4275502 11.0533765 9.97984923 10.6782945 9.95523149 10.251854* Nfab 8.76693228 11.1506945 10.3677089 9.02919232 7.97805043 7.2358966 Nfkbl 4.92161927 7.85783734 0 5.31107579 0 5.4188844 Notch1 0 6.97371909 6.50677693 8.20930046 7.14314591 8.7774916 Pax4 0 0.41579145 0 0 0 0 0 Pax5 0 0 0 0 0 0 0 Pax9 0 1.29709712 5.34825344 0 0 0 Pbx1 0 0 4.99498393 0 4.3948675 0 Plk3R2 0 9.54668408 0 7.47615183 6.7826955 6.68706966 8.112830 Pik1 0 0 0 0 1.2752335 9.07906849 9.619202 9.547580 Rb1 2.4815274 9.8385828							9.68590773
Nfia 8.76693228 11.1506945 10.3677089 9.02919232 7.97805043 7.2368966 Nfkb1 4.92161927 7.88783734 0 5.31107579 0 5.4188846 Notchl 0 6.97371909 6.50677693 8.20930046 7.14314591 0 5.4188846 Pax4 0 0.41579145 0 0 0 0 0 Pax5 0 0 0 0 0 0 0 Pax5 0 0 4.99498393 0 4.3948675 0 Pfk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0687455 Pfl3 0 0 4.03560663 7.63724867 8.0282893 Pfl1 0 0 0 1.76277593 0 Pfl3 0 0 1.76277593 0 Pfl1 0 0 0 1.76277593 0 Pflag1 0 0 0 1.76277593							8.99463446
Nfkb1 4.92161927 7.85783734 0 5.31107579 0 5.4188840 Notch1 0 6.97371909 6.50677693 8.20930046 7.14314591 8.7774916 Pax4 0 0.41579145 0 0 0 0 0 Pax5 0 0 0 0 0 0 0 Pbx1 0 0 4.99498393 0 4.3948675 0 Plk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.8137764 8.0687452 Plk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928933 Plag1 4.05714178 7.17110365 7.47615183 6.78269553 6.68706596 8.11285301 Pren 9.67233193 10.8750291 11.2752335 9.07906849 9.619202 9.547580 Rb1 2.4815274 9.83858258 9.93875591 8.12503051 0 9.564157 Rora 6.2784063 7.96217943 8.971191919 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Notch1 0 6.97371909 6.50677693 8.20930046 7.14314591 8.7774916 Pax4 0 0.41579145 0 0 0 0 0 0 Pax9 0 1.29709712 5.34825344 0 4.3948675 0 Pbx1 0 4.99498393 0 4.3948675 0 Plk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.813776 8.092893 Plk3c 0 9.54668408 0 4.03560663 7.63724867 8.092893 Plk13c2 0 9.54668408 0 4.03560663 7.63724867 8.092893 Plag1 4.05714178 7.17110365 7.47615183 6.78269553 6.68706596 8.1128530 Prf1 0 0 0 0 1.7627759 0 1.7627759 0 9.547580 Prf1 0 0 0 0 0 0 9.564157 Rb1 2.4815274 9.83858258							
Pax4 0 0.41579145 0 0 1.78594162 0 Pax5 0 0 0 0 0 0 Pax9 0 1.29709712 5.34825344 0 0 0 Pbx1 0 0 4.99498393 0 4.3348675 0 Plk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928939 Plk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928939 Plag1 4.05714178 7.17110365 7.47615183 6.78269553 6.68706596 8.1128530 Prf1 0 0 0 0 0 1.76277593 0 Prf1 0 0 0 0 0.7906849 9.61920 9.547860 Rb1 2.4815274 9.8385828 9.93875591 8.12503051 0 9.564157 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Pax5 0 0 0 0 0 0 Pax9 0 1.29709712 5.34825344 0 0 0 Pbx1 0 0 4.99498393 0 4.3948675 0 Plk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.8137764 8.0687455 Plk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928935 Plag1 4.05714178 7.17110365 7.47615183 6.7826953 6.68706596 8.1128830 Pren 9.67233193 10.8750291 11.2752335 9.07906849 9.619202 9.5475804 Rb1 2.4815274 9.83885258 9.93875591 8.12503051 0 9.564157 Rora 6.2784063 7.96217943 8.9719191 5.69747967 6.69619858 0 Rumx1 7.72158429 11.5617806 8.0209297 0 7.34188594 9.306607 Rumx2 6.44168173 6.47921853 4.0593813 0							
Pbx1 0 0 4.99498393 0 4.3948675 0 PIk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.8137764 8.0687455 PIk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928939 Prf1 0 0 0 0 1.76277593 0 Prf1 0 0 0 0 9.619202 9.547580 Prf1 0 0 0 0 9.619202 9.547580 Prf1 0 0 0 0 9.6619858 0 9.564157 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 Rumx1 7.72158429 11.5617806	Pax5	0	0	0	0	0	0
PIk3ca 7.29512319 5.10151123 9.26701666 8.77108696 7.8137764 8.0687455 PIk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928932 Plag1 4.05714178 7.17110365 7.47615183 6.78269553 6.68706596 8.1128536 Prf1 0 0 0 1.76277593 0 Pten 9.67233193 10.8750291 11.2752335 9.07906849 9.619202 9.547580 Rb1 2.4815274 9.83858258 9.93875591 8.12503051 0 9.5641577 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 Runx2 6.44168173 6.47921853 4.05939813 0 4.52343132 0 Sabb1 0 0 0 0 0 0 0 Sclp1 3.14060766 4.67747404 0 5.13849374 4.35123979 0 Slamf1 0 7.82142452 0 0 <th< td=""><td>Pax9</td><td>0</td><td>1.29709712</td><td>5.34825344</td><td>0</td><td>0</td><td>0</td></th<>	Pax9	0	1.29709712	5.34825344	0	0	0
PIk3R2 0 9.54668408 0 4.03560663 7.63724867 8.0928939 Plag1 4.05714178 7.17110365 7.47615183 6.78269553 6.68706596 8.1128530 Prf1 0 0 0 0 0 1.76277593 0 Prf1 0 0 0 0 0 1.76277593 0 Prf1 0 0 0 0 1.76277593 0 9.547580 Prf1 0 0 0 0 0.619202 9.547580 Prf1 0 0 0 0.619288 0 9.5641577 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 Rumx1 7.72158429 11.5617806 8.0202927 0 7.34188594 9.306607 Satb1 0 0 0 0 0 0 0 Sell 3.14060766 4.67747404 0 5.13849374 4.35123979 0<							
Plag1							8.06874559
Prf1 0 0 0 1.76277593 0 Pten 9.67233193 10.8750291 11.2752335 9.07906849 9.619202 9.5475800 Rb1 2.4815274 9.83858258 9.93875591 8.12503051 0 9.5641577 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 Rumx1 7.72158429 11.5617806 8.0209297 0 7.34188594 9.306607 Rumx2 6.44168173 6.47921853 4.05939813 0 4.52343132 0 Sabb1 0 0 0 0 0 0 0 Sdpr 3.14060766 4.67747404 0 5.13849374 4.35123979 0 Sell 0 7.82142452 0 0 0 0 Sfpi1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636508 Slamf1 0 7.8509578 0 7.94976735 0 0							
Pten 9.67233193 10.8750291 11.2752335 9.07906849 9.619202 9.5475804 Rb1 2.4815274 9.83858258 9.93875591 8.12503051 0 9.564157 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 Rumx1 7.72158429 11.5617806 8.0209297 0 7.34188594 9.306607 Rumx2 6.44168173 6.47921853 4.05939813 0 4.52343132 0 Satb1 0 0 0 0 0 0 0 Sdpr 3.14060766 4.67747404 0 5.13849374 4.35123979 0 Stpl1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636500 Slamf1 0 7.82142452 0 0 7.64485892 9.1636500 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.965974 Sos1 6.73189286 7.18014773 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Rb1 2.4815274 9.83858258 9.93875591 8.12503051 0 9.5641577 Rora 6.2784063 7.96217943 8.97191919 5.69747967 6.69619858 0 Rumx1 7.72158429 11.5617806 8.0209297 0 7.34188594 9.306607 Rumx2 6.44168173 6.47921853 4.05939813 0 4.52343132 0 Satb1 0 0 0 0 0 0 0 Sell 0 7.82142452 0 0 0 0 0 Sell 0 7.82142452 0 0 0 0 0 Sighi1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636508 0							9.54758043
Rumx1 7.72158429 11.5617806 8.0209297 0 7.34188594 9.306607 Rumx2 6.44168173 6.47921853 4.05939813 0 4.52343132 0 Satb1 0 0 0 0 0 0 0 Sdpr 3.14060766 4.67747404 0 5.13849374 4.35123979 0 Sell 0 7.82142452 0 0 0 0 0 Sell 0 7.82142452 0 0 0 0 0 Slamf1 0 9.8509578 0 7.94976735 0 0 0 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659746 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.0244303 Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532 Stat3 11.3131951 9.57939384 9.0893893 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.56415776</td>							9.56415776
Rumx2 6.44168173 6.47921853 4.05939813 0 4.52343132 0 Satb1 0 0 0 0 0 0 0 0 Sdpr 3.14060766 4.67747404 0 5.13849374 4.35123979 0<	Rora	6.2784063	7.96217943	8.97191919	5.69747967	6.69619858	0
Satb1 0 0 0 0 0 0 Sdpr 3.14060766 4.67747404 0 5.13849374 4.35123979 0 Sell 0 7.82142452 0 0 0 0 Sfpi1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636508 Slamf1 0 9.8509578 0 7.94976735 0 0 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659744 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.0244303 Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532 Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.7666475 Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.971345 Stat4 10.8376458 10.2010288 8.49312223							9.3066077
Sdpr 3.14060766 4.67747404 0 5.13849374 4.35123979 0 Sell 0 7.82142452 0 0 0 0 Sfpi1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636508 Slamf1 0 9.8509578 0 7.94976735 0 0 0 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659744 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.024430: Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532: Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.766647: Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.971345: Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.9073288 Su212 9							
Sell 0 7.82142452 0 0 0 0 Sfpi1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636508 Slamf1 0 9.8509578 0 7.94976735 0 0 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659746 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.024430 Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532 Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.7666473 Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.9713255 Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.9073288 Suz12 9.41780703 9.04550097 8.43918223 9.35277641 7.40643256 8.9073288 Tcf3 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Sfpi1 9.44004137 10.6112564 9.57177198 9.73952896 7.67485892 9.1636508 Slamf1 0 9.8509578 0 7.94976735 0 0 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659746 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.0244303 Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532 Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.7666475 Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957333 8.9713452 Stat4 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.907328 Stu212 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.2094866 Tcf3 0 11.0694031 10.6447268 0 0 0 Tcf4							
Slamf1 0 9.8509578 0 7.94976735 0 0 Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659744 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.024430: Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532: Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.766647: Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.971345: Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.907328 Su212 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.209486 Tal1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.8049930 Tcf3 0 11.0694031 10.6447268 0 0 0 0 Tcf4							
Smarca4 9.67242674 11.3679625 10.9120144 8.33633778 9.38747622 8.9659746 Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.0244302 Stat1 5.68555984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532 Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.7666475 Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.9713455 Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.9073286 Suz12 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.2094866 Tef3 0 11.0694031 1.06447268 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463766 Tcf7 0 0 6.45746287 7.3858809 0 0 0 Tgb							
Sos1 6.73189286 7.18014773 6.17729215 2.57292994 0 5.024430: Stat1 5.6855984 3.02264624 7.3271143 5.35339745 0.83073004 3.291532: Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.766647: Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.971345: Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.907328(Suz12 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.209486 Taf1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.804993 Tcf3 0 1.0694031 10.6447268 0 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463762 Tcf7 0 0 4.47895555 0 0 0 0 Tcf8 <td></td> <td>9.67242674</td> <td></td> <td>10.9120144</td> <td></td> <td>9.38747622</td> <td>8.96597469</td>		9.67242674		10.9120144		9.38747622	8.96597469
Stat3 11.3131951 9.57939384 9.0893893 9.5064832 8.66288619 9.766647: Stat4 8.57556847 8.8178895 7.9582273 8.78864361 9.09957433 8.971345: Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.907328: Suz12 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.209486: Tal1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.8049930 Tcf3 0 11.0694031 10.6447268 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.346376: Tcf7 0 0 4.47895555 0 0 0 0 Tck 0 0 6.45746287 7.3858809 0 0 0 0 Tgfb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb3 7.477476	Sos1						5.02443057
Stat4 8.57556847 8.81788595 7.9582273 8.78864361 9.09957433 8.9713452 Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.907328 Suz12 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.209486 Tal1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.8049930 Tcf3 0 11.0694031 10.6447268 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463762 Tcf7 0 0 4.47895555 0 0 0.4202806 Tcf8 0 0 6.45746287 7.3858809 0 0 0 Tgfb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.29153215</td>							3.29153215
Stat6 10.8376145 10.2010288 8.49312223 9.35277641 7.40643256 8.9073286 Suz12 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.209486 Tal1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.8049930 Tcf3 0 11.0694031 10.6447268 0 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463760 Tcf7 0 0 4.47895555 0 0 0.4202800 Tek 0 0 6.45746287 7.3858809 0 0 0 0.4202800 Tfc 10.1334859 10.3260932 9.35672673 8.44227518 4.80666561 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.76664759</td>							9.76664759
Suz12 9.41780703 9.04550097 8.43918141 6.8443864 8.23939832 7.2094864 Tal1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.804993 Tcf3 0 11.0694031 10.6447268 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463767 Tcf7 0 0 4.47895555 0 0 0.4202800 Tck 0 0 6.45746287 7.3858809 0 0 0 Tck 0 0 6.45746287 7.3858809 0 0 0 Tcgb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 8.79652611 0 Tnfrsf1a 9.23838068 9.80031527 8.22142743 0 7.28814434							8.97134532
Tal1 0.36745858 3.76022412 1.90443062 1.20031735 0 1.8049936 Tcf3 0 11.0694031 10.6447268 0.4609901 8.3463767 0 0 0.4202806 0 0 0.4202806 0 0 0.4202806 0 0 0.4202806 0 0 0 0.4202806 0 0 0 0.4202806 0 0 0.4202806 0 0 0 0.4202806 0 0 0 0.4202806 0 0 0 0 0.4202806 0 <							
Tcf3 0 11.0694031 10.6447268 0 0 0 Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463762 Tcf7 0 0 4.47895555 0 0 0.4202800 Tck 0 0 6.45746287 7.3858809 0 0 0 Tfbc 10.1334859 10.3260932 9.35672673 8.44227518 4.80666561 0 Tgfb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 8.79652611 0 Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156059 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.906526 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253							1.80499304
Tcf4 10.6969499 10.046866 9.90816861 9.69613559 10.4609901 8.3463762 Tcf7 0 0 4.47895555 0 0 0.4202806 Tck 0 0 6.45746287 7.3858809 0 0 0 Tfrc 10.1334859 10.3260932 9.35672673 8.44227518 4.80666561 0							
Tcf7 0 0 4.47895555 0 0 0.4202806 Tek 0 0 6.45746287 7.3858809 0 0 Tfrc 10.1334859 10.3260932 9.35672673 8.44227518 4.80666561 0 Tgfb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 8.79652611 0 Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156055 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.908652 Tnfrsf21 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056							8.34637629
Tfrc 10.1334859 10.3260932 9.35672673 8.44227518 4.80666561 0 Tgfb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 8.79652611 0 Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156059 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.9086527 Tnfrsf1c 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056		0	0			0	0.42028063
Tgfb1 0 6.89665934 5.8186116 6.7222637 0.76900814 0 Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 8.79652611 0 Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156059 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.9086527 Tnfrsf12 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468050							
Tgfb2 4.82881658 0 0 0 0 0 Tgfb3 7.47747614 8.54176509 0 0 8.79652611 0 Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156055 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.908652 Tnfrsf21 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056							
Tgfb3 7.47747614 8.54176509 0 8.79652611 0 Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156055 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.908652 Tnfrsf21 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056							
Tnfrsf1a 9.39147825 10.7935619 9.25501158 9.89472761 8.6880689 8.3156059 Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.908652° Tnfrsf21 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.060078 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468050							
Tnfrsf1b 9.23838068 9.80031527 8.22142743 0 7.28814434 7.908652 Tnfrsf21 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056							
Tnfrsf21 6.28949914 5.97728009 5.19350171 5.57452029 4.50016048 0 Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056							7.90865273
Tnfsf10 7.22789618 7.36848679 6.75517567 7.16478253 0 7.0600786 Tnfsf12 0 4.3060738 0 4.85239643 0 2.0468056							
							7.06007861
Tob1 1.76727829 0 0 1.31719975 0 5.2297109	Tnfsf12		4.3060738	0	4.85239643	0	2.04680563
	Tob1	1.76727829	0	0	1.31719975	0	5.22971098

TABLE 8-5-continued

	~		n data (reduced	1100) 111000		
	iHSC-8-	iHSC-8-	iHSC-8-	iHSC-8-	iHSC-8-	iHSC-8-
Factor	TF-Poly25	TF-Poly26	TF-Poly27	TF-Poly28	TF-Poly29	TF-Poly30
vWF	4.32082285	6.06693197	0	5.71670619	6.04694734	5.12273794
Zbtb20	8.1961861	9.72922487	8.03051751	9.40713548	7.57941477	7.38691184
Zbtb38	7.5702152	9.54076295	6.6697548	7.46445387	6.53307434	7.23318321
Zfp532	0	0	0	0	5.04108384	5.18050424
Zfp612	5.72138328	8.03852538	5.85275553	5.51442076	5.97875939	8.22421158
Zfpm1	0	6.44875688	6.30023725	0	1.71015037	0
Zhx2	9.12067496	8.78641727	0	8.48763196	0	0

TABLE 8-6

	Single cell expression data (reduced list)-iHSC-8-TF-Poly						
Factor	iHSC-8- TF-Poly31	iHSC-8- TF-Poly32	iHSC-8-TF- Poly33	iHSC-8-TF- Poly34	iHSC-8-TF- Poly35		
Actb	14.2069371	13.8470594	13.8401959	13.917789	15.1280325		
Aebp2	5.98889731	6.37700771	7.03385188	7.32807418	5.967507558		
Ahr	0	7.35587653	7.14024783	0	7.726173885		
Ala1	9.63022936	9.79043235	8.92541514	10.255464	10.06829133		
Akt2	4.7739806	6.20050837	0	6.6173956	6.266455938		
Akt3	7.83294768	7.93223254	7.33454157	7.96075903	7.609211364		
APC	7.03824303	2.01225823	7.3738631	6.86740225	0		
Bad	0	0	0	0	0		
Bax	7.92377163	9.35241369	8.79541456	10.1556033	9.298454044		
Bcl11a	6.79087658	9.42268001	0	5.94056	9.650354382		
Bcl11b	0	7.91342229	0	0	0		
Bcl2	7.71843033	4.37394315	3.67661636	6.48782736	6.12384282		
Bcl2l1	7.32275084	8.01987482	8.88727066	10.3391458	5.482050078		
Bcl2l11	5.79196834	7.61927617	0	0	7.954405054		
Bmi1	8.81392639	9.20924156	9.08236893	0	8.889304656		
Brd3	7.23409493	7.45401462	5.51991989	8.04268652	7.389789509		
Casp8	7.67563079	8.20820007	6.55654411	7.54337459	8.32215887		
Casp9	0	0	8.99779312	4.59384186	5.848587768		
Cbx2	1.44235903	5.10087886	3.11514136	4.33721335	7.198562206		
Cbx8	0	0	0	0	0		
Cene	6.39235909	2.98958517	6.90788079	8.33600559	0		
Ccnd1	9.85365523	9.35220323	10.3423931	10.596546	10.3258133		
Ccne2	0	0	0	0	0		
CD34	8.18588751	7.74906415	7.26970785	0	7.499624637		
CD41	9.13809414	0	2.48229859	9.03163232	2.624405589		
CD48	0	0	0	0	0		
CD52	0	0	0	0	0		
CD53	9.41977885	9.65013579	7.29556871	0	7.157577428		
CD55	8.06965354	6.20993378	0	0	8.314622092		
CD63	8.2891293	8.70844929	8.28276973	7.95614666	7.974507291		
CD9	5.61055111	8.76259165	7.38090105	9.05799841	7.984779418		
Cdc42	11.6414373	11.5413516	11.8105407	12.0218361	12.15037822		
Cdk1	0	0	5.92738978	6.4822881	0		
Cdk4	9.11192333	8.53731642	7.38211559	9.25948872	8.7744804		
Cdkn2b	0	2.02544167	0	0	0		
Cebpa	0	0	0	1.76275336	0		
Csf1r	0	0	0	0	0		
Ctnnb1	8.53778061	8.99449917	8.50354705	8.54550946	8.150621469		
Cycs	8.74992664	9.3211739	7.56416714	11.6306877	9.73444361		
Dach1	10.2255054	8.13381132	9.01635767	9.67564058	9.403674066		
Dnmt1	7.06488647	8.20709121	5.48806315	10.7511069	9.291062883		
Dnmt3a	9.34089662	10.5431275	9.68146699	9.67721509	9.574078858		
Dnmt3b	7.10396864	7.14264453	0	8.67608269	8.398086808		
Dtx1	0	3.92664652	0	0	1.079050232		
Dtx4	0	0	6.49224019	0	7.288080256		
Ebf1	0	0	0	0	0		
Ep300	8.96510963	9.64835081	9.30091348	8.39112866	8.866505918		
Epor	7.23361451	8.89683938	8.61954912	7.62063998	8.194140038		
Erg	9.8355606	10.6000491	9.47258834	9.6821144	10.01801557		
Esr1	6.30347997	5.64608692	9.59441989	0	7.287947864		
ETS1	6.09111489	6.98717296	7.45969571	6.50362082	5.966052941		
ETS2	8.21354447	9.19096881	1.88892339	8.82189923	7.475011402		
Etv3	2.96178532	5.48992927	4.14441284	0	2.046570736		
Etv6	10.858902	10.7925323	9.17798475	10.4215528	8.441479121		

TABLE 8-6-continued

HSC-8	Single cell expression data (reduced list)-iHSC-8-TF-Poly						
Factor							
Fas 0 0 0 0 0 0 7.0767 Fegr²b 6.88075674 5.54617113 7.14891342 0 5.20764 5.20764 Fegr³b 0 7.00826514 2.35530291 0 0 5.20764 Flil 10.4691328 10.6639924 10.8692473 10.8916346 11.73795 Flil 7.70280609 0 <th></th>							
Fegr2b 6.88075674 5.54617113 7.14891342 0 5.20764 Fegr3 0 7.00826514 2.35530291 0 0 0 Fli1 10.4691328 10.6639924 10.8692473 10.8916346 11.73795 Flt3 7.70280609 0 0 0 7.93834953 0 Fox01 9.88312231 9.91869001 9.41788508 9.980959 9.03225 Fox03 8.9575813 9.11938907 5.14307614 6.31778497 8.26968 Gapdh 7.77415605 8.26157075 7.66942984 7.99106849 8.40771 Gata1 0 0 0 9.41402438 0 Gata2 7.15464892 7.34496127 8.49543986 7.32606855 6.6668 Gfi1 3.66002454 10.3420315 3.3332712 0 9.13521 Gfi1 3.66002454 10.3420315 3.3332712 0 9.13521 Gfi1 9.767979 11.33333543 10.0480033 5.45401024 <td< td=""><td>4812</td></td<>	4812						
Fegr3 0 7.00826514 2.35530291 0 0 Fli1 10.4691328 10.6639924 10.8692473 10.8916346 11.73795 Flt3 7.70280609 0 0 0 0 0 Foxol 9.88312231 9.91869001 9.41788508 9.980959 9.03225 Foxol 9.88312231 9.91869001 9.41788508 9.980959 9.03225 Foxol 9.88312231 9.91869001 9.41788508 9.980959 9.03225 Foxol 9.831245 9.11938807 5.14307614 6.31778497 8.26968 Gapdh 7.77415605 8.26157075 7.66942984 7.99106849 8.40771 Gata 7.15464892 7.34496127 8.49543986 7.32606885 6.66669 Gata 3.6002454 10.3420315 3.3332712 0 9.13521 Gfil 3.6002454 10.3420315 3.3332712 0 0 10 Hes5 0 0 0 0 0.6491366	6663						
Fili 10,4691328 10,6639924 10,8692473 10,8916346 11,73795 Fili3 7,70280609 0 0 0 7,93834953 0 Foxol 9,88312231 9,91869001 9,41788508 9,980959 9,03225 Foxo3 8,9575813 9,11938907 5,14307614 6,31778497 8,26968 Gapdh 7,77415605 8,26157075 7,66942984 7,99106849 8,40771 Gatal 0 0 0 9,41402438 0 0 0 0,616937746 0 0 0 0 0,616937746 0 0 0 0 0,616937746 0 0 0 0 0,616937746 0 0 0 0 0,616937746 0 0 0 0 0,60415365 0 0 0 0 0 0,60415365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3003						
Fost1 0 0 7.93834953 0 Foxo1 9.88312231 9.91869001 9.41788508 9.980959 9.03225 Foxo3 8.9575813 9.11938907 5.14307614 6.31778497 8.26968 Gapdh 7.77415605 8.26157075 7.66942984 7.99106849 8.40771 Gata1 0 0 9.41402438 0 Gata2 7.15464892 7.34496127 8.49543986 7.3260685 6.66669 Gata3 8.87820207 6.20110618 8.30533556 6.87821567 10.13942 Gfil 1 3.66002454 10.3420315 3.3332712 0 9.13521 OHest 0 0 0 0.16937746 0 Hers 0 0 0 0.16937746 0 Hers 0 0 0 0.17937746 0 Hers 0 0 0 0.17937746 0 16203 11.0839141 12.322849 11.1353627 0	664						
Foxol 9.88312231 9.91869001 9.41788508 9.980959 9.03225 Foxo3 8.9575813 9.11938907 5.14307614 6.31778497 8.26968 Gapdh 7.77415605 8.26157075 7.66942984 7.99106849 8.40771 Gatal 0 0 0 9.41402438 0 Gatal 0 0 0 9.41402438 0 Gatal 3.66002454 10.3420315 3.335356 6.87821567 10.13942 Gfilb 9.7202357 0 7.68331245 7.60509615 0 Hess 0 0 0 0 0 Heys 0 0 0 0 0 Id2 0							
Foxo3 8.9575813 9.11938907 5.14307614 6.31778497 8.26968 Gapdh 7.7741505 8.26157075 7.66942984 7.99106849 8.40771 Gata1 0 0 9.41402438 0 Gata2 7.15464892 7.34496127 8.49543986 7.32606855 6.66669 Gata3 8.87820207 6.20110618 8.30533556 6.87821567 10.13942 Gfil 3.66002454 10.3420315 3.3332712 0 0 0 Gfilb 9.7202357 0 7.68331245 7.60509615 0 Hess 0 0 0 0.16937746 0 Heyl 0 0 0 0.16937746 0 Id2 0 1.73028986 2.9821102 0 0 0 Id2 0 1.73028986 2.9821102 0 0 0 0 Ifi203 11.0839141 12.322849 11.1353627 0 11.36781 16208 18244566 <td>9159</td>	9159						
Gata1 0 0 0 9.41402438 0 Gata2 7.15464892 7.34496127 8.49543986 7.32606855 6.66669 Gata3 8.87820207 6.20110618 8.30533556 6.87821567 10.13942 Gfil 3.66002454 10.3420315 3.3332712 0 9.13521 Gfilb 9.7202357 0 7.68331245 7.60509615 0 Hes5 0 0 0 0 0 Hey1 0 0 0 0.16937746 0 HHr 9.6974979 11.3333543 10.0480033 5.45401024 10.71087 Id2 0 1.73028986 2.9821102 0 0 0 Ifi203 11.0839141 12.322849 11.1353627 0 11.36781 Ifi203 11.0839141 12.322849 11.1353627 0 0 0 Ikzf1 4.65390199 9.36172059 8.32379103 9.23805477 9.11765 Ikzf2 8.							
Gata2 7.15464892 7.34496127 8.49543986 7.32606855 6.66669 Gata3 8.87820207 6.20110618 8.30533556 6.87821567 10.13942 Gfilb 9.7202357 0 7.68331245 7.60509615 0 Hess 0 0 0 0 0 Heyl 0 0 0 0.16937746 0 Heyl 0 0 0 0.16937746 0 Heyl 0 0 0.16937746 0 0 Heyl 0 0 0.16937746 0 0 Hilf 9.6974979 11.3333543 10.0480033 5.45401024 10.71087 Id2 0 1.73028986 2.9821102 0 0 0 If6203 11.0839141 12.322849 11.1353627 0 11.36781 If6205 0 0.60415365 0 0 0 0 Ikzf1 4.65390199 9.36172059 8.32379103	1578						
Gata3 8.87820207 6.20110618 8.30533556 6.87821567 10.13942 Gfil1 3.66002454 10.3420315 3.3332712 0 9.13521 Gfilb 9.7202357 0 7.68331245 7.60509615 0 Hes5 0 0 0 0 0 Hey1 0 0 0 0.16937746 0 Hif1 9.6974979 11.3333543 10.0480033 5.45401024 10.71087 Id2 0 1.73028986 2.9821102 0 0 Ifi203 11.0839141 12.322849 11.1353627 0 11.36781 Ifi205 0 0.60415365 0 0 0 0 Ifizrl1 11.7471245 14.7096222 13.8201159 10.3244566 12.69088 Ikzfl2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 Il7R 0 0 0 0 0 0 Irf4 0 0	0161						
Gfi1 3.66002454 10.3420315 3.3332712 0 9.13521 Gfi1b 9.7202357 0 7.68331245 7.60509615 0 Hes5 0 0 0 0 0 Hey1 0 0 0 0.16937746 0 HIF 9.6974979 11.3333543 10.0480033 5.45401024 10.71087 Id2 0 1.73028986 2.9821102 0 0 Id203 11.0839141 12.322849 11.1353627 0 11.36781 Ifi203 0 0.60415365 0 0 0 0 Ifitm1 11.7471245 14.7096222 13.8201159 10.3244566 12.69088 Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 IrR 0 0 0 0 0 0 IrR 0 0 <t< td=""><td></td></t<>							
Hes5							
Heyl							
HIÍ							
Id2 0 1.73028986 2.9821102 0 0 Ifi203 11.0839141 12.322849 11.1353627 0 11.36781 Ifi205 0 0.60415365 0 0 0 Ifitm1 11.7471245 14.7096222 13.8201159 10.3244566 12.69088 Ikzf1 4.65390199 9.36172059 8.32379103 9.23805477 9.11765 Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 Il7R 0 0 0 0 0 0 Irf4 0 0 0 0 0 0 Irf8 4.17972502 5.19690275 0 0 0 0 Kdr 0 6.4546143 0 0 0 0 Kif1 0 0 0 0 0 0 Kif1 0 0 0 0 0 Kif1 0 0 0 0	925						
Ifi205 0 0.60415365 0 0 0 Ifitm1 11.7471245 14.7096222 13.8201159 10.3244566 12.69088 Ikzf1 4.65390199 9.36172059 8.32379103 9.23805477 9.11765 Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 Il7R 0 0 0 0 0 Irf4 0 0 0 0 0 Irf8 4.17972502 0 6.20746303 1.90705149 0 Kdr 0 6.4546143 0 0 0 0 Kir 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf10 0 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lmo2 10.2921708 10.7989969 </td <td></td>							
Ifim1 11.7471245 14.7096222 13.8201159 10.3244566 12.69088 Ikzf1 4.65390199 9.36172059 8.32379103 9.23805477 9.11765 Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 Il7R 0 0 0 0 0 Irf4 0 0 0 0 0 Irf6 4.55947022 0 6.20746303 1.90705149 0 Irf8 4.17972502 5.19690275 0 0 1.16890 Kdr 0 6.4546143 0 0 0 0 Kirt 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf1 0 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lmo2 10.2921708	538						
Ikzf1 4.65390199 9.36172059 8.32379103 9.23805477 9.11765 Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 Il7R 0 0 0 0 0 Irf4 0 0 0 0 0 Irf6 4.55947022 0 6.20746303 1.90705149 0 Irf8 4.17972502 5.19690275 0 0 1.16890 Kdr 0 6.4546143 0 0 0 0 Kit 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf1 0 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969	657						
Ikzf2 8.1800366 9.34772631 8.67384155 7.5997184 7.63386 II7R 0 0 0 0 0 Irf4 0 0 0 0 0 Irf6 4.55947022 0 6.20746303 1.90705149 0 Irf8 4.17972502 5.19690275 0 0 1.16890 Kdr 0 6.4546143 0 0 0 Kir 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf1 0 0 0 0 0 Klf1 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Lyl 5.64299125 8.39061157 8.05543657							
Irf4 0 0 0 0 Irf6 4.55947022 0 6.20746303 1.90705149 0 Irf8 4.17972502 5.19690275 0 0 1.16890 Kdr 0 6.45446143 0 0 0 Kit 10.568118 10.7326629 9.66035824 10.235182 10.49875 Kif1 0 0 0 0 0 0 Kif12 7.90580132 8.82046599 6.9604333 0 4.79997 Lidb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Ly11 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 <td></td>							
Irf6 4.55947022 0 6.20746303 1.90705149 0 Irf8 4.17972502 5.19690275 0 0 1.16890 Kdr 0 6.4546143 0 0 0 Kit 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf1 0 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Ly11 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Mcis1							
Irf8 4.17972502 5.19690275 0 0 1.16890 Kdr 0 6.4546143 0 0 0 Kit 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf1 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Ly11 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Mpl							
Kdr 0 6.4546143 0 0 0 Kit 10.568118 10.7326629 9.66035824 10.235182 10.49875 Klf1 0 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Lyl1 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Mllt3 4.68195721 7.14795197 0 0 0	8887						
Klf1 0 0 0 0 0 Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Ly11 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Mllt3 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 <td></td>							
Klf12 7.90580132 8.82046599 6.9604333 0 4.79997 Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Ly11 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Mcis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Mll13 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.53858	083						
Ldb1 10.1435572 10.8500431 9.02813399 10.0262901 10.57537 Lin28a 2.01835712 0 7.60463245 7.26719796 7.05677 Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Lyl1 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Mllt3 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.24777	8707						
Lmo2 10.2921708 10.7989969 10.2263373 10.2137336 10.88135 Ly6a 9.83101715 10.8834217 10.9471589 7.0165923 8.63292 Ly11 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10889289 9.11887 Milt3 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Lyl1 5.64299125 8.39061157 8.05543657 0 6.93753 Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Millt3 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
Mbd2 7.43457425 9.26608484 9.03952586 9.2082395 8.43686 Meis1 7.17124275 8.43708101 8.22260057 9.10089289 9.11887 Mllt3 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
Milt3 4.68195721 7.14795197 0 0 0 Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Mucl3 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
Mpl 8.08112178 11.2655793 8.31206648 8.38505498 10.42540 Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953	556						
Muc13 7.69684641 8.740324 7.23849573 9.18630096 9.03277 Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953	522						
Myb 10.8533459 12.0368698 11.2785518 11.5385888 11.07370 Myc 10.6275942 0 7.98150016 10.2477795 0 Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
Mycn 11.5919441 13.7950767 13.0318118 11.572173 9.88432 Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
Ndn 7.40457998 10.7183908 8.75991643 0 9.66450 Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
Nfat5 9.91314435 11.3027566 10.3793203 9.5179896 9.77953							
11110 1.17221107 10.0031011 7.00043003 0.3041311 9.02341							
Nfkb1 5.30418245 4.7738356 0 2.24245044 0							
Notch1 0 0 8.15000269 0 7.57306 Pax4 0 0 0 0 0	/604						
Pax5 6.27471676 0 0 0							
Pax9 0 0 0 0							
Pbx1 2.98370939 0 5.09401103 0 4.38836							
PIk3ca 8.75259112 8.2331466 9.04017873 8.40060398 8.48097 PIk3R2 5.26485409 8.45942473 7.82585643 7.39316382 9.39304							
Plag1 0 7.30362382 0 7.34771911 9.10689							
Prf1 0 1.7040015 1.56236886 0 0							
Pten 8.31345133 10.2695925 9.97217513 9.13715083 10.61329							
Rb1 9.95763649 9.79666893 7.99445736 9.2214006 9.48272 Rora 0 6.56427305 5.64107699 4.56057422 6.33111							
Runx1 0 8.14608613 8.71941715 8.19287364 7.87052							
Runx2 5.34834113 4.59771607 3.47214128 0 5.55146	3025						
Satb1 0 0 0 0 0 0 0 Sdpr 3.37648888 5.96772223 4.92952477 6.2586625 0.44092	2771						
Sdpr 3.37648888 5.96772223 4.92952477 6.2586625 0.44092 Sell 0 0 0 0 0	£//1						
Sfpi1 8.60729629 8.1629534 8.63327996 0 9.70290	6322						
Slamf1 8.18217953 8.5258681 9.31528985 0 0							
Smarca4 9.34699951 9.96472508 9.88851572 10.4282604 9.60873							
Sos1 5.09407549 6.03558245 5.61700797 6.34922122 5.07425 Stat1 1.59542643 3.04779271 4.03139248 2.14901292 1.71335							
Stat3 9.68231911 10.8000054 9.77728389 8.12814266 9.35654							

TABLE	8-6-con	tinued
--------------	---------	--------

	Sing	gle cell expression d	ata (reduced list)-iH	SC-8-TF-Poly	
Factor	iHSC-8- TF-Poly31	iHSC-8- TF-Poly32	iHSC-8-TF- Poly33	iHSC-8-TF- Poly34	iHSC-8-TF- Poly35
Stat4	9.03078852	8.81875947	9.7628284	9.23753873	9.345223627
Stat6	8.80712329	10.4891182	8.86298599	9.36542993	9.506915587
Suz12	9.14292326	7.20766953	7.75046294	8.75372748	8.5960251
Tal 1	2.01130091	0.68276644	6.73023432	2.3305105	3.375132509
Tcf3	10.2607205	0	10.2753363	0	9.495266453
Tcf4	9.35302065	9.01808097	10.5037967	9.43819789	10.19593089
Tcf7	0	0	0	0	2.167615009
Tek	0	7.96828571	0	0	0
Tfrc	10.289075	9.33491809	0	8.98476872	8.421750863
Tgfb1	0	0	1.58449749	3.70605263	0
Tgfb2	0	6.77707617	0	3.27306737	0
Tgfb3	7.58607476	0	0	0	0
Tnfrsf1a	10.1591524	9.83805082	9.98992194	8.08094003	9.174520259
Tnfrsf1b	9.13727	7.96181671	7.64996091	8.33642919	8.933678342
Tnfrsf21	5.11707811	5.6723159	2.99946137	5.63253583	4.286614066
Tnfsf10	4.56651794	7.36235451	6.96023501	0	0
Tnfsf12	0	0	0	0	0
Tob1	0	7.90731485	0	5.34587986	6.280356776
vWF	5.50820839	7.20387901	7.86788155	7.34146511	6.367927725
Zbtb20	9.56374662	9.76898114	9.31718552	6.40168708	9.092322576
Zbtb38	7.131271	8.33887914	7.67573354	5.98684877	7.925976084
Zfp532	0	0	0	0	0
Zfp612	7.37417759	7.21875833	8.50575865	7.70407891	7.488313843
Zfpm1	0	0	0	0	0
Zhx2	8.5972312	0	8.15875098	0	7.312382961

REFERENCES FOR EXAMPLE 2

- [1193] Bock, C., Beerman, I., Lien, W. H., Smith, Z. D., Gu, H., Boyle, P., Gnirke, A., Fuchs, E., Rossi, D. J., and Meissner, A. (2012). Mol Cell 47, 633-647.
- [1194] Boehm, T., Foroni, L., Kaneko, Y., Perutz, M. F., and Rabbitts, T. H. (1991). Proc Natl Acad Sci USA 88, 4367-4371.
- [1195] Briggs, R., and King, T. J. (1952). Proc Natl Acad Sci USA 38, 455-463.
- [1196] Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., and Bishop, J. M. (1984). Science 224, 1121-1124.
- [1197] Campbell, K. H., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996). Nature 380, 64-66.
- [1198] Choi, J., Costa, M. L., Mermelstein, C. S., Chagas, C., Holtzer, S., and Holtzer, H. (1990). Proc Natl Acad Sci USA 87, 7988-7992.
- [1199] Choi, K. D., Vodyanik, M. A., and Slukvin, II (2009). J Clin Invest 119, 2818-2829.
- [1200] Cobaleda, C., Jochum, W., and Busslinger, M. (2007). Nature 449, 473-477.
- [1201] Copelan, E. A. (2006). N Engl J Med 354, 1813-1826.
- [1202] Davis, R. L., Weintraub, H., and Lassar, A. B. (1987). Cell 51, 987-1000.
- [1203] Doulatov, S., Vo, L. T., Chou, S. S., Kim, P. G., Arora, N., Li, H., Hadland, B. K., Bernstein, I. D., Collins, J. J., Zon, L. I., et al. (2013) Cell Stem Cell 13, 459-470.
- [1204] Erickson, P., Gao, J., Chang, K. S., Look, T., Whisenant, E., Raimondi, S., Lasher, R., Trujillo, J., Rowley, J., and Drabkin, H. (1992). Blood 80, 1825-1831.
- [1205] Ficara, F., Murphy, M. J., Lin, M., and Cleary, M. L. (2008). Cell Stem Cell 2, 484-496.
- [1206] Garcon, L., Ge, J., Manjunath, S. H., Mills, J. A., Apicella, M., Parikh, S., Sullivan, L. M., Podsakoff, G. M., Gadue, P., French, D. L., et al. (2013). Blood 122, 912-921.

- [1207] Gazit, R., Garrison, B. S., Rao, T. N., Shay, T., Costello, J. F., Erikson, J., Collins, J. J., Regev, A., Wagers, A., and Rossi, D. J. (2013) Stem Cell Reports Vol. 1, issue 3, 266-280.
- [1208] Gratwohl, A., Baldomero, H., Aljurf, M., Pasquini, M. C., Bouzas, L. F., Yoshimi, A., Szer, J., Lipton, J., Schwendener, A., Gratwohl, M., et al. (2010). JAMA 303, 1617-1624.
- [1209] Guo, G., Luc, S., Marco, E., Lin, T. W., Peng, C., Kerenyi, M. A., Beyaz, S., Kim, W., Xu, J., Das, P. P., et al. (2013). Cell Stem Cell.
- [1210] Gurdon, J. B., and Uehlinger, V. (1966). Nature 210, 1240-1241.
- [1211] Hanna, J., Markoulaki, S., Schorderet, P., Carey, B. W., Beard, C., Wernig, M., Creyghton, M. P., Steine, E. J., Cassady, J. P., Foreman, R., et al. (2008). Cell 133, 250-264
- [1212] Hisa, T., Spence, S. E., Rachel, R. A., Fujita, M., Nakamura, T., Ward, J. M., Devor-Henneman, D. E., Saiki, Y., Kutsuna, H., Tessarollo, L., et al. (2004). Embo J 23, 450-459
- [1213] Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., and Srivastava, D. (2010). Cell 142, 375-386.
- [1214] Inaba, T., Roberts, W. M., Shapiro, L. H., Jolly, K. W., Raimondi, S. C., Smith, S. D., and Look, A. T. (1992). Science 257, 531-534.
- [1215] Iwasaki, H., Mizuno, S., Arinobu, Y., Ozawa, H., Mori, Y., Shigematsu, H., Takatsu, K., Tenen, D. G., and Akashi, K. (2006). Genes Dev 20, 3010-3021.
- [1216] Kamps, M. P., Look, A. T., and Baltimore, D. (1991). Genes Dev 5, 358-368.
- [1217] Kennedy, M., Awong, G., Sturgeon, C. M., Ditadi, A., LaMotte-Mohs, R., Zuniga-Pflucker, J. C., and Keller, G. (2012). Cell reports 2, 1722-1735.

- [1218] Kocabas, F., Zheng, J., Thet, S., Copeland, N. G., Jenkins, N. A., Deberardinis, R. J., Zhang, C., and Sadek, H. A. (2012). Blood.
- [1219] Kondo, M., Scherer, D. C., Miyamoto, T., King, A. G., Akashi, K., Sugamura, K., and Weissman, I. L. (2000). Nature 407, 383-386.
- [1220] Kubota, Y., Osawa, M., Jakt, L. M., Yoshikawa, K., and Nishikawa, S. (2009). Blood 114, 4383-4392.
- [1221] Laiosa, C. V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., and Graf, T. (2006). Immunity 25, 731-744.
- [1222] Laurenti, E., Varnum-Finney, B., Wilson, A., Ferrero, I., Blanco-Bose, W. E., Ehninger, A., Knoepfler, P. S., Cheng, P. F., et al. (2008). Cell Stem Cell 3, 611-624.
- [1223] Mali, P., Ye, Z., Hommond, H. H., Yu, X., Lin, J., Chen, G., Zou, J., and Cheng, L. (2008). Stem Cells 26, 1998-2005.
- [1224] Marx, J. L. (1984). The N-myc oncogene in neural tumors. Science 224, 1088.
- [1225] McCormack, M. P., Young, L. F., Vasudevan, S., de Graaf, C. A., Codrington, R., Rabbitts, T. H., Jane, S. M., and Curtis, D. J. (2010). Science 327, 879-883.
- [1226] Min, I. M., Pietramaggiori, G., Kim, F S, Passegue, E., Stevenson, K. E., and Wagers, A. J. (2008). Cell Stem Cell 2, 380-391.
- [1227] Moskow, J. J., Bullrich, F., Huebner, K., Daar, I. O., and Buchberg, A. M. (1995). Mol Cell Biol 15, 5434-5443.
- [1228] Mostoslaysky, G., Kotton, D. N., Fabian, A. J., Gray, J. T., Lee, J. S., and Mulligan, R. C. (2005). Mol Ther 11, 932-940.
- [1229] Muller, L. U., Milsom, M. D., Harris, C. E., Vyas, R., Brumme, K. M., Parmar, K., Moreau, L. A., Schambach, A., Park, I. H., London, W. B., et al. (2012). Blood 119, 5449-5457.
- [1230] Najm, F. J., Lager, A. M., Zaremba, A., Wyatt, K., Caprariello, A. V., Factor, D. C., Karl, R. T., Maeda, T., Miller, R. H., and Tesar, P. J. (2013). Nat Biotechnol 31, 426-433.
- [1231] Niu, W., Zang, T., Zou, Y., Fang, S., Smith, D. K., Bachoo, R., and Zhang, C. L. (2013). Nat Cell Biol 15, 1164-1175.
- [1232] Okita, K., Ichisaka, T., and Yamanaka, S. (2007 Nature 448, 313-317.
- [1233] Orkin, S. H., and Zon, L. I. (2008). Cell 132, 631-644.
- [1234] Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T. C., et al. (2011). Nature 476, 220-223.
- [1235] Pereira, C. F., Chang, B., Qiu, J., Niu, X., Papat-senko, D., Hendry, C. E., Clark, N. R., Nomura-Kitabayashi, A., Kovacic, J. C., Ma'ayan, A., et al. (2013). Cell Stem Cell.
- [1236] Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., Tan, K. Y., Apostolou, E., Stadtfeld, M., Li, Y., Shioda, T., et al. (2010 Nat Biotechnol 28, 848-855.
- [1237] Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., Conway, S. J., Fu, J. D., and Srivastava, D. (2012). Nature 485, 593-598.
- [1238] Song, K., Nam, Y. J., Luo, X., Qi, X., Tan, W., Huang, G. N., Acharya, A., Smith, C. L., Tallquist, M. D., Neilson, E. G., et al. (2012). Nature 485, 599-604.
- [1239] Sturgeon, C. M., Ditadi, A., Clarke, R. L., and Keller, G. (2013). Nat Biotechnol 31, 416-418.

- [1240] Szabo, E., Rampalli, S., Risueno, R. M., Schnerch, A., Mitchell, R., Fiebig-Comyn, A., Levadoux-Martin, M., and Bhatia, M. (2010). Nature 468, 521-526.
- [1241] Taghon, T., Yui, M. A., and Rothenberg, E. V. (2007). Nat Immunol 8, 845-855.
- [1242] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Cell 131, 861-872.
- [1243] Takahashi, K., and Yamanaka, S. (2006). Cell 126, 663-676.
- [1244] Tulpule, A., Kelley, J. M., Lensch, M. W., McPherson, J., Park, I. H., Hartung, O., Nakamura, T., Schlaeger, T. M., Shimamura, A., and Daley, G. Q. (2013). Cell Stem Cell 12, 727-736.
- [1245] Unnisa, Z., Clark, J. P., Roychoudhury, J., Thomas, E., Tessarollo, L., Copeland, N. G., Jenkins, N. A., Grimes, H. L., and Kumar, A. R. (2012). Blood 120, 4973-4981.
- [1246] Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041.
- [1247] Warren, A. J., Colledge, W. H., Carlton, M. B., Evans, M. J., Smith, A. J., and Rabbitts, T. H. (1994). Cell 78, 45-57.
- [1248] Winkler, T., Hong, S. G., Decker, J. E., Morgan, M. J., Wu, C., Hughes, W. M. t., Yang, Y., Wangsa, D., Padilla-Nash, H. M., Ried, T., et al. (2013). J Clin Invest 123, 1952-1963.
- [1249] Xie, H., Ye, M., Feng, R., and Graf, T. (2004). Cell 117, 663-676.
- [1250] Yamada, Y., Warren, A. J., Dobson, C., Forster, A., Pannell, R., and Rabbitts, T. H. (1998). Proc Natl Acad Sci USA 95, 3890-3895.
- [1251] Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., Hawkins, J. S., Geissler, R., Barres, B. A., and Wernig, M. (2013). Nat Biotechnol 31, 434-439.
- [1252] Ye, L., Chang, J. C., Lin, C., Sun, X., Yu, J., and Kan, Y. W. (2009). Proc Natl Acad Sci USA 106, 9826-9830.
- [1253] Yuasa, H., Oike, Y., Iwama, A., Nishikata, I., Sugiyama, D., Perkins, A., Mucenski, M. L., Suda, T., and Morishita, K. (2005). Embo J 24, 1976-1987.
- [1254] Zhou, Q., et al. (2008). Nature 455, 627-632.
- [1255] Zhou, Q., and Melton, D. A. (2008). Cell Stem Cell 3, 382-388.

Example 3

- [1256] Radioprotection transplantation assays performed using donor-derived MEPs (Na Nakorn, J Clin Invest. 2002, 109(12), 1579-85) confirmed a robust ability to give rise to platelets and red blood cells in vivo (FIGS. 72B-C).
- [1257] In addition to sustained self-renewal potential, a hallmark property of HSCs is their ability to give rise to multi-lineage differentiation at the clonal level. Although we had observed clonal multi-lineage differentiation potential in vitro after induction of our factors (FIGS. 60B-C), our in vivo transplantation experiments, which were done at the population level, precluded us from concluding clonal differentiation potential in vivo. We reasoned that Ig heavy chain rearrangements arising in Pro/Pre B-cells could be used as a lineage-tracing tool, and that the presence of common V(D)J rearrangements in different donor-derived lineages in our transplantation experiments could provide evidence of clonal multi-lineage differentiation potential. We therefore isolated

DNA from sorted donor-derived B- and T-cells, granulocytes, and macrophage/monocytes from primary recipients exhibiting long-term multi-lineage reconstitution derived from Pro/ Pre B-cells transduced with the 8-TF^{Poly} viral cocktail. Ig heavy chain-specific PCR spanning the V(D)J junction was then performed and selected products common in size to all lineages were gel purified, cloned and sequenced. This analysis revealed the presence of V(D)J rearrangements common to all of the donor-derived lineages we analyzed from two independent experiments, indicating multi-lineage differentiation potential from clonal reprogrammed Pro/Pre B-cells (FIG. 71A). That single reprogrammed cells possessed multilineage differentiation potential in vivo was further confirmed using a LAM-PCR-based approach, which revealed common viral integration sites in sorted donor-derived B-, T-, and myeloid cells (not shown). To test if reprogrammed cells sustained multi-lineage differentiation capacity during serial transplantation, we analyzed V(D)J junctions and viral integration via LAM-PCR on sorted donor-derived B-, T- and myeloid cells from secondary recipients transplanted with reprogrammed cells from mice that had been analyzed by these approaches during primary transplantation. These experiments revealed that both shared V(D)J rearrangements

<160> NUMBER OF SEQ ID NOS: 186

and common viral integration sites could be identified in multiple lineages in both primary and secondary recipients (FIGS. 71B-71C), indicating that single reprogrammed cells possessed both multi-lineage differentiation, and long-term self-renewal potential.

[1258] To determine which lineage(s) in the peripheral blood had the potential to give rise to these colonies upon re-expression of the transcription factors, we purified B-cells, T-cells, myeloid cells and granulocytes from the 8-TF^{Poty} reconstituted mice, and tested their colony forming potential following culturing and plating in the absence or presence of doxycycline. These experiments revealed that cells from each of these lineages were imbued with progenitor activity upon factor re-induction. Of these, granulocytes gave rise to the fewest colonies whereas Mac1+ macrophages/monocytes yielded the largest number of colonies and the greatest number of primitive GEMM colonies (FIGS. 70C-D).

[1259] We focused on differentiated myeloid cells because unlike differentiated lymphoid cells that have rearranged TCR (T-cells) or IG (B-cells) loci, multi-lineage reconstituting cells derived via reprogramming of myeloid cells would be expected to have the potential to give rise to full repertoires of lymphoid effector cells upon differentiation.

SEQUENCE LISTING

```
<210> SEQ ID NO 1
<211> LENGTH: 1943
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
agtgcgctgt gctcgagggg tgccggccag gcctgagcga gcgagctagc cagcaggcat
                                                                      120
cqaqqqqqq cqqctqccqt ccqqacqaqa caqqcqaacc cqacqcaqaa qaqtccacca
coqqacaqcc aqqtaqccqc cqcqtccctc qcacacqcaq aqtcqqqcqq cqcqqqqtct
                                                                      180
coettacace caacetecac cetetectec teteetttee cettettete actatectet
                                                                      240
cetetetege tgecegegtt tgegeageee egggeeatgt cegaegegte ceteegeage
                                                                      300
acatecacqa tqqaqeqtet tqtcqcccqt qqqacettee caqtactaqt qcqcaccaqe
                                                                      360
qcctqccqca qcctcttcqq qccqqtqqac cacqaqqaqc tqaqccqcqa qctqcaqqcc
                                                                      420
                                                                      480
cqcctqqccq aqctqaacqc cqaqqaccaq aaccqctqqq attacqactt ccaqcaqqac
atgeegetge ggggeeetgg aegeetgeag tggaeegaag tggaeagega eteggtgeee
                                                                      540
gegttetace gegagaeggt geaggtgggg egetgeegee tgetgetgge geegeggeee
                                                                      600
gtegeggteg eggtggetgt cagecegeee etegageegg eegetgagte eetegaegge
                                                                      660
ctcgaggagg cgccggagca gctgcctagt gtcccggtcc cggccccggc gtccaccccg
                                                                      720
ccccagtcc cggtcctggc tccagccccg gccccggctc cggctccggt cgcggctccg
                                                                      780
gtegeggete eggtegeggt egeggteetg geeceggeee eggeecegge teeggeteeg
                                                                      840
geteeggeee eggeteeagt egeggeeeeg geeceageee eggeeeegge eeeggeeeeg
                                                                      900
geccegece eggeceegge eeeggaegeg gegeeteaag agagegeega geagggegeg
                                                                      960
aaccaggggc agcgcggcca ggagcctctc gctgaccagc tgcactcggg gatttcggga
                                                                     1020
cgtcccgcgg ccggcaccgc ggccgccagc gccaacggcg cggcgatcaa gaagctgtcc
                                                                     1080
```

				COIICII	raca	
gggcctctga	tctccgattt	cttcgccaag	cgcaagagat	cagegeetga	gaagtcgtcg	1140
ggcgatgtcc	ccgcgccgtg	tccctctcca	agegeegeee	ctggcgtggg	ctcggtggag	1200
cagaccccgc	gcaagaggct	gcggtgagcc	aatttagagc	ccaaagagcc	ccgagggaac	1260
ctgccggggc	agcggacgtt	ggaagggcgc	tgggcctcgg	ctgggaccgt	tcatgtagca	1320
gcaaccggcg	gcggctgccg	cagagcagcg	ttcggttttg	tttttaaatt	ttgaaaactg	1380
tgcaatgtat	taataacgtc	tttttatatc	taaatgtatt	ctgcacgaga	aggtacactg	1440
gtcccaaggt	gtaaagcttt	aagagtcatt	tatataaaat	gtttaatctc	tgctgaaact	1500
cagtgcaaaa	aaaagaaaaa	agaaaaaaa	aaggaaaaaa	taaaaaaacc	atgtatattt	1560
gtacaaaaag	tttttaaagt	tatactaact	tatattttct	atttatgtcc	aggcgtggac	1620
cgctctgcca	cgcactagct	cggttattgg	ttatgccaaa	ggcactctcc	atctcccaca	1680
tctggttatt	gacaagtgta	actttatttt	catcgcggac	tctggggaag	ggggtcactc	1740
acaagctgta	gctgccatac	atgcccatct	agcttgcagt	ctcttcgcgc	tttcgctgtc	1800
tctcttatta	tgactgtgtt	tatctgaaac	ttgaagacaa	gtctgttaaa	atggttcctg	1860
agccgtctgt	accactgccc	cggcccctcg	tccgccgggt	tctaaataaa	gaggccgaaa	1920
aatgctgcaa	aaaaaaaaa	aaa				1943
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI	TH: 3978 : DNA NISM: Homo s	sapiens				
acccactccc	gctgccccgt	ceggeeegeg	cegetteete	gcagcagctg	ctcccggctc	60
	gcccgcgtgg					120
geggteggge	gagegggegg	caacgctgcc	cggccggcag	cgctggggtt	aagtggccca	180
agtaaaccta	gctcggcgat	cggcgccgga	gattegegag	cccagcgccc	tgcacggccg	240
ccagccggcc	tcccgccagc	cageceegae	ccgcggctcc	gccgcccagc	cgcgccccag	300
ccagccctgc	ggcaggaaag	catgaaggga	gacaccaggc	atctcaatgg	agaggaggac	360
gccggcggga	gggaagactc	gatcctcgtc	aacggggcct	gcagcgacca	gtcctccgac	420
tegeeeceaa	teetggagge	tatccgcacc	ccggagatca	gaggccgaag	atcaagctcg	480
cgactctcca	agagggaggt	gtccagtctg	ctaagctaca	cacaggactt	gacaggcgat	540
ggcgacgggg	aagatgggga	tggctctgac	accccagtca	tgccaaagct	cttccgggaa	600
accaggactc	gttcagaaag	cccagcttcc	ctgagacggc	gggcaacagc	atcggcagga	660
acgccatggc	cgtcccctcc	cagctcttac	cttaccatcg	acctcacaga	cgacacagag	720
gacacacatg	ggacgcccca	gagcagcagt	accccctacg	cccgcctagc	ccaggacagc	780
cagcaggggg	gcatggagtc	cccgcaggtg	gaggcagaca	gtggagatgg	agacagttca	840
gagtatcagg	atgggaagga	gtttggaata	ggggacctcg	tgtggggaaa	gatcaagggc	900
ttctcctggt	ggcccgccat	ggtggtgtct	tggaaggcca	cctccaagcg	acaggctatg	960
tctggcatgc	ggtgggtcca	gtggtttggc	gatggcaagt	tctccgaggt	ctctgcagac	1020
aaactggtgg	cactggggct	gttcagccag	cactttaatt	tggccacctt	caataagctc	1080
					-	

gtctcctatc gaaaagccat gtaccatgct ctggagaaag ctagggtgcg agctggcaag 1140

accttcccca	gcagccctgg	agactcattg	gaggaccagc	tgaagcccat	gttggagtgg	1200
gcccacgggg	gcttcaagcc	cactgggatc	gagggcctca	aacccaacaa	cacgcaacca	1260
gagaacaaga	ctcgaagacg	cacagetgae	gactcagcca	cctctgacta	ctgccccgca	1320
cccaagcgcc	tcaagacaaa	ttgctataac	aacggcaaag	accgagggga	tgaagatcag	1380
agccgagaac	aaatggcttc	agatgttgcc	aacaacaaga	gcagcctgga	agatggctgt	1440
ttgtcttgtg	gcaggaaaaa	ccccgtgtcc	ttccaccctc	tctttgaggg	ggggctctgt	1500
cagacatgcc	gggatcgctt	ccttgagctg	ttttacatgt	atgatgacga	tggctatcag	1560
tcttactgca	ctgtgtgctg	cgagggccga	gagctgctgc	tttgcagcaa	cacgagctgc	1620
tgccggtgtt	tctgtgtgga	gtgcctggag	gtgctggtgg	gcacaggcac	agcggccgag	1680
gccaagcttc	aggagccctg	gagctgttac	atgtgtctcc	cgcagcgctg	tcatggcgtc	1740
ctgcggcgcc	ggaaggactg	gaacgtgcgc	ctgcaggcct	tcttcaccag	tgacacgggg	1800
cttgaatatg	aagcccccaa	gctgtaccct	gccattcccg	cagcccgaag	gcggcccatt	1860
cgagtcctgt	cattgtttga	tggcatcgcg	acaggctacc	tagtcctcaa	agagttgggc	1920
ataaaggtag	gaaagtacgt	cgcttctgaa	gtgtgtgagg	agtccattgc	tgttggaacc	1980
gtgaagcacg	aggggaatat	caaatacgtg	aacgacgtga	ggaacatcac	aaagaaaaat	2040
attgaagaat	ggggcccatt	tgacttggtg	attggcggaa	gcccatgcaa	cgatctctca	2100
aatgtgaatc	cagccaggaa	aggcctgtat	gagggtacag	gccggctctt	cttcgaattt	2160
taccacctgc	tgaattactc	acgccccaag	gagggtgatg	accggccgtt	cttctggatg	2220
tttgagaatg	ttgtagccat	gaaggttggc	gacaagaggg	acatctcacg	gttcctggag	2280
tgtaatccag	tgatgattga	tgccatcaaa	gtttctgctg	ctcacagggc	ccgatacttc	2340
tggggcaacc	tacccgggat	gaacaggatc	tttggctttc	ctgtgcacta	cacagacgtg	2400
tccaacatgg	geegtggtge	ccgccagaag	ctgctgggaa	ggtcctggag	cgtgcctgtc	2460
atccgacacc	tettegeece	tctgaaggac	tactttgcat	gtgaatagtt	ccagccaggc	2520
cccaagccca	ctggggtgtg	tggcagagcc	aggacccagg	aggtgtgatt	cctgaaggca	2580
teeceaggee	ctgctcttcc	tcagctgtgt	gggtcatacc	gtgtacctca	gttccctctt	2640
gctcagtggg	ggcagagcca	cctgactctt	gcaggggtag	cctgaggtgc	cgcctccttg	2700
tgcacaaatc	agacctggct	gcttggagca	gcctaacacg	gtgctcattt	tttcttctcc	2760
taaaacttta	aaacttgaag	taggtagcaa	cgtggctttt	ttttttccc	ttcctgggtc	2820
taccactcag	agaaacaatg	gctaagatac	caaaaccaca	gtgccgacag	ctctccaata	2880
ctcaggttaa	tgctgaaaaa	tcatccaaga	cagttattgc	aagagtttaa	tttttgaaaa	2940
ctggctactg	ctctgtgttt	acagacgtgt	gcagttgtag	gcatgtagct	acaggacatt	3000
tttaagggcc	caggatcgtt	ttttcccagg	gcaagcagaa	gagaaaatgt	tgtatatgtc	3060
ttttacccgg	cacattcccc	ttgcctaaat	acaagggctg	gagtctgcac	gggacctatt	3120
agagtatttt	ccacaatgat	gatgatttca	gcagggatga	cgtcatcatc	acattcaggg	3180
ctatttttc	ccccacaaac	ccaagggcag	gggccactct	tagctaaatc	cctccccgtg	3240
actgcaatag	aaccctctgg	ggagctcagg	aaggggtgtg	ctgagttcta	taatataagc	3300
tgccatatat	********		*****	aaatattaaa	+ 200202002	3360
030000000	tttgtagaca	agtatggctc	Clecatatet	CCCCCCCCCC	caggagagga	
				cattccctct		3420

			COIICII	iucu	
taccetecae aggeaeaggt ee	cccagatga g	gaagtctgct	accctcattt	ctcatctttt	3480
tactaaactc agaggcagtg ac	cagcagtca g	gggacagaca	tacatttctc	ataccttccc	3540
cacatctgag agatgacagg ga	aaaactgca a	aagctcggtg	ctccctttgg	agattttta	3600
atccttttt attccataag aa	agtcgtttt t	tagggagaac	gggaattcag	acaagctgca	3660
tttcagaaat gctgtcataa tç	ggtttttaa o	caccttttac	tcttcttact	ggtgctattt	3720
tgtagaataa ggaacaacgt tg	gacaagttt t	tgtggggctt	tttatacact	ttttaaaatc	3780
tcaaacttct atttttatgt tt	taacgtttt o	cattaaaatt	ttttttgtaa	ctggagccac	3840
gacgtaacaa atatggggaa aa	aaactgtgc c	cttgtttcaa	cagtttttgc	taatttttag	3900
gctgaaagat gacggatgcc ta	agagtttac d	cttatgttta	attaaaatca	gtatttgtct	3960
aaaaaaaaa aaaaaaaa					3978
<210> SEQ ID NO 3 <211> LENGTH: 3136 <212> TYPE: DNA <213> ORGANISM: Homo sap	piens				
<400> SEQUENCE: 3					
gcgcagaact tggggagccg co	cgccgccat c	cegeegeege	agccagcttc	cgccgccgca	60
ggaccggccc ctgccccagc ct	teegeagee g	geggegegte	cacgcccgcc	cgcgcccagg	120
gegagteggg gtegeegeet ge	cacgettet c	cagtgttccc	egegeeeege	atgtaacccg	180
gccaggcccc cgcaactgtg to	cccctgcag c	ctccagcccc	gggctgcacc	ccccgcccc	240
gacaccaget etecageetg et	tcgtccagg a	atggccgcgg	ccaaggccga	gatgcagctg	300
atgtccccgc tgcagatctc to	gacccgttc g	ggateettte	ctcactcgcc	caccatggac	360
aactacccta agctggagga ga	atgatgctg o	ctgagcaacg	gggctcccca	gttcctcggc	420
gccgccgggg ccccagaggg ca	agcggcagc a	aacagcagca	gcagcagcag	cgggggcggt	480
ggaggcggcg ggggcggcag ca	aacagcagc a	agcagcagca	gcaccttcaa	ccctcaggcg	540
gacacgggcg agcagcccta co	gagcacctg a	accgcagagt	cttttcctga	catctctctg	600
aacaacgaga aggtgctggt gg	gagaccagt t	taccccagcc	aaaccactcg	actgeeeece	660
atcacctata ctggccgctt tt	tecetggag o	cctgcaccca	acagtggcaa	caccttgtgg	720
cccgagcccc tcttcagctt go	gtcagtggc o	ctagtgagca	tgaccaaccc	accggcctcc	780
tegteeteag caccatetee aç	geggeetee t	teegeeteeg	cctcccagag	cccacccctg	840
agetgegeag tgecatecaa eg	gacagcagt o	cccatttact	cagcggcacc	caccttcccc	900
acgccgaaca ctgacatttt co	cctgagcca c	caaagccagg	ccttcccggg	ctcggcaggg	960
acagegetee agtaceegee to	cctgcctac c	cctgccgcca	agggtggctt	ccaggttccc	1020
atgateceeg actacetgtt to	ccacagcag c	cagggggatc	tgggcctggg	caccccagac	1080
cagaagceet tecagggeet gg	gagageege a	acccagcagc	cttcgctaac	ccctctgtct	1140
actattaagg cetttgecae te	cagteggge t	tcccaggacc	tgaaggccct	caataccagc	1200
taccagtece ageteateaa ac	cccagccgc a	atgcgcaagt	accccaaccg	gcccagcaag	1260
acgcccccc acgaacgccc tt					1320
cgctccgacg agctcacccg co					1380
ogocoogacy ageceaeceg et	cacaccege e	accedeacay	goodyddydd	ccccagcgc	1360

cgcatctgca tgcgcaactt cagccgcagc gaccacctca ccacccacat ccgcacccac 1440

acaggcgaaa agcccttcgc ctgcgacatc tgtggaagaa agtttgccag gagcgatgaa	1500
cgcaagaggc ataccaagat ccacttgcgg cagaaggaca agaaagcaga caaaagtgtt	1560
gtggcctctt cggccacctc ctctctctct tcctacccgt ccccggttgc tacctcttac	1620
ccgtccccgg ttactacctc ttatccatcc ccggccacca cctcataccc atcccctgtg	1680
cccacctcct tctcctctcc cggctcctcg acctacccat cccctgtgca cagtggcttc	1740
ccctccccgt cggtggccac cacgtactcc tctgttcccc ctgctttccc ggcccaggtc	1800
ageagettee etteeteage tgteaceaae teetteageg eeteeacagg gettteggae	1860
atgacagcaa ccttttctcc caggacaatt gaaatttgct aaagggaaag gggaaagaaa	1920
gggaaaaggg agaaaaagaa acacaagaga cttaaaggac aggaggagga gatggccata	1980
ggagaggagg gttcctctta ggtcagatgg aggttctcag agccaagtcc tccctctcta	2040
ctggagtgga aggtctattg gccaacaatc ctttctgccc acttcccctt ccccaattac	2100
tattcccttt gacttcagct gcctgaaaca gccatgtcca agttcttcac ctctatccaa	2160
agaacttgat ttgcatggat tttggataaa tcatttcagt atcatctcca tcatatgcct	2220
gaccccttgc tcccttcaat gctagaaaat cgagttggca aaatggggtt tgggccctc	2280
agagecetge cetgeacect tgtacagtgt etgtgecatg gatttegttt ttettggggt	2340
actettgatg tgaagataat ttgeatatte tattgtatta tttggagtta ggteeteact	2400
tgggggaaaa aaaaaaaaga aaagccaagc aaaccaatgg tgatcctcta ttttgtgatg	2460
atgctgtgac aataagtttg aacctttttt tttgaaacag cagtcccagt attctcagag	2520
catgtgtcag agtgttgttc cgttaacctt tttgtaaata ctgcttgacc gtactctcac	2580
atgtggcaaa atatggtttg gtttttcttt ttttttttt ttgaaagtgt tttttcttcg	2640
tccttttggt ttaaaaagtt tcacgtcttg gtgccttttg tgtgatgcgc cttgctgatg	2700
gettgacatg tgcaattgtg agggacatge teacetetag cettaagggg ggcagggagt	2760
gatgatttgg gggaggettt gggageaaaa taaggaagag ggetgagetg agetteggtt	2820
ctccagaatg taagaaaaca aaatctaaaa caaaatctga actctcaaaa gtctattttt	2880
ttaactgaaa atgtaaattt ataaatatat tcaggagttg gaatgttgta gttacctact	2940
gagtaggcgg cgatttttgt atgttatgaa catgcagttc attattttgt ggttctattt	3000
tactttgtac ttgtgtttgc ttaaacaaag tgactgtttg gcttataaac acattgaatg	3060
cgctttattg cccatgggat atgtggtgta tatccttcca aaaaattaaa acgaaaataa	3120
agtagctgcg attggg	3136
<210> SEQ ID NO 4 <211> LENGTH: 5989 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 4	
gegteeeggg teecegegee gegeegegae etgeagaeee egeegeegeg etegggeeeg	60
teteccaege eccegeegee ecgegegeee aacteegeeg geegeeeege eccgeeeege	120
gcgctccaga cccccggggc ggctgccggg agagatgctg gaagaaactt cttaaatgac	180
cgcgtctggc tggccgtgga gcctttctgg gttggggaga ggaaaggaaa	240
-2-222222-22- 222-22-22 222222424 2244422444 26234444	

cctgagaact tcctgatctc tctcgctgtg agacatgtct gagactcctg ctcagtgtag

cattaagcag	gaacgaattt	catatacacc	tccagagagc	ccagtgccga	gttacgcttc	360	
ctcgacgcca	cttcatgttc	cagtgcctcg	agegeteagg	atggaggaag	actcgatccg	420	
cctgcctgcg	cacctgcgct	tgcagccaat	ttactggagc	agggatgacg	tagcccagtg	480	
gctcaagtgg	gctgaaaatg	agttttcttt	aaggccaatt	gacagcaaca	cgtttgaaat	540	
gaatggcaaa	gctctcctgc	tgctgaccaa	agaggacttt	cgctatcgat	ctcctcattc	600	
aggtgatgtg	ctctatgaac	tccttcagca	tattctgaag	cagaggaaac	ctcggattct	660	
tttttcacca	ttcttccacc	ctggaaactc	tatacacaca	cagccggagg	tcatactgca	720	
tcagaaccat	gaagaagata	actgtgtcca	gaggaccccc	aggccatccg	tggataatgt	780	
gcaccataac	cctcccacca	ttgaactgtt	gcaccgctcc	aggtcaccta	tcacgacaaa	840	
tcaccggcct	tctcctgacc	ccgagcagcg	gcccctccgg	tececeetgg	acaacatgat	900	
ccgccgcctc	tecceggetg	agagagctca	gggacccagg	ccgcaccagg	agaacaacca	960	
ccaggagtcc	taccctctgt	cagtgtctcc	catggagaat	aatcactgcc	cagcgtcctc	1020	
cgagtcccac	ccgaagccat	ccagcccccg	gcaggagagc	acacgcgtga	tccagctgat	1080	
gcccagcccc	atcatgcacc	ctctgatcct	gaacccccgg	cactccgtgg	atttcaaaca	1140	
gtccaggctc	tccgaggacg	ggctgcatag	ggaagggaag	cccatcaacc	tctctcatcg	1200	
ggaagacctg	gcttacatga	accacatcat	ggtctctgtc	teceegeetg	aagagcacgc	1260	
catgcccatt	gggagaatag	cagactgtag	actgctttgg	gattacgtct	atcagttgct	1320	
ttctgacagc	cggtacgaaa	acttcatccg	atgggaggac	aaagaatcca	aaatattccg	1380	
gatagtggat	cccaacggac	tggctcgact	gtggggaaac	cataagaaca	gaacaaacat	1440	
gacctatgag	aaaatgtcca	gagccctgcg	ccactactac	aaactaaaca	ttatcaggaa	1500	
ggagccagga	caaaggcttt	tgttcaggtt	tatgaaaacc	ccagatgaaa	tcatgagtgg	1560	
ccgaacagac	cgtctggagc	acctagagtc	ccaggagctg	gatgaacaaa	tataccaaga	1620	
agatgaatgc	tgaaggaacc	aacagtccac	ctcagcgggc	cagcagccca	gggaacccct	1680	
gcccaccagg	attgctggaa	gtgtgacgga	gcaggcgggc	tgaggagagt	ggaaaaggaa	1740	
gcgacccaga	aatggcaggg	acacttctct	tgcagaccaa	gagggaccct	ggagcacctt	1800	
agacaaacta	cccagcacag	gcggggctgg	aattctggcg	gagggcatga	gcctgggact	1860	
ccatgtcacg	tttccttctg	atttggaatc	tctccatctg	taattcctca	ccctcaccct	1920	
tccaccgttg	ttagtatcat	ggtgtttttg	tttttgtttt	tgttttaaga	acctgcagtt	1980	
tgactcttca	tegtteatet	aggggaagac	atctgatgtt	gttttcctat	ggaaatatat	2040	
atctattata	tatatatttt	ttgcaaatct	cacaaagtgc	ggcaagccca	gctggtcagg	2100	
aaagagaata	cttgcagagg	ggttcaggtt	cctcttttc	ctgccacgtg	gatcaggtct	2160	
gttcctgtta	ctgttgggtc	ttggctgaaa	aaaaaaaatg	cttttaaaaa	agataaaatg	2220	
aaaaggagag	ctctctttt	ctctctcttg	ctctgttctt	cccttggtcc	cctctgtcct	2280	
cccgccctgc	ctgcagttga	gattcagatg	ccttctgaca	gagttcagcc	tcttggagag	2340	
	tgttggcacc					2400	
	accegeatee	_				2460	
	tgtgctgcag					2520	
tgtgagaacc	atgtgtctaa	ggcgtaagat	aaggatggaa	ggctgtccaa	gttatttgga	2580	

aggcctcggc	agcttgggat	tagcttggga	gcgcagcgct	gcaaagtgga	aaatatgaaa	2640
agaccacaca	ggcccagcag	tccagaaact	gggcaaaaat	attctgcagt	ggggatttat	2700
ttttccaaag	caggtaacag	aggctagtga	gaaagaaaag	ctcctctctg	ctccattcca	2760
aaggccatct	tgtggtcagt	ttcatgccct	cacctgattt	tttttttt	ttttttttt	2820
caattcctaa	ccttttttaa	agtttcctgg	tetecaetgg	acacagaget	ttggagacgg	2880
aggateceag	agggcagtct	cagttgcaat	cagtgtgtgc	ccagcctggg	cagacaggaa	2940
atteetegga	tacattattt	tttctttctt	tcatagctgt	gtctcagaaa	ggacccattt	3000
gtggctcttt	ttcacctcaa	aataagatcg	atggtatctt	gtaaaatgag	ggtagtgcca	3060
cttcttagta	tttttgaaag	ctgttttaga	tttttttt	ttttcctttt	ctagccatct	3120
aaattgactc	ttccaatata	ggtctcagaa	atccaatatt	tggagtacaa	tttcttttaa	3180
tccagattac	acctgcctta	caaagcaccc	cctccttgtt	cccctctgtt	tcctctactc	3240
agttggggga	gaaactcaca	geteeteegg	gatacatatg	tgccctcagc	agcagctccc	3300
aggtgaagtt	accagacccc	tgggcttctc	cccagctttt	tctgagttga	gtcagacatg	3360
tagagtttgg	gtcacacagg	caagaggaat	tttccctcgg	ccttactgac	aaggacacca	3420
acctagggtg	caaacagatg	gactatggtt	caaggacact	ggaattgagg	agctgatcaa	3480
ggctctcttc	agccttgctc	tgtccctgcc	tcttatcaga	gcacaggtag	acacacgggc	3540
atagccagcc	cactcctact	gtcacaggcg	ccccaccatt	caaccttccg	ggaggtcagg	3600
gaccttctat	atgaggcgag	tgggtctcag	tctgcttgaa	tggtgatgag	attctgctgg	3660
atctcagcac	gctgcaggtg	tcttttgaga	gcattcagta	ggacatggtg	atccctattt	3720
cagcctctaa	gatgactggt	attctatctg	aaatgcagag	attaagccaa	atacctgatg	3780
tattgtgaaa	gccactgatt	ttaagaatgg	agagaaaggg	attttttact	gcatccctct	3840
gtatgaatat	gaaatcagag	accagggcat	gatgttgcta	ggattagagc	ctctcagtct	3900
ggcctcttca	cccaagtgca	agaactcagt	ctcttactgt	tcaaagaatc	ttaacagttg	3960
aattatggag	ggaaattccc	ttttgcccca	agcatttcta	tatttaaagc	aatatcccag	4020
gagaatatgt	tagacttagg	atgatacctt	cagccacttg	aagaagaaat	agaaggcgct	4080
cattccaata	tagtctttat	ttcccattca	gatacaggtt	gagcatccct	aatctgaaca	4140
gttaaaaccc	ccaaatgccc	caaaatccaa	accttcctga	acgctatgac	accatgagtg	4200
gaaaattcca	cacctaacaa	acacatttgc	tttcttatgg	ttcaatgtac	acaaactgtt	4260
ttatatagaa	aatgatttca	aatatcataa	aattaccttc	aggctatgtg	tataaagtat	4320
atatgagcca	taaatgaatt	ttgtgtttag	actttgtgtc	catccccaag	atctctcatt	4380
ttatatatat	atatatatat	atatatatat	atatatatat	atatatac	acacacacac	4440
acatacacaa	atattccagg	atacaaaaaa	aaacatttaa	aaatccgaga	cccagaacac	4500
ttctggtccc	aagcatttca	gataagggat	atcaatctgt	actaccaata	aggatttcgt	4560
aattccccta	actgcaaatg	tcctcttcat	ttgttcttta	tgagaaaacc	cgggtagtgc	4620
cagcacctgg	atacagtatt	tacaccctgc	agaccctaaa	gatttcagat	tcagttagca	4680
aaccttgatg	aagcacctgc	tggacactga	gggacccaaa	gctcaatcag	ccataatccc	4740
tgctttcaga	gtttatattg	tacctgccta	atccacccgg	cgtgactcat	ttcaacacta	4800
agtactaggg	gtgttgtcag	gagacaaatc	tgaagtcagg	agaggaaaat	gcaaaggagc	4860

-continued	
cctgccgtgt gatggatgtg cattctcact tgggtcttga agttctcatt cctacatctc	4920
aagctagcca ggcagtctcc tctctatcag aagaaagcac tggtaattgg ctagactggc	4980
tatgttgaag gtaacatgaa ctctaagatc ttgacccagg gcgacttggt tttgcttaag	5040
gtggcatcac caatgttcca aatcctttag ggagatgagg gtatccccac agaaaaagag	5100
gaataataga ccaatggatt ttctcctttc accagtatgt ttggaaccct ctgatccaat	5160
gtcttttgat actgatctct tgtccaaatg agaatgtcgc tttagctgaa attcaaatgg	5220
ctgtgacaat ttaccgaaat gatgaagtaa ccaccattcc cacctttcac tgcctaggct	5280
ccaagtctga atacattttt gaaataggaa ctcccttttg caaaaaagaa acctgggtgt	5340
cagggaggtg aagtgacttg ccctaggagc agacagcatg ccaagaatgg aattaggctc	5400
aggatecage etgggeteae eetgtgtgge teatteecae eeaggaaaet gaagataaaa	5460
gatttgggaa aacacaccaa gaaaaagggg cagttttctt tgcccaagca tttggtgcta	5520
gttagagget gttcactete teetgeteet etteggagta gaaataaagg etgtgacaca	5580
aggaagccag tggggtggga gggaggcacc ataatccctc cctaaaaaccc acagaagact	5640
aacctgatac tcttttgacc caactgcatc aacactaaac agctgcagac cccctgaatc	5700
tttcacacat gccaagtgaa cattcttgat gatttctctt tgtgaccgca accacctgca	5760
aaccagaacg actctagaat tteetteeec geeeceettt ttgtttagtt tetaatetet	5820
tgtttatgag gtgtggggtt tataagggac tgaatcaaat gaatgtaaca aaaaagaaaa	5880
aaaaaacaaa aaaaaatgcc ttttctcagg gccagtgagt tgcaaataat ttttaaagaa	5940
aagcctataa ttacatcatc tcaataaatt ttttataaaa aaaaaaaa	5989
aagcctataa ttacatcatc tcaataaatt ttttataaaa aaaaaaaa	5989
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA</pre>	5989
<210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	5989 60
<210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5	
<210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt cetectegee egeagteteg eggageeetg etgettatet aegttgetaa	60
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg</pre>	60 120
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg ggtegteegg cettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag</pre>	60 120 180
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg ggtegteegg cettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaccagat gttggaaget ggetcaagta eattagatte getggetgtt atgateagea</pre>	60 120 180 240
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteegggtg ggtegteegg eettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaceagat gttggaaget ggeteaagta eattagatte getggetgtt atgateagea caacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagacattge</pre>	60 120 180 240 300
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg ggtegteegg eettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaceagat gttggaaget ggeteaagta eattagatte getggetgtt atgateagea caacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagacattge geegggagag gagettetge tgtteatgaa gagegaagae tateeceatg aaactatgge</pre>	60 120 180 240 300 360
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg ggtegteegg eettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaceagat gttggaaget ggetcaagta eattagatte getggetgtt atgateagea caacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagacattge geegggagag gagettetge tgtteatgaa gagegaagae tateeceatg aaactatgge geegggatate eacgaagaae ggeaatateg etgegaagae tgtgaceage tetttgaate</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg ggtcgteegg cettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaceagat gttggaaget ggeteaagta eattagatte getggetgtt atgateagea caacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagacattge geegggagag gagettetge tgtteatgaa gagegaagae tateeceatg aaactatgge geeggatate eacgaagaae ggeaatateg etgegaagae tgtgaceage tetttgaate taaggetgaa etageagate accaaaagtt teeatgeagt acteeteact eageatttte</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt cetectegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte etcetgegaa aeggtgeggt etggacaegt etceggggtg ggtegteegg eettegatet tagaegaatt ttacaatgtg aagttetgea tagatgeeag teaaceagat gttggaaget ggeteaagta eattagatte getggetgtt atgateagea eaacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagaeattge geegggagag gagettetge tgtteatgaa gagegaagae tateceeatg aaactatgge geegggatate eaegaagaae ggeaatateg etgegaagae tgtgaceage tetttgaate taaggetgaa etageagate aceaaaagtt teeatgeagt aeteeteact eageatttte aatggttgaa gaggaettte ageaaaaact egaaageag aatgatetee aagagataca</pre>	60 120 180 240 300 360 420 480
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettettt ceteetegee egeagteteg eggageeetg etgettatet acgttgetaa geegggegat tteettgtte eteetgegaa acggtgeggt etggacaegt eteeggggtg ggtegteegg eettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaccagat gttggaaget ggetcaagta cattagatte getggetgtt atgateagea eaacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagacattge geegggagag gagettetge tgtteatgaa gagegaagae tateeceatg aaactatgge geegggatate cacgaagaae ggeaatateg etgegaagae tgtgaceage tetttgaate taaggetgaa etageagate accaaaagtt teeatgeagt acteeteact eageattte aatggttgaa gaggaettte ageaaaaact egaaagegag aatgatetee aagagataea cacgateeag gagtgtaagg aatgtgacea agtttteet gatttgeaaa geetggagaa</pre>	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 5 <211> LENGTH: 4891 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 5 agcettett ceteetegee egeagteteg eggageeetg etgettatet aegttgetaa geegggegat tteettgtte eteetgegaa aeggtgeggt etggacaegt eteeggggtg ggtcgteegg eettegatet tagacgaatt ttacaatgtg aagttetgea tagatgeeag teaaceagat gttggaaget ggetcaagta eattagatte getggetgtt atgateagea eaacettgtt geatgeeaga taaatgatea gatattetat agagtagttg eagacattge geegggagag gagettetge tgtteatgaa gagegaagae tateeceatg aaactatgge geegggatate eacgaagaae ggeaatateg etgegaagae tgtgaceage tetttgaate taaggetgaa etageagate aceaaaagtt teeatgeagt aeteeteaet eagatttte aatggttgaa gaggaettte ageaaaaaet egaaageag aatgatetee aagagataea cacgateeag gagtgtaagg aatgtgacea agtttteet gatttgeaaa geetggagaa acacatgetg teacatactg aagagagga atacaagtgt gateagtgte ecaaggeatt</pre>	60 120 180 240 300 360 420 480 540 600

teageatgte ggtgeeeggg eceatgeatg eceggagtgt ggeaaaaegt ttgeeaette gtegggeete aaacaacaa ageacateea eageagtgtg aageeettta tetgtgaggt

840

ctgccataaa	tcctatactc	agttttcaaa	cctttgccgt	cataagcgca	tgcatgctga	960
ttgcagaacc	caaatcaagt	gcaaagactg	tggacaaatg	ttcagcacta	cgtcttcctt	1020
aaataaacac	aggaggtttt	gtgagggcaa	gaaccatttt	geggeaggtg	gattttttgg	1080
ccaaggcatt	tcacttcctg	gaaccccagc	tatggataaa	acgtccatgg	ttaatatgag	1140
tcatgccaac	ccgggccttg	ctgactattt	tggcgccaat	aggcatcctg	ctggtcttac	1200
ctttccaaca	gctcctggat	tttcttttag	cttccctggt	ctgtttcctt	ccggcttgta	1260
ccacaggcct	cctttgatac	ctgctagttc	tcctgttaaa	ggactatcaa	gtactgaaca	1320
gacaaacaaa	agtcaaagtc	ccctcatgac	acatcctcag	atactgccag	ctacacagga	1380
tattttgaag	gcactatcta	aacacccatc	tgtaggggac	aataagccag	tggagctcca	1440
gcccgagagg	tcctctgaag	agaggccctt	tgagaaaatc	agtgaccagt	cagagagtag	1500
tgaccttgat	gatgtcagta	caccaagtgg	cagtgacctg	gaaacaacct	cgggctctga	1560
tctggaaagt	gacattgaaa	gtgataaaga	gaaatttaaa	gaaaatggta	aaatgttcaa	1620
agacaaagta	agccctcttc	agaatctggc	ttcaataaat	aataagaaag	aatacagcaa	1680
tcattccatt	ttctcaccat	ctttagagga	gcagactgcg	gtgtcaggag	ctgtgaatga	1740
ttctataaag	gctattgctt	ctattgctga	aaaatacttt	ggttcaacag	gactggtggg	1800
gctgcaagac	aaaaaagttg	gagetttace	ttacccttcc	atgtttcccc	tcccattttt	1860
tccagcattc	tctcaatcaa	tgtacccatt	tcctgataga	gacttgagat	cgttaccttt	1920
gaaaatggaa	ccccaatcac	caggtgaagt	aaagaaactg	cagaagggca	gctctgagtc	1980
cccctttgat	ctcaccacta	agcgaaagga	tgagaagccc	ttgactccag	tcccctccaa	2040
gcctccagtg	acacctgcca	caagccaaga	ccagcccctg	gatctaagta	tgggcagtag	2100
gagtagagcc	agtgggacaa	agctgactga	gcctcgaaaa	aaccacgtgt	ttgggggaaa	2160
aaaaggaagc	aacgtcgaat	caagacctgc	ttcagatggt	tccttgcagc	atgcaagacc	2220
cactcctttc	tttatggacc	ctatttacag	agtagagaaa	agaaaactaa	ctgacccact	2280
tgaagcttta	aaagagaaat	acttgaggcc	ttctccagga	ttcttgtttc	acccacaatt	2340
ccaactgcct	gatcagagaa	cttggatgtc	agctattgaa	aacatggcag	aaaagctaga	2400
gagcttcagt	gccctgaaac	ctgaggccag	tgagctctta	cagtcagtgc	cctctatgtt	2460
caacttcagg	gcgcctccca	atgccctgcc	agagaacctt	ctgcggaagg	gaaaggagcg	2520
ctatacctgc	agatactgtg	gcaagatttt	tccaaggtct	gcaaacctaa	cacggcactt	2580
gagaacccac	acaggagagc	agccttacag	atgcaaatac	tgtgacagat	catttagcat	2640
atcttctaac	ttgcaaaggc	atgttcgcaa	catccacaat	aaagagaagc	catttaagtg	2700
tcacttatgt	gataggtgtt	ttggtcaaca	aaccaattta	gacagacacc	taaagaaaca	2760
tgagaatggg	aacatgtccg	gtacagcaac	atcgtcgcct	cattctgaac	tggaaagtac	2820
aggtgcgatt	ctggatgaca	aagaagatgc	ttacttcaca	gaaattcgaa	atttcattgg	2880
gaacagcaac	catggcagcc	aatctcccag	gaatgtggag	gagagaatga	atggcagtca	2940
ttttaaagat	gaaaaggctt	tggtgaccag	tcaaaattca	gacttgctgg	atgatgaaga	3000
agttgaagat	gaggtgttgt	tagatgagga	ggatgaagac	aatgatatta	ctggaaaaac	3060
aggaaaggaa	ccagtgacaa	gtaatttaca	tgaaggaaac	cctgaggatg	actatgaaga	3120
aaccagtgcc	ctggagatga	gttgcaagac	atccccagtg	aggtataaag	aggaagaata	3180

taaaagtgga ctttctgctc tagatcatat aaggcacttc acagatagcc tcaaaatgag	3240
gaaaatggaa gataatcaat attctgaagc tgagctgtct tcttttagta cttcccatgt	3300
gccagaggaa cttaagcagc cgttacacag aaagtccaaa tcgcaggcat atgctatgat	3360
gctgtcactg tctgacaagg agtccctcca ttctacatcc cacagttctt ccaacgtgtg	3420
gcacagtatg gccagggctg cggcggaatc cagtgctatc cagtccataa gccacgtatg	3480
acgttatcaa ggttgaccag agtgggacca agtccaacag tagcatggct ctttcatata	3540
ggactattta caagactgct gagcagaatg ccttataaac ctgcagggtc actcatctaa	3600
agtotagtga cottaaactg aatgatttaa aaaagaaaag aaagaaaaaa gaaactattt	3660
attetegata ttttgttttg cacageaaag geagetgetg aettetggaa gateaateaa	3720
tgcgacttaa agtgattcag tgaaaacaaa aaacttggtg ggctgaaggc atcttccagt	3780
ttaccccacc ttagggtatg ggtgggtgag aagggcagtt gagatggcag cattgatatg	3840
aatgaacact ccatagaaac tgaattetet tttgtacaag atcacetgae atgattggga	3900
acagttgctt ttaattacag atttaatttt tttcttcgtt aaagttttat gtaatttaac	3960
cctttgaaga cagaagtagt tggatgaaat gcacagtcaa ttattataga aactgataac	4020
agggagtact tgttccccct tttgccttct taagtacatt gtttaaaact agggaaaaag	4080
ggtatgtgta tattgtaaac tatggatgtt aacactcaaa gaggttaagt cagtgaagta	4140
acctattcat caccagtacc gctgtaccac taataaattg tttgccaaat ccttgtaata	4200
acatcttaat tttagacaat catgtcactg tttttaatgt ttatttttt gtgtgtgttg	4260
cgtgtatcat gtatttattt gttggcaaac tattgtttgt tgattaaaat agcactgttc	4320
cagtcagcca ctactttatg acgtctgagg cacacccctt tccgaatttc aaggaccaag	4380
gtgacccgac ctgtgtatga gagtgccaaa tggtgtttgg cttttcttaa cattcctttt	4440
tgtttgtttg ttttgttttc cttcttaatg aactaaatac gaatagatgc aacttagttt	4500
ttgtaatact gaaatcgatt caattgtata aacgattata atttctttca tggaagcatg	4560
attettetga ttaaaaactg tacteeatat tttatgetgg ttgtetgeaa gettgtgega	4620
tgttatgttc atgttaatcc tatttgtaaa atgaagtgtt cccaacctta tgttaaaaga	4680
gagaagtaaa taacagactg tattcagtta ttttgccctt tattgaggaa ccagatttgt	4740
tttctttttg tttgtaatct cattttgaaa taatcagcaa gttgaggtac tttcttcaaa	4800
tgctttgtac aatataaact gttatgcctt tcagtgcatt actatgggag gagcaactaa	4860
aaaataaaga cttacaaaaa ggagtatttt t	4891
<210> SEQ ID NO 6 <211> LENGTH: 3383 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 6	
gtgagegeea ggaaggtage gaggeeageg tegeeeeggg actegetget caagtetgte	60
tattgcctgc cgccacatcc atcctagcag ggccccgtcg cccaccaggc ggacaaaagc	120
ggtccgctga acaccatgcg gccgctcggc gtgccgccca ggctctgctg gtgagcgccg	180
ccacccegeg eccaggtece gegagecege etgeegegea cetegecetg eteccagete	240

tactccaggc cccgtccgcc cgggggggcc gcccaccgcg cctcgctcgg gccgttgccg

tctgcaccca	gaccctgagc	cgccgccgcc	ggccatggag	gtggcgcccg	agcagccgcg	360	
ctggatggcg	cacccggccg	tgctgaatgc	gcagcacccc	gactcacacc	acccgggcct	420	
ggcgcacaac	tacatggaac	ccgcgcagct	gctgcctcca	gacgaggtgg	acgtcttctt	480	
caatcacctc	gactcgcagg	gcaaccccta	ctatgccaac	cccgctcacg	cgcgggcgcg	540	
cgtctcctac	ageceegege	acgcccgcct	gaccggaggc	cagatgtgcc	gcccacactt	600	
gttgcacagc	ccgggtttgc	cctggctgga	cgggggcaaa	gcagccctct	ctgccgctgc	660	
ggcccaccac	cacaacccct	ggaccgtgag	ccccttctcc	aagacgccac	tgcacccctc	720	
agctgctgga	ggccctggag	gcccactctc	tgtgtaccca	ggggctgggg	gtgggagcgg	780	
gggaggcagc	gggagctcag	tggcctccct	cacccctaca	gcagcccact	ctggctccca	840	
ccttttcggc	ttcccaccca	cgccacccaa	agaagtgtct	cctgacccta	gcaccacggg	900	
ggctgcgtct	ccagcctcat	cttccgcggg	gggtagtgca	gcccgaggag	aggacaagga	960	
cggcgtcaag	taccaggtgt	cactgacgga	gagcatgaag	atggaaagtg	gcagtcccct	1020	
gcgcccaggc	ctagctacta	tgggcaccca	gcctgctaca	caccacccca	tccccaccta	1080	
cccctcctat	gtgccggcgg	ctgcccacga	ctacagcagc	ggactcttcc	accccggagg	1140	
cttcctgggg	ggaccggcct	ccagcttcac	ccctaagcag	cgcagcaagg	ctcgttcctg	1200	
ttcagaaggc	cgggagtgtg	tcaactgtgg	ggccacagcc	acccctctct	ggcggcggga	1260	
cggcaccggc	cactacctgt	gcaatgcctg	tggcctctac	cacaagatga	atgggcagaa	1320	
ccgaccactc	atcaagccca	agcgaagact	gtcggccgcc	agaagagccg	gcacctgttg	1380	
tgcaaattgt	cagacgacaa	ccaccacctt	atggcgccga	aacgccaacg	gggaccctgt	1440	
ctgcaacgcc	tgtggcctct	actacaagct	gcacaatgtt	aacaggccac	tgaccatgaa	1500	
gaaggaaggg	atccagactc	ggaaccggaa	gatgtccaac	aagtccaaga	agagcaagaa	1560	
aggggcggag	tgcttcgagg	agctgtcaaa	gtgcatgcag	gagaagtcat	cccccttcag	1620	
tgcagctgcc	ctggctggac	acatggcacc	tgtgggccac	ctcccgccct	tcagccactc	1680	
cggacacatc	ctgcccactc	cgacgcccat	ccacccctcc	tccagcctct	ccttcggcca	1740	
ccccacccg	tccagcatgg	tgaccgccat	gggctaggga	acagatggac	gtcgaggacc	1800	
gggcactccc	gggatgggtg	gaccaaaccc	ttagcagccc	agcatttccc	gaaggccgac	1860	
accactcctg	ccagcccggc	teggeeeage	accccctctc	ctggagggcg	cccagcagcc	1920	
tgccagcagt	tactgtgaat	gttccccacc	gctgagaggc	tgcctccgca	cctgaccgct	1980	
gcccaggtgg	ggttteetge	atggacagtt	gtttggagaa	caacaaggac	aactttatgt	2040	
agagaaaagg	aggggacggg	acagacgaag	gcaaccattt	ttagaaggaa	aaaggattag	2100	
gcaaaaataa	tttattttgc	tcttgtttct	aacaaggact	tggagacttg	gtggtctgag	2160	
ctgtcccaag	teeteeggtt	cttcctcggg	attggcgggt	ccacttgcca	gggctctggg	2220	
ggcagatttg	tggggacctc	agcctgcacc	ctcttctcct	ctggcttccc	tctctgaaat	2280	
agccgaactc	caggctgggc	tgagccaaag	ccagagtggc	cacggcccag	ggagggtgag	2340	
ctggtgcctg	ctttgacggg	ccaggccctg	gagggcagag	acaatcacgg	geggteetge	2400	
acagattccc	aggccagggc	tgggtcacag	gaaggaaaca	acattttctt	gaaaggggaa	2460	
acgtctccca	gatcgctccc	ttggctttga	ggccgaagct	gctgtgactg	tgtcccctta	2520	
ctgagcgcaa	gccacagcct	gtcttgtcag	gtggaccctg	taaatacatc	ctttttctgc	2580	

			-COHUTH	.uea		
taaccettca acceect	ege etectaetet ga	agacaaaag a	aaaaatatt	aaaaaaatgc	2640	
ataggettaa etegetg	atg agttaattgt ti	ttattttta a	actctttt	gggtccagtt	2700	
gattgtacgt agccaca	gga gccctgctat ga	aaaggaata a	aacctacac	acaaggttgg	2760	
agctttgcaa ttctttt	tgg aaaagagctg g	gatcccaca g	ccctagtat	gaaagctggg	2820	
ggtggggagg ggccttt	gct gecettggtt to	ctgggggct g	gttggcatt	tgctggcctg	2880	
gcagggggtg aaggcag	gag ttgggggcag gi	tcaggacca g	gacccaggg	agaggctgtg	2940	
teeetgetgg ggtetea	ggt ccagctttac to	gtggctgtc t	ggatccttc	ccaaggtaca	3000	
gctgtatata aacgtgt	ccc gagettagat to	ctgtatgcg g	tgacggcgg	ggtgtggtgg	3060	
cctgtgaggg gcccctg	gcc caggaggagg at	ttgtgctga t	gtagtgacc	aagtgcaata	3120	
tgggcgggca gtcgctg	cag ggagcaccac g	gccagaagt a	acttatttt	gtactagtgt	3180	
ccgcataaga aaaagaa	tcg gcagtatttt c1	tgtttttat g	ttttatttg	gcttgtttta	3240	
ttttggatta gtgaact	aag ttattgttaa ti	tatgtacaa c	atttatata	ttgtctgtaa	3300	
aaaatgtatg ctatcct	ctt attcctttaa aq	gtgagtact g	ttaagaata	ataaaatact	3360	
ttttgtgaat gcccaaa	aaa aaa				3383	
<210> SEQ ID NO 7 <211> LENGTH: 1663 <212> TYPE: DNA <213> ORGANISM: HO	mo sapiens					
<400> SEQUENCE: 7						
aaaaaggaga agtatct	att tgtgcaaaga g	tcacacagt t	gacagagtg	gaggccagtc	60	
ccgagagagg ctttgca	gtt cccacctcgg ga	aagctccgg c	agaacccag	gcgagggaca	120	
gctccggaca ggtgtgg	ggt gcacactgaa aa	atgccacgc t	ccttcctgg	tgaagagcaa	180	
gaaggeteae acetace	acc agccccgtgt go	caggaagat g	aaccgctct	ggcctcctgc	240	
ccttaccccg gtgccca	gag accaggetee aa	agcaacagc c	ctgtcctta	gcactctatt	300	
cccaaaccag tgcctgg	act ggaccaacct ca	aaacgagag c	cggagctgg	agcaggacca	360	
gaacttggcc aggatgg	ccc cggcaccaga go	ggccccatt g	tgctgtccc	gaccccagga	420	
tggggactet ceaetgt	ccg actcaccccc at	ttctacaag c	ctagcttct	cctgggacac	480	
cttggccaca acctatg	gcc acagctaccg go	caggeceee t	ccaccatgc	agtcagcctt	540	
cctggagcac tccgtca	gcc tgtacggcag to	cctcttgtg c	ccagcactg	agcccgcctt	600	
ggacttcage cteeget	act ccccaggcat g	gatgegtae e	actgtgtga	agtgcaacaa	660	
ggagcgcagc ttcgagt	gcc gcatgtgcgg ca	aaggeette a	agcgctcgt	ccacgctgtc	720	
cacccacctg ctcatcc	act cagacacgcg go	ccctacccc t	gccagttct	gcggcaagcg	780	
tttccaccag aagtccg	aca tgaagaagca ca	acctacatc c	acacaggtg	agaagccgca	840	
caagtgccag gtgtgcg	gaa aggccttcag co	cagagetee a	acctcatca	cccacagccg	900	
caagcacaca ggcttca	age cetteagetg to	gagetgtge a	ccaaaggct	tccagcgcaa	960	
ggtggacctg cggcggc	acc gcgagagcca go	cacaatctc a	agtgaggct	gegeeggete	1020	
ccagctcctg gccagcc	tge cetgeggtee te	gtcacctgg a	ggccagcct	cacatgccca	1080	
aatctccagt ctcctgg	agg tgggactgga ca	aggagteta e	cagcttgtt	ttgagactca	1140	

tgaaattgct gtgtgacctt gggcaagtca cttaccctgt ctggatcaac atttctcctg 1200

						_
ctgccaagtg tgggagcctg	gctgggtctt	tctcagcaga	agttgtttcc	aggtgtgctc	1260	
aagtgeette etetageaga	gcacagaaag	ctagaatacc	cccagggaga	cagggatgcc	1320	
aagagtagac cagagctggg	acccacagac	agaacctcca	cctgcctgct	gcccactgag	1380	
ctgggacctg gtcaccttgg	attttagccg	gcctctttct	ggctataaca	ggcagagtcg	1440	
gagetgeete eeaceecagt	cagaagcctg	gcaccccctc	tgcttcggcc	agatgtgctg	1500	
getgaeteeg aetteegaee	agcactcagc	tggcctctgg	ggattctagc	tccacaacca	1560	
ggccgtgagg ctggagaaac	tggcagttat	tgctgtcaaa	agcctgttct	ctcaactgct	1620	
gtcaataaaa ttaaagatac	agatttgctg	ccaaaaaaaa	aaa		1663	
<210> SEQ ID NO 8 <211> LENGTH: 3705 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens					
<400> SEQUENCE: 8						
tgaagaccag ctgggagccc	actgcctgct	gccacctcca	actccggccc	cctcaccatg	60	
cactecetgg acgageeget	cgacctgaag	ctgagtatca	ccaagctccg	ggcggcaaga	120	
gagaagcggg agaggacgct	gggtgtggtc	cggccccgtg	ctctgcacag	ggagctgggc	180	
ctggtggatg acagccccac	acctggctct	ccaggetece	cgccctcagg	cttcctgctg	240	
aactccaagt tccccgagaa	ggtggaggga	cgcttttcag	cagcccctct	cgtggacctc	300	
agcctgtcac caccatctgg	gctggactcc	cccaatggca	gcagctcgct	gtcccccgag	360	
cgccagggca acggggacct	gcctccagtg	cccagtgcct	cggacttcca	gecactgege	420	
tatttggatg gtgtccccag	ctccttccag	ttcttcctgc	ccctcggctc	cgggggggcc	480	
ctgcacctgc ctgcctcctc	cttccttacc	cctcccaagg	acaagtgcct	ctcgccagac	540	
ctgcccctgc ccaagcagct	ggtgtgtcgc	tgggccaagt	gtaaccagct	ctttgagctc	600	
ctgcaagacc tggtggacca	tgtcaacgat	taccatgtca	agcccgagaa	ggatgcgggg	660	
tactgctgcc actgggaggg	ctgcgcccgc	catggccgag	gtttcaacgc	caggtacaag	720	
atgeteatee acateegeae	acacaccaac	gagaagccac	accgctgtcc	gacctgcagc	780	
aagagettet eeegeetgga	gaacctgaag	atccacaacc	ggtcgcacac	aggtgagaag	840	
ccctacgtct gcccctacga	gggctgcaac	aagcgctatt	ccaactccag	tgaccgcttt	900	
aagcacacgc gcacccacta	tgtggacaag	ccctactact	gcaagatgcc	cggctgccac	960	
aagegetaca eggaceeeag	ctcactgcgc	aagcacatca	aggcccatgg	ccactttgtg	1020	
teccaegage ageaagaget	cctgcagctg	cgcccacccc	ccaagccgcc	actgcccgcc	1080	
cccgacggcg gcccctatgt	cagtggggcc	cagatcatca	tccccaaccc	agctgccctc	1140	
tttggaggcc ctggcctgcc	cggcttaccc	ctacccctgg	cccccggccc	ccttgacctc	1200	
agtgccctgg cctgtggcaa	cggtggggc	agtgggggtg	gggggggcat	gggccctggg	1260	
ctgccaggcc ccgtcctgcc	tctcaatctg	gccaagaacc	cgctgctgcc	ctcgcccttt	1320	
ggggctggcg gactgggctt	gcctgtggtc	teceteettg	ctggcgcagc	tggtggcaag	1380	
gccgaggggg agaaggggcg	tgggtcggtg	cccaccaggg	ccctgggcat	ggagggccac	1440	
aagacgcccc ttgaaaggac	ggagagcagc	tgctcccggc	caagccccga	tggactcccc	1500	
ctgctgccag gcaccgtgct					1560	
	55559000					

gaggcgttgg	cccctggctg	ggtggtcatc	ccgccgggct	cggtgctgct	caaaccggct	1620
gtggtgaact	gageceatee	tgcggacagt	tgtggtgccc	ccccggcagc	teceggeact	1680
geeeeegaeg	aacggaaact	cttctgtgaa	atagcaataa	tgtcctactg	cccgggcagc	1740
cccagcccag	cccgccggga	gcaaggatgg	tgctaggtca	ttcatggctg	gcctcccagc	1800
ccccgggtgg	ggacctggcc	tgtcatgcag	ggagagetgt	geteetgggt	gctgaagcct	1860
cgctcctgtc	tgtcccccac	cacctggccc	tcagcttctg	agaggettte	ccctgcccga	1920
cctcctcccg	tttccctctc	ccaccctggc	acctccctca	cctagtgacc	acccatggca	1980
agttgccctc	teccageaga	gggggtgggt	ggggtggcat	ctgccctccc	tgctagcacc	2040
aggeteeece	ttcctgagag	gagcccccag	ggaccagagg	cctgcccttc	cctcctaggc	2100
ttacccagcc	cctgccctgg	gggctccttg	gacccctttc	cctctgaccc	tgcctccaga	2160
gggaaagcaa	gacagatgca	ggcccctgca	aagccccagg	tagaagcatg	cccccagga	2220
caaggcgcct	cccactagtt	aggaggaggc	ccgctctgca	geegeegtee	tcaccccagg	2280
ccaggcctgc	agtaccagac	gggatagctg	gccactccac	ccctgcaccc	cagggtctcc	2340
tecetetace	ttttggggca	ccctgggagc	gtgggaagca	ggtccgaggg	cccctgagct	2400
ggcaagggga	ggtgccaggc	cagctgtggt	gccaagatac	tgagtgacct	gggccctggc	2460
tcagggagca	tgtggggcca	ggcccagcgc	cccgtcttcc	tccttctacc	cccgctgggc	2520
ctggcctggg	cagegeeeee	tgcagaggcc	tttgggtcct	tggtcctgta	acaggaaggg	2580
ggaggetgge	tggggacgac	cgaccacagg	ctgggacaca	geteetggte	tgggggctcc	2640
aagtgacagc	atgcagggga	gggggeteee	agtcagtgct	gtgttgggag	ctttctggag	2700
gctgtggact	gaaggccttg	agggaagcag	tggctggagg	agggtgctgg	acccatgaca	2760
cgttgcttcc	tctggctttt	ccctgctggg	ccgctttctc	agaggcactt	ccccacccct	2820
aacacccagt	gggccccccc	aggttctgtg	ccactcagag	ggaccctggc	aggggccaga	2880
accacttaag	ggtggtgctg	gagggccttg	tgccccagtc	ccatcccagg	acgccctgag	2940
ggatggacgc	agccatgcac	cccccatctg	gggcctctcc	ctgctccctc	teccaectgg	3000
cagctgggag	ttctggcttc	taggcctgcc	ctgtcaccag	gcctctgagt	ggccaggccc	3060
ttccacctcc	ccatctgtaa	aacgaggcag	ctgcccggac	agccttgggg	tccttagtgg	3120
ccctgcaggt	cctctggcag	ctctgctgac	cccaccctct	cccggactgc	ccttctgtcc	3180
cagaggggtc	accctgaccc	ggcccacctt	gccactgggc	tttggactcc	agccctgaca	3240
gggcccagcc	acactggctc	tgcccctcga	aggggctatg	agcaaggtag	gagggagctg	3300
gtctcctttc	ttcgggcccc	acccaggccc	tgagcacccc	ccacccctgt	gagggcccca	3360
ggccttaagt	ccctggcggg	gtcatgggtt	tgcgacttga	gcagagcgga	ggaacagggc	3420
actggaaggc	cgacgagctc	agcatgcgac	tcggtgacgg	accaggctcg	gcagggccgg	3480
tgtacttttt	gtggttgtca	ttggtgtgtt	gttgcacatt	ccaggacgtc	agtattttaa	3540
caggttctaa	gtgcctttct	atcgtagctt	atgttttcct	cctcttggct	ccattgctgt	3600
tagcatagag	ttttaaaaaa	agagataagc	taatgactat	aacaatatat	tectecatgg	3660
gagaggaagt	ttataaagaa	acaataaaag	tgagttgcaa	agatg		3705

<210> SEQ ID NO 9 <211> LENGTH: 5607 <212> TYPE: DNA

<213 > ORGANISM: Homo	caniene					
<400> SEQUENCE: 9	sapiens					
					60	
actettgtea gggeegegge						
cgcggagcgc tggggagcag					120	
accgcctccg gtgctggcac					180	
gccgtcgaca ttttttttc	tttcttttt	tcaattttga	acattttgca	aaacgagggg	240	
ttcgaggcag gtgagagcat	cctgcacgtc	gccggggagc	ccgcgggcac	ttggcgcgct	300	
ctcctgggac cgtctgcact	ggaaacccga	aagtttttt	ttaatatata	tttttatgca	360	
gatgtattta taaagatata	agtaattttt	ttetteeett	ttctccaccg	ccttgagagc	420	
gagtactttt ggcaaaggac	ggaggaaaag	ctcagcaaca	ttttaggggg	cggttgtttc	480	
tttcttattt ctttttttaa	ggggaaaaaa	tttgagtgca	tegegatgga	gaaaatgtcc	540	
cgaccgctcc ccctgaatcc	cacctttatc	ccgcctccct	acggcgtgct	caggtccctg	600	
ctggagaacc cgctgaagct	ccccttcac	cacgaagacg	catttagtaa	agataaagac	660	
aaggaaaaga agctggatga	tgagagtaac	agcccgacgg	tcccccagtc	ggcattcctg	720	
gggcctacct tatgggacaa	aacccttccc	tatgacggag	atactttcca	gttggaatac	780	
atggacctgg aggagttttt	gtcagaaaat	ggcattcccc	ccagcccatc	tcagcatgac	840	
cacageeete acceteetgg	gctgcagcca	getteetegg	ctgccccctc	ggtcatggac	900	
ctcagcagcc gggcctctgc	accccttcac	cctggcatcc	catctccgaa	ctgtatgcag	960	
agececatea gaecaggtea	gctgttgcca	gcaaaccgca	atacaccaag	tcccattgat	1020	
cctgacacca tccaggtccc	agtgggttat	gagccagacc	cagcagatct	tgccctttcc	1080	
agcatccctg gccaggaaat	gtttgaccct	cgcaaacgca	agttctctga	ggaagaactg	1140	
aagccacagc ccatgatcaa	gaaagctcgc	aaagtcttca	tccctgatga	cctgaaggat	1200	
gacaagtact gggcaaggcg	cagaaagaac	aacatggcag	ccaagcgctc	ccgcgacgcc	1260	
cggaggctga aagagaacca	gatcgccatc	cgggcctcgt	tcctggagaa	ggagaactcg	1320	
gccctccgcc aggaggtggc	tgacttgagg	aaggagctgg	gcaaatgcaa	gaacatactt	1380	
gccaagtatg aggccaggca	cgggcccctg	taggatggca	tttttgcagg	ctggctttgg	1440	
aatagatgga cagtttgttt	cctgtctgat	agcaccacac	gcaaaccaac	ctttctgaca	1500	
tcagcacttt accagaggca	taaacacaac	tgactcccat	tttggtgtgc	atctgtgtgt	1560	
gtgtgcgtgt atatgtgctt	gtgctcatgt	gtgtggtcag	cggtatgtgc	gtgtgcgtgt	1620	
teetttgete ttgecatttt	aaggtagccc	teteategte	ttttagttcc	aacaaagaaa	1680	
ggtgccatgt ctttactaga					1740	
tcactcctgc ctcctcagct					1800	
tgcttggatt cactaaaaag					1860	
					1920	
agetettgtt tetgtttagt		_				
gcactactcc gcagctctag					1980	
ataatcgtct tcaaattaaa	gtgctgttta	gatttattag	atcccatatt	tacttactgc	2040	
tatctactaa gtttcctttt	aattctacca	accccagata	agtaagagta	ctattaatag	2100	
aacacagagt gtgtttttgc	actgtctgta	cctaaagcaa	taatcctatt	gtacgctaga	2160	

gcatgctgcc	tgagtattac	tagtggacgt	aggatatttt	ccctacctaa	gaatttcact	2220
gtcttttaaa	aaacaaaaag	taaagtaatg	catttgagca	tggccagact	attccctagg	2280
acaaggaagc	agagggaaat	gggaggtcta	aggatgaggg	gttaatttat	cagtacatga	2340
gccaaaaact	gegtettgga	ttagcctttg	acattgatgt	gttcggtttt	gttgttcccc	2400
ttccctcaca	ccctgcctcg	ccccacttt	tctagttaac	tttttccata	tccctcttga	2460
cattcaaaac	agttacttaa	gattcagttt	tcccactttt	tggtaatata	tatatttttg	2520
tgaattatac	tttgttgttt	ttaaaaagaa	aatcagttga	ttaagttaat	aagttgatgt	2580
tttctaaggc	cctttttcct	agtggtgtca	tttttgaatg	cctcataaat	taatgattct	2640
gaagcttatg	tttcttattc	tetgtttget	tttgaacgta	tgtgctctta	taaagtggac	2700
ttctgaaaaa	tgaatgtaaa	agacactggt	gtatctcaga	aggggatggt	gttgtcacaa	2760
actgtggtta	atccaatcaa	tttaaatgtt	tactatagac	caaaaggaga	gattattaaa	2820
tcgtttaatg	tttatacaga	gtaattatag	gaagttettt	tttgtacagt	atttttcaga	2880
tataaatact	gacaatgtat	tttggaagac	atatattata	tatagaaaag	aggagaggaa	2940
aactattcca	tgttttaaaa	ttatatagca	aagatatata	ttcaccaatg	ttgtacagag	3000
aagaagtgct	tgggggtttt	tgaagtcttt	aatatttaa	gccctatcac	tgacacatca	3060
gcatgttttc	tgctttaaat	taaaatttta	tgacagtatc	gaggettgtg	atgacgaatc	3120
ctgctctaaa	atacacaagg	agctttcttg	tttcttatta	ggcctcagaa	agaagtcagt	3180
taacgtcacc	caaaagcaca	aaatggattt	tagtcaaata	tttattggat	gatacagtgt	3240
tttttaggaa	aagcatctgc	cacaaaaatg	ttcacttcga	aattctgagt	tcctggaatg	3300
gcacgttgct	gccagtgccc	cagacagttc	ttttctaccc	tgcgggcccg	cacgttttat	3360
gaggttgata	tcggtgctat	gtgtttggtt	tataatttga	tagatgtttg	actttaaaga	3420
tgattgttct	tttgtttcat	taagttgtaa	aatgtcaaga	aattctgctg	ttacgacaaa	3480
gaaacatttt	acgctagatt	aaaatatcct	ttcatcaatg	ggattttcta	gtttcctgcc	3540
ttcagagtat	ctaatccttt	aatgatctgg	tggtctcctc	gtcaatccat	cagcaatgct	3600
tctctcatag	tgtcatagac	ttgggaaacc	caaccagtag	gatatttcta	caaggtgttc	3660
attttgtcac	aagctgtaga	taacagcaag	agatgggggt	gtattggaat	tgcaatacat	3720
tgttcaggtg	aataataaaa	tcaaaaactt	ttgcaatctt	aagcagagat	aaataaaaga	3780
tagcaatatg	agacacaggt	ggacgtagag	ttggcctttt	tacaggcaaa	gaggcgaatt	3840
gtagaattgt	tagatggcaa	tagtcattaa	aaacatagaa	aaatgatgtc	tttaagtgga	3900
gaattgtgga	aggattgtaa	catggaccat	ccaaatttat	ggccgtatca	aatggtagct	3960
gaaaaaacta	tatttgagca	ctggtctctc	ttggaattag	atgtttatat	caaatgagca	4020
tctcaaatgt	tttctgcaga	aaaaaataaa	aagattctaa	taaaatgtat	tctcttgtgt	4080
gccaggagag	gtttcagaaa	cctacctcgt	cttacaaatt	taaacacttt	ggagtctgta	4140
caggtgcctt	atatgtaggt	cattgtcacg	atacacacac	acgaacactc	cctctggact	4200
ggctgcctct	ccatccaggg	cagttaacta	gcaaacaagg	cagatetget	tcatggagcg	4260
ggaggccatg	gcttgactct	gagtgatttg	ggtcaaccgg	agtcagacgc	atgtctgcac	4320
gctgcagcta	ttatgagagt	ccctttgtca	tttttcacct	tttcatccta	agcatctttc	4380
agagattaat	tatttggcca	ttaacaatga	atccaaatca	tatcatactg	acatcatcta	4440

				-0011011			
gacatgattt	ggaaggaaca	gcttaggacc	tcctgatgag	gtcacattgt	tgtttctttt	4500	
aactagactt	ggcaaagaaa	ggcaaaaatt	gaccagccta	tctttctgct	ggtgctgcct	4560	
taaggaggta	gtttgttgag	gggagggctg	tagatcatta	cttcttctc	ttcaggaagt	4620	
ggccactttg	aaccattcaa	ataccacatt	aggcaagact	gtgataggcc	ttttgtcttc	4680	
aaatacaaca	ggcctccact	gacccatccc	tcaaagcaga	aggacccttt	gaggagagta	4740	
cagatgggat	tccacagtgg	ggtgggtgga	atggaaacct	gtactagacc	acccagaggt	4800	
tccttctaac	ccactggttt	ggtggggaac	tcacagtaat	tccaaatgta	caatcagatg	4860	
tctagggtct	gttttcggaa	gaagcaagaa	ttatcagtgg	caccctcccc	actgccccca	4920	
gtgtaaaaca	atagacattc	tgtgaaatgc	aaagctattc	tttggttttt	ctagtagttt	4980	
atctcatttt	accctattct	tcctttaagg	aaaactcaat	ctttatcaca	gtcaattaga	5040	
gcgatcccaa	ggcatgggac	caggeetget	tgcctatgtg	tgatggcaat	tggagatctg	5100	
gatttagcac	tggggtctca	gcaccctgca	ggtgtctgag	actaagtgat	ctgccctcca	5160	
ggtggcgatc	accttctgct	cctaggtacc	cccactggca	aggccaaggt	ctcctccacg	5220	
ttttttctgc	aattaataat	gtcatttaaa	aaatgagcaa	agccttatcc	gaatcggata	5280	
tagcaactaa	agtcaataca	ttttgcagga	ggctaagtgt	aagagtgtgt	gtgtgtgtgt	5340	
gtgcgtgcat	gtgtgtgtgt	gtgtatgtgt	gtgaataagt	cgacataaag	tctttaattt	5400	
tgagcacctt	accaaacata	acaataatcc	attatccttt	tggcaacacc	acaaagatcg	5460	
catctgttaa	acaggtacaa	gttgacatga	ggttagttta	attgtacacc	atgatattgg	5520	
tggtatttat	gctgttaagt	ccaaaccttt	atctgtctgt	tattcttaat	gttgaataaa	5580	
ctttgaattt	tttcctttca	aaaaaaa				5607	
<210> SEQ 3 <211> LENG <212> TYPE	ID NO 10 TH: 4150					5607	
<210> SEQ 3 <211> LENG <212> TYPE	ID NO 10 TH: 4150 : DNA NISM: Homo s					5607	
<210 > SEQ : <211 > LENG: <212 > TYPE < <213 > ORGAI < <400 > SEQUI	ID NO 10 TH: 4150 : DNA NISM: Homo s	sapiens	ttccagcccg	ggcagcgcgc	gcttggtgca	5607	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI	ID NO 10 TH: 4150 : DNA NISM: Homo s	sapiens ctcagaaaac					
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <4400> SEQUI cttgaatctt agactcagga	ID NO 10 TH: 4150 : DNA NISM: Homo s ENCE: 10	sapiens ctcagaaaac cgtccccctc	cgactctccg	gtgccgccgc	tgcctgctcc	60	
<210> SEQ 1 <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccacccta	ID NO 10 IH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc	sapiens ctcagaaaac cgtccccctc tgccacccac	cgactctccg	gtgccgccgc	tgeetgetee	60 120	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <4400> SEQUI cttgaatctt agactcagga cgccacccta gaccctatcc	ID NO 10 TH: 4150 : DNA NISM: Homo : ENCE: 10 ggggcaggaa gctagcagcc	ctcagaaaac cgtcccctc tgccacccac	cgactctccg tactctgtcc cctttgcttt	gtgccgccgc tctgcctgtg ccgactgccc	tgcctgctcc ctccgtgccc aaggcacttt	60 120 180	
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccacccta gaccctatcc caatctcaat	ID NO 10 IH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcggg	ctcagaaaac cgtcccctc tgccacccac tccccatcct	cgactctccg tactctgtcc cctttgcttt tctctctctc	gtgccgccgc tctgcctgtg ccgactgccc tctctctctc	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc	60 120 180 240	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccacccta gaccctatcc caatctcaat tctctctctc	ID NO 10 TH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctctc	ctcagaaaac cgtcccctc tgccacccac tccccatcct tctctctctc	cgactetecg tactetgtec cetttgettt tetetetete ggaggaatte	gtgccgccgc tctgcctgtg ccgactgccc tctctctctc	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca	60 120 180 240 300	
<210> SEQ I <211> LENG <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccaccta gaccctatcc caatctcaat tctctctctc agggacacaa	ID NO 10 ITH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctctc gcagggtggg	ctcagaaaac cgtcccctc tgccaccac tccccatcct tctctctctc gggaagagga	cgactctccg tactctgtcc cctttgcttt tctctctctc ggaggaattc tttccaagcc	gtgccgccgc tctgcctgtg ccgactgccc tctctctct tttccccgcc	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca tgctcccggt	60 120 180 240 300 360	
<210> SEQ 1 <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccacccta gaccctatcc caatctcaat tetetetete agggacacaa gcccgcaact	ID NO 10 IH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctctc gcagggtggg	ctcagaaaac cgtcccctc tgccacccac tccccatcct tctctctctc gggaagagga gtctcttccc	cgactctccg tactctgtcc cctttgcttt tctctctctc ggaggaattc tttccaagcc ggagcctctg	gtgccgccgc tctgcctgtg ccgactgccc tctctctct tttccccgcc gcttccgaag cgacctcaaa	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca tgctcccggt	60 120 180 240 300 360 420	
<210> SEQ I <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccaccta gacctatcc caatctcaat tctctctctc agggacacaa gcccgcaact cttctccctc	ID NO 10 TH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctctc gcagggtggg ttcactccaa cctgatccca	ctcagaaaac cgtcccctc tgccaccac tcccatcct tctctctc gggaagagga gtctcttccc acccgcgaga	cgactetecg tactetgtee cetttgettt tetetetete ggaggaatte tttccaagee ggageetetg acctecacet	gtgccgccgc tctgcctgtg ccgactgccc tctctctctc tttccccgcc gcttccgaag cgacctcaaa	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca tgctcccggt gcctctcttc ctccacctcc	60 120 180 240 300 360 420	
<210> SEQ I <211> LENG <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccaccta gaccctatcc caatctcaat tctctctctc agggacacaa gccgcaact cttctcctc ggcacccac	ID NO 10 IH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctct gcagggtggg ttcactccaa cctgatccca gcttcctcc	ctcagaaaac cgtcccctc tgccaccac tccccatcct tctctctcc gggaagagga gtctcttccc accgcgaga tcctcttgct	cgactetecg tactetgtec cetttgettt tetetetete ggaggaatte tttecaagee ggageetetg acctecacet geagegeete	gtgccgccgc tctgcctgtg ccgactgccc tctctctctc tttccccgcc gcttccgaag cgacctcaaa ccaccgccac	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca tgctcccggt gcctctcttc ctccacctcc	60 120 180 240 300 360 420 480	
<pre><210> SEQ : <211> LENG' <212> TYPE <213> ORGAI <400> SEQUI cttgaatctt agactcagga cgccacccta gaccctatcc caatctcaat tctctctctc agggacacaa gcccgcaact cttctcctc ggcacccacc</pre>	ID NO 10 IH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctctc gcagggtggg ttcactccaa cctgatccca gcttcctcc	ctcagaaaac cgtcccctc tgccacccac tccccatcct tctctctcc gggaagagga gtctcttccc acccgcgaga tcctcttgct gccgccaccg	cgactctccg tactctgtcc cctttgcttt tctctctctc ggaggaattc tttccaagcc ggagcctctg acctccacct gcagcgcctc tccggtgttg	gtgccgccgc tctgcctgtg ccgactgccc tctctctct tttccccgcc gcttccgaag cgacctcaaa ccaccgccac ctcctctct	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca tgctcccggt gcctctcttc ctccacctcc cctcctcctc	60 120 180 240 300 360 420 480 540	
<210> SEQ I <211> LENG' <212> TYPE <213> ORGAN <400> SEQUI cttgaatctt agactcagga cgccaccta gaccctatcc caatctcatt tctctctct agggacacaa gcccgcaact cttctccctc ggcacccacc cctcttctc ctaagcaaca	ID NO 10 TH: 4150 : DNA NISM: Homo s ENCE: 10 ggggcaggaa gctagcagcc ggaggcgcgg cggcggagtc ctcttctctc gcagggtggg ttcactccaa cctgatccca gcttccctcc caccgccgcc	ctcagaaaac cgtcccctc tgccaccac tcccatcct tctctctcc gggaagaga gtctttccc acccgcgaga tcctcttgct gccgccaccg	cgactetecg tactetgtee cetttgettt tetetetete ggaggaatte tttccaagee ggageetetg acctecacet geagegeete teeggtgttg getegegete	gtgccgccgc tctgcctgtg ccgactgccc tctctctctc tttccccgcc gcttccgaag cgacctcaaa ccaccgccac ctcctctcct	tgcctgctcc ctccgtgccc aaggcacttt tctctctctc taacatttca tgctcccggt gcctctcttc ctcacctcc cctcctcctc	60 120 180 240 300 360 420 480 540 600	

tgcagcggcg gtagcggcgg cgggaggcag gatgagcgca cgcggtgagg gcgcggggca

gccgtccact	tcagcccagg	gacaacctgc	cgccccagcg	cctcagaaga	gaggacgcgg	900	
ccgccccagg	aagcagcagc	aagaaccaac	cggtgagccc	tctcctaaga	gacccagggg	960	
aagacccaaa	ggcagcaaaa	acaagagtcc	ctctaaagca	gctcaaaaga	aagcagaagc	1020	
cactggagaa	aaacggccaa	gaggcagacc	taggaaatgg	ccacaacaag	ttgttcagaa	1080	
gaagcctgct	caggaggaaa	ctgaagagac	atcctcacaa	gagtetgeeg	aagaggacta	1140	
gggggcgcca	acgttcgatt	tctacctcag	cagcagttgg	atcttttgaa	gggagaagac	1200	
actgcagtga	ccacttattc	tgtattgcca	tggtctttcc	actttcatct	ggggtggggt	1260	
ggggtggggt	gggggagggg	ggggtggggt	ggggagaaat	cacataacct	taaaaaggac	1320	
tatattaatc	accttctttg	taatcccttc	acagtcccag	gtttagtgaa	aaactgctgt	1380	
aaacacaggg	gacacagett	aacaatgcaa	cttttaatta	ctgttttctt	ttttcttaac	1440	
ctactaatag	tttgttgatc	tgataagcaa	gagtgggcgg	gtgagaaaaa	ccgaattggg	1500	
tttagtcaat	cactgcactg	catgcaaaca	agaaacgtgt	cacacttgtg	acgtcgggca	1560	
ttcatatagg	aagaacgcgg	tgtgtaacac	tgtgtacacc	tcaaatacca	ccccaaccca	1620	
ctccctgtag	tgaatcctct	gtttagaaca	ccaaagataa	ggactagata	ctactttctc	1680	
tttttcgtat	aatcttgtag	acacttactt	gatgattttt	aactttttat	ttctaaatga	1740	
gacgaaatgc	tgatgtatcc	tttcattcag	ctaacaaact	agaaaaggtt	atgttcattt	1800	
ttcaaaaagg	gaagtaagca	aacaaatatt	gccaactctt	ctatttatgg	atatcacaca	1860	
tatcagcagg	agtaataaat	ttactcacag	cacttgtttt	caggacaaca	cttcattttc	1920	
aggaaatcta	cttcctacag	agccaaaatg	ccatttagca	ataaataaca	cttgtcagcc	1980	
tcagagcatt	taaggaaact	agacaagtaa	aattatcctc	tttgtaattt	aatgaaaagg	2040	
tacaacagaa	taatgcatga	tgaactcacc	taattatgag	gtgggaggag	cgaaatctaa	2100	
atttcttttg	ctatagttat	acatcaattt	aaaaagcaaa	aaaaaaaag	gggggggcaa	2160	
tctctctctg	tgtctttctc	tctctctct	cctctccctc	tctctttca	ttgtgtatca	2220	
gtttccatga	aagacctgaa	taccacttac	ctcaaattaa	gcatatgtgt	tacttcaagt	2280	
aatacgtttt	gacataagat	ggttgaccaa	ggtgcttttc	ttcggcttga	gttcaccatc	2340	
tcttcattca	aactgcactt	ttagccagag	atgcaatata	tecceactae	tcaatactac	2400	
ctctgaatgt	tacaacgaat	ttacagtcta	gtacttatta	catgctgcta	tacacaagca	2460	
atgcaagaaa	aaaacttact	gggtaggtga	ttctaatcat	ctgcagttct	ttttgtacac	2520	
ttaattacag	ttaaagaagc	aatctcctta	ctgtgtttca	gcatgactat	gtatttttct	2580	
atgtttttt	aattaaaaat	ttttaaaata	cttgtttcag	cttctctgct	agatttctac	2640	
attaacttga	aaattttta	accaagtcgc	tcctaggttc	ttaaggataa	ttttcctcaa	2700	
tcacactaca	catcacacaa	gatttgactg	taatatttaa	atattaccct	ccaagtctgt	2760	
acctcaaatg	aattctttaa	ggagatggac	taattgactt	gcaaagacct	acctccagac	2820	
ttcaaaagga	atgaacttgt	tacttgcagc	attcatttgt	tttttcaatg	tttgaaatag	2880	
ttcaaactgc	agctaaccct	agtcaaaact	atttttgtaa	aagacatttg	atagaaagga	2940	
acacgttttt	acatactttt	gcaaaataag	taaataataa	ataaaataaa	agccaacctt	3000	
caaagaaact	tgaagctttg	taggtgagat	gcaacaagcc	ctgcttttgc	ataatgcaat	3060	
caaaaatatg	tgtttttaag	attagttgaa	tataagaaaa	tgcttgacaa	atattttcat	3120	

-continued	
gtattttaca caaatgtgat ttttgtaata tgtctcaacc agatttattt taaacgcttc	3180
ttatgtagag tttttatgcc tttctctcct agtgagtgtg ctgacttttt aacatggtat	3240
tatcaactgg gccaggaggt agtttctcat gacggctttt gtcagtatgg cttttagtac	3300
tgaagccaaa tgaaactcaa aaccatctct cttccagctg cttcagggag gtagtttcaa	3360
aggccacata cetetetgag actggcagat egeteactgt tgtgaateac caaaggaget	3420
atggagagaa ttaaaactca acattactgt taactgtgcg ttaaataagc aaataaacag	3480
tggctcataa aaataaaagt cgcattccat atctttggat gggcctttta gaaacctcat	3540
tggccagctc ataaaatgga agcaattgct catgttggcc aaacatggtg caccgagtga	3600
tttccatctc tggtaaagtt acacttttat ttcctgtatg ttgtacaatc aaaacacact	3660
actacetett aagteecagt ataceteatt ttteatactg aaaaaaaaag ettgtggeea	3720
atggaacagt aagaacatca taaaattttt atatatatag tttatttttg tgggagataa	3780
attttatagg actgttcttt gctgttgttg gtcgcagcta cataagactg gacatttaac	3840
ttttctacca tttctgcaag ttaggtatgt ttgcaggaga aaagtatcaa gacgtttaac	3900
tgcagttgac tttctccctg ttcctttgag tgtcttctaa ctttattctt tgttctttat	3960
gtagaattgc tgtctatgat tgtactttga atcgcttgct tgttgaaaat atttctctag	4020
tgtattatca ctgtctgttc tgcacaataa acataacagc ctctgtgatc cccatgtgtt	4080
ttgattcctg ctctttgtta cagttccatt aaatgagtaa taaagtttgg tcaaaacaga	4140
aaaaaaaaa	4150
<210> SEQ ID NO 11 <211> LENGTH: 1657 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 11	
gggtgctata gacgcacaaa cgaccgcgag ccacaaatca agcacacata tcaaaaaaca	60
aatgagetet tattttgtaa aeteattttg eggtegetat eeaaatggee eggaetacea	120
gttgcataat tatggagatc atagttccgt gagcgagcaa ttcagggact cggcgagcat	180
	200
gcacteegge aggtaegget aeggetaeaa tggeatggat eteagegteg geegeteggg	240
geacteegge aggtaegget aeggetaeaa tggeatggat eteagegteg geegeteggg eteeggeeae tttggeteeg gagagegege eegeagetae getgeeageg eeagegegge	
	240
ctccggccac tttggctccg gagagcgcgc ccgcagctac gctgccagcg ccagcgcgc	240 300
cteeggeeae tttggeteeg gagagegege eegeagetae getgeeageg eeagegege geeegeegag eeeaggtaca geeageegge eacgteeaeg eacteteete ageeegatee	240 300 360
ctccggccac tttggctccg gagagcgcgc ccgcagctac gctgccagcg ccagcgcggc gcccgccgag cccaggtaca gccagccggc cacgtccacg cactctcctc agcccgatcc gctgccctgc tccgccgtgg ccccctcgcc cggcagcgac agccaccacg gcgggaaaaa	240 300 360 420
ctccggccac tttggctccg gagagegege ccgcagctac gctgccageg ccagegegege gcccgccgag cccaggtaca gccagccgge cacgtccacg cactetecte agcccgatec gctgccctgc tccgccgtgg ccccctcgcc cggcagegae agccaccacg gcgggaaaaa ctccctaage aactccageg gcgcctcgge cgacgccgge agcacccaca tcagcageag	240 300 360 420 480
ctccggccac tttggctccg gagagcgcgc ccgcagctac gctgccagcg ccagcgcggc gcccgccgag cccaggtaca gccagccggc cacgtccacg cactctcctc agcccgatcc gctgccctgc tccgccgtgg ccccctcgcc cggcagcgac agccaccacg gcgggaaaaaa ctccctaagc aactccagcg gcgcctcggc cgacgccggc agcacccaca tcagcagcag agagggggtt ggcacggcgt ccggagccga ggaggacgcc cctgccagca gcgagcaggc	240 300 360 420 480 540
ctccggccac tttggctccg gagagcgcgc ccgcagctac gctgccagcg ccagcgcggc gcccgccgag cccaggtaca gccagccggc cacgtccacg cactctcctc agcccgatcc gctgccctgc tccgccgtgg ccccctcgcc cggcagcgac agccaccacg gcgggaaaaaa ctccctaagc aactccagcg gcgcctcggc cgacgccggc agcacccaca tcagcagcag agagggggtt ggcacggcgt ccggagccga ggaggacgcc cctgccagca gcgagcaggc gagtgcgcag agcgagccga agcgagccga gccggcccaa ccccagatct acccctggat	240 300 360 420 480 540
cteeggeeae tttggeteeg gagagegee eegeagetae getgeeageg eeagegegee geeegeegag eecaggtaca geeageegge eacgteeaeg eacteteete ageeegatee getgeeetge teegeegtgg eeceetegee eggeagegae ageaceaea gegggaaaaaa etceetaage aacteeageg gegeetegge egaegeegge ageaceeaea teageageag agaggggtt ggeaeggegt eeggageega ggaggaegee eetgeeagea gegageagge gagtgegeag ageageega geeggeegge geeegeeaa eeceagatet acceetggat gegeaagetg eacataagte atgacaacat aggeggeegg gaaggeaaaa gggeeeggae	240 300 360 420 480 540 600
ctccggccac tttggctccg gagagcgcgc ccgcagctac gctgccagcg ccagcggggcgcgccggcggggagccggagcgcgggagcggggagcgggggagcggagcgggggagggggg	240 300 360 420 480 540 600 660

catggccgcg gcaggagggg ccttccgtcc ctgagtatct gagcgtttaa agtactgagc agtattagcg gatcccgcgt agtgtcagta ctaaggtgac tttctgaaac tcccttgtgt

900

tccttctgtg	aagaagccct	gttctcgttg	ccctaattca	tcttttaatc	atgagcctgt	1020	
ttattgccat	tatagcgcct	gtataagtag	atctgctttc	tgttcatctc	tttgtcctga	1080	
atggctttgt	cttgaaaaaa	aatagatgtt	ttaacttatt	tatatgaagc	aagctgtgtt	1140	
acttgaagta	actataacaa	aaaaagaaaa	gagaaaaaaa	aacacacaaa	aagtccccct	1200	
tcaatctcgt	ttagtgccaa	tgttgtgtgt	tgcactcaag	ttgtttaact	gtgcatgtgc	1260	
gtggaagtgt	tcctgtctca	atagctccaa	gctgttaaag	atatttttat	tcaaactacc	1320	
tatattcctt	gtgtaattaa	tgctgttgta	gaggtgactt	gatgagacac	aacttgttcg	1380	
acgtgtagtg	actagtgact	ctgtgatgaa	aactgtgact	ccaagcggtg	tgtccctgcg	1440	
tgcctttata	ggaccctttg	cacgaactct	ggaagtggct	cttataagcg	cagcttcagt	1500	
gatgtatgtt	tttgtgaaca	aagttacaaa	tattgtccaa	gtctggctgt	tttaagcaaa	1560	
ctgtgatcag	ctttttttt	tttttttt	tttttgtatt	tgtttttaag	gaaaaaatac	1620	
tgactggaac	aaaaaataaa	ctttctattg	taagttc			1657	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 2076	sapiens					
<400> SEQUE	ENCE: 12						
agttgttaca	tgaaatctgc	agtttcataa	tttccgtggg	tcgggccggg	cgggccaggc	60	
gctgggcacg	gtgatggcca	ccactggggc	cctgggcaac	tactacgtgg	actcgttcct	120	
gctgggcgcc	gacgccgcgg	atgagctgag	cgttggccgc	tatgcgccgg	ggaccctggg	180	
ccagcctccc	cggcaggcgg	cgacgctggc	cgagcacccc	gacttcagcc	cgtgcagctt	240	
ccagtccaag	gcgacggtgt	ttggcgcctc	gtggaaccca	gtgcacgcgg	cgggcgccaa	300	
cgctgtaccc	gctgcggtgt	accaccacca	tcaccaccac	ccctacgtgc	acccccaggc	360	
gcccgtggcg	geggeggege	cggacggcag	gtacatgcgc	tcctggctgg	agcccacgcc	420	
cggtgcgctc	teettegegg	gcttgccctc	cagccggcct	tatggcatta	aacctgaacc	480	
getgteggee	agaaggggtg	actgtcccac	gcttgacact	cacactttgt	ccctgactga	540	
ctatgcttgt	ggttctcctc	cagttgatag	agaaaaacaa	cccagcgaag	gegeettete	600	
tgaaaacaat	gctgagaatg	agageggegg	agacaagccc	cccatcgatc	ccaataaccc	660	
agcagccaac	tggcttcatg	cgcgctccac	tcggaaaaag	cggtgcccct	atacaaaaca	720	
ccagaccctg	gaactggaga	aagagtttct	gttcaacatg	tacctcacca	gggaccgcag	780	
gtacgaggtg	gctcgactgc	tcaacctcac	cgagaggcag	gtcaagatct	ggttccagaa	840	
ccgcaggatg	aaaatgaaga	aaatcaacaa	agaccgagca	aaagacgagt	gatgccattt	900	
gggcttattt	agaaaaaagg	gtaagctaga	gagaaaaaga	aagaactgtc	cgtccccctt	960	
ccgccttctc	ccttctctca	ccccaccct	agcctccacc	atccccgcac	aaagcggctc	1020	
taaacctcag	gccacatctt	ttccaaggca	aaccctgttc	aggctggctc	gtaggcctgc	1080	
cgctttgatg	gaggaggtat	tgtaagcttt	ccattttcta	taagaaaaag	gaaaagttga	1140	
ggggggggca	ttagtgctga	tagctgtgtg	tgttagcttg	tatatatatt	tttaaaaatc	1200	
tacctgttcc	tgacttaaaa	caaaaggaaa	gaaactacct	ttttataatg	cacaactgtt	1260	

gatggtaggc tgtatagttt ttagtctgtg tagttaattt aatttgcagt ttgtgcggca 1320

			-contir	ıuea		
gattgctctg ccaagatact	tgaacactgt	gttttattgt	ggtaattatg	ttttgtgatt	1380	
caaacttctg tgtactgggt	gatgcaccca	ttgtgattgt	ggaagataga	attcaatttg	1440	
aactcaggtt gtttatgagg	ggaaaaaaac	agttgcatag	agtatagete	tgtagtggaa	1500	
tatgtcttct gtataactag	gctgttaacc	tatgattgta	aagtagctgt	aagaatttcc	1560	
cagtgaaata aaaaaaaatt	ttaagtgttc	teggggatge	atagattcat	cattttctcc	1620	
accttaaaaa tgcgggcatt	taagtctgtc	cattatctat	atagtcctgt	cttgtctatt	1680	
gtatatataa tctatatgat	taaagaaaat	atgcataatc	agacaagctt	gaatattgtt	1740	
tttgcaccag acgaacagtg	aggaaattcg	gagctataca	tatgtgcaga	aggttactac	1800	
ctagggttta tgcttaattt	taattggagg	aaatgaatgc	tgattgtaac	ggagttaatt	1860	
ttattgataa taaattatac	actatgaaac	cgccattggg	ctactgtaga	tttgtatcct	1920	
tgatgaatct ggggtttcca	tcagactgaa	cttacactgt	atattttgca	atagttacct	1980	
caaggeetae tgaccaaatt	gttgtgttga	gatgatattt	aactttttgc	caaataaaat	2040	
atattgattc ttttctaaaa	aaaaaaaaa	aaaaaa			2076	
<210> SEQ ID NO 13 <211> LENGTH: 3627 <212> TYPE: DNA <213> ORGANISM: Homo:	sapiens					
<400> SEQUENCE: 13						
ctgggtaggg cagggggaac	cgacaggccg	gtgtccccag	ccgcaaaaga	gctgctgaac	60	
tgtccgttta aatgctgctg	ggagactcgt	aaaaaaatca	tegtggaeet	ggaggatgag	120	
aggggcgagc tttatttcgg	tcggattgcg	gtgtggtggt	ttagctgcaa	ggggatgccg	180	
cagccccagt tgagggggaa	aatagttctt	aaaaagcata	tgccccccta	aggaatgtct	240	
ctaaagaacc aaatcaaagc	tgctctttgg	aaggtatgaa	tagaatttaa	aaaaaaaga	300	
tttctatgga gcttaaagtt	cacagccatt	ctgtgtagac	aagagctaag	aaaaatgtga	360	
gaattataca gaaaaccatt	aatcacttct	tttctttaaa	tacgtatcct	ctctcctttg	420	
ttattattca acagcaaatc	tccttggacc	ggctgttggg	ggaaaaaagt	gttagccgtc	480	
teteceggat etgeaagggg	gaaaaaattt	ggaaccataa	agttgaaaac	ttttttctct	540	
cagtttggaa gaageeette	gtcatgaatg	ggatctgcag	agttcgggcg	agaggaggcg	600	
agaggcgcaa aggaggggag	atttgtcgcc	tgccgctcgc	tctggggctc	gatgtgaata	660	
tatattatgt ctgcctgttc	teceetegte	ggtggctaag	gtcagccgct	tggaacagac	720	
cccggaggag gggggcagag	aggggaggtg	999999999	gtccggcgtg	tcacgtgacc	780	
cccagggttg ccaatgtccg	gtcctgaggg	tatcaggcct	ttccaagttg	ccacccactg	840	
cccaggcctc acccagcgat	gcagaaagcc	acctactacg	acaacgccgc	ggctgctctc	900	
ttcggaggct attcctcgta	ccctggcagc	aatggcttcg	gcttcgatgt	cccccccaa	960	
ccccatttc aggccgccac	gcacctggag	ggcgactacc	agcgctcagc	ttgctcgctg	1020	
cagtecetgg geaacgetge	cccacatgcc	aagagcaagg	agctcaacgg	cagctgcatg	1080	
aggccgggtc tggcccccga	geceetgteg	geceegeetg	geteacecce	geccagtgee	1140	
gcacctacca gtgccactag	caacagcagt	aatgggggcg	ggcccagcaa	aagtggtccc	1200	

ccaaagtgcg gtcccggcac caactccacc ctcaccaaac agatattccc ctggatgaaa 1260

gagtcgaggc	aaacgtccaa	gctgaaaaac	aactcccccg	gcacagcaga	gggctgtggt	1320
ggcggcggcg	gtggcggcgg	cggcggaggc	agtggtggca	gcgggggcgg	tggcggcggc	1380
ggcgggggag	gggacaagag	cccccgggg	teggeggegt	ccaagcgggc	geggaeggeg	1440
tacacgagcg	cgcagctggt	ggagctggag	aaggagttcc	attttaaccg	ctacctgtgc	1500
cggcctcgcc	gtgtagagat	ggccaacctg	ctgaacctca	gcgagcggca	gatcaagatc	1560
tggttccaga	accggcgcat	gaagtacaag	aaggaccaga	aggccaaggg	attggcctcg	1620
tegteggggg	gcccatctcc	agccggcagc	cccccgcagc	ccatgcagtc	cacggccggc	1680
ttcatgaacg	ccttacactc	catgaccccc	agctacgaga	gcccgtcccc	accegeette	1740
ggtaaagccc	accagaatgc	ctacgcgctg	ccctccaact	accagccccc	tctcaaaggc	1800
tgcggcgccc	cgcagaagta	ccctccgacc	ceggegeeeg	agtatgagcc	gcacgtcctc	1860
caagccaacg	ggggcgccta	cgggacgccc	accatgcagg	gcagtccggt	gtacgtgggc	1920
gggggcggct	acgcggatcc	getgeegeee	cctgccggcc	cctccctcta	tggcctcaac	1980
cacctttccc	atcacccttc	cgggaacctg	gactacaacg	gggcgccccc	tatggcgccc	2040
agccagcacc	acggaccctg	cgaaccccac	cccacctaca	cagacctctc	ctctcaccac	2100
gegeeteete	ctcagggtag	aatccaagaa	gcgcccaaat	taacacacct	gtgatgggaa	2160
agggcgaacg	aggattaggg	gatggggagg	aagagaga	ctgtggagct	ctggggggca	2220
acctggaggt	ctgaaaagag	gagccagaga	aggtggtacc	caggetteet	ggtcagaacc	2280
ggcctggagc	tccttccctt	ccccctggcc	tgagaggttg	cttttaagtc	ttccacccct	2340
tgttccatct	gcctgccaac	ccatcggaaa	ggaatccaca	tcatattgga	gatgacccca	2400
tcaaccccag	ggctccagca	ctaccaagtt	ggaattccac	gcccgggagt	ggggtagagg	2460
aagacgagac	aggacgaggc	agaaaagcac	attttaaaaa	ccagacaaga	tggctaggcc	2520
atcaccaacc	aacggactta	ccttacatct	ttgtaggtaa	ttccccccaa	atcttgattt	2580
tttttttcc	tcaattatcc	tttaaaaaat	aagaaaacac	atttcaaacc	caaaaggcac	2640
aaaacacgtt	cccttccaac	tttcccaaaa	cctcaaattt	gttcccattt	gaggtttatt	2700
gaggtacact	tctagccccc	ggtttttctg	ctctagaaca	ttcatatcta	tacatcccac	2760
ccccatcaat	tacagttttt	agagggctca	gggatggtga	gagatcctga	aagagctgcc	2820
tatattataa	attatataca	tttttttta	aggaaaagtg	tggaggctag	ggcaggcagg	2880
ttgttaggac	tgaaggtttg	cccattctgc	tgcctccatc	tcagctccag	ctccatcccc	2940
ctctccacag	aaagcagttg	gtgacacgag	gttctatact	tttcttctgt	tgctctcttg	3000
acttaacgtg	aaaacagggt	atatttgaac	aaactgtccc	aggcaggggc	tgggcagggc	3060
ctgtgtgcct	tgctcagcct	cctgacagga	cacttttgtt	gcacttagaa	tttacatttt	3120
aatggatgta	aaaacaactg	tgagagatgt	ctgggcctgc	agaagtccag	cattgctcaa	3180
aaaagcgtgt	gttctagtga	acattttcat	atatatttat	tggttatagc	ctgttaaaat	3240
attttctttt	ttgtattatt	tatcccccta	cattatgtat	ttatatgagg	gaaaaaaagg	3300
aaaaaattgt	acttttttag	tatttacctg	ttacaaagga	cattgtgttt	cctgtcatgt	3360
aaaaccagct	attttagtta	ctattgtact	ctagaaaaga	gctgtagatt	tatgttaaac	3420
tcgtacttac	gaacaattgt	aattagttct	aaaaggcatg	aactcagctc	ctaatcgtca	3480
ctgtatagtc	ctgaatttgt	agaactagag	ttaattccct	cttggaactt	tctttgttct	3540

tcagtagtta cttttttcct tacctaaaag ggttgtctgt caaacaattc ttgaataaac	3600
tttctgttat caattttaaa aaaaaaa	3627
<210> SEQ ID NO 14 <211> LENGTH: 2042 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 14	
ggaaaacgag tcaggggtcg gaataaattt tagtatattt tgtgggcaat tcccagaaat	60
taatggotat gagttetttt ttgateaact caaactatgt egaceecaag tteecteeat	120
gogaggaata ttcacagago gattacctac ccagogacca ctogcooggg tactacgoog	180
goggccagag gogagagagc agottccagc oggaggoggg ottogggogg ogogoggogt	240
geacegtgea gegetacgeg geetgeeggg accetgggee eccgeegeet eegecaceae	300
coccegoogce cocgcacog cocggtotgt cocctoggge tectgogoog coaccegoog	360
gggcctcct cccggagcc ggccagcgct gcgaggcggt cagcagcagc cccccgccgc	420
ctccctgcgc ccagaacccc ctgcacccca gcccgtccca ctccgcgtgc aaagagcccg	480
togtotacco otggatgogo aaagttoacg tgagcacggt aaaccccaat tacgcoggog	540
gggagcccaa gcgctctcgg accgcctaca cgcgccagca ggtcttggag ctggagaagg	600
aatttcacta caaccgctac ctgacacggc gccggagggt ggagatcgcc cacgcgctct	660
goototooga gogocagato aagatotggt tooagaacog gogoatgaag tggaaaaaag	720
	780
accacaagtt gcccaacacc aagatccgct cgggtggtgc ggcaggctca gccggagggc	840
cccctggccg gcccaatgga ggcccccgcg cgctctagtg cccccgcacg cgggagccac	
gaacctcggg gtgggggtgg gcagtgagtg caggggatgg ggtgggggga caggaggggg	900
ccctggggcc tgggccccgg aaaaatctat ctgccctccc ccacacttta tatacgaata	960
aacgcagaag agggggaggg gaagctttat ttatagaaat gacaatagag ggccacgggg	1020
aggccccccc agaagcaaga ttcaaatctc ttgctttctt tcttaaaaaa aagaaaaaga	1080
aaaagcaaga agaaggaaga aagaaaaaga cagaaagaga aataggagga ggctgcagct	1140
cctcgttttc agctttggcg aagatggatc cacgtttcat ctttaatcac gccaggtcca	1200
ggcccatctg tcttgtttcc tctgccgagg agaagacggg cctcggtggc gaccattacc	1260
togacaccog ctaacaaatg aggcccggct cggccgcctc cgcctctgct actgccgctg	1320
ctggaagaca gcctggattt cctttctttg tcccccactc ccgataccca gcgaaagcac	1380
cctctgactg ccagatagtg cagtgttttg gtcacggtaa cacacacaca ctctccctca	1440
tetttegtge ceatteactg agggeeagaa tgaetgetea eccaetteea eegtggggtt	1500
gggggtgggc aacagaggag gggagcaagt agggaagggg gtggccttga caactcagga	1560
gtgagcagga aaattgagtc caaggaaaaa gagagactca gagacccggg agggccttcc	1620
tctgaaaggc caagccaagc catgcttggc agggtgaggg gccagttgag ttctgggagc	1680
tgggcactac tctgccagtc cagagttgta cagcagaagc ctctctccta gactgaaaat	1740
gaatgtgaaa ctaggaaata aaatgtgccc ctcccagtct gggaggagga tgttgcagag	1800
controcca tagtttatta tgttgcatcg tttattatta ttattgataa tattattatt	1860
actatttttt tgtgtcatgt gagtcctctc tccttttctc tttctgacat tccaaaacca	1920
accuration of the state of the	1920

ggccccttcc tacctctggg	gctgcttgag	tctagaaccc	ttegtatqtq	tgaatatctq	1980	•
tgtgctgtac agagtgacaa					2040	
aa	<u> </u>	5 55	5 5		2042	
<210> SEQ ID NO 15 <211> LENGTH: 1830 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens					
<400> SEQUENCE: 15						
gtgaagcaca gggttataac	gaccacgatc	cacaaatcaa	gccctccaaa	atcacccaaa	60	
tgagctcgta ctttgtaaac	teettetegg	ggcgttatcc	aaatggcccg	gactatcagt	120	
tgctaaatta tggcagtggc	agctctctga	gcggctctta	cagggatccc	gctgccatgc	180	
acaccggctc ttacggctac	aattacaatg	ggatggacct	cagcgtcaac	cgctcctcgg	240	
cctcctccag ccactttggg	gcggtgggcg	agagetegeg	cgccttcccc	gegeeegeee	300	
aggageeeeg etteaggeaa	geggettega	gctgctccct	gtcctcgccc	gagtccctgc	360	
cctgcaccaa cggcgacagc	cacggcgcca	agccctctgc	ttcgtccccc	tccgaccagg	420	
cgacctcagc cagctccagc	gccaatttca	ccgaaataga	cgaggccagc	gcgtcctcgg	480	
agcctgagga agcggcaagc	cagctaagca	gccccagcct	agctcgggcg	cagccagagc	540	
ccatggccac ctccacagcc	gcgcccgagg	ggcagactcc	gcaaatattc	ccctggatga	600	
ggaagettea cateageeat	gatatgaccg	ggccggacgg	gaaaagggcc	cggaccgcgt	660	
ataccegeta ceagaceetg	gagctggaaa	aggagttcca	cttcaaccgc	tacctgaccc	720	
ggcgacggcg catcgagatc	gcccacgcac	tetgeetgte	cgagcgccag	atcaagatct	780	
ggttccagaa ccggcgcatg	aagtggaaga	aggacaacaa	attgaaaagt	atgagcctgg	840	
ctacagetgg cagegeette	cagccctgag	cccgcccaga	ggagcccagc	ggcccaagag	900	
cccgtgccac ccccagccct	ggcccctcca	atcctccccg	ctctgccgcc	gcccgctggg	960	
gaccggttcc cacaagcctg	cctcgccttg	tgttacgata	tttcgtttgg	tcttaggtct	1020	
teetgtgget eestetetee	tggactggtt	atcttgttat	tattgttaat	aataattatt	1080	
attattattt tccttccatg	ctcccaactc	ccttctgctt	gtcccaaatc	cgccagtgtt	1140	
tctgaatgtt tgtgtctgtg	gttgcagtct	ttcccccagg	aaaaaaaaa	aaagaaattc	1200	
gcatgtttaa tgtgaactct	cccctcccca	tetgtgttet	aacttattta	taaaaagatg	1260	
atcgctgtat tttgagtttc	agctggaaac	ttctgtaagg	ggcagcagtt	gaggtggggt	1320	
agtgccgcag tggggtcaag	ctgagctggc	ttcggagatg	gagtcccttt	tcattctcct	1380	
cetecteect ceteacteec	taggcccaag	tctcctaggg	gcttggtcct	agggtgggaa	1440	
ggggctaggg aggaccaaag	ggatggtatt	gagaagagag	aaagaagata	gtgagattta	1500	
agtteetget geetgggtag	gccccacaag	geetggtetg	ggagtatacg	gaaacaaaaa	1560	
tgatcctcag tgcaaaatgt	cttgtgtatt	tctctgtgaa	tccatgggtc	tggctagagg	1620	
gcccaaagct tgtaaatatg					1680	
tgcttccaag accatttgta					1740	
tgcggggct gtctcagtga					1800	
		January	552500000	- 554490044		
ataaatgttt cccccactcc	aaaaaaaaa				1830	

<210> SEQ ID NO 16 <211> LENGTH: 3547

<212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 16

60 gctctcgggg aagagacgga tgatgaacaa gctttacatc gggaacctga gccccgccgt 120 cacegoegae gaceteegge agetetttgg ggacaggaag etgeceetgg egggacaggt cctgctgaag tccggctacg ccttcgtgga ctaccccgac cagaactggg ccatccgcgc 240 300 categagace etetegggta aagtggaatt geatgggaaa ateatggaag ttgattaete agtototaaa aagotaagga goaggaaaat toagattoga aacatoooto otoacotgoa 360 420 gtgggaggtg ttggatggac ttttggctca atatgggaca gtggagaatg tggaacaagt caacacaqac acaqaaaccq ccqttqtcaa cqtcacatat qcaacaaqaq aaqaaqcaaa 480 aataqccatq qaqaaqctaa qcqqqcatca qtttqaqaac tactccttca aqatttccta 540 cateceqqat qaaqaqqtqa qeteceette qeeeecteaq eqaqeeeaqe qtqqqqaeea 600 ctetteeegg gageaaggee aegeeeetgg gggeaettet caggeeagae agattgattt 660 cccgctgcgg atcctggtcc ccacccagtt tgttggtgcc atcatcggaa aggagggctt 720 gaccataaag aacatcacta agcagaccca gtcccgggta gatatccata gaaaagagaa 780 ctctggaget geagagaage etgteaceat ceatgeeace eeagagggga ettetgaage 840 atgccgcatg attcttgaaa tcatgcagaa agaggcagat gagaccaaac tagccgaaga 900 gattcctctg aaaatcttgg cacacaatgg cttggttgga agactgattg gaaaagaagg 960 cagaaatttg aagaaaattg aacatgaaac agggaccaag ataacaatct catctttgca 1020 ggatttgagc atatacaacc cggaaagaac catcactgtg aagggcacag ttgaggcctg 1080 tgccagtgct gagatagaga ttatgaagaa gctgcgtgag gcctttgaaa atgatatgct 1140 ggctgttaac acccactccg gatacttctc cagcctgtac ccccatcacc agtttggccc 1200 gttcccgcat catcactctt atccagagca ggagattgtg aatctcttca tcccaaccca 1260 ggctgtgggc gccatcatcg ggaagaaggg ggcacacatc aaacagctgg cgagattcgc 1320 cggagcctct atcaagattg cccctgcgga aggcccagac gtcagcgaaa ggatggtcat 1380 catcaccggg ccaccggaag cccagttcaa ggcccaggga cggatctttg ggaaactgaa 1440 agaggaaaac ttctttaacc ccaaagaaga agtgaagctg gaagcgcata tcagagtgcc 1500 1560 ctcttccaca qctqqccqqq tqattqqcaa aqqtqqcaaq accqtqaacq aactqcaqaa cttaaccagt gcagaagtca tcgtgcctcg tgaccaaacg ccagatgaaa atgaggaagt 1620 gatcgtcaga attatcgggc acttctttgc tagccagact gcacagcgca agatcaggga 1680 aattgtacaa caggtgaagc agcaggagca gaaataccct cagggagtcg cctcacagcg 1740 cagcaagtga ggctcccaca ggcaccagca aaacaacgga tgaatgtagc ccttccaaca 1800 cctgacagaa tgagaccaaa cgcagccagc cagatcggga gcaaaccaaa gaccatctga 1860 ggaatgagaa gtctgcggag gcggccaggg actctgccga ggccctgaga accccagggg 1920 ccgaggaggg gcggggaagg tcagccaggt ttgccagaac caccgagccc cgcctcccgc 1980 cccccagggc ttctgcaggc ttcagccatc cacttcacca tccactcgga tctctcctga 2040

				-0011011	iuea		
actcccacga	cgctatccct	tttagttgaa	ctaacatagg	tgaacgtgtt	caaagccaag	2100	
caaaatgcac	acccttttc	tgtggcaaat	cgtctctgta	catgtgtgta	catattagaa	2160	
agggaagatg	ttaagatatg	tggcctgtgg	gttacacagg	gtgcctgcag	cggtaatata	2220	
ttttagaaat	aatatatcaa	ataactcaac	taactccaat	ttttaatcaa	ttattaattt	2280	
ttttttcttt	ttaaagagaa	agcaggcttt	tctagacttt	aaagaataaa	gtctttggga	2340	
ggtctcacgg	tgtagagagg	agctttgagg	ccacccgcac	aaaattcacc	cagagggaaa	2400	
tctcgtcgga	aggacactca	cggcagttct	ggatcacctg	tgtatgtcaa	cagaagggat	2460	
accgtctcct	tgaagaggaa	actctgtcac	tecteatgee	tgtctagctc	atacacccat	2520	
ttctctttgc	ttcacaggtt	ttaaactggt	tttttgcata	ctgctatata	attctctgtc	2580	
tctctctgtt	tatctctccc	ctccctcccc	teceettett	ctccatctcc	attcttttga	2640	
atttcctcat	ccctccatct	caatcccgta	tctacgcacc	cccccccc	caggcaaagc	2700	
agtgctctga	gtatcacatc	acacaaaagg	aacaaaagcg	aaacacacaa	accagcctca	2760	
acttacactt	ggttactcaa	aagaacaaga	gtcaatggta	cttgtcctag	cgttttggaa	2820	
gaggaaaaca	ggaacccacc	aaaccaacca	atcaaccaaa	caaagaaaaa	attccacaat	2880	
gaaagaatgt	attttgtctt	tttgcatttt	ggtgtataag	ccatcaatat	tcagcaaaat	2940	
gattcctttc	tttaaaaaaa	aaaaatgtgg	aggaaagtag	aaatttacca	aggttgttgg	3000	
cccagggcgt	taaattcaca	gatttttta	acgagaaaaa	cacacagaag	aagctacctc	3060	
aggtgttttt	acctcagcac	cttgctcttg	tgtttccctt	agagattttg	taaagctgat	3120	
agttggagca	tttttttatt	tttttaataa	aaatgagttg	gaaaaaaaat	aagatatcaa	3180	
ctgccagcct	ggagaaggtg	acagtccaag	tgtgcaacag	ctgttctgaa	ttgtcttccg	3240	
ctagccaaga	acctatatgg	ccttcttttg	gacaaacctt	gaaaatgttt	atttaaaaaa	3300	
aaaaaagatg	acaaagaaaa	acagagagag	agaatattgg	agatgtcctg	aattttaata	3360	
gggtacgcgc	cattagggct	ttttgcgcta	aaggatgaac	atgtactggt	ttatgtggac	3420	
aagccattat	accaccagac	tgcaatgcca	gtttcctcta	ctgcaaacag	tgttctgtga	3480	
caaaaaaaaa	aaaaaaaaaa	agaaaaaaaa	agaaaaaaca	gaaatatatc	cagctaacaa	3540	
gaaaaaa						3547	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAL	TH: 9512	sapiens					
<400> SEQUI	ENCE: 17						
aaccctgctc	ctcgctgaag	atggaggaag	taaaaacagg	attaccctta	gctacagatc	60	
cactgcctta	gtttccacca	ccaactgcag	tgcacaaaca	cacgttaggc	acaggaaaga	120	
aagaaagaca	gaggacacat	taacagtaaa	cacaaacaaa	agggtgatgg	gattatttta	180	
ctgcatgcac	tgctgagccc	gacattgtca	cctcctctt	gaggggttag	aagaagctga	240	
gateteeega	cagagctgga	aatggtgatg	aatcttttt	aatcaaagga	caatttcttt	300	
tcattgcact	ttgactatgg	aaacagaggc	tattgatggc	tatataacgt	gtgacaatga	360	

420

gettteacce gaaagggage acteeaatat ggeaattgae etcaceteaa geacaceeaa

tggacagcat gcctcaccaa gtcacatgac aagcacaaat tcagtaaagc tagaaatgca

gagtgatgaa	gagtgtgaca	ggaaacccct	gagccgtgaa	gatgagatca	ggggccatga	540	
tgagggtagc	agcctagaag	aacccctaat	tgagagcagc	gaggtggctg	acaacaggaa	600	
agtccaggag	cttcaaggcg	agggaggaat	ccggcttccg	aatggtgaac	gccccttcca	660	
ctgtaaccag	tgtggagctt	cttttactca	gaagggcaac	cttctgagac	acataaagtt	720	
acactctgga	gagaagccgt	tcaaatgtcc	tttctgtagc	tacgcctgta	gaagaaggga	780	
cgccctcaca	ggacacctca	ggacccattc	tgtgggtaaa	cctcacaagt	gcaactactg	840	
tggacgaagc	tacaagcagc	gcagttcact	ggaggagcac	aaggaacgct	gccacaacta	900	
tctccagaat	gtcagcatgg	aggetgetgg	gcaggtcatg	agtcaccatg	tacctcctat	960	
ggaagattgt	aaggaacaag	agcctattat	ggacaacaat	atttctctgg	tgccttttga	1020	
gagacctgct	gtcatagaga	agctcacggg	gaatatggga	aaacgtaaaa	gctccactcc	1080	
acaaaagttt	gtggggaaa	ageteatgeg	attcagctac	ccagatattc	actttgatat	1140	
gaacttaaca	tatgagaagg	aggctgagct	gatgcagtct	catatgatgg	accaagccat	1200	
caacaatgca	atcacctacc	ttggagctga	ggcccttcac	cctctgatgc	agcacccgcc	1260	
aagcacaatc	gctgaagtgg	ccccagttat	aagctcagct	tattctcagg	tctatcatcc	1320	
aaataggata	gaaagaccca	ttagcaggga	aactgctgat	agtcatgaaa	acaacatgga	1380	
tggccccatc	tctctcatca	gaccaaagag	tegaceccag	gaaagagagg	cctctcccag	1440	
caatagctgc	ctggattcca	ctgactcaga	aagcagccat	gatgaccacc	agtcctacca	1500	
aggacaccct	gccttaaatc	ccaagaggaa	acaaagccca	gcttacatga	aggaggatgt	1560	
caaagctttg	gatactacca	aggeteetaa	gggctctctg	aaggacatct	acaaggtctt	1620	
caatggagaa	ggagaacaga	ttagggcctt	caagtgtgag	cactgccgag	tccttttcct	1680	
agaccatgtc	atgtacacca	ttcacatggg	ttgccatggc	taccgggacc	cactggaatg	1740	
caacatctgt	ggctacagaa	gccaggaccg	ttatgagttt	tcatcacaca	ttgttcgagg	1800	
ggagcacaca	ttccactagg	ccttttcatt	ccaaagggga	cccctatgaa	gtaaagaact	1860	
gcacatgaag	aaatactgca	cttacaatcc	cacctttcct	caaatgttga	catacctttt	1920	
attttttta	atattattac	tgttgataat	tcttattttg	tggaggcagt	gtcatttgct	1980	
ctgcctaatt	acgataagga	agaaacagaa	gagagaaggg	gcgggaatat	tgtttcttta	2040	
tcacctggct	tgtttatttt	gtgggaattt	aagagcagtc	catttctacc	aaggcatatc	2100	
atgctttgaa	aaatcacttg	attcataaag	attcacctaa	gagattctga	tttgccactg	2160	
atattcagaa	ttatgatgga	agacaggaaa	gttcagagtt	ttctgggtag	gactttggtg	2220	
gtttaaaaat	ggtataagta	actttattct	tgaaagaaga	atgtgtttca	aactgtaaac	2280	
caatttttg	ttcttcagag	atcatggaac	acaaacacat	tgttattttc	agtgataact	2340	
cctaagagga	gctgagttgt	tgtgggttct	atgtttactt	cccctatgga	atttataatt	2400	
cagtatgttt	tacactgtac	catatagcaa	aacttttaaa	ctacaggtag	ttaagggcca	2460	
cctacaatac	atctgaggtc	ctgtgatctt	atttttctaa	acgtaagcac	tgtttttcca	2520	
tagttttgat	gactggcatt	ttatagacac	cctggcagcc	ttacttttaa	cacctttaag	2580	
gaatagtatt	tttatgtagt	tttcagaata	acatatggtc	taagagtgga	taaaaggcag	2640	
tcaataattt	ctgggaggga	cttctacttt	cataaatttg	tttgagaggt	tttcttttaa	2700	
agttgtaatg	tgatggcagc	atagtatatg	tatttgtttc	taaaagtatg	cttacgattg	2760	

tcactttatc	agcatttaat	cagtgttaac	cagtcagcag	aaaaatataa	ttatgctaac	2820
agtaggggga	gaaaacccac	ttagaaatcc	cttttctggt	atttctcttt	tcactagttt	2880
ttttcaagat	gtgacctccc	ggtgttctgt	ccatagttca	ttcatccttt	actcttcgag	2940
tagaaggtct	taaaagtctt	cctgtcggct	gtttctttca	aaatctcctc	agagcaattg	3000
ctaatttggc	ctgaatctgg	taacttgaac	cctgtaaggt	tacagaacta	gggctattta	3060
ttttagcatt	tcttcagtag	tatttactac	tcttgttgca	aagaaaaggg	aatgggactt	3120
ctttgtaacc	tgtaccttgg	acaacagata	aaagaaacaa	aaaaataaga	aagtttactt	3180
ttacccttct	tggagtctag	aatgtgacag	aacccccaaa	ggaaagtcct	gcacattttt	3240
ctgtttccaa	aacatttaat	tgtgtaagtc	cttgtcagaa	atgaatctca	atcccttagt	3300
atagaattcc	ccttacatgg	tataggttgc	catatttcat	gtgcagattt	taatttcatt	3360
tatgtgggcg	ctctgttttt	tctttgcagt	ccagccacat	tagaggggag	gaaccgagtg	3420
atattgattc	aagtcatttt	agggggacat	acttggaagg	cagaacttgc	tgcttctgtt	3480
tggggaggac	agacctgact	gtgactggat	tatctgataa	ccatttgtga	atactgaaat	3540
tctgttaggc	agtaactgat	aactgctcta	aaggatcatt	aaataggatg	ctgaaattat	3600
gtatcttaat	acagtgtggt	atgagaatta	ccaagtcaag	agaattgtgg	acataagcaa	3660
gtttggcccc	aatactgctc	ttaactcatt	ttccagctta	ctatttgcta	tttaaatggt	3720
aggcaccagc	taagcacttc	taagcactaa	cacagctaga	actaggcaaa	aatggttaga	3780
actcagctct	cttctactag	tccctgtcat	aattatttt	gggaaaatgt	ccaaactgcc	3840
ccctttaaat	ctaagggaat	gcaccaaaac	agagatatat	agaatgtcaa	ccatttcatt	3900
ttttttttc	tgcatgcctt	ggtacatagt	gaacatacaa	cctatttaaa	gataaagcat	3960
gtttttgaga	ctcgctcacc	ccccccacc	caaccactcc	caaataataa	ttgggatgcc	4020
atttttttc	cttttggatg	aggtaaataa	ttttaaggtt	cacaattttg	tcttttactg	4080
caatttaagg	aaacatttgg	atgtcagtca	atatgttcat	aattttggct	gtgtgcgaat	4140
ttctgctggc	attatctatg	aattttcttc	ctacttattt	ttttttcagt	atatgaacaa	4200
tcatgtatct	acctgcccca	ggatgaaact	aaatttaggt	ggaccctaaa	ccttatgaag	4260
acagtgctga	ggcactttcc	ttttctgatt	tcatcttttt	gggaatctgt	tttattgaag	4320
gtagttagta	gttgagagtg	catttgctac	aagcatatac	ttgtatcttc	ctagcttcat	4380
gaggaacaga	aagaggtgga	tatggctcag	ggtgtggcag	ggacaattga	ggacaaagtc	4440
aattcaaatt	tgtgggtcag	aaagaatttt	tgtggacgta	gtgtttttgg	agaaactctg	4500
gatggttata	tgtgcatgcc	ttttcttcaa	aaggaaatac	gcaaggttgt	agcatctaaa	4560
aataaacata	agagtcagac	accaaataaa	tcaagtttta	cataacagtt	gtatgcccag	4620
tttgtttagg	tgagatttca	cattacagaa	agtatttgag	gagcatgaaa	atgggttatc	4680
ttctgtattt	tccagtttgg	caaaagttca	gaatttcatc	acattgcttt	gccctaattt	4740
tgcccagaat	tttatcttag	cctctctctg	acagtgatga	atcatgctca	aaagccattc	4800
taattggacc	tttttaagac	agggaaaggg	atcagtaggc	ggattggaag	aaatttcaag	4860
tcattgaaat	attccattga	gatttcctaa	agggacaaaa	ttgggaaaat	aagaaactac	4920
gacttagatt	tggctacgta	gtagaaagta	tctcccctac	atacatacag	gcaattgtat	4980
gtatgaatca	tagggtatat	gtgtgtgtat	actacacaca	cattctttta	aagagaattc	5040

atggaaaaaa	aagcagttgg	agtgatcaga	tgtattgcaa	aaacatacag	agaatttaaa	5100	
tgacagttaa	taccaagaaa	ttagttgggt	ttactttatc	aggtcgtaat	aggaatcact	5160	
aaagaagtta	ctagtgtgtc	tttaggacca	gtggcaactc	ttaaactaaa	actttgggtc	5220	
cttattatct	acttacagaa	caaagtgaaa	caaacaatga	ttaagctgat	tggatataca	5280	
ttcaaagata	tttaatgtaa	agttttttgg	aatacgaaga	aaattcagaa	aataaatatt	5340	
atcaacagtt	acttattggc	aaatagagaa	agacaagaat	agtttagtga	gcccggtatt	5400	
ttgtttttat	agtttttatc	tcagttgtac	aactcacaaa	accatgaagt	ctttggtatt	5460	
ttataaatgt	ttaacaaaat	ttacatcaga	ttaaggcatt	tagatgaaaa	ttattatgtt	5520	
ctcactatct	tccaaatttt	atttcatcct	atctccaaaa	tgatttctta	gggtacaaaa	5580	
agagcagacg	gggctgtaaa	aatacaagca	aaaaactgtg	tgcccctagt	ttcaggcaga	5640	
acttaaactg	tcagaggtac	tagctacatg	atttgttttt	taactttgga	ttgttcacgt	5700	
ccaaaaatgg	ataaattaca	tttgtgttta	tcatcagttg	cattttatgt	attattttaa	5760	
taaatactat	ctgaatgaag	actattctaa	accagaaaat	tccccaaatc	caaaagaaaa	5820	
aaaaagtggg	aagaggtgaa	attgaagttt	gtgtatatga	aagttatctt	agacatattt	5880	
ttaattctcc	agtttctgca	aaataattaa	aatatacagt	aactggtctc	ctaaatcctg	5940	
aatttaatgt	attaaatact	tatgttcttt	atattggtgc	ctttttaaaa	tgcattgaga	6000	
gtgttggtta	gctgttgcag	ctgtacaaca	cttttaatat	gcatttttaa	aaatcactta	6060	
aaattgagta	ctatataatt	catctctgca	tttttagtgc	aaatctttag	agcaatttct	6120	
aatagagaaa	ttttcagctc	agctgttaaa	aggaaaagga	aactttgaaa	ctagacttta	6180	
ctaccttttt	agtttcatag	tatttctgaa	tatgattaca	agattatgca	ggtaaaatat	6240	
agagtgaaac	tttacctgtg	aattgaatta	taatttgtgt	ttttgttttg	tttttaagga	6300	
agaataagtt	ctgtatcaaa	caagaattta	ttagataatt	ttttggtcaa	taaaatacag	6360	
tattcatttg	gattttcatc	tccagactag	tattgttcta	gtcttggaat	ctgtattttc	6420	
taatctgtta	gaaaatagag	attgaaaatt	gatggaataa	tgtgaaaaag	caggtaatta	6480	
attctccttg	aacaaagcaa	aactgaacag	tcatatcaca	ttgctattct	ccaaagcata	6540	
atctcaaatg	gtttcatatc	atggttgtgt	attacttgca	atgggtgtgt	taggatatga	6600	
cagcttttta	aaaaaatgag	ctgctggtta	tacaaagcaa	atggcatatg	accaagaagc	6660	
tgtgatatgc	tagtgtttct	ttttatcata	gtgtattact	aggccaaata	atgacacctt	6720	
gaatatttt	acatttattg	cagaaacctt	aaactttgga	atttccataa	ggtttttatg	6780	
taatattcta	tttctagctt	tttagtttta	tcttgctgta	ctgtaagttt	gaggatattt	6840	
ttcacctgca	ctcttaggaa	taagttcata	attctgttta	tggggctttc	ctcccataac	6900	
actgcatttg	tatattttct	gtataaaata	tgtgttgtgt	attaaccttt	atcccataca	6960	
gagagtggta	catgaatgac	tagttttcta	agatgtcctt	tttattgtga	ataaaatata	7020	
aaagttaaag	gccctctgct	aagtcacata	aagtacagca	tataagttca	tataggtaca	7080	
aataaatgag	tttgcagtga	attgggcctt	caaattacct	caagtgacag	atagtaagaa	7140	
aagettettg	agcaggtgga	ggtcactgaa	tcccctacta	tgcacttacc	aagattttac	7200	
ttactttaat	ttactggaaa	ttgatttttt	aaaaaatgac	tacactgtaa	caagggaagg	7260	
	tttttgttgt					7320	
	5 5-	- 5			-		

gtgatttaaa	aattttttac	agtcaagcat	tctgattttg	aacataactc	ccttcccttt	7380
ctgtgtaaca	aaggtctctc	tgttatctct	taaattttgt	tacatctccc	tcagcctctt	7440
tctttgtccg	tetecettet	gtcattgtct	atggatgttt	acctctctgt	tctcctaaaa	7500
gtttgaagat	taggtcaact	cttatttcta	gttcattggt	aatttaatct	taatttttt	7560
ttcgtgattt	ttgttggttg	tataatctgc	tgacgtattt	ttatactcaa	gtgtagtttt	7620
ctattaaaaa	gaaaagtggt	tggattaaaa	atagtaagct	atgtaaccct	catgttactt	7680
tcactttcaa	atattgggta	cctaaaacat	tacttcagag	attatgtaat	cctattatag	7740
tatgtttgct	ttcctttatt	gttggatttt	acattctgat	ttggctttcc	tccaaaaaat	7800
gtatatcatg	aaagactaga	cagttatttg	caagtgttta	gaaaggtgtt	aaaaatgtaa	7860
agcaaagagt	cttaactttc	tcctaattgg	gagaaaaatg	ctttaacatt	actataataa	7920
tattccaggt	ttggaggggg	tctccaggcc	ccatatttgc	tgttaatagt	tggacctttt	7980
agaccatgtg	ttatttgcaa	tcccagaatg	attgcttctg	ctattagtta	aaaagatact	8040
attctttct	ttctgtacaa	gtgcaatact	ccccttgaag	tcttaaaaac	tatggtgatt	8100
ttttttctt	ttctgaccta	ttcttccttt	agctaatgac	aaaaagaaac	tcataaaagt	8160
catagtatgt	taaaggacac	aacaagcaaa	gagaaaaaca	ctccacaatc	aaaagattac	8220
agaatgtgga	aaccactagt	ctgatctcat	ggtatcttta	tttaagctaa	atttccatgg	8280
aaattagtaa	tettttgett	gaaaaatgtg	tcctaaagtt	gaacttttta	cagattgaat	8340
cttcttagac	cctcgcccaa	tgctctaaat	taagaaccta	atacttaata	tttttatttt	8400
acttctcccc	ttttagaaat	aaacttttaa	ataaaagcaa	agcacttagc	tgagttttaa	8460
acacttacat	atcacctatt	ggagaaattt	tttttaaaaa	tatttggagc	agtcctgttt	8520
tcatacaaat	ttaagtaaga	ggtatttttc	ttatacatat	ttatatgtag	tgtgctaatt	8580
ttctttttt	atacctgtgt	ccctgtagta	aaactgctgt	aatataaata	catgttttgt	8640
taaaagataa	catttctttg	gcatttcttt	taaaggcagt	tactgcattt	ctgcatttgt	8700
acagtatgtg	tcttggccat	tttagatatt	ctttctttaa	caataccaaa	ggtaattaga	8760
ctattttaaa	gactaattgc	ttgacagttt	ctagggtatt	ttgtgtttta	gaagcaaaaa	8820
aagaaaaaaa	aataggtcaa	accagtaaac	ctcattttt	ttcaaactaa	taatttgggg	8880
aaataaaaac	tattgtttaa	aaaagaaata	tatatata	tatataaata	tatatgtaaa	8940
gttaaaattc	cataccttgt	atgtcaggtt	tgctaagtgt	aatgtagttt	ttttaaggct	9000
caaataccat	acctcagaaa	atgaggttta	ctatggaaat	actgaaacag	tctttgcagc	9060
tgtgtgacaa	gtcactctac	tacatactga	tttggagacc	tccgctaaat	agttttatca	9120
ctgcagacta	aaatgtggga	cttgtatctt	ctttgttttt	aatgcacaca	catacatgtt	9180
ctgtgcatgt	atgtggttac	tgtgtatatg	tgtatgagtg	ttgtatatgc	atgtgtgagt	9240
gtgtgtctgt	atgtgtgtac	aactaaagaa	gctgcagaaa	ctttgtaata	ctttgtgaaa	9300
aggattatat	tataaaggtt	tgtactgtct	gagtgcacag	ctactggaat	aaatttaggg	9360
aatctcagga	acaagcatat	aatttgtcca	agatttattt	cttctcagaa	gtgtaagtgc	9420
agtttttaat	tctgtatatt	atttaatatt	ttaccaataa	aataaacttc	tgacataaaa	9480
agtttgctat	aaaaaaaaa	aaaaaaaaa	aa			9512

<211> LENGTH: 10923 <212> TYPE: DNA

<213 > ORGANISM: Homo sapiens

<400> SEQUENCE: 18

atteatttee tgagaactge agagageege tgagaggete tgegtgtgeg tgtgegeggg 60 tgacgccgtg tgtgtgcgag tgtgtgtgtg tgtgtgcgcg cgcgcgtgtg agagagagaa 120 agggagagag agaggggac tetgtgtgag ggaaagaaaa caatttetee tgetetgeag 180 cttctgttca ggatcaatgt gactctaaga acaaatggat gaatgaatat ccatatgaag agaaaaacaa taaagaatat caacaccttt gagaacagaa tgttaatgct tgatgggatg ccggcagtca gagtcaaaac agagcttttg gaatctgaac aagggtctcc aaacgtccac 360 aactatcccg atatggaagc cgttcccctg ttgctaaata atgtgaaagg ggagccccg 420 qaqqactcqt tatctqtaqa tcacttccaa acacaaactq aqccaqtqqa cttqtcaata 480 aacaaagcca ggacgtcccc tactgccgtt tcatcctccc cagtttccat gacagcatct 540 qcctcctcac cttcttcaac ttcaacctct tcatcqtctt ctaqtcqtct aqcctcatcc 600 ccaactqtta tcacatcaqt atcttcaqcq tcatcttcqt caacaqtatt aactccaqqq 660 coccttgtgg cctctgcatc tggtgttgga ggccagcagt ttttgcacat tatccatccc 720 qtaccqcctt caaqtcccat qaatttacaq tctaacaaac tqaqtcatqt tcaccqcatc 780 cccgtggtgg tacagtcggt gcctgttgtc tacacagctg taaggtcacc tggaaatgtg 840 aacaacacta ttgtcgtgcc gcttttggag gatgggagag gccatggcaa agcacaaatg 900 gacccccgag gcctatctcc cagacaaagt aaaagtgaca gtgatgatga tgacctgcca 960 aatgtgacct tagatagcgt taatgaaact ggatctacgg ccctttccat agccagagca 1020 gtacaagagg tacatccgtc cccagtatca agggtccggg gcaatcgaat gaataatcaa 1080 aagtttcctt gttcaatttc accatttagt attgagagca caagacgcca gagacggtct 1140 gaatccccag actccagaaa acggcgtatc cacagatgtg attttgaggg atgcaacaaa 1200 gtgtacacaa aaagttctca cctgaaggct caccggagga cacatacagg agagaaacct 1260 tacaagtgta cctgggaagg ctgcacctgg aagttcgctc gttcagatga actgacgagg 1320 cattaccgca aacatacggg agtgaagcca ttcaagtgcg cggactgtga tcgcagcttt 1380 teceggteag ateatttgge eetgeacege eggaggeata tgttggtgtg aggaatgeta 1440 cctgtccagc tgagcgtaag agctggatct cttagcggca cccaattcag cagggctgaa 1500 teceetteae agtgttaaca caaaagggea teaceateee aegatgtetg aaaceagage 1560 aggaaaaaga aggcacactt cttttggtct gaaggtaacc cccatcatga ctagacgaga 1620 accgtcttta cccgggcctg ggagctcagt gacataaatg ctgaagagac aggcattgtt 1680 ttccgtgctg tgtcctctgc catttaaaga tgtttgtagc ttgtacattt tctgagctgt 1740 cagacatttt gttattgata ccttaaaggt cacctaccac aaattgatgg ctagagcaag 1800 accttttaaa tttqqatqaa tctcccatca tcccatccct taaccccttt ttacaqaaat 1860 tttagttaca atctgagtaa gctagaacac acatccaatc tgttaccagc aagcagcatg 1920 aaagtagaaa cgaagaagca gatggagagg tcccattacc tgcaaagaaa gggcactcag 1980 gcagecettt gcaategega tggcagecae tagatateae teteaaettg teattetgee 2040 atgccctgaa gaaaaccaac attgaatctt tcatttgttt gtcgttgatt gtttttgttt 2100

tgtttcgatt	ctgttttgtt	catctgttcg	agcagagggg	cagttgaagt	ctcgtcctgg	2160
tetetgeeet	ggcatggact	ggcacagagg	tgttctgtag	ttgaatagga	agagcctgtc	2220
taaaaaacta	ctgccccact	tcaaattgca	gtgttctgtc	acctaggcat	catctcttcc	2280
tgcccctagt	atttgattac	aaggaaccag	gggaaaaaaa	ctttcttaga	cacactggca	2340
ccaaggtaag	aggtggggct	gcccaggcaa	agtcagtgaa	catgaaaact	cagacaaagc	2400
agagatggaa	ataatgcgcc	tcttgaggag	aaaagcaata	atgaataaaa	ggactttcct	2460
acaataactt	cactgaggac	tcacgttacc	aattttcata	cttactaaag	ggattgtaaa	2520
aaacacccca	gcattttagg	tgtcttggtt	ccatttacag	cactgaggta	atctttctgc	2580
tgtttgttgt	cctgcttggt	tgagtaccac	aattaaagat	tatgeteece	ttttcttgtt	2640
tgaaaacagt	tatttggtga	ctagaaaggc	aagggaggca	tagccgggaa	ttaactcttc	2700
ggttaatggg	tcagttctcc	ttggaactga	atcagtggaa	agagaatgct	tcccatagaa	2760
agcccgacat	ggtgctagtt	tectetettg	gagagccaag	gataagtgac	tctccaatag	2820
gttcttctat	accgatttca	ttttctaaac	tgtatcagga	cccaggtgtc	ctgcattggc	2880
atctgcaggg	atattgaacc	cactcatcct	gtgcagagga	tgagaggaag	gtgttagttc	2940
catcagcccc	ataaaattat	gaaccttttt	gcaactagga	acatatacag	taaacaagca	3000
atacatcacc	aacgagcatt	ctttcagaaa	aattaccata	tttttgtccc	caccacaagc	3060
tgggttttt	tccagctttc	tgtggctgag	gggctggtga	gattttttgt	tgttattgtt	3120
gttgttgcta	gaattttta	tagcttagat	ataaaaggtc	tccaacaaag	acctttgcaa	3180
tatattttaa	ttacaaacac	ttgattttgg	gaattgcaca	tattaacctc	acaatattac	3240
tagctcattt	ttaaatgtct	ggacattctg	aaataatttc	cggttacaga	attacccttt	3300
ttaggatcat	cttctaattc	agataatctt	attctgatga	agcgagaact	atgaacgttg	3360
aaacaaggac	aatttgtgtt	ggatggtatt	caaaaggaat	tttttaaaac	attaagcaac	3420
agtgtaatga	ttttcaggtc	aaattatggc	ttcacaaata	tgtgctctat	attgtctgcc	3480
aggtctcaaa	aattcatcaa	gcaatttccc	tccaacaagg	gctgcagttc	tagtgataaa	3540
tagcatcttt	agctgcacag	tctactactc	atcaaccagt	gggtttttt	tagcacctgg	3600
aaagttttt	tgtactatat	gcaactccta	cttcacattg	cctgtgacca	ttcagaatag	3660
aaaaaggtct	gttgatgcat	gccagtgctg	gttactagtc	agtgacagag	aacacagaga	3720
gggacaaaca	cagccatgaa	ccccctggca	ctagtaccag	cacctagttg	gcaagtagtg	3780
ggtgcatctc	tcaagtgaag	tgtagatttg	tatttagtcc	tgcttgctct	cataaaaaga	3840
gccagttctt	ttctctgctg	aaagatgtct	tgagagtatt	acaggtagac	ttggttttta	3900
gaattcataa	aactgacagg	caggggaatc	ttcctgagtg	acagcttggt	ttaaatttag	3960
cacagaacta	gatgagttgc	acttttctaa	taacatagga	tggatttggg	gaagggaaca	4020
ttttccctca	tcctctgaaa	gtggaaacca	gactgagatg	gtaagttaac	tgataaaacc	4080
tgtcagcatt	ccatcatttt	ccccttttga	cgtatcagta	cttctaagaa	gggatctaag	4140
cacaattaag	tgaattgagt	ccctggtcta	gcctcaggaa	ctgaaacttc	tttggggctt	4200
gtcttgagac	gtggcaaatt	ctccttggtg	agttttctaa	aagtatttcc	ccatggaaag	4260
gagaaagtgg	tttgggacag	aaagaaatgg	aatgtcttca	gtcatggaag	agcctccatt	4320
		gcctctttca				4380
		5		J	5	

agcagtagaa	tcctaaagga	cataacagtt	gttccgtaac	tagaagcatt	ctttgatttt	4440
aaatttgaag	ctgttcagtt	tgcagctggg	gatatgtgca	tggttgggaa	cttatacaca	4500
tagagccatt	aactacttaa	gcagctgcag	tagacctgat	tttctgtttg	cagtatagag	4560
attgatttca	agggagttac	attatttgaa	aagttatgac	tttcagcctt	tgaggtttta	4620
agaatccctt	ttcatggtct	gatcttaagt	tgtttgaaaa	aagattcacg	cttctgcatc	4680
cacctctgcc	ctcattctgt	caattgtgtg	tggactctga	gaageetget	tgataacttg	4740
tcttaagttc	tattaaggca	gttagactga	gatttctaat	gacttcacca	taaagattat	4800
acttctgcct	ggcgtcgttt	ctataaaaca	ctataggaca	tttgttttca	aaagcagttg	4860
agtaacagca	acataaacca	cattttttaa	aaaaatgagc	acttttcatt	cacttgaaag	4920
cttaagtggg	aaaaaggaag	atgattgtca	ggggaaaaac	ttacaaaatg	ctacagtgtt	4980
tacaaatgcc	agttccaggt	gattagaaag	gccgttttca	ttatggttca	gatttggaat	5040
agcttatgca	aagattgtgt	tcatttttat	acaattcttt	ttaactttaa	attgccatct	5100
gtgttttaaa	cataattctg	cactttggaa	tcagttcatt	agaatgataa	catttatatg	5160
gataaagatg	cagtattcct	tattctgtac	ttgatttatt	atacttacca	aagctgcaac	5220
tgaataaatc	tggtgaggtg	aggccttcaa	aatgtattaa	tacgcctttg	ttatgttgtt	5280
atgactgctt	agaaatgtag	ccatgatgtt	gttctaaaga	tgtcttaaca	tttatagtga	5340
ggattgacag	aaattaagca	gtgttaagaa	taccagcatc	catgttacag	tctgcgtata	5400
agggactgaa	tgtgaggtaa	ctcttatgaa	tcataatagg	cccagaaagc	cttaatattc	5460
atagttcata	atccagtctc	agattttgct	cttcaatgtt	gcctgtaaac	ttagcaggta	5520
aatgtattct	agtataaaac	atcattgacc	aaatctcttc	ctttagtttt	tctgaggtag	5580
tgcatcccat	taaaaaagtc	tcttcaatta	gatttggctt	tagtttagaa	aggggtttgg	5640
taagtcatgt	cttccatatg	acatttctac	tcatccccac	actgccttcc	acttaacctg	5700
tacagacagc	cccaacacat	gcacatgtgt	gtacacaact	gtatatgcag	cagccagtgg	5760
gctaacaaat	atcagcaaag	aactttttta	aaaagaattt	gtaataatcc	gtgctgtcta	5820
gaaatgtgag	ttacttacct	tattaggaaa	ccggcttata	atactatata	tgactctgcc	5880
tgcattttat	agttaagaaa	tgtacataaa	aattgctata	ttttcacagt	ttcattataa	5940
tgtctgttta	gtaacccatg	tccactgata	ctttaaatat	gctaattact	gagcaattgc	6000
aatagaaatc	cagattttca	taagaaaatg	aaatagaagg	atactgcatc	tttaaaaaat	6060
agagtgaaga	tattttactg	tattcgtaac	atatgtgata	gtggaaaaag	tattttcaaa	6120
ctcacaaatt	ttacagaggt	tgtaaatagt	ttgatgaagt	atgttgggaa	agagagette	6180
tagttttcat	cacaataaaa	agaaaaaact	tgttcagata	tgccttgtat	atcttacaca	6240
caatgagtga	aattgccatg	ggaactctgt	ccaactttgt	cagagcatgc	tcttcgtgtt	6300
ctgttcaaaa	tagagtggcc	acttgtcatg	gtttagccag	gatggtttaa	aatataatga	6360
agtcatttta	agttgcagac	aactgattcc	aaactagtaa	tgtcttttcc	tgaaaagggc	6420
aaaacagctg	cacaggattt	tgcttgtact	aaagaggagc	atcttacaat	tgttctcttt	6480
tctcagttat	ctccctcctc	aacagagtgt	gaacaaccat	acaggtgttt	attcttgttt	6540
tattccaggg	agactgcttt	taggtataac	tacatgttga	caagattaag	tgctgtggat	6600
atggccacgt	gttaaaggaa	tctatactcg	caataggaat	aagctaatgc	ccattttcag	6660

aaataaatta	aatgctgaaa	gtgcctgtca	gtaaacctta	tgaccaatga	gatattccta	6720
tacttttaca	cagcaataat	tcttaataag	actgggtttt	ttcctgcaca	tgtgaacaca	6780
cacacacata	cacacagaga	gagtaaatac	atacacatag	taaatcaaat	ctgttcacat	6840
gcccacaaaa	aacgctttta	tagctttcaa	atatacctaa	tcttgtttac	attaacattt	6900
cttaatttga	tctttctaac	ttgcagaacg	ttaagaacac	aaatctgaac	attaagttta	6960
tcttcagtga	acactattgc	atatggtaat	tataatttcc	agataaaaag	ttgactgtca	7020
tttgccccaa	acttatgaaa	cagtatgtat	gattcaaaaa	gttttgctca	gttaaaaaca	7080
ccaatttatt	tggcgcaaaa	gactgaagga	tatttgtttg	cttgttcatt	ttatccactc	7140
atatcaaacg	cacaaattca	tctttacatt	tcttcattcc	cctttcccct	aatatttcct	7200
attatcatct	taagaatcat	tttggaatga	atattgacag	aatcatttct	ccccaaaaag	7260
tctgttgaag	taccactgac	acttagtaag	cctagccttt	aaccatcttt	gcagttagtc	7320
ctaaaaatta	ccagatgcac	attcagaagc	tcacaggttt	tttcctgtaa	ttactgtact	7380
gctaaaagtg	gagtcatgga	tagaaatata	caatgagact	atatgaatag	acatgaaccc	7440
tggaaattct	ccaaccctgc	catctcagag	cacaaattca	cccaaacaag	ctactgaggc	7500
tatcagtaaa	attatactca	tggagagtca	cacatcgggt	aagggcaatt	ttaaaagtag	7560
gactgtgatt	aaacattcag	gctttagact	tccatgatgg	actcagacca	caggcctcaa	7620
aaaaacatcc	actgttttct	cctcccaatg	ttagaaagaa	gaaaagggag	acggaaatgt	7680
accaggataa	gggggtaaaa	taaccaatta	agtgtcaaag	gaaagctgct	gggttcctta	7740
atctcactga	agtcaagtct	tctgactggg	cttcttacca	tgtgttgtct	gaaaaaacta	7800
aagtaccttg	aaaggttaca	cattcagcaa	accatgaaga	taatagctat	tctttattaa	7860
acactgtgtg	ccaagcaata	gactaggcaa	tttttagata	cgttacctgc	aacctgtaca	7920
acatttctac	actttatgga	tgggaaacgg	agacatggga	agtgtggctg	agttgttcat	7980
ggatgtagaa	atagtaaacg	gcagagtagg	aaagtgaaac	cgcctatctc	tgacctggag	8040
gtctgcctgt	atctttccca	ctccaccaca	ctgcacgtgg	gtgtcccgaa	accaccttcc	8100
cagattcctg	actctcagta	attttattat	ggacaacatg	catgagtagt	catcatattt	8160
ttcaagtgaa	atatcgggac	atgatataac	acatgactta	acaatggtac	tgaatatttg	8220
aaatcaggcc	tttcccggaa	aatcatgcat	gaaggatcat	tataaacaaa	caatagcaac	8280
cagttgtctc	cccgaacttg	tcacttttct	cataaatgtc	tggcctggag	ctccaaaatc	8340
atccaaatac	ttagtagcat	tttagcctga	gtacactttc	tcagttcctc	aactctttgt	8400
atacctttcc	accaatatag	acattctaga	atctgcttca	gatgcatttg	aaattttcac	8460
ccccatggaa	ctagtgatta	atatcagagc	ccactcttgc	agttggtaat	ggggtggcaa	8520
tcaaacgttc	agatgatgat	aaaggagaga	taatggataa	ttcttttca	gagttctcac	8580
ttaacagctc	tgttgtggaa	tgttttaaat	agtcttataa	ataatttgtt	tatagtattg	8640
ttgttagttt	aattgaattt	tatgtaagaa	gctgtccaac	atcagagaaa	tgaaattcct	8700
cccactttct	gtgtagaaca	aggtctctga	cagtattgat	tcatggaagt	actaatggac	8760
ttagaaaaca	ttaagagaat	gtcatttctc	atagtgtttc	tgtttctgaa	aatgaatctc	8820
ctgaattatt	atctttctcc	ctgttacttg	gctggggaaa	gagatagaag	ctgtataaac	8880
aaattctctt	ccatgctcaa	agcaagtgtt	ccatgtgcac	aacctgctgc	agactggggc	8940

ccttctcaç	gt taattgggtt	tcacaagcaa	taatttctcc	acaacaaaaa	ccacaacttg	9000
aagtgagtt	g aaaagagatc	aatagtggaa	acagtcgcct	cagtactttt	tetttetgga	9060
tttcatct	t agaaatttga	agtgtttgag	acagagtcca	ccctttgtgc	aaggcgagaa	9120
ccaatgaat	g gacteettgt	gtgaattatt	gcatcttctt	ccaaagcagg	ttcatcaaga	9180
ctttcacaç	ya gattcatttt	tgttgagaag	taagggttaa	taggaggata	gaatttggat	9240
ccaaatcta	ag tgataaaagt	gtccaagcaa	tcaaaaagta	agatatttta	gggacatacc	9300
aacatctt	cc ctttctgcta	atttcatgct	ccaaagatat	ggcaaaaaaa	aaaatcataa	9360
aaagtgctt	t tgccctactt	gtgttctagt	tttcccatgg	cagaattttg	taattacatc	9420
cagaatata	ag tgtatatttt	gttcctcaaa	ctttattaca	ttggatggat	attgttgaac	9480
tggggcact	g gtgcctatat	tcaaggctct	ttcctatcaa	cgtgtctgtc	cacgatttgt	9540
tgtgtttaa	aa gcttcatttt	gaaaaatcac	tgtccccctg	tggggtagtg	actgtattgt	9600
tttgttcat	g tctatgtggg	acacattgca	tcacatggca	aaccaactct	ctgtggatgt	9660
gagataagt	a cttataaaac	cagcttgaaa	acatcgtctt	atgtattatg	tcatcctgca	9720
tcataatgo	a attatgtgta	tcataacatg	ctcatttaaa	aaaagagaaa	ccagcaaatt	9780
catgtttgt	c catagaagaa	tgtactcaga	actttgtgtt	gtgaaacgat	gagaacagac	9840
cacctttaa	ag atacccacct	gccacttaaa	atgacttagt	tataattagt	agtagtctag	9900
acgttgtt	et tggtgtgtgg	gggtcaattc	taacgtcatg	ttcttttgaa	taaatctctc	9960
agtcatatt	t gaaaaaaaa	tacatgggaa	taaagaaaaa	tatcatcttt	ggccaaatca	10020
agcaggcat	c ttttttcttt	tccttgacgt	ttagctcatt	atacgtggtg	attggatcac	10080
gagatetgt	c cgtgtgaaaa	tacagaaaca	tcctttagtt	tacaaaacag	ttattctagg	10140
cttgaagc	ct ctgaacagca	aattgaatag	atgggctgca	tctgatttgc	tttatggatg	10200
taattttad	ca aaacactctt	gggtctctga	ccccagggag	ttaagagtgc	ccagaggagg	10260
teetacaca	at taaaggataa	agccccccag	tgatgctggc	aagcaaatgt	gttgagttct	10320
taaatctt	a tttggttttc	tgttcaggat	tttaattgca	aatgaattta	tttctccagt	10380
ttatctaaa	ag acctaatttc	ccaatagttt	cctctgcatt	tatatactct	gtagtgttta	10440
ggcaaccct	g ttataagttt	attaatatta	tgtaagtgtt	gttcttgtat	ttatgtatag	10500
tgtatgtat	t gtaaatatac	tcagagcttt	tttcctttta	ctgtaaaatg	gtgattttt	10560
tgccctate	ya taatgtaaag	ggagaccctc	ctaatgagat	teteteagag	gatgattatt	10620
ccagtctat	t ctcagagatt	taaatgaaca	agtgttattg	tttttaatgg	tgtctcagac	10680
atattctgt	t ggtgcattgc	ttttctgtat	tcaactttcc	tatgaattga	gctgtgaact	10740
gaaatagag	gt ttaaaccttt	aactgtatgc	atttgtataa	ttatctgaat	gaaggcatga	10800
aggttaaat	a aagcattttg	tatggaacaa	aactccctaa	ctgactcaga	cactttggaa	10860
atcatagtt	a ttaaccattc	taattaaacc	tttgttatga	aaagttttaa	aaaaaaaaa	10920
aaa						10923

<210> SEQ ID NO 19 <211> LENGTH: 2949

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 19

							_
agtttcccga	ccagagagaa	cgaacgtgtc	tgcgggcgcg	cggggagcag	aggcggtggc	60	
gggcggcggc	ggcaccggga	gccgccgagt	gaccctcccc	cgcccctctg	gcccccacc	120	
ctcccacccg	cccgtggccc	gcgcccatgg	ccgcgcgcgc	tccacacaac	tcaccggagt	180	
ccgcgccttg	cgccgccgac	cagttcgcag	ctccgcgcca	cggcagccag	tctcacctgg	240	
cggcaccgcc	cgcccaccgc	cccggccaca	gcccctgcgc	ccacggcagc	actcgaggcg	300	
accgcgacag	tggtgggga	cgctgctgag	tggaagagag	cgcagcccgg	ccaccggacc	360	
tacttactcg	ccttgctgat	tgtctatttt	tgcgtttaca	acttttctaa	gaacttttgt	420	
atacaaagga	actttttaaa	aaagacgctt	ccaagttata	tttaatccaa	agaagaagga	480	
teteggeeaa	tttggggttt	tgggttttgg	cttcgtttct	tetettegtt	gactttgggg	540	
ttcaggtgcc	ccagctgctt	cgggctgccg	aggaccttct	gggccccac	attaatgagg	600	
cagccacctg	gcgagtctga	catggctgtc	agcgacgcgc	tgctcccatc	tttctccacg	660	
ttcgcgtctg	gcccggcggg	aagggagaag	acactgcgtc	aagcaggtgc	cccgaataac	720	
cgctggcggg	aggagctctc	ccacatgaag	cgacttcccc	cagtgcttcc	cggccgcccc	780	
tatgacctgg	cggcggcgac	cgtggccaca	gacctggaga	gcggcggagc	cggtgcggct	840	
tgcggcggta	gcaacctggc	gcccctacct	cggagagaga	ccgaggagtt	caacgatctc	900	
ctggacctgg	actttattct	ctccaattcg	ctgacccatc	ctccggagtc	agtggccgcc	960	
accgtgtcct	cgtcagcgtc	agcctcctct	tegtegtege	cgtcgagcag	cggccctgcc	1020	
agcgcgccct	ccacctgcag	cttcacctat	ccgatccggg	ccgggaacga	cccgggcgtg	1080	
gegeeggeg	gcacgggcgg	aggcctcctc	tatggcaggg	agtccgctcc	ccctccgacg	1140	
gctcccttca	acctggcgga	catcaacgac	gtgagcccct	cgggcggctt	cgtggccgag	1200	
ctcctgcggc	cagaattgga	cccggtgtac	atteegeege	agcagccgca	gccgccaggt	1260	
ggcgggctga	tgggcaagtt	cgtgctgaag	gegtegetga	gegeeeetgg	cagcgagtac	1320	
ggcagcccgt	cggtcatcag	cgtcagcaaa	ggcagccctg	acggcagcca	cccggtggtg	1380	
gtggcgccct	acaacggcgg	gccgccgcgc	acgtgcccca	agatcaagca	ggaggcggtc	1440	
tcttcgtgca	cccacttggg	cgctggaccc	cctctcagca	atggccaccg	gccggctgca	1500	
cacgacttcc	ccctggggcg	gcagctcccc	agcaggacta	ccccgaccct	gggtcttgag	1560	
gaagtgctga	gcagcaggga	ctgtcaccct	gccctgccgc	ttcctcccgg	cttccatccc	1620	
cacccggggc	ccaattaccc	atccttcctg	cccgatcaga	tgcagccgca	agtcccgccg	1680	
ctccattacc	aagagctcat	gccacccggt	tcctgcatgc	cagaggagcc	caagccaaag	1740	
aggggaagac	gatcgtggcc	ccggaaaagg	accgccaccc	acacttgtga	ttacgcgggc	1800	
	cctacacaaa					1860	
gagaaacctt	accactgtga	ctgggacggc	tgtggatgga	aattcgcccg	ctcagatgaa	1920	
	actaccgtaa					1980	
	ccaggtcgga					2040	
	atgacccaca					2100	
	_				_		
	gagggaagga					2160	
ctgagtcatc	ttgtgagtgg	ataatcagga	aaaatgagga	atccaaaaga	caaaaatcaa	2220	
agaacagatg	gggtctgtga	ctggatcttc	tatcattcca	attctaaatc	cgacttgaat	2280	

atteetggae ttacaaaatg ecaagggggt gaetggaagt tgtggatate agggtataaa	2340)
ttatatccgt gagttggggg agggaagacc agaattccct tgaattgtgt attgatgcaa	2400)
tataagcata aaagatcacc ttgtattctc tttaccttct aaaagccatt attatgatgt	2460)
tagaagaaga ggaagaaatt caggtacaga aaacatgttt aaatagccta aatgatggtg	2520)
cttggtgagt cttggttcta aaggtaccaa acaaggaagc caaagttttc aaactgctgc	2580)
atactttgac aaggaaaatc tatatttgtc ttccgatcaa catttatgac ctaagtcagg	2640)
taatatacct ggtttacttc tttagcattt ttatgcagac agtctgttat gcactgtggt	2700)
ttcagatgtg caataatttg tacaatggtt tattcccaag tatgccttaa gcagaacaaa	2760)
tgtgtttttc tatatagttc cttgccttaa taaatatgta atataaattt aagcaaacgt	2820)
ctattttgta tatttgtaaa ctacaaagta aaatgaacat tttgtggagt ttgtattttg	2880)
catactcaag gtgagaatta agttttaaat aaacctataa tattttatct gaaaaaaaaa	2940)
aaaaaaaaa	2949)
<210> SEQ ID NO 20 <211> LENGTH: 5208 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 20		
cttactcatt tgtgtttatt cttggactta tcctgacata atggggtttt tttaattata	60)
gattcacact gcatttattc atcacccctg tcctctcatc cataactcaa atttactacc	120)
agcaacacaa aatacaaaga tgtgtccagt ttcactacag ctcttcgcgt ttacaagtgt	180)
cgagcgcttg ctttcggaac gcccttgtga ttggccgagc caatgccagt gacatcaacc	240)
aacttacttt tgattggaag gctggttgct gggactgtag cgtttgcagg aagtcactta	300)
actgtttggg agctggaaaa ccgaagctga agttctcttt tgccatagga acgagcgcaa	360)
ctgactagga aagatgtgtc ccaaagctcc gcaagctgga acgtgagcca ggaggcccgg	420)
accggccacg ggaccgcgag gcactccgaa agtgtgcggc tgccccttcc ctgcctccca	480)
gctgttaccc ttttaaatgt cagtgttcga ggctgtaggg gtagcacgag gcagcgaaac	540)
ggaacagteg gattggeege aegeeteagt tetagaegea eeteteeace gaaggeegtt	600)
ctgactggca gggggagaaa gtaaacagag ttgaatcacc ctccccactg gccaattgga	660)
gggggtttgg tttgtgacgt gatgggattc tgcgaaattg ttactgagca agagaatgcc	720)
ggaacggtgc ggaccggccg gagcaggggt tcagaagccg tcagtggact cgggaaaaag	780)
tgtetettag acetggeget eggegggace etegecacee gegteggggt gategggtga	840)
atgteetggg getttggete gaeggegagg eggeegaggg egtgeacete tettgeagtt	900)
tectetecca gegeeteggg ggegttttea gtegaataaa ettgegaeeg eeaegtgtgg	960)
catctttcca agggageegg etcagagggg eeggegegee egteggggga tegeggeegg	1020)
cgcggggcag gggcggcggc tagaggcggc ggcgcggcgg agcccggggc cgtggatgct	1080)
gcgtgcggag gcgctgccgg ttacgtaaag atgaggggct gaggtcgcct cggcgctcct	1140)
gegagtegga agegeeeege geeeeegeee eettggeege egegeegtge egegeegege	1200)
cgcgctcgtc gtccgaggcc agggcagggc gagccgaacc tccgcagcca ccgccaagtt	1260)

tgtccgcgcc gcctgggctg ccgtcgcccg caccatgtcc gcggccgcct acatggactt 1320

ccccggggac geogagegg teggactace tegageggag gtgaccaagg agcacgtga 1440 cccgggggac acctggaagg attactgac tegagegac accgggact tegaaagtc 1500 cctgaacaag taccgacca tecagaccc etcegtgtge agcactc tegaaagtc 1560 agatgaggat atgggatceg acagcgacgt gaccaccga tetgagaagtc tegaaagtc 1600 cagcccggaag gagagacagg atcctggac gegeccage cegetetece tectecatec 1680 teggatggct gegaagggaag acccaccate cegaaagagg cacaagtc tegaaaggg 1740 ctgtggggaaa gtctteggaa acccaccat cettaaaagag cacaagtcgc cettacagag 1860 tgaacggccc tttcccttga cgtggccaag ctgccttaaa aagttctccc getcagacga 1860 gctgaccgcc cactaccgga cccacactca aaagcacgc cggggacaa cegagtcca 1880 gaagggctt atgaaggag cccacactg ggaaaaggag ttecgetgte cgctgttgga 1920 gaagagcatt atgaggagg accacactg ggaaaagaag tteggacaa cgagttcca 1980 ccccagaag ggagggggag accacactg ggacaaagg accacaga cttettggag gtgtggagg 2040 ttggaagcag ggagggggagg accacactg aggacacag gacaacatg tetttggag 2100 gaaaactgg ccccacaga ggacaacatt acgacagac tetttggag 220 gaaaactgg cacacttg ggagaggag accacatg ctttgagtac 2210 gaaaactgg cacacttg ggagaggag accacattg accagactg tetttett 2210 gagaaattt aaagctttg gggggaggag ggaggagg gggagagg accacattg accagaggaggaggaggaggaggaggaggaggaggaggag	cgtggctgcc	cagtgtctgg	tttccatttc	gaaccgcgct	gcggtgccgg	agcatggggt	1380
cetgaacaag tacegacca tocagaccc ctcegtgtg agegacagt tggaaagtc 1500 agatgagat atgggatcg acagegacg gacacccga cegetctccc tectcatcc 1620 cagaccggag gagagacagg atcetggag gacacccga cegetctccc tectcatcc 1680 tgggaggag gagagacagg accaggag cacaagtggc ctcacagtgg 1740 ctggggaga gegagacagg accacagag cacaagtggc ctcacagtgg 1740 ctggggaag gecatggaa acceccaactg gaaaagaagg cacaagtggc cetacagagg 1800 tgaacggcc tttcectgca cgtggccaga ctgcettaaa aagttctccc getcagacga 1860 getgaccagc cacacactgg ggaaaagcag ttccgtggc cgctggtgtg 1920 gaagaggagt accacacac aaagcacga ttccgtggg ggggcaca cegagttcca 1980 ccccagacga accacacacagg ggaaaagcag ttccgtggg ggggcaca cegagttcca 1980 gaaagcagtt atgaagagg accacactac aaagcacgac cggggcaca cegagttcca 1980 ccccagacag accacacag ggaaaagcag gggggaaga gccacactga ggaaaaagag gctggccaca ggtttgtggg gtgtgcccg 2040 tggaagacag gagaggaagg accccgaaag gacaaaaga ctcccagga acagacggt 2100 gaaaacaga gcccagaag gacacacttg acggcacagg agataactgc tctttggtca 2100 gaaaacacga ccccagaaga ggacacattg acggcacagg agataactgc tctttggtca 2220 agtaattttgat tttcctccc ctgcattgtt tttaaaaaag acattgtagc ctaagatcaa 2220 agggaagaga aatgctttg ggtttttgg tttttgtttt tgtttttt tctcctttta 2340 ttttttttgg gggggagggg gggggaaggg gaggtaaggc caagactggg 2400 gtaagaattt aaagattcaa cactggtgta cataatgccg ctgggggagg ggggtaaggc caagactggg 2400 cctcagacaa ggattactagg ccctttatgc ttgctgtct tcagaattgt tttctacct 2520 tttaagtaa tgacgagtg gcctttatgc ttgctgtct tcagaattgt tttctacct 2520 tttaagtaa ggattaaaaa aaaaacgcca tagacagag gacacacttg aaagatcag 2260 cctcagacaag tgattcttgg cctttatag ttagacaaga accactctct tgaacaagag 2640 ccaacacataca agacagag agacacata agacagag accactttaa agacagag accacttta agacagag accactttga aagagagag 2640 ccaacacataca cagacagaa aaaaaaaaaaaaaaaa	cgctccggac	gccgagcggc	tgcgactacc	tgagcgcgag	gtgaccaagg	agcacggtga	1440
agatgaggat atgggatccg acagcgacgt gaccaccga totgggtcga gtccttccca 1620 cagcccggag gagagacagg atcctggcag cgcgccage ccgctctccc tectcatcc 1680 tggagtggct gcgaagggga acaccgcactc cgaaaagagg cacaaggtgc cctacagtgg 1740 ctgtggggaa gtctatggaa aatcctccca tectaaagcc catacaggg 1800 tgaacggcc tttecctgca cgtggccaga ctgccttaaa aagttctccc gctcagacga 1800 gctgaccgcc cataccgga cccacactgg ggaaaagcag ttccgctgtc cgctgtgtga 1920 gaagcgctt atgaggagg acaccctca aaagcacgcc cggggcaca ccgagttcca 1980 ccccagactg atcaagcgat cgaaaaggg gctggccaca gctgtgtgag gtgttgcccg 2040 tggaagcag gagggatgg accccgaaag gacaaaagta ctcccaggag acagacggt 2100 gaaaactgag cccaagaagg gacacacttg acggcacaag aagtaactg tetttggta 2100 gaaaactgag cccaagaagg gacacacttg acggcacagg aagtaactg tetttggta 2100 gaaaactgag cccaagaagg gacacacttg tttaaaaagg acattgacg ctaagatcaa 2220 aagggaagga aatgctttg gttttttgg ttttgtttt tgtttttt tccctttta 2340 attittgg ggggagggt gggggtggggggggggggggg	cccgggggac	acctggaagg	attactgcac	actggtcacc	atcgccaaga	gcttgttgga	1500
cageceggag gagagacagg atoetggcag egegeceage cegetetece teetecatee 1680 tggagtgget gegaagggga acacagetee egaaaaggag cacaagtgee ectacagtgg 1740 ctgtgggaaa gtetatggaa aatoetecea teteaaagee cattacagag tgcatacagg 1800 tgaacggeee tttecetgea egtggecaga etgeettaaa aagteteee geteagacga 1860 getgaceege cactacegga eccacactgg ggaaaageag ttcegetgte egetgtgag 1920 gaagegette atgaggagtg accactcae aaagcacgee eggeggaca eegagteea 1980 eccagatg atcaagegat egaaaaagge getggecaae getttgtgag gtgetgeeg 2040 tggaagcag ggagggatg accacqaaa gacaaaagta etcecaggaa acagacgee 2100 gaaaactgag eccagaaga ggacacattg acgacaaga agtcactge tetttggtee 2100 gaaaactgag eccagaaga ggacacattg acgacaaga aagtcactge tetttggtea 2160 atattetgat ttteetetee etgcattgtt tttaaaaage acattgtage etaagatcaa 2220 agtcaacaac acteggteee ettgaagagg caactetetg aaccegtee tgactgtgg 2280 aggaaggca aatgettttg ggtttttgg tttttgttt tgtttttt teteettta 2340 tttttttgeg gggggaggta gggagtgggt gggggggggg	cctgaacaag	taccgaccca	tccagacccc	ctccgtgtgc	agcgacagtc	tggaaagtcc	1560
tggagtgget gggagggga aacacgcte cgaaaagagg cacaagtgec cttacagtgg 1800 tgaaggaaa gtetatggaa aatectecca teteaaagac cattacagag tgcatacagg 1800 tgaacggece tttecetgca cgtggccaga ctgcettaaa aagtetecce getcagacga 1860 gctgaccoge cactaccgga cccacactgg ggaaaagcag ttccgctgtc cgctgtgtga 1920 gaagcgette atgaggagtg accacetcac aaagcacgec cggcggcaca ccgagtteca 1980 ccccagcatg atcaagcgat cgaaaaaggg getggccaac getttgtgag gtgctgcccg 2040 tggaagcag ggagggatgg accacetga acggcacaac getttgtgag gtgctgcccg 2100 gaaaactgag ccccagaaga ggcacacttg acggcacaag aagtcactge tettggtca 2100 gaaaactgag ccccagaaga ggcacacttg acggcacaag aagtcactge tettggtca 2220 agtcaacaac actcggtccc cttgaagagg caactctctg aaccegtct tgactgtgg 2220 agtcaacaac actcggtccc cttgaagagg caactctctg aaccegtct tgactgtgg 2280 agggaaggca aatgcttttg ggtttttgg tttttgttt tgtttttt tetecttta 2340 tttttttgcg ggggggggt gggggggggggggggggg	agatgaggat	atgggatccg	acagcgacgt	gaccaccgaa	tctgggtcga	gtccttccca	1620
ctgtgggaaa gtctatggaa aatcctccca tctcaaagcc cattacagag tgcatacagg 1800 tgaacggccc tttccctgca cgtggccaga ctgccttaaa aagttctccc gctcgacga 1860 gctgacccgc cactaccgga cccacactgg ggaaaagcag ttccgctgtc cgctgtgtga 1920 gaagcgcttc atgaggagtg accactcac aaagcacgcc cggcggcaca ccgagttcca 1980 ccccagcatg atcaagcgat cgaaaaagg gctggccaac gctttgtgag gtgctgcccg 2040 tggaagccag ggaggatgg accacctga acggcacacg gctttgtgag gtgctgcccg 2040 tggaagccag ggaggatgg accacctga acggcacaagg aagtcactgc tctttggtca 2160 gaaaactgag ccccagaaga ggcacacttg acggcacaagg aagtcactgc tctttggtca 2160 atattctgat tttcctccc ctgcattgtt tttaaaaagc acattgtagc ctaagatcaa 2220 agtcaacaac actcggtccc cttgaagagg caactctctg aacccgtctc tgactgttgg 2280 agggaaggca aatgcttttg ggttttttgg tttttgtttt tgtttttt tctccttta 2340 tttttttgcg ggggaggta gggagtgggt ggggggagag ggggtaaagc caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtccg ctgggtgag tgacctgtgg 2460 cctcgcacag tgattctggg ccctttatgc ttgctgtctc tcagaattgt tttctacct 2520 tttaatgtaa tgacgagtg gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctctc cagcatgatc tgtcatctaa agacttgaaa acaaaaaaa gttacttata 2700 gtcaatgggt aagcagatc tgaatttata ctaatcaaga caaacctttg aaaggtaca 2760 ctaagtacag aactttaaa ccttgcttg tatgagttg acttttgaa cataaggtc 2820 acttttattt tctaatgcag aggagaaa atacacaaca gatgcttgaag gagaagagag 3000 gtagtgtttt tgcaacaca gttataatct gcttattta caatacaca gttccctaa 2940 gaaatcatgg cagagatgt agggcagaat atacacaaca gatgctgaag gagaagagag 3000 gtagtgtttt gcaaaagaaa aagaaagaa ccaacagaat tttaacctta ttaacttttc 3060 caaatttcc tatgcttta gttaacaca tattgtac ctaatgcac taggggaga 3120 agcttttgac tctgttgggt tttatttga tgtgtgcata acagtaatga gacctggaa 3120 accctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgtccta caaaacccc 3240 accctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgtccta caaaacccc 3240 accctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgtccta caaaacccc 3240 accctatatt ttggggaaa ccaagggaa aacgaggaa aagggagga gaaggaga gaagaacccc 32300 accctataa ctagtgaac caaag	cagcccggag	gagagacagg	atcctggcag	cgcgcccagc	ccgctctccc	tcctccatcc	1680
tgaacggccc tttecetgca egtggccaga etgeettaaa aagttetece geteagacga 1860 getgaceege cactacegga cccacactgg ggaaaagcag ttecgetgte egetgtgtga 1920 gaaggegtte atgaggagtg accacetcae aaagcacgee eggeggcaca eeggtgeege 2040 teggaagccag ggagggatgg acccegaaaagge getggccaae getttgtgag gtgetgeeceg 2040 teggaagccag ggagggatgg acccegaaaag gacaaaaagta etcecaaggaa acagacgegt 2100 gaaaactgag eccagaaga ggcacacttg aeggcacagg aagtcactge tetttggtea 2160 atatteetgat ttteetetee etgaatgtt tttaaaaaage acattgtage etaagateaa 2220 agtcaacaac acteggteee ettgaagagg eaacteetetg aaccegtee tgaatgtgg 2280 agggaaggaa aatgeetttg ggttttttgg tttttgttt tgtttttt teteettta 2340 tetttttgg gggggggggg gggggaagge eaagactggg 2400 gtaagaattt aaagatteaa cactggtgta catatgteeg etgaggtggg tgacetgtgg 2460 eeteggaagtt gaetetggg eetettatge ttgetgtee teagaattgt tteetteet 2520 tettaatgtaa tgaegagtgg getteagtt gtttageaaa accacteete tgaateacgt 2580 taacttttga gattaaaaaa aaaaacgeea tageacaget gtetttatge aagcaagage 2640 acatetaete eagcatgate tgeatetaaa agaettgaaa acaacatetee tgaateacag 2580 taacttttga gattaaaaaa aaaaacgeea tageacaget gtetttatge aagcaagage 2640 acatetaete eagcatgate tgeatetaa agaettgaaa acaacatetee tgaateacag 2760 eetaagtacag aacttttaaa eettgeettg tatgagttg acatettga aaggatgaca 2880 gatgeteetg teggaagaga aggatgaata agtaaaaaca gttaettata 2700 gteaatgagg aaggatgg aggatgaata agtaaataca atgettgag gatagaaga 2880 gatgeteetg teggacacag gttataatet gettatttta eaatatacac gttteectaa 2940 gaaateetgg eagaagtgg aggacagaa aagaaagaa eaaacaaca gatgetgaag gagaaggagg 3000 gtagtgettt geaaaagaaa aagaaaagaa ecaacagaa tettaateeta ttaacttte 3060 eaaatttee tatgetttta gttaacatea ttattgtate etaatgecae taggggagag 3120 agettttga tetgggaaaa aggtttgttg gteteettee tgtgtteeta caaaacteec 3240 acettattt teggggaaaa aggsttgttg gteteettee tgtgtteeta caaaacteec 3240 acettattt teggggaaaa aaggtttgtg gteteettee tgtgtteeta caaaacteec 3240 acettattt teggggaaaa aggtttgtg gteteettee tgtgtteeta caaaacteec 3240 acettattt teggggaaaa aggtttgtg gteteettee tgtgtteeta caaaacteec 3240 acettattt teggggaaaa aggt	tggagtggct	gcgaagggga	aacacgcctc	cgaaaagagg	cacaagtgcc	cctacagtgg	1740
getgaceege cactacegga cocacategg ggaaaageag tteegetgte egetgtgtga 1920 gaagegette atgagagtg accaceteae aaageaegee eggeggeaea eegagtteea 1980 ceccageatg ateaagegat egaaaaagge getggeeaae getttgtag gtgetgeeeg 2040 tggaageeag ggagggatgg acceegaaag gacaaaagta etcecaggaa acagaegegt 2100 gaaaactgag ecceagaaga ggeacacttg aeggeaeagg aagteaetge tetttggtea 2160 atattetgat tteeetee etgaatgtt tttaaaaaage acattgtage etaagateaa 2220 agteaacaae acteggteee ettgaagagg caactetetg aaecegtete tgaetgttgg 2280 agggaaggea aatgettttg ggttttttgg tttttgttt tgttttttt teteettta 2340 tttttttgeg ggggagggta gggagtgggt gggggggagg ggggtaagge eaagaetggg 2400 gtagaatttt aaagatteaa cactggtgta catatgteeg etgggtgagt tgaeetgtgg 2460 cetegeaeag tgattetggg ecetttatge ttgetgteet teagaattgt tttettaeet 2520 tttaatgtaa tgaegaggg getteagttt gtttageaaa accacteet tgaateagg 2640 acatetate eageatgat tgteatetaa agaettgaaa acaaaaaaca gttaettata 2700 gteaatgggt aageaggate tgaatttata etaateaaga eaaacetttg aaaggttaea 2760 ctaagtaegg aageaggate tgaatttata ctaateaaga eaaacetttg aaaggttaea 2820 acttttatt tetaatgeag aggatgaata agtaaatae atgetttgga gatagaage 2820 acttttatt tetaatgeag aggatgaata agtaaatae atgetttgga gatagaaga 2820 acttttatt tetaatgeag aggatgaata agtaaatae atgetttgga gatagaagag 3000 gtagtgtttt geaaaagaaa aagaaaagaa ceaacagaat tttaacteta ttaacttte 2940 gaaateatgg cagaagtgt ggggeagaat atacacaaca gatgetgaag gagaaggagg 3000 gtagtgtttt geaaaagaaa aagaaaagaa ceaacagaat tttaacteta ttaactttte 2940 agattttga tetggaacac gttataatet gettatttta caatatacae gtteecetaa 2940 gaaateatgg cagaagatgt ggggeagaat atacacaaca gatgetgaag gagaaggagg 3120 aagettttga tetggaacaa aggatggt gtteettee tgtgtteeta caaaacteee 3240 accetatttt ttggggaaaa aggttgttgt gteeteetee tgtgtteeta caaaacteee 3240 accetatttt ttggggaaaa aggtttgttg gteeteetee tgtgtteeta caaaacteee 3240 accetatttt ttggggaaaa aggttagga aagggagetg aaataggaa agaaaaatea 3300 accetattat ttggggaaaa ceaagggaaa aacaccacaa gatteegaga agaaaaatea 3300 accetatata ctagtgaaca ceaagggaaa aacaccacaa gatteegag agagactetge 3360	ctgtgggaaa	gtctatggaa	aatcctccca	tctcaaagcc	cattacagag	tgcatacagg	1800
gaagcettc atgagagtg accacctcac aaagcaccc cggcggcaca ccgagttcca 1980 ccccagcatg atcaagcgat cgaaaaagge gctggccaac gctttgtgag gtgctgcccg 2040 tggaagccag ggagggatgg accccgaaag gacaaaagta ctcccaggaa acagacgcgt 2100 gaaaactgag ccccagaaga ggcacacttg acggcacagg aagtcactge tctttggtca 2160 atattctgat tttcctccc ctgcattgtt tttaaaaagc acattgtage ctaagatcaa 2220 agtcaacaac actcggtccc cttgaagagg caactctctg aaccegtct tgactgttgg 2280 agggaaggca aatgcttttg ggttttttgg tttttgtttt tgtttttt tctccttta 2340 tttttttggg ggggagggta gggggtggg ggggggagg ggggtaagge caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtccg ctgggtgagt tgacctgtgg 2460 cctcgcaccag tgattctggg ccctttatge ttgctgctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatge aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaaaaca gttacttata 2700 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggtaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttg actttttga acataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttattta caataacac gttccctaa 2940 gaaatcatgg cagaagtgt agggcagaat atacacaaca gatgctgaag gagaaggag 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcat ttaacttttc 3060 caaatttcc tatgctttta gttaacatca ttattgtatc ctaatgcac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttcct acaaaactcc 3240 acctctattt ttggggaaaa aggtttgttg gtctccttcc tgtgttcct acaaaactcc 3240 acctctattt ttggggaaaa aggttgttg gtctccttcc tgtgttcct acaaactccc 3240 acctctatat ctagtgaaca ccaagggaa ataccacaa gatgttcaag gagaaaatca 3300 accctcatata ctagtgaaca ccaagggaaa ataccacaa gatgttcaag gagaaaatca 3300 accctctataa ctagtgaaca ccaagggaaa ataccacaa gatgttcaag gagaaaatca 3300	tgaacggccc	tttccctgca	cgtggccaga	ctgccttaaa	aagttctccc	gctcagacga	1860
coccagaatg atcaagogat ogaaaaagge getggccaac getttgtgag gtgetgccog 2040 tggaagocag ggagggatgg acccogaaag gacaaaagta ctcccaggaa acagacgogt 2100 gaaaactgag coccagaaga ggcacacttg acggcacagg aagtcactge tetttggtca 2160 atattetgat ttteetete etgcattgtt tttaaaaage acattgtage ctaagatcaa 2220 agtcaacaac acteggtece cttgaagagg caactetetg aaccegtete tgactgttgg 2280 agggaaggca aatgettttg ggttttttgg tttttgttt tgtttttt teteettta 2340 tttttttgeg ggggagggta gggggtggg ggggggagg ggggtaagge caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtcog ctgggtgagt tgacctgtgg 2460 cctogcacag tgattetggg ccetttatge ttgetgete tcagaattgt tttettacet 2520 tttaatgtaa tgacgagtgt gettcagttt gtttagcaaa accactecte tgaatcagt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacaget gtctttatge aagcaagage 2640 acatectacte cagcatgate tgtcatctaa agacttgaaa acaaaaaca gttacttata 2700 gtcaatgggt aagcagagte tgaatttata ctaatcaaga caaacctttg aaaggtaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttg acttttgag gatagaagca 2880 gatgttetgt ttggcaccac gttataatct gettatttta caatatacac gtttccctaa 2940 gaaatcatgg cagaagtgt agggcagaat atacacaaca gatgctgaag gagaagagg 3000 gtagtgtttt gcaaaagaaa aggcagaat atacacaaca gatgctgaag gagaagagg 3120 aacttttatt tctaatgcttt gttaacatca ttattgtate ctaatgcace taggggagag 3120 agcttttgat ttgggaaaa aggttgttg gtctcettee tgtgttcct acaaactcc 3240 acctatttt ttggggaaaa aggttgtt gtteetette tgtgttcct caaaactcc 3240 acctatttt ttggggaaaa aggtttgt gtctcettee tgtgttcct acaaactcc 3240 acctatttt ttggggaaaa aggtttgt gtctcettee tgtgttcct acaaactcc 3240 acctctattt ttggggaaaa aggtttgtg gtctcettee tgtgttccta caaaactcc 3240 acctctattt ttggggaaaa aggttgtg gtctcettee tgtgttccta caaaactcc 3240 acctctatat ctagtgaaca ccaagggaaa ataccacaat gatttcaaga gagaacaaca	gctgacccgc	cactaccgga	cccacactgg	ggaaaagcag	ttccgctgtc	cgctgtgtga	1920
tggaagccag ggagggatgg accccgaaag gacaaaagta ctcccaggaa acagaccgt 2100 gaaaactgag ccccagaaga ggcacacttg acggcacagg aagtcactgc tctttggtca 2160 atattctgat tttcctctcc ctgcattgtt tttaaaaagc acattgtagc ctaagatcaa 2220 agtcaacaac actcggtccc cttgaagagg caactctctg aacccgtctc tgactgttgg 2280 agggaaggca aatgcttttg ggttttttgg tttttgtttt tgttttttt tctcctttta 2340 ttttttttgcg ggggagggta gggagtgggt ggggggagg ggggtaaggc caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtccg ctgggtgagt tgacctgtgg 2460 cctcgcacag tgattctggg ccctttatgc ttgctgtctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgcatctaa agacttgaaa acaacactttg aaaggttaca 2760 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttg actttttgaa cataagctgc 2880 gatgttctgt ttgcaccac gttataatct gcttattta caatacaca gttccctaa 2940 gaaatcatgg cagagatgt agggcagaat atacacacac gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaactttc 3060 caaattttcc tatgctttta gttaacaca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gacactccc 3240 accctatttt ttggggaaaa aggttgttg gctccttcc tgtgttccta caaaacccc 3240 accctatttt ttggggaaaa aggttgtg gctccctcc tgtgttccta caaaacccc 3240 accctatttt ttggggaaaa aggttgtg gctccctcc tgtgttccta caaaacccc 3240 accctatttt ttggggaaaa aggttgtg gctccctcc tgtgttccta caaaacccc 3300 acccctataa ctagtgaaca ccaagggaa atacccacaa gattccaga gagaacatca 3300 acccctataa ctagtgaaca ccaagggaa atacccacaa gattccaga gagaacacc	gaagcgcttc	atgaggagtg	accacctcac	aaagcacgcc	cggcggcaca	ccgagttcca	1980
gaaaactgag ccccagaaga ggcacacttg acggcacagg aagtcactgc tctttggtca 2160 atattctgat tttcctccc ctgcattgtt tttaaaaagc acattgtagc ctaagatcaa 2220 agtcaacaac actcggtccc cttgaagagg caactctctg aacccgtctc tgactgttgg 2280 agggaaggca aatgcttttg ggtttttgg tttttgttt tgttttttt tctcctttta 2340 ttttttttgcg ggggagggta gggagtgggt gggggggggg	ccccagcatg	atcaagcgat	cgaaaaaggc	gctggccaac	gctttgtgag	gtgctgcccg	2040
atattetgat titeeteee etgeatigit titaaaaage acattgiage etaagateaa 2220 agteaacaac acteggieee etigaagagg eaacteetig aaccegiete tigaetgitigg 2280 agggaaggca aatgettitig ggittittigg tittitigitti tigittitti teeteetiita 2340 tittittigeg ggggagggta gggggtggg gggggagg ggggtaagge eaagactggg 2400 gtagaattit aaagatteaa eaetggtgia eatatgieeg etigggtgagi tigaeetgigg 2460 cetegeacag tigattetggg eeetitatge tigetgiete teagaattgi titeetaeet 2520 titaatgiaa tigaegagtig getteagiti gittageaaa accaeteete tigaateaegi 2580 taaeetittiga gattaaaaaa aaaaacgeea tageacaget giettiatge aageaagage 2640 acaetetaete eageatgate tigeatetaa agaetigaaa acaaacaea gitaeetiaa 2700 gteaatgggi aageaggie tigaattaa etaaateaaga eaaacettig aaaggitaea 2760 cetaagtacag aaetittaaa eetigettig tatgagtigi actititigaa eataagetge 2820 actitiatti tetaatgeag aggatgaata agttaaatae atgettigaa gatagaagea 2880 gatgtietgi tiggeaceae gitataatet gettattita eaatataeae gitteeetaa 2940 gaaateatgg eagagatgi agggeagaat atacacaaca gatgetgaag gagaaggagg 3000 gtagtgtitti geaaaagaaa aagaaaagaa eeaacagaat titaaeteta titaaettie 3060 caaattitee tatgettita gitaacatea titattgiate etaatgeeae taggggagag 3120 agettitgae tetgitgggi titattigaa titatgiate etaatgeeae taggggagag 3120 agettitgae tetgitgggi titattigaa titattgiate etaatgeeae taggggaga 3180 cacctattit titggggaaaa aggittgtig gieteettee tigtiteeta eaaaacteee 3240 accetattit titggggaaaa aggittgtig gieteettee tigtiteeta eaaaacteee 3240 accetattit titggggaaaa aggittgtig gieteettee tigtiteeta eaaaacteee 3240 accetattit titggggaaaa aggittgtig gieteettee tigtiteeta eaaaacteee 3240 accetatata etagtgaaca eeaagggaaa aaggaggetg aaataggaa agaaaaata 3300 accetataa etagtgaaca eeaagggaaa ataaccaaaa gattteagaa gagaaaatea 3300	tggaagccag	ggagggatgg	accccgaaag	gacaaaagta	ctcccaggaa	acagacgcgt	2100
agtcaacaac actcggtccc cttgaagagg caactctctg aacccgtctc tgactgttgg 2280 agggaaggca aatgcttttg ggttttttgg tttttgtttt tgttttttt tctcctttta 2340 tttttttggg ggggagggta ggggaggggt ggggggagg ggggtaaggc caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtccg ctgggtgagt tgacctgtgg 2460 cctcgcacag tgattctggg ccctttatgc ttgctgtctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaacctttg aaaggtaca 2760 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggtaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttgt actttttgaa cataaggtgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2980 gatgttctgt ttggcaccac gttataatct gcttatttta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgt gaggcagaat atacacacac gatgctgaag gagaagagag 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaactttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 acctctcaggt gcaagagtta tgtagaagga aaggagctg aaataggaac agaaaaatca 3300 acccttataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagaactctgc 3360	gaaaactgag	ccccagaaga	ggcacacttg	acggcacagg	aagtcactgc	tctttggtca	2160
agggaaggca aatgcttttg ggttttttgg tttttgttt tgttttttt tctcctttta 2340 tttttttggg ggggagggta ggggagggg gggggaggg ggggtaaggc caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtccg ctgggtgagt tgacctgtgg 2460 cctcgcacaag tgattctggg ccctttatgc ttgctgctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaaaaaca gttacttata 2700 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttg acttttgaa cataagctgc 2820 acttttatt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttattta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgt agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaactttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 accctcatggt gcaagagtta tgtagaagga aaggagctg aaataggaac agaaaaatca 3300 accctctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	atattctgat	tttcctctcc	ctgcattgtt	tttaaaaagc	acattgtagc	ctaagatcaa	2220
tttttttgcg ggggagggta gggagtgggt ggggggagg ggggtaaggc caagactggg 2400 gtagaatttt aaagattcaa cactggtgta catatgtccg ctgggtgagt tgacctgtgg 2460 cctcgcacag tgattctggg ccctttatgc ttgctgtctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaacatttg aaaggttaca 2760 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttg acttttgaa cataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttattta caatatacac gtttcctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaactttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 acctctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaacaacca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	agtcaacaac	actcggtccc	cttgaagagg	caactctctg	aacccgtctc	tgactgttgg	2280
gtagaattt aaagattcaa cactggtgta catatgtccg ctgggtgagt tgacctgtgg 2460 cctcgcacag tgattctggg ccctttatgc ttgctgtctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaaaaaca gttacttata 2700 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttgt actttttgaa cataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttattta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aaggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	agggaaggca	aatgcttttg	ggttttttgg	tttttgtttt	tgttttttt	tctcctttta	2340
cctcgcacag tgattctggg ccctttatgc ttgctgtctc tcagaattgt tttcttacct 2520 tttaatgtaa tgacgagtgt gcttcagttt gtttagcaaa accactctct tgaatcacgt 2580 taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaacacag gttacttata 2700 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttgt acttttgaa cataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttattta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaactttc 3060 caaattttcc tatgcttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	tttttttgcg	ggggagggta	gggagtgggt	ggggggagg	ggggtaaggc	caagactggg	2400
tttaatgtaa tgacgagtgt getteagttt gtttageaaa accaetetet tgaateaegt 2580 taacttttga gattaaaaaa aaaaacgeca tageacaget gtetttatge aageaagage 2640 acatetacte cageatgate tgteatetaa agacttgaaa acaaaaaaca gttacttata 2700 gtcaatgggt aageagagte tgaatttata etaateaaga caaacetttg aaaggttaca 2760 ctaagtacag aacttttaaa eettgetttg tatgagttgt actttttgaa cataagetge 2820 acttttatt tetaatgeag aggatgaata agttaaatae atgetttgag gatagaagea 2880 gatgttetgt ttggeaceae gttataatet gettattta eaatatacae gttteeetaa 2940 gaaateatgg cagagatgtg agggeagaat atacacaaca gatgetgaag gagaaggagg 3000 gtagtgtttt geaaaagaaa aagaaaagaa ecaacagaat tttaacteta ttaacttte 3060 caaatttee tatgetttta gttaacatea ttattgtate etaatgeeae taggggagag 3120 agettttgae tetgttgggt tttatttgaa tgtgtgeata acagtaatga gatetggaaa 3180 cacetattt ttggggaaaa aggtttgttg geeteettee tgtgtteeta caaaactece 3240 accetataa etagtgaaca ecaagggaaa ataccacaat gatteegag gagactetge 3300	gtagaatttt	aaagattcaa	cactggtgta	catatgtccg	ctgggtgagt	tgacctgtgg	2460
taacttttga gattaaaaaa aaaaacgcca tagcacagct gtctttatgc aagcaagagc 2640 acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaaaaaca gttacttata 2700 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttgt actttttgaa cataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttatttta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	cctcgcacag	tgattctggg	ccctttatgc	ttgctgtctc	tcagaattgt	tttcttacct	2520
acatctactc cagcatgatc tgtcatctaa agacttgaaa acaaaaaaca gttacttata 2700 gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa ccttgctttg tatgagttgt actttttgaa cataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttatttta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	tttaatgtaa	tgacgagtgt	gcttcagttt	gtttagcaaa	accactctct	tgaatcacgt	2580
gtcaatgggt aagcagagtc tgaatttata ctaatcaaga caaacctttg aaaggttaca 2760 ctaagtacag aacttttaaa cettgetttg tatgagttgt actttttgaa cataagetge 2820 acttttattt tetaatgcag aggatgaata agttaaatac atgetttgag gatagaagca 2880 gatgttetgt ttggcaccae gttataatet gettattta caatatacae gttteectaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgetgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaacteta ttaacttte 3060 caaatttee tatgettta gttaacatea ttattgtate etaatgecae taggggagag 3120 agettttgae tetgttgggt tttatttgaa tgtgtgcata acagtaatga gatetggaaa 3180 cacctattt ttggggaaaa aggttgttg gteteettee tgtgtteeta caaaacteee 3240 acteteaggt gcaagagtta tgtagaagga aagggagetg aaataggaac agaaaaatca 3300 acccetataa ctagtgaaca ccaagggaaa ataccacaat gattteagag gagactetge 3360	taacttttga	gattaaaaaa	aaaaacgcca	tagcacagct	gtctttatgc	aagcaagagc	2640
ctaagtacag aacttttaaa ccttgctttg tatgagttgt actttttgaa cataagctgc 2820 acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttatttta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	acatctactc	cagcatgatc	tgtcatctaa	agacttgaaa	acaaaaaaca	gttacttata	2700
acttttattt tctaatgcag aggatgaata agttaaatac atgctttgag gatagaagca 2880 gatgttctgt ttggcaccac gttataatct gcttatttta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tggtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	gtcaatgggt	aagcagagtc	tgaatttata	ctaatcaaga	caaacctttg	aaaggttaca	2760
gatgttctgt ttggcaccac gttataatct gcttatttta caatatacac gtttccctaa 2940 gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	ctaagtacag	aacttttaaa	ccttgctttg	tatgagttgt	actttttgaa	cataagctgc	2820
gaaatcatgg cagagatgtg agggcagaat atacacaaca gatgctgaag gagaaggagg 3000 gtagtgtttt gcaaaagaaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggagag 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	acttttattt	tctaatgcag	aggatgaata	agttaaatac	atgctttgag	gatagaagca	2880
gtagtgtttt gcaaaagaa aagaaaagaa ccaacagaat tttaactcta ttaacttttc 3060 caaattttcc tatgctttta gttaacatca ttattgtatc ctaatgccac taggggaaga 3120 agcttttgac tctgttgggt tttatttgaa tgtgtgcata acagtaatga gatctggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	gatgttctgt	ttggcaccac	gttataatct	gcttatttta	caatatacac	gtttccctaa	2940
caaattttcc tatgetttta gttaacatca ttattgtate etaatgecae taggggagag 3120 agettttgae tetgttgggt tttatttgaa tgtgtgeata acagtaatga gatetggaaa 3180 cacetatttt ttggggaaaa aggtttgttg gteteettee tgtgtteeta caaaacteee 3240 acteteaggt geaagagtta tgtagaagga aagggagetg aaataggaae agaaaaatea 3300 acceetataa etagtgaaca eeaagggaaa ataccacaat gattteagag gagaetetge 3360	gaaatcatgg	cagagatgtg	agggcagaat	atacacaaca	gatgctgaag	gagaaggagg	3000
agettttgae tetgttgggt tttatttgaa tgtgtgcata acagtaatga gatetggaaa 3180 cacctatttt ttggggaaaa aggtttgttg gteteettee tgtgtteeta caaaacteee 3240 acteteaggt gcaagagtta tgtagaagga aagggagetg aaataggaac agaaaaatca 3300 acccetataa etagtgaaca ecaagggaaa ataccacaat gattteagag gagactetge 3360	gtagtgtttt	gcaaaagaaa	aagaaaagaa	ccaacagaat	tttaactcta	ttaacttttc	3060
cacctatttt ttggggaaaa aggtttgttg gtctccttcc tgtgttccta caaaactccc 3240 actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	caaattttcc	tatgctttta	gttaacatca	ttattgtatc	ctaatgccac	taggggagag	3120
actctcaggt gcaagagtta tgtagaagga aagggagctg aaataggaac agaaaaatca 3300 acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	agcttttgac	tctgttgggt	tttatttgaa	tgtgtgcata	acagtaatga	gatctggaaa	3180
acccctataa ctagtgaaca ccaagggaaa ataccacaat gatttcagag gagactctgc 3360	cacctatttt	ttggggaaaa	aggtttgttg	gtctccttcc	tgtgttccta	caaaactccc	3240
	actctcaggt	gcaagagtta	tgtagaagga	aagggagctg	aaataggaac	agaaaaatca	3300
aaaatcgtcc cttgtggaga atgcaggcaa catggaatac taggaatgaa atcacatcac	acccctataa	ctagtgaaca	ccaagggaaa	ataccacaat	gatttcagag	gagactctgc	3360
	aaaatcgtcc	cttgtggaga	atgcaggcaa	catggaatac	taggaatgaa	atcacatcac	3420
tgtatctttt acatcaatag cctcaccact aatatatctt gtatctaggt gtctataatg 3480	tgtatctttt	acatcaatag	cctcaccact	aatatatctt	gtatctaggt	gtctataatg	3480
gctgaaacca ctacatccat ctatgccatt tacctgaaaa cttaactgtg gcctttatga 3540	gctgaaacca	ctacatccat	ctatgccatt	tacctgaaaa	cttaactgtg	gcctttatga	3540
ggccagaaaa gtgaactgag ttttcgtagt taagacctca aatgagggga gtcagcagtg 3600	ggccagaaaa	gtgaactgag	ttttcgtagt	taagacctca	aatgaggga	gtcagcagtg	3600

-continued							
atcatggggg aaatgtttac atttttttt tcttcagaag taacgctttc tgatgatttt	3660						
atotgatatt taaaacaggg agotatggtg cactotagtt tatacttgcg ctotgaaatg	3720						
tgtaaacata gggtgcctac ctatttcacc tgacccatac tcgtttctga ttcagaatca	3780						
gtgtgggctc ctgcagtggg cgcgggtcac ggctgactcc aacttccaat acaacagcca	3840						
tcactagcac agtgtttttt tgtttaacca acgtagttgt attagtagtt ctataaagag	3900						
aactgctttt aacattaggg actgggagca gtccatggga taaaaaggaa agtgtttct	3960						
cacgagaaaa catgtcagga aaaataaaga acactttcta cctctgtttc agatttttga	4020						
aacacttatt ttaaaccaaa ttttaatttc tgtgtccaaa ataagtttta aggacatctg	4080						
ttetteeata egaaataggt taggetgeet attteteaet gageteatgg aatggttetg	4140						
cttatgatac tctgcacgct gccttttagt gagtgaggag tttggggttg cctagcaact	4200						
tgctaacttg taaaaagtca tctttccctc acagaaagaa acgaaagaaa gcaaagcaaa	4260						
gtcagtgaaa gacaatcttt atagtttcag gagtaaatct aaatgtggct tttgtcaagc	4320						
acttagatgg atataaatgc agcaacttgt tttaaaaaaa tgcacaattt acttcccaaa	4380						
aaagttgtta cttgcctttt caagttgttg acaaacacac atttgatatt ctcttatatg	4440						
ttatagtaat gtaacgtata aactcaagcc tttttattct ttgtgattaa atcctgtttt	4500						
aaaatgtcac aaaacaggaa ccagcattct aattagattt actatatcaa gatatggttc	4560						
aaataggact actagagttc attgaacact aaaactatga aacaattact ttttatatta	4620						
aaaagaccat ggatttaact tatgaaaatc caaatgcagg atagtaattt ttgtttactt	4680						
ttttaaccaa actgaatttt tgaaagacta ttgcaggtgt ttaaaaagaa agaaaagttg	4740						
ttttatctaa tactgtaagt agttgtcata ttctggaaaa tttaatagtt ttagagttaa	4800						
gatateteet etetttggtt agggaagaag aaageeette accattgtgg aatgatgeee	4860						
tggctttaag gtttagctcc acatcatgct tctcttgaga attctatttg gtagttacaa	4920						
ttacagaaac tgattagttt gtcagtttgc agatagattt agcacagtac tcatcactcg	4980						
gatagattga gatgttcttt cacatcagat gatctgtaac actgtaagat actgatcttt	5040						
acaactgttt aatcagtttt atttttgtac agtattagtg acctaagtta ttttgctgtc	5100						
ccgtttttgt aaatcaaatg aaattataaa agaggattct gacagtaggt attttgtaca	5160						
tatgtatata tgttgtccaa ataaaaataa taaatgataa agactgaa	5208						
<210> SEQ ID NO 21 <211> LENGTH: 2303 <212> TYPE: DNA <213> ORGANISM: Homo sapiens							
<400> SEQUENCE: 21							
gaattcgtcc aaactgagga tcacaagtct ccacattctg agtaggagga tgagggtctg	60						
agttaggatt tgggtcctgc agggcttgct aaggaatccc ctgatggcct aggattccac	120						
gcagagcaca tctggtgtga gagagctcgc tgcaagggtg aaggctccgc cctatcagat	180						
agacaaccag gccaccaaga ggcccagccc tccaaaccct ggatttgcaa catcctcaaa	240						
gaacagcaac gggccttgag cagaattgag aaggaaatac ccccacctgc cctcagccgt	300						

taagtgggct ttgctattca caagggcctc tgggtgtcct ggcagagagg ggagatggca caggcaccag gtgctagggt gccagggcct cccgagaagg aacaggtgca aagcaggcaa

360

ttagcccaga	aggtatccgt	ggggcaggca	gcctagatct	gatggggaa	gccaccagga	480	
ttacatcatc	tgctgtaaca	actgctctga	aaagaagata	tttttcaacc	tgaacttgca	540	
gtagctagtg	gagaggcagg	aaaaaggaaa	tgaaaccaga	gacagaggga	agctgagcga	600	
aaatagacct	tcccgagaga	ggaggaagcc	cggagagaga	cgcacggtcc	cctccccgcc	660	
cctaggccgc	cgccccctct	ctgccctcgg	cggcgagcag	cgcgccgcga	cccgggccga	720	
aggtgcgagg	ggctccgggc	ggccgggcgg	gcgcacacca	teccegeggg	cggcgcggag	780	
ccggcgacag	cgcgcgagag	ggaccgggcg	gtggcggcgg	cgggaccggg	atggaaggga	840	
gcgcggtgac	tgtccttgag	cgcggagggg	cgagctcgcc	ggcggagcgc	cggagcaagc	900	
ggaggcgcag	gagcggcggc	gacggcggcg	gcggcggcgg	cgcccgagca	cccgaggggg	960	
teegageeee	ggcagccggc	cagccccgcg	ccacaaaggg	agegeeeeg	ccgcccggca	1020	
ccccgcctcc	ctccccaatg	tcctcggcca	tcgaaaggaa	gagcctggac	ccttcagagg	1080	
aaccagtgga	tgaggtgctg	cagatecece	catccctgct	gacatgcggc	ggctgccagc	1140	
agaacattgg	ggaccgctac	ttcctgaagg	ccatcgacca	gtactggcac	gaggactgcc	1200	
tgagctgcga	cctctgtggc	tgccggctgg	gtgaggtggg	geggegeete	tactacaaac	1260	
tgggccggaa	gctctgccgg	agagactatc	tcaggctttt	tgggcaagac	ggtctctgcg	1320	
catcctgtga	caagcggatt	cgtgcctatg	agatgacaat	gcgggtgaaa	gacaaagtgt	1380	
atcacctgga	atgtttcaaa	tgcgccgcct	gtcagaagca	tttctgtgta	ggtgacagat	1440	
acctcctcat	caactctgac	atagtgtgcg	aacaggacat	ctacgagtgg	actaagatca	1500	
atgggatgat	ataggcccga	gtccccgggc	atctttgggg	aggtgttcac	tgaagacgcc	1560	
gtctccatgg	catcttcgtc	ttcactctta	ggcactttgg	gggtttgagg	gtggggtaag	1620	
ggatttctta	ggggatggta	gacctttatt	gggtatcaag	acatagcatc	caagtggcat	1680	
aattcagggg	ctgacacttc	aaggtgacag	aaggaccagc	ccttgaggga	gaacttatgg	1740	
ccacagccca	tccatagtaa	ctgacatgat	tagcagaaga	aaggaacatt	taggggcaag	1800	
caggcgctgt	gctatcatga	tggaatttca	tatctacaga	tagagagttg	ttgtgtacag	1860	
acttgttgtg	actttgacgc	ttgcgaacta	gagatgtgca	attgatttct	tttcttcctg	1920	
gctttttaac	tcccctgttt	caatcactgt	cctccacaca	agggaaggac	agaaaggaga	1980	
gtggccattc	tttttttctt	ggcccccttc	ccaaggcctt	aagctttgga	cccaaggaaa	2040	
actgcatgga	gacgcatttc	ggttgagaat	ggaaaccaca	acttttaacc	aaacaattat	2100	
ttaaagcaat	gctgatgaat	cactgttttt	agacaccttc	attttgaggg	gaggagttcc	2160	
acagattgtt	tctatacaaa	tataaatctt	aaaaagttgt	tcaactattt	tattatccta	2220	
gattatatca	aagtatttgt	cgtgtgtaga	aaaaaaaca	gctctgcagg	cttaataaaa	2280	
atgacagact	gaaaaaaaaa	aaa				2303	
<210> SEQ : <211> LENG <212> TYPE <213> ORGA	TH: 3198	sapiens					
<400> SEQU	ENCE: 22						
atttgaggtg	ttctgaccag	aagaagacag	agcggatgat	cattcattca	ccacgttgac	60	

aacctcgcct gtgattgaca gctggagtgg cagaaagcca tgagatttgg tagttgggtc

tgagggggg	tcttttttt	ccttttcttt	ctttcttct	tttttttt	ttaaactgat	180	
ttttggggga	gagaagatct	gcttttttt	geeeeegetg	ctgtcttgga	aacggagcgc	240	
ttttatgctc	agtgactcgg	gcgctttgct	tcaggtcccg	tagaccgaag	atctgggacc	300	
agtageteae	gttgctggag	acgttaaggg	atttttcgtc	gtgcttttt	tttttttt	360	
tttttttcc	gggggagttt	gaatatttgt	ttcttttcac	actggcctta	aagaggatat	420	
attagaagtt	gaagtaggaa	gggagccaga	gaggccgatg	gcgcaaaggt	acgacgatct	480	
accccattac	gggggcatgg	atggagtagg	catcccctcc	acgatgtatg	gggacccgca	540	
tgcagccagg	tccatgcagc	cggtccacca	cctgaaccac	gggcctcctc	tgcactcgca	600	
tcagtacccg	cacacagete	ataccaacgc	catggccccc	agcatgggct	cctctgtcaa	660	
tgacgcttta	aagagagata	aagatgccat	ttatggacac	cccctcttcc	ctctcttagc	720	
actgatttt	gagaaatgtg	aattagctac	ttgtaccccc	cgcgagccgg	gggtggcggg	780	
cggggacgtc	tgctcgtcag	agtcattcaa	tgaagatata	geegtgtteg	ccaaacagat	840	
tegegeagaa	aaacctctat	tttcttctaa	tccagaactg	gataacttga	tgattcaagc	900	
catacaagta	ttaaggtttc	atctattgga	attagagaag	gtacacgaat	tatgtgacaa	960	
tttctgccac	cggtatatta	gctgtttgaa	agggaaaatg	cctatcgatt	tggtgataga	1020	
cgatagagaa	ggaggatcaa	aatcagacag	tgaagatata	acaagatcag	caaatctaac	1080	
tgaccagccc	tcttggaaca	gagatcatga	tgacacggca	tctactcgtt	caggaggaac	1140	
cccaggccct	tccagcggtg	gccacacgtc	acacagtggg	gacaacagca	gtgagcaagg	1200	
tgatggcttg	gacaacagtg	tagcttcccc	cagcacaggt	gacgatgatg	accctgataa	1260	
ggacaaaaag	cgtcacaaaa	agcgtggcat	ctttcccaaa	gtagccacaa	atatcatgag	1320	
ggcgtggctg	ttccagcatc	taacacaccc	ttacccttct	gaagaacaga	aaaagcagtt	1380	
ggcacaagac	acgggactca	ccatccttca	agtgaacaat	tggtttatta	atgcccggag	1440	
aagaatagtg	cagcccatga	tagaccagtc	caaccgagca	gtaagtcaag	gaacacctta	1500	
taatcctgat	ggacagccca	tgggaggttt	cgtaatggac	ggtcagcaac	atatgggaat	1560	
tagagcacca	ggacctatga	gtggaatggg	catgaatatg	ggcatggagg	ggcagtggca	1620	
ctacatgtaa	ccttcatcta	gttaaccaat	cgcaaagcaa	gggggaaggc	tgcaaagtat	1680	
gccaggggag	tatgtagccc	ggggtggtcc	aatgggtgtg	agtatgggac	agccaagtta	1740	
tacccaaccc	cagatgcccc	cccatcctgc	tcagctgcgt	catgggcccc	ccatgcatac	1800	
gtacattcct	ggacaccctc	accacccaac	agtgatgatg	catggaggac	cgccccaccc	1860	
tggaatgcca	atgtcagcat	caagccccac	agttcttaat	acaggagacc	caacaatgag	1920	
tggacaagtc	atggacattc	atgctcagta	gcttaaggga	atatgcattg	tctgcaatgg	1980	
tgactgattt	caaatcatgt	tttttctgca	atgactgtgg	agttccattc	ttggcatcta	2040	
ctctggacca	aggagcatcc	ctaattcttc	atagggacct	ttaaaaagca	ggaaatacca	2100	
actgaagtca	atttggggga	catgctaaat	aactatataa	gacattaaga	gaacaaagag	2160	
tgaaatattg	taaatgctat	tatactgtta	tccatattac	gttgtttctt	atagattttt	2220	
taaaaaaaat	gtgaaatttt	tccacactat	gtgtgttgtt	tccatagctc	ttcacttcct	2280	
ccagaagcct	ccttacatta	aaaagcctta	cagttatcct	gcaagggaca	ggaaggtctg	2340	
atttgcagga	tttttagagc	attaaaataa	ctatcaggca	gaagaatctt	tcttctcgcc	2400	
					=		

				-0011011	iuea		
taggatttca go	catgcgcg	egetetetet	ctttctctct	cttttcctct	ctctccctct	2460	
ttctagcctg gg	gcttgaat	ttgcatgtct	aattcattta	ctcaccatat	ttgaattggc	2520	
ctgaacagat gt	aaatcggg	aaggatggga	aaaactgcag	tcatcaacaa	tgattaatca	2580	
gctgttgcag gc	agtgtctt	aaggagactg	gtaggaggag	gcatggaaac	caaaaggccg	2640	
tgtgtttaga ag	jcctaattg	tcacatcaag	catcattgtc	cccatgcaac	aaccaccacc	2700	
ttatacatca ct	tcctgttt	taagcagctc	taaaacatag	actgaagatt	tatttttaat	2760	
atgttgactt ta	itttctgag	caaagcatcg	gtcatgtgtg	tatttttca	tagtcccacc	2820	
ttggagcatt ta	ıtgtagaca	ttgtaaataa	attttgtgca	aaaaggactg	gaaaaatgaa	2880	
ctgtattatt go	aattttt	tttgtaaaag	tagcagtttg	gtatgagttg	gcatgcatac	2940	
aagatttact aa	ıgtgggata	agctaattat	actttttgtt	gtggataaac	aaatgcttgt	3000	
tgatagcctt tt	tctatcaa	gaaaccaagg	agctaattat	taataacaat	cattgcacac	3060	
tgagtettag eg	gtttctgat	ggaaacagtt	tggattgtat	aataacgcca	ageceagttg	3120	
tagtcgtttg ag	ıtgcagtaa	tgaaatctga	atctaaaata	aaaacaagat	tatttttgtc	3180	
aaaaaaaaa aa	ıaaaaaa					3198	
<210> SEQ ID <211> LENGTH: <212> TYPE: D <213> ORGANIS	1581 NA	apiens					
<400> SEQUENC	E: 23						
ctcgccgctg cc	ecggetee	gccgctcgca	gagagattcg	gaggagcccg	990999999	60	
aggaggaggg gg	jaggaggga	gcggagatct	cggggctcgg	ageeggeege	cgctccgctc	120	
cgatcgctgt gg	ggcttggt	tttttggggg	tgggggggg	ggggggctca	gatatggagg	180	
caaatgggag co	aaggcacc	tegggeageg	ccaacgactc	ccagcacgac	cccggtaaaa	240	
tgtttatcgg tg	gactgagc	tggcagacct	caccagatag	ccttagagac	tattttagca	300	
aatttggaga aa	ittagagaa	tgtatggtca	tgagagatcc	cactacgaaa	cgctccagag	360	
gcttcggttt cg	gtcacgttc	gcagacccag	caagtgtaga	taaagtatta	ggtcagcccc	420	
accatgagtt ag	gattccaag	acgattgacc	ccaaagttgc	atttcctcgt	cgagcgcaac	480	
ccaagatggt ca	ıcaagaaca	aagaaaatat	ttgtaggcgg	gttatctgcg	aacacagtag	540	
tggaagatgt aa	agcaatat	ttcgagcagt	ttggcaaggt	ggaagatgca	atgctgatgt	600	
ttgataaaac ta	iccaacagg	cacagagggt	ttggctttgt	cacttttgag	aatgaagatg	660	
ttgtggagaa ag	ıtctgtgag	attcatttcc	atgaaatcaa	taataaaatg	gtagaatgta	720	
agaaagctca gc	cgaaagaa	gtcatgttcc	cacctgggac	aagaggccgg	geeeggggae	780	
tgccttacac ca	ıtggacgcg	ttcatgcttg	gcatggggat	gctgggatat	cccaacttcg	840	
tggcgaccta tg	gccgtggc	taccccggat	ttgctccaag	ctatggctat	cagttcccag	900	
getteecage ag	gegettat	ggaccagtgg	cagcagcggc	ggtggcggca	gcaagaggat	960	
caggetecaa ee	cggcgcgg	cccggaggct	tcccgggggc	caacagccca	ggacctgtcg	1020	
ccgatctcta cc	gccctgcc	agccaggact	ccggagtggg	gaattacata	agtgcggcca	1080	
gcccacagcc gg	gctcgggc	ttcggccacg	gcatagctgg	acctttgatt	gcaacggcct	1140	

ttacaaatgg ataccattga gcaggtgctt tcgttgccat ctcactctga gagcatacct 1200

ggatgtccag gcaagactgg gcgaagtttc tgagtggccc tttgtttagg tgatgtcctc	1260
agacetggae ecceaceage eteacteece ateceaacea gagatggete aetteggate	1320
gagggttgac tacateteat cateteacga atetgetgta atataagaca acagetttta	1380
aatgtgtata taacccatga tttcggtttt gttttgtttt	1440
tetecetece tetettecca tteteetttt aaatetettt gaateacatt tggtagtgat	1500
tttgacttag tccagtagtc acatagcttt aatatctagt tcaaagctaa ccatagtata	1560
attgttatat taaggagtta t	1581
<210> SEQ ID NO 24 <211> LENGTH: 2613 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 24	
gtcatctgtc tggacgcgct gggtggatgc ggggggctcc tgggaactgt gttggagccg	60
agcaagcgct agccaggcgc aagcgcgcac agactgtagc catccgagga cacccccgcc	120
cccccggccc acccggagac acccgcgcag aatcgcctcc ggatcccctg cagtcggcgg	180
gagtgttgga ggtcggcgcc ggcccccgcc ttccgcgccc cccacgggaa ggaagcaccc	240
ccggtattaa aacgaacggg gcggaaagaa gccctcagtc gccggccggg aggcgagccg	300
atgccgagct gctccacgtc caccatgccg ggcatgatct gcaagaaccc agacctcgag	360
tttgactcgc tacagccctg cttctacccg gacgaagatg acttctactt cggcggcccc	420
gactcgaccc ccccggggga ggacatctgg aagaagtttg agctgctgcc cacgcccccg	480
ctgtcgccca gccgtggctt cgcggagcac agctccgagc ccccgagctg ggtcacggag	540
atgctgcttg agaacgagct gtggggcagc ccggccgagg aggacgcgtt cggcctgggg	600
ggactgggtg gcctcacccc caacccggtc atcctccagg actgcatgtg gagcggcttc	660
teegeeegeg agaagetgga gegegeegtg agegagaage tgeageaegg eegegggeeg	720
ccaaccgccg gttccaccgc ccagtccccg ggagccggcg ccgccagccc tgcgggtcgc	780
gggcacggcg gggctgcggg agccggccgc gccggggccg ccctgcccgc cgagctcgcc	840
cacceggeeg eegagtgegt ggateeegee gtggtettee eettteeegt gaacaagege	900
gagecagege cegtgecege ageceeggee agtgeeeegg eggegggeee tgeggtegee	960
tcgggggcgg gtattgccgc cccagccggg gccccggggg tcgcccctcc gcgcccaggc	1020
ggccgccaga ccagcggcgg cgaccacaag gccctcagta cctccggaga ggacaccctg	1080
agcgattcag atgatgaaga tgatgaagag gaagatgaag aggaagaaat cgacgtggtc	1140
actgtggaga agcggcgttc ctcctccaac accaaggctg tcaccacatt caccatcact	1200
gtgcgtccca agaacgcagc cctgggtccc gggagggctc agtccagcga gctgatcctc	1260
aaacgatgcc ttcccatcca ccagcagcac aactatgccg ccccctctcc ctacgtggag	1320
agtgaggatg cacccccaca gaagaagata aagagcgagg cgtccccacg tccgctcaag	1380
agtgtcatcc ccccaaaggc taagagcttg agccccgaa actctgactc ggaggacagt	1440
gagogtogoa gaaaccacaa cateetggag egecagegee geaacgacet teggteeage	1500
	1560
ttteteaege teagggacea egtgeeggag ttggtaaaga atgagaagge egeeaaggtg	1500

gtcattttga aaaaggccac tgagtatgtc cactccctcc aggccgagga gcaccagctt 1620

ttgctggaaa aggaaaaatt gcaggcaaga cagcagcagt tgctaaagaa aattgaacac	1680
gctcggactt gctagacgct tctcaaaact ggacagtcac tgccactttg cacattttga	1740
ttttttttt aaacaaacat tgtgttgaca ttaagaatgt tggtttactt tcaaatcggt	1800
cccctgtcga gttcggctct gggtgggcag taggaccacc agtgtggggt tctgctggga	1860
cettggagag cetgcatece aggatgetgg gtggccetge agcetectee aceteacete	1920
catgacageg ctaaacgttg gtgaeggttg ggageetetg gggetgttga agteacettg	1980
tgtgttccaa gtttccaaac aacagaaagt cattccttct ttttaaaatg gtgcttaagt	2040
tecageagat gecaeataag gggtttgeea tttgataeee etggggaaca tttetgtaaa	2100
taccattgac acateegeet tttgtataca teetgggtaa tgagaggtgg ettttgegge	2160
cagtattaga ctggaagttc atacctaagt actgtaataa tacctcaatg tttgaggagc	2220
atgttttgta tacaaatata ttgttaatct ctgttatgta ctgtactaat tcttacactg	2280
cctgtatact ttagtatgac gctgatacat aactaaattt gatacttata ttttcgtatg	2340
aaaatgagtt gtgaaagttt tgagtagata ttactttatc actttttgaa ctaagaaact	2400
tttgtaaaga aatttactat atatatatge ettttteeta geetgtttet teetgttaat	2460
gtatttgttc atgtttggtg catagaactg ggtaaatgca aagttctgtg tttaatttct	2520
tcaaaatgta tatatttagt gctgcatctt atagcacttt gaaatacctc atgtttatga	2580
aaataaatag cttaaaatta aatgaaaaaa aaa	2613
<210> SEQ ID NO 25 <211> LENGTH: 2761 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 25	
aaatgaggag cgaactaaag gcacactggg aacgaaatta acgggaggtc tgactgcaag	60
aaatgaggag cgaactaaag gcacactggg aacgaaatta acgggaggte tgactgcaag gggaggggge tcgcgatcta aaacgagaag agatctcggg gtctcatact gcgccattcg	60 120
gggagggggc tcgcgatcta aaacgagaag agatctcggg gtctcatact gcgccattcg	120
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegecatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte	120 180
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege eacegetgte geecaageet ceaetgeege tgeeacetea gegeeggeet etgeateece ageteeaget	120 180 240
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegecatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceaetgeege tgeeacetea gegeeggeet etgeateece ageteeaget eegetetgeg eegetgetge categeeget geeaecteeg cageeeggge etcegeegee	120 180 240 300
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege eacegetgte geecaageet ceaetgeege tgecacetea gegeeggeet etgeateeee ageteeaget eegetetgeg eegetgetge eategeeget geeaeeteeg eageeeggge eteegeegee geeaeteaag eateegtgag teatttetg eecatetetg gtegegeggt eteeetggta	120 180 240 300 360
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege caeeggetgte geecaageet ceaetgeege tgeeacetea gegeeggeet etgeateece ageteeaget eegetetgeg eegetgetge eategeeget geeaeeteeg eageeeggge eteegeegee geeaeteaag eateegtgag teattttetg eeeatetetg gtegegeggt eteeetggta gagtttgtag gettgeaaga tggeagaage agattttaaa atggtetegg aaeetgtege	120 180 240 300 360 420
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceactgeege tgecacetea gegeeggeet etgeateece ageteeaget eegetetgeg eegetgetge categeeget geeaceteeg eageeeggge eteegeegee geeaceteaag eateegtgag teattitetg eecatetetg gtegegeggt eteectggta gagtitigtag gettgeaaga tggeagaage agatittaaa atggtetegg aacetgtege ecategggtt geegaagagg agatggetag etegaetagt gattetggg aagaatetga	120 180 240 300 360 420
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceactgeege tgecacetea gegeeggeet etgeateeee ageteeaget eegetetgeg eegetgetge categeeget geeaecteeg eageeeggge eteeggegee geeaecteaag cateegtgag teattttetg eecatetetg gtegegeggt eteeetggta gagtttgtag gettgeaaga tggeagaage agattttaaa atggtetegg aacetgtege eeatggggtt geegaagagg agatggetag etegaetagt gattetggg aagaatetga eageagtage tetageagag teageagga eageageage ageageagea etagtggeag	120 180 240 300 360 420 480
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceaetgeege tgecacetea gegeeggeet etgeateeee ageteeaget eegetetgeg eateegeege geeaecteeg cageeeggge eteeggege geeaeteaag cateegtgag teattttetg eecatetetg gtegegeggt eteectggta gagtttgtag gettgeaaga tggeagaage agattttaaa atggtetegg aacetgtege ecateggggt geegagaget geeaagage eteaggggt geegagage eteeggege eteectggta gagtttgtag gettgeaaga tggeagaage agattttaaa atggtetegg aacetgtege eateggggtt geegaagagg agatggetag etegaetagt gattetgggg aagaatetga eageagtage tetageagea geactagtga eageageage ageageagea etagtggeage eageageageageageageageageageageageageage	120 180 240 300 360 420 480 540 600
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceactgeege tgecacetea gegeeggeet etgeateeee ageteeaget eegetetgeg eegetgetge categeeget geeaceteeg cageeeggge eteegeegee geeacteaag cateegtgag teattttetg eecatetetg gtegegeggt eteeetggta gagtttgtag gettgeaaga tggeagaage agattttaaa atggtetegg aacetgtege eeatggggtt geegaagagg agatggetag etegactagt gattetggg aagaatetga eageagtage tetageagea geactagtga eageageage ageageagea etagtggeag eageageage ageageageage ageageageage geageegett gtatagaaag aagagggtae etgageette eagaagggeg eggeggeee egttgggaac	120 180 240 300 360 420 480 540 600 660
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegeeatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceaetgeege tgeeaectea gegeeggeet etgeateeee ageteeaget eegetetgeg eateeggegt geeaecteeg cageeeggge etcegeegee geeaecteaag cateegtgag teattttetg eceatetetg gtegegeggt etceetggta gagtttgtag gettgeaaga tggeagaage agattttaaa atggtetegg aacetgtege ecatggggtt geegaagagg agatggetag etcagaetagt gattetggg aagaatetga eageagtage tetageagea geactagtga cageageage ageageagea etagtggeag eageageage ageageagea etagtggeag eageageage ageageagea etagtggeag eageageage agaageage etagtggaac aatageagee geageegett gtatagaaaag aagaggtae etgageette eagaaategt gtgeaagege ttagaaacat	120 180 240 300 360 420 480 540 600 660
gggagggggc tegegateta aaacgagaag agateteggg gteteataet gegecatteg getgeggtae ateteggeae tetagetgea geegggagag geettgeege cacegetgte geecaageet ceaetgeege tgecacetea gegeeggeet etgeateeee ageteeaget eegetetgeg eateeggeget geeaecteeg eageeeggge eteeggegee geeaecteaag eateegtgag teattttetg eecatetetg gtegegeggt eteectggta gagtttgtag gettgeaaga tggeagaage agatttaaa atggtetegg aacetgtege eateggggt geeatggggt geeagggge eteeggege eeatgggg eateggggt geeatgggg eageagggge eateeggge eategggg eageagggt geegagaga agatttaaa atggtetegg aacetgtege eatgggggt geegagaggag agatggetag etegactagt gattetggg aagaatetga eageaggage tetageagag eageageage ageageagea etagtggeag eageageage ageageageage eageageage geageagett gataagaaag aagagggtae etgageageage eagagggege eggtgggeee eggtgggaae aaatttegtg gataaggetge eteaggeagt tagaaategt gtgeaagege ttagaaacat teaagatgaa tgtgacaagg tagataceet gttettaaaa geaatteatg atettgaaag	120 180 240 300 360 420 480 540 600 660 720

aaaccctaaa gaaaacccag aggtgaaagc tgaagagaag gaagttccta aagaaattcc 1020

tgaggtgaag	gatgaagaaa	aggaagttcc	taaagaaatt	cctgaggtaa	aggctgaaga	1080		
aaaagcagat	tctaaagact	gtatggaggc	aacccctgaa	gtaaaagaag	atcctaaaga	1140		
agtcccccag	gtaaaggcag	atgataaaga	acagcctaaa	gcaacagagg	ctaaggcaag	1200		
ggctgcagta	agagagactc	ataaaagagt	tcctgaggaa	aggetteagg	acagtgtaga	1260		
tcttaaaaga	gctaggaagg	gaaagcctaa	aagagaagac	cctaaaggca	ttcctgacta	1320		
ttggctgatt	gttttaaaga	atgttgacaa	getegggeet	atgattcaga	agtatgatga	1380		
gcccattctg	aagttcttgt	cggatgttag	cctgaagttc	tcaaaacctg	gccagcctgt	1440		
aagttacacc	tttgaatttc	attttctacc	caacccatac	ttcagaaatg	aggtgctggt	1500		
gaagacatat	ataataaagg	caaaaccaga	tcacaatgat	cccttctttt	cttggggatg	1560		
ggaaattgaa	gattgcaaag	gctgcaagat	agactggaga	agaggaaaag	atgttactgt	1620		
gacaactacc	cagagtcgca	caactgctac	tggagaaatt	gaaatccagc	caagagtggt	1680		
tcctaatgca	tcattcttca	acttctttag	tcctcctgag	attcctatga	ttgggaagct	1740		
ggaaccacga	gaagatgcta	tcctggatga	ggactttgaa	attgggcaga	ttttacatga	1800		
taatgtcatc	ctgaaatcaa	tctattacta	tactggagaa	gtcaatggta	cctactatca	1860		
atttggcaaa	cattatggaa	acaagaaata	cagaaaataa	gtcaatctga	aagatttttc	1920		
aagaatctta	aaatctcaag	aagtgaagca	gattcataca	gccttgaaaa	aagtaaaacc	1980		
ctgacctgta	acctgaacac	tattattcct	tatagtcaag	tttttgtggt	ttcttggtag	2040		
tctatatttt	aaaaatagtc	ctaaaaagtg	tctaagtgcc	agtttattct	atctaggctg	2100		
ttgtagtata	atattcttca	aaatatgtaa	gctgttgtca	attatctaaa	gcatgttagt	2160		
ttggtgctac	acagtgttga	tttttgtgat	gtcctttggt	catgtttctg	ttagactgta	2220		
gctgtgaaac	tgtcagaatt	gttaactgaa	acaaatattt	gcttgaaaaa	aaaagttcat	2280		
gaagtaccaa	tgcaagtgtt	ttatttttt	cttttttcca	gcccataaga	ctaagggttt	2340		
aaatctgctt	gcactagctg	tgccttcatt	agtttgctat	agaaatccag	tacttatagt	2400		
aaataaaaca	gtgtattttg	aagtttgact	gcttgaaaaa	gattagcata	catctaatgt	2460		
gaaaagacca	catttgattc	aactgagacc	ttgtgtatgt	gacatatagt	ggcctataaa	2520		
tttaatcata	atgatgttat	tgtttaccac	tgaggtgtta	atataacata	gtatttttga	2580		
aaaagtttct	tcatcttata	ttgtgtaatt	gtaaactaaa	gataccgtgt	tttctttgta	2640		
ttgtgttcta	ccttcccttt	cactgaaaat	gatcacttca	tttgatactg	tttttcatgt	2700		
tcttgtattg	caacctaaaa	taaataaata	ttaaagtgtg	ttatactata	aaaatctaaa	2760		
a						2761		
<210> SEQ : <211> LENG: <212> TYPE <213> ORGAN	TH: 2761	sapiens						
<400> SEQUI	ENCE: 26							
aaatgaggag	cgaactaaag	gcacactggg	aacgaaatta	acgggaggtc	tgactgcaag	60		
gggaggggg	tegegateta	aaacgagaag	agateteggg	gtctcatact	gcgccattcg	120		
gctgcggtac	atctcggcac	tctagctgca	gccgggagag	gccttgccgc	caccgctgtc	180		

geccaageet ceaetgeege tgecaeetea gegeeggeet etgeateeee ageteeaget

ccgct	ctgcg	ccgctgctgc	catcgccgct	gccacctccg	cagcccgggc	ctccgccgcc	300	
gccac	tcaag	catccgtgag	tcattttctg	cccatctctg	gtegegeggt	ctccctggta	360	
gagtt	tgtag	gcttgcaaga	tggcagaagc	agattttaaa	atggtctcgg	aacctgtcgc	420	
ccatg	gggtt	gccgaagagg	agatggctag	ctcgactagt	gattctgggg	aagaatctga	480	
cagca	ıgtagc	tctagcagca	gcactagtga	cagcagcagc	agcagcagca	ctagtggcag	540	
cagca	ıgcggc	ageggeagea	gcagcagcag	cagcggcagc	actagcagcc	gcagccgctt	600	
gtata	ıgaaag	aagagggtac	ctgagccttc	cagaagggcg	cggcgggccc	cgttgggaac	660	
aaatt	tcgtg	gataggetge	ctcaggcagt	tagaaatcgt	gtgcaagcgc	ttagaaacat	720	
tcaag	jatgaa	tgtgacaagg	tagataccct	gttcttaaaa	gcaattcatg	atcttgaaag	780	
aaaat	atgct	gaactcaaca	agcctctgta	tgataggcgg	tttcaaatca	tcaatgcaga	840	
atacg	agcct	acagaagaag	aatgtgaatg	gaattcagag	gatgaggagt	tcagcagtga	900	
tgagg	aggtg	caggataaca	cccctagtga	aatgcctccc	ttagagggtg	aggaagaaga	960	
aaacc	ctaaa	gaaaacccag	aggtgaaagc	tgaagagaag	gaagtteeta	aagaaattcc	1020	
tgagg	ıtgaag	gatgaagaaa	aggaagttcc	taaagaaatt	cctgaggtaa	aggctgaaga	1080	
aaaag	ıcagat	tctaaagact	gtatggaggc	aacccctgaa	gtaaaagaag	atcctaaaga	1140	
agtco	cccag	gtaaaggcag	atgataaaga	acagcctaaa	gcaacagagg	ctaaggcaag	1200	
ggctg	ıcagta	agagagactc	ataaaagagt	tcctgaggaa	aggetteagg	acagtgtaga	1260	
tctta	ıaaaga	gctaggaagg	gaaagcctaa	aagagaagac	cctaaaggca	ttcctgacta	1320	
ttggd	tgatt	gttttaaaga	atgttgacaa	gctcgggcct	atgattcaga	agtatgatga	1380	
gccca	ittctg	aagttcttgt	cggatgttag	cctgaagttc	tcaaaacctg	gccagcctgt	1440	
aagtt	acacc	tttgaatttc	attttctacc	caacccatac	ttcagaaatg	aggtgctggt	1500	
gaaga	catat	ataataaagg	caaaaccaga	tcacaatgat	cccttcttt	cttggggatg	1560	
ggaaa	ittgaa	gattgcaaag	gctgcaagat	agactggaga	agaggaaaag	atgttactgt	1620	
gacaa	ctacc	cagagtegea	caactgctac	tggagaaatt	gaaatccagc	caagagtggt	1680	
tccta	atgca	tcattcttca	acttctttag	tcctcctgag	attcctatga	ttgggaagct	1740	
ggaac	cacga	gaagatgcta	tcctggatga	ggactttgaa	attgggcaga	ttttacatga	1800	
taatg	ıtcatc	ctgaaatcaa	tctattacta	tactggagaa	gtcaatggta	cctactatca	1860	
atttg	gcaaa	cattatggaa	acaagaaata	cagaaaataa	gtcaatctga	aagatttttc	1920	
aagaa	itctta	aaatctcaag	aagtgaagca	gattcataca	gccttgaaaa	aagtaaaacc	1980	
ctgac	ctgta	acctgaacac	tattattcct	tatagtcaag	tttttgtggt	ttcttggtag	2040	
tctat	atttt	aaaaatagtc	ctaaaaagtg	tctaagtgcc	agtttattct	atctaggctg	2100	
ttgta	ıgtata	atattcttca	aaatatgtaa	gctgttgtca	attatctaaa	gcatgttagt	2160	
ttggt	gctac	acagtgttga	tttttgtgat	gtcctttggt	catgtttctg	ttagactgta	2220	
gctgt	gaaac	tgtcagaatt	gttaactgaa	acaaatattt	gcttgaaaaa	aaaagttcat	2280	
gaagt	accaa	tgcaagtgtt	ttatttttt	cttttttcca	gcccataaga	ctaagggttt	2340	
aaato	tgctt	gcactagctg	tgccttcatt	agtttgctat	agaaatccag	tacttatagt	2400	
aaata	ıaaaca	gtgtattttg	aagtttgact	gcttgaaaaa	gattagcata	catctaatgt	2460	
			aactgagacc				2520	
5				- 5 - 5 90	J	55		

-continued	
tttaatcata atgatgttat tgtttaccac tgaggtgtta atataacata gtatttttga	2580
aaaagtttet teatettata ttgtgtaatt gtaaaetaaa gataeegtgt tttetttgta	2640
ttgtgttcta ccttcccttt cactgaaaat gatcacttca tttgatactg tttttcatgt	2700
tcttgtattg caacctaaaa taaataaata ttaaagtgtg ttatactata aaaatctaaa	2760
a	2761
<210> SEQ ID NO 27 <211> LENGTH: 5545 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 27	
aactettttg agtecagaat eteagaateg ggegttggge tttgeegggt getteagate	60
aatggatgag ttccacccgt tcatcgaggc actgctgcct cacgtccgcg ctttctccta	120
cacctggttc aacctgcagg cgcggaagcg caagtacttc aagaagcatg aaaagcggat	180
gtcgaaggac gaggagcggg cggtgaagga cgagctgctg ggcgagaagc ccgagatcaa	240
gcagaagtgg gcatcccggc tgctggccaa gctgcgcaag gacatccggc ccgagttccg	300
cgaggacttc gtgctgacca tcacgggcaa gaagcccccc tgctgcgtgc tctccaaccc	360
cgaccagaag ggcaagatcc ggcggattga ctgcctgcgc caggctgaca aggtgtggcg	420
gctggacctg gtcatggtga ttttgtttaa ggggatcccc ctggaaagta ctgatgggga	480
geggetetae aagtegeete agtgetegaa eeeeggeetg tgegteeage cacateacat	540
tggagtcaca atcaaagaac tggatcttta tctggcttac tttgtccaca ctccggaatc	600
cggacaatca gatagttcaa accagcaagg agatgcggac atcaaaccac tgcccaacgg	660
gcacttaagt ttccaggact gttttgtgac ttccggggtc tggaatgtga cggagctggt	720
gagagtatca cagacteetg ttgcaacage atcagggeee aactteteee tggeggaeet	780
ggagagtccc agctactaca acatcaacca ggtgaccctg gggcggcggt ccatcacctc	840
controller accagnacca chaagegeen caagtenate gatgacagtg agatggagag	900
ccctgttgat gacgtgttct atcccgggac aggccgttcc ccagcagctg gcagcagcca	960
gtccagcggg tggcccaacg atgtggatgc aggcccggct tctctaaaga agtcaggaaa	1020
getggaette tgeagtgeee teteetetea gggeagetee eegegeatgg ettteaceea	1080
ccaccogctg cctgtgcttg ctggagtcag accagggagc ccccgggcca cagcatcagc	1140
cctgcacttc ccctccacgt ccatcatcca gcagtcgagc ccgtatttca cgcacccgac	1200
catcogotac caccaccacc acgggcagga ctcactgaag gagtttgtgc agtttgtgtg	1260
ctcggatggc tcgggccagg ccaccggaca gcattcgcaa cgacaggcgc ctcctctgcc	1320
aaccggtttg tcagcatcgg accccgggac ggcaactttc tgaacatccc acagcagtct	1380
cagtcctggt tcctctgata agatcgacaa aagaaacaac aaaatgagaa gaagaggttc	1440
ctcgaaaggg gggagaagaa attttgagaa tggaaaaatc ccccagccca gcccagcccc	1500
accgaaaagc aaaaattaca cgtcgtcagc cactcagccc ttctctcctc cagcccgggg	1560
acccccgcgg gccccagaag cagcccagtt ctcagagagc ccttggaagg ggtctcggtg	1620
gagetgtgea ceageageca ageagaaaga aacaegegae atggaetetg teaagtagag	1680
gacagaaagc aagaaaggat gcagaactgc cttcctcccc ctgaccccgc cccggccttc	1740

tggggaagga	acaaagtccc	caaacaaagc	aaccagcaca	attctgaagg	ggcctggcct	1800
ccaccctcac	cccttcctag	gggaacccca	ccctccacac	ageeggaget	gccctaggga	1860
gcctggaggg	ccagcttgta	aagatgatgg	ggtttagatc	cctcaggctc	teceetecag	1920
actccgccct	tecetecete	cctccctccc	tecetetetg	ccaaggctcc	agcttcttcc	1980
cccagctgct	cccgaccagg	agggggagag	cagcctccac	ttaccccacc	ccacccttgg	2040
gctaaaagcc	cccaggcggg	cagggggtga	cccctggagc	tagttgcgtg	tcccagaatg	2100
gagggtgttc	tgacacccca	ccctgagccg	caagagcagt	cctggggccc	tggacccctc	2160
tgtacagtcc	gtaggaaaaa	gtcggaatgc	tctcgacggc	ctcgtcccag	cctgggacag	2220
gccccctttc	ccctctctct	gcaggccagg	agggcctcct	tectgecacg	agggaggga	2280
gtcgggcccc	aggtcgcccc	cgcccccagc	cctgcatgca	ggtgccctcg	ctccgcccca	2340
tcagttcctg	cccctgcccc	tcatgcagac	tgccctgctg	gggccgggcc	ggagggtgga	2400
gcagaaaggg	gaccccggag	ccgagcgagg	aggaccaggc	ageegeeget	gccgcgctaa	2460
gccaccacct	gegettaggt	aggegteetg	ctcgccgact	ttcagttcct	tgggagggtg	2520
ttgggtgtcg	tccttttcaa	aagtgttttg	gagetttetg	tgccccccga	ctttcccccg	2580
cctccccgcc	ccccacgtgg	ccacttttct	ctggatttta	gctgtaatgt	ctttactctt	2640
tatttagggg	tggggcattc	attgtttggg	tettttgetg	ttggaatggg	aactcctcct	2700
ccatttgagc	aacttgggaa	caatttggta	acacaccaca	ggaagtagct	ctcccccca	2760
gececetect	ccctcaaggg	agggttgggg	ggcctgtcca	gagggtette	agaagccccc	2820
ctgggaggga	ggggaggatg	agcacgccca	geteceetee	agggtgtgac	ttggcccctc	2880
tggcttgtct	ttetgtgeet	tactcctcct	cctgcgtctc	ccgttcctgg	ccccttcttg	2940
agtccttgtg	cctctctctt	tetetetett	tcttaattgt	atgaaaacac	aaagcacagg	3000
tcaggatcct	ctgagagaaa	atcaacattg	caccacgtag	gggtgggcta	tgggctgtat	3060
ttattgtgaa	tctagtttgt	gaggetgtgg	ccccgagctg	gcggagggag	ggaagaggag	3120
ggagtgacgg	gaggggagga	ggtcagcgac	ctggggccgt	ageggeagge	gaacggtgcc	3180
tgctacccag	ctggaagcca	caaggtggct	ggctccaggg	geggettttg	ttggaagttg	3240
agtgaagccc	tececetgte	ctcagcgtgc	agccctagag	gaccccaggg	ctgaggggca	3300
gtggatcctg	cgggagtctc	ceggggegtg	gggagtaagg	ccccgggggt	ggggggccgg	3360
gtgggccggg	cgtgacgcgc	ggtcaaagtg	caatgatttt	tcagttcggt	tggctaaaca	3420
gggtcagagc	tgagagcgaa	gcagaagggg	ctccctgtcc	ggcccacgtg	ccctttccct	3480
cgacgacagt	cgagggctcg	ggetetgtgg	gactgtggga	gctagggtct	geggggegee	3540
tgcccgggcg	aggtcggaag	ctgcaggcca	getgggeeeg	ggccggagcg	tgcccggcgg	3600
ggctgcccgg	gcgggcaggg	ggtgggggct	gctcctttcc	caagtggtgt	tgtgaggggc	3660
aatgagggca	acaggagatg	tggggacgtg	ttaggagaga	aaaaaaaaa	aacaaaaata	3720
tatatggggg	aaattaactt	tttttttca	ttgaaccaag	tgcaatgcat	cagagagttt	3780
tcctatcttt	gtatgttaag	agattaagaa	aaaaaaattc	tatttttgtt	gtaatgtcct	3840
cgcggctctg	gggacgctaa	aagaaccggg	cctgccccgc	cctgcgcggg	gataacgaaa	3900
gctgagtgtt	tttccctttt	ttttgttcgt	ttttagtttt	tttttttta	agtcgttttc	3960
		tggggttttt				4020
	-3 3		5 5	_ 5	_ 55 5	

		-continued		
ggagggctga aggaaacgt	t cacattttag agtttaaaaa	a aaacacctcg acatttaaaa	4080	
aatcaaccaa cacaagato	a aaaaggaaaa ggacgagaga	a aaaattattt ttaagataat	4140	
taaacataaa accctggto	c ttcttacatt ataaagtac	g ttttaaagaa cccacaaact	4200	
attatacata agtttatga	a tcaattaaat atcctgcact	tgttaggaat acgcatatcc	4260	
cttctttgtt gagtttaac	g gaacgggaca gcggcgtgcc	cccggcggct ggactgctcc	4320	
ggeegegggt eteceeggg	c geceeteeet ggggeeeage	accectecte gececatece	4380	
egteegggta egggggege	g gcaggggtec ceggeeeete	ccccgcagag gtcaatgcca	4440	
acgaacaaac gtcccctcc	e teectecete teegeeeega	gegeeettet ttgageeaga	4500	
cgccaacttg accctcacc	a gcattatcag gagcgcgcto	agcaagttgg tagttteete	4560	
cccctttcc cggcgcccc	t cccgccccca ttcaacatct	ctcatcctat ccccgacccc	4620	
ctccggggaa caccgggaa	g getegaeget eeaggaeagg	g accagecaeg cagaeaggte	4680	
gatttgccca ggcccgcgc	e egeaegeaeg caegeaeaeg	g geeeegeaca cageeeegee	4740	
ccaccccgca accagccct	g tegaetgeet tatacacee	g ceceegeget ggeeggeega	4800	
cctagtgcct tgttctcac	e ceegtgetgg eggageggad	geegegetet gggteeeaga	4860	
ggggccgggt ggctcagac	g acccaccact cccccaccct	gaccgtgctg aacagacccc	4920	
cccacacgag agaaaataa	a ggagcaataa agtcacgaga	actttcgtcc cccaatcgag	4980	
agcccgaggg gcaccccag	c cccgcctctg ctccccccc	ccccacccac cctcggggcg	5040	
ccccctccc cccgcaago	e ageetgggee ageecegett	cggcccctcc cgggagatcc	5100	
gtgcgcccga ccagcacca	g catcgcggac cgcaaaggco	gecegteceg teaaacaagt	5160	
ttcttcttag gctaagaaa	c gcagtatata cgagtatcto	tatatatagt actaatggat	5220	
ttggtgtgct tccccctta	g egtececete cetetgeted	tecteettea geetggtete	5280	
cccctcttct ctgccctcc	a cccccgtctc tgcactgaga	ı tacataagaa acaagggtag	5340	
tttactgtct gttttgttt	t ctgggttttc agtgtcctag	g cggaatgcaa gtaggcagcc	5400	
agecegtetg tteeetete	e gecegeece geecegeec	cgtcactgcg cttctgttat	5460	
accatctttg cctgactct	c teeggettet ceattgaate	g gctaatgtgt atgtgaaata	5520	
aagaaataaa gaaaaacaa	a cgcga		5545	
<210> SEQ ID NO 28 <211> LENGTH: 2117 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens			
<400> SEQUENCE: 28				
agtecetgea gtggetgta	a caaaacccag acccccaggt	cccggccaat ggaggcgatt	60	
tagactggag tgggaccgo	g tetgteaaaa geeegaetee	g gcagcagcgg cggagtccag	120	
gaggagagct ggagccgcc	g egetgeetee eegeeeege	cgggatttat tatttggact	180	
ggacaattaa gtggccctg	a tgatgttacc aagcccggto	acctccaccc ctttctcagt	240	
	g agcagcagca ccagcactto		300	
	c actotgogoo otgoatgoto		360	
55		, 5 -555555550%		

attttctgac ggagggagg aggacgagga agacgagggc gagaaattgt cctatttgaa ctcactagcc gcagcagacg gccacgggga ttcagggctg tgtccccagg gctatgtcca

420

Concinuca	
cacggtcctg cgagactcgt gcagcgagcc caaggaacat gaagaggagc ccgaggtcgt	540
gagggaccgg agccaaaaaa gctgccagct gaagaagtct ctagagacgg ccggagactg	600
caaggeggeg gaggagageg agaggeegaa gecaegeage egeeggaage eeegggteet	660
cttctcgcaa gcccaggtct tcgagctgga acgcaggttc aagcagcagc ggtacctgtc	720
ggcacccgag cgcgagcacc tcgccagcag cctgaagctc acatccactc aggtgaaaat	780
ctggttccag aatcgcaggt acaagtgcaa gagacagcgg caggacaagt ctctggagct	840
tggcgcacac gcgcccccgc cgccgccgcg ccgcgtggct gtcccggtgc tggtgcggga	900
eggeaageeg tgegteaege eeagegegea ggeetaegge gegeeetaea gegtgggege	960
cagegeetae teetacaaca getteeeege etaeggetat gggaactegg eegeggeege	1020
egeegeegee geegeegeeg eegeageage ggeggeetae ageageaget atggetgtge	1080
gtacccggcg ggcggcggcg gcggcggcgg cgggacctcc gcggcgacca ctgccatgca	1140
gcccgcctgc agcgcggccg gaggcggccc ctttgtgaac gtgagcaacc taggaggctt	1200
cggcagcggc ggcagcgcac agccgttgca ccagggtact gcagccgggg ccgcgtgcgc	1260
tcagggcacc ttgcagggca tccgggcctg gtagggacgg ggcgggtcac gcggcgggca	1320
ccccagcgca gcctggcgcc gcgggactga agctcgagaa gggcctgacc taaaggtcag	1380
gtcccctcgt taaaaaaata tgtacgtcta gctcctcagg gcttcggatc gcagctcact	1440
cgaggcctgg ggaaggggac tcaggggcga ggaggatgac tgggtccggt cgccaggact	1500
gtctctgagg cagaaacgcc ggctgggcgc cggggaggac gatggccccg accctggcag	1560
cgagaggaga ccaggagget aggaceetgg eegegettgg ttetteeaaa gegagaaggg	1620
cttctctccc tctgcctttc cgcggcctcc gcgaagcgtt ggcggggagc ccaaggacat	1680
aacaaattaa aagcatgaag gagagaaaaa tgggggtcgt ggcttgagaa attccaggcc	1740
ctaccgatcc tctgccccct ttgcgggcct ggagcgccat agcacagtcg atttcgtttc	1800
gcagctgtct cccctccgca gcagatacct cggtccagat ctccggattg tcgggggacg	1860
caggactett egaggaaaac cageegaatg agateaaaag ttgggggtgg ggggaggetg	1920
aacaaactca ggacctggtg gcccaccgga ggtgttaccg ggtttccttt ctgtttcgta	1980
ttctgtattc agcacatgtt atctatctat ctatctatat aactataacc acacgccgtg	2040
tagacacccg ctgccacaca ctacaggagt caataaacaa ggtgcaatat tttcaaaaaa	2100
aaaaaaaaa aaaaaaa	2117
<210> SEQ ID NO 29 <211> LENGTH: 5915 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 29	
aaaagggcca gccctccagc tggcccactc cccctccggg ctttcgcccg ccctctctcc	60
ctecettttt tgecegeect ggeeetgeee etgeceetge ecceteetet cageceetee	120
gegeeegggg tgteattggg eeegggagae gggageeaae tteaggetge teagaggaag	180
cccgtgcagt cagtcacctg ggtgcaagag cgttgctgcc tcgggctctc ccgctgcagg	240
gagageggea etegetggee tggatgtggt tggatttagg ggggeteege ageaggggtt	300

tcgtggcggt ggcaagcgct gcaacaggta gacggcgaga gacggacccc ggccgaggca

gcgatggaga	ccaaaggcta	ccacagtete	cctgaaggtc	tagatatgga	aagacggtgg	420	
ggtcaagttt	ctcaggctgt	ggagcgttct	tecetgggae	ctacagagag	gaccgatgag	480	
aataactaca	tggagattgt	caacgtaagc	tgtgtttccg	gtgctattcc	aaacaacagt	540	
actcaaggaa	gcagcaaaga	aaaacaagaa	ctactccctt	gccttcagca	agacaataat	600	
cggcctggga	ttttaacatc	tgatattaaa	actgagctgg	aatctaagga	actttcagca	660	
actgtagctg	agtccatggg	tttatatatg	gattctgtaa	gagatgctga	ctattcctat	720	
gagcagcaga	accaacaagg	aagcatgagt	ccagctaaga	tttatcagaa	tgttgaacag	780	
ctggtgaaat	tttacaaagg	aaatggccat	cgtccttcca	ctctaagttg	tgtgaacacg	840	
cccttgagat	catttatgtc	tgactctggg	agctccgtga	atggtggcgt	catgcgcgcc	900	
gttgttaaaa	gccctatcat	gtgtcatgag	aaaagcccgt	ctgtttgcag	ccctctgaac	960	
atgacatctt	cggtttgcag	ccctgctgga	atcaactctg	tgtcctccac	cacagccagc	1020	
tttggcagtt	ttccagtgca	cagcccaatc	acccagggaa	ctcctctgac	atgctcccct	1080	
aatgttgaaa	atcgaggctc	caggtcgcac	agccctgcac	atgctagcaa	tgtgggctct	1140	
cctctctcaa	gtccgttaag	tagcatgaaa	tcctcaattt	ccagccctcc	aagtcactgc	1200	
agtgtaaaat	ctccagtctc	cagtcccaat	aatgtcactc	tgagatcctc	tgtgtctagc	1260	
cctgcaaata	ttaacaactc	aaggtgctct	gtttccagcc	cttcgaacac	taataacaga	1320	
tccacgcttt	ccagtccggc	agccagtact	gtgggatcta	tctgtagccc	tgtaaacaat	1380	
gccttcagct	acactgcttc	tggcacctct	gctggatcca	gtacattgcg	ggatgtggtt	1440	
cccagtccag	acacgcagga	gaaaggtgct	caagaggtcc	cttttcctaa	gactgaggaa	1500	
gtagagagtg	ccatctcaaa	tggtgtgact	ggccagctta	atattgtcca	gtacataaaa	1560	
ccagaaccag	atggagcttt	tagcagctca	tgtctaggag	gaaatagcaa	aataaattcg	1620	
gattcttcat	tctcagtacc	aataaagcaa	gaatcaacca	agcattcatg	ttcaggcacc	1680	
tcttttaaag	ggaatccaac	agtaaacccg	tttccattta	tggatggctc	gtatttttcc	1740	
tttatggatg	ataaagacta	ttattcccta	tcaggaattt	taggaccacc	tgtgcccggc	1800	
tttgatggta	actgtgaagg	cagcggattc	ccagtgggta	ttaaacaaga	accagatgat	1860	
gggagctatt	acccagaggc	cagcatccct	tectetgeta	ttgttggggt	gaattcaggt	1920	
ggacagtcct	tccactacag	gattggtgct	caaggtacaa	tatctttatc	acgatcggct	1980	
agagaccaat	ctttccaaca	cctgagttcc	tttcctcctg	tcaatacttt	agtggagtca	2040	
tggaaatcac	acggcgacct	gtcgtctaga	agaagtgatg	ggtatccggt	cttagaatac	2100	
attccagaaa	atgtatcaag	ctctacttta	cgaagtgttt	ctactggatc	ttcaagacct	2160	
tcaaaaatat	gtttggtgtg	tggggatgag	gcttcaggat	gccattatgg	ggtagtcacc	2220	
tgtggcagct	gcaaagtttt	cttcaaaaga	gcagtggaag	ggcaacacaa	ctatttatgt	2280	
gctggaagaa	atgattgcat	cattgataag	attcgacgaa	agaattgtcc	tgcttgcaga	2340	
cttcagaaat	gtcttcaagc	tggaatgaat	ttaggagcac	gaaagtcaaa	gaagttggga	2400	
aagttaaaag	ggattcacga	ggagcagcca	cagcagcagc	agcccccacc	cccaccccca	2460	
ccccgcaaa	gcccagagga	agggacaacg	tacatcgctc	ctgcaaaaga	accctcggtc	2520	
	tggttcctca					2580	
	aaaacattga					2640	
			J	J			

gatacageeg aaaatetget etecaegete aacegettag caggeaaaca gatgatecaa	2700
gtcgtgaagt gggcaaaggt acttccagga tttaaaaact tgcctcttga ggaccaaatt	2760
accetaatee agtattettg gatgtgteta teateatttg cettgagetg gagategtae	2820
aaacatacga acagccaatt tctctatttt gcaccagacc tagtctttaa tgaagagaag	2880
atgcatcagt ctgccatgta tgaactatgc caggggatgc accaaatcag ccttcagttc	2940
gttcgactgc agctcacctt tgaagaatac accatcatga aagttttgct gctactaagc	3000
acaattccaa aggatggcct caaaagccag gctgcatttg aagaaatgag gacaaattac	3060
atcaaagaac tgaggaagat ggtaactaag tgtcccaaca attctgggca gagctggcag	3120
aggttetace aactgaceaa getgetggae tecatgeatg acctggtgag egacetgetg	3180
gaattetget tetacacett eegagagtee eatgegetga aggtagagtt eeeegeaatg	3240
ctggtggaga tcatcagcga ccagctgccc aaggtggagt cggggaacgc caagccgctc	3300
tacttccacc ggaagtgact gcccgctgcc cagaagaact ttgccttaag tttccctgtg	3360
ttgttccaca cccagaagga cccaagaaaa cctgttttta acatgtgatg gttgattcac	3420
acttgttcaa cagtttctca agtttaaagt catgtcagag gtttggagcc gggaaagctg	3480
tttttccgtg gatttggcga gaccagagca gtctgaagga ttccccacct ccaatcccc	3540
agegettaga aacatgttee tgtteetegg gatgaaaage catatetagt caataactet	3600
gattttgata ttttcacaga tggaagaagt tttaactatg ccgtgtagtt tctggtatcg	3660
ttcgcttgtt ttaaaagggt tcaaggacta acgaacgttt taaagcttac ccttggtttg	3720
cacataaaac gtatagtcaa tatggggcat taatattctt ttgttattaa aaaaacacaa	3780
aaaaataata aaaaaatata tacagattcc tgttgtgtaa taacagaact cgtggcgtgg	3840
ggcagcaget gcctctgage cctcgctcgt ccacggtctt ctgcatcact ggtatacaca	3900
ctcgttagcg tccatttctt atttaattag aatggataag atgatgttaa atgccttggt	3960
ttgatttcta gtatctattg tgttggcttt acaaataatt ttttgcagtc ttttgctgtg	4020
ctgtacatta ctgtatgtat aaattatgaa ggacctgaaa taaggtataa ggatcttttg	4080
taaatgagac acatacaaaa aaaatcttta atggttaata ggatgaatgg gaaagtattt	4140
ttgaaagaat totattttgo tggagactat ttaagtacta totttgtota aacaaggtaa	4200
ttttttttttg taaagtgcaa tgtcctgcat gcataatgaa ccgtttacag tgtatttaag	4260
aaagggaaag ctgtgccttt tttagcttca tatctaattt accattattt tacagtctct	4320
gttgtaaata accacactga aacctcttcg gttgtcttga aacctttcta ctttttctgt	4380
actttttgtt ttgttcttgg tctcccgctt ggggcatttg tgggactcca gcacgttttc	4440
tggcttctgc ttcatcctgc tccatcgggg aatgacacac tgcggtgtct gcagctcctg	4500
gaaggtgtca tttgacaaca catgtgggag aggaggtcct tggagtgctg cagctttggg	4560
aaagctgcct cgtttccctt ttcctctaga agcagaacca gctctacgag agtgagactg	4620
ggaacttgat ggctcagaga gcatcttttc ctcccatttt agaaaatcag attttctcct	4680
gtgggaaaaa aaaattccat gcactctctc tctgttaaag atcagctatt cccttctgat	4740
cttggaaaga ggttctgcac tcctggaacc ggtcacagga acgcacagat catggcagga	4800
tgcgctggga cggcccatct tggcaaggtt cagtctgaat ggcatggaga ccgggagata	4860
gaggggtttt agatttttaa aaggtaggtt ttaaaaaataa gttttataca taaacagttt	4920

-continued	
tggagaaaaa ttacagatca tataagcaag acagtggcac taaaatgttt aattcattaa	4980
tctgtttgtt tggcactgat gcaatgtatg gcttttctct tgccccaaat cacaaacata	5040
tgtatctttg gggaaactaa caatatgatt gcactaaata aactactttg aatagaggcc	5100
aaattaatct tttaaaaaatg atgataatca tcaggtttac tcagtgaaat catattaatt	5160
attttccaaa atctaaaagc tgtagctgga gaagcccatg gccacgagga agcagcaatt	5220
aattagatca acacttttct ccagggttca ccatgcaggc aacattacct tgtctttcaa	5280
aagacacctg ccttatgcaa ggggaaacct gtgaaagctg cactcagagg gaggagtttt	5340
tottacataa titgcaatti caggaattia attiataggo agatottiaa atacagtcaa	5400
cttacggtgc acagtaatat gaaagccaca ctttgaaggt aataaataca cagcatgcag	5460
actgggagtt gctagcaaac aaatggctta cttacaaaag cagcttttag ttcagactta	5520
gtttttataa aatgggaatt ctgacttact taaccaggtt tgggatggag atggtctgca	5580
tcagcttttt gtattaacaa agttactggc tctttgtgtg tctccaggta actttgcttg	5640
attaaacagc aaagccatat tctaaattca ctgttgaatg cctgtcccag tccaaattgt	5700
ctgtctgctc ttatttttgt accatattgc tcttaaaaat cttggtttgg tacagttcat	5760
aattcaccaa aagttcatat aatttaaaga aacactaaat tagtttaaaa tgaagcaatt	5820
tatatettta tgeaaaaaca tatgtetgte tttgeaaagg aetgtaagea gattacaata	5880
aatcctttac tttaatcaaa aaaaaaaaa aaaaa	5915
<210> SEQ ID NO 30	
<211> LENGTH: 6805 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	60
<212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30	60 120
<212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc aaaaggatta agccacagat ttaagcgccg ggagcccatt tctgccttgc aaaggagacc	120
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc aaaaggatta agccacagat ttaagcgccg ggagcccatt tctgccttgc aaaggagacc ggactgaaaa acctaaagcc agctctgatt tctttcgcc aagtgggaag gtggtttatt</pre>	120 180
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc aaaaggatta agccacagat ttaagcgccg ggagcccatt tctgccttgc aaaggagacc ggactgaaaa acctaaagcc agctctgatt tctttcgcc aagtgggaag gtggtttatt tttcttgctt tttggagtca acacccttcc ccaccagccc ttatccccac cctcaccccg</pre>	120 180 240
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgeettee teteettet eeegateaat geatatttgc aaaaggatta agceacagat ttaagegeeg ggageeeatt tetgeettge aaaggagaee ggaetgaaaa acetaaagee agetetgatt tetttegee aagtgggaag gtggtttatt tttettgett tttggagtea acaceettee eeaceageee ttateceeae eeteaceeg caaceeette aegeeeeete eeeeteeeee teeteateet eecaceatee tetaaagagg</pre>	120 180 240 300
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc aaaaggatta agccacagat ttaagcgccg ggagcccatt tctgccttgc aaaggagacc ggactgaaaa acctaaagcc agctctgatt tcttttcgcc aagtgggaag gtggtttatt tttcttgctt tttggagtca acacccttcc ccaccagccc ttatccccac cctcaccccg caaccccttc acgccccctc cccctccccc tcctcatcct cccaccatcc tctaaagagg caaagggatt ttttttttct tttggtcttc tttttcccc cttccctgtt tatcctgaaa</pre>	120 180 240 300
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgeettee teteettet eeegateaat geatatttge aaaaggatta agceacagat ttaagegeeg ggageeeatt tetgeettge aaaggagaee ggactgaaaa acetaaagee agetetgatt tettteegee aagtgggaag gtggtttatt tttettgett tttggagtea acaccettee eeaceageee ttateceeae eeteaceeg caacceette aegeeeeete eeeeteeeee teeteateet eeeaceatee tetaaagagg caaagggatt tttttttet tttggtette ttttteeee etteeetgtt tateetgaaa aggatttgaa gacaagettg aaggataaaa ageettggtg etteeeagga geegageega</pre>	120 180 240 300 360 420
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgcettee teteettet eeegateaat geatatttgc aaaaggatta agccacagat ttaagegeeg ggageceatt tetgcettge aaaggagace ggactgaaaa acetaaagee agetetgatt tetttegee aagtgggaag gtggtttatt tttettgett tttggagtea acaccettee ecaccageee ttateceeae eeteaceeg caacceette aegeeeeete eeeeteeeee teeteateet eeeaccatee tetaaagagg caaagggatt tttttttet tttggtette ttttteeee etteeetgtt tateetgaaa aggatttgaa gacaagettg aaggataaaa ageettggtg etteeeagga geegageega</pre>	120 180 240 300 360 420
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc aaaaggatta agccacagat ttaagcgccg ggagcccatt tctgccttgc aaaggagacc ggactgaaaa acctaaagcc agctctgatt tcttttcgcc aagtgggaag gtggtttatt tttcttgctt tttggagtca acacccttcc ccaccagccc ttatccccac cctcaccccg caaccccttc acgccccctc cccctccccc tcctcatcct cccaccatcc tctaaagagg caaagggatt tttttttct tttggtcttc tttttcccc cttccctgtt tatcctgaaa aggatttgaa gacaagcttg aaggataaaa agccttggtg cttcccagga gccgagccga</pre>	120 180 240 300 360 420 480
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgcettee teteettet eeegateaat geatatttge aaaaggatta agccacagat ttaagegeeg ggageceatt tetgcettge aaaggagace ggactgaaaa acetaaagee agetetgatt tetttegee aagtgggaag gtggtttatt tttettgett tttggagtea acaceettee eeaceageee ttateceeae eeteaceeg caaceeette aegeeeeete eeeeteeeee teeteateet eeeaceatee tetaaagagg caaagggatt tttttttet tttggtette ttttteeee etteeetgtt tateetgaaa aggatttgaa gacaagettg aaggataaaa ageettggtg etteeeagga geegageega</pre>	120 180 240 300 360 420 480 540 600
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgeettee teteettet eeegatcaat geatatttge aaaaggatta agccacagat ttaagegeeg ggageecatt tetgeettge aaaggagace ggactgaaaa acetaaagee agetetgatt tettteegee aagtgggaag gtggtttatt tttettgett tttggagtca acaccettee eeaccageee ttateeceae eetcaceeg caacceette aegeeecete eeeeteeeee teetcateet eeeaccatee tetaaagagg caaagggatt tttttttet tttggtette ttttteeee etteeetgtt tateetgaaa aggatttgaa gacaagettg aaggataaaa ageettggtg etteecagga geegageega ggagcagaag aggaagagee gggggetgee gtageetttg gagatggaeg ageageecag getgatgeat teeeatgetg gggtegggat ggeeggacae eeeggeetgt eeeageaett gcaggatggg geeggagga eegagggga gggegggagg aagcaggaca ttggagacat tttacagcaa attatgacca teacagacca gagtttggat gaggegcagg eeagaaaaca</pre>	120 180 240 300 360 420 480 540 600 660
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgeettee teteettet eeegateaat geatatttge aaaaggatta agceacagat ttaagegeeg ggageeeatt tetgeettge aaaggagaee ggactgaaaa acetaaagee agetetgatt tettteegee aagtgggaag gtggtttatt tttettgett tttggagtea acaceettee eeaccageee ttateceeae eetcaceeg caacceette acgeeeeete eeeeteeeee teetcateet eeeaccatee tetaaagagg caaagggatt ttttttet tttggtette ttttteeee etteeetgtt tateetgaaa aggatttgaa gacaageettg aaggataaaa ageettggtg etteeeagga geegageega</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens </pre> <pre><400> SEQUENCE: 30 aaagtttgca ttgcaatccc cetgcettee teteettet eeegatcaat geatatttgc aaaaggatta agccacagat ttaagegeeg ggageceatt tetgcettge aaaggagace ggactgaaaa acetaaagee agetetgatt tetttegee aagtgggaag gtggtttatt tttettgett tttggagtca acaceettee eeaccageee ttateceeae eetcaceeg caaceeette aegeeeeete eeeeteeee teetcateet eeeaccatee tetaaagagg caaagggatt tttttttet tttggtette ttttteeee etteeetgtt tateetgaaa aggatttgaa gacaagettg aaggataaaa ageettggtg etteeeagga geegageega</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 30 aaagtttgca ttgcaatccc cctgccttcc tctcctttct cccgatcaat gcatatttgc aaaaggatta agccacagat ttaagcgccg ggagcccatt tctgccttgc aaaggagacc ggactgaaaa acctaaagcc agctctgatt tcttttcgcc aagtgggaag gtggtttatt tttcttgctt tttggagtca acacccttcc ccaccagccc ttatccccac cctcaccccg caaccccttc acgccccctc cccctccccc tcctcatcct cccaccatcc tctaaagagg caaagggatt tttttttct tttggtcttc tttttcccc cttccctgtt tatcctgaaa aggatttgaa gacaagcttg aaggataaaa agccttggtg cttcccagga gccgagccga</pre>	120 180 240 300 360 420 480 540 600 660 720 780

gaaatacgag caggcctgca acgagttcac cacccacgtg atgaatctcc tgcgagagca 1020

aagccggacc	aggcccatct	ccccaaagga	gattgagcgg	atggtcagca	tcatccaccg	1080
caagttcagc	tccatccaga	tgcagctcaa	gcagagcacg	tgcgaggcgg	tgatgatcct	1140
gcgttcccga	tttctggatg	cgcggcggaa	gagacggaat	ttcaacaagc	aagcgacaga	1200
aatcctgaat	gaatatttct	attcccatct	cagcaaccct	taccccagtg	aggaagccaa	1260
agaggagtta	gccaagaagt	gtggcatcac	agtctcccag	gtatcaaact	ggtttggaaa	1320
taagcgaatc	cggtacaaga	agaacatagg	taaatttcaa	gaggaagcca	atatttatgc	1380
tgccaaaaca	gctgtcactg	ctaccaatgt	gtcagcccat	ggaagccaag	ctaactcgcc	1440
ctcaactccc	aactcggctg	gtggataccc	ttcgccatgt	tatcagccag	acaggaggat	1500
acagtgatgg	actcgcagcc	agtcagatgt	acagtccgca	gggcatcagt	gctaatggag	1560
gttggcagga	tgctactacc	ccttcatcag	tgacctcccc	tacagaaggc	cctggcagtg	1620
ttcactctga	tacctccaac	tgatctccca	gcaatcgcat	cccggctgac	cctgtgcccc	1680
agttggggca	ggggcaggag	ggagggtttc	tctcccaacg	ctgaagcggt	cagactggag	1740
gtcgaagcaa	tcagcaaaca	caataagagt	ctccttctct	tctcttcttt	gggatgctat	1800
ttcagccaat	ctggacactt	ctttatactc	tcttcccttt	tttttctggg	tagaagccac	1860
ccttccctgc	ctccagctgt	cagcctggtt	ttcgtcatct	tccctgcccc	tgtgcctctg	1920
tcctagactc	ccggggtccc	cgccctctct	catatcactg	aaggatattt	tcaacaatta	1980
gaggaattta	aagaggaaaa	aaattacaaa	gaaaataata	aaagtgtttg	tacgttttca	2040
tgctggtggt	ttgaggagcc	aaatttacct	cactcgaatc	cctcactccc	tatgttaaca	2100
ggcaatcctt	ctctgtttct	cttattactc	tcactacctc	ttagcaggaa	tactccacat	2160
tgccctattc	attccaggcc	tecetgette	ctcttgctct	teeteeetgg	ggacagtact	2220
gattggaaca	ctttcctcct	cttccttcct	agccccagct	attcactggg	gactgtcata	2280
gctgggattc	taaaggtgcc	acatttttca	gtttcatctc	cactaggttg	gttcccgggc	2340
aggaagtcag	gcagcaggga	aggacacggg	aacagcaggt	ggagaattcc	tacagtettt	2400
cttaccctgc	tagcaatagc	tctcagtttc	agaggcacag	tctttggaga	ccattcagca	2460
ctgagaaagc	aatatttaga	acctattgca	aaactgggcc	tgagttaggc	atggtgatga	2520
atgcatcagc	aaggaataga	aagttcttat	cgtgaaaccc	ttcaacctca	actatgcctt	2580
catagacaca	cacgttcatg	cacatgtagg	cacatgtacc	atctcacatc	ttcactttcc	2640
cgagatgcca	tatacaatta	cctacattaa	taactgtagc	actatgcctt	ttgagcccga	2700
gagagggaat	tagtgactct	aagtgaaggt	cactgacaca	gagaagcagt	atgtgtctgg	2760
ggcttccagg	acctgcaggc	ccactagcgt	gcacttacca	gaatggcata	cacaggacct	2820
gatcatgagg	aagaccaggt	ttccagtgta	aactactctt	gttcccacca	cctctggagc	2880
actcagggag	ccccatacag	tacttacaat	gtctttaatg	gacttgattc	tgtttaattt	2940
tttgttttat	attaggcaca	ctgtattaat	tttccaaaat	gttataccac	actatgttct	3000
tggtcctgac	ctattgctct	ggaggaaaga	gttgtataag	aacgtggctc	atgtgaactt	3060
ttgctagctt	catttgagga	cctgagaatc	atggggaaag	ggaaggtaat	gttttcattg	3120
aaatcatcac	agtgattttt	attccctggg	aacacagcgt	gtactaaaaa	tacatgagaa	3180
aatagcatgt	atatgaaagc	tattctcaaa	agtcacctga	gctcaccatc	ttcatagcca	3240
accctaccag	ttataaagat	ggcagctcta	tcacttgatt	aagtgggagg	tggtcaaata	3300

ttttggtgcc	tcattttctt	catctgtgag	atgggaactg	ttatgcctgg	cttactaaga	3360
gtcttgtgag	agactgagaa	gttgattttg	ttcatatcca	atctgtaaat	gcgaagtcag	3420
gggaagtaat	gtccctgaaa	taaacgggtt	catgccatct	agggacaata	aatggttttc	3480
ttgttgtaac	ttctggttaa	tatcagtacc	ttgatgtcat	caccgtgatg	acaaagagaa	3540
gagttattgt	tgatcttctt	ggttttggtc	tgtctctttt	cttaggataa	agaaaaactt	3600
ccaaactaga	aaaacaggcc	ctggttccct	tagtttgcac	ttgaacccaa	tatgttgcct	3660
tgtacatact	tggtccctgt	cacattgact	gcttgggagg	cttccaggga	gaagtatgag	3720
accctgaggg	gtgagaatgg	gcagctagca	agaacatgga	aattctgctt	ggcactacag	3780
tcataaatag	aaaacactgt	gtgtgctcag	gggagcaggg	gatgccactg	aagaaactca	3840
agggaatgtg	tatttgaagg	aaatgcaaaa	actaagtatt	tagcaaaatg	aaattatgcc	3900
ttgatgacta	aaaggcacta	gaaaggttgt	gtctactaac	ttcagcccta	atcagaacag	3960
atgcctagaa	ggagcatttt	tgtgacaact	tcatagtgat	tagaatcagt	ggagaactcc	4020
atcttagtgg	caggaatata	atgaaactac	ccacgcaaga	acatggttga	atcacatttg	4080
cttgacttag	ggcaaagtac	gaaagagaga	caaaagggtt	ctcttggaaa	caagaagagt	4140
gactccagat	gtggcctgaa	taattgccat	gttaagttaa	tgcaaaagat	cagaacaggg	4200
ctacatttgc	acaggcagtt	tctctccggg	ccgtagtttt	cactgatgat	cacctttcac	4260
agcattttcc	ccaaccagca	tttcacttag	tcttctctat	acccagcacc	teceeeggea	4320
ccccggcaa	gcccactatc	acttccgact	tccaacgtgg	catccgtgag	atctgtccac	4380
attaggcgaa	gcaggagaac	actgagagca	gcaggatggg	tttggaaaga	gcatgcctct	4440
ggaaacacag	cttcctggga	attcacatga	ggccagtcct	acagagagca	agatgcaccc	4500
caggatttct	tcattttcta	atagatgtgg	gagtgctcca	ttttccccga	cagcgaattt	4560
cccctgagaa	acgatactag	accctgggtt	tgcccacctt	gtaactcttc	cttatctcct	4620
ccttttcatc	cctaatccat	cctccctctg	gcatggaatt	gacgcccgtg	cagtacattt	4680
gccaagtggc	accttctttc	aatttatgtt	ttattttgct	atggtggtga	ttctttattt	4740
getggttgte	ttttctcaca	catctttctc	tetgtetete	tettteetge	tctttgtttt	4800
tetgeecaga	aaaacctgac	ttcgatacca	aaaaagatga	aactacagaa	actcaaattt	4860
aaaaaaaact	ttaaaagaaa	caaaaaaata	ctcaacgatt	ctttcagctt	tattaacatt	4920
ttccattgtt	tettgegaet	tgtgtctcgt	tctttgtagt	attgatgatg	aacatttgat	4980
aatgaatgtt	cttgtatatt	cagataaaga	aaaaaaaac	caaaaaagcg	gtctgaattt	5040
aatagtgttt	ataataaaaa	ttttaaaaat	gaccctcata	gcacgcaaaa	caggatgggg	5100
aatttcccct	cttctttctg	tgacaatgcg	catcattcct	gcattagttt	ttaacaccag	5160
actacctaca	ttcatcattt	ccctcatttt	tcttttattt	tcttgcattt	gtgaattagt	5220
tcaagaatgc	tagaaaagtg	tcgagttgtg	cacatccatt	tcttgtttca	caatgtttaa	5280
aagtgacagt	aattcatttt	gtaaactaaa	aaaaaaaaa	aaaaggttgg	aatagtgagc	5340
ataataggta	caacctaaca	cattattatg	tttattaact	ttgagaccca	gaaataaatt	5400
ctttctttt	cttgattctt	gctcttaaaa	atacaaaaaa	aaaaatgttt	tgttttgtgt	5460
tatttttggt	ttgtttattg	gggggctttt	tttaattgtc	aggattatga	tcttgctgtt	5520
tttcttcaat	atgtatacaa	ggtgatgtga	aaagatgact	tgggcagagg	agtaagaaca	5580

-continued	
agtaggettg ttettetaet ttgetteaga atteagttaa tgeeaaaage gaagateaag	5640
cccatgttga tgtctcgttg ctcacctgca tttccagaga gtgtgacact catgcagtcc	5700
ctgagaaaaa taaaatcagg gacatacttc tccttttagc cttttaaaaa ttcaaaaacg	5760
tttagtccaa gggaactttt tatgctatca ggaaaggttt ttgctgtttt tgattctgat	5820
tatcacagee aagtaetttg ttttatttet eestaattaa taactacatt eeatgaggee	5880
tettecaace aaagaggeet tttettecag gagagteeeg eaggagatge tggtatgatg	5940
ggcaccattg gttaagtaaa ctacatgcag gaagaagtcc ttggggccag tctgccagct	6000
gagtcctggt tttggatgaa gagttaatga gatattgggc caggctcaat gctgtagttt	6060
taatgctaag aggttacgtt tacttcacag agtacacctc ttagtaacct ctgacttagg	6120
cagctgctta aagcaaattg caaaactggc ttgatttgga atgtttttat tagaggaaaa	6180
aagaaagcca tattatctgg aaaaaaattc attttaaata ccatcattca acaaattatg	6240
ttcagaaagt ggtcagaact taagcaagaa aagtaaagaa agaatgcaga attgtggagc	6300
aatgetttag gaaatattte taeetgaaca ettgtaetet tgaagteaca acaaaataat	6360
gatgagettt teacateace tttatggttt caateeetag eteaaagett eetggaatet	6420
tttatttttt gtaaactttt ttttcttttg ttaaaataaa taaaacattc aatgtttttc	6480
teettttete tettattaet tettteettt ggeattttea atttgaaatg ettteetttg	6540
gttgttggtt ttattctccc cctacccctc cccttttctt attattcaga atataaacct	6600
gcaaagctct gctctgtttt ggttttgaaa gtttaagctt ttctgcttct gtgagagcac	6660
aggettetgt ceettttgat tecaactgaa ettttgtgtt etetaatgat actaacaegg	6720
tgtaggtttt acagteteet aatttgtaet ggtaatgeat attecaaata aatagtttet	6780
tttgttgcaa aaaaaaaaa aaaaa	6805
<210> SEQ ID NO 31 <211> LENGTH: 8674 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 31	
ctgacaatgc tggggagatg aagatagtgt gtggctgctt ctggactcaa ggaggaggag	60
agagattccg cgagccgaca ccatgcgatc caaggcgagg gcgaggaagc tagccaaaag	120
tgacggtgac gttgtaaata atatgtatga gcccaaccgg gacctgctgg ccagccacag	180
cgcggaggac gaggccgagg acagtgccat gtcgcccatc cccgtggggc caccgtcccc	240
cttccccacc agcgaggact tcacccccaa ggagggctcg ccgtacgagg cccctgtcta	300
catteetgaa gacatteega teecageaga ettegagete egagagteet eeateeeagg	360
ggctggcctg ggggtctggg ccaagaggaa gatggaagcc ggggagaggc tgggccctg	420
cgtggtggtg ccccgggcgg cggcaaagga gacagacttc ggatgggagc aaatactgac	480
ggacgtggaa gtgtcgcccc aggaaggctg catcacaaag atctccgaag acctgggcag	540
tgagaagttc tgcgtggatg caaatcaggc gggggctggc agctggctca agtacatccg	600
tgtggcgtgc tcctgcgatg accagaacct caccatgtgt cagatcagtg agcagattta	660

ctataaagtc attaaggaca ttgagccagg tgaggagctg ctggtgcacg tgaaggaagg

cgtctacccc ctgggcacag tgccgcccgg cctggacgag gagcccacgt tccgctgtga

720

780

cgagtgtgac	gaactcttcc	agtccaagct	ggacctgcgg	cgccataaga	agtacacgtg	840	
tggctcagtg	ggggctgcgc	tctacgaggg	cctggctgag	gageteaage	ccgagggcct	900	
tggcggtggc	agcggccaag	cccacgagtg	caaggactgc	gagcggatgt	tccccaacaa	960	
gtacagcctg	gagcagcaca	tggtcatcca	cacggaggag	cgcgagtaca	aatgcgacca	1020	
gtgtcccaag	gccttcaact	ggaagtccaa	cctcatccgc	caccagatgt	cccacgacag	1080	
cggcaaacgc	ttcgaatgtg	aaaactgcgt	gaaggtgttc	acggacccca	gcaaccttca	1140	
gcggcacatc	cgctcgcagc	acgtgggcgc	tegggeeeac	gcctgccccg	actgcgggaa	1200	
gaccttcgcc	acgtcctccg	gcctcaagca	gcacaagcat	atccacagca	cggtgaagcc	1260	
tttcatatgt	gaggtctgcc	acaagtccta	cacgcagttc	tccaacctgt	gccggcacaa	1320	
gcggatgcac	gccgactgcc	gcacgcagat	caagtgcaag	gactgtggcc	agatgttcag	1380	
cactacctcc	tccctcaaca	agcaccggcg	cttctgcgag	ggcaagaacc	attacacgcc	1440	
gggcggcatc	tttgccccgg	gcctgccctt	gacccccagc	cccatgatgg	acaaggcaaa	1500	
accetecece	agcctcaatc	acgccagcct	gggcttcaac	gagtactttc	cctccaggcc	1560	
gcacccgggg	agcctgccct	tctccacggc	gcctcccacg	ttccccgcac	tcacccccgg	1620	
cttcccgggc	atcttccctc	catccttgta	ccccggccg	cctctgctac	ctcccacatc	1680	
gctgctcaag	agccccctga	accacaccca	ggacgccaag	ctccccagtc	ccctggggaa	1740	
cccagccctg	cccctggtct	ccgccgtcag	caacagcagc	cagggcacga	cggcagctgc	1800	
ggggcccgag	gagaagttcg	agagccgcct	ggaggactcc	tgtgtggaga	agctgaagac	1860	
caggagcagc	gacatgtcgg	acggcagtga	ctttgaggac	gtcaacacca	ccacggggac	1920	
cgacctggac	acgaccacgg	ggacgggctc	ggacctggac	agcgacgtgg	acagcgaccc	1980	
tgacaaggac	aagggcaagg	gcaagtccgc	cgagggccag	cccaagtttg	ggggcggctt	2040	
ggcgcccccg	ggggccccga	acagcgtggc	cgaggtgcct	gtcttctatt	cccagcactc	2100	
attetteeeg	ccacccgacg	agcagctgct	gactgcaacg	ggcgccgccg	gggactccat	2160	
caaggccatc	gcatccattg	ccgagaagta	ctttggcccc	ggcttcatgg	ggatgcagga	2220	
gaagaagctg	ggctcgctcc	cctaccactc	ggcgttcccc	ttccagttcc	tgcccaactt	2280	
ccccactcc	ctttacccct	tcacggaccg	agccctcgcc	cacaacttgc	tggtcaaggc	2340	
cgagccaaag	tcaccccggg	acgccctcaa	ggtgggcggc	cccagtgccg	agtgcccctt	2400	
tgatctcacc	accaagccca	aagacgtgaa	gcccatcctg	cccatgccca	agggcccctc	2460	
ggcccccgca	tccggcgagg	agcagccgct	ggacctgagc	ateggeagee	gggcccgtgc	2520	
cagccaaaac	ggcggcgggc	gggagccccg	caagaaccac	gtctatgggg	aacgcaagct	2580	
gggegeegge	gaggggctgc	cccaggtgtg	cccggcgcgg	atgccccagc	agcccccgct	2640	
ccactacgcc	aagccctcgc	ccttcttcat	ggaccccatc	tacagcaggg	tagaaaagcg	2700	
gaaggtcaca	gaccccgtgg	gagccctgaa	ggagaagtac	ctgcggccgt	ccccgctgct	2760	
cttccacccc	cagatgtcag	ccatagagac	catgacagag	aagctggaga	gctttgcagc	2820	
catgaaggcg	gactcgggca	gctccctgca	gcccctcccc	caccacccct	tcaacttccg	2880	
gtccccaccc	ccaacgctct	ccgaccccat	cctcaggaag	ggcaaggagc	gatacacgtg	2940	
caggtactgt	gggaagatct	tccccagatc	agccaatctc	accagacacc	tgaggacgca	3000	
cactggggag	cagccgtaca	ggtgtaagta	ctgcgaccgc	tccttcagca	tctcttcgaa	3060	

cctccagcgg	cacgtccgga	acatccacaa	caaggagaag	cctttcaagt	gccacctgtg	3120
caaccgctgc	ttegggeage	agaccaacct	ggaccggcac	ctcaagaagc	acgagcacga	3180
gaacgcacca	gtgagccagc	accccggggt	cctcacgaac	cacctgggga	ccagcgcgtc	3240
ctctcccacc	tcagagtcgg	acaaccacgc	acttttagac	gagaaagaag	actcttattt	3300
ctcggaaatc	agaaacttta	ttgccaatag	tgagatgaac	caagcatcaa	cgcgaacaga	3360
gaaacgggcg	gacatgcaga	tegtggaegg	cagtgcccag	tgtccaggcc	tagccagtga	3420
gaagcaggag	gacgtggagg	aggaggacga	cgatgacctg	gaggaggacg	atgaggacag	3480
cctggccggg	aagtcgcagg	atgacaccgt	gtcccccgca	cccgagcccc	aggccgccta	3540
cgaggatgag	gaggatgagg	agccagccgc	ctccctggcc	gtgggctttg	accacacccg	3600
aaggtgtgct	gaggaccacg	aaggcggtct	gttagctttg	gagccgatgc	cgacttttgg	3660
gaaggggctg	gacctccgca	gagcagctga	ggaagcattt	gaagttaaag	atgtgcttaa	3720
ttccacctta	gattctgagg	ctttaaaaca	tacactgtgc	aggcaggcta	agaaccaggg	3780
ttctctggac	gcttggttga	aggtcactgg	agccacgtcg	gagtctggag	catttcaccc	3840
catcaaccac	ctctgacggg	ctgggcagcc	gggggccggt	ggccagagcg	agggcaccag	3900
ccacgaagga	cggaggcggg	eggggeeeeg	gagaaccctg	tecetgegtg	tggccactcc	3960
tcagcatcct	ccccacccac	catggttcat	tccgactttt	ccaatggaaa	ctcagatccc	4020
aaaagtccct	aaagcagtcg	tagagtetea	ccatctccaa	ggattggtct	tgagaacact	4080
gttcagtgac	ggccatgcag	gtggccgtcc	aaagacagcc	aacggagctg	cctcgcagaa	4140
tcagccagtg	ggcaggtgga	egetetgetg	agacagaagc	tggtggccac	tgccgggtgc	4200
ccgcgtgggg	tcgcggaagg	gaatggatag	actggtgtgc	tcaaaagaga	gagatcactc	4260
aaatgatttt	tataatgaaa	tgacaagaat	aacccttttg	gtaaccgtat	tgactgcaga	4320
gtctatttaa	gcatgtggtt	ttaaaaatag	acagtatttt	ttaaaaatca	aaaaatgact	4380
tgcaaattgt	tttttaaaag	taattttgca	ttgctttgaa	atttgagctc	atttgcaaac	4440
ccgagtctgc	ctgggaaccc	gcactgtgcc	tgggtgtatt	ctttatactg	tagataatgg	4500
agaaattttc	tatctctgtc	cctatttgta	taagccaagg	tgatgctggg	tgccccgagg	4560
cagaacaaga	ggegegggge	cacacccgtg	aaccatgcag	acggccgaag	aagtcttagg	4620
cagggcgccc	tgggctgcag	geetgeeega	ggctgggatg	ggaagtgtgc	ctgccctcgt	4680
gtgacatgga	attggtgtca	ggaccgccac	gtggccttca	gaggaatcca	caggtcccca	4740
cccaagatcc	ctcaattata	tggggaagtc	gagggcctgt	ggcttggatc	cgccatgcag	4800
agatgtggcc	gggcacccat	cttccttccc	teetetgtee	ctgcctcggc	caccccacgc	4860
gggaacccag	cgccgtcctc	tgaaggcagg	gccttggcca	cgtcctgggt	ctcccacctc	4920
ccacctgacc	ccagcggctc	eggtgteete	cacgtggctg	ccctggggag	caatcccagc	4980
ggatcgctcc	gggccaccaa	gccgcacctg	tgcctgagac	tccggatgga	cgacacagtc	5040
gtcacgtcgc	tetteetgeg	ggttcttggc	gagacacagc	ttgagaacag	aagggcgtcg	5100
ggggaacctg	ccgcaaggag	cagagacagc	acagececee	gggcccagcc	gcctccctct	5160
cttgggacgc	aacttcttcc	ccactcggat	gggctttaaa	ttattcccat	aggggccaat	5220
ttcaaataat	aattttttc	cctgatggaa	tttaccttaa	tctgtatata	acttgtaatt	5280
ttttctaatt	catttcttt	cttattttat	ttcctcctta	acagtatttt	tggcattaga	5340

catt	cttatt	gtgaagaaat	aatgttaata	taagtatctg	gtgaaggacc	aaaaccgtgt	5400
gata	aggttg	tgtgtcgtgt	gggagtgggg	cgatttttta	tgtgccaaat	acccccgtcc	5460
cccc	catgaa	tectgetgte	cctgctgccg	tttaccagac	aatcatatgt	ttttgttaaa	5520
tttg	cgtttc	agttacattt	gcatttaaga	caagtgttct	atttatttct	tgtattgttt	5580
ggaa	gaaaaa	atgatgatag	agtcccaaaa	agaagagaaa	aaaaatgccc	aagttgccct	5640
ttaa	aaaaaa	agagcgtaaa	tacaaacagg	agtggtgcaa	gccgccttgg	tgtgggtttg	5700
tgtc	acgtgt	ggacatetee	tcaggctttg	tgtcacgcgt	ggacatetee	tcaggctgtc	5760
ccca	gcggtg	acgggaggtg	teetggetge	tccaggacaa	aagacaatcg	tctctgtggg	5820
tgcc	gggtgg	tccaggcttg	cactgaagac	gtgccacggg	gaggeteetg	caggaggctc	5880
aacc	cgacgg	atcacagtga	aagggattcc	teccaegeca	gatctgcaca	acgaggcaag	5940
acag	gaccca	cctgtgcgtg	cgctggggcc	atggggtggc	cccgccgggg	cagcggggga	6000
gctg	cctgca	gaagagccag	ctggcgtgtc	gggaaggatc	caggatctgc	aaacacaact	6060
gctc	aggcct	tctcacgcgt	ttccacaaca	teceetgggt	cagacccacc	aggtaccccg	6120
tagg	aatttc	cagtttccct	tgatctagat	gggattctta	taaaaattca	acctcagaca	6180
taaa	cacccc	atttctgtaa	acccaaatta	tatggtttct	tctgcgaaag	agtaaggtgt	6240
gtgc	ttttt	ttttttgcaa	tatgaccccg	tctctctgaa	gtgggacatt	cggacggatg	6300
gage	cctcag	cgtgtctttt	cagcaggagc	agaaccgatg	agagccgccc	ttaccgttgg	6360
tctc	cggatc	ccccagtccc	atcccgccgt	tttcggctgt	cttcctaacc	gtcctgtctt	6420
ctct	tggcgc	tctttccttc	cacctttccc	aagagtcctg	gttgcacgtt	ttaagtcata	6480
tatt	ttcgtc	cccctgaaaa	tgatggcaag	cccagtttct	cctgagcatt	cagaccccca	6540
ggcc	ccagca	cttggcgttt	tcaggaggcc	ctgttcttag	agcccctgac	aaaggcagca	6600
ctta	tttcct	gggctggtgc	gccccaaaac	acggccccga	cacttagtgt	ggccccaggc	6660
ccca	gcgagc	ctcgccctcc	cagttttgct	ctgcccagca	gtgttggtgc	ccagagatga	6720
caag	ggccag	ggagcctggc	ccgggtgtga	gaattcagag	attctggcct	ccagctgtca	6780
ccac	accgta	acggggccat	gtaactgtgc	agcatggaca	gggatgcgac	ggggcagctg	6840
gctg	tgtcca	tggccaggtg	gccagggtca	gggctgcaag	ccaggggtcc	agggcccttc	6900
cgtt	cagccc	aaatgctgcc	ccaatgctaa	ctccttggat	tgtcaacccc	catcccccaa	6960
atgg	aaattc	cgaaggaggc	ctcctcgcac	ctgccctccg	ctgctcctca	gaccccagcc	7020
ccca	gcgagc	cgacgtcccc	acccgttcct	gctctcatcc	ccaggttggg	cacgtggggt	7080
tcct	cctctg	tgggcctggc	agacccttca	tgagtgggac	ccaagatatc	actgacttca	7140
accc	agagga	tegageeeet	gcaccctgcc	tggggccctg	gggtgtggag	cagtggctgg	7200
ggtg	ggcgtg	gtgtggcctg	agagactgcc	cagctggaga	ggccttcctt	tacaaggcca	7260
cgcg	tgcagc	tgtcccatcc	agaccccgac	tggccaagac	ctccacgtcc	ccagagtcca	7320
gccc	tggaaa	ttccaagggc	cctggcgtcc	tctgccttcc	ccgcttcccc	atgagcgtct	7380
gcaa	aacact	tgcctgaata	catatcacgt	attttagact	cgaagcctca	aagcactgga	7440
ttgt	ggtccc	ctgccccctc	tgtcccgtcc	ccctgcccaa	gtgactgaaa	cctactgagc	7500
tata	ttcact	gtgctgtcct	agggggaggg	agagcagagc	tegeceetge	actgcagcct	7560
tgtg	ggggag	ggcaaggctc	tcctcccagc	cagggacgcc	aggacatagc	tgctcctggt	7620

-continued	
cagtggaggt cagccgggta tcaaaagcca tgaaactgtg tctctgtagc aatgagtgat	7680
actgtgacaa aaccatcctt gcattcttcc tagaagagtt cctctgctcc ttccattcca	7740
tttttgtgtt tgttttgttc ttttctgtca ctgatccgta ttaccacttt tggaaaaaaa	7800
taaataaata aataaataaa aggcagcttg agtttccaaa cgtgtgattc acttgtgaac	7860
aaaagtcatt ctaacaattg ccttcagcgt cacgtgcatt gccactgcgc tttcggcacg	7920
agggatgctg agccctggtg tcagagtcgt aatttaaagc gtgtgtgtat atggactttg	7980
teeettaagg tegatataaa gaateetege agaateacag acetgtgeeg eeegeeacet	8040
totgocattg ttacattaca gatttggttt agttttgttt tgttttgttt	8100
aactgtatag tattgaaaaa gaaatcaaat gtaaatgtct ggttttcata taatgtttaa	8160
aaagaccatt gagaaggagg ctggcgctcg ccccatgtcc cccttgattg taaattgctt	8220
ctgttctgtt tataagtaaa ctgtgcatga ctcctgctta gcggtcatta tcgtgtctgt	8280
tggtgaaatt tttattaaaa ggaaaattct gtagatgcac ttattgaata tgtgattagg	8340
atctacgtct gagactagga gtcctgaact gctgacgcga aagaggcgca gttcccaatt	8400
aatacggaaa tcgctgtggg agaagaatga aataagacgt gaagtgtagg aaatcatgaa	8460
aagaacaatt ttgcaaattg cattctgatg cttgtgatga acacaaatgt acttgtgtag	8520
agacatttcc ttaagagaaa gcctaggaga agccgatttg gaggttaatg ctgtagaata	8580
ggactgtata ccaaatgtaa tetttecaat getecaatga atttatacat gagattgata	8640
tgcaataaat ctgtgtgctt ttctaaaaaa aaaa	8674
<210> SEQ ID NO 32 <211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<211> LENGTH: 2492 <212> TYPE: DNA	
<211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	60
<211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32	60 120
<211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gegeecceg egeeccegea geaggaatgg caggaacgga teegggeega gecegaceg	
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgcccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg</pre>	120
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgcccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa</pre>	120 180
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgcccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccattcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc</pre>	120 180 240
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgcccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt</pre>	120 180 240 300
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgccccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc</pre>	120 180 240 300 360
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgccccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccattcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc ctttgctgga gagaagagaa tgcctgaaga cttggatgaa aatatggatt acaggttgat</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgccccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc ctttgctgga gagaagagaa tgcctgaaga cttggatgaa aatatggatt acaggttgat gtgggaggtt cgtgggagta agggagaagt tttgtacatt ttggatgcta ccaacccacg</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgccccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc ctttgctgga gagaagagaa tgcctgaaga cttggatgaa aatatggatt acaggttgat gtgggaggtt cgtgggagta agggagaagt tttgtacatt ttggatgcta ccaacccacg gcactccaac tggcttcgct tcgttcatga ggcaccatct caggagcaga agaacttggc</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens </pre> <pre><400> SEQUENCE: 32 gcgcccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc ctttgctgga gagaagaaa tgcctgaaga cttggatgaa aatatggatt acaggttgat gtgggaggtt cgtgggagta agggagaagt tttgtacatt ttggatgcta ccaacccacg gcactccaac tggcttcgct tcgttcatga ggcaccatct caggagcaga agaacttggc tgccattcaa gaaggagaaa acattttcta tttggcagtt gaagatatag aaacagacac</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgccccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccattcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc ctttgctgga gagaagagaa tgcctgaaga cttggatgaa aatatggatt acaggttgat gtgggaggtt cgtgggagta agggagaagt tttgtacatt ttggatgcta ccaacccacg gcactccaac tggcttcgct tcgttcatga ggcaccatct caggagcaga agaacttggc tgccattcaa gaaggagaaa acattttcta tttggcagtt gaagatatag aaacagcaaat ggagcttctg attggctacc tggatagtga catggaggct gaggaggaag aacagcaaat</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 2492 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 32 gcgccccccg cgcccccgca gcaggaatgg caggaacgga tccgggccga gcccgacccg ggacgaggag gggctgagcc gcgggggatc ctggaatcgg cagggaggtg gggattctgg gaggaaaact ccatttcctc cttccctgcc ggtttctccc ctctaccctg gcaccccaaa tttcgatgtg ccgcctgccg ggcgctaagc gccggtgttg agagaggcgg cggccgccgc gcccgggaaa atgctgggca tgtacgtgcc ggacaggttc tccctgaagt cctcccgggt tcaggacggc atggggctct acacggcccg cagagtgcga aagggtgaaa agttcggacc ctttgctgga gagaagagaa tgcctgaaga cttggatgaa aatatggatt acaggttgat gtgggaggtt cgtgggagta agggagaagt tttgtacatt ttggatgcta ccaacccacg gcactccaac tggcttcgct tcgttcatga ggcaccatct caggagcaga agaacttggc tgccattcaa gaaggagaaa acattttcta tttggcagtt gaagatatag aaacagacac ggagcttctg attggctacc tggatagtga catggaggct gaggaggaag aacagcaaat tatgacagtc atcaaagaag gggaagttga aaattctaga agacaatcaa cagcgggcag</pre>	120 180 240 300 360 420 480 540 600 660

tgttcttcag tgcacagcga aaagcagtct aaaggagtct tcgcgaagtt ttcagtgctc

-continued	
tgtttgcaat tcttccttca gttcagcatc gagttttgag cagcaccagg agacttgccg	1020
gggggatgcc aggtttgtgt gcaaggctga cagctgtgga aagaggctga agagcaagga	1080
tgccctgaaa agacaccagg aaaatgtcca cactggagat cctaagaaaa agcttatatg	1140
ttcagtgtgc aataaaaagt gttcttcagc atcaagccta caggaacata gaaagattca	1200
tgagatattt gattgtcaag aatgtatgaa gaaatttatt tcagctaatc agctaaaacg	1260
tcatatgatc acccactcag aaaaacgacc ctataattgc gagatttgta ataagtcttt	1320
caagaggett gateaagtgg gtgeteacaa agtaatacae agegaagaea aacettacaa	1380
atgcaaactt tgtggaaagg gatttgccca cagaaatgtt tacaagaatc ataagaagac	1440
ccactctgag gagagaccgt tccaatgtga agaatgtaaa gctttgttcc ggaccccatt	1500
ttetttacag agacacetge taatacataa cagtgagagg aettteaagt gecateaetg	1560
cgatgctacc tttaagagga aggatacatt aaatgttcat gtccaggtgg ttcatgaaag	1620
acacaagaag tataggtgtg agctatgtaa taaggcettt gttacacett cagtgettag	1680
aagtcataag aaaacacata caggagaaaa ggagaaaatc tgtccatatt gtggccagaa	1740
atttgccagc agtggtacac tcagagttca tatccggagc cacacaggtg agcgtcccta	1800
tcaatgtcct tactgtgaaa aaggattcag taaaaatgat ggactgaaga tgcacattcg	1860
tactcacacc agggagaagc cgtacaagtg ctcagagtgc agcaaggcct tcagccagaa	1920
gcgaggcctg gatgagcaca agaggacgca cactggagaa aagccttttc agtgtgatgt	1980
ttgtgatttg gcttttagcc tgaagaaaat gctgattcga cacaagatga ctcataatcc	2040
caatcgtccc ctggcagaat gccagttttg ccataagaag tttacaagga atgactacct	2100
caaagtgcac atggacaata tccatggtgt agctgacagc taataggggc tgtaaaggaa	2160
ttaaactatt cagaaggget eetaatatga ateecagatt tttateacet gateageata	2220
acagaagtag ccaaaagtga cttactggtc tcatagttct tatttgccta catttagagt	2280
ctgtagatgc atatgcaacc aaaaaaaagt cttactttta acaagaaatg gtataaatgg	2340
aaaaaaaata caacteeata geettgeaaa atgeaacttg tgetetgtet tataaaaatg	2400
gagaaaggag tcatggctct ctttcttggc catccctctg taatgaagtt tataatatac	2460
ttccctaata ggccttttta aaaaaaaaaa aa	2492
<210> SEQ ID NO 33 <211> LENGTH: 3142 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 33	
tgcgagctgt ttgaggactg ggatgccgag aacgcgagcg atccgagcag ggtttgtctg	60
ggcaccgtcg gggtaggatc cggaacgcat tcggaaggct ttttgcaagc atttacttgg	120
aaggagaact tgggatcttt ctgggaaccc cccgccccgg ctggattggc cgagcaagcc	180
tggaaaatgg taaatgatca tttggatcaa ttacaggett ttagetgget tgtetgteat	240
	300
aattcatgat teggggetgg gaaaaagace aacageetae gtgecaaaaa aggggeagag	
tttgatggag ttgggtggac ttttctatgc catttgcctc cacacctaga ggataagcac	360

420

ttttgcagac attcagtgca agggagatca tgtttgactg tatggatgtt ctgtcagtga

gtcctgggca aatcctggat ttctacactg cgagtccgtc ttcctgcatg ctccaggaga

aagctctcaa	agcatgcttc	agtggattga	cccaaaccga	atggcagcat	cggcacactg	540	
ctcaatcaat	tgaaacacag	agcaccagct	ctgaggaact	cgtcccaagc	ccccatctc	600	
cacttcctcc	ccctcgagtg	tacaaaccct	gcttcgtctg	ccaggacaaa	tcatcagggt	660	
accactatgg	ggtcagcgcc	tgtgagggat	gtaagggctt	tttccgcaga	agtattcaga	720	
agaatatgat	ttacacttgt	caccgagata	agaactgtgt	tattaataaa	gtcaccagga	780	
atcgatgcca	atactgtcga	ctccagaagt	gctttgaagt	gggaatgtcc	aaagaatctg	840	
tcaggaatga	caggaacaag	aaaaagaagg	agacttcgaa	gcaagaatgc	acagagagct	900	
atgaaatgac	agctgagttg	gacgatctca	cagagaagat	ccgaaaagct	caccaggaaa	960	
ctttcccttc	actctgccag	ctgggtaaat	acaccacgaa	ttccagtgct	gaccatcgag	1020	
tccgactgga	cctgggcctc	tgggacaaat	tcagtgaact	ggccaccaag	tgcattatta	1080	
agatcgtgga	gtttgctaaa	cgtctgcctg	gtttcactgg	cttgaccatc	gcagaccaaa	1140	
ttaccctgct	gaaggccgcc	tgcctggaca	tcctgattct	tagaatttgc	accaggtata	1200	
ccccagaaca	agacaccatg	actttctcag	acggccttac	cctaaatcga	actcagatgc	1260	
acaatgctgg	atttggtcct	ctgactgacc	ttgtgttcac	ctttgccaac	cagctcctgc	1320	
ctttggaaat	ggatgacaca	gaaacaggcc	ttctcagtgc	catctgctta	atctgtggag	1380	
accgccagga	ccttgaggaa	ccgacaaaag	tagataagct	acaagaacca	ttgctggaag	1440	
cactaaaaat	ttatatcaga	aaaagacgac	ccagcaagcc	tcacatgttt	ccaaagatct	1500	
taatgaaaat	cacagatete	cgtagcatca	gtgctaaagg	tgcagagcgt	gtaattacct	1560	
tgaaaatgga	aattcctgga	tcaatgccac	ctctcattca	agaaatgctg	gagaattctg	1620	
aaggacatga	acccttgacc	ccaagttcaa	gtgggaacac	agcagagcac	agtcctagca	1680	
tctcacccag	ctcagtggaa	aacagtgggg	tcagtcagtc	accactcgtg	caataagaca	1740	
ttttctagct	acttcaaaca	ttccccagta	ccttcagttc	caggatttaa	aatgcaagaa	1800	
aaaacatttt	tactgctgct	tagtttttgg	actgaaaaga	tattaaaact	caagaaggac	1860	
caagaagttt	tcatatgtat	caatatatat	actcctcact	gtgtaactta	cctagaaata	1920	
caaacttttc	caattttaaa	aaatcagcca	tttcatgcaa	ccagaaacta	gttaaaagct	1980	
tctattttcc	tctttgaaca	ctcaagattg	catggcaaag	acccagtcaa	aatgatttac	2040	
ccctggttaa	gtttctgaag	actttgtaca	tacagaagta	tggctctgtt	ctttctatac	2100	
tgtatgtttg	gtgctttcct	tttgtcttgc	atactcaaaa	taaccatgac	accaaggtta	2160	
tgaaatagac	tactgtacac	gtctacctag	gttcaaaaag	ataactgtct	tgctttcatg	2220	
gaatagtcaa	gacatcaagg	taaggaaaca	ggactattga	caggactatt	gtacagtatg	2280	
acaagataag	gctgaagata	ttctacttta	gttagtatgg	aagcttgtct	ttgctctttc	2340	
tgatgctctc	aaactgcatc	ttttatttca	tgttgcccag	taaaagtata	caaattccct	2400	
gcactagcag	aagagaattc	tgtatcagtg	taactgccag	ttcagttaat	caaatgtcat	2460	
ttgttcaatt	gttaatgtca	ctttaaatta	aaagtggttt	attacttgtt	taatgacata	2520	
actacacagt	tagttaaaaa	aaatttttt	acagtaatga	tagcctccaa	ggcagaaaca	2580	
cttttcagtg	ttaagttttt	gtttacttgt	tcacaagcca	ttagggaaat	ttcatgggat	2640	
aattagcagg	ctggtctacc	acctggacca	tgtaactcta	gtgtccttcc	tgattcatgc	2700	
ctgatattgg	gattttttt	tccagccttc	ttgatgccaa	ggggctaatt	aatattaaca	2760	

-continued	
actoccaaag aaacaggoat agaatotgoo tootttgaco ttgttcaato actatgaago	2820
agagtgaaag ctgtggtaga gtggttaaca gatacaagtg tcagtttctt agttctcatt	2880
taagcactag tggaattttt tttttttgat atattagcaa gtctgtgatg tactttcact	2940
ggctctgttt gtacattgag attgtttgtt taacaatgct ttctatgttc atatactgtt	3000
tacctttttc catggagtct cctggcaaag aataaaatat atttatttta aaaaaaaaaa	3060
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa	3120
aaaaaaaaaa aaaaaaaaa aa	3142
<210> SEQ ID NO 34 <211> LENGTH: 6853 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 34	
gccaggccgc gtccgccata gtacctggct tggaggtgtc gccgccgctc ggtgagagcc	60
cccgagcggc agggggccaa cacaaaaagg gagccggaga agccctagcc gctgcccagc	120
agettgeggg egtgtteteg eggtteeggg eetcaaggeg aeggaaacga aaggegageg	180
aagcgcggag gatccggcga gaagaagcgt cagggagcct cggcggtgtc cccggggtcc	240
gccgaagcca cccggccgcc ggctggggcc cggggtggtg aggaagtgct ccgaggcctc	300
geegaggeet agegeegget ttgtgteega ggeggeggeg geggegggg gaggeggage	360
cgggggcggc ctgcgggaag gcctctcctc cgccgaccgc gcgttttcgg cctaggccgt	420
ggggccgctc gtggcctccg gggagcaggc gccaggggtt tgtgtgcggt gggggcctgg	480
gcctgggcct ggggaagctg acgccggtcg tccggaagcc aggaggaggc gtgaggccgc	540
tegtggacte egggeetagg eceteteece teaacettet eceggggeet gggteaceee	600
aatccacgga gagagagacc cgccgggagg tgcggccgcg ctatggaccc ctgaccccgt	660
ggggtcgctc ggactcttaa cgtgtggact gaccgctact gactgcaccg ccaatccccc	720
cgtctctgcc ggccccttag catgagcgag ggggacccag ccgggtgaca ttgtgcccgt	780
tggcggattc tcgatttccc ctcttccccg tcctcgtcct cctcctcccc catgaagtga	840
ttctgagtat cggggggtct ctggattatt gttctgacga acccctgctt gtggttgggg	900
ggtatttaat ctgaggcett agggteette ggtgtetttg agtgttttgt gtgtacatat	960
tttgctctta aagtttataa atatacgtat attgagagtg tccacgtctc ctcgctgaac	1020
cttaggaatc ccttggcacc atgtcctgtg tgcattataa attttcctct aaactcaact	1080
atgataccgt cacctttgat gggctccaca totccctctg cgacttaaag aagcagatta	1140
tggggagaga gaagctgaaa gctgccgact gcgacctgca gatcaccaat gcgcagacga	1200
aagaagaata tactgatgat aatgctctga ttcctaagaa ttcttctgta attgttagaa	1260
gaattootat tggaggtgtt aaatotacaa gcaagacata tgttataagt cgaactgaac	1320
cagcgatggc aactacaaaa gcaattgatg actcttccgc gtctatttct ctggcccagc	1380
ttacaaagac tgccaatctg gctgaagcca atgcttctga agaagataaa attaaagcaa	1440
tgatgtegea atetggeeat gaataegace caateaatta catgaagaaa cetetaggte	1500
caccacctcc atcttacacg tgtttccgtt gtggtaaacc tggacattat attaagaatt	1560

gcccaacaaa tggggataaa aactttgaat ctggtcctag gattaaaaag agcactggaa 1620

ttcccagaag	tttcatgatg	gaagtgaaag	atcctaatat	gaaaggtgca	atgcttacca	1680
acactggaaa	atatgcaata	ccaactatag	atgcagaagc	atatgcaatt	gggaagaaag	1740
agaaacctcc	cttcttacca	gaggagccat	cttcttcctc	agaagaagat	gatcctatcc	1800
cagatgaatt	gttgtgtctc	atctgcaagg	atattatgac	tgatgctgtt	gtgattccct	1860
gctgtggaaa	cagttactgt	gatgaatgta	taagaacagc	actcctggaa	tcagatgagc	1920
acacatgtcc	gacgtgtcat	caaaatgatg	tttctcctga	tgctttaatt	gccaataaat	1980
ttttacgaca	ggctgtaaat	aacttcaaaa	atgaaactgg	ctatacaaaa	agactacgaa	2040
aacagttacc	tcctccacca	cccccaatac	cacctccgag	accactgatt	cagaggaacc	2100
tacaacctct	gatgagatct	ccgatatcaa	gacaacaaga	tcctcttatg	attccagtga	2160
catcttcatc	aactcaccca	gctccgtcta	tatcttcatt	aacttctaat	cagtcttcct	2220
tggcccctcc	tgtgtctgga	aatccgtctt	ctgctccagc	tcctgtacct	gatataactg	2280
caacagtatc	catatcagtt	cattcagaaa	aatcagatgg	accttttcgg	gattctgata	2340
ataaaatatt	gccagctgca	gctcttgcat	cagagcactc	aaagggaacc	tcctcaattg	2400
caattaccgc	tcttatggaa	gagaagggtt	accaggtgcc	tgttcttgga	accccatctt	2460
tgcttggaca	gtcattattg	catggacagt	tgatccccac	aactggtcca	gtaagaataa	2520
atactgctcg	tccaggtggt	ggtcgaccag	gctgggaaca	ttccaacaaa	cttggctatc	2580
tggtttctcc	accacaacaa	attagaagag	gggagaggag	ctgctacaga	agtataaacc	2640
gtgggcgaca	ccacagcgaa	agatcacaga	ggactcaagg	cccgtcacta	ccagcaactc	2700
cagtctttgt	acctgttcca	ccacctcctt	tgtatccgcc	tcctccccat	acacttcctc	2760
teceteeggg	tgttcctcct	ccacagtttt	ctcctcagtt	tectectgge	cagccaccac	2820
ccgctgggta	tagtgtccct	cctccagggt	ttcctccagc	tcctgccaat	ttatcaacac	2880
cttgggtatc	atcaggagtg	cagacagete	attcaaatac	catcccaaca	acacaagcac	2940
cacctttgtc	cagggaagaa	ttctatagag	agcagcgacg	actaaaagaa	gaggaaaaga	3000
aaaagtccaa	gctagatgag	tttacaaatg	attttgctaa	ggaattgatg	gaatacaaaa	3060
agattcaaaa	ggagcgtagg	cgctcatttt	ccaggtctaa	atctccctat	agtggttctt	3120
cgtattcaag	aagttcatat	acttattcta	aatcaagatc	tggttcaaca	cgttcacgct	3180
cttattctcg	atcattcagc	cgctcacatt	ctcgttccta	ttcacggtca	cctccatacc	3240
ccagaagagg	cagaggcaag	agccgcaatt	accgttcacg	gtctagatct	catggatatc	3300
atcgatctag	gtcaaggtca	ccccttaca	gacgctatca	ttcacgatca	agatctcctc	3360
aagcgtttag	gggacagtct	cctaataaac	gtaatgtacc	tcaaggggaa	acagaacgtg	3420
aatatttaa	tagatacaga	gaagttccac	caccatatga	catgaaagca	tattatggga	3480
gaagtgttga	ctttagagac	ccatttgaaa	aagaacgcta	ccgagaatgg	gagagaaaat	3540
atagagagtg	gtatgaaaaa	tattataaag	gttatgctgc	tggagcacag	cctagaccct	3600
cagcaaatag	agagaacttt	tctccagaga	gatttttgcc	acttaacatc	aggaattctc	3660
ccttcacaag	aggccgcaga	gaagactatg	ttggtgggca	aagtcataga	agtcgaaaca	3720
taggtagcaa	ctatccagaa	aagctttcag	caagagatgg	tcacaatcag	aaggataata	3780
		agtgaaaacg				3840
		aaaggggagg				3900
	aagaaga	2222422	3~3~33			

tagagacttc	taggaaatca	agagaaccta	caggtgttga	agaaaataaa	acagactcat	3960
tgtttgttct	cccaagtaga	gatgatgcca	cacctgttag	agatgaacca	atggatgcag	4020
aatcaatcac	ttttaaatca	gtgtctgaaa	aagacaagag	agaaagggat	aaaccaaaag	4080
caaagggtga	taaaaccaaa	cggaagaatg	atggatctgc	tgtgtccaaa	aaagaaaata	4140
ttgtaaaacc	tgctaaagga	ccccaagaaa	aagtagatgg	agaacgtgag	agateteete	4200
gatctgaacc	tccaattaaa	aaagccaaag	aggagactcc	gaagactgac	aatactaaat	4260
catcatcttc	ctctcagaag	gatgaaaaaa	tcactggaac	ccccagaaaa	gctcactcta	4320
aatcagcaaa	agaacaccaa	gaaacaaaac	cagtcaaaga	ggaaaaagtg	aagaaggact	4380
attccaaaga	tgtcaaatca	gaaaagctaa	caactaagga	agaaaaggcc	aagaagccta	4440
atgagaaaaa	caaaccactt	gataataagg	gagaaaaaag	aaaaagaaaa	actgaagaaa	4500
aaggcgtaga	taaagatttt	gagtettett	caatgaaaat	ctcgaaacta	gaagtgactg	4560
aaatagtgaa	accatcacca	aagcgcaaaa	tggaacctga	tactgaaaaa	atggatagga	4620
cccctgaaaa	ggacaaaatt	tctttaagtg	cgccagccaa	aaaaatcaaa	ctcaacagag	4680
aaactgggaa	gaaaattgga	agtacagaaa	atatatcaaa	cacaaaagaa	ccctctgaaa	4740
aattggagtc	aacatctagc	aaagttaaac	aagaaaaagt	caaaggaaag	gtcagacgaa	4800
aagtgactgg	aactgaagga	tccagctcaa	ctctggtgga	ttacaccagt	acgagctcaa	4860
ctggaggcag	tcctgtgcgg	aaatctgaag	aaaaaacaga	tacaaagcga	actgtgatta	4920
aaacgatgga	agaatataat	aatgacaata	ccgcgccagc	tgaagatgtt	atcattatga	4980
ttcaggttcc	tcaatccaaa	tgggataaag	atgactttga	atctgaagaa	gaagatgtta	5040
aatccacaca	gcctatatca	agtgtaggaa	aacctgctag	tgttataaaa	aatgttagta	5100
caaagccatc	aaatatagtc	aagtatcctg	agaaagaaag	tgagccatcc	gagaaaattc	5160
agaaattcac	caaggacgtg	agccatgaaa	tcatacaaca	tgaggttaaa	agttcaaaaa	5220
actctgcatc	tagtgaaaaa	gggaaaacca	aagatcgaga	ttattcagtg	ttggaaaagg	5280
agaaccctga	aaagaggaag	aacagcactc	agccagagaa	agagagtaat	ttggaccgtc	5340
tgaatgaaca	aggaaatttt	aaaagtctgt	ctcaatcttc	caaagaggct	agaacgtcag	5400
ataaacatga	ttccactcgt	gcttcctcaa	ataaagactt	cactcccaat	agagacaaaa	5460
aaactgacta	tgacaccaga	gagtattcaa	gttccaaacg	tagagatgaa	aagaatgaat	5520
taacaagacg	aaaagactct	ccttctcgga	ataaagattc	tgcatctgga	cagaaaaata	5580
aaccaaggga	agagagagat	ttgcctaaaa	aaggaacagg	agattccaaa	aaaagtaatt	5640
ctagtccctc	aagagacaga	aaacctcatg	atcacaaagc	cacttatgat	actaaacggc	5700
caaatgaaga	gacaaaatct	gtagataaaa	atccttgtaa	ggatcgtgag	aagcatgtat	5760
tagaagcaag	gaacaataaa	gagtcaagtg	gcaataaact	actttatata	cttaacccac	5820
cagagacaca	ggttgaaaaa	gagcaaatta	ctgggcaaat	tgacaagagt	actgtcaagc	5880
ctaaacccca	gttaagtcat	tcctctagac	tttcctctga	cttaactaga	gaaactgatg	5940
aagctgcttt	tgaaccagac	tataatgaaa	gtgacagtga	aagtaatgtt	tctgtaaaag	6000
aagaggaatc	ttcaggaaac	atttctaagg	acctgaaaga	taaaatagtg	gagaaagcaa	6060
aagagagcct	ggacacagca	gcagttgtcc	aggtgggcat	aagcaggaat	cagagccaca	6120
	catcaacccc	agcagaagcc	acaqtccttc	tggaagccag	acccgaagcc	6180
geageeeeag	-33	3 3 3	•			

acagtagcag tgccagctca gcagaaagtc aggacagcaa gaagaagaag aaaaagaagg	6240
aaaagaaaaa acacaagaaa cataaaaagc ataagaagca taagaaacat gcaggcactg	6300
aagtggaatt ggaaaaaagc caaaaacaca aacacaagaa aaagaagtca aagaagaaca	6360
aagataaaga gaaggagaag gagaaagatg accaaaaagt gaaatctgtc actgtgtaaa	6420
aagacagatt ttttaaattg acttaattac taagtcatct gtattaaatt ttgttataat	6480
gtaaagagat tcaagccttg taaataatga catggaagac cctgtgctgc acttaaaata	6540
ttgctgcttg attatttgat ttttacatca gagctttata acacgaactt ttgtacagaa	6600
ttgtgagttg tgaccatgta acatgagagg ttttgctagg gcctattatt tttaaccacc	6660
attaattagt tggggtggag tttactgtaa tgtgaaattt tcacatttga attttttaat	6720
tgcctggcaa aagctgatat aagttctaaa atatcagcag aatgatttgc tgaattcatt	6780
acaaccctgt tatgtcactt tttgattaca ataaaagttt tcagtaaact tttcaaaaaa	6840
aaaaaaaaa aaa	6853
<210> SEQ ID NO 35 <211> LENGTH: 1438 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 35	
ggcagcccac gtccagggag ggcggaggga ggaggagagg cgcggagagg agggaggg	60
gaggggaggg aggaaggcga gagaaaggga gctgcttcca tcccggactt cccagagcct	120
gcctggagcg cgtactcagc ggctctcggg tcccagcgtc ccagccgcgg cccgcgctcc	180
teegeeeege teeteeteet eetetteete eteeteetee tetetaggea eeeeegteee	240
ctccttccag cggctgcagc ccccagcccc aactctccgc gcttactcct gggacgcgcg	300
teetegeece atcetttget teetteette etteettett eetteeteec etggeteeeg	360
ccctccctct ccaggtcgcc ctcccggggc ccgattgtct cggtgccccg ctcccggccc	420
gegeeetgee eegtetetee ettgeaette etgagtegee egeegeegee gtegeagaet	480
egeegeggga geeceageee aaccegagee egacageeae tgeecegget eeageteeag	540
ccccacagcc cgcggcgccc gcccgaggga gccccggcgc ccggggaagg ctccagtggg	600
ctagegegee etegeeeage eeegegeeee ageeetgeee ggeeeggega ggaaggaeeg	660
ggaagatgaa caacggcggc aaagccgaga aggagaacac cccgagcgag	720
aggaggagga ggtccggacc ctatttgtca gtggccttcc tctggatatc aaacctcggg	780
agetetatet getttteaga eeatttaagg getatgaggg ttetettata aageteacat	840
ctaaacagcc tgtaggtttt gtcagttttg acagtcgctc agaagcagag gctgcaaaga	900
atgctttgaa tggcatccgc ttcgatcctg aaattccgca aacactacga ctagagtttg	960
ctaaggcaaa cacgaagatg gccaagaaca aactcgtagg gactccaaac cccagtactc	1020
ctctgcccaa cactgtacct cagttcattg ccagagagcc atatgagctc acagtgcctg	1080
cactttaccc cagtagccct gaagtgtggg ccccgtaccc tctgtaccca gcggagttag	1140
egectgetet accteeteet gettteacet atecegette actgeatgee eagtgtttet	1200
ctcctgaggc aaagcccaac acacctgtct tttgtccact tctccagcaa attagatttg	1260

tctctgggaa tgtgtttgta acataccaac ctactgcaga ccagcagagg gagctcccat 1320

gttgaatttg tttgttagct	attttcccc	ctttcacaaa	aactatttct	tgacgacctt	1380
tgagagattt caataaaaat	tttaatcaga	gcaaaaaaaa	aaaaaaaaa	aaaaaaa	1438
<210> SEQ ID NO 36 <211> LENGTH: 7274 <212> TYPE: DNA <213> ORGANISM: Homo:	sapiens				
<400> SEQUENCE: 36					
catagagcca gegggegegg	gcgggacggg	cgccccgcgg	ccggacccag	ccagggcacc	60
acgctgcccg gccctgcgcc	gccaggcact	tctttccggg	gctcctaggg	acgccagaag	120
gaagtcaacc tctgctgctt	ctccttggcc	tgcgttggac	cttccttttt	ttgttgtttt	180
tttttgtttt teceetttet	tccttttgaa	ttaactggct	tcttggctgg	atgttttcaa	240
cttctttcct ggctgcgaac	ttttccccaa	ttgttttcct	tttacaacag	ggggagaaag	300
tgctctgtgg tccgaggcga	gccgtgaagt	tgcgtgtgcg	tggcagtgtg	cgtggcagga	360
tgtgcgtgcg tgtgtaaccc	gagccgcccg	atctgtttcg	atctgcgccg	cggagccctc	420
cctcaaggcc cgctccacct	gctgcggtta	cgcggcgctc	gtgggtgttc	gtgcctcgga	480
gcagctaacc ggcgggtgct	gggcgacggt	ggaggagtat	cgtctcgctg	ctgcccgagt	540
cagggetgag teacceaget	gatgtagaca	gtggctgcct	tccgaagagt	gcgtgtttgc	600
atgtgtgtga ctctgcggct	gctcaactcc	caacaaacca	gaggaccagc	cacaaactta	660
accaacatcc ccaaacccga	gttcacagat	gtgggagagc	tgtagaaccc	tgagtgtcat	720
cgactgggcc ttcttatgat	tgttgtttta	agattagctg	aagatctctg	aaacgctgaa	780
ttttctgcac tgagcgtttt	gacagaattc	attgagagaa	cagagaacat	gacaagtact	840
tetageteag caetgeteea	actactgaag	ctgattttca	aggctactta	aaaaaatctg	900
cagcgtacat taatggattt	ctgttgtgtt	taaattctcc	acagattgta	ttgtaaatat	960
tttatgaagt agagcatatg	tatatattta	tatatacgtg	cacatacatt	agtagcacta	1020
cctttggaag tctcagctct	tgcttttcgg	gactgaagcc	agttttgcat	gataaaagtg	1080
gccttgttac gggagataat	tgtgttctgt	tgggacttta	gacaaaactc	acctgcaaaa	1140
aactgacagg cattaactac	tggaacttcc	aaataatgtg	tttgctgatc	gttttactct	1200
togoataaat attttaggaa	gtgtatgaga	attttgcctt	caggaacttt	tctaacagcc	1260
aaagacagaa cttaacctct	gcaagcaaga	ttcgtggaag	atagteteca	ctttttaatg	1320
cactaagcaa tcggttgcta	ggagcccatc	ctgggtcaga	ggccgatccg	cagaaccaga	1380
acgttttccc ctcctggact	gttagtaact	tagtctccct	cctcccctaa	ccacccccgc	1440
cccccccac cccccgcagt	aataaaggcc	cctgaacgtg	tatgttggtc	tecegggage	1500
tgcttgctga agatccgcgc	ccctgtcgcc	gtctggtagg	agctgtttgc	agggtcctaa	1560
ctcaatcggc ttgttgtgat					1620
ccgccttcca ccgcgctgag					1680
gacgccggcg ctgccctggc					1740
					1800
ctggccgacc acccgggcga					
ctgcctacgc actggcgctg					1860
ggggatgttc cagatggcac	tctggtcact	gtgatggctg	gcaatgatga	aaactactcg	1920

gctgagctga	gaaatgctac	cgcagccatg	aagaaccagg	ttgcaagatt	taatgacctc	1980
aggtttgtcg	gtcgaagtgg	aagagggaaa	agcttcactc	tgaccatcac	tgtcttcaca	2040
aacccaccgc	aagtcgccac	ctaccacaga	gccatcaaaa	tcacagtgga	tgggccccga	2100
gaacctcgaa	gacatcggca	gaaactagat	gatcagacca	agcccgggag	cttgtccttt	2160
tccgagcggc	tcagtgaact	ggagcagctg	cggcgcacag	ccatgagggt	cagcccacac	2220
cacccagccc	ccacgcccaa	ccctcgtgcc	tecetgaace	actccactgc	ctttaaccct	2280
cagcctcaga	gtcagatgca	ggatacaagg	cagatccaac	catccccacc	gtggtcctac	2340
gatcagtcct	accaatacct	gggatccatt	gcctctcctt	ctgtgcaccc	agcaacgccc	2400
atttcacctg	gacgtgccag	cggcatgaca	accetetetg	cagaactttc	cagtcgactc	2460
tcaacggcac	ccgacctgac	agcgttcagc	gacccgcgcc	agttccccgc	getgeeetee	2520
atctccgacc	cccgcatgca	ctatccaggc	gccttcacct	actccccgac	gccggtcacc	2580
tcgggcatcg	gcatcggcat	gtcggccatg	ggctcggcca	cgcgctacca	cacctacctg	2640
ccgccgccct	accccggctc	gtcgcaagcg	cagggaggcc	cgttccaagc	cagctcgccc	2700
tcctaccacc	tgtactacgg	cgcctcggcc	ggctcctacc	agttctccat	ggtgggcggc	2760
gagcgctcgc	cgccgcgcat	cctgccgccc	tgcaccaacg	cctccaccgg	ctccgcgctg	2820
ctcaacccca	gcctcccgaa	ccagagcgac	gtggtggagg	ccgagggcag	ccacagcaac	2880
tcccccacca	acatggcgcc	ctccgcgcgc	ctggaggagg	ccgtgtggag	gccctactga	2940
ggcgccaggc	ctggcccggc	tgggccccgc	gggccgccgc	cttcgcctcc	gggcgcgcgg	3000
gcctcctgtt	cgcgacaagc	ccgccgggat	cccgggccct	gggcccggcc	accgtcctgg	3060
ggccgagggc	gcccgacggc	caggatctcg	ctgtaggtca	ggcccgcgca	gcctcctgcg	3120
cccagaagcc	cacgccgccg	ccgtctgctg	gegeeeegge	cctcgcggag	gtgtccgagg	3180
cgacgcacct	cgagggtgtc	cgccggcccc	agcacccagg	ggacgcgctg	gaaagcaaac	3240
aggaagattc	ccggagggaa	actgtgaatg	cttctgattt	agcaatgctg	tgaataaaaa	3300
gaaagatttt	atacccttga	cttaactttt	taaccaagtt	gtttattcca	aagagtgtgg	3360
aattttggtt	ggggtggggg	gagaggaggg	atgcaactcg	ccctgtttgg	catctaattc	3420
ttatttttaa	tttttccgca	ccttatcaat	tgcaaaatgc	gtatttgcat	ttgggtggtt	3480
tttatttta	tatacgttta	tataaatata	tataaattga	gettgettet	ttettgettt	3540
gaccatggaa	agaaatatga	ttcccttttc	tttaagtttt	atttaacttt	tettttggae	3600
ttttgggtag	ttgtttttt	ttgttttgtt	ttgtttttt	gagaaacagc	tacagetttg	3660
ggtcattttt	aactactgta	ttcccacaag	gaatccccag	atatttatgt	atcttgatgt	3720
tcagacattt	atgtgttgat	aatttttaa	ttatttaaat	gtacttatat	taagaaaaat	3780
atcaagtact	acattttctt	ttgttcttga	tagtagccaa	agttaaatgt	atcacattga	3840
agaaggctag	aaaaaaagaa	tgagtaatgt	gatcgcttgg	ttatccagaa	gtattgttta	3900
cattaaactc	cctttcatgt	taatcaaaca	agtgagtagc	tcacgcagca	acgtttttaa	3960
taggattttt	agacactgag	ggtcactcca	aggatcagaa	gtatggaatt	ttctgccagg	4020
ctcaacaagg	gtctcatatc	taacttcctc	cttaaaacag	agaaggtcaa	tctagttcca	4080
gagggttgag	gcaggtgcca	ataattacat	ctttggagag	gatttgattt	ctgcccaggg	4140
atttgctcac	cccaaggtca	tctgataatt	tcacagatgc	tgtgtaacag	aacacagcca	4200

aagtaaactg	tgtaggggag	ccacatttac	ataggaacca	aatcaatgaa	tttaggggtt	4260
acgattatag	caatttaagg	gcccaccaga	agcaggcctc	gaggagtcaa	tttgcctctg	4320
tgtgcctcag	tggagacaag	tgggaaaaca	tggtcccacc	tgtgcgagac	cccctgtcct	4380
gtgctgctca	ctcaacaaca	tctttgtgtt	gctttcacca	ggctgagacc	ctaccctatg	4440
gggtatatgg	gcttttacct	gtgcaccagt	gtgacaggaa	agattcatgt	cactactgtc	4500
cgtggctaca	attcaaaggt	atccaatgtc	gctgtaaatt	ttatggcact	atttttattg	4560
gaggatttgg	tcagaatgca	gttgttgtac	aactcataaa	tactaactgc	tgattttgac	4620
acatgtgtgc	tccaaatgat	ctggtggtta	tttaacgtac	ctcttaaaat	tcgttgaaac	4680
gatttcaggt	caactctgaa	gagtatttga	aagcaggact	tcagaacagt	gtttgatttt	4740
tattttataa	atttaagcat	tcaaattagg	caaatctttg	gctgcaggca	gcaaaaacag	4800
ctggacttat	ttaaaacaac	ttgtttttga	gttttcttat	atatatattg	attatttgtt	4860
ttacacacat	gcagtagcac	tttggtaaga	gttaaagagt	aaagcagctt	atgttgtcag	4920
gtcgttctta	tctagagaag	agctatagca	gatctcggac	aaactcagaa	tatattcact	4980
ttcatttttg	acaggattcc	ctccacaact	cagtttcata	tattattccg	tattacattt	5040
ttgcagctaa	attaccataa	aatgtcagca	aatgtaaaaa	tttaatttct	gaaaagcacc	5100
attageceat	ttcccccaaa	ttaaacgtaa	atgtttttt	tcagcacatg	ttaccatgtc	5160
tgacctgcaa	aaatgctgga	gaaaaatgaa	ggaaaaaatt	atgtttttca	gtttaattct	5220
gttaactgaa	gatattccaa	ctcaaaacca	gcctcatgct	ctgattagat	aatcttttac	5280
attgaacctt	tactctcaaa	gccatgtgtg	gagggggctt	gtcactattg	taggctcact	5340
ggattggtca	tttagagttt	cacagactct	taccagcata	tatagtattt	aattgtttca	5400
aaaaaaatca	aactgtagtt	gttttggcga	taggtctcac	gcaacacatt	tttgtatgtg	5460
tgtgtgtgtg	cgtgtgtgtg	tgtgtgtgtg	aaaaattgca	ttcattgact	tcaggtagat	5520
taaggtatct	ttttattcat	tgccctcagg	aaagttaagg	tatcaatgag	acccttaagc	5580
caatcatgta	ataactgcat	gtgtctggtc	caggagaagt	attgaataag	ccatttctac	5640
tgcttactca	tgtccctatt	tatgatttca	acatggatac	atatttcagt	tctttctttt	5700
tctcactatc	tgaaaataca	tttccctccc	tetetteece	ccaatatctc	ccttttttc	5760
tetetteete	tatcttccaa	accccacttt	ctccctcctc	cttttcctgt	gttctcttaa	5820
gcagatagca	cataccccca	cccagtacca	aatttcagaa	cacaagaagg	tccagttctt	5880
ccccttcac	ataaaggaac	atggtttgtc	agcctttctc	ctgtttatgg	gtttcttcca	5940
gcagaacaga	gacattgcca	accatattgg	atctgcttgc	tgtccaaacc	agcaaacttt	6000
cctgggcaaa	tcacaatcag	tgagtaaata	gacagccttt	ctgctgcctt	gggtttctgt	6060
gcagataaac	agaaatgctc	tgattagaaa	ggaaatgaat	ggttccactc	aaatgtcctg	6120
caatttagga	ttgcagattt	ctgccttgaa	atacctgttt	ctttgggaca	ttccgtcctg	6180
atgattttta	tttttgttgg	tttttattt	tggggggaat	gacatgtttg	ggtcttttat	6240
acatgaaaat	ttgtttgaca	ataatctcac	aaaacatatt	ttacatctga	acaaaatgcc	6300
tttttgttta	ccgtagcgta	tacatttgtt	ttgggatttt	tgtgtgtttg	ttgggaattt	6360
tgtttttagc	caggtcagta	ttgatgaggc	tgatcatttg	gctcttttt	tccttccaga	6420
agagttgcat	caacaaagtt	aattgtattt	atgtatgtaa	atagatttta	agcttcatta	6480
	-	-		-	-	

-continued	
taaaatattg ttaatgccta taactttttt tcaatttttt tgtgtgtgtt tctaaggact	6540
ttttcttagg tttgctaaat actgtaggga aaaaaatgct tctttctact ttgtttattt	6600
tagactttaa aatgagctac ttcttattca cttttgtaaa cagctaatag catggttcca	6660
atttttttta agttcacttt ttttgttcta ggggaaatga atgtgcaaaa aaagaaaaag	6720
aactgttggt tatttgtgtt attctggatg tataaaaatc aatggaaaaa aataaacttt	6780
caaattgaaa tgacggtata acacatctac tgaaaaagca acgggaaatg tggtcctatt	6840
taagccagcc cccacctagg gtctatttgt gtggcagtta ttgggtttgg tcacaaaaca	6900
teetgaaaat tegtgegtgg gettetttet eeetggtaca aaegtatgga atgettetta	6960
aaggggaact gtcaagctgg tgtcttcagc cagatgacat gagagaatat cccagaaccc	7020
tetetecaag gtgtttetag atageacagg agageaggea etgeactgte cacagteeac	7080
ggtacacagt cgggtgggcc gcctcccctc tcctgggagc attcgtcgtg cccagcctga	7140
gcagggcagc tggactgctg ctgttcagga gccaccagag ccttcctctc tttgtaccac	7200
agtttcttct gtaaatccag tgttacaatc agtgtgaatg gcaaataaac agtttgacaa	7260
gtacatacac cata	7274
<210> SEQ ID NO 37 <211> LENGTH: 7769 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 37	
coetectgee tgtecettte tgtettetet etetetetee eactttteet eecteteeeg	60
ctccgtctca cacgcaccct ctgtttattt tcctgcctcc atctgggccc tgctgatatt	120
gtaatcaccc tgatgcacgt tggcttctct cctctccctc ctgcgctcac acactcactc	180
acacacaatg tgccatcctg acaaggettt tacttetgat aageteeaat gtgtgtttaa	240
tgaatacaaa geegeggtet gggtgeegee teggeegegg eegeteteee gegeteettt	300
gccagaagct ggcggagaga atttacattt aaagattagc agagtgagaa agagaaatct	360
gccttttgtt gtgtggggtg aggaggaggc atctacccct ggccttgacg ctatctccca	420
tracetetge tateragara ggartraceg agtatraaat gataagaart gagraractg	480
gatgaaataa tacttgcact gggagcacta agaaaagatt gatctctggg ctggtgaaca	540
taatctctgt cccagtcaga aaaggagaga ggaaattagc agagcgattg gtggagaatg	600
atatetgtea aaagaaacae ttggagagea etgagtttag taataggtga etgeeggaaa	660
aaagggaact ttgaatattg tcaagaacag gaggcatgag cccggaacgc gcttgctttt	720
aggagacage caetttetgt gtggtacget ggatteaagg atgeetgate gtaetgagaa	780
gcactccaca atgccagact cacctgtgga tgtgaagacg caatctaggc tgactcctcc	840
aacaatgcca cctcccccaa ctactcaagg agctccaaga accagttcat ttacaccgac	900
aacgttaact aatggcacga gccattctcc tacagccttg aatggcgccc cctcaccacc	960
caatggette ageaatggge etteetette tteeteetee tetetggeta ateaacaget	1020
gcccccagcc tgtggtgcca ggcaactcag caagctgaaa aggttcctta ctaccctgca	1080
gcagtttggc aatgacattt cacccgagat aggagaaaga gttcgcaccc tcgttctggg	1140

actagtgaac tccactttga caattgaaga atttcattcc aaactgcaag aagctactaa 1200

cttcccactg	agaccttttg	tcatcccatt	tttgaaggcc	aacttgcccc	tgctgcagcg	1260
tgagctcctc	cactgcgcaa	gactggccaa	acagaaccct	gcccagtacc	tegeceagea	1320
tgaacagctg	cttctggatg	ccagcaccac	ctcacctgtt	gactcctcag	agctgcttct	1380
cgatgtgaac	gaaaacggga	agaggcgaac	tccagacaga	accaaagaaa	atggctttga	1440
cagagagcct	ttgcactcag	aacatccaag	caagcgacca	tgcactatta	gcccaggcca	1500
gcggtacagt	ccaaataacg	gcttatccta	ccagcccaat	ggcctgcctc	accctacccc	1560
acctccacct	cagcattacc	gtttggatga	tatggccatt	gcccaccact	acagggactc	1620
ctatcgacac	cccagccaca	gggacctcag	ggacagaaac	agacctatgg	ggttgcatgg	1680
cacacgtcaa	gaagaaatga	ttgatcacag	actaacagac	agagaatggg	cagaagagtg	1740
gaaacatctt	gaccatctgt	taaactgcat	aatggacatg	gtagaaaaaa	caaggcgatc	1800
tctcaccgta	ctaaggcggt	gtcaagaagc	agaccgggaa	gaattgaatt	actggatccg	1860
gcggtacagt	gacgccgagg	acttaaaaaa	aggtggcggc	agtagcagca	gccactctag	1920
gcagcagagt	cccgtcaacc	cagacccagt	tgcactagac	gegeateggg	aattccttca	1980
caggcctgcg	tctggatacg	tgccagagga	gatctggaag	aaagctgagg	aggccgtcaa	2040
tgaggtgaag	cgccaggcga	tgacggagct	gcagaaggcc	gtgtctgagg	cggagcggaa	2100
agcccacgac	atgatcacaa	cagagagggc	caagatggag	cgcacggtcg	ccgaggccaa	2160
acggcaggcg	gcggaggacg	cactggcagt	tatcaatcag	caggaggatt	caagcgagag	2220
ttgctggaat	tgtggccgta	aagcgagtga	aacctgcagt	ggctgtaaca	cagecegata	2280
ctgtggctca	ttttgccagc	acaaagactg	ggagaagcac	catcacatct	gtggacagac	2340
cctgcaggcc	cagcagcagg	gagacacacc	tgcagtcagc	tcctctgtca	cgcccaacag	2400
cggggctggg	agcccgatgg	acacaccacc	agcagccact	ccgaggtcaa	ccaccccggg	2460
aaccccttcc	accatagaga	caacccctcg	ctagacgtga	actcagaact	gtcggaggaa	2520
agacaacaca	accaacgcga	aaccaattcc	tcatcctcag	atgctcaaag	ttgtttttt	2580
tgtttgtttg	tttattagat	gaattatcct	atttcagtac	ttcagcaaga	gagaacctaa	2640
ctgtatcttg	aggtggtagt	aaaacacaga	gggccagtaa	cgggtcgtaa	tgacttattg	2700
tggataacaa	agatatettt	tctttagaga	actgaaaaga	gagcagagaa	tataacatga	2760
aatgatagat	ttgacctcct	ccctgttatt	ttcaagtagc	tgggatttta	aactagatga	2820
cctcattaac	cgatgcttta	ccaaacagca	aaccaagaga	ttgctaattg	ctgttgaaag	2880
caaaaatgct	aatattaaaa	gtcacaatgt	tctttatata	caataatgga	aaaaaaaaa	2940
agaggaaaac	cctcaagggc	atgagcattg	gatacagcag	tagacatttt	aacaagaaga	3000
tgaatggcgt	ccgtgggttg	ctaactgaac	tttgaagacc	cgctacaaaa	cgcgcagatg	3060
tgcagcagat	tggaaggaga	cacagatgtt	cggtttttt	cctgtttctg	aaaagaaata	3120
ataatatcca	ggtcaacaga	atgaaaaatg	aaagatgatt	tgcaatggga	tgtatgaata	3180
cagcagcaag	aaaaaaaaat	gccataatac	aaaaggctcc	atatatatat	atatatatat	3240
atatatacac	acacacacac	gcacatatac	acacacacac	acacacacac	acacacacac	3300
acacacacac	acacacacac	acaagtaaga	gactcagcct	gcagttaatt	agcattctgg	3360
cagttttgac	atcagccagc	tgccctaaat	aacccttcaa	cgtttcttca	cttttgcaag	3420
gttccacaga	gtaagacatt	gggtctattc	cagctcattc	attttatatt	gaaaaaaata	3480

attttaaaaa	tggtggcttc	agctccagcc	cctttccaaa	atttttcaac	cccaccctgt	3540
ttggattttt	aattaaaaac	tagtagttct	cttggtgtta	aaacacttct	gtcctgtgag	3600
gtttcccaat	ggtgttttc	ttgtaaatgt	gttggacaaa	tgtgaagatg	cattgtagtt	3660
taaccatatg	cccacattta	gtctctttat	tcctagttgg	tgagaaacct	gtatctttct	3720
atgctgcttt	tatatctgta	tgtattagtg	atatttctct	agtagttaaa	aaaaaaaaa	3780
ggaaaaaaag	actctttttg	gttgtcctca	agaaaagaaa	agaagaaaag	ctatctttcg	3840
gagctgctat	ttcactctct	tataggattt	tttttttcc	tgaaaaccag	catgcttcac	3900
ggaatgctaa	catattggtg	tttttgtaag	agggatgtac	ataaatgtat	tttgcactgt	3960
cacaatgact	ccctaggcat	gctttttgtt	tttttttt	tttttttgag	caaattcttt	4020
ttaaatatgc	tagagccatt	tcatcaagtt	tagctgtagc	atagagtagt	cgtggaattt	4080
ttctttttt	ttttttaaa	tcattattag	ggacttttt	aaaaaaataa	aataacaaga	4140
tatcctactt	taaaaaaaaa	ggacagtgca	tgcatattgc	tgtaaggtcg	tttaagtatt	4200
tctaatttta	caaaagtaaa	aatcattaga	gctccaaatg	ctgaggtgta	gattgacagc	4260
tttaacactg	ctgaatgcca	ggttatacag	tattcttaca	aaaagggaag	tcagccaaag	4320
actgatctga	tggaccaaaa	tcggaatttt	gaaaagcacc	agtactactt	tccaaatgat	4380
cagcaggtta	aacatgttca	gcaaggtata	gtatgaatcc	attaaccctt	cgttgtccag	4440
ggtccagacc	agaactactt	gttagttttg	aaaacagtag	cccaggatgt	ggttgtgtgc	4500
tttaggaaag	tcagcagtgc	tgcaggctgt	gtagacaacc	aaagtttaca	aggctgggaa	4560
gacacttctc	caaatacata	tacaccaggc	atttctttaa	aatcaaaaac	aatccattag	4620
ctttggggcg	gggggtgggg	ggagggttaa	atgtaggcct	tggaaacagt	tttaagtggc	4680
ttttaagtat	ctgcatagag	gcaatcctaa	ggtttgcttt	aagtetetta	aatctaacat	4740
ttttaaaagc	atttcttccc	tgtattttca	tatacaagtt	ggttttaatt	ttgtttgggt	4800
ggtgttattt	tttttaaatg	actttttagt	ttagaaagtt	ctgatgagca	aataaataca	4860
tctatctaca	tgttggaagt	ccatctgcca	gcacacctgc	ttaaagtgaa	atgaaagcac	4920
ataaccaggc	tctgaatggg	ttatatttta	tcatggtgct	cccagaatcc	tttgacctca	4980
ctctgctttc	tagtctgctt	gtgacactgg	acagtccttt	cttacagagc	tattatatgt	5040
tctaggctac	gaagggttaa	ataatcccaa	aaatgaggta	tgtcataccc	acacgtcttt	5100
atctctagaa	gctgtgatgt	atgtgaaaca	gcactgttat	tcttaacact	agtgtgtaaa	5160
ataaggatta	gtacagtacg	tctcattact	ttttaattca	gggcaccctg	agtgaaaaca	5220
aatacaaaaa	aaaatcccta	actctgagct	ctatctctga	tteetettee	tccttcccct	5280
cttcctcctc	ttcctctcct	cctgttttgc	tacattctcc	tcagtggcaa	aaagtttcac	5340
tctacctctg	acagcatgta	tattgcacca	gtagctaaca	aaaactggtc	tagtcaaacc	5400
aaatgggcac	aaaagaacca	ggataccaaa	agttaagctc	atacagctgc	aaaccatatc	5460
acttcttggt	aacaatgcag	acctcataaa	cctaaagaag	agaaagaaaa	gaaaactttt	5520
gttactttcc	ttttttgctt	gtcacttata	tacaggctat	gtgagaatat	aatttgtagg	5580
tataacacat	taagaaaaag	ttatcttcat	tggatagaat	tgaatggtgg	tcgctgatag	5640
gaatagggcg	tcctctagct	cttatctctg	tctcttactc	ttttctcttt	ctcttttct	5700
ctgtcatgag	actgtgtgtg	acagggccac	ctgtcttttt	tttttcttaa	atttttttt	5760

tttttatgtg	taggtgcatg	tcttggggat	ttaaaaattt	caaggctggt	ttacttatgc	5820
aaagcatgcc	tacgtctgga	atacttaggg	aaagaaagcg	actccatgtt	gtccgaattc	5880
ctcaagggac	agaaaaaaaa	ttggagactg	ttgaaatgca	gatttgaagt	aatttttta	5940
aaatattatt	ttgggttctg	cgacattgtg	aaaaattaaa	gttgttgtgc	aatacttaat	6000
tcagacatgt	accacaagtt	aatggtagac	taacactggg	gggtggggtc	taggcatcat	6060
gcttttgtca	gcatactctt	gagcttttaa	gtctactatg	tctgaactgt	ggtttcttgt	6120
ttatcctttt	ttccttagtt	ggactgtaat	gtatggtctg	tcaacctgtg	aatctttaaa	6180
gtatgattca	ggtattgttg	tattctttac	tgtgtaataa	aaaagttgaa	aaaaatctgg	6240
atcctctgtc	tecetegtee	ccggtgtgcc	atggttgccc	accagtgacc	ccagcctgag	6300
gagtccatcc	tccatggtgc	tgaatcaaat	ctgtagagtt	tattcagcta	caaagcgtgg	6360
ctctgtaaca	ggagttggct	tatccatgcg	tgttgagtag	ggaatgatgt	cagaactttg	6420
caaaagtcga	gctcattcat	aaggggatgt	ttctcaggca	ggaggagtag	gaagagtggg	6480
aggagaatta	ctaccttcca	taggaaagga	gagettgget	tgcctagatt	agctgctgca	6540
tagatagcag	aggccctttt	ggctgtgttt	tgataaaatt	agaaatgagt	acctaaatct	6600
ggatcactct	gctcagagag	gttcgtgcca	acctcatgag	gctctgactc	ttgtcaggtt	6660
gettggetge	cttgtgcata	cccgaatggc	agatcagctg	acatgacatg	gaactgctct	6720
atctgccttg	teceetetee	tctaattaaa	agtcgctacc	attgtcactc	ttggttatgt	6780
agttaatatc	cactgtggct	atctccaact	tgctgggaca	tccagttatc	tcctctgaca	6840
catattttt	cattctctag	ttacaaagtt	tgttagagtt	tgaaaaacaa	accettetee	6900
cctaccctgt	gaatgctgtt	agtttttatg	tgtagttttc	aaaacacaga	ttatcttata	6960
tactgtgttg	tagcagaaat	teetgtttee	tctgaatgtt	ctgactttat	agaccaaaat	7020
aatcgttgca	aaaaatcaag	gatggcacag	caggtgcatg	agecegtgte	tggagaaagg	7080
ttatgaaggt	gaatgetggt	tacatgggag	ggtgacttgg	agecetetag	tttccttctt	7140
gtgccagctg	ggttcctgtt	tcaaggccag	gcttctctaa	cttgtcttcc	tgggaaatgt	7200
agcttttcca	agaatttggt	agtgcacacc	aggaaaaact	aggtatcaga	acagattttt	7260
ttttaaatag	tggaaacacc	ctcactccca	cactttggac	agttagggtt	ggatatttaa	7320
tttcatagtt	actcttttt	tccacagaag	aaaggccagc	ctgacccaag	ttgcctattt	7380
ttaatgtgtt	actgcatctt	attttctctt	caaagtgaaa	aaggccagaa	actagcagat	7440
agaaatggaa	cccgttgact	tagttccctt	ataagaagtt	cttgcaaaca	cctctgtgac	7500
gttttcattc	aagtggatat	gttggacaaa	taggaaacag	ttttagttta	cgcgaacagt	7560
atgagacttc	caggtggtgg	acgccatttt	tttagaagtg	ttgatgatgt	atttgataac	7620
attataaaag	tatgtgtctc	ccgtgaaaga	acattgagct	atttccctgg	aatggatggg	7680
gaagaaatga	gcaaaggagt	gctgttctgt	atgggtgtct	atacccttat	tccaaggtga	7740
ataaataaag	ttgtgtttgc	ctaatcatg				7769

<210> SEQ ID NO 38 <211> LENGTH: 1293

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 38

	-continued	
aaaagaacga agtccagcac caaaacgtgc ta	acaacatgg atgaacttcg atgactttgt	60
gccacatgaa agaagaagcc agccacaaaa gg	gccatatat tgtatgaaat gaaatgtcca	120
gaatgggcaa acccatagag acacaaaaat ct	teegeeace teectactet eggetgtete	180
ctcgcgacga gtacaagcca ctggatctgt co	cgattccac attgtcttac actgaaacgg	240
aggetaceaa eteceteate aetgeteegg gt	tgaattete agaegeeage atgteteegg	300
acgccaccaa geegageeac tggtgcageg tg	ggcgtactg ggagcaccgg acgcgcgtgg	360
gccgcctcta tgcggtgtac gaccaggccg to	cagcatett etaegaeeta eeteagggea	420
gcggcttctg cctgggccag ctcaacctgg ag	gcagcgcag cgagtcggtg cggcgaacgc	480
gcagcaagat cggcttcggc atcctgctca go	caaggagcc cgacggcgtg tgggcctaca	540
accgcggcga gcaccccatc ttcgtcaact co	cccgacgct ggacgcgccc ggcggccgcg	600
ccctggtcgt gcgcaaggtg ccccccggct ac	ctccatcaa ggtgttcgac ttcgagcgct	660
cgggcctgca gcacgcgccc gagcccgacg co	cgccgacgg cccctacgac cccaacagcg	720
teegeateag ettegeeaag ggetgggge ee	ctgctactc ccggcagttc atcacctcct	780
gcccctgctg gctggagatc ctcctcaaca ac	ccccagata gtggcggccc cggcgggagg	840
ggcgggtggg aggccgcggc caccgccacc to	geeggeete gagagggee gatgeeeaga	900
gacacagece ecaeggacaa aaceeeceag at	tatcatcta cctagattta atataaagtt	960
ttatatatta tatggaaata tatattatac ti	tgtaattat ggagtcattt ttacaatgta	1020
attatttatg tatggtgcaa tgtgtgtata tg	ggacaaaac aagaaagacg cactttggct	1080
tataattott toaatacaga tatattttot ti	tetetteet eetteetett eettaetttt	1140
tatatatata tataaagaaa atgatacagc ag	gagctaggt ggaaaagcct gggtttggtg	1200
tatggttttt gagatattaa tgcccagaca aa	aaagctaat accagtcact cgataataaa	1260
gtattcgcat tatagttttt tttaaaaaaa aa	aa	1293
<210> SEQ ID NO 39 <211> LENGTH: 5018 <212> TYPE: DNA <213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 39		
gecegggaet atecettege ggtgtagegg ea	agccggaga cctggctgag gaggcaaccg	60
cgtagacacc tccctgctta gaaaacaaac ac	ctgaaccag accgatccca gttggagggt	120
tcgaaaatgt tccagacagc ctgtcgggag g	ggttgttgt tgctgttgga ctaaatagct	180
attectgatt ggtcatgtat agggtttttt aa	aggcgggtg gggggaggag ggggtagagg	240
aaaggctcca aacacctgca ggttgggggc g	gaaagetgt ttgegattee etggaetggt	300
tggtcgggga caggaggtaa ttcccagcca tt	tgaccccca tttctctctc tccctccctc	360
ttgccctgcc tctttctctc cacccctatc tt	ttcctggaa actcgctttg ggcgcggcag	420
ategeecagg accaeacege agegtaactg ca	aggeetete agegaaaaag ggggaaagea	480
aagacccggg tgtgcatcct cttcctcggc tt	teegeeest tteeggegga gtggagatee	540
tattcagagg ggccggtctc tctaaatatg co	cccaggatg accgagcggc cgccgagcga	600
ggcggctcgc agtgaccccc agctagaggg ac	cgggacgcg gccgaggcca gcatggcccc	660

cccgcacctg gtcctgctga acggcgtcgc caaggagacg agccgcgcgg ccgcagcgga

720

gcccccagtc	atcgaactgg	gegegegegg	aggcccgggg	ggeggeeetg	ccggtggggg	780	
cggcgccgcg	agagacttaa	agggccgcga	cgcggcgacg	gccgaagcgc	gccatcgggt	840	
gcccaccacc	gagctgtgca	gacctcccgg	geeegeeeeg	gcccccgcgc	ccgcctcggt	900	
tacagcggag	ctgcccggcg	acggccgcat	ggtgcagctg	agtcctcccg	cgctggctgc	960	
ccccgccgcc	cccggccgcg	cgctgctcta	cagcctcagc	cageegetgg	cctctctcgg	1020	
cagegggtte	tttggggagc	cggatgcctt	ccctatgttc	accaccaaca	atcgagtgaa	1080	
gaggagacct	tccccctatg	agatggagat	tactgatggt	ccccacacca	aagttgtgcg	1140	
gcgtatcttc	accaacagcc	gggagcgatg	gcggcagcag	aatgtgaacg	gggcctttgc	1200	
cgagctccgc	aagctgatcc	ccacacatcc	cccggacaag	aagctcagca	agaatgagat	1260	
cctccgcctg	gccatgaagt	atatcaactt	cttggccaag	ctgctcaatg	accaggagga	1320	
ggagggcacc	cagegggeea	agactggcaa	ggaccctgtg	gtgggggctg	gtgggggtgg	1380	
aggtggggga	gggggcggcg	cgcccccaga	tgacctcctg	caagacgtgc	tttcccccaa	1440	
ctccagctgc	ggcagctccc	tggatggggc	agccagcccg	gacagctaca	cggaggagcc	1500	
cgcgcccaaa	cacacggccc	gcagcctcca	tcctgccatg	ctgcctgccg	ccgatggagc	1560	
eggeeetegg	tgatgggtct	gggccaccag	gatcagccag	gagggcgttc	ttaggctgct	1620	
gggatggtgg	gcttcagggc	aggtggggtg	agaattgggc	ggctctgaag	caaggcggtg	1680	
gacttgaact	ttcctggatg	tctgaacttt	gggaagcctt	tactgaccct	ggggctggct	1740	
tttctgtttc	ctgtaccagt	aggagatcag	aaaaatggag	caaagtggta	ggtactttt	1800	
gtgaagacgg	cacggtcttc	cctcttccct	cagtcccaaa	tccttcccaa	gtaagaggct	1860	
ggagttgtca	ctgcttttgg	cctggagttt	gggatccctg	tctttcctaa	gacctggggt	1920	
tgtcagctct	catctgaggc	atccagcagt	ctctgccttg	cctttagccc	ctcccaagct	1980	
ggctggggtg	gcctgtgtgg	ccacttctgt	ccatatttat	aggtacccaa	tagctgccca	2040	
tttcgtgagc	cccatcttca	cccaggccta	tgttgatcca	tccagcttgc	cagatgctgc	2100	
agagtcacaa	gcctcgaggt	gccttcttca	gggcctggtt	gaagaagatg	atcagtggac	2160	
agtetgetet	agatgagctg	ggccggaggg	tcaggaaacc	cagtegeeet	tacttcttgc	2220	
cctggggatc	aaagttctgc	tttctcccca	atgagacttg	ccttcctaag	cctgtggctg	2280	
tggagacaat	gtctgcagcc	ctgagaaagc	cctgtcgggc	tttgtgtgaa	ggcagagaaa	2340	
gggacaatga	tagtagagtg	atatggagca	agagatattt	tgggcatgtg	ggcttcaact	2400	
cctcgacatc	actgttcatg	ctggcgagtg	aatgccagtg	tgctgatggg	cgtacgctgg	2460	
tgctgagtag	atgcgcagcc	ccatctgtgc	attctcctgg	atgcttagag	ggatttettt	2520	
gctgtaagat	gtctgtttgc	tgatggtctg	gtctatgttc	cgaattgagc	acaaaacctg	2580	
tcctatgaat	gctttgcatt	tggaattttt	gcttgacttc	agttattggt	ggaatcttta	2640	
gcgctcaata	ggaccaggat	ccagcctcac	ttctagggta	tgggaaatcc	aatcagagac	2700	
caggccctgg	ctaagaccca	aacatatgca	cattcactta	gcagaacctt	aaacacccct	2760	
cagttgtgca	gcttttggtc	atcaagggtg	cgtctgggag	gttggtttaa	tgcaatagaa	2820	
gtgctcccct	ctgaaagttg	tacatgaaat	ttttgtaaat	cacatcctta	tccttcatct	2880	
tttaaagaaa	taaccactgc	aagtcctttt	gtaaagtgaa	gaatcctttt	gtagaatgaa	2940	
ccactgcccc	ttcattgatt	tcctgtgtca	atccagatgg	tgggatgtgg	ttttcttaag	3000	

gtgaggcctg	tctgtgacct	gcatctaagc	ccatgggaca	aattgcacag	aagtcctgta	3060
tgtctgtcat	tgtaccctta	agtcacccta	gecetetece	tctaggctct	gccttcgagg	3120
tcagaggaga	gatagcctgt	ggecetgtee	tgccatgcaa	gaactcatca	ctgtggctgt	3180
ctggaaagcc	cccccttata	gtttgggctt	cagcctagtg	gettgteete	accatgatgg	3240
ggccctaatt	cagccatgta	cagacagaga	atatgtctgc	teettteeee	ttccttttaa	3300
gtaaggtcca	attctcgagc	ttggggcaac	attgttcacc	tttgtagcac	tcaggctctc	3360
cattcaattt	caggeteece	agatcatgtt	ttggtgaaaa	ttagggttgg	ttcctttcca	3420
acgtttggaa	gatcctgtga	ggagccccat	ctgtctaaag	atagagtcat	tgctgtagga	3480
tctaaggctg	tttgcttcac	cgtggattcg	cttgagttag	gaatgagaag	tagccacagt	3540
atggatgggt	ggatgggttt	tatgagatgg	atcacatatt	ttattaagaa	ctcaaacttc	3600
tggctccctc	ttctttcaga	cttgccatgt	gactctggct	tggcctatct	cctagggcta	3660
tggtgtggac	tgaatgggat	catgaaagta	gacagttttg	agaacgtaaa	gaactttttc	3720
ttttccctca	atctcaatcc	tgcagtgggg	tttcgcagcc	tgagtccacg	acctaggcag	3780
taggccggtg	tgcctgactg	cccagcattt	gggtaattta	gattgtaaac	cgctttggcc	3840
tgagttattg	agattgtcct	catttctcca	gattatctat	ttgtgtgtgt	gtgtgtgtgt	3900
gtgtgagaga	cggtgtcttg	ttctgtcact	caggctggag	tacagtggtg	ccatcattgc	3960
tgtctgcagc	cttgaactct	gggctcaagc	aatcctctca	cctcagcctc	ccgagtaggg	4020
aggaccacag	gtgtgagcca	ccacacctgg	ctaattttta	ctttttttt	tttttggtag	4080
agatggagtc	ttgctatatt	gcccaggctg	gtcttgaagt	cctggcttca	ggcaattctc	4140
ctgcctttgc	ctccagaagc	actgggatca	caggtgtcag	ccattgcacc	cagcccagat	4200
tgtcttaatt	tctatcttgt	tccaaggcca	gggacagtaa	taagaatgga	aaagagatat	4260
gggaacactg	gcagactgtg	taaaatgtaa	tgcaactacc	caaaacaagc	ctggtaggaa	4320
agggcaagtc	tttaggtctt	tgtaagaact	aaagaagatc	tgtaattttt	attttcaccc	4380
tetgtacece	atgaccttat	ccttcctctc	cttccttgtt	acccatgaaa	aactggcaac	4440
attccaagaa	tagcatctgt	acaaagggga	aagaacataa	aggtaaaaca	aaacaaaaca	4500
acattttgag	aacaaagatg	accataacca	ctgaagggaa	tcacatcttt	taagacaaat	4560
tcatattctt	ttatttgtta	tggcagatga	caagatggta	caacctttat	tcttttccaa	4620
aataaaacaa	agggcacagc	atctgtagtc	agccgacaac	tatttcggcc	ttttgggggt	4680
gggtctggcc	gtacttgtga	tttcgatggt	acgtgaccct	ctgctgaaga	cttgccccct	4740
gcccgtgtac	atagtgcatt	gtttctgtgg	gcgggcccag	cactttccgt	caacgttgta	4800
ctgtatgtga	tgaattgcgt	tggtctctgc	atttttctgc	agaagaggag	taaccgctcc	4860
aggtaccttg	acctttgtac	agcccagagg	ccaacactgt	gggtgtgtga	ctctttagca	4920
aaaaaaaccc	atgtggtgat	gatgtgtata	tatatgtgag	gatgtatcgg	gaagatttct	4980
aaataaaagt	tttacaaagg	ggaaaaaaaa	aaaaaaa			5018

<210> SEQ ID NO 40 <211> LENGTH: 1227

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 40

			-0011011	iuea		
cggcgcacgg agggacgcgg	ccggcgccca	tggcgttcgc	gctgctgcgg	cccgtcggcg	60	
cgcacgtgct gtacccggac	gtgcggctgc	tgagcgagga	cgaggagaac	cgcagcgaga	120	
gegaegegte ggaecagteg	tteggetget	gcgagggccc	ggaggcggcg	cggcgcggcc	180	
cgggccccgg gggcgggcgg	cgggcgggcg	geggeggegg	cgcgggcccc	gtggtggtgg	240	
tgcgacagcg gcaggcggcc	aacgcgcggg	agcgggaccg	cactcagagc	gtgaacacgg	300	
ccttcacggc gctgcgcacg	ctcatcccca	ccgagccggt	ggaccgcaag	ctgtccaaga	360	
tegagaeget gegeetggee	tccagctaca	tegegeacet	ggccaacgtg	ctgctgctgg	420	
gcgactcggc cgacgacggg	cagccgtgct	tccgtgccgc	gggcagtgcc	aagggcgccg	480	
teccegeege egeegaegge	ggccgccagc	cgcgctccat	ctgcaccttc	tgcctcagca	540	
accagegeaa ggggggtgge	cgtcgtgacc	tggggggcag	ctgcttgaag	gtgaggggg	600	
tggccccct tcgagggcca	. cggagatgag	cctggaccct	ggagaaggag	gccaggagcc	660	
agccactggc tggacaggga	agaagacccc	aggagccaag	cccacccctt	ctttgtgtag	720	
ggaccggggg accatggcct	gttccgggac	actctgggca	gggccctcgg	gacatctcca	780	
cccgatcctg gagagctgtc	aggatccatt	cagcctgccc	agctctggct	ggtcagagac	840	
aaggcagaac ttttggaaaa	acaaagactg	ttggtgacag	ggtgtgtgtg	tatctgtgcg	900	
tgagtgtgag tgtgtgtgag	agagaattgg	tgagtttaaa	ataaaagcta	ttttaaata	960	
aaagacgtcg ttctgagctg	aggagagtcc	cgtggacatc	ggaggtcaga	ggtgggccct	1020	
ccctggacc tagagagagg	cacagatgtt	ctgggggctg	ccctgagccc	tggaagggtg	1080	
ggggtggggc gggggaaggc	aggcagagcc	ccctctccgg	gcgccataac	caaactttcc	1140	
tcagtctgct gtttatcaga	tgttcttaac	aactgttagg	tgtctgatat	ggttggtaaa	1200	
gaaatcttaa ttttacttat	ttttgaa				1227	
<210> SEQ ID NO 41 <211> LENGTH: 4669 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens					
<400> SEQUENCE: 41						
ctgcttgtca aaaggcggca	gcggagccgt	gtgcgccggg	agcgcggaac	agcttgtcca	60	
cccgccggcc ggaccagaac	cctttgggtc	tgaagtgtct	gtgagacctc	acagaagagc	120	
accectggge tecaettace	tgccccctgc	tccttcaggg	atggaggcaa	tggcggccag	180	
cactteectg cetgaceete	gagactttga	ccggaacgtg	ccccggatct	gtggggtgtg	240	
tggagaccga gccactggct	ttcacttcaa	tgctatgacc	tgtgaaggct	gcaaaggctt	300	
cttcaggcga agcatgaago	ggaaggcact	attcacctgc	cccttcaacg	gggactgccg	360	
catcaccaag gacaaccgac	gccactgcca	ggcctgccgg	ctcaaacgct	gtgtggacat	420	
cggcatgatg aaggagttca	ttctgacaga	tgaggaagtg	cagaggaagc	gggagatgat	480	
cctgaagcgg aaggaggagg	aggccttgaa	ggacagtctg	cggcccaagc	tgtctgagga	540	
gcagcagcgc atcattgcca	. tactgctgga	cgcccaccat	aagacctacg	accccaccta	600	
ctccgacttc tgccagttcc	ggcctccagt	tcgtgtgaat	gatggtggag	ggagccatcc	660	
ttccaggccc aactccagac	acactcccag	cttctctggg	gactcctcct	cctcctgctc	720	

agatcactgt atcacctctt cagacatgat ggactcgtcc agcttctcca atctggatct

gagtgaagaa gattcagatg	accettetgt gace	ctagag ctgtcccago	tctccatgct	840	
geceeacetg getgaeetgg	tcagttacag catco	caaaag gtcattggct	ttgctaagat	900	
gataccagga ttcagagacc	tcacctctga ggaco	agate gtactgetga	agtcaagtgc	960	
cattgaggtc atcatgttgc	gctccaatga gtcct	tcacc atggacgaca	tgtcctggac	1020	
ctgtggcaac caagactaca	agtaccgcgt cagto	gacgtg accaaagccg	gacacagcct	1080	
ggagctgatt gagcccctca	tcaagttcca ggtgg	ggactg aagaagctga	acttgcatga	1140	
ggaggagcat gtcctgctca	tggccatctg catco	gtetee eeagategte	ctggggtgca	1200	
ggacgccgcg ctgattgagg	ccatccagga ccgc	ctgtcc aacacactgo	agacgtacat	1260	
cegetgeege caceegeece	cgggcagcca cctgo	etetat gecaagatga	tccagaagct	1320	
ageegaeetg egeageetea	atgaggagca ctcca	aagcag taccgctgcc	tctccttcca	1380	
gcctgagtgc agcatgaagc	taacgcccct tgtgc	etegaa gtgtttggea	atgagatete	1440	
ctgactagga cagcctgtgg	cggtgcctgg gtggg	ggetge teetecagge	ccacgtgcca	1500	
ggcccggggc tggcggctac	tcagcagccc tcctc	cacccc gtctggggtt	cageceetee	1560	
tctgccacct cccctatcca	cccagcccat tctct	cteet gtecaaceta	acccctttcc	1620	
tgcgggcttt tccccggtcc	cttgagacct cagco	atgag gagttgctgt	ttgtttgaca	1680	
aagaaaccca agtgggggca	gagggcagag gctgg	gaggca gggccttgcc	cagagatgcc	1740	
tccaccgctg cctaagtggc	tgctgactga tgttg	gaggga acagacagga	gaaatgcatc	1800	
cattcctcag ggacagagac	acctgcacct cccc	cactg caggeeeege	ttgtccagcg	1860	
cctagtgggg tctccctctc	ctgcctactc acgat	aaata ateggeeeac	ageteceace	1920	
ccacccctt cagtgcccac	caacatccca ttgc	cctggt tatattctca	cgggcagtag	1980	
ctgtggtgag gtgggttttc	ttcccatcac tggag	gcacca ggcacgaacc	cacctgctga	2040	
gagacccaag gaggaaaaac	agacaaaaac agcct	cacag aagaatatga	cagctgtccc	2100	
tgtcaccaag ctcacagttc	ctcgccctgg gtcta	aagggg ttggttgagg	tggaagccct	2160	
ccttccacgg atccatgtag	caggactgaa ttgto	cccag tttgcagaaa	agcacctgcc	2220	
gacetegtee teeceetgee	agtgccttac ctcct	gccca ggagagccag	ccctccctgt	2280	
cctcctcgga tcaccgagag	tagccgagag cctg	ctecce cacecected	ccaggggaga	2340	
gggtctggag aagcagtgag	ccgcatcttc tccat	ctggc agggtgggat	ggaggagaag	2400	
aattttcaga ccccagcggc	tgagtcatga tctc	ctgcc gcctcaatgt	ggttgcaagg	2460	
ccgctgttca cccacagggc	taagagctag cgctg	geegea eeeeagagte	tgggaaggga	2520	
gageggggea gtetegggtg	gctagtcaga gagag	gtgttt gggggtteeg	tgatgtaggg	2580	
taaggtgcct tcttattctc	actccaccac ccaas	aagtca aaaggtgcct	gtgaggcagg	2640	
ggcggagtga tacaacttca	agtgcatgct ctct	gcagcc agcccagccc	agctggtggg	2700	
aagegtetgt eegtttaete	caaggtgggg tettt	gtgag agtgagctgt	aggtgtgcgg	2760	
gaccggtaca gaaaggcgtt	cttcgaggtg gatca	acagag gettetteag	atcagtgctt	2820	
gagtttgggg aatgeggeeg	cattecetga gtead	ccagga atgttaaagt	cagtgggaac	2880	
gtgactgccc caactcctgg	aagctgtgtc cttgo	cacctg catccgtagt	tccctgaaaa	2940	
cccagagagg aatcagactt	cacactgcaa gagco	ettggt gtecacetgg	ccccatgtct	3000	
ctcagaattc ttcaggtgga	aaaacatctg aaago	ccacgt teettactge	agaatagcat	3060	
55 55	2 3	3	-		

-continued	
atatatcgct taatcttaaa tttattagat atgagttgtt ttcagactca gactccattt	3120
gtattatagt ctaatataca gggtagcagg taccactgat ttggagatat ttatgggggg	3180
agaacttaca ttgtgaaact tctgtacatt aattattatt gctgttgtta ttttacaagg	3240
gtctagggag agaccettgt ttgattttag etgeagaaeg tattggteea gettgetett	3300
cagtgggaga aaacacttgt aagttgctaa acgagtcaat cccctcattc aggaaaactg	3360
acagaggagg gcgtgactca cccaagcata tataactagc tagaagtggg ccaggacagg	3420
cccggcgcgg tggctcacgc ctgtaatccc agcagtttgg gaggtcgagg taggtggatc	3480
acctgaggtc gggagttcga gaccaacctg accaacatgg agaaaccctg tctctattaa	3540
aaatacaaaa aaaaaaaaa aaaaaatagc cgggcatggt ggcgcaagcc tgtaatccca	3600
gctactcagg aggctgaggc agaagaattg aacccaggag gtggaggttg cagtgagctg	3660
agategtgee gttactetee aacetggaea acaagagega aacteegtet tagaagtgga	3720
ccaggacagg accagatttt ggagtcatgg tccggtgtcc ttttcactac accatgtttg	3780
ageteagace eccaetetea tteeceaggt ggetgaceea gteeetgggg gaageeetgg	3840
atttcagaaa gagcaagtct ggatctggga ccctttcctt ccttccctgg cttgtaactc	3900
caccaaccca tcagaaggag aaggaaggag actcacctct gcctcaatgt gaatcagacc	3960
ctaccccacc acgatgtggc cetggcctgc tgggctctcc acctcagcct tggataatgc	4020
tgttgcctca tctataacat gcatttgtct ttgtaatgtc accaccttcc cagctctccc	4080
tetggeeetg cettettegg ggaacteetg gaaatateag ttacteagee etgggeeeca	4140
ccacctaggc cactcctcca aaggaagtct aggagctggg aggaaaagaa aagaggggaa	4200
aatgagtttt tatggggctg aacggggaga aaaggtcatc atcgattcta ctttagaatg	4260
agagtgtgaa atagacattt gtaaatgtaa aacttttaag gtatatcatt ataactgaag	4320
gagaaggtgc cccaaaatgc aagattttcc acaagattcc cagagacagg aaaatcctct	4380
ggctggctaa ctggaagcat gtaggagaat ccaagcgagg tcaacagaga aggcaggaat	4440
gtgtggcaga tttagtgaaa gctagagata tggcagcgaa aggatgtaaa cagtgcctgc	4500
tgaatgattt ccaaagagaa aaaaagtttg ccagaagttt gtcaagtcaa	4560
aagetttget tatggtaata aaaatggete ataettatat ageaettaet ttgttgeaag	4620
tactgctgta aataaatgct ttatgcaaac caaaaaaaaa aaaaaaaaa	4669
<210> SEQ ID NO 42 <211> LENGTH: 2752 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 42	
egetaaggee geceteeggg tageegeeat gteggtetee ageggegtee agattetgae	60
aaagccagag accgtggacc ggaggagaag tgcggaaacg accaaagagg ccgggcgacc	120
actggagatg gctgtgtccg agcccgaggc cagcgccgcg gaatggaagc aactggatcc	180
tgctcagage aacctgtata atgatgtgat gctggagaac tactgcaacc aagcctcaat	240
ggggtgtcaa gctcccaaac cagacatgat ctccaagttg gaaaaaggag aagcaccatg	300
	260

gttggggaag gggaaaagac ccagtcaagg ttgtccaagt aaaatagcaa gacccaagca aaaagaaact gatggaaaag tccagaaaga tgatgaccag cttgaaaata tccagaaatc

360

tcaaaacaaa	ctcctcaggg	aagttgcagt	caagaagaaa	actcaagcta	agaagaatgg	480	
cagtgactgt	ggttcactgg	ggaaaaaaaa	taatttgcat	aaaaaacatg	ttccttcaaa	540	
gaaaaggctt	cttaaatttg	agtcatgtgg	aaaaattttg	aaacagaatt	tagatttacc	600	
tgatcactca	agaaactgtg	taaaaaggaa	atctgatgca	gctaaagaac	acaagaagtc	660	
attcaaccat	agcttatctg	atacaaggaa	aggcaaaaag	caaactggaa	agaaacatga	720	
gaaattatcc	agccatagct	catctgataa	gtgtaacaaa	actggcaaaa	aacatgacaa	780	
attatgctgt	catagttcat	cccatattaa	acaggacaaa	attcaaactg	gagagaaaca	840	
tgagaaatca	cccagcctta	gctcatctac	taagcatgaa	aaacctcaag	cttgtgtgaa	900	
accctatgaa	tgtaatcaat	gtggaaaggt	tctcagccat	aaacaaggac	tcattgacca	960	
tcagagagtt	catactgggg	agaaaccata	tgaatgtaat	gaatgtggga	tagcctttag	1020	
ccaaaagtca	caccttgttg	tacatcagag	aactcacacc	ggagaaaaac	catatgaatg	1080	
tattcagtgt	ggcaaagccc	atggtcataa	acatgcactc	actgaccatc	taagaattca	1140	
tactggagaa	aagccctatg	aatgtgctga	atgtgggaaa	accttcagac	acagctcaaa	1200	
ccttattcaa	catgtgagat	ctcacacagg	tgagaagcca	tatgaatgta	aggaatgtgg	1260	
gaagtetttt	aggtataact	catctcttac	cgaacatgtg	agaacacata	caggtgaaat	1320	
accatatgaa	tgcaatgaat	gtggaaaagc	ctttaagtat	agctcatccc	ttactaaaca	1380	
catgagaatt	catacaggtg	agaaaccctt	tgaatgtaat	gaatgtggga	aagctttcag	1440	
caagaagtca	cacctcatta	tacatcaaag	aactcatact	aaggagaaac	cttataaatg	1500	
taatgagtgt	ggaaaagcct	ttggacatag	ctcatctctt	acttaccata	tgagaactca	1560	
tacaggtgaa	agtccctttg	aatgtaatca	atgtgggaaa	ggctttaaac	aaattgaagg	1620	
ccttactcaa	catcagagag	ttcatactgg	agagaaaccg	tatgagtgta	atgaatgtgg	1680	
gaaagccttt	agccaaaagt	ctcacctcat	tgtacatcag	agaactcata	ctggggagaa	1740	
accttatgaa	tgtaacgaat	gtgaaaaagc	ctttaatgca	aaatcacagc	ttgttataca	1800	
tcagcgatcc	cacactggag	aaaaacccta	tgaatgtaat	gaatgtggga	aaactttcaa	1860	
acaaaatgca	tccctaacca	aacatgtgaa	aactcattca	gaagataaat	ctcatgagtg	1920	
aagttaatgt	gggaaatttg	ttaactaaat	ttaaggtttt	gttgaacctt	ggaaatatgc	1980	
tgattttaaa	gagtgttaga	aagcctttag	caagatgtca	caccttgttg	tacatgagaa	2040	
actttgaaaa	tggatcttca	tatagaatca	gtggatggaa	acaagggttt	aaacttgata	2100	
caaaaccttt	tataaaaaat	attgttttaa	ctactcaatt	attataaatg	atctacatgt	2160	
tcagattgaa	attgaaagct	ttaaaaattg	tgaattattt	gaatattcaa	agcaatggag	2220	
aaacaagtta	tatatgctga	cagttcctgt	gtttcttctt	gttttgtact	taagcaccat	2280	
atattagagt	tgaatttgca	tatctgttta	ttgccttatg	taaatgagtg	tggccatctg	2340	
tataagcctc	tttgacattt	tcacccagct	ctttcttaat	gtctgtgttg	gcttctgcat	2400	
cagcagaaat	ctttttaaaa	gggttgttat	atatgtaaaa	aatgttaaca	ggaaaatgag	2460	
agaaaataaa	gcagctgagg	atacaaatgt	gctggtaggg	agcgatattc	aagatatatt	2520	
gtgaagtgtg	aaaaagtagg	ttgctgaacc	atgtatatag	tatgttcccc	tttgtgtaca	2580	
aaagggtatg	tttgtttaac	ctctgtctct	tatctctgta	tgtgtatgta	tctttgtatg	2640	
catatataca	tgtatctgta	tgtgaataga	ctttgaaaaa	atacagaata	aacttcatgg	2700	

tggttgccat tgggcagagg agtataggac tggggtctag gataggagca ag	2752
<210> SEQ ID NO 43 <211> LENGTH: 2295 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 43	
gagctgcagg cggcgagcgc cattgtgagc agagccggcg gggcaggagg cccgggcgcc	60
tgggtccccg cggcgcggc ggagcggccg gccagccagg ttctgtggcc tgatccccag	120
gaggagctac tetgggttac catgagagag acettggagg ceetcagete eetgggatte	180
tctgtgggac agccagagat ggcccccaa agtgagccca gggaaggatc ccataatgcc	240
caggagcaga tgtcctcttc tagggaagag agagcactgg gggtgtgctc agggcacgag	300
gcccctacac cggaggaagg tgcccacaca gaacaagccg aggctccctg cagaggccag	360
gcgtgctcag cacagaaggc tcagcctgtg ggtacctgcc caggagagga gtggatgatt	420
cggaaggtga aggtggagga cgaagatcag gaggcagaag aggaggtcga atggccccag	480
catctatcgt tacttcccag cccctttccc gcgcctgacc tggggcatct ggctgccgcg	540
tacaaactgg agccaggggc cccgggggca ctgagtgggc tcgcgctgtc tgggtggggt	600
ccgatgccgg agaagcccta cggctgcggg gagtgtgagc ggcgcttccg ggaccagctg	660
acgttgcgac tgcaccagcg gctgcaccgg ggcgagggcc cctgcgcctg cccggactgc	720
ggccgcagct tcacgcagcg cgcccacatg ctactgcatc agcgcagcca ccgcggcgag	780
eggeetttee egtgeteega gtgegacaag egetteagea agaaggeeea tetgaceege	840
cacctgcgca cgcacacggg cgagcggccc tacccgtgcg cggagtgcgg caagcgcttc	900
agccagaaga tccacctggg ctcgcaccaa aagacccaca ccggcgagcg gcccttcccc	960
tgcacggaat gcgagaagcg ctttcgcaag aagacgcact tgattcggca ccagcgcatc	1020
catacgggcg agaggcccta ccagtgcgca cagtgcgcac gcagcttcac gcacaagcag	1080
cacttggtgc ggcaccaaag ggtgcaccag acggccggcc cggccaggcc ctctcccgac	1140
tegteegett etecteatte caetgeeceg teecegacee cateetttee egggecaaag	1200
cetttegegt geteegactg eggettgage tteggetgga aaaagaacet egecaegeae	1260
cagtgtctgc accgcagcga gggtcgcccc tttgggtgcg atgagtgcgc actgggcgcc	1320
accytggaty cccccgccgc caagccccty gccagcgcgc ctggcggacc gggctgcggc	1380
ccaggatccg atcccgtggt gccccagcgc gcccctcgg gcgagcggtc cttcttctgc	1440
ceggaetgeg ggegeggett etcecatggg cagcacetgg egeggeacee gegegtgeac	1500
acgggcgaac ggcccttcgc ctgcacgcag tgtgaccgcc gcttcggctc gcggcctaat	1560
ctggtcgccc actccagggc ccacagcggc gccaggcctt tcgcctgcgc tcagtgcggc	1620
egeegettea geegeaagte geacetggge egeeaceagg eggtgeacae tggeageege	1680
ccccacgcct gegeegtetg egeeegeage tteageteea aaaccaacct agteegeeac	1740
caggogatoc acacaggoto cogococtto tootgooogo agtgoggaaa gagottoago	1800
cgcaagaccc acctggtgcg gcaccagctc attcacggcg aagccgccca cgcggccccg	1860
gacgoogcoc ttgoggoooc agootggtoo gotoocoocg aggtggogoo gooccogoto	1920
ttettetgag cetagttete acgaggacce tttettgece acagtttega gaggeeegtg	1980

-continued	
ccatgagacc gcctggggtg agcaaggcga cctgggctgc tgcccgaagg tttggccgcc	2040
gegggacace tgttteette eegeagtgte tgegteegea eageatacee ageteggace	2100
tectaggaca gagaeteage gaaceettge tgggaacege tgagetgaag ttettggaag	2160
gctcccaccc aggtgccccg ttggaaagca gatatttccc ggacccagcg cggcctcaac	2220
cagggcagga aagagtggtt atttatgtac ttaaagtttc attaaagtta aaatcggaaa	2280
aaaaaaaaa aaaaa	2295
<210> SEQ ID NO 44 <211> LENGTH: 4985 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 44	
agtccgggtc ttggcgggcc ccctcctccc tcccgctccc cgcgctctcg ccttttaatc	60
atgcccctct gtctgtgtgt gagtgcaggc aggctgacaa tgatttcctc agtgattacg	120
tacagagega gtccctgegg gttaggggee eeetetggag eeateetgat ggetttgggg	180
gccttgcttc cattttccat tattatgtgg actaccggag cgacagcgca gtccaagacc	240
ttgcaggatg tctcgccgca agcaagcgaa accgagatcc ctcaaagacc ccaactgtaa	300
acttgaagac aagactgaag atggagaggc actagattgt aagaagaggc cggaagacgg	360
ggaggagttg gaagacgaag ctgtgcacag ctgtgacagc tgcctccagg tgtttgaatc	420
gctgagcgat atcacagaac acaagattaa tcaatgtcaa ctgacagatg gagtggatgt	480
tgaagatgat ccgacttgct cttggccagc ttcctcacct tctagcaagg atcagacttc	540
ccctagccat ggagaaggtt gcgattttgg agaggaagaa ggtggccctg ggcttccata	600
cccgtgtcaa ttctgtgaca agtcgtttag ccgcctcagc tacctaaagc accatgagca	660
gagtcacagt gacaaactgc ctttcaaatg cacctactgc agtaggctgt tcaaacacaa	720
gegeageega gategeeaca taaaaeteea eaceggggae aagaagtaee aetgeagtga	780
atgtgatgct gcgttttcca gaagtgatca cttgaagatc cacttaaaga ctcacacgtc	840
caacaagcca tataaatgtg ccatttgtcg ccgtgggttt ctgtcctcta gttccttaca	900
cggacacatg caggttcatg agaggaacaa ggacggctct cagtccggtt ccaggatgga	960
ggactggaag atgaaggaca ctcagaagtg cagtcagtgt gaggaaggct ttgacttccc	1020
ggaagacete caaaaacaca ttgcagagtg ccaceeegaa tgeteeecaa atgaggaeeg	1080
ageggeeete eagtgtgtet aetgeeaega getettegta gaggagaeet eeeteatgaa	1140
ccacatggag caggtgcata gcggggagaa gaagaactca tgcagcattt gttctgagag	1200
tttccacaca gttgaggaac tgtacagcca catggacagt caccagcaac cggagtcatg	1260
caatcacage aacageeett eeetggteae ggtgggetat aceteegtgt eeagtaegae	1320
tocagattoc aacototoag tggacagoto aacoatggtg gaagotgcoo ogcoaatooo	1380
aaagagtoga gggaggaaga gggccgctca acaaacccct gacatgactg gtccctcgag	1440
taaacaagca aaagttacct acagctgtat ttactgcaac aaacaattat tttcaagtct	1500
tgcagttctg cagattcacc tgaaaactat gcacttagat aagccagaac aggcccatat	1560
ttgtcagtat tgcttggagg tcctgccctc actctataac ctaaatgaac atcttaagca	1620
antennation antennance constituted testitutes at an attennance transfer.	1 (0 0

agtgcatgaa gctcaggacc caggtctgat tgtttctgcc atgcctgcca ttgtctacca 1680

gtgtaacttc	tgttccgaag	ttgtcaacga	cctcaacact	cttcaggaac	acatccgatg	1740
ttctcatgga	tttgcaaacc	ctgcagctaa	agatagtaat	gcattctttt	gtccccattg	1800
ctatatgggg	tttctcactg	actcttccct	ggaagagcat	attagacagg	ttcattgtga	1860
cctcagtggc	tecegatttg	ggtctccagt	gcttgggact	cccaaagaac	cagtagtaga	1920
agtctattct	tgttcctatt	gtacaaattc	gccaatattc	aacagcgttc	ttaaactgaa	1980
caagcatatc	aaagagaatc	ataaaaacat	teeettggee	ctgaattata	tccacaatgg	2040
gaagaaatcc	agggccttaa	gececetate	teetgtggee	atagagcaga	catctcttaa	2100
gatgatgcag	gcagtaggag	gtgcacctgc	acgtcccact	ggagaatata	tctgtaatca	2160
atgtggtgct	aagtacacat	ccctagacag	ctttcagact	cacctaaaaa	ctcatctcga	2220
cactgtgctt	ccaaaattga	cctgtcctca	gtgcaacaag	gaattcccca	accaagaatc	2280
cttgctgaag	catgttacca	ttcactttat	gatcacttca	acgtattaca	tctgtgagag	2340
ttgtgacaag	caattcacat	cagtggatga	ccttcagaaa	cacctgctgg	acatgcacac	2400
ctttgtcttc	tttcgctgca	ccctctgcca	ggaagttttt	gactcaaaag	tctccattca	2460
gctccacttg	gctgtgaagc	acagtaacga	aaagaaagtc	tataggtgca	catcttgcaa	2520
ctgggacttc	cgcaacgaaa	ctgacttgca	gctccatgtg	aaacacaacc	acctggaaaa	2580
ccaagggaaa	gtgcataagt	gcattttctg	cggtgagtcc	tttggcaccg	aggtggagct	2640
gcaatgccac	atcaccactc	acagtaagaa	gtacaactgc	aagttctgta	gcaaagcctt	2700
ccatgcgatc	attttgttag	aaaaacactt	gcgagaaaaa	cactgtgtat	tcgaaaccaa	2760
gacacccaac	tgtggaacaa	atggagcttc	cgagcaagtg	cagaaagagg	aagtggagct	2820
gcagactttg	ctgaccaaca	gccaggagtc	ccacaacagt	cacgatggga	gcgaagaaga	2880
cgttgacacc	tctgagccta	tgtacggctg	cgacatttgt	ggggcagcct	acactatgga	2940
aactttgctg	cagaatcacc	ageteegaga	ccacaacatc	agacctggag	aaagtgccat	3000
cgtgaaaaag	aaagctgagc	tcattaaagg	gaattacaag	tgcaacgtgt	gctctcgaac	3060
cttcttctcc	gaaaatggcc	teegggaaca	tatgcagacc	cacctaggcc	ctgtcaaaca	3120
ctacatgtgc	cctatttgcg	gagagcggtt	tecetecett	ttaactctta	ctgaacacaa	3180
agtcacgcat	agtaagagtc	ttgatactgg	aaactgccgg	atttgcaaga	tgcctctcca	3240
gagtgaagag	gagtttttag	agcattgcca	aatgcaccct	gacttgagga	attccctgac	3300
aggetttege	tgcgtggtgt	gcatgcagac	agtgacctcc	accttggaac	tcaaaatcca	3360
tgggacgttc	cacatgcaaa	agacagggaa	tgggtctgca	gttcagacca	cagggcgggg	3420
ccagcacgtc	caaaaactgt	ataagtgcgc	atcttgcctc	aaagaattcc	gttccaagca	3480
agatctggtg	aaacttgata	tcaatggcct	gccatatggt	ctgtgtgccg	gctgcgtgaa	3540
tctcagtaag	agegeeagee	caggcattaa	cgtccctccc	ggcacgaata	gaccaggctt	3600
gggccagaat	gagaatctga	gtgccattga	ggggaaaggc	aaggtggggg	gactgaagac	3660
acgctgctct	agctgcaacg	ttaagtttga	gtctgaaagt	gaactccaga	accacatcca	3720
aaccatccac	cgagagctcg	tgccagacag	caacagcaca	cagttgaaaa	cgccccaagt	3780
atcaccaatg	cccagaatca	gtccctccca	gtcggatgag	aagaagacct	atcaatgcat	3840
caagtgtcag	atggttttct	acaatgaatg	ggatattcag	gttcatgttg	caaatcacat	3900
		atgaatgcaa				3960
-	-	-		J	=	

-continued	
caaactccag tgccacctga tagagcacag cttcgaaggg atgggaggca ccttcaagtg	4020
tccagtctgc tttacagtat ttgttcaagc aaacaagttg cagcagcata ttttctctgc	4080
ccatggacaa gaagacaaga tctatgactg tacacaatgt ccacagaagt ttttcttcca	4140
aacagagctg cagaatcata caatgaccca acacagcagt tagtgcaagt acagtctctc	4200
aaggagaatt gattttgtgg cacaaaaagg gaacatgttt tactctttgc acgaaacttt	4260
cattgttaat gtatattatt cagaaacatt gtattgtacc ataaaacttg tattatcaaa	4320
ctgttggatg ttcatgtgtt tgaacttttg cgcaccggat agaccccttg tatataaagt	4380
gttgcacatg tattatgtcg tctgatacta aaatggtctt ataaagacaa gtggacttgg	4440
gccctattca ggcaagatta aaaaaaaaaa aagactatga ccaaaatggc ttaagataaa	4500
gtatttttaa ggaagaaaga ttaaaaacaa ctgttataca tgagactatg gttggacttc	4560
cttttcttta cacttaagcc tagaatttct ctttaggtat atcagcgctt aaatccaaga	4620
ctatttttta ttgctgaaga ttcttgcaaa ccatgaagag atgttctcac agaacagaac	4680
cccacagctg gataaggccc gtatatatat atttgtaagc cttgcaatgt gacaggtagc	4740
atcactatat atgcaatagt tgttatgtag actgtcaaag aattttttt tccctggata	4800
catttgaagc tttgagtgtt caaggttttc cttaatgatt tcacgcagcc aaattcttga	4860
atcagttgaa ctaacctgta tgttactgtt attaatgttt actctgcagt ctgaacctgg	4920
agattactgg aattgttttc caagaggaaa taaattcagt ttaccattag gaaaaaaaaa	4980
aaaaa	4985
<210> SEQ ID NO 45 <211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<211> LENGTH: 6493 <212> TYPE: DNA	
<211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	60
<211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45	60 120
<211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca	
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc</pre>	120
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag</pre>	120 180
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt</pre>	120 180 240
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccacca ccttggcttc aagatcctgg gtagaggctc acggtctttt</pre>	120 180 240 300
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccaca ccttggcttc aagatcctgg gtagaggctc acggtctttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgtgcttt</pre>	120 180 240 300 360
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccacca ccttggcttc aagatcctgg gtagaggctc acggtctttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgtgcttt ttcttttaga agctactaaa gggtgttggg gatgcttctg actattatga aggccaaaag</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctct cttactcatt tgccatcatt acgaggaaaa caaaccacca ccttggcttc aagatcctgg gtagaggctc acggtcttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgtgcttt ttcttttaga agctactaaa gggtgttggg gatgcttctg actattatga aggccaaaag gcctgttgac tggggctgct tttaaccctt tcctatttgc tgagaatgca gccgtgtgac</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccacca ccttggcttc aagatcctgg gtagaggctc acggtctttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgtgcttt ttcttttaga agctactaaa gggtgttggg gatgcttctg actattatga aggccaaaag gcctgttgac tggggctgct tttaaccctt tcctatttgc tgagaatgca gccgtgtgac agtaactgaa cattggtcta aagtctttcc aaaaggtcaa ggttcacaag aacatctgct</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens </pre> <pre><400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtctttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccaca ccttggcttc aagatcctgg gtagaggctc acggtcttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgtgcttt ttcttttaga agctactaaa gggtgttggg gatgcttctg actattatga aggccaaaag gcctgttgac tggggctgct tttaaccctt tcctatttgc tgagaatgca gccgtgtgac agtaactgaa cattggtcta aagtcttcc aaaaggtcaa ggttcacaag aacatctgct caaattaatg accatggggg atatgaagac cccagacttt gatgacctcc tggcagcatt</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtcttttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccacca ccttggcttc aagatcctgg gtagaggctc acggtctttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgtgcttt ttcttttaga agctactaaa gggtgttggg gatgcttctg actattatga aggccaaaag gcctgttgac tggggctgct tttaaccctt tcctatttgc tgagaatgca gccgtgtgac agtaactgaa cattggtcta aagtcttcc aaaaggtcaa ggttcacaag aacatctgct caaattaatg accatggggg atatgaagac cccagacttt gatgacctcc tggcagcatt tgacatccca gatatggtcg atcctaaagc agctattgag tctggacacg atgaccatga</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 6493 <212> TYPE: DNA <213> ORGANISM: Homo sapiens </pre> <pre><400> SEQUENCE: 45 gccatgtttc aatctggccc cagtggcttt ttctctgaaa gcaaacgtgt gtctttaca ccagggcttt ctccccaccc cagggggtgt cttccatcct tttgtggctc agttgaaggc gaaaagggct ccaaaccact aactaaccag aggagagccc cttcttccac ctccagggag aatttcagat ttaatttgtc cgaagatagc gtgctctctt cttactcatt tgccatcatt acgaggaaaa caaaccacca ccttggcttc aagatcctgg gtagaggctc acggtcttt caaccatctt tggcgaggcc ttgcttcctt ccactcgagg tatgttctgt cttgttctt ttcttttaga agctactaaa gggtgttggg gatgcttctg actattatga aggccaaaag gcctgttgac tggggctgct tttaaccctt tcctatttgc tgagaatgca gccgtgtgac agtaactgaa cattggtcta aagtctttcc aaaaggtcaa ggttcacaag aacatctgct caaattaatg accatggggg atatgaagac cccagacttt gatgacctcc tggcagcatt tgacatccca gatatggtcg atcctaaagc agctattgag tctggacacg atgaccatga aagccacatg aagcagaatg ctcacggaga ggatgactcc cacgcaccat catcttctga</pre>	120 180 240 300 360 420 480 540 600 660 720

ggtgacactg aaagactcga cattcagcca gtttagcccg atctccagtg ctgaagagtt

tgatgacgac	gagaagattg	aggtggatga	ccccctgac	aaggaggaca	tgcgatcaag	1020
cttcaggtcg	aatgtgttga	cggggtcggc	tecceageag	gactacgata	agctgaaggc	1080
actcggaggg	gaaaactcca	gcaaaactgg	actctctacg	tcaggcaatg	tggagaaaaa	1140
caaagctgtt	aagagagaaa	cagaagccag	ttctataaac	ctgagtgttt	atgaaccttt	1200
taaagtcaga	aaagcagagg	ataaattgaa	ggaaagctct	gacaaggtgc	tggaaaacag	1260
agtcctagat	gggaagctga	gctccgagaa	gaatgacacc	agcctcccca	gegttgegee	1320
atcaaagaca	aagtcgtcct	ccaagctctc	gtcctgcatc	getgecateg	cggctctcag	1380
cgctaaaaag	gcggcttcag	actcctgcaa	agaaccagtg	gccaattcga	gggaatcctc	1440
cccgttacca	aaagaagtaa	atgacagtcc	gagageeget	gacaagtctc	ctgaatccca	1500
gaatctcatc	gacgggacca	aaaaaccatc	cctgaagcaa	ccggatagtc	ccagaagcat	1560
ctcaagtgag	aacagcagca	aaggatcccc	gteeteteee	gcagggtcca	caccagcaat	1620
ccccaaagtc	cgcataaaaa	ccattaagac	atcttctggg	gaaatcaaga	gaacagtgac	1680
cagggtattg	ccagaagtgg	atcttgactc	tggaaagaaa	ccttccgagc	agacagcgtc	1740
cgtgatggcc	tctgtgacat	cccttctgtc	gtctccagca	tcagccgccg	tcctttcctc	1800
tecececagg	gegeetetee	agtctgcggt	cgtgaccaat	gcagtttccc	ctgcagagct	1860
cacccccaaa	caggtcacaa	tcaagcctgt	ggctactgct	ttcctcccag	tgtctgctgt	1920
gaagacggca	ggatcccaag	tcattaattt	gaagctcgct	aacaacacca	cggtgaaagc	1980
cacggtcata	tctgctgcct	ctgtccagag	tgccagcagc	gccatcatta	aagctgccaa	2040
cgccatccag	cagcaaactg	tcgtggtgcc	ggcatccagc	ctggccaatg	ccaaactcgt	2100
gccaaagact	gtgcaccttg	ccaaccttaa	ccttttgcct	cagggtgccc	aggccacctc	2160
tgaactccgc	caagtgctaa	ccaaacctca	gcaacaaata	aagcaggcaa	taatcaatgc	2220
agcagcctcg	caacccccca	aaaaggtgtc	tcgagtccag	gtggtgtcgt	ccttgcagag	2280
ttctgtggtg	gaagctttca	acaaggtgct	gagcagtgtc	aatccagtcc	ctgtttacat	2340
cccaaacctc	agtcctcccg	ccaatgcagg	gatcacgtta	ccgacgcgtg	ggtacaagtg	2400
cttggagtgt	ggggactcct	ttgcacttga	aaagagtctg	acccagcact	acgacagacg	2460
gagcgtgcgc	atcgaagtaa	cgtgcaacca	ttgtacaaag	aacctcgttt	tttacaacaa	2520
atgcagcctc	ctttcccatg	cccgtgggca	taaggagaaa	ggggtggtaa	tgcaatgctc	2580
ccacttaatt	ttaaagccag	tcccagcaga	tcaaatgata	gtttctccgt	caagcaatac	2640
ttccacttca	acttccactc	ttcagagccc	tgtgggagct	ggcacacaca	ctgtcacaaa	2700
aattcagtct	ggcataactg	ggacagtcat	atcggctcct	tcaagcactc	ccatcacccc	2760
agccatgccc	ctagatgaag	acccctccaa	actgtgtaga	catagtctaa	aatgtttgga	2820
gtgtaatgaa	gtcttccagg	acgagacatc	actggctaca	catttccagc	aggctgcaga	2880
tacgagtgga	caaaagactt	gcactatctg	ccagatgctg	cttcctaacc	agtgcagtta	2940
tgcatcacac	cagagaatcc	atcagcacaa	atctccctac	acctgccctg	agtgtggggc	3000
catctgcagg	teggtgcact	tccagaccca	cgtcaccaag	aactgtctgc	actacacgag	3060
gagagttggt	tttcgatgtg	tgcattgcaa	tgttgtgtac	tctgatgtgg	ctgctctgaa	3120
gtctcacatt	caaggttctc	actgtgaagt	cttctacaag	tgtcctattt	gtccaatggc	3180
gtttaagtct	gccccaagca	cacattccca	cgcctacaca	cagcatcctg	gcatcaagat	3240

aggagaacca	aaaataatat	ataagtgttc	catgtgcgac	actgtgttca	ccctgcaaac	3300
cttgctgtat	cgccactttg	accaacacat	tgaaaaccag	aaggtgtctg	ttttcaagtg	3360
tccagactgt	tctcttttat	atgcacagaa	gcaacttatg	atggaccata	tcaagtctat	3420
gcatggaaca	ttgaaaagta	ttgaagggcc	tccaaacttg	ggtataaact	tgcctttgag	3480
cattaagcct	gcaactcaaa	attcagcaaa	tcagaacaaa	gaggacacca	aatccatgaa	3540
tgggaaagag	aaattggaaa	agaaatctcc	atctcctgtg	aaaaaatcaa	tggaaaccaa	3600
gaaagtggcc	agtcctgggt	ggacgtgttg	ggagtgtgac	tgcctgttca	tgcagagaga	3660
tgtgtacata	teccaegtga	ggaaggagca	cgggaagcaa	atgaagaaac	acccctgccg	3720
ccagtgtgac	aagtctttca	gctcgtccca	cagcctgtgc	cggcacaacc	ggatcaagca	3780
caaaggcatc	aggaaagtgt	acgcctgctc	gcactgccca	gactccagac	gtacctttac	3840
caaacgtttg	atgctggaga	agcacgtcca	gctgatgcat	ggcatcaagg	accctgacct	3900
gaaagaaatg	acagatgcca	ccaatgagga	ggaaacagaa	ataaaagaag	acactaaggt	3960
ccccagtccc	aagcggaagt	tggaagaacc	agttctggag	ttcaggcctc	cccgaggagc	4020
aatcactcaa	ccactgaaaa	agctgaaaat	caatgttttt	aaggttcaca	agtgtgccgt	4080
gtgtggcttc	accaccgaaa	acctgctgca	attccacgaa	cacatccctc	agcacaaatc	4140
ggatggttct	tcctaccagt	gccgggagtg	tggcctctgc	tacacgtctc	acgtetetet	4200
gtccaggcac	ctcttcatcg	tacacaagtt	aaaggaacct	cagccagtgt	ccaagcaaaa	4260
tggggctggg	gaagataacc	aacaggagaa	caaacccagc	cacgaggatg	aatcccctga	4320
tggcgccgtg	tcagacagaa	agtgcaaagt	gtgcgcaaaa	acttttgaaa	ctgaagctgc	4380
cttaaatact	cacatgcgga	cacacggcat	ggccttcatc	aaatccaaaa	ggatgagctc	4440
agccgagaaa	tagccacaga	tgctccatga	ggaaaatccc	tgtccacatt	ggaataaaaa	4500
agacattttt	gttacaaagt	ttgcagtata	atagagttaa	cagtactgtc	taggctgttg	4560
caatatattc	tctttcaatg	taccttcctt	cacctcgtcg	tatatatcct	cgataagtat	4620
taaaacagta	tttgagttta	aaagagtttg	tatatattta	aatgaataac	tttttatact	4680
ctttgttaca	tgtttgtatc	agtatttagt	ggaaaaccat	ttgagttgtt	ttgggttaga	4740
atttttcttt	ttgtactgtt	tctttaaaac	agagttetta	gtaacagggg	cagttcctga	4800
attcaaataa	accattttgt	atgtttggat	tttgaatggg	ttaactaatt	acaggctaaa	4860
ataatgcctt	ttttagtgtt	tttaattttt	agaattcact	acataaattg	taagtaattg	4920
tgggtctcaa	aaacactagg	aacttttaag	tgtcttagca	cttcctcgat	gtgcctgccc	4980
tgagggagtg	agttcacatt	tgagacaact	gcactccagt	gtggacgtgc	ctttgtcttc	5040
aggccatgcc	gaagggtgtt	taaagcagtc	ttgcaggtcg	ctcctttccc	agccgtggat	5100
aaaaactgaa	gctaggaatc	taataaggaa	tgctgatttc	ctcagttcca	ttttgaggaa	5160
tggggaaggc	tattctaaag	aaaaaaatgg	gatttgtttt	ctcggcagat	ctgcaaggct	5220
ggctttaaga	gcacaaggag	ggaaagtaac	gaaagggctg	gactactata	aaagttacaa	5280
atacgtagtt	agaccaatag	atttatatag	tcaggttttt	gtcatgtaat	ttattaacta	5340
actattacag	aaacacagct	aagaatatca	agtatttctc	tggctcttga	cagaaaaaaa	5400
tcagttgact	taaccctttg	ctgtcaaaag	agttggcgtt	tcctgttctg	ggtgctactg	5460
ccaaacgtta	tggtacttag	agtcgggatg	cacaacttca	accaccgact	tatcaatgca	5520

gccgcctgtg tattgcaatt ggccgttacc ttaagcactg agccacccgg gtttagttca	5580
gccatttcaa gaagtatatt taacgtcggt agttctgctt tattaaaatg cagcagaggt	5640
actettetgt ecetteegtt tatagttete tgagagagtt etattttttg gttttgtttt	5700
gtgttttctt ttgcattttg tatcttgtat ttatccctga acatgttttg taccttttt	5760
ttttttttt ttaagaaaag gaattetttt gtgtatatat agataettge atgatataet	5820
gtagtcaatg ttcggttcct caaaaggtct tgctgctgtc aggtgttatg cactccatcc	5880
atcataactg tatgaaacac atttcatatg taaataaacg tgggacattt ggcccttgtg	5940
cttctgtgag agaattattg atggtgggtc tctgacatct ttgtgaagtt tgggaagtaa	6000
ttaattgcag cgacaagcta cagggtgttg cagaattctt cccactcaga agaatggcat	6060
attogttoto attagtaato agotattitg toactitott gitgactoca toagtacatg	6120
ggtacaatcc gagggtgtga atttcagctt gaaattccat tgctgttcct tgttttgttt	6180
gtattgctct aagttgtatt cataatagca ctttcatatg tttctgcatt tgaaccttgc	6240
aataageetg tgtggtagge cacataggte egaataaeet agttttaeag ttgagggage	6300
tgageteaga tteagttett tgeegaagee eteatagetg gtaagtgget ttgeatatta	6360
gaacccaaat attttgctct ctaaatctaa tgctcgctct atgtggttat gtacatattg	6420
acaaatatto atttattoaa caaataaaaa gtatgtacaa aacaaaaaaa aaaaaaaaaa	6480
aaaaaaaaa aaa	6493
<210> SEQ ID NO 46 <211> LENGTH: 3271	
<212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<213> ORGANISM: Homo sapiens	60
<213> ORGANISM: Homo sapiens <400> SEQUENCE: 46	60 120
<213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc	
<213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc	120
<213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc	120 180
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240
<213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc	120 180 240 300
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420 480
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420 480 540 600
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420 480 540 600 660
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420 480 540 600 660
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><213> ORGANISM: Homo sapiens <400> SEQUENCE: 46 cggaggtgag tgcagggctc cgggcgctgt gtgccgtgcc</pre>	120 180 240 300 360 420 480 540 600 660 720 780

tcagactgac aatgatttga caaaggaaat gtatgaagga aaagagaatg tatcatttga 1020

acttcaaaga	gacttttccc	aggaaacaga	cttttcagaa	gcctctcttc	tagagaaaca	1080
acaggaagtc	cactcagcag	gaaatataaa	gaaggagaag	agcaacacca	ttgatggaac	1140
agtgaaagat	gagacaagcc	ccgtggagga	gtgtttttt	agtcaaagtt	caaactcata	1200
tcagtgtcat	accatcactg	gagagcagcc	ctctgggtgt	acaggattgg	ggaaatccat	1260
cagctttgat	acaaaactcg	tgaagcatga	aataattaat	tctgaggaaa	gacctttcaa	1320
atgtgaagaa	ttagtagagc	cctttaggtg	tgactctcaa	cttattcaac	atcaagagaa	1380
caacactgag	gaaaagcctt	atcagtgttc	ggagtgtggc	aaagctttca	gcattaatga	1440
gaaattaatt	tggcatcaga	gacttcacag	tggggagaaa	cccttcaaat	gtgtggagtg	1500
tgggaaaagc	ttcagctaca	gttcccatta	tatcacacat	cagacaatcc	acagtgggga	1560
gaagccctat	cagtgtaaga	tgtgtgggaa	ggccttcagt	gttaatggaa	gcctaagtag	1620
gcatcagaga	atccatacgg	gagagaagcc	ctatcagtgc	aaggaatgtg	gaaatggctt	1680
cagctgtagt	tctgcatata	ttacacatca	gagagtccac	actggagaga	aaccttacga	1740
gtgtaatgac	tgtgggaaag	cgttcaatgt	taatgcaaaa	ttaattcaac	atcagagaat	1800
ccatactgga	gagaaacctt	atgaatgtaa	tgaatgtgga	aaaggettea	ggtgcagctc	1860
ccagcttagg	cagcatcaga	gcatccacac	aggagaaaag	ccctatcagt	gtaaagagtg	1920
tggaaaaggc	ttcaataata	atacaaaact	cattcagcat	cagagaatcc	acacaggtga	1980
gaaaccctat	gaatgcactg	aatgtggaaa	agccttcagt	gtcaaaggga	agttaatcca	2040
acaccagaga	attcacacag	gcgagaaacc	ctatgagtgt	aatgaatgcg	ggaaagcctt	2100
cagatgtaac	tcccaatttc	ggcagcatct	gagaattcac	actggggaga	agccctatga	2160
gtgtaatgag	tgtggaaagg	ccttcagcgt	taatgggaaa	ctaatgcggc	atcagagaat	2220
tcacactggg	gagaaacctt	ttgaatgtaa	tgagtgtggg	agatgcttta	cttctaaaag	2280
aaacctactt	gatcatcacc	gaatccatac	tggagaaaag	ccctatcaat	gtaaggaatg	2340
tgggaaagcc	ttcagtatca	atgccaaact	aactaggcat	cagaggatac	atactgggga	2400
gaaacctttc	aaatgtatgg	aatgtgagaa	agcattcagc	tgtagttcta	actatattgt	2460
gcaccagaga	atccatacag	gagagaaacc	ctttcagtgt	aaggagtgtg	gaaaagcctt	2520
ccatgttaat	gcccatttaa	ttcggcatca	gagaagccac	actggggaga	aacccttcag	2580
atgtgtggaa	tgtggcaaag	gcttcagctt	tagttctgac	tacattatac	atcagacagt	2640
ccacacttgg	aagaaaccct	atatgtgtag	tgtgtgtggg	aaagcattca	ggtttagctt	2700
ccagctcagt	cagcatcaga	gtgtccatag	tgaaggaaaa	tcctaataat	gagaaagata	2760
cagaaaactc	ttaaggttaa	tgccaaaatg	gatcaagtat	catcagattc	atccattgaa	2820
aaacctccaa	gagggcatga	atatggcaga	gtcttcatat	ggaaacagtt	tttattctat	2880
tcagtttaaa	tcaggaaagg	atgaccagtt	aaagagaaac	atccaaaaat	agctttgttt	2940
tgtaccaaca	ggaattagaa	aatataatga	aaagatttcg	ttcccagcag	catcaagaaa	3000
agtagatttt	ctagaaataa	acagttatgg	aggacttgta	tggagaaatt	taagtcttca	3060
ctgagggcca	ctttacaaag	gaaatttgaa	taaatggaga	gagagagaag	ccttgttgtt	3120
ggataggaaa	acccgtacta	aagatactct	acctacatta	atttatttgt	ttaatttttg	3180
acaacaagca	tgtattactt	ttgaaaagat	gaaaaataaa	gatttattta	aaaaaggaaa	3240
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	C			3271

<210> SEQ ID NO 47 <211> LENGTH: 1952 <212> TYPE: DNA <213 > ORGANISM: Mus musculus

<400> SEQUENCE: 47

60 gegeggggt ggggceageg egtataaagg ggegeagegg getgggegtt ceacaggeeg agtgegetgt getegagggg tgeeggetag geeegactga gageaagega acaggeagge 120 aageteegag ggggegegge eeaagetgga eaggaeaage gateeagaeg eaggageegt ccatcaccaa tcagccagcc ttcgaccatg ggcatgtccg acgtgtacct ccgcagcaga 240 300 acadeqatqq aacqettqqc ctccaqeqat acettcccaq tqataqeqeq taqcaqeqec tgccgcagcc tcttcgggcc tgtagaccac gaggagctgg gccgcgagct gcggatgcgc 360 ctggccgagc tgaacgccga ggaccagaac cgctgggact tcaacttcca gcaggatgtg 420 480 cctcttcgag qccctqqtcq tctqcaqtqq atqqaqqtqq acaqcqaqtc tqtqcccqcc ttctaccqcq aqacqqtqca qqtqqqqcqc tqtcqcctqc aqctqqqqcc ccqqccaccc 540 ccqqtqqccq tqqctqtcat cccqcqttct qqqccqccqq ctqqcqaqqc ccccqacqqc 600 ctagaggagg cgcctgagca gccgccagc gccccagcct cggccgtggt cgcggagccc 660 720 accecaced equeceeque eccqqettea qutetqueet caqueecaut teeqquqqtq accetggteg egaceteega ecegaeteeg gaceegatee eggaegegaa eeeggaegtg 780 gegaeteggg aeggegagga aeaggteeet gageaggtet etgageaggg egaggagteg 840 ggtgctgagc cgggtgatga gctgggaact gagccggtct ctgagcaggg cgaggagcag 900 ggcgcagagc cggtcgagga gaaggacgag gagccggagg aggagcaggg cgcggagccg 960 gtcgaggagc agggtgcgga gccggtcgag gagcagaatg gggagccggt cgaggagcag 1020 gacgagaatc aagagcagcg cggccaggag ctgaaggacc agcctctctc ggggattcca 1080 ggacgtcctg caccegggac tgctgcggcc aatgcgaacg acttcttcgc caagcgcaag 1140 agaactgcgc aggagaacaa ggcgtcgaac gacgtccctc cagggtgtcc ctctccaaac 1200 gtggctcctg gggtgggcgc ggtggagcag accccgcgca aacgtctgag atgagttagt 1260 ttagaggeta aeggecagag agaacttget gggeatetgg geageggaeg atggaagaae 1320 tetgggette ggetgggace tttegtteat gtageaggaa eeggagatgg ttgegtagag 1380 cagcccacgg ttttgtggaa atctgaaaac tgtgcaatgt attgagaaca ctctgtacca 1440 tgtgcaagga gtacgctggt cccaaggtgt aaagctttaa atcatttatg taaaatgttt 1500 aatctctact cgctctcagt gcaaaacaaa aagagaaact agaaaatgta gaacgaagga 1560 aaaagatgag aaaaaggaaa aagcatgtat atttgtacaa aaagttaaaa aattatgcta 1620 atttaatatt tgtatttatc catgcgtgga tccctctgcc acgcaactgc tgggttattg 1680 attattacca aaggcactag aaatcaccag cttcagatta cccacaaatg taaatctact 1740 tttatattag actctagggg aatggttgtt gagtaaaagc ccccacacat tcatcttcag 1800 ttagettaca gtgtccccca ettcattaga ttgctcttaa acttggtgac cagacagtcg 1860 aaatggttcc tgtactgccc ataccaactg cccagggctc ctcgtccgcc aggttctaaa 1920 1952 taaagaggcc caacaaaaat caaaaaaaaa aa

60

2100

<211> LENGTH: 4281 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 48 cacccactcc cgtgcgcgcc cggcccgtag cgtcctcgtc gccgcccctc gtctcgcagc

cgcagcccgc gtggacgctc tcgcctgagc gccgcggact agcccgggtg gcccactggc 120 gegegggega gegeaeggge getecagtee ggeagegeeg gggttaageg geceaagtaa 180 acgtagegea gegateggeg ceggagatte gegaaceega caeteegege egecegeegg ccaggacccg cggcgcgatc gcggcgccgc gctacagcca gcctcacgac aggcccgctg 300 aggettgtge cagacettgg aaacetcagg tatatacett tecagaegeg ggateteece 360 tececeatee atagtgeett gggaceaaat eeagggeett ettteaggaa acaatgaagg 420 gagacagcag acatctgaat gaagaagagg gtgccagcgg gtatgaggag tgcattatcg 480 ttaatgggaa cttcagtgac cagtcctcag acacgaagga tgctccctca cccccagtct 540 tqqaqqcaat ctqcacaqaq ccaqtctqca caccaqaqac caqaqqccqc aqqtcaaqct 600 cccqqctqtc taaqaqqqaq qtctccaqcc ttctqaatta cacqcaqqac atqacaqqaq 660 atggagacag agatgatgaa gtagatgatg ggaatggctc tgatattcta atgccaaagc 720 tcacccgtga gaccaaggac accaggacgc gctctgaaag cccggctgtc cgaacccgac 780 atagcaatgg gacctccagc ttggagaggc aaagagcctc ccccagaatc acccgaggtc 840 900 ggcagggccg ccaccatgtg caggagtacc ctgtggagtt tccggctacc aggtctcgga gacgtcgagc atcatcttca gcaagcacgc catggtcatc ccctgccagc gtcgacttca 960 tggaagaagt gacacctaag agcgtcagta ccccatcagt tgacttgagc caggatggag 1020 atcaggaggg tatggatacc acacaggtgg atgcagagag cagagatgga gacagcacag 1080 agtatcagga tgataaagag tttggaatag gtgacctcgt gtggggaaag atcaagggct 1140 totootggtg gootgooatg gtggtgtoot ggaaagcoac otooaagcga caggcoatgo 1200 ccggaatgcg ctgggtacag tggtttggtg atggcaagtt ttctgagatc tctgctgaca 1260 aactggtggc tctggggctg ttcagccagc actttaatct ggctaccttc aataagctgg 1320 1380 tttcttatag gaaggccatg taccacactc tggagaaagc cagggttcga gctggcaaga ccttctccag cagtcctgga gagtcactgg aggaccagct gaagcccatg ctggagtggg 1440 cccacggtgg cttcaagcct actgggatcg agggcctcaa acccaacaag aagcaaccag 1500 agaacaaaag togaagacgo acaaccaatg actotgotgo ttotgagtoo coccoaccoa 1560 1620 aqcqcctcaa qacaaataqc tatqqcqqqa aqqaccqaqq qqaqqatqaq qaqaqccqaq aacqqatqqc ttctqaaqtc accaacaaca aqqqcaatct qqaaqaccqc tqtttqtcct 1680 gtggaaagaa gaaccctgtg tccttccacc ccctctttga gggtgggctc tgtcagagtt 1740 geogggateg ettectagag etettetaea tgtatgatga ggaeggetat eagteetaet 1800 gcaccgtgtg ctgtgagggc cgtgaactgc tgctgtgcag taacacaagc tgctgcagat 1860 gettetgtgt ggagtgtetg gaggtgetgg tgggegeagg cacagetgag gatgeeaage 1920 tgcaggaacc ctggagctgc tatatgtgcc tccctcagcg ctgccatggg gtcctccgac 1980 gcaggaaaga ttggaacatg cgcctgcaag acttcttcac tactgatcct gacctggaag 2040

aatttgagee acceaagttg tacceageaa tteetgeage caaaaggagg cecattagag

tcctgtctct	gtttgatgga	attgcaacgg	ggtacttggt	gctcaaggag	ttgggtatta	2160
aagtggaaaa	gtacattgcc	tccgaagtct	gtgcagagtc	catcgctgtg	ggaactgtta	2220
agcatgaagg	ccagatcaaa	tatgtcaatg	acgtccggaa	aatcaccaag	aaaaatattg	2280
aagagtgggg	cccgttcgac	ttggtgattg	gtggaagccc	atgcaatgat	ctctctaacg	2340
tcaatcctgc	ccgcaaaggt	ttatatgagg	gcacaggaag	gctcttcttc	gagttttacc	2400
acttgctgaa	ttatacccgc	cccaaggagg	gcgacaaccg	tccattcttc	tggatgttcg	2460
agaatgttgt	ggccatgaaa	gtgaatgaca	agaaagacat	ctcaagattc	ctggcatgta	2520
acccagtgat	gatcgatgcc	atcaaggtgt	ctgctgctca	cagggcccgg	tacttctggg	2580
gtaacctacc	cggaatgaac	aggcccgtga	tggcttcaaa	gaatgataag	ctcgagctgc	2640
aggactgcct	ggagttcagt	aggacagcaa	agttaaagaa	agtgcagaca	ataaccacca	2700
agtcgaactc	catcagacag	ggcaaaaacc	agcttttccc	tgtagtcatg	aatggcaagg	2760
acgacgtttt	gtggtgcact	gagctcgaaa	ggatcttcgg	cttccctgct	cactacacgg	2820
acgtgtccaa	catgggccgc	ggcgcccgtc	agaagctgct	gggcaggtcc	tggagtgtac	2880
cggtcatcag	acacctgttt	gcccccttga	aggactactt	tgcctgtgaa	tagttctacc	2940
caggactggg	gagctctcgg	tcagagccag	tgcccagagt	cacccctccc	tgaaggcacc	3000
tcacctgtcc	cctttttagc	tcacctgtgt	ggggcctcac	atcactgtac	ctcagctttc	3060
tcctgctcag	tgggagcaga	gcctcctggc	ccttgcaggg	gagccccggt	gctccctccg	3120
tgtgcacagc	tcagacctgg	ctgcttagag	tagcccggca	tggtgctcat	gttctcttac	3180
cctgaaactt	taaaacttga	agtaggtagt	aagatggctt	tcttttaccc	tcctgagttt	3240
atcactcaga	agtgatggct	aagataccaa	aaaaacaaac	aaaaacagaa	acaaaaaaca	3300
aaaaaaaac	ctcaacagct	ctcttagtac	tcaggttcat	gctgcaaaat	cacttgagat	3360
tttgttttta	agtaacccgt	gctccacatt	tgctggagga	tgctattgtg	aatgtgggct	3420
cagatgagca	aggtcaaggg	gccaaaaaaa	attccccctc	tecececagg	agtatttgaa	3480
gatgatgttt	atggtttaag	tetteetgge	accttcccct	tgctttggta	caagggctga	3540
agtcctgttg	gtcttgtagc	atttcccagg	atgatgatgt	cagcagggat	gacatcatca	3600
cctttagggc	ttttccctgg	caggggccca	tgtggctagt	cctcacgaag	actggagtag	3660
aatgtttgga	gctcaggaag	ggtgggtgga	gtggccctct	tccaggtgtg	agggatacga	3720
aggaggaagc	ttagggaaat	ccattcccca	ctccctcttg	ccaaatgagg	ggcccagtcc	3780
ccaacagctc	aggtccccag	aaccccctag	ttcctcatga	gaagctagga	ccagaagcac	3840
atcgttcccc	ttatctgagc	agtgtttggg	gaactacagt	gaaaaccttc	tggagatgtt	3900
aaaagctttt	taccccacga	tagattgtgt	ttttaagggg	tgctttttt	aggggcatca	3960
ctggagataa	gaaagctgca	tttcagaaat	gccatcgtaa	tggtttttaa	acacctttta	4020
cctaattaca	ggtgctattt	tatagaagca	gacaacactt	ctttttatga	ctctcagact	4080
tctattttca	tgttaccatt	ttttttgtaa	ctcgcaaggt	gtgggctttt	gtaacttcac	4140
aggtgtgggg	agagactgcc	ttgtttcaac	agtttgtctc	cactggtttc	taatttttag	4200
gtgcaaagat	gacagatgcc	cagagtttac	ctttctggtt	gattaaagtt	gtatttctct	4260
ataaaaaaaa	aaaaaaaaa	a				4281

<211> LENGTH: 2214
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 49

gttgttctaa gatctttggt	gatccaagaa	aagctgtgtt	ggtcaagggc	aggacagatg	60
actcccagag aaaaaagatg	gcgaaaccaa	ggacaatcag	agtcgtcccg	ggttctgcat	120
ggctggtgag tgagctggcc	tgctgaaggc	catgatccag	actgtacctg	acccagcagc	180
tcatattaag gaggccttgt	cagttgtgag	cgaggaccag	tcactatttg	agtgtgccta	240
cggaacgcca cacctggcta	agacagagat	gaccgcatcc	tcttccagtg	actatggcca	300
gacatccaag atgagtccca	gagtccctca	gcaggactgg	ctgtctcaag	ccccagccag	360
ggtcaccatc aagatggagt	gcaaccctag	tcaggtgaat	ggttccagga	actcacctga	420
tgagtgcagt gtgaacaaag	gtgggaagat	ggtgggcagc	ccggatactg	tggggatgag	480
ctacggcagc tacatggagg	agaagcatgt	geegeeteee	aatatgacca	caaatgagcg	540
cagagtgatc gtccctgcag	atcctactct	gtggagcaca	gaccatgtcc	gacagtggct	600
ggagtgggcg gtgaaagaat	atggcctcct	cgatgtggac	gtcttactat	ttcagaatat	660
cgatgggaag gagctgtgca	agatgacaaa	ggatgacttc	cagcggctca	cgccgagcta	720
caatgeegae attettetet	cacatctcca	ctacctcaga	gagactcccc	ttccacatct	780
gacttccgat gacgttgata	aggctttaca	aaactctcca	cggttaatgc	atgccagaaa	840
cacagggggt gcagctttta	ttttcccaaa	tacttcagta	tatcccgaag	ctacgcaaag	900
aattacaact aggccagatt	taccttatga	geeteeeagg	agatcagcct	ggaccggcca	960
cagccacctc acccctcagt	ccaaagctgc	tcagccatct	ccctctgcag	tgcccaaaac	1020
tgaagaccag cgtcctcagt	tagatcctta	ccagatcctg	ggaccgacca	gtagccgcct	1080
tgctaatcca ggtagtggcc	agatccagct	gtggcagttc	ctgctcgaac	tcctgtcaga	1140
cagctccaac tccaactgca	tcacctggga	aggcaccaac	ggggagttca	agatgacaga	1200
cccggacgag gtggctcggc	gctgggggga	gaggaagagc	aagcccaaca	tgaactatga	1260
caageteage egegeeetee	gctactacta	cgacaaaaac	atcatgacca	aggtgcacgg	1320
gaagcgctac gcctacaagt	ttgacttcca	cgggattgcc	caggccctgc	agccccaccc	1380
teetgagteg teeetgtaca	agtacccctc	cgacctgcca	tacatgggct	cctatcacgc	1440
ccacccccag aagatgaact	ttgtgtctcc	ccaccctccc	gctctcccag	tcacatcttc	1500
cagtttettt getteecega	acccatactg	gaattcaccg	actgggggca	tctacccgaa	1560
cactaggete ceagecagee	atatgccctc	tcacctgggc	acctactact	agagaccaga	1620
tggaggcctt tcccaacagt	gtacaatcgc	ctagcagtcg	ccacaaactc	agcgaacaca	1680
aatcaaaagt gcctcgtgag	gagtggaaac	ggttggccag	agctggggaa	ggaagctggg	1740
gggggaaaaa aaaaccaaag	actcgcaggg	gagggtgggt	gccacccaag	tattactaca	1800
gaaatagaag aagctcaaaa	tatactgtac	atggacatat	aacctgtggt	ccacccttgt	1860
caaagacatt gtatgtagaa	aagcttgacc	aaaaagaaca	actgcccaag	gaagtggcct	1920
taagtagtgt acaaactgta	gagtgtggga	ccttgcttga	cctaccagga	ttgagtgaaa	1980
gcaatagaac aggaacagac	ttggcctaac	acaccatgta	tgatgtcatt	tgaagggaaa	2040
ctacctgtgt ttaaaaatag	aaaccatgtc	aaaaccaaag	aagaagcaga	caaaaacaga	2100

	a+ aac ====	200000000000000000000000000000000000000	a+a+a===++	+ a++ a-++	antttentt.	2160
gatggcgggc cc						2160
ttttctttga aa	tcagattc	gttccatttg	atagagagct	gccagctctg	tcaa	2214
<210> SEQ ID I <211> LENGTH: <212> TYPE: DI <213> ORGANISI	5541 NA	ısculus				
<400> SEQUENCE	E: 50					
tttcagtttc tc	tcttccag	gaaggaaaac	attcgagaaa	gagagaggga	gggagggagc	60
gagggagcga gag	gagcgagc	gagcgagcgc	cgcgggaggg	cgggcgcgcc	ggccgcgggt	120
gggaggagac ac	gccaggcc	ggcctgctgc	gcccgggtcg	cegegeegeg	acccgcacac	180
cccacgccgt gc	tegeegge	tcctacgccc	ccgcacctcg	cgcccaatcc	gcgcgttgag	240
aagagcccc cc	tccccctc	gggcggccgc	cgccagcgat	gctgcaagaa	acttcttaaa	300
cgaccgcatc cc	gctgcccc	gccgagcgtt	tctgggttgg	ggagaggaaa	ggaaagtgga	360
aaaaaactga ga	acttcctg	atccctttcg	ctgtgagaca	tgtctgagac	tcctgctcag	420
tctagcatta ag	caggaacg	aatttcatac	acgcccccag	agagtccagt	ggcaagccac	480
cgttcctcga ct	ccgcttca	tgttcacaca	gtgcctcgag	cgctcaggat	ggaggaagac	540
tcgatccacc tg	ccaacaca	cctgcgtttg	cagccgattt	actggagcag	agatgacgta	600
gcccagtggc tca	aagtgggc	agaaaatgag	ttttctttaa	ggcccattga	gagcaacaag	660
ttcgaaatga at	ggcaaggc	cctcctgctg	ctgaccaaag	aggatttccg	ctaccgatct	720
cctcattcag gc	gacgtgct	ctatgaactc	cttcagcata	tcctgaagca	gaggaaatct	780
cgaatgctct tc	tcaccatt	cttcccccct	ggggactcta	tccacaccaa	gccagaggtc	840
ctcctgcatc aga	aaccatga	cgaagataac	tgtgtccaga	ggacacccag	gacgcccgcg	900
gagagegtge acc	cacaaccc	tcccaccatc	gaactcttac	atcgccctag	gtcacccatc	960
accacaaacc ac	aggccttc	tcctgacccc	gaacagcagc	ggccccagcg	gtccccccta	1020
gacaacatga gc	cgccgcct	ctcgccagtg	gagaaagccc	aggggcccag	gctacagcag	1080
gagaacaacc ac	caggaaac	gtaccccctg	tcagtgtctc	ctgtcgagaa	taatcactgc	1140
ctgccctcaa gc	ccctggca	ggagagcact	cgagtgatcc	agctgatgcc	cagccccatc	1200
atgcaccctt tg	atcctgaa	cccccggcac	tcgcactcgg	tggacttcaa	acagtcccgg	1260
cactccgagg at	gggatgaa	tcgggaaggg	aagcccatca	acctgtctca	tegggaggae	1320
ctggcttact tg	aaccacat	catggtctct	atgtccccac	cggaagagca	cgccatgccc	1380
attgggagaa ta	gcagactg	tagactgctt	tgggattatg	tctatcagtt	gctgtctgac	1440
agccggtacg aa	aacttcat	ccgatgggag	gacaaagaat	ccaaaatatt	ccggatagtg	1500
gateceaacg gad	ctggctcg	actctgggga	aaccataaga	acagaacaaa	catgacctat	1560
gagaaaatgt cca	agagccct	gegeeactae	tacaaactaa	acattatcag	gaaggagccc	1620
ggacaaaggc tt	ttgttcag	gttcatgaaa	accccagatg	agatcatgag	tggccggaca	1680
gaccgtctag aa	cacctcga	gtctcaagtg	ctggatgaac	aaacgtacca	agaggatgaa	1740
cctaccatag cc	tcaccggt	gggctggcca	agaggaaacc	tgcccacggg	gaccgcagga	1800
ggcgtgatgg aa						1860
ggacacttet ce						1920
59acacccc CC	-googaco		Luguycacci	Lugacaagee	accyaycaac	1940

ggcagggctg	aagttctggc	ggagggcaca	agcctgagac	tcacacgtca	cgttcgcttc	1980
tccttctgat	ctcttgtctg	taactctcac	cctctccctt	cccctacacc	tgttgtagtc	2040
tcatggtgtt	tctggtttcg	ttttttgttt	ttgtttttta	agaacatgca	gtttgactat	2100
tcattgttca	tacagggaag	acatcacatg	ttgttttcct	atggaaatat	atctattata	2160
tatatattat	taatttttt	gttgttgttg	caaatctcac	caagtacggc	cagcttggct	2220
ggtcaggaaa	gagaaaactt	gcagaaggaa	tcaggttcct	ctttttcctg	ccacatagat	2280
ctggtgtgtc	ctgtccaagt	caggtettag	atgagaaagg	aaaacaaaat	gagagagata	2340
ctttcaaaca	atggaaaaga	agagttctgt	ctccatctcc	ctctctcgcc	gctcatcccc	2400
gcccctttct	ccttccccct	tetetgeetg	ctatgcactt	cacaggettt	tcatcagagc	2460
tagcctcact	agcacctgaa	ctacacagtg	acccggctgc	tctgtgacag	tcagacccct	2520
tgggcaccca	tctgaggaag	gccagacatc	tccccccacc	aaatgctgct	gtattctaga	2580
aagaacaatg	ggaggatcga	gcataagata	ggacagaggg	tggccacagg	atttgcaagg	2640
cccaggcagt	ttgggattgt	cctgaaagtg	ctacacatta	ggaaaatatg	agagaccaca	2700
caggcctggt	agtttaggag	caagaacagg	tcaccaatgt	tgtcccaaga	catcatgccc	2760
ttgtgggatt	gtcaccaccc	cacacacaca	ctccaagtcc	tagccttttt	cttctatgct	2820
ggtcctcatg	gaacacagaa	cacacatgag	ggaggatgct	ggaatttagt	ctcaggcaca	2880
gccggtattt	gcgcagacag	gaaattcctc	agatttagac	tttttccttt	tttccgtctg	2940
tcatggctgt	atttcaggag	gacatatctg	tggctcttct	ccacctcgac	ataaggtcag	3000
tagcatcttc	caagatgagg	gtaatgctat	tccttaggat	ttttgatagc	agggatttta	3060
ttttatttat	ttatttattt	ttgggatttt	tttttttgag	acagggtttt	tctgtgtatc	3120
cctggaattc	actctgtaga	ccagactagg	actcagagat	ctacctgcct	ctgcctccca	3180
agcactgaga	ttaaaggtgt	gcgcccccat	gcttagcttt	ttttcctttt	ctagccatct	3240
aagtggactc	tttgaagttc	actgttttaa	aacccagata	atgaggcctg	cctttcaaaa	3300
ccaccccttg	tccttcctgt	gttctcccac	atcatggaat	gagcctctcc	cageceteet	3360
gggtgtgtct	ctgcttggtc	agacgcagga	cacaggtgag	gctgacagac	cagagctgac	3420
ctacaactac	tcctaagtgg	ggcacataga	ggctaggagg	acctggacaa	gtcactctcc	3480
cgacgtcagc	tcacaggcgg	actgtggttc	acagacactg	gaattgagtt	gactgggtat	3540
ctttagtctt	gctgtgactt	ccccgtgcct	ccccacaac	ccacaatctg	ccttcaaaga	3600
ggtcagtgac	ctgggtgagg	ggtteeetet	taatattcat	ggggaatgat	gagagtcacg	3660
tgctatgtgt	ttcttgaaag	catgacaggg	gttccttttt	ttggcctcta	aaaatgactg	3720
gtaccttata	tcaaatgggg	agattaagcc	aaatacttgt	gttgtatgag	ccactgggag	3780
gaagagcaag	tgagaaaggg	tgtgcttttt	gtttttgttt	tgactgaggt	cctttgtgtg	3840
aatataaaat	gagaaactac	aacacttcat	actggccact	ttgcccatgc	gtagaactca	3900
gtcctttaac	tgcccaaaga	attgtccata	tgaactgtgt	aaggaaattc	ctctgttccc	3960
taaggagtct	tggatgacag	ctttggccac	ttacgttaga	aatgctcatg	gcagtgccgt	4020
ctttatttca	cacctggtgt	tgccataatt	gatttctttg	attctcttac	ctgcaaaagc	4080
ccttgtttgt	tttttggaga	gaaaatatgg	ccagggttgt	ctgggttgtc	agggttgtgc	4140
agtgctctca	ggcttcagac	tcacagaatt	tagatttagc	caatcagacc	ttggaggaaa	4200

-continued	
caccacaatg ggggtcctgt tttgtctttt tggtttttga gttttggttt tttgtttgtt	4260
tgttttttta caatcaacta tgatcttcta gatcgacatt aaagcgacat taagttcaag	4320
aggtgataga aggaatctaa aagcteettt agtggeettt ttetgeagee attgtgggtt	4380
gagtcaggaa aggaatttgc agggaagcat tgccatgtgg aggatgggca ttgccaccta	4440
ggtcctggga ttctgtcctg agtcctcggc cgggctgtct tcaggtctcc ttcagcagaa	4500
accaggggca gctggtcaga tgttgacagc agcttctctt ccgataattt tcatccaagg	4560
ccacttagtg ccacttggag acagggtccc tgatgtccca tatctggttt tggaaagaga	4620
atggtcctca taagaaaaga acaaaacagg cttcttgcct agtacattca ggtccctctg	4680
atccagcatc tttttacact aataccttgt ccagataaga atgtcactcc agctgacatc	4740
tagatgtctg tgaggagtcc ctggaatgac cactcttgtc ttttcacact gttcgggatc	4800
caaccataaa cacagtttgg cccattcact gttgttggca gaagacaacc tgagagaggt	4860
cgtgtcactt tccgtgggag cagacagcat gacacacagt tgggatcagt atctagccgg	4920
cctgcactta gcagcaggat aagcgttcag aaggcagtta gaaattattc tggtttaaac	4980
ccccatttga tccatccccg gcaaagagac gaaagatgcc aagggtggtt tttactgccc	5040
agtcattcgg tgctagttag agctgctgtg cgttctcagc ctgctcctct tctgaacaga	5100
aaccaaaatt ggacgtcatg agaaacccag tggagcaggg gtacagaggg acaccccaga	5160
accetgeeta teaacaagge acaegggaet cacecageae tettttggee ceateegeat	5220
caacactaaa caacttcaaa tgcgcccgac tcttttcacc ctcacaggtg aaccctcttc	5280
tggagacttc tctttgtgac ggcacccacc tgcaagccag atgaatctag aatgactttt	5340
tgttgttgtt gttgtttagt ttctaatctc ttgtttatga ggtgtggggt ttataaggga	5400
ctgaatcaaa tgaatgtaac aaaaaaagaa aaaaaaacaa acaaaaaatg ccttttctca	5460
gggccagtga gttgcaaata atttttaaag aaaaacctat aattacatca tctcaataaa	5520
ttttttataa aaaaaaaaaa a	5541
<210> SEQ ID NO 51 <211> LENGTH: 4429 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 51	
gtttctttct ggatggccga gcagatcccc tttaaagaga cagttcatga aatagaaacc	60
ctgcggctgg gcgcggagtg gctaaagggg acgagccggt gagggtctgg ccccgagaag	120
gctctgggag gacctggggg gccgtcctgg cctggcaggc cccctacctt cgcacacttt	180
cctcctgcgg gtcttgcccc tggagctgcg acagaggagt gggagaagtt ttagtaggtt	240
tcagataact ttcattacac atcgggctga taagagcaag agaaagtgag gaaagaggga	300
ggtagtgaga ccagaaggaa tagctgcgag ctcatttagg aagaggggaa aaacccaaat	360
acaccaaacc cggctcaatt ctggtcttaa aacactgttg gcggacaata aatccgaaac	420
gcgtggtcct ggcgatcagc tcccagggaa cgacaaactt atcagacacc catttggaag	480
tggagacacg aggcttttat tttaaaaaaa aattttttt tcttttaaaa tatctcgaaa	540
tattagagag tattattag coogstitta googstagagt caatagast saatag	600

tgttagcggg tgttctttga aaagattttc caactcgagt acctggctgc tgctgatctt attttgttt aattctgctg tgattgcttt tgattgctga gttgaggccg tagaaatcgg

600

aagatcttag	atgagttttg	caatgtgaag	ttctgcatag	atgccagtca	accagatgta	720	
ggaagetgge	tcaagtacat	cagattcgct	ggctgctatg	atcagcacaa	ccttgttgca	780	
tgccagataa	atgatcagat	attctaccga	gtagtcgcag	acattgcgcc	tggggaagag	840	
ctcttgctgt	tcatgaagag	tgaagaggac	ccgcacgaac	ccatggcgcc	tgacatccac	900	
gaagaacggc	agcaccgctg	tgaggactgt	gaccagctct	ttgaatccaa	ggcagagcta	960	
gccgatcacc	agaagttccc	atgcagcaca	cctcactcgg	ccttctccat	ggtggaggag	1020	
gacttgcaac	aaaacctgga	gagtgagagc	gateteegag	agatccatgg	caaccaggac	1080	
tgtaaggaat	gtgaccgagt	tttccccgat	ctgcaaagct	tggagaagca	catgctgtca	1140	
catactgagg	agagggaata	caagtgtgat	cagtgtccca	aggcatttaa	ctggaagtcc	1200	
aatttaattc	gccaccagat	gtcacatgac	agtggaaagc	actatgagtg	tgaaaactgt	1260	
gccaaggttt	tcacggaccc	tagcaacctt	cagcgacaca	ttcgatctca	gcatgttggt	1320	
gcccgggctc	atgcttgccc	cgagtgtggt	aaaacatttg	ccacttcgtc	aggcctcaaa	1380	
cagcacaagc	acatccacag	cagtgtgaag	ccctttatct	cattctctca	atcaatgtac	1440	
ccatttcctg	atagagactt	gaggtcgtta	cctttgaaaa	tggagcccca	atcaccaagt	1500	
gaagttaaga	aactgcagaa	gggaagetet	gagtcccctt	ttgacctcac	cactaagaga	1560	
aaggatgaga	agcccttgac	ttcaggcccc	tegaageett	caggaacacc	agccacaagc	1620	
caagaccagc	ccctggatct	aagtatgggc	agtaggggta	gagccagtgg	gacaaagttg	1680	
actgagcctc	gaaaaaacca	tgtgtttggg	gaaaagaaag	gaagcaacat	ggatactagg	1740	
ccatcttcag	atggctcctt	gcagcatgcc	agacccactc	ccttcttcat	ggaccccatt	1800	
tatagagtag	agaaaagaaa	gttaactgac	ccgcttgaag	ctttgaaaga	aaaatacttg	1860	
agaccttctc	caggattctt	gtttcacccg	caaatgtcag	caattgagaa	catggcagaa	1920	
aagctggaaa	gcttcagcgc	cctcaaacct	gaggccagcg	agctcctgca	gtccgtgccc	1980	
tccatgttca	gcttccgagc	tcctcccaac	accctgccag	agaacctgct	gcggaagggg	2040	
aaagagcgct	acacctgcag	gtactgtggc	aagatatttc	caaggtctgc	gaacctaaca	2100	
cggcacttga	gaacccacac	aggagagcaa	ccttacagat	gcaaatactg	tgatagatca	2160	
ttcagcattt	cttccaacct	gcagcgacat	gtgcgcaaca	tccacaacaa	ggagaagcca	2220	
tttaagtgtc	atttatgtga	cagatgtttt	ggtcaacaaa	ccaatcttga	cagacacctg	2280	
aagaaacatg	agaacggcaa	catgtctggg	acggcaacgt	cctcgcctca	ctcagagcta	2340	
gaaagcgcag	gcgcaatcct	ggatgacaaa	gaagatgcgt	actttacaga	gatccgcaat	2400	
ttcatcggga	acagcaacca	tggtagccag	tctcctcgga	acatggaaga	gaggatgaat	2460	
ggcagtcact	tcaaggataa	aaaggctttg	gcaaccagcc	aaaattcaga	tttattggat	2520	
gatgaagaag	tagaagatga	ggtgttgttg	gatgaggagg	atgaagacaa	tgatattcct	2580	
ggaaagccca	gaaaggagct	aggggtgact	cgtttagacg	aggagatece	ggaggatgac	2640	
tacgaagaag	ctggtgccct	ggagatgagc	tgtaaggcgt	ccccggtgag	gtataaagag	2700	
gaagactata	aatctggcct	ttctgctcta	gatcacataa	ggcacttcac	agatageete	2760	
aaaatgaggg	aaatggaaga	gaatcaatac	actgacgctg	agctgtcctc	cattagttct	2820	
tctcatgtgc	cagaggagct	taaacagacg	ttacacagaa	agtccaaatc	acaggcatat	2880	
gctatgatgt	tgtcactgtc	tgacaaggat	tecetecate	ccacctccca	cagttcctcc	2940	

				-contin	iuea		
aacgtgtggc a	cagcatggc	aagggctgca	gcagaatcca	gtgccatcca	gtccataagc	3000	
catgtatgac a	ttgtcaagg	ttgaccagag	tgggaccaag	tccaacggta	gcatggctct	3060	
ttcatacaga a	caatttaca	agactgctga	gcaggatgcc	ttataaccct	gaagggtcac	3120	
gcatttaaag t	ctggtgacc	ttaaactgaa	tgagtaaaga	aagagagaga	aaaaggaagc	3180	
tatttattct c	aatattttg	ttttgcacag	ccaaggcagc	tgctgacttc	tggaggatca	3240	
attaatccaa a	atgattgga	ggggaaagga	aacctcacca	gggaaggcat	ctttcattcc	3300	
ccctgccgca g	ggcatgggt	ggctgagagg	agcagttgaa	atggcagcat	tgatataaat	3360	
ggacatttca t	agaaatcaa	actctactct	acaggatcac	ctgatctgac	tgggaacagt	3420	
ggcttctaac t	accagattt	ttttttcct	ttttaaagtt	ttatgtaatt	taatcttttg	3480	
cagatggaag t	agtcagaag	aaatgcacaa	tgattatagg	aagtgatagc	aggattttt	3540	
gtcacccccc a	caccctctt	aactttggcc	ttcttgagta	cattgtttaa	aactaggggg	3600	
aaaaaagggt a	tgtgtatat	tgtaaactat	ggatgctcat	gcagagaggt	taagtcggtg	3660	
acataactgt t	tatcaccac	tgtaccacta	atacaatgtt	tgccaaatcc	ttgtaatgac	3720	
atcttaattt t	agacaatca	tgtcactgtt	tttaatgttt	caatttttt	gtgtgttgtg	3780	
tgtatcatgt a	tttatttgt	tggcaaacta	tggtttgttg	atcaaaaaga	gcactgttcc	3840	
cgtcagccac t	attttatga	tgtctgaggc	acaccccttt	ctgaattcca	aggaccaagg	3900	
tgacatgacc t	gtgtatggg	agtgcccaat	agtgtttggc	ttttcttaac	atteetteet	3960	
ttttgttgtt g	ttgttttgt	tttccttttt	aatgaactaa	ataccaatag	atgcaactta	4020	
gtttttgtaa t	actgaaatc	gattcaattg	tataaatgat	tataatttct	ttcatggaag	4080	
catgateett e	tgattaaga	actgtacccc	atattttatg	ctggttgtct	gcaagcttgt	4140	
gcgatgatgt t	atgttcatg	ttaatcctat	ttgtaaaatg	aagtgttcct	gaccttatgt	4200	
taaaaagaga g	aagtaaata	acagacatta	ttcagttatt	ttgtccttta	tcgaaaaacc	4260	
agatttcatt t	ttccttttt	gtttgtgatc	tcatttggaa	ataattggca	agttgaggta	4320	
ctttcttccc a	tgctttgta	caatataaac	tgttatgcct	ttcagtgcgt	tactgtggga	4380	
ggagcaacta a	aaaaaaaaa	taaagacttc	caaaaatcat	gaaaaataa		4429	
<210> SEQ ID <211> LENGTH <212> TYPE: <213> ORGANI	I: 3258 DNA	ısculus					
<400> SEQUEN	ICE: 52						
gtctgtgcag g	agteggeag	ctggcgccag	ggcggccgga	ggatgcagag	gggccggagc	60	
cgggcgggcc g	gaggeegag	acgcgcgctg	tcccccaccc	ctatcccgtg	aatccgccgg	120	
ccctggaacg c	gctgtcgct	gggcccgccg	tacccgggct	ctcctggtgt	ctcttactct	180	
ctactgctga g	ccctcccct	tecegegeeg	ctgcgagtgg	ccgcccacc	ttcgcctggt	240	
tcccaagaca c	agtagtgga	ccatggaggt	ggcgcctgag	cageeteget	ggatggcgca	300	
ccccgccgta t	tgaatgcgc	agcaccccga	ctcgcaccat	cegggeetgg	cgcataacta	360	
catggagcca g	cacagetge	tgcctcccga	cgaggtggat	gtcttcttca	accatctcga	420	
ctcgcagggc a	accettact	acgccaaccc	ggcccacgcg	cgcgcgcgcg	tttcctacag	480	

cccggcgcat gcccgtctca ccggaggcca gatgtgccga ccacacttgt tgcacagccc

aggettgeeg	tggctggacg	ggggcaaagc	agctctctct	geegeegetg	cccatcacca	600	
cagtccctgg	accgtcagcc	cgttctccaa	gaccccgctg	cacccctcag	ctgctggagc	660	
acccggaggg	cctctgtctg	tttacccagg	ggctgcgggt	gggagcgggg	gaggcagtgg	720	
gageteegtg	gcctccctca	ccccactgc	agcccactcg	ggctcccatc	tcttcggctt	780	
cccacccacg	ccacccaaag	aagtgtctcc	agaccccagc	acaacaggag	ctgcttcccc	840	
ggcctcttct	tctgcagggg	gtagtgtagc	ccggggtgag	gacaaggatg	gcgtcaagta	900	
ccaagtgtca	ctctccgaga	gcatgaagat	ggaaggcggc	agtcccctgc	gcccgggcct	960	
agctaccatg	ggcacccagc	ctgcaacaca	ccacccgata	cccacctatc	cctcctatgt	1020	
gecegeegea	gctcatgact	atggcagcag	tctcttccat	ccaggaggct	tcctgggtgg	1080	
ccccgcctcc	agcttcaccc	ctaagcagag	aagcaaggct	cgctcctgct	cagaaggccg	1140	
ggagtgtgtc	aactgtggtg	ccacagccac	ccctctctgg	cgacgagatg	gcacgggcca	1200	
ctacctgtgc	aatgcctgtg	ggctctacca	caagatgaat	ggacagaacc	ggccgctcat	1260	
caagcccaag	cggaggctgt	ctgctgccag	aagagcgggc	acctgttgtg	caaattgtca	1320	
gacgacaacc	accaccttat	ggcgccggaa	cgccaacggg	gaccctgtgt	gcaacgcctg	1380	
tggcctctac	tacaagctgc	acaatgttaa	caggccactg	accatgaaga	aggaagggat	1440	
ccagacccgg	aatcggaaga	tgtccagcaa	atccaagaag	agcaagaaag	gggctgaatg	1500	
tttcgaggag	ctctccaagt	gcatgcaaga	gaagtcaccg	cccttcagtg	cggctgccct	1560	
ggctggacac	atggcacctg	tgggacacct	cccacctttt	agtcactctg	gacacatcct	1620	
acccacgccc	acgcctatcc	accetteete	cagtctctct	tttggccacc	cccacccgtc	1680	
cagcatggtg	actgccatgg	gctaggcaag	cctcccactg	gacagacatg	gacatcaagg	1740	
gtggtttggc	agaaccagag	cgaggctggg	cactcccagg	atgggtggaa	catactcttg	1800	
getecegece	atcccaagag	acccacttcc	tectgecage	ctagcctggc	cgaagccacc	1860	
tctccttgga	ggactcccag	ccttgtgccg	ccattactgt	gaatatttct	aactgggctg	1920	
cagetegegt	gtgcccgggg	tgctgcccag	aaaagtgttt	tcacggagag	tgtttgtttg	1980	
gagagcaaaa	tggacaggtt	tacagattta	tagcaagaag	agactgggga	tagaaaaatg	2040	
aaaccttttt	ttttctttt	cttttttct	tcttctgttt	tatttttttg	atggagaaag	2100	
gagtaggcaa	gaagaaaaat	aatttattt	gctcttattt	cttacaagaa	cgtgaagaca	2160	
tggaggcgtg	tgctatttgt	gttcttgggg	tecttetttg	ggacctcctg	ccaccagtca	2220	
gggctctcgg	gggcagactt	agaggtcctc	agcctgagcc	tccttcaccc	cagcctgcct	2280	
gcagggtagc	ccctgccctg	acgcagccct	agagggcaga	gacaattgca	ggcggtcctg	2340	
cgcagattcc	caggccaggg	ctgggtcaca	ggaaggaaac	attctctgga	aaggggaaac	2400	
gtctcccaga	tcattcccct	ggcttccaga	ggccaaagct	ggtgtgaccc	aaatgggcca	2460	
gagetgeage	ctgtgctcta	ggccagtcgg	acccctgtaa	atacaacctt	cttttctgct	2520	
aaaccctcgg	cccctcccc	ctctaagata	aataagaaaa	tactcaaagc	gaaaaccaaa	2580	
ctgcataagc	ttaacccgct	gatgagtggt	tttattttga	aactcgtttt	ttgggtccag	2640	
tcaattgtac	gttgccacag	aagccccgct	atggaaaaaa	ataaataaaa	cctacaaacc	2700	
aggcctgagc	ttcacagtcc	tttgagtggt	tcttgggtcc	cacagccctg	gcagggggct	2760	
caddacaaaa	gggaatetta	tactettaat	ttctgggaga	cagggggcag	gcaggcagt.g	2820	

-concinued	
gccctgtgat cccaggette tgttetgetg tggetggetg aateetteaa ggtacagttg	2880
tacataaaaa gtgtcccaag cttcgattct gtgtgtggtg gtggcagtgg tgcagcagcc	2940
agcaaggggg ccccgagtga gcccagggag acgattgtgc tgagtcaacc aagtgcaata	3000
toggtgtoca gttgctgcag agcaccctaa coggaagtaa ottattttgt gctagtacco	3060
gcataagaga agaatcggca gtattttctg tttttatgtt ttgggcttgt tttattttga	3120
attagtgacc taagttattg ttaactgtgt acaacattta aatattgtct gtaaaaattg	3180
tatgctaccc tcttattcct ttaaagtgaa tactgttaaa aataataaaa tactttttgt	3240
gaaaaaaaa aaaaaaaa	3258
<210> SEQ ID NO 53 <211> LENGTH: 1823 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 53	
cacagaaacg aaaaggagaa gtgtctgtct gtgcagagac tcataacgtt gaccgagccg	60
agagcagtcc ccagggacag tgtggaggtt cgtggctctc gggcagaact cagaagaggg	120
acageteeet gaeggtgtgg egtgeaegea gaaaaatgee aeggteettt etagtgaaga	180
gtaagaaggc acacacttac caccageeee gggcacaggg tgatgagetg gtetggeete	240
ctgctgtaat teetgtggea aaagageata geeagagtge eageeetett eteageacae	300
cgcttccaag ccagaccttg gactggaaca caatcaaaca ggagcgggag atgttgctga	360
accagageet teccaagatg geeteageee cagaggggee tetegtgaca ecceaaceee	420
aggatgggga atcaccactc tetgagtcac eccettteta caageecage tteteetggg	480
atacettgge etectectae agecacaget acaeacagae eccetecace atgeagteeg	540
cetteetgga gegeteegtg aggetgtaeg geageceeet egtgeeeage acagagtete	600
cettggaett cegeeteege taeteteeag geatggaeae ttaeeaetgt gteaagtgea	660
acaaggtgtt ctccacccct catgggctag aagtgcatgt ccgccgctct cacagcggaa	720
cocggccctt tgcctgtgat gtctgtggca aaacctttgg ccacgctgtg agcttggagc	780
agcatactca cgtccactca cagggcgtcc cagccgggtc cagtcctacg cccaccttgg	840
ctgtcccggg ccttgaggcc ccacctgcac ctgacccccc agggcctcgt ttcctccggc	900
aggagcgaag cttcgagtgc cggatgtgtg gcaaagcctt caagcgttca tccaccctgt	960
ccacccacct gctcatccac tcggacactc ggccctaccc ctgccagttc tgtgggaagc	1020
gettecacea gaagteggae atgaagaaac acacetacat ecacacaggt gagaageeee	1080
acaagtgcca ggtgtgtggg aaagcettca gecagagete caaceteate acceacagee	1140
gcaagcacac aggetteaag eegtteaget gtgagetgtg caccaaggge ttecagegea	1200
aggtggacct gcgacgtcac cgtgagagtc aacacaatct caagtgagac ggttggccgc	1260
ctgctttagt gtgtctcgcc tgaaggccag cctctccttt ccaatcctga tcccagtcct	1320
cctggaagca gcattgccca tgagcctctc tgcttctttt gagactggat gacctcaacc	1380
aagccacact ceteetetga ecacagetga tgtgggagte agttegggee tttetgaact	1440
gaggcagtca cagacatgct ctggtctcat tcaatgccag agcacagaca gctacaaagc	1500
5 55 5 5 55 55 55 55 55 55 55 55 55 55	1560

cctcgtggac atggcaaaac caggcaagag ccaggatcca cagagaaacc ctcttgcttg 1560

			-0011011	raca	
cttctctggg tctagtgact	gaatttttag	ggattctctt	tttggctgcc	acagtcagag	1620
ttgtcccctg gcctagaggt	ctggcgcccc	tctgcttcgg	ccagatgtgc	tctctgtccc	1680
ccacctctca ccacatccat	ccgcccactg	ggagtcaggc	tcctgaggtg	agccacgagg	1740
ctatgaaatc agccatgata	gtagaagcct	gctcctatca	gttgatgtaa	atgtaaataa	1800
aggtgggttt atttacatgt	gaa				1823
<pre><210> SEQ ID NO 54 <211> LENGTH: 3619 <212> TYPE: DNA <213> ORGANISM: Mus m</pre>	usculus				
<400> SEQUENCE: 54					
cttgcaaaga catccccgca	cagcccggcc	gccgcggcca	ccttccctgc	cccgagctgc	60
agatgtggcg gagcggccgg	gtgccgcgcg	gcgccagggg	agcccgtgcc	ccgtaagcct	120
cgcgcccgg ccccgcccg	ccccggccct	cccctcgcc	cgctccccgc	tgccccagga	180
ccgccggaac ccgcagccgg	agccagtcag	cccggcagcc	gaggttcctg	cctcaagacc	240
agttgggtac atctttgaca	cgccctccca	ccatgcactc	cttggacgag	ccctcgacc	300
taaagctgag catcaccaag	ctccgagcgg	caagagagaa	gagagaaagg	acactgggtg	360
tggtccggca tcatgctttg	catcgagagc	tgggcctggt	ggacgatagc	cccgcccctg	420
gctccccagg ctctccacca	ccaggtttcc	tgctgaaccc	caaattccct	gagaaggtgg	480
acggacgctt ttctgcagcc	cccttggtgg	acctcagctt	gtcaccaccc	tctggactgg	540
acteteceaa tggeageage	tecetgtete	ctgagtgcca	gggcaatggg	gacttgcctc	600
cactgcctac tgctgtggat	ttccagccac	ttcgctattt	ggatggtgtc	cccagttcct	660
tccagttctt cttgcccctg	ggttctggtg	gggctctgca	cctacctgct	tcctccttcc	720
ttccccccc caaggacaag	tgcctctcac	cagagetgee	cctggccaag	cagctggtgt	780
gtcgatgggc caagtgtaac	cagctctttg	agctcctcca	agacctggtt	gaccatgtca	840
acgaccatca tgtcaagcct	gaacaggatg	ctcgatactg	ctgtcattgg	gagggctgcg	900
cccgccatgg ccgtggcttc	aatgccaggt	acaagatgct	cattcacatc	cggacacaca	960
ccaacgagaa gccgcaccga	tgccccacct	gtaacaagag	cttctcccgc	ctggagaacc	1020
tgaagatcca caaccgctcc	cacacaggtg	agaagcccta	cgtctgcccc	tatgagggct	1080
gcaacaagcg ttactccaac	tccagtgacc	gcttcaagca	cacccgtacc	cactacgtag	1140
acaagcccta ctactgcaag	atgcccggct	gtcacaagcg	ttacacggac	cccagttcac	1200
tgcgcaaaca catcaaggcc	catggccact	ttgtgtcaca	tgagcagcag	gageteetge	1260
agctgcgccc accccctaaa	ccaccactgc	ccactcctga	cagtggctcc	tatgtcagcg	1320
gggctcagat catcatcccg	aaccctgctg	ccctttttgg	aggccccagt	ctgcctggcc	1380
tgccattacc tctacctcct	ggcccccttg	acctcagtgc	tctggcctgt	ggcaatggtg	1440
gaggtggggg tgggggtatt	ggecetggge	tgecaggete	tgttctgccc	ctcaatctgg	1500
ccaagaaccc gctgttgccc	tcaccctttg	gggctggtgg	actaggcctg	cctgtggttt	1560
ctctcctggg tggctctgcc	_		-		1620
ctgccagggt cctgggcctg					1680
					1740
gctcccggcc aagccctgat	ggactecett	rgereeeagg	cactytacty	gaccigicca	1/40

caggcaactc agcagccagc agtccagagg tgttaactcc tggctgggtg gtcattccac	1800
cagggtctgt gctgctcaaa ccagctgtgg taaactgaaa ctgggcaacc catctaccag	1860
ctgtgacagc ccagccacct accgtgggct catcccccga cgaacagaaa ctcttctgcg	1920
aaatagcaat aatatcctac tgccccaggg ccaagctgca gccccagaca agctgggtgg	1980
caaggtggca aggatggtgc tagaaggtct gtgctggcct cctggctcca aagtgaggac	2040
ttggcttgga cctgctgtcc aagaagagcc attctcttgg gtgctaaggc ctcaatcact	2100
tecatttece tagtetgtag tetgggtgag geetttgeet gteeteecag gaegeteagt	2160
cctgcctctt gctctggtgc gttcctctct atggccaccc tggctgggca gggttccagt	2220
cctccctgcc ttacctactt gtcagctagg agcccccagt gatcatagat aggcccacac	2280
ttgggaatte ettagacece ttteeetetg gteeacetet agagggagag caagacagae	2340
actgctgcct tetectgcct gctgctatga caaggtgctt etetgcttge ttagcagaga	2400
agcetgetet gecageaett etettteetg ceagagggtt ggeaataett tecaaagagg	2460
aggggtagct gaccactcaa ccttctcctt ggggatgtgc aggcaggtac aagggtcact	2520
gtgctgacct ggcccggctt ggcctggcct gagcagtgtt actctgcaga agcttataag	2580
gcactagtct acaccacgtg ggctctcaag cttgggacac agctacaggt ttgggggcac	2640
caagtaatgg gatgcaggga agaagactca ttggaaaggc gctttctaga aagcactgac	2700
tgaagcccct gagtgttaag ggaggctagg cagccaagca cagcattagc ttgggaaaaa	2760
gctagctaga gaaaggcctg gccatctggc agggttcttt cctgactcta gttgaaccct	2820
tttcttggtg ctgcctctct tgcccatgag ctctgcccaa gccagcgacc ccagggcttg	2880
tgcaacaaac caaggacatt ggaggactgt gtgctccata gctccaaaag gctagctgcc	2940
ccagcttggg cttcttgctg tcccctgtac tatgctgcag tggctaagcc cctcatgtcc	3000
ccatctgtag aacaagagag ctgctgaggt gctagtgggt ccttggctct gtggttcctc	3060
tgagcagttc tgtctagtct ttttctcaga ctgcctttct gtttcagaag ggtcaccctt	3120
ccctaaccta cctgactgct ggccttagaa ccccagccct gatggggctc ggctgtgctg	3180
geteteettg atggggetgt gageaagtta aggagetggt etectacett tgggtetgee	3240
taggatecaa geaacteetg getetattag ggteetagge ettaagteee tggetggggg	3300
atttggtttg agactcaagc caaggagaag aacagagcac tggacattag ctcagcatgt	3360
gactcaagtg atagaccagg ctcagaaggg ctggttactt cctgtcagtt tgttgcacat	3420
tccaggattc agtattttaa caggttctaa gtgcctttct cttgtagtgt atggttttcc	3480
tccttctggc tccatggctg ttagcataga gtttaaaaaa agagagataa gctaatgact	3540
ataacaatat attootooat gggagaggaa gtttatacag aaacaataaa gtgagttgca	3600
aagatggttt ctgcacgtg	3619
<210> SEQ ID NO 55 <211> LENGTH: 5665 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 55	
tettgteagg geageggeae atggaetgee tgatgegetg ageeeggege tgeggggeeg	60
	100

cggagcgcgg ggagcagcgg ccgcggcggg gagggggtg gggcgggacg gcacagcctc

cggtgctcgc	gcgaggggcc	ggggcccgcg	ctttgccttc	tgctcatctg	cagccgtcta	180	
cgttttcaaa	atttctctct	ttcctttttc	ccccacctc	cttgcaattt	tgaacatttt	240	
gcaagactga	gtgttggagg	caggtgagaa	agcatcctgc	actgggtcgg	aggagtccgc	300	
ggcgctagat	gcgccttccc	tggactgtcg	gcactgagaa	cacgaaagtt	tttttgtttt	360	
tgtttttgtt	tttttttgat	atttgtatgc	tgatgtattt	acaaagacag	aagtgatttt	420	
tttttttctt	ccttgtctgc	actgttttga	aagcgagtac	ttttggttgg	caaaggacgg	480	
aggaaacaaa	gctcatcaac	atttcggggc	ggcgattggc	cttcttttta	aaaagacaat	540	
tgagtgcatc	acgatggaga	aaatgtcccg	acageteece	ttgaacccca	cctttatccc	600	
gcctccctac	ggcgtgctca	ggtccctgct	ggagaacccg	ctgaagctcc	cccttcatcc	660	
tgaagacgca	tttagtaaag	aaaaagacaa	aggaaagaag	ctggacgatg	agagcagcag	720	
cccgaccgtc	ccccagtccg	ccttcttggg	acccacctta	tgggacaaaa	cccttcccta	780	
tgacggagat	actttccagc	tggaatacat	ggacttggag	gaattcctgt	cagagaatgg	840	
catccccccg	agtccgtcgc	agcacgacca	cagccctcac	ccccctggct	tgcaaccagc	900	
ttcctccacg	gegeeetegg	tcatggatct	cagcagccgg	gccacagcgc	ccctccaccc	960	
gggcatcccg	tctccgaact	gtatgcagag	ccccatcaga	ccaggccagc	tgttgccagc	1020	
aaaccgcaat	acaccgagtc	ccattgaccc	tgacaccatc	caggtaccag	tcgggtatga	1080	
accagacccg	gcagaccttg	ccctctccag	catcccgggg	caggaaatgt	ttgaccctcg	1140	
caaacggaag	ttctctgagg	aagaactgaa	gccacagccc	atgattaaga	aagctcgcaa	1200	
agtcttcatt	cccgatgatt	tgaaggatga	caagtactgg	gcgaggcgca	gaaagaacaa	1260	
catggcggcc	aagcgctccc	gtgatgcccg	gcggctgaag	gagaaccaga	tegeaateeg	1320	
ggcctcattc	ctggagaagg	agaactcggc	cctccgccag	gaggtggctg	atttaaggaa	1380	
ggagctgggc	aaatgcaaga	acatacttgc	caagtacgag	gccaggcacg	ggcccctgta	1440	
agatggcatt	tttgtgggct	ggcttttgaa	tagatggaca	gcttgtttcc	tgtctggtag	1500	
ccccacaccc	aaaccaacct	ttctgacatc	agcactttac	cagaggcata	aacgcaactg	1560	
actcatattt	tggtgtgcat	ctatgcgtat	gtatgtatgt	ttgtgtgtgt	gtatatgtgc	1620	
ttatggtccc	atgtgtggtc	agcggtgtgc	atgtgtgagc	gtgtatatgt	gtgtattcct	1680	
tcacacttgt	cgtttaaaga	tagtcctctt	gttgtctttt	agttccaaac	aagaaaggtg	1740	
ccatgtttt	tattccaccc	tggagactcc	catggggttt	cctccccttc	cttctccctt	1800	
cctgcccctt	tetgeettge	tctgtgttct	agcgatctca	cttggccagg	gtctgtgttg	1860	
cttcaggaag	cagggccctg	gatctcagtg	atcaagacca	taagctcttg	tttctgtttc	1920	
agccatgaat	taccatgctg	gaaaggtgca	tagcataccc	tagcactgcg	cgcagctgaa	1980	
ttccttcata	ggttgcccca	cttcccttcc	ctttttcctc	cccacccttt	ctcgttttt	2040	
cctttcagtt	ttggtgacac	ttgtcttcaa	atttaaagtg	ctgtttagat	ttagtagagt	2100	
cccatattta	cttactgcta	cctactaagt	ttccttttaa	ttccaccaac	cccagataag	2160	
taagtaccat	tccttataga	acacagagtq	tgttttgcac	tgtctgtacc	taaagcaata	2220	
_	acgctagagc				_	2280	
	aggaatttca					2340	
		_					
ttgtgcatga	ccagaatatt	ctcaggacag	ggaagcagag	ggcaagggaa	ggcctaagaa	2400	

tgaggggtta	atttatcagt	atgtatgcca	aaaacataat	aataatgcat	cttggagaag	2460
cctttgccac	ggtgtgcttc	gtcgtgcgtc	teceettece	acacccagcc	cattcccact	2520
tttctagccc	attcactttc	tccatttccc	tcttgatatt	caaaacgatt	gacttaagat	2580
tcagtttacc	cactttgttt	tataatatat	atatttgggg	gggggacgat	attttgctgt	2640
ttttagaaat	cagttaatta	agtgaaaaag	ttgatgtttt	gaaaagccct	cccttgaccc	2700
ccacccccac	cccccgtggt	gtccttttga	atgcctcaca	aatgaatgat	teeggageee	2760
gtgtttctca	tcctctgttt	gcttttgaac	atatgtgcgc	ctatcaagtg	gacttctgaa	2820
aaaaaaaatg	aatgtaaaag	acactggtgt	atctcagaat	gggatggtgt	tgtcacaaac	2880
tgtggtttct	ccgatcaatt	taaatgttta	ctatagacca	aaaggagaga	ttattaaatc	2940
gtttaatgtt	tatacagagt	aattatagga	agttcttttt	ttgtacagta	tttttcagat	3000
ataaatactg	acaatgtatt	ttggaagaca	tatattatat	atagaaaaga	gaaaaaaagg	3060
aaaactattc	cgtgttttaa	aattatatag	caaagatata	tattcaccaa	tgctgttcag	3120
aggagtgctt	gggggctttt	gaaatcttta	atattttaaa	cctattactg	acacatcagc	3180
atgttttctg	cttaaaatta	aaattttatg	acaatactga	ggettgetgt	gacgactcct	3240
gctccaacgc	tttcttgttt	cttattaggt	ctcagaagga	agtcagttaa	cgtcacccaa	3300
aagcacaaaa	cgggttttag	tcaaatattt	attggatgat	ccagtgtttt	ttaggaaaag	3360
catctgccac	ataaatgttc	acttcaggat	tctgagtcgt	tggaatggag	tatggctgcc	3420
agagccccag	atgattttgt	tegetttegg	cctgtgtatc	tatctcacgc	agtgtaaggt	3480
tgacctcggt	gctatgtgta	cggcttagag	tttgatagct	gttttgactt	taaagatggc	3540
tgttattttg	tttcactgag	ttgtataatg	tcaagagagt	ctgctgtttc	ttcaaaagca	3600
catttttgtg	ctcgattaaa	atccccttcc	atccatggat	gttttccggt	ctcctgcctc	3660
cacagtatct	gacttctctg	cggatccagt	gatgecetee	cccctccctc	agccactccg	3720
ctgtccagtg	tcacagatct	ggaaaacgag	acctgtaggt	ttcttcccag	gttcctgttg	3780
tattccacgg	tgagagatga	gagagtgaga	gaaataaaat	acattttgca	agcaaattac	3840
tgattaaaaa	aaatgtttca	accatgttgt	atagaactga	ataagagata	attcagtaat	3900
agccatggga	caccaaaaag	ttggtccttt	tgaagataga	gaaagagagg	gattgcagaa	3960
ctgttcaatg	acagtgcttg	ccagggcaca	gatgagtact	taaggagaga	agtgttcaag	4020
ggttgcactg	tggcccaccc	agacacatgg	aaccatccag	tactcgatga	agaaaagcat	4080
gcctggcctt	tcttggaatt	gtttttacca	aataaacatc	acaaatgttt	tctgcagaag	4140
atataaaaag	atcataataa	aacttattct	tttgtatacc	aggaaaggtt	tgtagaaaac	4200
ctacctcatt	caaaacaaaa	caaaacaaaa	aactcaagag	tttggaatct	ccacaggtgc	4260
cttatctgta	ggtaattatc	agtcccccac	ccccaggctg	acttctcttt	gcccctggat	4320
attaactaga	tgagaaaatg	ccattcaatg	ccctgagaag	ctagaaccta	gggtcagata	4380
actgcagcag	accatagcca	ttaggaagtc	ccattgtcaa	ctgtcaccat	ttcaaggtag	4440
gcatctttcc	atggttaatt	atttggtcat	tccaaatgca	tctgaaatgt	tgcatgccct	4500
gccattcaga	tgcaaagcac	ttcctggtca	ggtcatatct	tttcattagt	cacatggatt	4560
ctcgaagaaa	gttttaaaaa	aaaaaggaat	cagggtttct	ctctgctgat	gctcccctga	4620
gaggatagag	gggctttgga	tgacagtccc	caactataga	gggactggtg	ctttgggtca	4680
33333333						

-continued	
ttcacaaacc acatcaggca tgacttggcc aggcctttgt ctctaaatag aacaq	ggeett 4740
gaagggacca teetttgtag aagaagaaga atgggeetat gtttgagaat ageat	tgatgg 4800
gactcagtca ctgggtgagg gggaaaccag ataaaagaac ccagaggctc tttc	taaccc 4860
attatettae egtgggaatt tacaetgagt etaaacatae ettegaaagg getae	cagoot 4920
caggtctgga tgacctgccg tgagttgtaa gtggcaatgt ctctcctgtc cagg	gatgaa 4980
acaactgatg atgtgtaaaa tacaaggaat actttgctct ttctaaaagt ttgt	tcagtt 5040
tggcccttag cattccttta gaaaaaactc aaaacttcct cagagttaat tagtg	gagatc 5100
ctcaggcatc gatgcctgtg gatctcagac agctctgtgt gtggcttgtc cccac	ccggct 5160
gggattggct teetgeaget gaetaggetg aggtgtgatg ecetecetee etgg	gtacat 5220
accttettet etggetetga ttgcaettge tteetaetga gggeteetga gtaea	aaccct 5280
ctggggaagc caaattcaac tccaggtgtt cggtaaaaat cagtgtcaat aataa	aatgaa 5340
caaaacttgt aggtcttgat ggactgaatt ttcaataact actgttaatg catt	tttgcc 5400
aaaatctgtg ttggggaatg tgtgtttgtg tgtggatgtt taagtggaga cagaa	aaatct 5460
gtaatttttt ttttagcacc tcaccagaca taacaattag gtattateet tteg	acaaca 5520
ccacaaagat tgcatctgtc aaacaggctc aagttaacaa gaggttagtg taatt	tgtata 5580
ccatgatatt gctggtattt atgctgtcaa gtccaaaact tcatttgttc ttcta	aaatgt 5640
ttaataaact aattttttc ctttt	5665
<210> SEQ ID NO 56 <211> LENGTH: 4226 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 56	
tetgaaaact tgeageaegg geaaaacttg ggeteegggt geagagegea gagge	ccagca 60
gettgteeet etgeatetgt geagtgeege egeetgaeee egeeaeeega ggagg	gegegg 120
tgccacccac tgctctgttc cttgctagag ctgagctggg cgccctaccg gate	
	ctggca 180
gaaacttcca ctctctcctc ggtttctgac cgcactagtc agtctctatc tctg	
gaaactteea eteteteete ggtttetgae egeactagte agtetetate tetgt tetgtetett tgtetetgte tetetetgag tttetgtete tgteeetett etetg	teeegt 240
	tcccgt 240 gtgtct 300
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etete	tcccgt 240 gtgtct 300 cctctg 360
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etete	tcccgt 240 gtgtct 300 cctctg 360 attcac 420
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etete etetetgget etetgegtet etgtetetee tteeegeece eetecetete tete gggtggggga gaggaggegg aattetttee eegectaaca ttteaaggga cacaa	tcccgt 240 gtgtct 300 cctctg 360 attcac 420 ccgagc 480
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etete etetetgget etetgegtet etgtetetee tteeegeeee eeteeete	tcccgt 240 gtgtct 300 cctctg 360 attcac 420 ccgagc 480 ccgcct 540
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etete etetetgget etetgegtet etgtetetee tteeegeece eetecetete tetee gggtggggga gaggaggegg aattetttee eegeetaaca ttteaaggga eacaa teeaagtete tteeetetee aageegetge egagegteee agtaceegea aetee etttgeggag agagcaacce teteegeete eaactettee eteteetteg ettee	tcccgt 240 gtgtct 300 cctctg 360 attcac 420 ccgagc 480 ccgcct 540 cctttcc 600
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etete etetetgget etetgegtet etgtetetee tteeegeece eetecetete tetee gggtggggga gaggaggegg aattetttee eegeetaaca ttteaaggga cacaa tecaagtete tteeetetee aageegetge egagegteee agtaceegea actee etttgeggag agagcaacee teteegeete eaactettee eteteetteg ettee eeteteeeta eetecaeete taeeteegee acceaetgee egaagegeet eetee	tecegt 240 gtgtct 300 cetetg 360 atteac 420 cegage 480 cegect 540 ctttcc 600 getgga 660
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etetgeetettetget etetgegete etgtetetee tteeegeece eeteeetete tetegggggggggg	tcccgt 240 gtgtct 300 cctctg 360 attcac 420 ccgagc 480 ccgcct 540 ctttcc 600 gctgga 660 ggcgca 720
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etetgeetettetget etetetgget etetgegtet etgtetetee tteeegeece eeteeetete tetegggggggggg	tcccgt 240 gtgtct 300 cctctg 360 attcac 420 ccgagc 480 ccgcct 540 ctttcc 600 gctgga 660 ggcgca 720 gtctcc 780
tetgtetett tgtetetgte tetetetgag tttetgtete tgtecetett etetegetetetetgget etetgegtet etgtetetee tteeegeeee eeteeete	tecegt 240 gtgtct 300 cetetg 360 atteac 420 cegage 480 cegage 540 cettec 600 getgga 660 ggegga 720 gtetcc 780 tacegg 840

gccgacccag gaagcagcag caagagccaa cctgtgagcc ctctcctaag agacccagag 1020

gaagacccaa	aggcagcaaa	aacaagagcc	cctctaaagc	agcccagaag	aaagcagaga	1080
ccattggaga	aaaacggcca	agaggcagac	ctaggaaatg	gccacaacaa	gtcgttcaga	1140
agaagcctgc	tcaggagact	gaagagacat	cctcgcaaga	gtccgcagag	gaggattagg	1200
gggcgccgac	attcaatttc	tacctcagca	tcagttggat	cttttgaagg	gagaagacac	1260
tgcagtgacc	agttattctt	aactgccacg	gtctttctac	tteetgeggg	gtggggcggg	1320
ggeggggetg	ggcgaggggc	ggggccgggg	tgggcgaaat	cgcataacct	tgagaaggac	1380
tatattaatc	actttgtaat	cccttcacag	teccaggttt	agtgaaaaac	tgctgtaaac	1440
acgggggaca	cagtttaaca	atgcaacttt	taatgactgt	tttcttttc	cttaacttac	1500
taatagtttg	tggatctgat	aagcaagggt	gtgtggttga	agaaaacctc	tgtggtgggc	1560
ttaatcagtc	actacatgca	aaccctaaac	cggcaccctg	gtgaccgggg	gcattcgtat	1620
aagaaaagca	ttgtgtgtga	ctctgtgtcc	actcagatgc	cacccccacc	atgatcatag	1680
aaaatctgct	taggacacca	aagatgagaa	ctagacacta	ctctcctttc	tttgtgtata	1740
atcttgtaga	cacttacttg	atttttttt	cttttttac	ttttcaattc	tgaatgagac	1800
aaaatgctgg	tgtatctttt	catacagcta	gcaaaccaga	ataggttatg	ctcgtttttt	1860
gctttgtttt	gtttttcaaa	aagggaagta	aacgagaacc	gttgactcct	ccatttatgg	1920
actcatacac	agcagcagga	gtgataagcc	cacaagctct	ctttcccgcc	tcgggaaatc	1980
tacacagcca	aaagccactt	agccataaat	gacacttgtc	agccttgaag	catcggagat	2040
aactagctga	gtaaaatgat	cctgttttgg	aatttaatga	aaaggttaac	agtacccaat	2100
gaacccaccc	aagtgatgac	atgggaggag	cgaaaccgaa	atctcttttg	ctatataaag	2160
gacactattt	tttaaaaaaa	aataataaaa	acageteeeg	ctctctgtcc	teteteeete	2220
ccttctctcc	ctcgcctctc	tetectetet	atattccctg	ttcttcattg	tgtaccagtg	2280
tccgtgaaag	accgcagtac	cacttacctc	agatgaagcc	tgcgtgttac	atcctgtaac	2340
acctttcatt	ttgacataag	atggctagcc	gaggtgcatt	atcttggttc	ggactgccat	2400
ctctgcattc	acgctgcact	tttagccaga	gatgcaataa	tecceaetee	tcaatactac	2460
ctctgaatgc	tacagtgaat	ttacagccct	gcacttgtta	cacgctgcta	gacacaagcc	2520
ctgcaagaga	aaggaaaaaa	aaaagcccac	caaaaccaaa	ccaaacctta	ctgggtcggc	2580
atctcagcca	tccccagttc	tegaceatte	ttctctgtac	tettaeteeg	tctcagcagg	2640
ctatgcatgt	ttctatgact	tttttttt	ttaattaaaa	tgttacaaat	gcttgtggca	2700
gctttcctgc	tagattgtta	cattaatttg	aaacagtttt	gagtcaagtt	gctcctaggt	2760
tcttaaggag	aattttttt	tcagtgacac	tactttgtat	cacacacaca	catctgtagt	2820
gttcaaatat	aagtctccaa	gtttgtacct	caaatgaatt	attgaaacaa	atggacttcc	2880
tgatttgcaa	ggaactacct	ccacacttcc	aaaggaacga	acttgcagcc	tatatcactc	2940
attgatttcc	ttcccccatg	tttgaaggag	ctcaaacctc	acctctccct	cattgaaaca	3000
tttttttgg	taaaagacac	ttgatagaaa	cacaattttt	ttacatactt	ttgcaaaaat	3060
aaatgaatta	aaatcaagcc	aaccttcaaa	gaaacttgaa	attttgctac	aaccagctca	3120
gccttttgcc	taatgcaatg	aaaaaggaaa	aaaatagatt	tctaagattt	gttgcctaga	3180
agaatatgct	tgaccgatat	tttttcatgt	attttacaca	atgtgatttt	tgtaaaaaaa	3240
tgtctcaagc	agatttgttt	tggacgcttc	ttgtgtagag	tttctatgcc	tttctctcct	3300

				-contir	iuea	
attaagtgtg	ctgactttcc	agagtgttac	ccactgggcc	aggaggtagt	ttctcatagt	3360
ggcttgtgtc	agtataagtt	aatactgaag	ccaaatgaaa	caaacaaaca	accatgtctc	3420
ttccagctgt	tttcagggag	gttacttcaa	aggccacgtg	ccgctctgag	actggcagat	3480
ggctcactgt	tgtgagtcgc	caaaggagct	atggagagat	taaaattcaa	catgactgtt	3540
aacaatgcat	taaataatca	aataaacagt	ggcttataaa	tatcagattc	tcattccggg	3600
tcttcggatg	ggccttacag	aaacctcatt	ttggccagct	cataaaaact	gaagcagctt	3660
ctcgtgttgg	ccagactcgg	cacaccgagc	aatttccatc	tctgatgaag	ttattcctta	3720
tttcctgtat	gttgtacaat	caaaacacac	tactacctct	taagtcccag	tatacctcat	3780
ttttcatact	gaaaaaaaag	aaaaaaaga	gaaaaaaaaa	ggcttgtgtc	caatggaaca	3840
gtgagaacat	cataaaattt	ttatatatat	agtttatttt	tgtgggagat	aaattttata	3900
agactgtttt	ttactgttgt	tggtcacagc	taagtaagac	tggacatcta	acttctctac	3960
catttctgca	agctaagtat	gtttgcagga	gaaacttatc	aagacgatta	actgcatcca	4020
actttctccc	cgttcctttg	tgtgccctct	gacttcgttc	tctgttcctt	gtgtagagtc	4080
gctgtctgtg	attgtacttg	gacggcttgc	ttgtggcaat	accttctcta	gtggattatc	4140
actgtctgca	caataaacat	aacagcctct	gtgggcaaaa	aaaaaaaaa	aaaaaaaaa	4200
aaaaaaaaa	aaaaaaaaa	aaaaaa				4226
<210> SEQ 1 <211> LENG <212> TYPE <213> ORGAI	TH: 1877	ısculus				
<400> SEQUI	ENCE: 57					
ctccacccaa	ctcccccatt	agtgcacgag	tttacctcta	gaggtcatca	ggcaggattt	60
	ctcccccatt					60 120
acgactggac		cgtgattcga	agtcgtaccc	catatttggg	tgcctacgta	
acgactggac ggagggaacc	aacaaaagca	cgtgattcga cccagtcatt	agtcgtaccc tccataattc	catatttggg atcataaatt	tgcctacgta gtgcaagggt	120
acgactggac ggagggaacc gctatagacg	aacaaaagca gagtacatgt	cgtgattcga cccagtcatt cgcgagccac	agtcgtaccc tccataattc aaatcaagca	catatttggg atcataaatt cacatatcaa	tgcctacgta gtgcaagggt aaaacaaatg	120 180
acgactggac ggagggaacc gctatagacg agctcttatt	aacaaaagca gagtacatgt cacaaacgac	cgtgattcga cccagtcatt cgcgagccac attttgcggt	agtcgtaccc tccataattc aaatcaagca cgctatccaa	catatttggg atcataaatt cacatatcaa atggcccgga	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg	120 180 240
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc	agtogtacco tocataatto aaatoaagoa ogotatocaa gaacaattoa	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac	120 180 240 300
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc	agtogtacco tocataatto aaatcaagca ogotatocaa gaacaattoa atggatotoa	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc	120 180 240 300 360
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcgcgcccgc	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccg ctggggccag	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc	120 180 240 300 360
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagccca	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcgcgcccgc	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeact	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccg ctggggccag cggcaccgcc	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg	120 180 240 300 360 420
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagcca	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcggcccgc gccggccacg	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeaet agegaeagee	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccg ctggggccag cgccaccgcc accacggcgg	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc	120 180 240 300 360 420 480 540
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagccca ccctgctcag ctgggcaact	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcgcgcccgc gccggccacg ctcgcccggc	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeaet agegacagee geeggeagea	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccag ctggggccag cgccaccgcc accacggcgg	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc cagcagagag	120 180 240 300 360 420 480 540
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagccca ccctgctcag ctgggcaact ggggttggca	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca cggtggcccc ccagcggcgc	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcggcccgc gccggccacg ctcggccacg ctcgccggc	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeaet agegaeagee geeggeagea gaeggeeetg	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccag ctggggccag cgccaccgcc accacggcgg cccacatcag ccagcagcga	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc cagcagagaga	120 180 240 300 360 420 480 540 600
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagcca ccctgctcag ctgggcaact ggggttggca gcccagagcg	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca cggtggcccc ccagcggcgc	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcgcgccgc gccggccacg ctcgcccggc ctcgcccggc	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeaet agegaeagee geeggeagea gaegeeeetg	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccag ctggggccag cgccaccgcc accacggcgg cccacatcag ccagcagcga	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc cagcagagag gcaggcggc	120 180 240 300 360 420 480 540 600 660
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagccca ccctgctcag ctgggcaact ggggttggca gcccagagcg aagctgcaca	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca cggtggcccc ccagcggcgc cggcgtccgc	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcgcgcccgc gccggccacg ctcgcccggc ctcggccaac agccgaggag ggcgcgccc caatataggt	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeaet agegacagee geeggeagea gaegeeett geteageeee	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccag ctggggccag cgcaccgcc accacggcgg cccacatcag ccagcagcga agatctaccc gcaaaagggc	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc cagcagagag gcaggcggc ctggatgcgc	120 180 240 300 360 420 480 540 600 660 720 780
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagccca ccctgctcag ctgggcaact ggggttggca gcccagagcg aagctgcaca tacactcgct	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca cggtggcccc ccagcggcgc cggcgtccgc agccgagccc ttagtcacga	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcggcccgc gccggccacg ctcggccacg ctcggccaac agccgaggag ggcgccgcc caatataggt ggagctggag	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegegg tecaegeaet agegacagee geeggeagea gaegeeeetg geteageeee ggeeeagaag aaagaattee	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccag cgccaccgcc accacggcgg cccacatcag ccagcagcga agatctaccc gcaaaagggc acttcaaccg	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc cagcagagag gcaggcgggc ctggatgcgc ccggacggcc ccggacggcc	120 180 240 300 360 420 480 540 600 660 720 780 840
acgactggac ggagggaacc gctatagacg agctcttatt cataattatg tccggcaggt ggccactttg gccgagcca ccctgctcag ctgggcaact ggggttggca gcccagagcg aagctgcaca tacactcgct cgccgaagaa	aacaaaagca gagtacatgt cacaaacgac ttgtaaactc gagatcatag acggctacgg gctccggcga ggtacagcca cggtggcccc ccagcggcgc cggcgtccgc agccgagccc ttagtcacga accagaccct	cgtgattcga cccagtcatt cgcgagccac attttgcggt ttccgtgagc ctacaatggc gcgcgccgc gccggccacg ctcgcccggc ctcgccaggc ctcgcccggc ctcgccacg ctcgccagc ctcggccaac agccgaggag ggcgccgcc caatataggt ggagctggag agctcatgcc	agtegtacee tecataatte aaateaagea egetateeaa gaacaattea atggatetea agetaegege tecaegeaet agegaeagee geeggeagea gaegeeeet geteageeee ggeeeagaag aaagaattee etttgeetet	catatttggg atcataaatt cacatatcaa atggcccgga gggactcggc gcgtcggccag ctggggccag cgccaccgcc accacggcgg cccacatcag ccagcagcga agatctaccc gcaaaagggc acttcaaccg	tgcctacgta gtgcaagggt aaaacaaatg ctaccagttg gagcatgcac ttcgggttcc tgcggcgccc cgacccgctg gaaaaactcc cagcagagag gcaggcggcc ctggatgcgc ctggatgcgc ctggatgcgc ctgaccgccc	120 180 240 300 360 420 480 540 600 660 720 780 840 900

gccgcggcag ggggggcttt ccgcccctga gcatctgagc ggccaaagta ctgagcagta 1080

			-0011011	iuea 		
gtagccgggc agctctctgt	agtgtcagta	ctaaggtgac	tttctgaaac	tccccttgtg	1140	
tteettetgt gaagaageee	tgttctcgtt	gccctaattc	atcttttaat	catgagcctg	1200	
tttattgcca ttatagcgcc	tgtataagta	gatctgcttc	tgttcatctc	tttgtcctga	1260	
atggctttgt cttgaaaaaa	aaatagatgt	tttaacttat	ttatatgaag	caagctgtgt	1320	
tacttgaagt aactaaaaca	aaaaaaaaa	aaaaagaaaa	gagaaaaaaa	aactacacac	1380	
acaaaaagcc ccccacctc	gtttagtgcc	aatgttgtgt	gttgcacttg	agttctttaa	1440	
tgtgcatgta cgtggaagtg	ttcctgtctc	aatagctcca	agctgttaaa	gatatttta	1500	
ttcaaactac ctatattcct	tgtgtaatta	atgctgttgt	agaggtgact	tgataagaca	1560	
caaattaact tgttcaacgt	gtagtggcta	gtggctctgt	gacgaaaact	gtgactccaa	1620	
geggtgtgte cetgegtgee	tttgtaggac	cctttgcacg	aactctggaa	gtggctctta	1680	
taagcgcagc ttcagtgatg	tatgtttttg	tgaaaaagtt	acaaatattg	tccaagtctg	1740	
gctgtttaag caaactgtga	tcagcttttt	ttttttttg	tatttgtttt	taaggaaaaa	1800	
aaacactgac tggaaacaaa	acaaaataaa	ctttctattg	taagttctct	tggtctgatt	1860	
tatgccaaat agcaagc					1877	
<210> SEQ ID NO 58 <211> LENGTH: 2272 <212> TYPE: DNA <213> ORGANISM: Mus mu	usculus					
<400> SEQUENCE: 58						
gaaaaaacag aagagggaag	gataccagag	cggttcatac	agggcccaga	aactaggcga	60	
ggtgacccct cagcaagaca	aacacctctt	gatgttgact	ggcgattttc	cccatctcca	120	
gtctggggag cgggactagg	catacagatg	atggagctta	gaacccgctg	gctagggaat	180	
aaaattcgct gggcagtttg	tgctcaaaga	agtgggccag	ggcgcttgtg	acacaatcag	240	
ggcgtttgtg acacaaaccc	ttgagggttg	gcagttctct	ccttggcggt	tgctctggtt	300	
getetgtggg geetteeetg	tggagcaagg	gtgatctggc	cgatgtgcaa	gcgcctggct	360	
ggctttccag tctgactagg	gtcggtagcc	cattttaggt	ggttgtatca	tcgacggtgc	420	
gtcgcgacag gggcggtggt	cactctgttt	gaggtggaga	gagccttgta	tttgactttt	480	
ctaggccggc cctgggggcg	cgcgcgggcg	gggggctcac	atctctgagg	actgcaagga	540	
ttatttacag ggtattcacc	aaccaaacac	aacagtctaa	tttaaccttt	ccaagtcctc	600	
ataaattttt acagggagcc	acagcgaggc	aaacgaatct	gttggtcgct	cctgactttc	660	
caccageetg tgtggettee	gaaacaataa	ctccttatga	aatatcataa	atatagattt	720	
aaatacagta gagtgagaat	gcgatttggc	tgctttttta	tggcttcaat	tattgtctaa	780	
ttttatgtga ggggctctgc	tggccgtgct	cacacgcggg	acccgcgcct	teetgatgge	840	
gtgattaatt gtgatataaa	atagtccgct	taagaagtgt	gtgtgtctgg	tatgtgtgtg	900	
tgttgggggg gtggcaaggg	agagtacaga	ggcaaggcca	gatttgatct	tttaatcttc	960	
gttggccaca attaaaacaa	accagatcgt	ggagetgege	gatccctttg	cataaaaaca	1020	
tatggctttt gctataaaaa	ttatgactgc	aaaacaccgg	gccattaata	gcgtgcggag	1080	
tgatttacgc gttattgttc	tgccgggcgg	acacgtgacg	cgcgtggcca	atgggggcgc	1140	

gggcgccggc aacttattag gtgactgtac ttcaccccc cctggtgcca ccaagttgtt 1200

-continued	
acatgaaatc tgcagtttca taatttcggc gggtcgggct gggccggcca ggcgcggct	1260
actgcaatgg ccaccaccgg ggccctgggc aactactatg tggactcctt cctgctgggc	1320
geegaegetg etgatgaget gggtgeggga egetaegete eagggaeeet gggteaacee	1380
ccaaggcagg eggeagetet ggeegaacae eeegaettea gteettgeag etteeagtee	1440
aaggeggegg tgtttggtge etegtggaac eeagtgeacg eggegggege eaatgeggtg	1500
cctgctgcag tgtatcatca ccaccaccac ccctacgtgc atccccaggc gcccgtggcg	1560
geggeggege eggaeggeag gtatatgege teetggetgg aacceaegee eggtgegete	1620
teettegegg gettaceete eageeggeet tatggeatta aacetgaace geteteggee	1680
agaaggggtg actgtcccac gcttgacact cacactttgt ccctgactga ctatgcttgt	1740
ggttctcctc cagttgatag agaaaaacaa cccagcgaag gcgccttctc cgaaaacaat	1800
gccgagaatg agagcggcgg agacaagccc cccatcgatc ccaataaccc ggctgccaac	1860
tggctacatg ctcgctccac tcggaagaag cgatgcccct acacaaaaca ccagacgctg	1920
gaactggaga aggagtttct gtttaacatg tacctcacac gggaccgcag gtacgaggtg	1980
gcccggctgc tcaacctcac cgaaaggcag gtcaagatct ggttccagaa ccgcaggatg	2040
aaaatgaaga aaatcaacaa ggaccgagca aaagacgagt gagcctttta ggggctcatt	2100
taaaaagaga gcaagctaga aagaaaaga aaggactgtc cgtctccctc tgtctcctct	2160
cccccaaacc cagcetecac ccgcacaaag gggetetaaa teecaggeet cateteecca	2220
ctggcagtcc gtgctcaggc tggctcttag gcctgcggct ttgatggagg ag	2272
<210> SEQ ID NO 59 <211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<211> LENGTH: 3390 <212> TYPE: DNA	
<211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus	60
<211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59	60 120
<211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagettaa agtteacage cattetgtgt agacaagage taagaaaaat	
<211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagettaa agtteacage cattetgtgt agacaagage taagaaaaat gtgagaatta tacagaaaac cattaateac ttetttett taaataegta teetetee	120
<211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagcttaa agttcacagc cattctgtgt agacaagagc taagaaaaat gtgagaatta tacagaaaac cattaatcac ttctttctt taaatacgta tcctctccc tttgtcatta ttcaacagca aatctccgca gaccggctgt tgggggaaaa aagtgttagc	120 180
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagettaa agtteacage cattetgtgt agacaagage taagaaaaat gtgagaatta tacagaaaac cattaateac ttetttett taaatacgta teetetete tttgteatta tteaacagea aateteegea gaceggetgt tgggggaaaa aagtgttage cgteteteeg gateggeaag ggggaaaaat tttggageea taaagttgaa aaettttte</pre>	120 180 240
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagcttaa agttcacagc cattctgtgt agacaagagc taagaaaaat gtgagaatta tacagaaaac cattaatcac ttcttttctt</pre>	120 180 240 300
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagettaa agtteacage cattetgtgt agacaagage taagaaaaat gtgagaatta tacagaaaac cattaateac ttetttett taaatacgta teetetete tttgteatta tteaacagea aateteegea gaceggetgt tgggggaaaa aagtgttage cgteteteeg gateggeaag ggggaaaaat tttggageea taaagttgaa aaettttte teteagtttt ggaagaagee tteetttegt catgaacggg accagaggag eteaggegag agegggeaag aggeteagag gagggagat ttetegeetg eegetegee tggggetega</pre>	120 180 240 300 360
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagcttaa agttcacagc cattctgtgt agacaagagc taagaaaaat gtgagaatta tacagaaaac cattaatcac ttctttctt taaatacgta tcctctccc tttgtcatta ttcaacagca aatctccgca gaccggctgt tgggggaaaa aagtgttagc cgtctctccg gatcggcaag ggggaaaaat tttggagcca taaagttgaa aactttttc tctcagtttt ggaagaagcc ttcctttcgt catgaacggg accagaggag ctcaggcgag agcgggcaag aggctcagag gagggagat ttctcgcctg ccgctcgcgc tggggctcga tgtgaatata tattatgtct gcctgttctc ccctcgtcgg tggctaaggt cagccgcttg</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagattteta tagagettaa agtteacage cattetgtgt agacaagage taagaaaaat gtgagaatta tacagaaaac cattaateac ttetttett taaatacgta teetetete tttgteatta tteaacagea aateteegea gaceggetgt tgggggaaaa aagtgttage cgteteteeg gateggeaag ggggaaaaat tttggageea taaagttgaa aacttttte teeteagtttt ggaagaagee tteetttegt catgaacggg accagaggag eteaggegag agegggeaag aggeteagag gagggagat ttetegeetg eegetegee tggggetega tgtgaatata tattatgtet geetgttete eeetegtegg tggetaaggt cageegettg gaacagacee gagaggaggg gggeagaaag gggagggggg teeggetgt caegtgacee</pre>	120 180 240 300 360 420
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagcttaa agttcacagc cattctgtgt agacaagagc taagaaaaat gtgagaatta tacagaaaac cattaatcac ttctttctt taaatacgta tcctctccc tttgtcatta ttcaacagca aatctccgca gaccggctgt tgggggaaaa aagtgttagc cgtctctccg gatcggcaag ggggaaaaat tttggagcca taaagttgaa aactttttc tctcagtttt ggaagaagcc ttcctttcgt catgaacggg accagaggag ctcaggcgag agcgggcaag aggctcagag gagggagat ttctcgcctg ccgctcgcgc tggggctcga tgtgaatata tattatgtct gcctgttctc ccctcgtcgg tggctaaggt cagccgcttg gaacagaccc gagaggaggg gggcagaaag gggaggggg tccggcgtgt caccgcccc ccaggggtgc caatgtccgg tcgtgagggt atcaggccct tgcaagttgc cacccactgc</pre>	120 180 240 300 360 420 480
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 59 aagatttcta tagagcttaa agttcacagc cattctgtgt agacaagagc taagaaaaat gtgagaatta tacagaaaac cattaatcac ttctttctt taaatacgta tcctctccc tttgtcatta ttcaacagca aatctccgca gaccggctgt tgggggaaaa aagtgttagc cgtctctccg gatcggcaag ggggaaaaat tttggagcca taaagttgaa aactttttc tctcagtttt ggaagaagcc ttcctttcgt catgaacggg accagaggag ctcaggcgag agcgggcaag aggctcagag gagggagaat ttctcgcctg ccgctcgcgc tggggctcga tgtgaatata tattatgtct gcctgttctc ccctcgtcgg tggctaaggt cagccgcttg gaacagaccc gagaggaggg gggcagaaag gggaggggg tccggctgt cacgtgaccc ccaggggtgc caatgtccgg tcgtgaggt atcaggccct tgcaagttgc cacccactgc ccgggcctcg cccagcgatg cagaaagcca cctactacga caacaccgca gctgcgctct</pre>	120 180 240 300 360 420 480 540 600
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 59 aagatttcta tagagettaa agtteacage cattetgtgt agacaagage taagaaaaat gtgagaatta tacagaaaac cattaateac ttetttett taaatacgta teetetete tttgteatta tteaacagea aateteegea gaceggetgt tgggggaaaa aagtgttage cgteteteeg gateggeaag ggggaaaaat tttggageea taaagttgaa aacttttte teeteagtttt ggaagaagee tteetttegt catgaacggg accagaggag etcaggegag agegggeaag aggeteagag gagggagat ttetegeetg eegetegee tggggetega tgtgaatata tattatgtet geetgttete eeetegtegg tggetaaggt eageegettg gaacagacee gagaggagg gggeagaaag gggaggggg teeggetgt cacgtgacee ccaggggtge caatgteegg tegtgaggg ateaggeet tgeaagttge caccactge cegggeeteg eeeagegatg eagaaageea eetactaega caacacegea getgegetet teggaggeta eteetegtae eetggeagea atggtttegg etacgaegg eeteeceage</pre>	120 180 240 300 360 420 480 540 600 660
<pre><211> LENGTH: 3390 <212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 59 aagatttcta tagagcttaa agttcacagc cattctgtgt agacaagagc taagaaaaat gtgagaatta tacagaaaac cattaatcac ttcttttctt</pre>	120 180 240 300 360 420 480 540 600 660 720

ccaagtgegg tgeeggetee aacteeacce teaccaaaca gatatteece tggatgaaag

agtcgaggca	aacgtccaag	ctgaaaaaca	geteceeegg	cacagcagaa	ggttgtggtg	1020
gtggcggcgg	cggtggtggc	ggcggcggcg	gcggtggcgg	cggcagcagc	ggcgggggcg	1080
geggeggegg	cgggggaggg	gacaagagcc	ccccggggtc	ggeegegtee	aagcgggcgc	1140
gcacggcgta	cacaagcgcg	cagctggtgg	agctggagaa	ggagttccac	ttcaaccgtt	1200
atttgtgccg	gccgcgccgg	gtcgagatgg	ccaatctgct	gaacctcagc	gagcgccaga	1260
tcaagatctg	gttccagaac	cgtcgcatga	agtacaagaa	agaccagaag	gccaaggggc	1320
tggcctcgtc	ctctgggggt	ccctctccgg	ccggaagccc	cccgcagccc	atgcagtcca	1380
eggeeggett	catgaacgcc	ttacactcca	tgacccccag	ctacgacagc	ccgtccccac	1440
cagctttcgg	caaaggccac	cagaatgcct	acgcgctgcc	ttccaactac	cagccccctc	1500
ttaagggttg	cggcgcccca	cagaagtacc	ccccgacccc	ggcgtcggag	tatgagcccc	1560
acgtcctcca	agctaacggg	ggcgcctacg	ggacgcccac	catgcagggc	agtccggtgt	1620
atgtgggcgg	gggtggctac	gcggatccgc	tgccgccccc	tgccggcccc	tccctctacg	1680
gcctcaatca	cctttcccac	cacccctcgg	ggaacctgga	ctacaacggg	gcggccccta	1740
tgggccccaa	ccagcatcat	ggaccctgtg	accctcaccc	cacgtacaca	gacctctcct	1800
ctcaccacgc	accgcctcag	ggtagaatcc	aagaagcgcc	caaactgaca	cacctgtgat	1860
gggagggggg	ggctggggag	ggaggggtga	ggttaagggc	cagggagacg	gcggacttgg	1920
gggatgggcg	cggtttagag	tcctgaaaga	ggtgtgggat	ggggttgtcg	ccaggtttcc	1980
agaaacagaa	caggcctggg	gtgccttccc	agctcccagg	cccctcccc	gcccccaggg	2040
gctgtctttt	aagtcctcca	tgcctggttc	catctgtctg	ccaacaaccc	ttggaaagga	2100
atccacagca	ggttggagac	gggaccacat	caatcccagg	gttcccaggg	ttccagcact	2160
accaagtggg	aatttcagat	tggagaggtg	acgtggagtc	gggtagaggg	agccaagaca	2220
ggcaagcagg	gcagagaagc	acattcaaca	cttaatggct	tggctatcag	caagcaatca	2280
acttaccttg	catctctgtg	ggtaatttcc	ccaaaatctt	gattttttt	gttctccctt	2340
tcagtctccc	tgtgaaaaat	aagaaaatac	atttaaatcg	aagggcacaa	agtatgtttc	2400
tctcctactt	ccctgaagct	tcaactcccc	ccatccccca	tctgttaggc	ttcttactat	2460
atctatcatt	tactatggcc	ctacggttgg	ttttctgctc	taaggacatt	catatctaca	2520
ccccacccct	attgattaca	attttcagag	ggctcaggga	tggtaagata	tcctgaaagt	2580
cagagetgee	tataatataa	ataaatatat	atttttttc	ttttaaagaa	aagttaagag	2640
gctaaggcag	gcaagttgtc	aggactggag	gcttgcccat	tctccagtct	ctcagctccc	2700
accccatccc	actccctcca	ctttctttt	acttctgttc	ttctcttgac	ttaacgtgaa	2760
aacagggtat	atttgaacaa	actgtctgtc	ctggcaggtg	ctgcagctgg	acctgtggac	2820
cttgctccag	ttcctgacag	gacagtcttg	ttgcacttgg	agtttacatt	ttaatggata	2880
ttaaaaaaaa	aaaaaacaac	tgtgagagat	gtetgggeet	gcagaaagtc	cagetteget	2940
caaaaagcgt	gtgttctagt	gaacattttc	atatatattt	attggttata	gcctgttaaa	3000
atattttctt	ttttgtatta	tttatcccc	tacattatgt	atttatatga	gggacaaaaa	3060
aaaaaaagaa	aaatgtactt	ttttagtatt	tacttgttat	aaaggttgtt	gtgtttcctg	3120
tcatgtaaaa	ccagctattt	tagtttttat	tgtattctag	acaagagctg	tagatttatg	3180
ttaaactcgt	acatatgagg	aattgtaatt	agttctaaaa	ggcatgaact	cagctcctaa	3240

otataoatet et et e	a+++=+====	ataces:	000000000000000000000000000000000000000	+	2200	•
atgtcactgt atagtcccga					3300	
tttgttcttc cgtagttatt		ttagttaaaa	gagttgtctg	ccaaaacaat	3360	
tcttgaataa actttctgtt	attaatttta				3390	
<210> SEQ ID NO 60 <211> LENGTH: 2566 <212> TYPE: DNA <213> ORGANISM: Mus mu	ısculus					
<400> SEQUENCE: 60						
ageteeetet tateetgggg	aggagatggg	gccctatggg	agtcagagaa	aggttggtgg	60	
agattaggta gggcaggggt	gggggctaca	cccgcagccc	caacttctga	gggatgcagg	120	
gtttgtgctc tgcccagccc	cctcaccccc	aaacaggccc	tccaattaac	ctgctcactc	180	
tttcttagtt catcacccct	ctctgttgtg	gagaaagcca	ggcgaggagg	gggtctcccc	240	
gcgggagccc tatgtaaatc	ctggtgttgg	gtgggtgggg	aggggtagag	aaggggaaat	300	
aaacctcttt ggctggagta	gggtccgggt	gagcagattt	ccttatccgg	gaatcgcagg	360	
ccgggtggcc attggctcgg	aggatcacgt	gggcctctaa	ctttgttcac	ttgacagtaa	420	
gtaggagggc tttcggaaac	aggaaaacga	gtcaggggtc	ggaataaatt	ttagtatatt	480	
ttgtgggcaa ttcccagaaa	ttaatggcta	tgagttcctt	tttgatcaac	tcaaactatg	540	
tcgaccccaa gttccctccg	tgcgaggagt	attcacagag	cgattaccta	cccagcgacc	600	
actegeeegg gtaetaegee	ggcggccaga	ggcgagagag	cggcttccag	ccggaggcgg	660	
cetttgggeg cegggegeeg	tgcactgtgc	agegetaege	ggcctgccga	gaccccgggc	720	
ccccgccacc tccgccgccc	cegeegeeee	cgccaccgcc	cgggctgtcc	cctcgggctc	780	
cagtgcagcc aacagccggg	gecetectee	cggagcccgg	gcagcgcagc	gaggeggtea	840	
gcagcagccc cccgccgcct	ccctgcgccc	agaaccccct	gcatcccagc	ccgtcccact	900	
ccgcgtgcaa agagcccgtc	gtctacccct	ggatgcgcaa	agttcacgtg	agcacggtaa	960	
accccaatta cgccggcggg	gagcccaagc	gctctcggac	cgcctacact	cgccagcagg	1020	
tcctggagtt ggagaaggag	tttcactaca	atcgctacct	gacgcgccgc	cggagggtgg	1080	
agategeeca egegetetge	ctgtccgagc	gccagatcaa	gatctggttc	cagaatcggc	1140	
gcatgaagtg gaaaaaagac	cacaagttgc	ccaacaccaa	gateegeteg	ggtggcaccg	1200	
cgggcgcagc cggaggcccc	cctggccggc	ccaacggagg	ccccctgcg	ctctagtgcc	1260	
ccccaagcag gagttcgaac	atggggggt	ggggggaaca	gcgagcaccg	aagggggtgc	1320	
ggggtatggg agggteceeg	ggcttgagcc	cagaaaaaat	ctatctaccc	taccctcact	1380	
ttatctataa ggaataaaca	cagagaaggg	gggtagggaa	gccttattta	tagaaaggac	1440	
aataagggag ccgggtaaag	tccttcggag	acaagattcg	agtctcttgc	tttcttcctt	1500	
taaaaaaaaa aaagaaagaa	agaaagaagg	aaagaaagag	agagagagaa	aagaaaaaga	1560	
agaaaggaag gaagcaagaa	aaggaggaaq	aaaggaaaaq	acagaagaga	aatggaggaq	1620	
tetgetgege etggttttea					1680	
ccaggcccgg gcccatctgt				_	1740	
					1800	
cggtggcgac cattacctcg						
ccgcctctgc tgctgtcgct	gctggatcac	agcctggatt	tttctttctt	tgtcccctac	1860	

teetgacace cagegaatge acceteagae tgecagatag cacagtgttt tggccaeggt	1920
aacaaacaca cacacatata actttcctcc ctgtctgtac ccactttggg gtgggggtgg	1980
gtgggaagac tgctcactcc cttccaccat agacttagaa gggggaacag aagggaattg	2040
aagggcagtc tgcacaacgt gggttcccaa atccgagccc aagaaataaa tgaaaatgaa	2100
aaaagaaagg tagcaattgg gacacccaag aaggccttct gctagaaggt ccagctaggc	2160
ctggcagggt gaggggcagt tgagttctgg gagctgggaa tgtcttctgg gcagttcaca	2220
gtagtagagt caaggcette tettaggtta caaatgaatg tgaaattagg aaataaaata	2280
ctgtggccct cctactctgg aaggacaatg ttgcagaacc ctctcccgtt gttatcattg	2340
ttgcatcgtt tattattatt attattatta ttattattat tattat	2400
ttttatgtca tgtgtgtcct ctctcctgtt ctctttctga cattccaaaa ccaggcccct	2460
tectacetet ggggetgeet gageetagaa eettttgttg gtgtgaaaat ttgtgteetg	2520
tacagagtga caacagaaat aaatgtttgg tttcttgtga ccatca	2566
<210> SEQ ID NO 61 <211> LENGTH: 1912 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 61	
gaagtacagt gcatcgctat aattcattaa tacatcataa atcgtgaagc acagggttat	60
aacgaccacg atccacaaat caagccctcc aaaatcaccc aaatgagctc gtactttgta	120
aactccttct cggggcgtta tccaaatggc ccggactatc agttgctaaa ttatggcagt	180
ggcagctete tgageggete ttacagggat eeegetgeea tgcacaeegg etettaegge	240
tacaattaca atgggatgga teteagegte aacegeteet eggeeteete eageeaettt	300
ggggcggtgg gcgagagctc gcgcgccttc cccgcgtccg cccaggaacc ccgcttcagg	360
caggegaegt ceagetgete cetgteeteg eeegagteee tgeeetgeae taaeggegae	420
agccacggcg ccaagccctc tgcttcgtcc ccttccgacc aggcgacccc agccagctcc	480
agegecaatt teacegaaat agaegaggee agegegteet etgageeega ggaageggeg	540
agccagctaa gcagccccag cttggctcga gcacagccag agcccatggc cacctctacg	600
gccgcgcccg aggggcagac tccacagata ttcccctgga tgaggaagct tcacatcagc	660
cacgatatga ctgggccaga cggaaaaagg gcccggaccg cctatactcg ctaccagacc	720
ctggagctgg aaaaggaatt ccacttcaat cgctacctga cccggcggcg acgtatcgag	780
ategoccaeg egetttgeet gteegagegt eagateaaaa tetggtteea gaacegtege	840
atgaagtgga agaaagacaa caaactgaaa agtatgagtc tggctacagc cggcagcgcc	900
ttccaacctt gagcccatcc ggaggagccc tgggcggccc gagagcccgc accaacccca	960
getegaceet tecaatette eetgeactge egetgeeege tggggaceag tteceaegag	1020
cctgtcacac cccagtcctg tgttacaatt tttcgtttgg tcttaggtct tcccatggct	1080
ccctctctcc tggactggtt atcttgttat tattgttaat aataattatt attattatt	1140
ccccctccgt gctccccact tctcttggct cgccccccc caagttgcca gtgtttctga	1200
atgtcctcgt gtctgtggtt gcgctccttt ccccaggaaa aagaaaagaa	1260

gcatgtttaa tgtgacttcc cctccccgtc tgtgttctaa cttatttata aaaggatgat 1320

-continued	
ggctgtattt tgagtttctg ctggaaactt ccataagggg cagcagttga ggttgggtag	1380
tgctgggccc agctgagctg gcctgggaaa tggagcccac tgtctgtgtc tcttttctcc	1440
cacctcatcc ttetteagec ceacceagec eccacteect aggeteaggt agettgttee	1500
ttggggtggg aagggagcta gggaagggtc aaagtgtgga cattgagaag aggagaggaa	1560
aggagcaaga gctgaactcc tgctgcctgg taggccccac aaggcctagt ctggaagcgt	1620
atggaatcag aaataatcct cagtgtaaaa tgtcttgtga tttttctctg tgaatccgtg	1680
ggtctggcta gaaggcccaa tgctgtaaat atggggatag tctgggtcag gccaatcact	1740
teetetetea eccatttege tteeaagaee atttgtagtg agegggtgga tgetgtgeta	1800
cgtgtgaaat ctgtctttgc caggcctgtc tcagtgatta gcttttggta tgtctgtagc	1860
tttccttgaa gttgaataaa tgtttccccc actccaaaaa aaaaaaaaaa	1912
<210> SEQ ID NO 62 <211> LENGTH: 3902 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 62	
ggacgggcag ggcgcgcact ctcggcggtg cacacgccgc tccaactctc aggcgcgcgg	60
ggtgcgtccg cccgccgccg ccgccccggc accgggaggc agagcaagcg ctttgtccgc	120
acgecegete gggactetge eeggaggagg eageegegee gagteeeege eteegeetet	180
gcccccgggc gggccgggcc ggccgcggtg gggggagcca ggctgagggc gagggtgggg	240
gcgggggcgg gcgcaggagg agagaggagg gcagcggaagg cggcgggagc gccgggtgcc	300
gggccggggg agccgcgggc tctcgggaag acgcggatga tgaacaagct gtacattggg	360
aacctgagcc ccgccgtcac cgccgacgac ctccggcagc tcttcgggga caggaagctg	420
cccctggcgg gacaggtcct actcaagtcc ggctacgcct tcgtggacta ccccgaccag	480
aactgggcca tccgcgccat cgagaccctc tcgggtaaag tggaattgca tgggaaaatc	540
atggaagttg actactcagt ctctaaaaag ctaaggagca gaagaatcca gattcggaac	600
atcccgcctc acctgcagtg ggaggtgttg gatgggctgt tggctgaata tgggacagtg	660
gagaacgtgg agcaagtcaa cacagataca gaaactgccg ttgtcaacgt cacctatatg	720
acaagagaag aggcaaagct agctattgag aagctcagtg ggcatcagtt tgaggactac	780
teetteaaga ttteetaeat eeeegatgaa gaggtgaget eteetteace eeeteategt	840
gcccgggaac aaggccacgg ccccgggagc tettetcagg ccagacagat tgattteccg	900
ctgcggatcc tggtccccac ccagtttgtt ggtgccatca tcggaaagga gggcttgacc	960
ataaagaaca tcactaagca gacccagtcc cgggtagaca tccacagaaa ggagaactct	1020
ggggctgcag agaagcctgt cacaatccat gctaccccag aagggacatc tgaagcatgc	1080
cgcatgattc ttgagattat gcaaaaagaa gctgatgaga ccaaactggc tgaggaggtt	1140
cctctgaaaa tcctggccca caatggcttc gttggaagac tgattggcaa agaaggcaga	1200
aacctgaaga aaatagaaca tgagacaggg accaagataa ccatctcatc cttgcaggat	1260
ttgagcattt ataaccccga gagaaccatc accgtgaggg gcaccattga agcctgtgcc	1320
aatgctgaga tagagattat gaagaagctc cgagaggcct ttgagaacga catgctggcc	1380
aargragaga cagagaccac gaagaagcco cgagaggcco ccgagaacga cacgccggcc	1500

gttaaccaac aagccaatct gatcccaggg ctaaacctca gtgcacttgg catcttttcg 1440

actggactgt	ctgtgcttcc	tccaccagca	gggccccgtg	gagttccccc	cagtcctccc	1500
tatcacccct	ttgctaccca	ctccggatac	ttctccagtc	tgtaccctca	tcaccatttc	1560
ggcccattcc	cacatcatca	ctcctaccca	gagcaggaga	ctgtaagtct	cttcatccca	1620
acccaggctg	tgggtgctat	catcgggaag	aagggggcac	acatcaaaca	gctcgctcga	1680
tttgctggtg	cctccatcaa	gattgctcca	gcagaaggtc	cagatgtcag	tgagaggatg	1740
gtcatcatca	ctggtcctcc	tgaagcccag	tttaaggete	agggacggat	ctttgggaaa	1800
ctgaaggaag	aaaacttctt	taatcccaaa	gaagaagtga	agctggaggc	ccacatccga	1860
gteecetegt	cgaccgctgg	ccgggtgatt	ggcaagggcg	ggaaaaccgt	gaacgagctg	1920
cagaacttga	caagtgcaga	agttatcgtg	cctcgtgacc	aaacgccaga	cgagaatgag	1980
gaagtgatcg	tcagaattat	cgggcatttt	tttgctagcc	agactgcaca	acgcaagatc	2040
agggaaattg	tacagcaggt	gaagcagcag	gagcagagat	accctcaggg	agtcgcccca	2100
cagegeagea	agtgaggctc	ccacagcacc	agcaagcaac	cgatgaatgt	agccctccca	2160
acacctgaca	gatgagacca	aacagccagc	agatcgggag	caaaccaaag	agcatcccga	2220
ggagtgcgca	gtctgcagag	cagccagggc	ctgcagacct	ctacacatcc	tgggatccag	2280
gagggcacag	ggaaggccag	gttgtccaga	aacaccgctt	ggcctgcccc	cagcttcccc	2340
tggcttctgc	aggcataaca	gccatccact	gcccatccaa	ctcagattct	cctcagttcc	2400
caggacgcta	tccctttcgg	ttgaactaac	ataggtgaac	atgctcaaag	caaagcaaaa	2460
ttcctagccg	tttctttgtt	gtggaaagtt	gtctctgtac	atgtatgtac	atatcagaag	2520
gggaaggatg	ttaagaaatg	tggcctgtgg	gttacacagg	gtgcctgcag	cgttaatata	2580
ttttagaaat	aatatatcaa	ataactccac	taacaacaat	ttttactcag	tgattaattt	2640
tgttttcttt	ttgaagagaa	agcaggcttt	tctagacttc	caagaataaa	gtattgggtg	2700
aggtccactg	gtatagaaag	gaactttgag	ccacccacac	aaaaaattca	cttggaggga	2760
aatcttgtca	aggacactta	atggcagttg	tgggtcacct	gtgtctgtca	acagaaggga	2820
taccgtccct	gaggagggc	cctaggccct	ggtcacctgt	ttctcccaca	cacccattgc	2880
tcagtttcac	aggtttttaa	actgatgatt	tttggtttgt	tttgtttttg	ttttttgcat	2940
actgctatat	agttctgtct	ctctccttat	ctccctccta	accttcctct	gtcttcttta	3000
cccaaaattc	ttttgagtcc	cttcgttctt	tttctgctcc	ccgtatctat	gcacccctcc	3060
cctcccccca	ggcaaagcag	tgctctgaat	atcataccac	acacaaggaa	caaatgcgaa	3120
ccacacagac	cagcctcagc	ttacactcgg	ttactcaagc	gaacaagagt	cggcggtact	3180
tgtcctagca	ttcggaagag	gaaagcagga	tcccagcaaa	taaaccagcc	agccaaacaa	3240
agaaaaatcc	cacaaagaaa	gaatggactc	tctctccatc	ttggtataca	agccatcaac	3300
atttagtgaa	attctttctt	tctttaaaaa	tttaaagtgc	aggaaaatag	caatttatac	3360
gaggttgttg	gcccagggcg	ttaaatttac	agatttttt	taaatgagaa	aaacacacaa	3420
ataaaagcta	cctcaggtgt	tttttacctc	agcaccttgc	tcttgtgttt	cccttagaga	3480
ttttgtaaaa	ctgatagttg	gagcattttt	tatttttta	ataaaaatga	gttgaaaaaa	3540
aaaaaagatg	agctgccagc	cccaagcagg	cggcagccca	ggtgtgccgc	agctcttctg	3600
tcttccgcta	gccaagagcc	tacgtggcct	tcttgtggac	aaacctaaaa	atgtttattt	3660
tttaaaaagt	gacaaagaaa	aacagagaat	attggagccg	tcctgaattt	caatagggta	3720

						_
cgtgccgtga gggcttttgc	gctgaaggat	gaccacatcc	tggttatgtg	aagaaaccat	3780	
gacactacca gactgcgatg	g ccggtttcct	ctactgcaag	cagtgttctg	tgacaaaaaa	3840	
aaaaaaaaaa aaaaaaaaaa	a aaaaaaaaaa	aggaaaaaaa	tatatccaag	ctaacaagaa	3900	
aa					3902	
<210> SEQ ID NO 63 <211> LENGTH: 9457 <212> TYPE: DNA <213> ORGANISM: Mus n	nusculus					
<400> SEQUENCE: 63						
tgtttgctgg attcggtctt	ggaatgaccc	acctgtaaag	tgettteeet	cctcctcggc	60	
ttcaactctg cagggggctt	tgcctggagg	gggcagggag	ggaagggggg	ggggacacaa	120	
aaaacttctt tctttctttc	tttctttctc	cgtttctctt	cagcccgaca	ttgtcacctc	180	
ctccttgagg ggttagaaga	agetgggage	tecegacaga	gctggaaatg	gtgatgactg	240	
ttttttaatc agaggacaat	ttetttteae	tgcactttga	ctatggaaac	agacgcaatt	300	
gatggctata taacatgtga	a caatgagctt	tcacccgaag	gggaacacgc	caatatggcc	360	
attgacctca cctcaagcac	: acccaatgga	cagcacgcct	cgccaagtca	catgacaagc	420	
acaaattctg taaagctgga	aatgcagagt	gatgaagagt	gtgacaggca	gcccctgagc	480	
cgtgaggatg agatcagggg	g ccacgatgag	gggagcagcc	tagaagaacc	cctaattgag	540	
agcagcgagg tggccgacaa	ı caggaaagtc	caggaccttc	aaggcgaggg	aggaatccgg	600	
cttccgaatg gtaaactgaa	atgtgacgtc	tgtggcatgg	tttgcattgg	gcccaatgtg	660	
cttatggtac ataaaaggag	, tcacactggt	gagcggccct	tccactgtaa	ccagtgcgga	720	
gcttctttta cccagaaggg	g caacettetg	agacacataa	agttacactc	tggagagaag	780	
cccttcaaat gtcctttctg	g tagctatgct	tgtagaagaa	gggacgctct	cacaggacac	840	
ctcaggaccc attctgtggg	, taaacctcac	aagtgtaact	actgtggccg	aagctacaag	900	
cagegeaget caetggagga	ı acacaaggaa	cgctgtcaca	actatctcca	gaatgtcagc	960	
atggaggctg ccgggcaggt	catgagtcac	catgtaccgc	ctatggaaga	ttgtaaggaa	1020	
caagagccta tcatggacaa	caatatttct	ctggtgcctt	ttgagagacc	tgctgtcata	1080	
gagaagetea eggeaaatat	gggaaagcgc	aaaagctcca	ctcctcagaa	gtttgtgggg	1140	
gaaaagctta tgcgattcag	g ctacccagat	attcattttg	atatgaactt	aacatatgag	1200	
aaggaggetg agetgatgea	gtctcatatg	atggaccaag	ccatcaacaa	tgcaatcacc	1260	
taccttggag ctgaggccct	tcaccctctg	atgcagcatg	caccaagcac	aatcgctgag	1320	
gtggccccag ttataagctc	: agcttattct	caggtctatc	atccaaacag	gatagaaaga	1380	
cccattagca gggaaacato	tgatagtcac	gaaaacaaca	tggatggccc	catctctctc	1440	
atcagaccaa agagtcgacc	: ccaggaaaga	gaggcetege	ccagcaatag	ctgcctcgat	1500	
tctactgact cagaaagtag					1560	
aatcccaaga ggaaacaaag					1620	
accaaggccc ccaagggcto					1680	
					1740	
cagataaggg ccttcaagtg						
accattcaca tgggttgcca	tggctaccgg	gacccactgg	aatgcaacat	ctgtggctac	1800	

agaagccagg	accgctacga	attttcatca	cacattgttc	gaggggagca	cacattccac	1860
taggcctttt	cattccaaag	gggaccccta	tgaagaactg	cacatgaaga	aatactgcac	1920
ttacagtccc	accttccctc	ggatggcgac	atgctgtctt	ctggatgctg	tcactgtcta	1980
taattcttat	tttgtggaca	aaatgtcatt	tgetetgeet	aactacaatg	aggaagaaac	2040
aaaagaaaag	ggatgggatg	ttcaatgata	acttggcttg	tttatttcgt	gagcatttaa	2100
agcagttcat	tgcagccatg	catccttgtt	aaggcctatc	ataatttagg	agatcattca	2160
gttcatagag	gttcatccaa	gagattetga	tetgecatte	atattcagga	ttgtgataga	2220
aggcaggaaa	gttgagagtt	ttctgggtag	gatgcttggc	aatttaaaat	ggtctaagtc	2280
attttactct	caaagaagtt	tcaaaatgta	aaccgatttt	attttctgtt	cgttagagat	2340
catggaacac	aaaaacaatg	ttattttcca	taactactag	gatgagttga	attgttgtgg	2400
gttctgtgtt	tacctcccct	acggaattta	taattgagta	tgttttacac	tgtatcatat	2460
agcaaaaatt	ttaaactaca	ggtagtcaag	ggccgctacg	atacatctga	ggtcctttga	2520
tcttatttt	ctaaacttgg	cgcactgttt	ttccatagtt	ttgatgactg	gcattttata	2580
gacaccctgg	cagccttact	tttaacacct	gtaacaaata	gtattttta	tgtagttttc	2640
agaataacat	atggtctcaa	gagtgggtaa	gaggcagtca	gtaatttcca	ggaagaattc	2700
tgcttttcac	aatttgagat	tttttttaa	gctgtaatat	gatggcagct	tagtatacat	2760
gtttgcttct	aaaggtgtgt	ttacgatcgt	cactttatca	gcattcaatc	agtgttaaca	2820
agtcagcaga	aaagtgtaat	taggcgaaca	gtaggggaa	ttcccactct	aagaaccctt	2880
ttctggtatt	tctcttcaag	ctgtgaccac	tcagtgttct	gtccacagtc	cattcctctt	2940
tgactcttgg	aatagaaggt	cttaaaaagc	cttgctagca	gttgcttctt	ttaaaatctt	3000
ggagcaactg	ttaattggac	ctgaaagtgg	taacttgaac	cctggaaggt	cttttattta	3060
ctagggctat	ttattccact	atttcttcag	taataagagt	tactaccttt	gctggagaca	3120
aaagggaact	tctttgttac	ctgaataaca	tagtgcaggt	caaacaaaca	agcaaaaagt	3180
tttctttcag	ccttcccgga	gttgagaatg	tgaccatctt	taggagaagg	tcccgcactt	3240
taaaaataaa	aacaaaaaat	ccaactctag	agttccttat	cagaaatgaa	tctcaacccc	3300
ttagtcaaga	attttctgtc	gtctcttaat	ttgcacgtga	gaaatacttc	catatctcat	3360
gctcaggttt	taatctgatc	tttgtgagtt	ctcaattgtt	tttttttt	tttttctttt	3420
tcttttctga	acttgacttg	catttgtggg	taggattgga	gcacactgtt	atcaaggcat	3480
tcgggggaat	caacttggca	gacataactt	gctgcttgtg	tttgaggaaa	acaaacctga	3540
ccataactgg	attatttgac	agtcatttgt	aaatgctgag	aggtctgctg	tgtggtaaca	3600
catcgctgct	ccaacagtcc	cttgagtgac	atgcccaaac	catgtcactg	cactttgcct	3660
tgggaagtac	cacgactgga	gaagtaccca	cggatgagca	gtgtgctccg	aactcgcttt	3720
gcaggtttct	gtctgatcat	ttaaggaact	tcttagctct	tccatagcca	gagcgaggta	3780
gttctgactt	gcctctttta	ctaatcctta	tcttagttct	ttctggagaa	atatccaact	3840
ggttccttaa	catgtaagag	aatgcaccaa	accagagcta	tatcaaatgc	caattgttgg	3900
ttttgttttt	tttttttgg	c333333333	gggggggtt	gtatecettg	gtacatttta	3960
aaaacatagc	ttcctcgggg	atgaaacatc	tcatcatgcc	ttccctatcc	ccacttaccc	4020
tacacactct	ggaatcacag	tgaaaaggat	atttatttct	gaatgaggta	aataagttta	4080

aggctcctga	cttctttgtt	ttaactgcaa	cttgaggaag	catctggatg	tctgtcagtg	4140
tgtccctttc	ggctctttgt	gaacacctgc	aggcatctgc	tatctcttcc	ttctctctgc	4200
tagcacctgc	tctattaaca	atcatgtacc	tacctgccct	gggatgacac	tgaatttagg	4260
tgtactggaa	gagttgtgtc	cttcccctac	gaaggtggta	ccgatgtgct	ctgcctttct	4320
gatcccattt	tattggaaaa	cctgatgtac	tcaaaggcgt	gaactataag	ggtagattgg	4380
ctgtacatat	gcacttagcc	tttcttct	ttttcagctg	catggcacaa	gatacagaaa	4440
aaaaagtaga	tagctctgct	gtgacaggga	caaatgggga	caagctgaat	tcaagatttg	4500
tgggttacga	taaactttgt	ggacatagtg	ctgtctgagg	gaccctcaat	gactgtattt	4560
gcctcttttt	caccaaagag	aataggagac	atggtagcac	ctaaaaatag	gtatgaaggc	4620
cagataccaa	ataaatcaaa	tttacataac	cgttacaaga	ccagtttatt	taggtgacat	4680
tttacagttg	agagagaatt	tgaggggcac	gaaaatgggt	tatcctctgt	gttttccagt	4740
ttgtcaggaa	tttatcagat	ggetetgeee	taattttgcc	cagattttt	tttttttatc	4800
accagttcct	tctggagaaa	catgctgcgt	ctctatagta	gtgattgatt	gcttgttata	4860
aaggcttttt	agaacagtga	gagccgccag	cccaatgagc	ggtagaggga	agtgtgaaac	4920
actgtcattc	aaacattccg	ttaataattc	tctggataaa	atggggatgt	gagggccaac	4980
cattaagatt	tagaatgaag	ttggctgcct	ggctggcata	catacaggtc	agtgtttgaa	5040
tgcagtacag	tttgcatgca	catgcatatt	gcacattctt	ttaatgaaaa	ttcacagaaa	5100
agaagcaatt	agcattgcca	gttgtattac	aaaagcttag	agttagaagt	acagtacagt	5160
tactacgcca	gcagttgggt	ctaattcagc	aggttgtatt	aagaaagccc	catgttgtca	5220
gtgtgtcttt	aaggctaatg	gcaatttaaa	tcacaaatct	ccattgtctg	catccagaaa	5280
aacaaacaaa	gcaaggcaaa	aaacaatgaa	acaatgaaaa	gatattgagt	tgactggaga	5340
atatttgaag	aaatatagat	tttttttgtg	agaggaagaa	gttgcaggaa	gtaatttagc	5400
aaccttggct	tgtgtttgtg	cttctctgac	ccagttgcac	acctcacaag	tttggtcttt	5460
ccaaaccttc	atcttctctc	ctaaatgaca	agttagggta	gaaagattca	tggaagaggc	5520
tggagaggac	aaggagagct	gtctgcccct	agattcagga	ctgcgcctta	cactgtccaa	5580
gtcacctgcc	acatactgtc	ttagccttga	aattgtagat	tggtggtgat	cgtcagttgt	5640
acttcatgtt	attttaataa	ctactgtctg	tataattatt	ctacagcaaa	agctccccca	5700
aatccaaaag	gggaaaaaag	tgagggatga	attgaaactt	tgtatatata	aaagttattt	5760
tataaatgtt	ttagtcttcc	agtttctgca	aaataattaa	aatatacagt	aactggtctc	5820
ttaaaccctg	aacttaatgt	attaaatact	tataaaattt	tatattggtg	ccttttaaaa	5880
atgcattgag	agtgttggtt	agctctttag	ctctaccaca	cttttactgt	gtatttttta	5940
agaaaaaaaa	aaatcacata	aaatctaagt	actctctaat	tcacctttgt	gttcttagaa	6000
gaagaagaaa	aaaactgcta	aaagaatttc	cagactttta	gctgagctgg	caaaagtgac	6060
aaaaaaaaa	aaaaaaaaa	caaactttga	aaccagattt	taatctttt	agcttgatga	6120
tatttctgga	cattattcta	tggtagaggc	aaaatagaag	gtagactcac	atatcagcaa	6180
tgaattggat	tatgctatat	gttttgattt	cttcttgagg	aagaatatgt	tttgcatcac	6240
acaggggttt	ctttgtataa	tttggagtca	gtaattacag	tattgctttg	ctttgtttta	6300
aatacccgac	tgatgttact	ctagtcttgg	gtcttctgtc	tcttctgtct	tctaacctgt	6360

ggttgttttg	tgaaatggcg	tgggaatgca	gatcattgtc	tcctcttgaa	caagacaaag	6420
ctcagcacac	tagtcccgtg	actggtctcc	aaaatgtcat	ctcagatgtg	tagtctgggg	6480
tegtetgtea	cttctaaggg	gtgtcttcaa	ctatgacagc	tttttaaaaa	cgagctgctg	6540
gctgggtaaa	gcagacatca	tatgaccaag	aagctgtgat	acgctagtgt	ttccttctgt	6600
catcgtgttg	tactcttagg	ccaaataatg	acaccttgac	tgtttttaca	tttactacag	6660
aaacctaaac	ttttggaatt	ttcaaaggtt	tttatgtaat	gttctatttc	acageggttt	6720
ccttttctct	tgctgtactg	agtctgtgag	tattttttt	ttcagatgca	ctcttggaaa	6780
taagttctga	attctgttta	tggcgtttct	ctcgcttgac	actccgtgta	tagatgttct	6840
gtataagttt	gttatgaatc	cacctttctc	atgtatggac	agtgagaagt	acatgaacaa	6900
ctagtttcct	aagatgactt	ttatattatg	aattaatatg	aaatttacag	gtcatgtgca	6960
ccttaagtgc	agaatcaaaa	cttcctatag	gtccacataa	gcagttctca	gtgaaccggg	7020
ccttcagttt	acctcaagtg	acatgtagta	aggaaagccc	gggaacatgg	aggtcactct	7080
ctgcagcaca	gtgcacttag	tagcatgttg	ctgaatctca	gttacagaaa	atggatattt	7140
aaaggaacac	actggaagga	tgcaagggat	tgagggactg	ctgatatttt	cgttgttgct	7200
gttgctttgt	gcttttcaaa	aagttgttca	aattatggaa	ctgtgatcta	aaaacggttt	7260
gacagtggag	caccagagag	gatgtccacc	actcacttgc	ccttcggtac	gactaagctc	7320
tgagtttgcg	tcttcaactc	taccttcctc	tcccctcctc	atccctactc	tgtctgtggc	7380
cctcctctcg	gtgtcatttc	ctcttggtgg	ctctcttgac	actcctacta	gttaggaggt	7440
caactctgaa	cttctgactc	attaaatctt	aatttttgtc	tcagtggttt	tagttagctg	7500
tgtagtctgc	tggcgtattt	ttatacccac	gtgtagtttt	atatttttaa	agcgtggttg	7560
agttgacatg	gtgcactccg	tagtccttat	tttgcttcac	tctcaagtag	gaggcaccta	7620
acgtgactcc	agaaattctg	taatcagagt	atccgtctgg	ctcctttgtg	cttggatttt	7680
gatttgtttg	gctttcttct	taaatacaaa	tcatacaaga	gtagactttc	ccccaccat	7740
agaggataaa	aatgtaaagc	aaagagtctt	aactttctcc	caaccggggg	gcggggcgag	7800
tgctgtccca	cttctgcagt	gatgttccag	gctcagaggg	gtctccagac	cccaggcttg	7860
cctgtcatcg	ggtctcttcg	accctgttat	ttgcagcttt	gggatggttt	cttttgctat	7920
ggagtttaac	agctcttctt	ttttccataa	aagtgcaata	cccctcttga	agtcttaaaa	7980
actatggtaa	ttttcttctt	ttetttetet	gacatttgtc	tcattagcca	atgatgaaaa	8040
gaaatctttg	gaaattctaa	catgtcatag	gacataggca	aatatggaaa	ccactctgct	8100
atgaaaagtt	gaaaaaaaaa	acgtattaac	aaacgactcc	tctgactttc	tagaaacttc	8160
gtttagacta	aattttcttt	gaaatcatga	atgaaagttt	atcctgaggc	tgaaatataa	8220
tttttctccc	actcttgtct	aatgctctta	agttaaataa	ctaatattta	atgttttcat	8280
ttctctcatt	ttggaaaata	aatatcaaag	cacttaggtc	aggtttaaat	caatattacc	8340
tgttggaaaa	aaatttttt	acatatttaa	agcagacctg	tttcaatgca	gatggagaag	8400
tatcttttgt	attattcata	tttatatgta	gtgtgttctt	ttctttttt	aatacctgtg	8460
tttctgtagt	aagactgctg	taatgtaaat	acacgtttta	ttaaaaagta	acatttcttt	8520
ggcatttctt	ttgatggcac	atactgtatt	tttacagtat	atgtcttggc	tacttaactt	8580
ttttttcttt	aataatacca	aaggtaatta	gactatttta	aggactaatt	gcttgacagt	8640

-continued	
ttctagacta ctttgatttt tttagaagaa aaaagaaaaa aggataaaaa aaagtcaaac	8700
cagtgaacct cattttttca aactaataat ttggggaaat aaaaactatt gtttaaaaag	8760
aaatatatat aaatatata ataaatatct gtaaaattaa aatcccagac cttgtatgtc	8820
aggtttgctc agtgtaatgt agggtttttt tttgttttgt	8880
gctcaaatac ctcagaaaat ggggtttact atggaaatac tgcgacagtc tctgcagctg	8940
tgtgagctgt cattctgctg catactgatt gggagacctc cactaaacag ttttatcact	9000
gcagactaaa atgtgggact tgtattttct ttgtttttaa tgcacacacg tgcatgctct	9060
gtgcgtgtat gtgggtaccg tgtatatgtg tgtgagtgtt gtatatgcat gtgtgaatgt	9120
gtgtgtgtgt gcgtgcttgt gtgtgtgtgt gcgtgcttgt gtgtgtgt	9180
gtgtgtgtac aactgaagaa gctgcaaaaa ctttgtaata ctttgtgaaa gggttatatt	9240
ataaaggttt gtactgtctg agtgcacagc tactggaata aacttagcca atctcaggaa	9300
caagcatata atttgtccaa gatttatttc ttctcagaag tgtaagtgca gtttttaatt	9360
ctgtatatta tttaatattt taccaataaa ataaacttct gacagaaatt atttggtaca	9420
aaaaaaaaa aaaaaaaaaa aaaaaaaa	9457
<210> SEQ ID NO 64 <211> LENGTH: 5742 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 64	
ggatcaatgt gactctagaa acaaatggat gaatgaatat ccatatgaag aggaaaacca	60
taaagaatct cagcgccctt gagaacagaa tgctaatgct tgatggaatg ccggcagtca	120
gagtcaaaac cgagcttgtg gaatctgaac aagggtctcc aaacgtccac aactaccccg	180
atatggaage tgtcccccte ttgctaaata atgtgaaagg ggagccccca gaggactcac	240
tgcctgtaga tcactttcag acacaaactg agccagtgga cttgtcaatc aacaaagcca	300
ggacetecce tactgcageg teatectece etgtetecat gacagegtee geeteeteae	360
cttetteaac tteaacetet teateetett etagtegtee ageeteatee eecaetgtta	420
taacatcagt atcttcagca tcgtcttcgt caacagtgtt atctccagga ccccttgttg	480
cctctgcatc tggcgtgggc ggccagcagt tcttgcacat catccatccg gtcccacctt	540
ccagtcccat gaacttacag tctaacaaac tcagtcatgt tcatcgaatc cctgtggtgg	600
tacagtcagt gccggttgtc tacacagctg tacggtcacc tggaaatgtg aacaacacta	660
ttgttgtacc gctcctggag gatgggagga gccatggcaa agcacaaatg gagccccgag	720
gcctatctcc cagacagagt aaaagtgaca gtgacgatga tgacctgcca aatgtgacct	780
tagatagegt taatgaaact ggateeaegg eeettteeat ageeagagea gtacaagagg	840
tacatccatc cccggtatcc agggtccgag gaaatcgaat gaataaccag aagtttgctt	900
gttcaatctc accatttagc attgagagca caagacgcca gagacgatca gaatccccag	960
actocaggaa acggogoato cacagatgtg acttogaagg gtgcaacaaa gtotatacaa	1020
aaagttetea eetgaaggea eaceggagaa eacacacagg agagaageee tacaaatgea	1080
cgtgggaagg ctgcacctgg aagtttgccc gttcagatga actgaccaga cactaccgca	1140

aacacacggg agtgaagcca ttcaagtgcg cggactgtga ccgcagcttc tcgaggtcag 1200

accacctggc	actgcaccgt	aggaggcaca	tgctggtgtg	aggaaggctc	cggtccagct	1260
acgtgcaaga	gctgggtctc	ttcaggagca	actaactcag	cagggctgag	ctccctctac	1320
agtgttaacg	tcaagggcac	cgccattccc	acggtgcctg	aaaccagagc	aggaacaaga	1380
aggaaccctt	ctcccttcgg	cctgaaggta	accccccatc	atgaccacac	gcgtgagaga	1440
gccgtctgcg	ttcacgctgg	cctgggagtt	cagegeetea	ggtcctgaag	agacaggcat	1500
tgttttccat	gctatgtcct	ctgccattga	aaagatgttt	gtagcttgta	cattttctga	1560
gctggcagac	actctgctat	cagtcccttt	aaaggtcatc	taccgcaaat	tgatggttag	1620
aggagacctt	ctcagtttgg	atgattcttc	ctttccaccc	tcaccctaac	cctagcccct	1680
tttgacaacg	atttcagttc	ctatctcagt	aagctagaac	acacacccag	tctgttacca	1740
gcaagcagca	tggactagaa	aggaaggggc	tattggaggc	actctgttac	ccaaaaacaa	1800
aggcacacag	aagtagccct	ctgtgctaga	tagcgctcat	accttgtcct	catgccatcc	1860
cccaaaagaa	ccaacattga	gtcttttcat	ttgtttgttg	ttgcttgttt	ctgttctgtt	1920
tctattctgt	ttttgtgcat	cagttccagc	agaggggcag	agcagtttct	caaagactag	1980
tectgeteeg	ccctggcatg	gactgacaga	gtattccgta	gttgaatagg	aagagcctgt	2040
ctaaataata	ataacaataa	taataactac	tgtcccactt	caaattgcgg	tgttctgtca	2100
cctaggcacc	atctcctcct	gcccttagtg	tttgattaca	aagaatcgag	gagaggggg	2160
ctttcttaga	cacactggca	ccacggtaag	aggtggagct	gcccaggcaa	agtcactgaa	2220
catgaaaacg	agacaaagca	gagatggaaa	taatgctctt	cttgaggaga	aaagcaataa	2280
tgaatagaag	gactttccta	caataactcc	actgaggact	cacattaccg	attttcatac	2340
ttactaaagg	gattgtaaaa	aacaccccag	catctcagag	gtcttagtta	cagccacagc	2400
acggaggtaa	tctttccact	ttctgttgtc	ctacttgctt	aagtaccaca	cttagagatt	2460
atgctcccca	cttcttggta	ggaaacagtt	acttggtgac	tagagaggca	caggaggcag	2520
agctgccgat	gaactcttcc	gcctgtgggt	ctcttctgct	tgggcctgag	tccgtggcaa	2580
gagtgtcccc	atgggaagcc	tggcaagagt	gtccccatgg	gaagcctgcc	ttggtgctac	2640
ttctccaacc	tggagagccg	agagtctgac	tctacgccat	tcacttttta	aactgtccca	2700
gaatccccgt	gctcccacat	tggcatccac	agggacagac	cacctgcttc	ttctgggaga	2760
agggtcagag	caaagctagg	ttccatccta	tctctcaagt	aaagagcttt	ttgtatttag	2820
cgaaatgtac	aggaaaagca	atatatcccc	ccaacccccc	aacaagcact	ctttccaaaa	2880
tagtctgtca	ccactgaaag	ctgctgtttt	cccagctttc	tgtggcaaat	tgggtttggt	2940
gagatttttg	ttgttaagac	attttatagc	ttaaatatta	aaggtctcca	gtgaaggcct	3000
ttgcaatata	tttcaatgac	acacttgatt	tgggaaactg	cacaaatcaa	cctcataggg	3060
ttcctagctc	agttttgaat	gtctgcacat	tctaaaatga	tttctggtga	cagttatcct	3120
tcctagtatc	agcttctaat	caggataatt	gtattctgac	aaagcaagag	ctatgaacat	3180
tacaaggaga	accatttgtg	tcgggtagct	ttgaaaaaga	cttttaataa	ctgttcaggc	3240
aaaagtagca	tgatttacag	gtcaagtccc	agcttcagag	atctgtgctc	tacattttct	3300
gccaggtata	aaaacttcat	caggcaattt	ccctcctcca	agggctgtag	ttctattgat	3360
aaatagcttc	agctacacag	gttggtaccc	accagccagc	aggattttt	ggttattgct	3420
				ttttaaatct		3480

cacttcctac	ttctcattgc	ctgtaatcat	ccagaataaa	accaggtttc	ctgatgcacg	3540
ccagcattag	taactggcca	gggcaaagaa	ccctgacagt	ggcaaacaag	caggateeee	3600
caggcgctgg	ccctagagcc	taattgatag	gtcgtaagga	agtcgctcaa	gtcaagtaca	3660
cggttggctt	agttctgtct	gctctcgtag	gagccagtcc	tttctccact	gagaaagcat	3720
cttgccagtt	ttacagggag	aattcactga	tctgacaagc	cagggaagct	tcctgactga	3780
catcttaatt	taaatttagc	acagaactaa	gagagtcgta	cctctctagc	agcataagga	3840
agatgtgggg	aagtgagctc	ttcccccctc	gctccctgaa	aatggaaagc	atactgagat	3900
ggtaaggtaa	cggatgaaac	ctgccaccat	tacaacgttt	ccctcttctt	gacatagcga	3960
tatttttaga	agagttgcaa	gcacaaatga	acacatccct	gatctggccc	aagaactgag	4020
acttatttgg	cactcgtctg	gaggacgtaa	ccaatcctcc	gcagtaagtt	tccgaggtgt	4080
gttcccctta	taacagaaag	tggtttgaga	ctaaaggaaa	tgggatatcc	ttagtcacag	4140
aaaagccacc	acccatttca	tegtecagte	tagettettg	aaaagcacag	tgtatgataa	4200
gctatcaaaa	agaaaaagag	agagagagag	aaccctaaag	cacctctcag	tggtttccta	4260
agcatgcttt	ggtttcaggt	ttgaagtggt	tcatcttgca	gctaggaagg	gtgtgtgtgt	4320
ttgggaacac	ctcgcacaca	cacagtgggg	agaaccaatt	gtctccttga	aatgtaaaag	4380
ctgatgacaa	gggaggtggg	ctattagggg	ttttcagaga	gtcccttata	aggttacata	4440
aataaaacga	gcacttttaa	atatcacttt	aaagattaaa	agggaaacaa	gattagtgaa	4500
aaaaaaaaac	tttcaaaatg	cttctgtgtt	tacagacaag	ggttgtaggt	gattagaaag	4560
gccatgttca	tcatggttga	aatttggaac	agctcatgtg	aagactgtgt	acgctttcat	4620
gcaacttgtt	taatgtcaga	ctgccattcg	agtctggact	ggaaatggaa	ctctgcactt	4680
		ctgccattcg gataacgtgt				4680 4740
tgagatcagc	tcattagaat		atatggataa	agatgcagta	ttccttagtc	
tgagatcagc tgtgctttgt	tcattagaat	gataacgtgt	atatggataa gcaattgaat	agatgcagta agatccggtg	ttccttagtc aggggaggcc	4740
tgagatcagc tgtgctttgt ttcagttgta	tcattagaat ttattatctg atcacatgcc	gataacgtgt taccaaagct	atatggataa gcaattgaat tgtagtgact	agatgcagta agatccggtg gcctagaaac	tteettagte aggggaggee gttgetgaga	4740 4800
tgagatcagc tgtgctttgt ttcagttgta tattgttagg	tcattagaat ttattatctg atcacatgcc aggctgtcca	gataacgtgt taccaaagct gttgttttgt	atatggataa gcaattgaat tgtagtgact ttgtgaggat	agatgcagta agatccggtg gcctagaaac tcttagaatt	tteettagte aggggaggee gttgetgaga gaageagtgt	4740 4800 4860
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag	gataacgtgt taccaaagct gttgttttgt gttccttgta	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa	ttccttagtc aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa	4740 4800 4860 4920
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat	ttccttagtc aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat	4740 4800 4860 4920 4980
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt	gataacgtgt taccaaagct gttgttttgt gttccttgta tctgcataga ttaatactca	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctct	ttccttagtc aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc	4740 4800 4860 4920 4980
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga ttaatactca aaatgtaggc	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctct ggctcagcta	ttccttagtc aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg	4740 4800 4860 4920 4980 5040
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctc ggctcagcta cccacactgc	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctcctttcc aggaaagagg	4740 4800 4860 4920 4980 5040 5160
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc tctggacagt	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc atattccacg	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctct ggctcagcta cccacactgc atctgtatat	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta	4740 4800 4860 4920 4980 5040 5160 5220
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc tctggacagt gcaggcaagc	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac aaatatcaac	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc atattccacg acatgcacct	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctct ggctcagcta cccacactgc atctgtatat ataatttgta	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc	4740 4800 4860 4920 4980 5040 5100 5160 5220
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc tctggacagt gcaggcaagc ctatgtagaa	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac aaatatcaac atgtagagtta	gataacgtgt taccaaagct gttgttttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc atattccacg acatgcacct aaagaccttt	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa agagaatcag	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctct ggctcagcta cccacactgc atctgtatat ataatttgta cttataatac	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc tatgtaactt	4740 4800 4860 4920 4980 5040 5160 5220 5280 5340
tgagatcage tgtgctttgt ttcagttgta tattgttagg taataccage ccacatagge tgcctgtaag tgaggttgta gttggctgge tctggacagt gcaggcaage cctatgtagaa tgcctgcgtt	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac aaatatcaac atgtaagtta ttatagttaa	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc atattccacg acatgcacct aaagaccttt ttacccaact	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa agagaatcag taaaaaatct	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctct ggctcagcta cccacactgc atctgtatat ataatttgta cttataatac aaaatgctat	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc tatgtaactt attttcacaa	4740 4800 4860 4920 4980 5040 5160 5220 5280 5340
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc tctggacagt gcaggcaagc ctatgtagaa tgcctgcgtt	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac aaatatcaac atgtaagtta ttatagttaa gagtaatgtg	gataacgtgt taccaaagct gttgttttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgtttc atatccacg acatgcacct taacccaact gaaatgtata	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa agagaatcag taaaaaatct cccatgcca	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctct ggctcagcta cccacactgc atctgtatat ataatttgta cttataatac aaaatgctat ttggtattt	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc tatgtaactt attttcacaa aaatatgcta	4740 4800 4860 4920 4980 5040 5160 5220 5280 5340 5400
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc tctggacagt gcaggcaagc ctatgtagaa tgcctgcgtt tttcattata aatattgaac	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac aaatatcaac atgtaagtta ttatagttaa gagtaatgtg aattgcaata	gataacgtgt taccaaagct gttgttttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc atattccacg acatgcacct ttacccaact gaaatgtata tgtttagcaa	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa agagaatcag taaaaaatct cccatgcca ttttcataag	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctct ggctcagcta cccacactgc atctgtatat ataatttgta cttataatac aaaatgctat ttggtattt	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc tatgtaactt attttcacaa aaatatgcta agaagggatac	4740 4800 4860 4920 4980 5040 5160 5220 5280 5340 5460 5520
tgagatcage tgtgctttgt ttcagttgta tattgttagg taataccage ccacatagge tgcctgtaag tgaggttgta gttggctgge tctggacagt gcaggcaage ctatgtagaa tgcctgcgtt tttcattata aatattgaac tgcatcttta	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc caccegcaac aaatatcaac atgtaagtta ttatagttaa gagtaatgtg aattgcaata aaaaacagag	gataacgtgt taccaaagct gttgtttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgttttc atattccacg acatgcacct tacccaact ttacccaact gaaatgtata tgtttagcaa gaaattcaga	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa agagaatcag taaaaaatct cccatgccca ttttcataag ttactgtat	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctct ggctcagcta cccacactgc atctgtatat ataatttgta cttataatac aaaatgctat ttggtattt aaaataaaac cgtaacatat	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc tatgtaactt attttcacaa aaatatgcta agaaggatac gtgatagtgg	4740 4800 4860 4920 4980 5040 5160 5220 5280 5340 5460 5520 5580
tgagatcagc tgtgctttgt ttcagttgta tattgttagg taataccagc ccacataggc tgcctgtaag tgaggttgta gttggctggc tctggacagt gcaggcaagc ctatgtagaa tgcctgcgtt tttcattata aatattgaac tgcatcttta aaaagtattt	tcattagaat ttattatctg atcacatgcc aggctgtcca acacacacag ccaggaagcc tgtatcacgt tatcccacaa catgtcttcc cacccgcaac aaatatcaac atgtaagtta ttatagttaa gagtaatgtg aattgcaata aaaaacagag tcaaacatgc	gataacgtgt taccaaagct gttgttttgt gttccttgta tctgcataga ttaatactca aaatgtaggc aaatgtttc atattccacg acatgcacct taacccaact gaaatgtata tgtttagcaa gaaattcaga tgacgctatt	atatggataa gcaattgaat tgtagtgact ttgtgaggat aaggatcgaa tagctcaaat caccggccag agattgactt tctacttgtt gtgtgcacac ttttaaagaa agagaatcag taaaaaatct cccatgccca ttttcataag ttactgtatt	agatgcagta agatccggtg gcctagaaac tcttagaatt tgtgagttaa cagagtttat ctctctctt ggctcagcta cccacactgc atctgtatat ataatttgta cttataatac aaaatgctat ttggtattt aaaataaaac cgtaacatat atagtttgat	aggggaggcc gttgctgaga gaagcagtgt tgctggcgaa tctttaccat ctccctttcc aggaaagagg ctttcactta gcagcagcca ataatccatc tatgtaactt attttcacaa aaatatgcta agaaggatac gtgatagtgg	4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340 5460 5520 5580 5640

<210> SEQ ID NO 65 <211> LENGTH: 3057 <212> TYPE: DNA

<213 > ORGANISM: Mus musculus

<400> SEQUENCE: 65

agttccccgg ccaagagagc gagcgcggct ccgggcgcgc ggggagcaga ggcggtggcg 60 ggeggeggeg gcacceggag cegeegagtg ceceteceeg cecetecage ecceaceca 120 gcaaccegee egtgaceege geecatggee gegegeacce ggeacagtee ceaggactee gcacccegcg ccaccgccca gctcgcagtt ccgcgccacc gcggccattc tcacctggcg 240 300 qcqccqcccq cccaccqccc qqaccacaqc ccccqcqccq ccqacaqcca caqtqqccqc gacaacggtg ggggacactg ctgagtccaa gagcgtgcag cctggccatc ggacctactt 360 atctqccttq ctqattqtct atttttataa qaqtttacaa cttttctaaq aatttttqta 420 tacaaaggaa cttttttaaa gacatcgccg gtttatattg aatccaaaga agaaggatct 480 egggcaatet gggggttttg gtttgaggtt ttgtttetaa agtttttaat ettegttgae 540 tttqqqqctc aqqtacccct ctctcttctt cqqactccqq aqqaccttct qqqccccac 600 attaatgagg cagccacctg gcgagtctga catggctgtc agcgacgctc tgctcccgtc 660 720 cttctccacq ttcqcqtccq qcccqqcqqq aaqqqaqaaq acactqcqtc caqcaqqtqc cocgactaac cgttggcgtg aggaactete teacatgaag cgactteece caetteecgg 780 cogecectae gaeetggegg egaeggtgge caeagaeetg gagagtggeg gagetggtge 840 agettgeage agtaacaace eggeeeteet ageeeggagg gagacegagg agtteaacga 900 ceteetggae etagaettta teettteeaa etegetaace eaceaggaat eggtggeege 960 caccgtgacc acctcggcgt cagcttcatc ctcgtcttcc ccggcgagca gcggccctgc 1020 cagegegece tecacetgea getteageta teegateegg geegggggtg accegggegt 1080 ggctgccagc aacacaggtg gagggctcct ctacagccga gaatctgcgc cacctcccac 1140 ggcccccttc aacctggcgg acatcaatga cgtgagcccc tcgggcggct tcgtggctga 1200 geteetgegg ceggagttgg acceagtata catteegeea cageageete ageegeeagg 1260 tggcgggctg atgggcaagt ttgtgctgaa ggcgtctctg accacccctg gcagcgagta 1320 cagcageeet teggteatea gtgttageaa aggaageeea gaeggeagee acceegtggt 1380 agtggcgccc tacagcggtg gcccgccgcg catgtgcccc aagattaagc aagaggcggt 1440 cccgtcctgc acggtcagcc ggtccctaga ggcccatttg agcgctggac cccagctcag 1500 caacggccac cggcccaaca cacacgactt ccccctgggg cggcagctcc ccaccaggac 1560 tacccctaca ctgagtcccg aggaactgct gaacagcagg gactgtcacc ctggcctgcc 1620 tettececca ggattecate eccateeggg geecaactae ecteettee tgeeagacea 1680 gatgcagtca caagtcccct ctctccatta tcaagagctc atgccaccgg gttcctgcct 1740 gccagaggag cccaagccaa agaggggaag aaggtcgtgg ccccggaaaa gaacagccac 1800 ccacacttgt gactatgcag gctgtggcaa aacctatacc aagagttctc atctcaaggc 1860 acacctgcga actcacacag gcgagaaacc ttaccactgt gactgggacg gctgtgggtg gaaattegee egeteegatg aactgaceag geactacege aaacacacag ggeaceggee 1980 ctttcagtgc cagaagtgtg acagggcctt ttccaggtcg gaccaccttg ccttacacat 2040

-continued	
gaagaggcac ttttaaatcc cacgtagtgg atgtgaccca cactgccagg agagagagtt	2100
cagtattttt ttttctaacc tttcacactg tcttcccacg aggggaggag cccagctggc	2160
aagcgctaca atcatggtca agttcccagc aagtcagctt gtgaatggat aatcaggaga	2220
aaggaagagt tcaagagaca aaacagaaat actaaaaaca aacaaacaaa aaaacaaaca	2280
aaaaaaacaa gaaaaaaaaa tcacagaaca gatggggtct gatactggat ggatcttcta	2340
tcattccaat accaaatcca acttgaacat gcccggactt acaaaatgcc aaggggtgac	2400
tggaagtttg tggatatcag ggtatacact aaatcagtga gcttgggggg agggaagacc	2460
aggattccct tgaattgtgt ttcgatgatg caatacacac gtaaagatca ccttgtatgc	2520
tetttgeett ettaaaaaaa aaaaaageea ttattgtgte ggaggaagag gaagegatte	2580
aggtacagaa catgttctaa cagcctaaat gatggtgctt ggtgagtcgt ggttctaaag	2640
gtaccaaacg ggggagccaa agttctccaa ctgctgcata cttttgacaa ggaaaatcta	2700
gttttgtctt ccgatctaca ttgatgacct aagccaggta aataagcctg gtttatttct	2760
gtaacatttt tatgcagaca gtctgttatg cactgtggtt tcagatgtgc aataatttgt	2820
acaatggttt attcccaagt atgcctttaa gcagaacaaa tgtgtttttc tatatagttc	2880
cttgccttaa taaatatgta atataaattt aagcaaactt ctattttgta tatttgtaaa	2940
ctacaaagta aaaaaaaatg aacattttgt ggagtttgta ttttgcatac tcaaggtgag	3000
aaataagttt taaataaacc tataatattt tatctgaacg acaaaaaaaa aaaaaaa	3057
<210> SEQ ID NO 66 <211> LENGTH: 3263	
<212> TYPE: DNA <213> ORGANISM: Mus musculus	
<213> ORGANISM: Mus musculus	60
<213> ORGANISM: Mus musculus <400> SEQUENCE: 66	60 120
<213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagaggggg ggcggggag gaccaggggc tcagcggccg tcggcggacg cgggaagaag	
<213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagaggcgc ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggccccc tcgtccgcgt actcggctga	120
<213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcg ggcgggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagagc ggtcgaggac gtgcgcctgg ctcgcagttg	120 180
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagaggcgc ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc</pre>	120 180 240
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcg ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc atctctccga ggagggcgc cccatcgtgg gatcgcggg ggcgccgggc agggcggggg</pre>	120 180 240 300
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagaggcgc ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgggc atctctccga ggagggcgc cccatcgtgg gatcgcggg ggcgccgggc agggcggcgg cgacagcggc ggagccggcc gcgctgctg cgtgcggagg cgctgccggt tacgtaaaga</pre>	120 180 240 300 360
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcg ggcgcgcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc atctctccga ggagggcgc cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggctgctg cgtgcggagg cgctgccggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcc ccccgccccc</pre>	120 180 240 300 360 420
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagaggggg ggcggggag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgggc atctctccga ggagggcgc cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggctgctg cgtgcggagg cgctgccggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcgc ccccgcccc tcggccgcgc cgcaccgcgc tcgtcgtccg aggccagggc agggctagcc gaagctccgc tcggccgcgc cgcaccgcgc tcgtcgtccg aggccagggc agggctagcc gaagctccgc</pre>	120 180 240 300 360 420
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcg ggcgcgcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc atctctccga ggagggcgc cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggctgctg cgtgcggagg cgctgccggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcgc ccccgcccc tcggccgcgc cgcaccgcgc tcgtcgtcg aggccagggc agggctagcc gaagctccgc agccaccttc aagtttggcc gcaccgccg ggctgccgt gcccgcacca tgtccgcgc</pre>	120 180 240 300 360 420 480
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcg ggcgcgcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc atctctccga ggagggcgcg cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggctgctg cgtgcggagg cgctgccggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcc cccgccccc tcggccgcgc cgcaccgcgc tcgtcgtcg aggccagggc agggctagcc gaagctccgc agccaccttc aagtttggcc gcaccgccg ggctgccgt tctggtttcc atctccaacc gcgccgcgt cgcctacatg gacttcgtgg ctgccagtg tctggtttcc atctccaacc gcgccgcgt</pre>	120 180 240 300 360 420 480 540 600
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagaggcgc ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagagc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgttggc atctctccga ggagggcgc cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggttgctg cgtgcggag cgctgccggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcgc ccccgcccc tcggccgcgc cgcaccgcgc tcgtcgtccg aggccagggc agggctagcc gaagctccgc agccaccttc aagtttggcc gcaccgccg ggctgccgt gcccgcacca tgtccgcgc cgcctacatg gacttcgtgg ctgcccagtg tctggtttcc atctcaacc gcgccgcgt gccggagcac gggggcgctc cggaagccga gcggctgcga ctacctgagc gcgaggtgac</pre>	120 180 240 300 360 420 480 540 600 660
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcg ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc atctctccga ggagggcgcg cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggctgctg cgtgcggagg cgctgcggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcc cccgccccc tcggccgcgc cgcaccgcgc tcgtcgtcg aggccagggc agggctagcc gaagctccgc agccaccttc aagtttggcc gcaccgccg ggctgccgt gccgcacca tgtccgcgc cgcctacatg gacttcgtgg ctgcccagtg tctggtttcc atctccaacc gcgccgcgt gccggagcac gggggcgctc cggaagccga gcggctgcga ctacctgagc gcgaggtgac caaggaacac ggtgacccgg gggacacctg gaaggattat tgcacgctgg tcactatcgc</pre>	120 180 240 300 360 420 480 540 600 660
<pre><213> ORGANISM: Mus musculus <400> SEQUENCE: 66 ggagagggcgc ggcgcggcag gaccaggggc tcagcggccg tcggcggacg cgggaagaag tgtctcgtag gcgcggagcc ccactcagcc ccggcccccc tcgtccgcgt actcggctga tgccccgggg cgtcagctcg gcggagaggc ggtcgaggac gtgcgcctgg ctcgcagttg gctttctctg ggactccgac acgtttgcag tcgaataaac ttgcgaccgc cacgtgtggc atctctccga ggagggcgcg cccatcgtgg gatcgcggg ggcgccgggc agggcgggg cgacagcggc ggagccggcc gcggctgctg cgtgcggagg cgctgcggt tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcg tacgtaaaga tgaggggctg aggtcgcctc ggcgctcccg cgagtcgcaa gctcccgcg ccccgccccc tcggccgcgc cgcaccgcgc tcgtcgtcg aggccagggc agggctagcc gaagctccgc agccaccttc aagtttggcc gcaccgcccg ggctgccgt gcccgcacca tgtccgcgc cgcctacatg gacttcgtgg ctgcccagtg tctggtttcc atctccaacc gcgccgcgt gccggagcac gggggcgctc cggaagccaa gcggctgcga ctacctgagc gcgaggtgac caaggaacac ggtgacccgg gggacacctg gaaggattat tgcacgctgg tcactatcgc caaggacttg ttggacctca acaaataccg acccatccag acccctcgg tgtgcagcga</pre>	120 180 240 300 360 420 480 540 600 660 720

gtgcccctac agtggctgtg ggaaagtcta tggaaaatcc tcccatctta aagcccatta 1020

cagagtgcat	acaggtgaac	ggccctttcc	ctgcacgtgg	ccagactgcc	ttaaaaagtt	1080
ctcgcgctcg	gatgagctga	cccgccacta	ccggacccac	actggggaaa	agcagttccg	1140
ttgcccactg	tgtgagaaga	gattcatgag	gagtgaccat	ctcaccaagc	atgcccggcg	1200
tcacaccgag	ttccatccca	gcatgatcaa	gagatcaaaa	aaggetettg	ccagcccctt	1260
gtgaggtgct	ccccatggca	gccaggcaga	gatgggtccc	cggaaggaca	gageteeeag	1320
gaaacagact	gacacatgga	aatctgccac	agcagaggcg	cgctggccac	aggaggtcac	1380
tgcttctttg	gccaatattc	tgatatetee	ctgcactgtt	tccaaaaagc	acatggtagc	1440
cctaaggtca	aagtcaacat	ttggtcccct	tgcagaggca	actctgaacc	gtctctgact	1500
gttggagggc	aggcaaataa	atgcttttgg	tattttctcc	tttgtttttg	ggggagggg	1560
gagggggcaa	ggccaagacg	aggggtagga	ttctgaagat	tcagactggt	ggtgtacata	1620
cgtctgactg	ggtgagttga	cccctggcct	cccacagtga	ctctggatcc	ttgatgcttg	1680
ctgactctca	gaattgtttt	ttcttctcat	ttaatgtaac	gaccggtgtg	cttcagtttg	1740
tttagcagaa	ccactctctt	gaatcacatt	aacttttgag	atttaaaaaa	aacaaaacaa	1800
aaaaaaaaa	aacaacaaaa	aaaaaccaac	cctccatagc	acagetgtet	tttatgcaag	1860
caagagcaca	cctactccag	catgatttgt	catctaaaga	cttgaaaaca	aaacaacaac	1920
aacaaaaagt	tacttatagt	caatggataa	gcagagtccg	aatttacact	aatcaagaca	1980
gaccttcgag	gggtcacgat	aagtccggaa	ctttcaaacc	ttgcttcgta	tgaattgtac	2040
tatctgaaca	taaactgcac	ttttattttc	taataccgag	ggtgaatacg	gtaaatacat	2100
gctttgaggg	tagaagccga	cggtctgttt	ggcaccacgt	tataatctgc	ttattttaac	2160
agtatacaca	tttccctgag	aacctatggc	aaagatggga	gggcagaaca	tatgaaacac	2220
atgctgacga	gggggaggag	gaggggagtg	cttttaaaga	taacaaaaaa	tgagcaaaca	2280
attttaactt	catgaatttg	tttgaattcc	cccatgcttt	ctgataacgc	cgtctcgttc	2340
cacgctcggg	actaggacag	agcgagagcg	gteggetgge	tetetgtage	gttggttgat	2400
aaatgggtat	atagccatca	ccaggcctgg	aagtgccccc	cctttggtgg	gggggtgctt	2460
cttggtctcc	ttatgttcta	tgaaattccc	actatgaggt	gcaagagtta	tatcaaagga	2520
agctgaaata	cgaaaaaaaa	aaagtttgcc	cctgtaagta	gtaagtgtct	agggaaggaa	2580
gacgccacaa	tgaatgactt	cagaggccac	tctgcagaac	agtecettet	ggtgaacata	2640
ggtcaaagaa	acgcacgtga	atggcatcac	atcactgtct	gcatcagtat	ccctaccact	2700
acttagcttg	tatctaggtg	tctacacaat	ggcctgaacc	actatatcca	tcctttgcca	2760
tttactgaaa	aacttagttt	tggcttttac	atggccagaa	aaacaaactc	agttttcata	2820
gttaaaaaac	aaaaaaagaa	aacaacaaaa	aaaaagaaaa	caaaaacctc	atttgagggg	2880
agtcagcagt	gatcatgggg	aaatgtttac	atttttcct	tcagaaatac	cactttctga	2940
tgattttatc	tgatatttaa	aacagggagc	tatggtgcac	tctagtttgc	acatggtgtg	3000
taaactcggg	gttcccacct	gcagtgagct	ccacatttca	cccagcgcat	gctcaccccc	3060
atctcagcgt	ggttgctcct	gcagtgggca	cagggcacag	ctgactccga	cttccaatac	3120
gacagccatc	actagegeag	tgttttctgt	ttaaccaatg	tagttgtatc	agtagttete	3180
tcagaactgc	ttttaacatt	agggactggg	agcagtccac	gagctaaaaa	ggaaagtgtt	3240
ttctcatgag	aaaacatgtc	agg				3263

<210> SEQ ID NO 67 <211> LENGTH: 1605 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 67 acacagettg egecetete tggagageag tegeagetae tagettgeeg eeageagage 60 cgcactgtct cgggcatcgc agagcaccac gactgtggac ttgggacctc gaacccgaga 120 cgagcgcgcg ctagccagcc attagcaacg cttgcatttc tgcagggagc gcggtgactg teettgageg tggagggeg agetegeeag eggagegaee gageaagagg aggegeagga 240 300 qcqqcqqcqc ccqaqcaccc qaqqqqqtcc qaqtccaqqc aqctaqccaq ccacqcqcca caaagggage geecegeeg eeeggeacge egeeceete eeeaatgtee teggeeateg 360 aaaggaagag cctggacccg tctgaggaac ccgtggatga ggtgctgcag atacccccat 420 ccctgctgac atgtggtggc tgccagcaga acatagggga ccgctacttc ctgaaagcca 480 tegaccaqta etqqcatqaq qattqcetca qetqtqacet etqtqqqtqt eqqetqqqaq 540 aggtggggag gcgcctctac tacaagctgg gacggaaatt gtgcaggaga gactatctca 600 ggcttttttgg tcaggatggt ctctgtgcat cctgtgacaa gcggatccgt gcctatgaga 660 tgacgatgeg ggtgaaagac aaagtgtate acctggagtg tttcaaatge geegeetgte 720 agaagcattt ctgtgtaggt gacagatacc ttctcatcaa ctccgacata gtgtgtgaac 780 aagacatcta cgagtggacc aagatcaatg ggatcatcta ggccagagtc ccaggcacct 840 gtggggaggt gttcagtgaa gacgccgtct cggtgtggtc ttcactctta ggctctttgg 900 gaacctgagg gtgggtgagg catttcttag gagattatgg actcttcctg ggcactaacg 960 acatagcaat cacatgacat aatgcaaagg ctgagacttc agtgacaaaa aggaccagcc 1020 cttagagaga atttatggtc acaggctagc catagtaact gacaagatta gtggaggaaa 1080 tatttgggga ccagcatgca ctgtgccatc ctgataggct tccccaggta actatcgatt 1140 agatgtgacc ttggtgttca tggactagag ttgtgcaatt aattttttcc tggctttggt 1200 aactaccctg ttctagtcac agtccttcac actaggaaag gaaagagaga agaaatagtc 1260 actettttt tetttette tttttteett ggteacette eegtggeett aagetetgga 1320 gccaagggaa actgcatgga ggtacatttc agttgggaat gaaatccaca tctttcaacc 1380 agacaaatat ttatagcgat gttgatgaat cactgttttt agacaccttc attttgaggt 1440 1500 gttcaactat tttattatct tagattatat caaagtattt gttgtgtgtc attaaaaaaa 1560 aaactcgatt ctgaagactt aataaaaatg acaagctgaa atgca 1605 <210> SEQ ID NO 68 <211> LENGTH: 3441 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 68 agcattctgg tcggaatcca cctctccgcc tgtgcaacac acactttaca cacgcacggc gactgcaagc gggcagcatc gatcgtggct cctttaagac aaactcagac agacattttt 120 ttaaccctcc tctctaatct cccttcagtg cagcagttgc aaagagggag agagaaagag 180

aaagagagcg	agagaagaga	gaaactgatt	aggaattagg	actgattcaa	ggaaagcggg	240	
cgctagggct	ttgtgcattt	gaatattaac	atttgaggtg	ttctgaccag	aagaagacag	300	
aacggacgat	cattcattca	ccacgttgac	aacctcgcct	gtgattgaca	gctggagtgg	360	
cagaaagcca	tgagatttgg	tagttgggtc	tgaggggcgc	tcttttttt	ttttctttt	420	
cttttcttt	ctttctttt	ttttaaactg	atttttttgg	gggggagaga	agatctgctt	480	
ttttttccc	ctcccactgc	tgtcttggtg	gaaccagagc	gcttttatgc	tcagcgacgc	540	
gggcgccttg	cttcaggtcc	ggtagaccga	agatctggga	ccagtaattc	acactgctgg	600	
agacgcaaag	ggatttttt	ttgttattgt	tgtgctttat	tttttttcc	gggggagttt	660	
gcatatttgt	ttcttttcac	actggcctta	aagaggatat	attagaagtt	gaagtaggaa	720	
gggagccaga	gaggccgatg	gcgcaaaggt	acgacgacct	accccattat	gggggtatgg	780	
atggagtagg	catcccctcc	acgatgtatg	gggacccgca	tgcagccagg	tccatgcaac	840	
cggtccacca	cctgaaccac	gggcctcctc	tgcactcgca	tcagtacccg	cacacagctc	900	
acaccaacgc	catggccccc	agcatgggtt	cctcggtcaa	tgacgcttta	aagagagata	960	
aagatgccat	ttatggacac	cccctcttcc	ctctcttagc	actgattttt	gagaaatgtg	1020	
aattagctac	ttgtacccc	cgcgagccgg	gggtggcggg	cggggacgtc	tgctcgtcag	1080	
agtcattcaa	tgaagatata	gcggtgttcg	ccaaacagat	tegegeagaa	aaacctctat	1140	
tctcttctaa	tccagaactg	gataacttga	tgattcaagc	catacaagtg	ttaaggtttc	1200	
atctgttgga	attagagaag	gtacacgaat	tatgtgacaa	tttctgccac	cggtatatta	1260	
gctgtttgaa	agggaaaatg	cctatcgatt	tggtgataga	tgatagagaa	ggaggatcaa	1320	
aatcagacag	tgaagatgta	acaagatcag	caaatctaac	tgaccagccc	tcttggaata	1380	
gagaccatga	tgacacggca	tccactcgtt	caggaggaac	cccgggccct	tccagcggtg	1440	
gccatacttc	acacagtggg	gataacagca	gtgagcaagg	tgatggcttg	gacaacagtg	1500	
tagetteece	cagcacaggt	gacgatgatg	accctgataa	ggacaaaaag	cgtcacaaaa	1560	
agcgtggcat	ctttcccaaa	gtagccacca	atatcatgag	ggcgtggctg	ttccagcatc	1620	
taacacaccc	ttacccttct	gaagaacaga	aaaagcagtt	ggcacaagat	acaggactta	1680	
ccatccttca	agtgaacaat	tggtttatta	atgcccggag	aagaatagtg	cagcccatga	1740	
tagaccagtc	caaccgagca	gtcagccaag	ggacacctta	taaccctgat	ggacagccaa	1800	
tgggaggttt	tgtaatggac	ggtcagcagc	acatgggcat	cagagcgcca	ggacctatga	1860	
gtggaatggg	catgaatatg	ggcatggagg	ggcagtggca	ctacatgtaa	ccttcatcta	1920	
gttaaccaat	cgaaagccag	ggggaaggct	gcaaagtatg	ccaggggagt	atgtagcccg	1980	
gggtggccca	atgggtgtga	gtatgggaca	gccgagttat	acccaagccc	agatgccccc	2040	
ccatcctgct	cagctgcgtc	atgggcccc	catgcatacg	tacattcctg	gacaccctca	2100	
ccaccccgca	gtgatgatgc	atggaggaca	gececaceet	ggaatgccaa	tgtcagcctc	2160	
aagcccctcg	gttcttaaca	caggagaccc	gacaatgagt	gcacaagtca	tggacattca	2220	
cgctcagtag	cttaagggaa	tatgcgttgt	ctacaatggt	gactgatctc	gaatcaggtc	2280	
ttttcctgca	aggactatgg	agttccattc	ttgacatcta	ctttggacca	aggagcatcc	2340	
ctagttcttc	atagggactc	ttaaaatgca	ggagaaccat	ccgaagtcaa	ctcgggggac	2400	
atgcaaaaat	aactatataa	gacattaaaa	gaacaaagag	tgaaatattg	taaatgctat	2460	

-continued	
tatactgtta tccatattac gttgtttctt atagattttt taaaaaaaaat gtgaaatttt	2520
tecacactat gtgtgttgtt tecatagetg tteaetteet eeagaageet eettacatta	2580
aaaagcctta cagttatcct gcaagggaca ggaaggtctg atttgcagga tttttagagc	2640
attaaaataa ctatcaggca gaagaatctt tcttcttgcc taggatttca gccatgtgcg	2700
tgegetetet etetetetet etetetetet etetetet	2760
cttctcctcc ctctccctct ttctagcctg gggcttgaat ttgcatgtct aattcattta	2820
ctcaccatat ttgaattggc ctgaacagat gtaaatcggg aaggatggga aaaactgcag	2880
tcaccaacaa tgattaatca gctgttgcag gcagtgtctt aaggagactg gtaggaggag	2940
gcatggaaac ccaaaggccg tgtgtgttta gaagcctaac tgtcacatca agcatcatcg	3000
tccccatgca acaacaacca tcaccttata catcacttcc tgttttatgc agctcaaaaa	3060
acatagactg aagatttatt ttttaatatg ttgactttgt ttctcagcaa agcattggtc	3120
atgtgtgtat ttttccatag tcccaccttg gagcatttat gtagacattg taaataaatt	3180
ttgtgcaaaa aggactggaa agatgaactg tattattgca tttattttgt tttttttt	3240
gtgaaagtag cagattagtg caaggtggca tgcatataag gttaactgag tggggtacgc	3300
taattatact ttttgttgtg gataaaaaat gcttgtcaat agcctttttc tatcaagaaa	3360
acaaggaget aattattaat aacagteatg geacaetgtg teetatetta geatttaaaa	3420
gtatgcaaac tccaggtcca g	3441
<210> SEQ ID NO 69	
<211> LENGTH: 6505 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<212> TYPE: DNA	
<212> TYPE: DNA <213> ORGANISM: Mus musculus	60
<212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69	60 120
<212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgcggg cggggggagg aggcggggga ggagggacgg agatctgggg	
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg</pre>	120
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcgggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgcaa</pre>	120 180
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgcggg cggggggagg aggcggggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaatgtt tatcggtgga ctgagctggc agacctcacc</pre>	120 180 240
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggag ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggagaaatt agagaatgta tggtcatgag</pre>	120 180 240 300
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgcggg cggggggagg aggcggggag ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggagaaatt agagaatgta tggtcatgag agatcccaca acgaaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag</pre>	120 180 240 300 360
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggga ggagggacgg agatctgggg ctcggagccg gccgccgtg cgctccgctt cgctgtgggg ctcggtgtgt cgggggggg</pre>	120 180 240 300 360 420
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggag ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgcaa cgactcccag cacgaccccg gtaaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggagaaatt agagaatgta tggtcatgag agatcccaca acgaaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag tgtagataaa gtattaggtc agcccacca tgagttagat tccaagacga ttgacccaaa agttgcattt cctcgtcgag cgcaacctaa gatggtcaca agaacaaaga aaatcttcgt</pre>	120 180 240 300 360 420
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggaggaaatt agagaatgta tggtcatgag agatcccaca acgaaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag tgtagataaa gtattaggtc agccccaca tgagttagat tccaagacga ttgacccaaa agttgcattt cctcgtcgag cgcaacctaa gatggtcaca agaacaaaga aaatcttcgt aggaggattg tctgcaaaca cagtagtgga agatgtaaag cagtatttcg agcagtttgg</pre>	120 180 240 300 360 420 480
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcgggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgcaa cgactcccag cacgaccccg gtaaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggagaaatt agagaatgta tggtcatgag agatcccaca acgaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag tgtagataaa gtattaggtc agccccacca tgagttagat tccaagacga ttgacccaaa agttgcattt cctcgtcgag cgcaacctaa gatggtcaca agaacaaaga aaatcttcgt aggaggattg tctgcaaaca cagtagtgga agatgtaaag cagtatttcg agcagtttgg caaggtagag gatgcgatgc tgatgttcga caaaaccacc aacaggcaca gagggtttgg</pre>	120 180 240 300 360 420 480 540 600
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggggg</pre>	120 180 240 300 360 420 480 540 600
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcggggag ggagggacgg agatctgggg ctcggagccg gccgccgtg cgctccgctt cgctgtgggg ctcggtgtgt cggggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggaggaaatt agagaatgta tggtcatgag agatcccaca acgaaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag tgtagataaa gtattaggtc agccccacca tgagttagat tccaagacga ttgacccaaa agttgcattt cctcgtcgag cgcaacctaa gatggtcaca agaacaaaga aaatcttcgt aggaggattg tctgcaaaca cagtagtgga agatgtaaag cagtatttcg agcagtttgg caaggtagag gatgcgatgc tgatgttcga caaaaccacc aacaggcaca gagggtttgg ctttgtcacc tttgagaatg aagacgttgt ggagaaagtc tgtgagattc atttccatga aatcaataat aaaatggtag aatgtaagaa agctcagccg aaagaagtca tgttcccacc</pre>	120 180 240 300 360 420 480 540 600 660
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcgggga ggagggacgg agatctgggg ctcggagccg gccgccgctg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccca ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggaggaaatt agagaatgta tggtcatgag agatcccaca acgaaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag tgtagataaa gtattaggtc agccccacca tgagttagat tccaagacga ttgacccaaa agttgcattt cctcgtcgag cgcaacctaa gatggtcaca agaacaaaga aaatcttcgt aggaggattg tctgcaaaca cagtagtgga agatgtaaag cagtatttcg agcagtttgg caaggtagag gatgcgatgc tgatgttcga caaaaccacc aacaggcaca gagggtttgg ctttgtcacc tttgagaatg aagacgttgt ggagaaagtc tgtgagattc atttccatga aatcaataat aaaatggtag aatgtaagaa agctcagccg aaagaagtca tgttccacc tgggacaaga ggccgggccc gggggctgcc atacaccatg gatgcgttca tgcttggcat</pre>	120 180 240 300 360 420 480 540 600 660 720
<pre><212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 69 ggagcttcgc agccgccggg cggggggagg aggcgggga ggagggacgg agatctgggg ctcggagccg gccgccgtg cgctccgctt cgctgtgggg ctcggtgtgt cgggggtggg ggggcggggg ggctccgcta tggaggcaaa tgggagccaa ggcacctcgg gcagcgccaa cgactcccag cacgaccccg gtaaaatgtt tatcggtgga ctgagctggc agacctcacc agatagcctt agagactatt ttagcaaatt tggagaaatt agagaatgta tggtcatgag agatcccaca acgaaacgct ccagaggctt cggtttcgtc accttcgcag acccagcaag tgtagataaa gtattaggtc agccccacca tgagttagat tccaagacga ttgacccaaa agttgcattt cctcgtcgag cgcaacctaa gatggtcaca agaacaaaga aaatcttcgt aggaggattg tctgcaaaca cagtagtgga agatgtaaag cagtatttcg agcagtttgg caaggtagag gatgcgatgc tgatgttcga caaaaccacc aacaggcaca gagggtttgg ctttgtcacc tttgagaatg aagacgttgt ggagaaagtc tgtgagattc atttccatga aatcaataat aaaatggtag aatgtaagaa agctcagccg aaagaagtca tgttccacc tgggacaaga ggccgggccc gggggctgcc atacaccatg gatgcgttca tgcttggcat ggggatgctg ggctacccca actttgtggc aacctatggc agaggctacc ccggatttgc</pre>	120 180 240 300 360 420 480 540 600 660 720 780

tggcgcgccc gcttccccgg caggctccaa cccggcgcgg cccggaggct tcccgggggc 1020

caacagccca	ggacctgtcg	ccgatctcta	cggccctgcc	agccaggact	ccggagtggg	1080
gaattacata	agcgcggcca	gcccacagcc	gggctccggc	ttcggccacg	gcatagctgg	1140
acctttgatt	gcaacggcct	ttacaaatgg	ataccactga	gcaggcgctt	ccattgccgt	1200
ctcactatga	gagcatacct	ggatgtccag	gcaagactgg	gcgaagtttc	tgagtggccc	1260
tttgtttagg	tgacgtcctc	agacctggac	ccccaccagc	ctcactcctc	atcccaacca	1320
gaggtggcac	acttggattg	agggttgaca	catctcatct	cacccatcgg	ctacctgctg	1380
taatataaga	caacagcttt	taaacgtgta	tataatccat	gattttggtt	tggttctgtt	1440
tgttttcctt	ggtggtcccc	ctctccctct	tecettetee	ttttaaatct	ccctcaatca	1500
catttggtag	tgatttttga	cttagtctgg	tagtcaccca	gcttaatatc	tagttaaagc	1560
taaccatagt	atacttgtta	tatattaagg	agttttttt	cttttttt	gttttctttt	1620
ttcctttaaa	gagaatttt	gttttgtttt	gattctgttc	tcgcttttaa	aggatgctga	1680
gatggtgatg	ttactctcca	tttttggtac	cagttctgag	actgtaagac	ttttcatctg	1740
ggactttagc	acacactgaa	tcgaagttgt	gatacgcgga	gcgggaggtg	ggcatagact	1800
ctattttgtg	ttgtagaagt	gacatacagt	tggctgctta	acagactctc	tagccgttca	1860
tttttgtgac	gtctctttgt	taacctaagt	atatctattt	tcggcaataa	ggtaaggacg	1920
gccgtgtttt	gagggtette	ctttcctatg	agtgcttttt	ctttcttct	gttcaaagag	1980
gtcatattac	aaggttttt	gaaattgtga	attctaaaaa	acaaaaaaca	aacaaaaaa	2040
tgttgtaaat	ataattccat	taactacata	gaaactatta	aggaagagag	aatcaaaaaa	2100
tatttttgtg	agggagttga	teetgggeag	ttaggtaccc	tggaaggagg	ggagggaacc	2160
tegatgaage	cagtacaaca	acagaagagc	ccccccagct	gccagggcac	cccagacccc	2220
cactcttcac	tgttggtgtg	atagacctaa	gaaccacatt	agcaccctgc	cagcctacca	2280
geetetetgt	gcacagette	taatgttatg	atctagctag	atttttattt	aaaatatgaa	2340
aaactgcttt	tcccaagacg	ttttttaaaa	ggaaaaaaag	ctacaatttt	aatatttgac	2400
atatttaaag	tttcaaagca	cacttgtttt	ggcttagggg	aggggcaggg	tggggtcatt	2460
ctttttcagt	cttaattttt	aaatatctga	tcattttata	ttgtccgatc	atttcagcac	2520
ctccaaaggg	tcctaggata	ttetgeetet	ctcttcaccc	tgtccccaga	cgggggaacc	2580
cgtgggtcag	gcgtggataa	gcctgcgaga	atacaccctt	tctccattca	ctttctattt	2640
acaaattagg	aaagcaacct	ttcagtttat	atatatattt	tttttccttt	ttgatacctc	2700
agtgctgcaa	gtatcatcag	agaggctatg	gaagagtttt	gtgttttgtt	ttttgttttg	2760
tttttttt	taatttattg	tagatgtaaa	cagaatttta	aaaataaaat	ataaacatca	2820
ctgcactgtg	actggtgggg	aaaactgaca	gcttcctgtt	tgtacacatt	tgacattggc	2880
tgttataata	tatggtcctc	agttggggaa	gacacttaga	atgaaggatg	ttttttaatt	2940
taacttttt	tttttttaa	agaaaaatat	cagtaatagg	teggeaacag	cagccgtagg	3000
aagtacaact	tagggtagca	ttaaagcata	ctgtagtgtg	gatatatttt	ttttcttttt	3060
taaaatgtga	tattgacatt	ttattaatat	tttttaaatt	gttacgttta	taaatttggt	3120
acttaaggca	cagccagtgt	gaggcactga	acgcgacatt	tattacaatg	agctgctgca	3180
ctcctacttt	tataaatttt	actaacaagt	agactaatgt	agacattcac	agacgggata	3240
				agacattcac		3240 3300

ggaggaagcc tgttcccgtt ctaattaagt gcaaccttgt tttatcttat tgttttattt	3360
tttaagaaag gaaatcatgt tcttttttta tatctctata tataagatac agagttgttt	3420
ggtaaggttt ggggtgtttt ttgttttgtt ttgttttaag tttccaaaca accaaactaa	3480
gaaaaatgct ggatgctttt agaatacaaa acttactcaa gtcataaaat aacaaaatag	3540
aacttttact ttaagaaaca acaacaaaga gagagagaga ctcgattccc agcaagtcag	3600
tgtctcacaa gggcactggc taattactct tctgtccgcg ttgctgatgt cctgtcccca	3660
geoectgtee ateteceeca caeteceate aceteataga aegetetttg ttgateattg	3720
totgttaata atgtataaaa tggotatott gtaagtgtgo tgtottggta otagtgtagt	3780
gacttttttt ctcctcttct agtacatatt gataggtata atgtaattaa ggttttaaaa	3840
aaaatagaca tagttattca gattaggacc agtaaggata gaactttctc ttatttatga	3900
aaagaaaaaa aatgctaata atttgggggc agttttttcc ttttttttt tttccaagtt	3960
caaatttact tttatttttg ctgatttgat gtggtttcaa ctaacccaag gtctcacaat	4020
gttcaaatgg cggctgactc tacagcattc tgtaggtccc tgccccccta gctgaagggg	4080
tgtgccatac taccttaaat gcaaacacta gatatgcaaa actggatttt tttaatttat	4140
tttttaaaag agggaggtgt ggtatattaa aatgatttta ctaagagaaa aaaaatattt	4200
ttttaaggat gctcagaaga aattgataat ctgtgtgaat atgttttaga tgtttatata	4260
cattttgaag agacccagta gcccatagca caaatcttgt gaacatctga tatgttttca	4320
agtggctacc taggataagg ttcatcatta gtacccccac ccccacccca	4380
gaagtccatc ttaaacaatt ttttgtaaat tctttcagca ctggtgtcca tctttgtctt	4440
tgtttcagtt aagctcaata gcgaatgtgg gaccccctcc tctgaccttc cctgggggag	4500
aaaccctctt ggctaatggc tetteeetgg cattateaat aaccaceegg ggaetetetg	4560
aaaccctctt ggctaatggc tetteeetgg cattateaat aaccaccegg ggaetetetg gettteagat eeatetgeet gagaeeceaa ggteetetee teeetagagg ggaggtggag	4560 4620
gettteagat ceatetgeet gagaceeeaa ggteetetee teeetagagg ggaggtggag	4620
gctttcagat ccatctgcct gagaccccaa ggtcctctcc tccctagagg ggaggtggag cagcagttga ctcctggttc cctccctatt tcagcctgga tgtggggctg gtggagatgc	4620 4680
gettteagat ecatetgeet gagaceceaa ggteetetee teectagagg ggaggtggag eageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg eatatgtggt tegtggeett etteteacee attgggaaaa	4620 4680 4740
gettteagat ecatetgeet gagaceceaa ggteetetee teeetagagg ggaggtggag eageagttga eteetggtte ecteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg eatatgtggt tegtggeett etteteacee attgggaaaa ecaaacagee teacactetg teeecatege teattggett aacteaagtg agaceceaac	4620 4680 4740 4800
gettteagat ecatetgeet gagaceceaa ggteetetee teectagagg ggaggtggag cageagttga eteetggte eeteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg eatatgtggt tegtggeett ettetacece attgggaaaa ecaaacagee teacactetg teeceatege teattggett aacteaagtg agaceceaac tgggeetttg egttttgttt ttgtttttt ttaaateett eatgaceatt etettaattt	4620 4680 4740 4800 4860
gettteagat ceatetgeet gagaeceeaa ggteetetee teeetagagg ggaggtggagg eageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeaaceea ggageetetg eatatgtggt tegtggeett etteteacee attgggaaaa eeaaacagee teacactetg teeecatege teattggett aacteaagtg agaeceeaace tgggeetttg egtttgttt ttgtttttt ttaaateett eatgaecatt etettaattt gaactegtag ettgggettt aaggtageat ggetegattg etgtegaett aatgtteeae	4620 4680 4740 4800 4860 4920
gettteagat ecatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeaacecea ggageetetg catatgtggt tegtggeett etteteacec attgggaaaaa ecaaacagee teacactetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgttt ttgtttttt ttaaateett eatgacatt etettaattt gaactegtag ettgggett aaggtageat ggetegattg etgtegactt aatgtteeac tgcacageaa tteacggeaa gtgaatgtta eacacatett getagactag tataaaaaate	4620 4680 4740 4800 4860 4920
gettteagat ceatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggte eeteectatt teageetgga tgtggggetg gtggagatge eteecacecea ggageetetg catatgtggt tegtggeett etteteacee attgggaaaa eeaaacagee teacactetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgttt ttgtttttt ttaaateett eatgaceatt etettaattt gaactegtag ettgggettt aaggtageat ggetegattg etgtegacett aatgtteeac tgeacageaa tteacggeea gtgaatgtta eacacatett getagactag tataaaaaate attgggtaat tgttggttet aatgacetga aaggtgttea gtttgtggt tttttttggg	4620 4680 4740 4800 4860 4920 4980
gctttcagat ccatctgcct gagaccccaa ggtcctctcc tccctagagg ggaggtggag cagcagttga ctcctggttc cctccctatt tcagcctgga tgtggggctg gtggagatgcctccacccca ggagcctctg catatgtggt tcgtggcctt cttctcaccc attgggaaaaa ccaaacagcc tcacactctg tccccatcgc tcattggctt aactcaagtg agaccccaactgggcctttg cgtttgttt ttgtttttt ttaaatcctt catgaccatt ctcttaattt gaactcgtag cttgggcttt aaggtagcat ggctcgattg ctgtcgactt aatgttccactgcacagcaa ttcacggcca gtgaatgtta cacacatctt gctagactag tataaaaatcattgggtaat tgttggttct aatgacctga aaggtgttca gtttgtggt tttttttggg gggggctgct tggggggttg tttttccttc tttgttttt tttaatttga gaatttaggg	4620 4680 4740 4800 4860 4920 4980 5040
gettteagat ceatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg catatgtggt tegtggeett etteteacee attgggaaaa eeaaacagee teacactetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgttt ttgtttttt ttaaateett eatgacatt etettaattt gaactegtag ettgggettt aaggtageat ggetegattg etgtegaett aatgtteeace tgcacageaa tteacggeea gtgaatgtta eacacatett getagactag tataaaaate attgggtaat tgttggttet aatgacetga aaggtgttea gtttgtgggt tttttttggg gggggetget tggggggttg ttttteette tttgttttt tttaatttga gaatttaggg ggataatttt tgggggggg	4620 4680 4740 4800 4860 4920 4980 5040 5100
gettteagat ecatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg eageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeaacecaa ggageetetg eatatgtggt tegtggeett etteteacee attgggaaaaa ecaaacagee teacactetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgttt ttgtttttt ttaaateett eatgaceatt eteettaattt gaactegtag ettgggettt aaggtageat ggetegattg etgtegacett aatgtteeac tgeacageaa teacggeea gtgaatgtta eacacateett getagactag tataaaaatee attgggtaat tgttggttet aatgacetga aaggtgttea gtttgtgggt tttttttggg gggggetget tggggggttg ttttteette tttgttttt tttaatttga gaatttaggg ggataatttt tgggggggg	4620 4680 4740 4800 4860 4920 4980 5040 5100 5160
gettteagat ceatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg catatgtggt tegtggeett etteteacee attgggaaaaa eeaaacagee teacacetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgtt ttgtttttt ttaaateett eatgaceatt eteetaattt gaactegtag ettgggett aaggtageat ggetegattg etgtegaett aatgteeace tgeacageaa tteacggeea gtgaatgtta eacacatett getagaetag tataaaaatee attgggtaat tgttggttet aatgacetga aaggtgttea gtttgtggt tttttttggg gggggetget tggggggttg ttttteette tttgttttt tttaatttga gaatttaggg ggataatttt tgggggggg	4620 4680 4740 4800 4860 4920 4980 5040 5160 5220 5280
gettteagat ceatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg catatgtggt tegtggeett etteteacee attgggaaaaa eeaaacagee teacactetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgtt ttgtttttt ttaaateett eatgacatt eteetaattt gaactegtag ettgggettt aaggtageat ggetegattg etgtegaett aatgtteeace tgcacageaa teacggeea gtgaatgtta eacacatett getagactag tataaaaatee attgggtaat tgttggtet aatgacetga aaggtgttea gtttgtgggt tttttttggg gggggetget tggggggttg ttttteette tttgttttt tttaatttga gaatttaggg ggataatttt tgggggggg	4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340
gettteagat ceatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeaacecaa ggageetetg catatgtggt tegtggeett etteteacee attgggaaaaa eeaaacagee teacacetgg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgttt ttgtttttt ttaaateett eatgaceatt etettaattt gaactegtag ettgggettt aaggtageat ggetegattg etgtegacett aatgtteeace tgeacageaa teacggeea gtgaatgtta eacacatett getagactag tataaaaatee attgggtaat tgttggttet aatgacetga aaggtgttea gtttgtgggt tttttttggg gggggetget tggggggttg ttttteette tttgttttt tttaatttga gaatttaggg ggataattt tgggggggg	4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5340
gettteagat ceatetgeet gagaceceaa ggteetetee teectagagg ggaggtggagg cageagttga eteetggtte eeteectatt teageetgga tgtggggetg gtggagatge eteeacecea ggageetetg catatgtggt tegtggeett etteteacee attgggaaaaa eeaaacagee teacacetg teeceatege teattggett aacteaagtg agaceceaace tgggeetttg egtttgtt ttgtttttt ttaaateett eatgaceatt eteettaattt gaactegtag ettgggett aaggtageat ggetegattg etgtegaett aatgteeace tggaceagea teacageaa gtgaatgtta eacacateett getagaetag tataaaaatee attgggtaat tgttggttet aatgacetga aaggtgttea gtttgtggt tttttteggg gggggetget tgggggggttg ttttteette tttgttttt tttaatttga gaatttaggg ggataatttt tgggggggg	4620 4680 4740 4800 4860 4920 4980 5040 5160 5220 5280 5340 5460

				-contin	iuea	
cccacctcag	cgagagcaga	aagcgaacag	ctcagcccag	tcctgggcac	agacactaca	5640
caaggcaatg	ctggaattga	aacaatactt	taataccgtt	taagtttgtt	tcctttttt	5700
ttttcctctt	ttttttttct	ttcaccaaga	aaagaaaaaa	gtaaactaaa	atacaaaata	5760
caaaaacaaa	caaacaaaca	acaacccata	taaataaaac	ccacccctct	ctgggaaaca	5820
accataattc	aaacatggct	atttagtaat	cagaaggtat	tgtctcagac	aggatttcat	5880
ttccgggagg	cagggcgtga	ggggggaggg	gagtgggact	gagagacagt	tccagagcct	5940
ccagggaagg	cttctactgc	taactgctgt	attctgtata	tactgtgcca	ccctgtgtgg	6000
agtctgtgag	tgtgctcttg	agtagcgtgg	gctagccaat	ctgccattca	tggtgttata	6060
aactcggaat	tccatatgta	ataggatgca	agtctaagcg	tttcatgtgg	acataaatgt	6120
atctaaataa	aacttcccct	agcactgtgg	ctgacctcac	ccttactttt	atactttagt	6180
atgaaactga	tgagaacttt	ggtagtgagt	attttttta	tatatataca	tatatatgta	6240
tctatatata	tatatatatc	tcaagcatct	ttcaggtctt	tgtgtgtggc	tttcttaaag	6300
ccctgttgta	aaaaaaaaa	aaattactaa	gtggatggca	gtctctcaca	tcacagatgt	6360
ggaaagtata	attttatatt	tgtattttca	aataaataag	tttgtgaaag	gtttccatcc	6420
tctactgtgg	tccagaaatc	aatgtgtttg	tctgacaaaa	aaaataataa	aataaactgt	6480
tttgaacaga	aaaaaaaaa	aaaaa				6505
	TH: 2596 : DNA NISM: Mus mu	ısculus				
<400> SEQU	ENCE: 70					
agtgacagtc	atctgtctgg	acgcgctggg	tggatgcggg	gggctcctgg	gaactgggtt	60
ggagccgaac	gagcgctagc	caggcgtaag	cgcgcacaca	ctgcagccgc	cggaggacaa	120
cccctcccg	ccgccgctcc	ctcagcccac	ccggagaccc	cageceegag	tcgcctccgg	180
atccccggca	gtctgcggga	gagttggagg	ttggcgcgac	tctgctgctc	tccacgggaa	240
ggaagcactc	ccccatatta	aaaagagcgg	agatattaaa	agagaggcga	acccatgccc	300
agctgcaccg	cgtccaccat	gccggggatg	atctgcaaga	acccagacct	cgagtttgac	360
tcactgcagc	cctgcttcta	cccggacgaa	gatgacttct	acttcggcgg		
					teeegaeteg	420
accccaccgg	gggaggacat	ctggaagaag				420 480
	gggaggacat ccttcccaga		tttgagctgc	tgcccacgcc	cccgttgtcg	
cccagccgcg		gcacageeeg	tttgagctgc gagccttcga	tgcccacgcc	cccgttgtcg ggagatgctg	480
cccagccgcg	ccttcccaga	gcacagcccg	tttgagetge gageettega geegaggagg	tgcccacgcc attgggctac atgcgttcgg	cccgttgtcg ggagatgctg tctcgggggc	480 540
cccagccgcg ctgccggagg ctgggtggcc	ccttcccaga	gcacageceg gggcaaceeg teeggteate	tttgagctgc gagccttcga gccgaggagg cttcaggact	tgcccacgcc attgggctac atgcgttcgg gcatgtggag	cccgttgtcg ggagatgctg tctcgggggc cggcttctct	480 540 600
cccagccgcg ctgccggagg ctgggtggcc gcccgcgaga	ccttcccaga ccgacctgtg tcactcctaa	gcacagcccg gggcaacccg tccggtcatc cgcagtgaac	tttgagctgc gagccttcga gccgaggagg cttcaggact gaaaaactac	tgcccacgcc attgggctac atgcgttcgg gcatgtggag agcacggcca	cccgttgtcg ggagatgctg tctcgggggc cggcttctct cgggccccg	480 540 600 660
cccagccgcg ctgccggagg ctgggtggcc gcccgcgaga ggcgtcagct	ccttcccaga ccgacctgtg tcactcctaa agctagagcg	gcacageceg gggcaaceeg teeggteate egcagtgaac ggeteeegga	tttgagctgc gagccttcga gccgaggagg cttcaggact gaaaaactac gtgggtgcca	tgcccacgcc attgggctac atgcgttcgg gcatgtggag agcacggcca gcagcccgg	cccgttgtcg ggagatgctg tctcgggggc cggcttctct cgggcccccg gggccgtgcc	480 540 600 660 720
cccagccgcg ctgccggagg ctgggtggcc gcccgcgaga ggcgtcagct cttggtgggt	ccttcccaga ccgacctgtg tcactcctaa agctagagcg cagcctgctc	gcacagcccg gggcaacccg tccggtcatc cgcagtgaac ggctcccgga tagccacacc	tttgagctgc gagccttcga gccgaggagg cttcaggact gaaaaactac gtgggtgcca ggggccaccc	tgcccacgcc attgggctac atgcgttcgg gcatgtggag agcacggcca gcagcccgg	cccgttgtcg ggagatgctg tctcgggggc cggcttctct cgggcccccg gggccgtgcc	480 540 600 660 720 780
cccagccgcg ctgccggagg ctgggtcgcc gcccgcgaga ggcgtcagct cttggtgggt	ccttcccaga ccgacctgtg tcactcctaa agctagagcg cagcctgctc	gcacageceg gggcaaceeg teeggteate egcagtgaac ggeteeegga tagceacace	tttgagetge gageettega geegaggagg etteaggaet gaaaaaetae gtgggtgeea ggggeeaeee gtetteeeet	tgcccacgcc attgggctac atgcgttcgg gcatgtggag agcacggcca gcagcccgg tgcctaccga	cccgttgtcg ggagatgctg tctcgggggc cggcttctct cgggcccccg gggccgtgcc cctctcccac caagcgagag	480 540 600 660 720 780 840
cccagccgcg ctgccggagg ctgggtggcc gcccgcgaga ggcgtcagct cttggtgggt ccggctgccg	ccttcccaga ccgacctgtg tcactcctaa agctagagcg cagcctgctc cgtcgagtgc aatgtgtgga	gcacageceg gggcaaceeg teeggtcate egcagtgaac ggeteeegga tagceacace eecegeegtg	tttgagetge gageettega geegaggagg etteaggaet gaaaaaetae gtgggtgeea ggggeeaeee gtetteeeet geeeeggega	tgcccacgcc attgggctac atgcgttcgg gcatgtggag agcacggcca gcagcccgg tgcctaccga tcccggtgaa ccagcgctgc	cccgttgtcg ggagatgctg tctcgggggc cggcttctct cgggcccccg gggccgtgcc cctctcccac caagcgagag ggtcactagt	480 540 600 660 720 780 840

agcagtgggg aggccaaggc cctcagcacc tccggagagg ataccttgag cgactcagat 1080

			-contir	nued		
gatgaggatg acgaggagga	agatgaagag	gaggaaatcg	atgtggtcac	cgtagagaag	1140	
agacgttcct cctctaacaa	caaggcggta	accactttca	cgatcactgt	gcgtcccaag	1200	
acctccgctc tgggcctggg	gcgagcacag	cctggcgagc	tgatcctcaa	gcgctgtgtt	1260	
cccatccatc agcagcacaa	ctatgctgca	ccctcaccct	acgtggagag	cgaggacgcg	1320	
ccccgcaga aaaagatcaa	gagcgaggct	tctccacgcc	ccctcaaaag	tgttgttcca	1380	
gcaaaagcga agagcctgag	cccccgaaac	tcagactcgg	aggacagcga	gegeegeege	1440	
aaccacaaca teetggageg	tcaacgccgg	aacgacctgc	gctccagctt	cctgacgctc	1500	
agggaccatg tgcctgagct	ggtgaagaac	gagaaggccg	ccaaggtggt	catcttgaaa	1560	
aaggccaccg agtacgtgca	cgccctacag	gccaacgagc	accagctcct	gctggaaaag	1620	
gagaaactgc aggcgaggca	gcagcagttg	ctaaagaaga	tcgaacacgc	teggaettge	1680	
taaacgtttc ccacacggac	agtcactgcc	actttgcaca	ttttgatttt	ttttttttt	1740	
taaacaaaca ttgtgttgac	attaagaatg	ttggtttact	ttcaaattgg	teceetgteg	1800	
agtctggatc tgggtagggg	gcaggacacg	gggttctgcc	atgaccttgg	aaaaaaaact	1860	
gacttatggg atgctgggtg	gcttgttttc	ctcctccata	tcacctggtg	acagccgtgg	1920	
aagtteggga cactaaggag	cttcaggagg	ctgtgaagtc	accttgttcc	ggtccaagat	1980	
tccaaacaga gtcattcctt	ctttttacaa	tggtgcttaa	gttccagcaa	atgccacaga	2040	
aggggggtt gccatttgat	gcccctggga	acacttgtgt	aaataccatt	gatacacccg	2100	
ccttttgtat acgtcctggg	taatgagagg	tggctcttgc	ggccagtatt	agactggaag	2160	
ttcacaccta agtactgtaa	gaatacctca	atgtttgagg	ggcatgtttt	gtatacaaat	2220	
atattgttaa tctgttatgt	actgtactaa	ttcctacacg	gcctgtatac	tttagtatga	2280	
cgctgataca taactaaatt	tgatacttat	attttcgtat	gaaaatgagt	tgtggaagtt	2340	
ttgagtagat attactttat	cactttttga	actaagaaac	ttttgtaaag	aaattttact	2400	
atatatatat attcctttt	ttcctagcct	gtttcttcct	tgtttactgt	atttgttcat	2460	
gtttggtgca tagaactggg	taaaatggca	aagttctgtg	tttaatttct	tcaaaatgta	2520	
tatatttagt gctgcacctt	agagcacttt	gaaatacctc	atgtttatga	aaataaatag	2580	
caattaaatg atgcaa					2596	
<210> SEQ ID NO 71 <211> LENGTH: 2861 <212> TYPE: DNA <213> ORGANISM: Mus m	usculus					
<400> SEQUENCE: 71						
agacggttct gagtccggta	ctgcgtcact	ggactgcagc	aggtctcggc	gcaggtccat	60	
tgcggcctga caagcctcgt	agctaaggct	ccaggctgct	tcccctgctg	cggtttcctg	120	
cgcgccacct ctgtgacccc	gcccccatcg	cgccactgcc	acagetgetg	cagtccgtgt	180	
tgccactgga tcccggccgc	cgccgctgca	gtctccgccg	cctgaccttc	teeggeette	240	
gcccctgctg ccaccgcccc	ccaccgccgc	cgccactgga	gcatccgtga	gtccttttct	300	
gtccgtctct gggtgcacga	tetetgetgt	tgtcaccacc	ttaaataggt	gtacggggct	360	

420

aacagtatgg cagaagcgga tcctaaaatg gtcacagaac ctggtgccca tggggttgct

gaagaggcga tggctagcac agcttgtgat tctggggatg aatctgacag caatagctct

agcagtacca	atagttgcag	cagcagcggc	agcagcagca	gcggcagcag	cagtagcagc	540	
agcagcagta	gcagcagcag	cagcagcagc	agcagtagca	gtagcggtag	cagtggcagc	600	
agcagcaatg	gcagtcattt	gaaccgaaag	aagagggtac	ctgagccttc	cagaagggcc	660	
cagcgacgtc	cctccgggaa	acttttcttg	gataagctgc	cccaagccgt	aagaaatcgg	720	
gtgcaggcac	tcagaaatat	tcagaatgag	tgtgacaagg	tagacacctt	gttcttaagg	780	
gcaattcatg	atcttgaaag	aaagtatgct	gaactcaata	agcctctata	tgataagcgt	840	
tttcagatca	taaatgcaga	atatgagcct	acagaggaag	aatgtgaatg	gaattcagaa	900	
gaagagttca	gtggtgatga	agaaatgcag	gatgacacac	ctaatgaaat	gccaccctta	960	
gagggtgagg	aggaagaaga	aagctgtaat	gaaaaagctg	aagtgaagga	agaaggaaca	1020	
catgttccag	aagaagttcc	tgaggcaaaa	gttgaagaag	aggaggetee	caaagaaact	1080	
cctgaggtga	aaactgaaga	aaaagacatt	ccaaaagaag	gtgctgaaga	aaaagctgaa	1140	
gaacaggaat	cctctaaaga	aattcctgag	gtaaaaggtg	aagaaaaagc	agactctacg	1200	
gattgtatag	atatagctcc	tgaagaaaaa	gaagacgtca	aagaagttac	ccaggcaaat	1260	
acagaaaata	aggatcaacc	tacagaagaa	tttacaccaa	gggctccagc	aagagaggct	1320	
caaaaaaggg	tecetgagae	aaggcctgaa	gaaggagtca	atattaaaag	ggctcgaaag	1380	
ggaaaaccta	agaaagaaga	tcctaaaggt	attcctgact	actggctgac	tgttttaaag	1440	
aatgttgata	agcttgggcc	tatgattcaa	aagtgtgatg	aacccatttt	gaagttctta	1500	
tctgatgtga	gcctgaagtt	ctcaaaccct	ggccagccta	ttggttacac	ttttgaattt	1560	
catttcctac	ctaacccata	cttcagaaat	gagctcctga	tgaagacata	cataataagg	1620	
tcaaaaccag	atcactacga	cccgttcttc	gcgtggggat	gggaaattga	agagtgtaaa	1680	
ggctgcaaaa	tagactggag	acgaggaaaa	gatgttacgg	tgacaaccac	ccggagtcgc	1740	
cctggtatta	caggggaaat	tgaagtccag	ccaagagtgg	ttcctaatgc	atccttcttc	1800	
aatttcttca	gtcctcctga	gattcctttg	attgggaagc	tggaaccaag	agaagatgct	1860	
atccttgatg	aggactttga	gattggtcaa	attttgcatg	ataatgtcat	cttgaagtca	1920	
atctattact	tcacaggaga	aatcaatgat	ccctactacc	atgacttcag	ggattatgga	1980	
aataggaagt	actacaagta	gaaagggcaa	gctgaaaaat	ctttcaagaa	tccttaaaag	2040	
ttaagcaagc	agaagtgaaa	taagagtcat	ctaaacttct	aaaatagaaa	acttgcccca	2100	
taacctgaac	agtattactc	cttatagtct	ggtgttttca	ttttttcctg	gtaatgtcct	2160	
aaaaagtgtc	ttaagcttct	gtttattcta	tettgeetgt	tgtattgtaa	tattcttcaa	2220	
aatatgtaaa	ctgctgttaa	tttccaaagc	atgttttgtt	tggtgctaca	gtgttggttt	2280	
tgtgaagtca	gtttttgtca	tgttgctatt	agattgtacc	tgtgaaaatt	gtcagattta	2340	
ttagagaaat	ccttgcctga	ataagcaaca	ttttaaatgc	caatatacgt	gtgttttctc	2400	
tttcttttt	tacagcccag	aagactaaag	acttaaatct	gcttgcacta	gatgtgcctt	2460	
cattactttg	ccatagaaat	gtagtaataa	taacaactga	aacactctat	tgtgaaatgt	2520	
agttgcttga	aaaaaaaaga	tgagaatata	tttaaaaatg	tcaggatcaa	gtagattttt	2580	
gtgggtttgt	ttatgtgatt	tattggtctg	ttagcaaaag	tattgtttac	cactaaggtg	2640	
ttaaatatgg	tatagtattt	taaaattttt	ctttgttgta	tattgtgtaa	ttgaaaacta	2700	
aagaaaccgt	attttctttg	taatgtgttc	tacattgcct	tttaaaaatt	atttcatcat	2760	

ttgatacatt atcatgttct tttattgtac ctggagtaaa tatcaaataa actgccatgc	2820
tataaaaaaa aaaaaaaaaa aaaaaaaaaa a	2861
<210> SEQ ID NO 72 <211> LENGTH: 1652 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 72	
cccgcccgcc cgctgctgcg gaaggcgcag tgctcagtaa agcgcacttc ctctgctggt	60
ctccaccgag ggagtgcccg ctccaagagc tccaagccgc atcggtcctg ctctgatccg	120
aaggcgcaga catgtcggaa caaagtaagg acctgagcga ccctaacttt gcagccgagg	180
teccegactg tgagatgeag gacagegatg cegtteeggt ggggateeet cetecegett	240
ctctggccgc taacctcgca gggccaccgt gcgctcccga aggccctatg gcagcccaac	300
aggeetegee acegeeegaa gaacggatag aagatgttga eeetaaaate etgeageagg	360
ccgcagagga gggccgcgcc caccagcccc agagtccagc ccggccgatc ccagcaccgc	420
cageceetge ecagetggtg cagaaggege acgageteat gtggtacgtg ttggtgaagg	480
accagaagag gatggtcctc tggtttccag acatggtgaa agaggtcatg ggcagctaca	540
agaaatggtg cagaagcatc ctcaggcgca ccagcgtcat cctcgccaga gtgttcgggc	600
tgcacctgag gctgaccaat ctccacacca tggagtttgc cctggtcaaa gccctcagcc	660
cagaggaget agacagggtg gegeteaaca acegtatgee catgacagge etectgetea	720
tgatcctgag cctcatctat gtgaagggcc gcggggccag agagggtgcg gtctggaatg	780
tgctgcgcat cctggggctg aggccctgga agaagcactc caccttcgga gacgtgagga	840
agataatcac cgaggagttc gtccagcaga attacctgaa gtaccagcgt gtgccccaca	900
tcgagcctcc cgagtacgag ttcttctggg ggtccagagc taaccgtgaa atcaccaaga	960
tgcagatcat ggagttcctg gccagagtct tcaagaaaga tccccaggcg tggccttccc	1020
gatacaggga ggctctggag caggccagag ctctgcggga ggctaatctt gctgcccagg	1080
ccccccgcag cagtgtctct gaggactaaa aaggtccagg ggcacactga tagtttctga	1140
cccatactag ggctgtgtaa gggtggggtt gagtcattag agtatcccaa atccacagtg	1200
cagtatttca tgtataattt ttaagttttc catacagtgc ttttgtacct tgtaatgcta	1260
ttcatttgtg tactcgtgta gtgtttaaga ttgatgcatg tgtgataagt atttggtact	1320
ttcacttttg tgctttcgtg catttttgta caagagatgt gctgtgctaa acttgtgaaa	1380
tacattgagg tgttctgtat cttgttcttt gtatgggact gatgatctgt atcgacaaag	1440
aaggccctgg agagttagca ggacttaaca gcaacgcaga cctgagcaag agaaaggtca	1500
aggcctttct ccatatgact tcaactggca caggaagcat ccatgtggaa tggactgatt	1560
tgaactggac tgttctcagt gtaggcactt agcacccttt acaaaacatg tatgcaaccc	1620
caccataaat aaacgttaaa atgagcatta aa	1652

<210> SEQ ID NO 73 <211> LENGTH: 3565

<212> TYPE: DNA <213> ORGANISM: Mus musculus

<400> SEQUENCE: 73

gattctctct	ctctctctct	ctctctct	ctctctct	ctctctctct	ctctctctct	60	
ctgtttttct	ctcctttcct	ctggctgtct	ccctccccct	tttaactgac	ttggcacaca	120	
taaatggatg	gggattgagc	atggaagggg	agggggagtt	tgagagagaa	aaggagccac	180	
aaccccccca	cccacccacc	cgagcagtgc	tggtgcacac	acaccctctc	ccgcgcgcac	240	
acattcacat	gcgcaccatc	gcacacccca	tcccatcccc	gtcttcctga	gatcctcgct	300	
ctctccctcc	ccctcttcct	tecetecete	cctggctccc	tctctccctt	tegetgegte	360	
tgccagcaac	ggtctgcagc	cggtcagaac	tcgtcctctt	ccccgagaat	ctgcgagctc	420	
cccctcttcc	tctggtcggg	tggagggagc	agctcgaagt	ttacaccctt	gtgccgctgc	480	
caaagccgaa	agccttttct	tcagctgctg	ctttttcct	cctggttttt	gtttttgttt	540	
ttccgggggt	tgggggggtg	gggtagggta	cgctgttgtg	ggtgtgcgtg	gggcggtggt	600	
aggaggttgg	ttttgatttt	taattttgca	tattttttt	gctcttttat	tttaaactgc	660	
aagaggatgc	acagaggaag	aaattgaaac	aatttgttag	cttttgttta	cctggtgtgt	720	
gtagaagcta	cctcgcgctc	tetetgeteg	ccatcctgac	ctttcttct	ttctactcct	780	
taaaaaaatt	aatttcccc	tctgtgcaat	ggagcgtggg	gggcggaggg	ggaagggttt	840	
gagaatccac	ccaagcccgg	cccctattcc	ccagaacacc	aataataacc	ccctttaaaa	900	
catttacctt	cctcccctgc	tcctcctcct	ccccaagtcc	caccgcccta	actcataact	960	
ctgttgagcc	cagaatctca	gaatcaggcg	ttggctttgc	cgggtgcttc	agatcaatgg	1020	
atgagttcca	cccgtttatc	gaggcgctgc	tgcctcacgt	ccgagccttc	tcctacacct	1080	
ggttcaacct	gcaggcgcgg	aagcgcaagt	acttcaagaa	gcacgagaag	cggatgtcaa	1140	
aggacgagga	gcgcgcagtg	aaggacgagc	tgctgggcga	gaagcctgag	atcaagcaga	1200	
agtgggcatc	ccggctgttg	gccaagctgc	gcaaagacat	ccggcccgag	ttccgcgagg	1260	
actttgtgct	aaccatcacg	ggcaagaagc	ccccctgctg	cgtgctttcc	aaccccgacc	1320	
agaagggcaa	gatccggcgg	attgactgcc	tgcgccaggc	tgacaaggtg	tggcggctgg	1380	
acctggtcat	ggtgattttg	tttaaaggga	tccctttgga	aagtactgat	ggggagcggc	1440	
tctacaagtc	gccccagtgc	tegaaceeeg	gcctgtgtgt	ccagccacat	cacattggag	1500	
tcacaatcaa	agaactggac	ctttatctgg	cttactttgt	ccacactccg	gaatccggac	1560	
aatcagatag	ttcaaaccag	caaggagatg	cggacatcaa	accactgccc	aacgggcact	1620	
taagtttcca	ggactgcttt	gtgacgtctg	gggtctggaa	tgtgacagag	ctggtgagag	1680	
tatcacagac	tccagttgcg	actgcatcag	ggcccaactt	ctcactggcg	gacctggaga	1740	
gccccagcta	ctacaacata	aatcaagtga	ccctgggaag	gcggtccatc	acctcccctc	1800	
cttccaccag	cagcaccaag	cgccccaagt	ccatcgacga	cagtgagatg	gagagtccag	1860	
tagatgatgt	gttctatcct	gggacaggcc	gctctccggc	cgctggcagc	agccagtcta	1920	
gcggatggcc	caatgacgtg	gatgcaggcc	ctgcttctct	aaagaagtca	ggaaagctgg	1980	
acttctgcag	cgccctctcc	tctcagggca	gttccccacg	catggettte	acccaccacc	2040	
cgctgcctgt	gcttgctgga	gtcagaccag	ggageceeg	ggccacggca	tcagcgctgc	2100	
	cacgtccatc					2160	
	ccaccatggg					2220	
acggctcggg	tcaggccacc	ygacagccca	acggtagcgg	ccagggcaaa	greeeggggt	2280	

-continued	
catttttget accgccgccg cctccagtgg ccagacctgt gccccttcct atgcctgatt	2340
ccaaaaccac cagcacggcc ccagacggcg ccgccttgac tcctccatca ccttcattca	2400
caacgacagg cgcctcctct gccaaccggt ttgtcagcat cggatcccgg gacggcaact	2460
ttctgaacat cccacagcag tctcagtcct ggttcctctg attaagatca acaaagaaac	2520
aactaaattt aaaaaaggaa aaaaaaaaa gaggttcctc aaaatggggg agaagaaatt	2580
ttgagacatg gaaatatccc ccagcccagc cccaccgaaa agcaaaactt agacgtcgtc	2640
agccactcag cccttccctc ctccagccct ggtacccccg cgttccaaag ccgcccagtt	2700
ctgggagtcc tcggaaaggg gtctcagcgg agctgtacac cagcagccaa gcagaaagaa	2760
gcatgctaag cggactctgc taagcagagg acaaacagaa agaaaggatg caacaagact	2820
gccttcctcc tactcagcct ggccttccca ggaaggagca gccagctcac tggccggcca	2880
ccctggcagt tcctggggac cccaccetcc gctggactta agcttcccaa ggagcccaga	2940
ggaacagete gtaacaatag tagacatteg ageteeeste eggacttegt etettteeet	3000
caccccaccc cccactcccc aacctctctt geeetteetg ggageetetg etcaggette	3060
tggccccagc tgctctggac caggctaggg cgttcccggg taggtaaggg atgcttctta	3120
gagetaactg aatteageet gagteeagaa tagagggtgt tetgeeacee cattttgaac	3180
cgcccgggca gttctcgggc tggacaccct ctgtacagca cacaggaaag tcagaatgct	3240
ctggactgga cgcccagccc agcataggca cettetteca cgcccgcagg acgcaagggc	3300
tgctgccctc tgccacgccc ctagtgaagg gagtcggccc caggtcgccc cgcaccccag	3360
ccctgcatgc aggtgccctt gctccgcccc tctgccctgc ccctgccctt gctgcacaca	3420
gccctccagg ggccggctga gagtggagca gaaagggccc ccggagctga gcgaggagga	3480
caaggcagcc tccacctgcg ctaggtaggc gtcctgctct cgagactttg agttcctgtg	3540
gagggtgggg ggtgtcatcc tttta	3565
<210> SEQ ID NO 74 <211> LENGTH: 2145 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 74	
caaaacccag acccccaggt cccggccaat ggaggggatt tagactggac cgcgtctgtc	60
aaaagctcga ctccgcacca ccgcggagtc cagaagaaga gctggagcca ccgcactccc	120
tccccgcccc cgccgggatt tattgagtat ttggactgga caattaagtg gccctgatga	180
tgttaccaag cccggtcacc tccacccctt tctcagtcaa agacattttg aatctggagc	240
agcageggea ettecaegga geteaettge aggeggaatt ggageageae ttecaetegg	300
caccetgeat getggecaeg getgaaggga egeagtttte egatgeaggg gaggaggaeg	360
aggaagaaga gggagagaaa ctgtcctatt tgaactcact agctgctgcc gagggccatg	420
gagatteggg tetetgteet eagagetatg tecatacagt teteegagae gettgeageg	480
ggcccaagga acaagaagag gaggttgtga gcgaacggag ccaaaaaagc tgtcagttga	540
agaagtetet ggaageggeg ggagaetgta agaegagega ggaeggegag aggeegaage	600
cgcggagccg ccggaagccc cgggtgctct tctcgcaagc tcaggtcttt gagctggagc	660

gcaggttcaa gcagcagcgg tacctgtcgg cgcccgagcg cgagcatctc gccagcagcc

720

			-0011011			
tgaageteae gteeaegeag	gtgaaaatct	ggttccagaa	tegeaggtae	aagtgcaaga	780	
gacageggea ggataagtee	ctggagctgg	ggacgcacgc	geegeegeeg	ccaccccgcc	840	
gcgtggcagt gccggtgctc	gtgcgggacg	gcaagccgtg	cgtcacgccc	agcgcacaaa	900	
cctacggctc gccctacggc	gtgggcgccg	gcgcctactc	ctacaacagc	ttccccgcct	960	
acggctacgg gaactcggcc	gccgcagccg	ctgcagccgc	cgcagccgca	gcagcagcgg	1020	
cggcttacag cggcagctac	ggctgcgcct	atccgaccgg	tggcggcggt	ggtggtggcg	1080	
gcacggcctc cgcggcgacc	accgccatgc	aacccgcctg	cagcgccacc	ggcggtggat	1140	
cctttgtgaa cgtgagcaac	ctgggaggct	teggeagegg	cggcggcgcg	caacccttgc	1200	
atcaaggtgc tgcagccggg	teegegtgea	cgcaggggac	tttgcagggc	atcagggctt	1260	
ggtaaggcct gggcgggaca	cgcggcgggc	gtcctactgc	acgctgggca	ccgcgggaat	1320	
gagacacgag aaaggacaga	cccaagggcc	aggtcccctc	gttaaaataa	aaatacagac	1380	
gtategetee tteeaagggg	ccatggtcgc	agctcactcc	aggcctgggg	catggaactc	1440	
agcggagaaa ggatgccctg	gtccagtcct	caagactgag	acagaaacac	cggccaggcg	1500	
ccagggaaga ggtggcctcc	catcctgact	ctgcggagag	tgcgggaggc	tgggactccg	1560	
gctgtcgctt gctctccgga	ggaggaggag	ggcttttctc	ttcctgcttt	cccttggcct	1620	
teteegagtg tggteeggga	accggaccga	acaagggggg	aggggggaga	aagaaagaaa	1680	
gaaagaaaaa gaacaattta	aagaaaaaga	aaggtagttg	gagagagaac	gtgaaggaga	1740	
ggaaaatggg gtactagctt	gagaaattcc	accgatccgc	agcccctttt	gettgeeegg	1800	
agcgccacaa cgaagtggat	ttttcctttt	ccaactgtgt	cccttccaag	acagactccg	1860	
cccggatccc tagattgtca	ggggactgtt	cttggagacc	accaccgcag	tgagatcgaa	1920	
agttggggga agggaggcag	ctgagcaaat	ccaagacctg	tccgcccaac	ctaggttgtc	1980	
gccaggttgg tttcctttct	gttttgtatt	ctgtattccg	cacattatct	ctctataact	2040	
atatccacac gccgtgtaca	cagccgctgt	cacacactac	aggagtcaat	aaagaaggtg	2100	
caatatttct gaaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaa		2145	
<210> SEQ ID NO 75 <211> LENGTH: 4087 <212> TYPE: DNA <213> ORGANISM: Mus m	usculus					
<400> SEQUENCE: 75						
tagacggcga gaggacgacc	ctggccaagg	cagctatgga	aaccaaaggc	taccacagtc	60	
tccctgaagg cctagatatg	gaaaggcgct	ggagtcaagt	gtctcagacc	ttggagcgtt	120	
cttctcttgg acctgcagag	aggaccaatg	agaacagcta	catggagatt	gtcaacgtca	180	
gctgcgtttc cggtgctact	ccgaacaaca	gtactcaagg	gagcagcaaa	gaaaaacacg	240	
aattactccc ttgtcttcag	caagacaata	gtcggtctgg	gattttgcca	tcagatatta	300	
aaactgagct ggaatccaag	gaactttcag	ccacggtggc	tgagtccatg	ggtttataca	360	
tggattctgt gagagatgcc	gagtacactt	atgatcagca	aaaccaacaa	ggaagcctga	420	
gcccggcaaa gatttatcaa	aacatggagc	agctggtgaa	gttttacaaa	gagaatggtc	480	
acaggtcctc cacactgagt	gctataagca	ggcctttgag	gtcattcatg	cctgactctg	540	

ggacctccat gaatggtggg gccttgcgtg ccatcgttaa gagcccaatc atctgtcatg

agaagagccc	ctctgtttgc	agcccgctca	acatgccgtc	ttcagtatgc	agccccgcgg	660	
gcatcaactc	catgtcctcc	tccacagcta	gctttggcag	tttcccagtg	cacagteeca	720	
tcactcaagg	aacctcactg	acatgeteee	ccagtgttga	aaatagaggc	tcaaggtcac	780	
acagccccgt	acatgcgagc	aatgtgggct	ctcctcttc	aagtccatta	agcagcatga	840	
aatccccaat	ttccagccct	ccaagtcact	gcagtgtaaa	atctccagta	tccagtccaa	900	
acaatgtccc	tetgegetee	tctgtgtcaa	gcccggcaaa	tcttaacaat	tcaaggtgct	960	
ctgtttccag	cccttccaac	accaacaata	gatctacact	ctccagcccg	acagctagca	1020	
cagtggggtc	cattggcagc	cccatcagca	atgccttcag	ctataccact	tcaggcgctt	1080	
cggctggagc	cggtgccatc	caggatatgg	ttcccagtcc	agacacccac	gagaaaggtg	1140	
ctcacgacgt	tcctttccct	aagacagagg	aagtcgagaa	ggccatttcc	aatggtgtga	1200	
ctggtcagct	caacattgtc	cagtacataa	aaccagaacc	agatggggct	ttcagcagtt	1260	
cctgcctagg	aggaaacaac	aaaatcaacc	ccagttctcc	gttctctgta	ccaataaagc	1320	
aagagtcaag	caagcactca	tgttcaggcg	cctcttttaa	agggaacccc	acagtcaacc	1380	
catttccatt	catggatggc	tcgtactttt	cttttatgga	tgataaagac	tattattccc	1440	
tatcaggaat	cttaggacca	cctgtgcccg	gctttgatag	tagctgtgaa	ggcagtgcgt	1500	
tcccgggggg	gattaagcaa	gaaccagatg	atgggagcta	tttccctgaa	accagcatcc	1560	
catcatctgc	catcattggt	gtgaattcag	gtggacagtc	ctttcactac	cggattggtg	1620	
ctcaaggtac	aatatcttta	tcacggtcac	ctagagacca	atctttccaa	cacttgagtt	1680	
cctttccgcc	tgtcaatgca	ttagtggagt	catggaaacc	acacggtgac	ctgtcatcta	1740	
ggagaagtga	tgggtacccg	gtcctagagt	acattccaga	aaacgtgtca	agctctactt	1800	
tacgaagtgt	ttctactgga	tcctcaagac	cttccaagat	ctgcttggtg	tgtggagatg	1860	
aggcttctgg	gtgtcactat	ggggtagtga	cctgcggcag	ctgcaaagtc	ttcttcaaaa	1920	
gagccgtgga	aggacaacac	aactatctgt	gtgctggaag	aaatgactgc	attattgata	1980	
agattcggag	aaagaactgt	cctgcctgca	ggctccagaa	atgcctccaa	gccggcatga	2040	
acttaggagc	tcgaaagtca	aagaagctgg	ggaagttaaa	aggccttcac	gaggagcagc	2100	
cacagcagcc	cccaccgcca	ccaccccaga	gcccagaaga	ggggaccaca	tacattgctc	2160	
ctaccaagga	gccatcagtg	aactctgcgc	tggtcccgca	gctcgcctcg	atcacgcgtg	2220	
cgctcacgcc	atccccgtcc	atgatcctgg	agaacatcga	gcccgagatc	gtgtatgcag	2280	
gctacgacaa	ttccaagcct	gacaccgccg	agagcctgct	ctccacgctc	aaccgcctgg	2340	
cgggcaagca	gatgatccaa	gtcgtgaagt	gggccaaggt	acttccagga	tttaaaaact	2400	
tgcctcttga	ggaccaaatt	accctcatcc	agtattcttg	gatgtgtcta	tcatcgtttg	2460	
ccttgagttg	gagatcgtac	aaacatacga	acagccaatt	tctctatttt	gcaccagacc	2520	
tagtttttaa	tgaagagaag	atgcatcagt	ctgccatgta	tgagctgtgc	caggggatgc	2580	
ggcagatcag	ccttcagttc	gtgcggcttc	agctgacctt	tgaggagtac	tccataatga	2640	
aggttttgct	gctactgagc	acagttccaa	aagatggcct	caagagccag	gctgcgtttg	2700	
aggagatgag	gacaaattac	atcaaagaac	tgaggaaaat	ggtcaccaag	tgtcccaaca	2760	
gttctggaca	gagttggcag	aggttctacc	aactgacgaa	gcttctagac	tccatgcatg	2820	
atttggtgaa	tgacctgcta	gaattctgct	tctatacctt	ccgagaatcc	caggetetga	2880	

-continued	
aggtggagtt tecegecatg etggtggaga teateagega ecagetgeca aaggtggaat	2940
ccgggaacgc caagcccctt tactttcaca ggaagtgatg gaagatgccg gccaggaaga	3000
actttgcctt aagtttcccc acgttgttct acaactacga aggacccaag aaatcacatt	3060
tttaacatgt gacggcggat tgacagttgg tcggcagttt ctcaagttta aaatcccatc	3120
gagggtgtgg agtcgggaaa gccaggagac ctggatcagg caagcctgag ctgactaagg	3180
gactetteee tetecactee cagtgettag aaaacatgtt ecegtteete tggatgaaaa	3240
gccatatcta gtcaataact ctgattttga tattttaaca gatggaagtt ttaactatgc	3300
catgtggttt ctggtatctc tcgcttgttt tcaaagggtt caaaggacta gagaactttt	3360
taaagcttac ccttggtttg cacataaaat gtctagtcaa tatggggcat taatattctt	3420
ttgttattta aaaacacaca aaaagcatac acaaaaatac atacagattc ctggtatgta	3480
ataaacagaa cacgtggcgt ggaactgtgg ccttccaggc acgtttttct gcatcgctgg	3540
catacacact cgttagtgtc catttattat ttaattagaa tggataagat gttaaatgcc	3600
ttggtttcga tttctagtat ctattgtgtt ggctttacaa ataatttttt gcagtctttt	3660
gctgtgctgt acattactgt atgtataaat cgtgaaggac ctgaaataag gtgtaaggaa	3720
cttttgtaaa tgagacacaa aaaaaaatct ttaatggtta ataggatgaa tgggaaagta	3780
tttttgaaag aattetattt tgetggagae tatttaagta etatetttgt etaaacaagg	3840
taactttttt ttgtaagtga gatgeeetge atgegtaetg aacegtttae agtgtattta	3900
agaaagggaa agctgtgcct ttttttagct tcatatctaa tttaccattt tacagtctct	3960
gttgtaaata accacactta aacctctttg gttgtctcta agcctttcta ctttttcagt	4020
actatttgtt ttgttcttgg tctcctgcgt ggggtgttcg tgagactcca gcgcgtagtt	4080
ctggctt	4087
<210> SEQ ID NO 76 <211> LENGTH: 3978 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 76	
tecteettet cetectecae etectectee teetteteet ectectecte etectectet	60
caggetgtgg tttttetgta tatgtttetg gagteetgag eetgggetaa acaaaageag	120
gaggctgacg gggctgctgg agtttgcaga gacacggagg aggaaagagc ttgggctttg	180
cetgeegeea eggetggggg tgatetgget tetgetaeag eccaeeceet ttgagateae	240
tetggeeegg agtggggtg gggggeageg gggggtgggg gggaaagttt geattgeaat	300
ccccctgcct tcctccctt tctcccgatc aatgcatatt tgcaaaagga ttaagccaca	360
gatttaageg cegggageee atttetgeet tgeaaaggag ateggaetga aaaaceeaaa	420
ggcggctctg atttcttttc gccaagtggg aaggtggttt atttttcttg cttttttgga	480
gtcaacaccc ttccccacca gcccttatcc ccaccctcac cccgcaaccc cttcacgccc	540
ccctccccct ccccatcctc ccaccatcct ctaaagaggc aaagagattt ttttttccc	600
cttttggtct tcttcttctt tttttaaaac cctggtccct gtttatcctg aaaaggattt	660

gaagacaget tgaaggataa aaageetegg tgetteeeag gegeegatee gaggageega

agaggaagag ccggggctgc cggagccttc agagatggac gagcagccga ggctgatgca

720

780

ttcccacgct	ggggtcggga	tggccggaca	ccccggcctg	teccageact	tgcaggatgg	840	
ggccggaggg	accgaggggg	agggcgggag	gaagcaggac	atcggggaca	ttttacagca	900	
aattatgacc	atcacagacc	agagtttgga	tgaagcgcag	gccagaaaac	atgctttaaa	960	
ctgccacaga	atgaagcctg	ccttgtttaa	tgtgttgtgt	gaaatcaaag	aaaaaacagt	1020	
tttgagtatt	cggggagccc	aagaagagga	gcccacagac	ccccagctca	tgcgactgga	1080	
caacatgctg	ctagcagaag	gggtggcggg	gcctgagaag	ggcggaggct	cggcagcggc	1140	
ggcggcggca	gcggcagctt	ctgggggtgc	aggttcagac	aactcagtgg	agcattccga	1200	
ctacagagcc	aaactctcac	agatcagaca	aatctaccac	acagagetgg	agaagtatga	1260	
gcaggcatgc	aatgaattca	ccacccacgt	gatgaacctc	cttcgagagc	aaagccggac	1320	
caggcccatc	tctccgaagg	agatcgagcg	gatggtgagc	atcatccacc	gcaagttcag	1380	
ctccatccag	atgcagctga	aacagagcac	gtgcgaggcc	gtcatgatcc	tgcgctcccg	1440	
gttcctggat	gcgaggcgga	agagacggaa	tttcaacaag	caagccacag	aaattctgaa	1500	
tgaatatttc	tattcccatc	tcagcaaccc	ttaccccagt	gaggaagcca	aagaggagtt	1560	
agccaagaag	tgcggcatca	cagtctccca	ggtatcaaac	tggtttggaa	ataagcgaat	1620	
ccggtacaag	aagaacatag	gtaaatttca	agaggaagcc	aatatttatg	ctgccaaaac	1680	
ggctgtcaca	gccaccaatg	tgtcagccca	tggaagccaa	gctaactcgc	cctctactcc	1740	
caactcagcg	ggtggatacc	cttcgccatg	ttatcagcca	gacaggagga	tacagtgacg	1800	
gactcgcagc	cagtcagatg	tacagtccgc	agggcatcag	tgatatgtca	agaacctact	1860	
gatcctcaca	agaacctact	gtctctcttc	tcttgactga	aaacaaaagt	cttcttctac	1920	
ctgacccgtg	gcctgacttc	tggaagaatg	catatggact	ttcgaagaag	tcagaggata	1980	
tctgctggcc	acttgtatca	gacaaaacaa	ggctggtgag	cagggagcta	gcagatgttg	2040	
taaccagatg	attggtacat	cgacagagtc	ccaaagcaat	aaccactatt	ctttctcttc	2100	
tccactaatc	cagcaatcaa	ataatcactc	ttgagcattt	actgtgtacc	acaatataat	2160	
ataaaatgtg	gtgagtagct	agatatataa	ggtaatctct	caactctcaa	aaaaagtaat	2220	
gcatttacaa	agtaagagtt	atgcatgtga	caagacaact	aatcgcatag	gggagagaac	2280	
atggttgcag	gtatagcatc	tcccacatgt	cagtcactgt	gggaggggtt	gcacatgtat	2340	
tattttgact	aatccctacc	acatctccaa	gaggaattcc	tatcctctaa	taaataatga	2400	
aaattgagag	tccgaaatat	ttagtaactt	gcccatggcc	acatagataa	aaaaaaccta	2460	
gagcctattt	tcaggcttag	atgtacctaa	ctaactccat	agtctatgct	ttgttactaa	2520	
cccagacctg	ccagtgagag	aagtcagagc	tcaaagacat	catttagtgc	agctaagcca	2580	
agacaaaact	ctaaaatgtt	tatcagcaaa	atttgtttta	tctggcccat	tgattggttt	2640	
ggaaactagt	tctagccaga	agataaatgc	ctagctacta	cagacagaaa	tgagggacta	2700	
taaatgacca	catggtagtc	tcagtgctgc	caccatttat	gtgtgttcat	ctgagcaagt	2760	
tgcttccctc	ttctaggatc	ttgtgccatc	tttggtgaca	tagggcattt	ccccttgtc	2820	
taatgtcaca	ctctgtcact	aggcatctct	atggtaataa	caaggtctac	aataaagcag	2880	
gcccaagttt	gaatcctggc	tccatcctca	agccttgggc	tgttgggcaa	gtcatgtata	2940	
caacagagat	aataatacta	cctcagggtc	tctgccctta	ttgttcattc	tccttggaac	3000	
agttcccagt	tgtccataag	gtcgcctgta	gageteette	cagttttact	caagttaccc	3060	

attacttat trattgoctg tyoccatott ottacotca cattotatat agagoacttg attacttat trattgoctg tyoccatott ottacotca gaatgaaga tototatggg agagttttt tytatteett tactgitga occocagitt otagaatgaa traggigett aataatatt tottgoataa atgaatgite attgogagga togittgag caagggitt gocatgggate tyteacatag tagacacatg gatgitatet acgigoctgg cagtigicgt attattate taccaatate caataccatg tyteocetit occitocaga tyacccaagg ttiatatic taccaatet caataccatg tyteocetit occitocaga tyacccaagg aaaaggat aaaggettit tyacagaaat aaggagaaag octitocaga tiaticaga titaattagoc totgacite titagigaat titaaaggice attictagag tiaticaca aaaagaggat aaaggattic gacagaaat aaggagaaag gotigcaagg cagagitacc ticocottocc atacacaaag gocgigaca tyagigaaa ticcagaaag catatictig gigacacaag aagaatitic atagaatga atgitaacaa gaggagaaag cataticag gigacacaaga aagaatitic atagaatga atgitaacaag aggagataag tactitacag agagaggaag otgotiacac otggaggic octiagaaggit agcacaagg aagacactot tigagatcaat gagaatggci agiaaaatgi ggcatocca ggaaacaagg acaatggga accaataaaa gitigitcaa tytacataat caaataaata aaagaagaag caaatgggaa accaataaaa gitigitcaa tytacataat caaataaata aaagaagaag tacaagaaa aaaaaaaaaaaaaaaa <210 > SEO ID NO 77 cill > LENOTH: 8433 <212 > TYPE: DMA 213 > OKGANISM: Mus musculus <400 > SEQUENCE: 77 gigototgig ogcatgigog aaggigaga agagagatti ogcagagaa gaagagaag tocaaggaga ggaacacaaga ggaacagaaga gacacaagaagaagaagaagaagaagaagaagaagaagaa	
attatettat ttattgcetg tgcccatett ettaceteta gaatgtaage tetetatggg 324 caggattttt ttgtattett tactgttgta eccecagttt etagaatgaa ttaggtgett 336 aataaatatt tettgcataa atgaatgte attgcagga tegttgagt caagggttt 336 gcatgggate tgtcaatgg tagacacatg gatgtatet acgtgcetgg cagtgtggg 434 tttattatte tacctaatet caataccatg tgtetettt eccttccaga tgacccaagg 346 tttaattagec ttetgactte tttagtgaat tttaaagtec attetgaga ttattaaat 336 aaaagaggat aaagtetttg tgacagaaat aaggagaaag gettgcaagg cagagtacc 366 ttecettece atacacaaag gcacgtgaca tgagtagaaa ttecagaaag catattett 337 agaagggaag ctgcttacac etggaggtet ecttagaage taggaaagt ttattcaaag 372 agaagggaag ctgcttacac etggaggtet ecttagaage taggaaactg tattetaag 372 accaataaaa gttgttcaa tgtacataat caaataaate agagaaagg aagacatete 336 accaataaaa gttgttcaa tgtacataat caaataaate agagaaagg aagacatete 336 accaataaaa gttgttcaa tgtacataat caaataaate aaagatagat gatcaagaaa 336 accaataaaa gttgttcaa tgtacataat caaataaate agagaggga tgaagaatgg 336 accaataaaa gttgttcaa tgtacataat caaataaate agagagagg tgagagaatg 336 accaataaaa gttgttcaa tgtacataat caaataaate agagagagg tgagagaatg 400 NO 77 <211> LENGTH: 8433 <212> Type: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt 66 gtgtagetge ttetgggete agggaggagg aggaggate eggggagga eacatggag 2 degacctgace eggacctget ggceggcag aggaggagga eggggaga etteacecc 336 aaggaggget egecetatga ggecocgte eccetecca ecagegagga etteacecc 336 aaggaggget egecetatga ggecocgte tacatecet aagacatec aateccaca 336 gacttegage tacgagagg ettggccc tacatecet aagacatec aateccaca 336 gacttegage tacgagagg egaatgctg eggaacaga aggttete ecaggagga etteacecc 336 aagatggaaa teggggagg geaaggaga etteacec 336 aagatggaaa teggggagg geaaggaggate eacatecg 336 aacctggaag gaagagacc eacagacag aggagacct teggagacce tggagagac etcacaca 336 aacctegcca tgtgtcaga caacgacca aggagagacc taccttegg ggagaccacaa 336 aacctegca tgtgtcagat caacgaaca accegtegg gggagacce tecacagacaa 346 aacctegca tgtgtcagat caacgaacag atttactata aagtcattaa aggacategac ccacattecge tgtgatagag	actagctagg gctcccttgg tctctaacct tgcaaatggc atttgccatt tcctattttc 3120
aagaattttt tigtattett tactgittgia eececagitt etagaatgaa tiaggigett aataaatatt tettgeataa atgaatgite attgegagga tegittgagt eaagggittt geatgagate titetagaat tagaacaati gatgitatet aegigeetig eagittgiegi 342 titaattate tacetaatet eaatacaati gittetetti eeciteeaga tiageeeaagg 348 titaatatgee titetagatette tittagaat titaaagee atteegaaga tagaeagaa titaaagaa aaaaagagat aaagatettig titaaatagaa aagaagaaa titeeaagaa geaggaaag geaggaaaga geaggaaaga gitteeeaagaaga eaaattieeg gigeeaaaga aagaatitte atagaatiga atgitaacaag aggagaaag titatteaag 372 aaaaaaaaaaa aaaaaaaa gittigteea eigaagaaga gittigaaga tagaacaaga aagaacatee 236 aacaaagaaga eaaatagagaa attataagiga aggagaaaga tagaaaaaga eaaataggata aacaataaaa gittigteea titaaaata gaaataaata aaaaaaaaa 392 aaaaaaaaaaaa aaaaaaaaa 392 aaaaaaaaaa	tttetteatg etettatttt eettaaeget gaacacetaa eattetatat agageaettg 3180
aataaatatt tottgoataa atgaatgtto attgoagga togtttgagt caagggtttt 336 geatgggatc tgtcaatgg tagacacatg gatgttatct acgtgoctgg cagttgtogt 342 tttatatto tacctaatcc caataccatg tgttetettt cocttocaga tgaccacagg 346 tttatatto tacctaatcct taatgagaat tttaaagtco atttotgaga ttattaaat 354 aaaagaggat aaagtotttg tgacagaaat aaggagaaag gottgoagg cagagttacc 366 ttccottocc atacacaaag geacgtgaca tgagtagaaa ttccagaaag caatttottg 366 gtgcacaaga aagaattto atagaattga atgutaacag agggagtaag ttatttoaag 376 atctagagta caattatagt gggtgacaag gttggagtto agcaaaggg aagcactct 366 gtgagacaag gtgcttacac otggaggtot cottagaage taggaaactg tatottacag 376 atctagagta caattatagt gggtgacaag gttggggtto agcaaaggg aagcactct 366 ttgagatcaat ggagatggc agtaaaatgt gggagtaag accaataaaa gttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 386 aaaaaaaaaa aaaaaaaa 387 accaataaaa gttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 387 accaataaaa gttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 387 accaataaaa gttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 387 accaatagaga ggaggagag gaggggggggggggggg	attatettat ttattgeetg tgeecatett ettaeeteta gaatgtaage tetetatggg 3240
geatgggate tgteacatgg tagacacatg gatgttatet acgtgcetgg cagttgtcgt tttattatte tacctaatet caataccatg tgtetettt cecttecaga tgaccaagg 346 tttaattage ttetgactte tttagtgaat tttaaagtee attetgaga ttateaaat 356 aaaagaggat aaagtetttg tgacagaaat aaggagaaag gettgeaagg cagagtace 360 tteecttee atacacaaag geaegtgaca tgagtagaaa tteeagaaag catattettg 366 gtgcacaaga aagaattte atagaattga atgttaacag aggagtaag ttattteaag 372 agagagggaag etgettacae etggaggtet cettagaage taggaaactg tatettacag 376 atctagagta caattatagt gggtgacaag gttggagtte agcaaaggg aagcactete 386 ttgagateaat ggagatgget agtaaaatg tgcateceta ggaaacaag caaatgggta 396 accaataaaa gtttgtteaa tgtacataat caaataaate aaagatagat gatcaagaaa 397 <211> SEQ ID NO 77 <211> LENGTH: 8433 <212> TYPE: DNA <213> NGANITM: Mus musculus <400> SEQUENCE: 77 gtgetettgtg egeatgteeg aaggtgteea aactgacaat getaggaga tgaagatagt 212 tecaaggega gggegaggaa getagecaaa agtgacggg aeggagaega agacggate 224 ctgteceea tececatggg gecacegtee eeetteeea eeaggagga etteateee 326 aagaagggget egeetatga ggeteetgte tacatteetg aagaacttee aateccacca 326 gaettegage taegaagte etceatacca ggagttgee tggggagateg ggecaaggg 326 aagaagggget tegeatgtgg agattggeee taegtggta egeeceggg egeactgaa 366 aagatggaaa tegggagag gtttggeee taegtggta egeecegge egeactgaag 366 aagatggaaa tegggagag gttggeee taegtggta egeecegge egeactgaa 366 aagatggaaa tegggagag gttggeee taegtggta egeecegge egeactgaa 366 aagatggaaa tegggagag gttggeee taegtggta egeeceggg egeactgaa 366 aagatggaaa tegggagag gttggeee taegtggta egeeceggge egeactgaa 366 aagatggaaa teggagage getaagate ggagatage taegtetae ggeacegga 366 tegateaaaa ageagatete tgaagactg ggtagegaa agttetege ggatgeeaat 666 aagaegggggt etggeagetg getaagaa aacggtgee accettggg gggagage eegeetgagage eegeggggggagaacegaa aacctegee tggatgaga aacctegee ggaagacega aacctegee geectgagaga accetggagag eegegggagaaccgaa aacctegee tggagagag aacctgge eegeetga aacctegee gggaagagaaccgaa aacctegee tggagagag eegeeggg eegeetga eegeggaga eegeggaga eegeggagaaccgaaacctggagaacctagagagaaccgaagagaaccgaaccaaga	caggattttt ttgtattctt tactgttgta cccccagttt ctagaatgaa ttaggtgctt 3300
tttattattc tacctaatct caataccatg tgttetettt ceettecaga tgacccaagg 346 ttaattagee ttetgactte tttagtgaat tttaaagtee atttetgaga ttatteaaat 354 aaaagaggat aaagtetttg tgacagaaat aaggagaaag gettgeaagg cagagttace 366 tteeetteee atacacaaag geaegtgaca tgagtagaaa ttecagaaag catattettg 366 gtgcacaaga aagaatttte atagaattga atgttaacag agggagtaag ttattteaag 372 agagaggaag etgettacae etggaggtet eettagaage taggaaactg tatettacag 376 atctagagta caattatagt gggtgacaag gttggagtte agcacaaggg aagcactete 536 ttgagateaat ggagatgget agtacaaat gagateeeta ggaaacaaga caaatgggta 366 accaataaaa gtttgtteaa tgtacataat caaataaate aaagatagat gatcaagaaa 386 acaataaaa gtttgtteaa tgtacataat caaataaate aaagatagat gatcaagaaa 387 <210 > SEQ ID NO 77 <211 > LENGTH: 8433 <212 > TYPE: DNA <213 > ORGANISM: Mus musculus <400 > SEQUENCE: 77 gtgctctgtg cecatgtgge aaggaggaga aggaggagte cegegagega caccatgega 122 tecaaggega gggegagaa getagecaaa agtageggtg acgttgtaaa taatatgtat 126 agaacetgace eggacetget ggeeggecag aggacggag aggagacega agacggact 246 ctgteececa tececatggg gecacegtee cectteecea ceagegagga ettecaceca 366 aaggaggget egcectatga ggeteetgte tacatteetg aagacattee aateccacea 366 aagatggaaa teggggaaga gettggeee taggtgtga egcecegge egcactgaag 466 aagatggaaa teggggaaga geagateetg ggtagegaa agtteteete caaggagage ttegateaaa agcagateet tgaagactt ggtagegaa agtteteete caaggagage ttegateaaaa agcagateet tgaagactt ggtagegaa agtteteete caaggagage ttegateaaaa agcagateet tgaagactt ggtagegaa agtteteete tacatteete gaggateete ggagateete ggaggeggge ttegateaaaa agcagateete tgaagact ggtagagaa agtteteete tgaagaceaa acceggagaga agcacegae agcacegae eagaggegggaggaagaa accegateete tgaagacaaa atecggagaa agtteete tgaagaceaa aaccegaagagagaa agcacegae agcacegae eagagagae eaccegae eagagagae eaccegae eaccegae ggtagagaa agcacegae eaccegae eaccegae ggtagagaa agcacegae eaccegae	aataaatatt tottgoataa atgaatgtto attgogagga togtttgagt caagggtttt 3360
ttaattagoc ttotgactto tttagtgaat tttaaagtoc atttotgaga ttattoaaat 354 aaaagaggat aaagtotttg tgacagaaat aaggagaaag gottgcaagg caggttaco 360 ttocottocc atacacaaag goacgtgaca tgagtagaaa ttocagaaag catatttotg 366 ggcacaaga aagaatttto atagaattga atgttaacag agggagtaag ttatttoaag 372 aagagaggaag ctgottacac otggaggtot cottagaage taggaaactg tatottacag 378 atctagagta caattatagt gggtgacaag gttggagtot agcacaaggg aagcactotc tgagaacaag gaacgaactag taggaacaat gggagatcaat gggagatcaat gggagatcaat gggagatcaat gggagatcaat ggcacacaga aaaaaaaaa 397 accaataaaa aaaaaaaa 397 accaataaaaa aaaaaaaa 397 accaataaaaa aaaaaaaa 397 accaataaaaa aaaaaaaaa 397 accaataaaaa agcagatggag aagggggagagaggaggaggaggaggaggaggagg	gcatgggatc tgtcacatgg tagacacatg gatgttatct acgtgcctgg cagttgtcgt 3420
aaaagaggat aaagtetttg tgacagaaat aaggagaaag gettgeaagg cagagttacc 360 ttecetteec atacacaaag geacgtgaca tgagtagaaa ttecagaaag catatttettg gtgacacaaga aagaattte atagaattga atgttaacag agggagtaag ttattteaag 372 agagaggaag etgettacac etggaggtet cettagaage taggaaactg tatettacag 378 atctagagta caattatagt gggtgacaag gttggagtte agcaaaggg aagcactete tgagatcaat gggagtget agtacaaat gagaatcact ggaaacaaga caaatgggta 390 accaataaaa gtttgttcaa tgtacataat caaataaate aaagatagat gatcaagaaa 390 accaataaaa aaaaaaaa 391 NN 77 c211> LENGTH: 8433 c212> TYPE: DNN c213> CRGANISM: Mus musculus c400> SEQUENCE: 77 gtgetettgtg egcatgtgeg aaggtgteca aactgacaat getaggaga tgaagatagt gttcaaaggaa gttgaagtget ttetagggete aaggaggagg aggaggagga gagagagtte egcaggagga ggaggagga getagecaaa agtaggggg aggaggaga getagecaaa agtageggg aggaggaga getagecaaa agtageggg aggaggagga ttecaaaggag ggacetgge teccaaggagga getagecaaa agtageggg aggaggaga ettecatece aaggagggg eccectatga ggeteetgte tacattectg aagacattec aatcecaca 36 aagaatggaga tegaggaga gtttggace teggaggagg gttggacegge tggaggagga gttgatagaaa teggggagag gtttggece tacagtggtga egceceggge egcacegag aagatggaga ttgaagatag ttegategga gaggecgact ttggatggag gtttggece tacgtggtga egceceggge egcacegag aagatggaaa teggagagaa tegagagaa ttgaagatac eccagagagag ttgaagaaa teggggagag gtttggece tacgtggtga egceceggge egcacegag aagatggeat egceceggge egcacegag aagatggeat etgaataaaa agcagatete tgaagacttg ggtaggagaa agttetget ggaggaceaa aacetegea ttggatggag getagagatet ggatagaga agttetetg tgatgacaa aacetegea ttggatgaga caaagaacaa atceggagaa attacataa aagaactegag eccaggagggg eccaggagg eccaggaga aacetegac aacetegac aacetegac aacetegac aacetegac aacetegac aaceagaacaa attacataa aagacattaa ggacategag eccaggaggaga eccaggagaga aacetegac aaceagaacaa attacataa aagacateaa aacetegaca tggatgagac caaceatecge tggatgaaa gaaggece eccagettaa ggacategag eccaggecaacegag eccageteaa aaggettgga eccageteaa eacetegac tgagagaga acatettag ggaggagac caaceategac eccagettgg aaggaggac ecaagtecta eaceatecge tggagagac ecaagtecta eccaggaggac ecaagtecta eaceatecg	tttattattc tacctaatct caataccatg tgttctcttt cccttccaga tgacccaagg 3480
ttcccttccc atacacaaag gcacgtgaca tgagtagaaa ttccagaaag catatttctg gtgcacaaga aagaattttc atagaattga atgttaacag agggagtaag ttatttcaag 372 agagaggaag ctgcttacac ctggaggtct ccttagaagc taggaaactg tatcttacag atctagagta caattatagt gggtgacaag gttggagttc agcaaaggg aagcactcc tgagatcaat ggagatggct agtaaaatgt ggcatccta ggaaacaaga caaatgggta accaataaaa gtttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa aaaaaaaaaa <210> SEQ ID NO 77 <211> LENGTH: 8433 <212> Type: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt ggaacctgac cggacctgct ggccgccag agtgccgag aggagaccga agacggcatc tccaaggcga gggcgaggaa gctagccaaa agtgacgag aggagaccga agacggcatc ctgtccccca tccccatggg gccaccgtcc cccttccca ccagcgagga ctccactccc aaggagggct cgcctatga ggctcctgtc tacattcctg aagacattcc aatccacca gacttcgagc tacgagagtc ctccatacca ggagctggc tggggatctg ggccaagcgg aagatggaaa tcggggagag gtttggccc tacgtggtga cgcccgggc cgcactgaag gagccgact ttggatggga gcagatgct acggagtacaa agttctagac ggagcagcg aagatggaaa tcggggagag gtttggccc tacgtggtga cgccccgggc cgcactgaag gagccgact ttggatggga gcagatgctg acggtgaacaa agttctgg ggcaaagcgg aagatggaaa tcggggagag gtttggccc tacgtggtga cgccccgggc cgcactgaag gaggccgact ttggatggga gcagatgctg ggtagagaa atcaggagaccaa aacctcgcca ttggatgaga caagaactg ggtagacaaa aacctcgcca ttggatgaga gcaagacga attactata aagtcattaa ggacatcgaa ccaggcggggt ctggcagctg gctcaagtac atccgtgtag cggttcctg tgatgaccaa aacctcgcca tgtgtcagat caacgaacag attactata aagtcattaa ggacatcga cctggagaga aactgttggt gcatgtgaaa gaaggtgcct acccttggg tgtaccaa aacctcgcca tgtgtcagat caacgaacag attactata aagtcattaa ggacatcgac cctggagaga aactgttggt gcatgtgaaa gaaggtgcct acccttggg tgtcatgcc ccagcttgg atgaggacc cacattccgc tgtgatgag tgtgatgacc ctccagtgc aggctggacc tgaggagcac caagaagaac gcggtgaagcc ctgcaggac caggctcac aggcggacctag gggaggaacc caagaagaa ggcgctatggc ctgcaggac cgggcaagag aggcgcaac gggaggaacc caagaagaa ggcgtgaggc ctggagaagc caggctcac aggcggacctag gggaggaacc caagaagaa ggcgttgggc tgggaagcg caagacga cgggcaagag	ttaattagcc ttctgacttc tttagtgaat tttaaagtcc atttctgaga ttattcaaat 3540
gtgcacaaga aagaatttte atagaattga atgttaacag agggagtaag ttatttcaag 372 agagaggaag ctgcttacac ctggaggtct cettagaage taggaaactg tatettacag 378 atctagagta caattatagt gggtgacaag gttggagtte agcaaaggg aagcactete tgagaatcaat ggagatgget agtaaaatgt ggcateceta ggaaacaaga caaatgggta 390 accaataaaa gtttgttcaa tgtacataat caaataaate aaagatagat gatcaagaaa 397 accaataaaa agtttgttcaa tgtacataat caaataaate aaagatagat gatcaagaaa 397 accaataaaa agtttgttcaa tgtacataat caaataaate aaagatagat gatcaagaaa 397 accaataaaaa aaaaaaaa 397 <211> SEQ ID NO 77 <211> LENGTH: 8433 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt gtgagactge ttccagggcg aggaggagg aggagagtte cgcgagccga caccatgcga 12 tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat 18 gaacctgace cggacctgct ggccggccag agtgccgagg aggagaccga agacggcate 24 ctgtcccca tecccatggg gccaccgtec ccettccca ccagcgagga cttcactccc 32 aaggagggt cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca 32 gacttcgagc tacgagagte ctccatacca ggagctggcc tggggatctg ggccaagggg 42 aagatggaaa tcggggagag gtttggccc tacgtggtga cgcccgggc cgcactgaag 32 aagatggaaa tcggggagag gcagatgct acggatacag agtgtcatc ccaggagagc 42 aagatggaaa tcggggagg gcagatgct gggaacaga agtctggg ggatgagg 42 aagactgac ttggatggga gcagatgct gggaacaga agtctggg ggatccaaa 66 aagacggggt ctggcagctg gctcaagtac atccgtgtag cggttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcga 66 caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcga 66 caggcggggt ctggcagct gcacgtgaa caagatcg ctgcaggag ccagctctac 66 caggcggggt ctggaagac cacattccgc tgtgatgag tgtgatgac cttccagtgc aggctggagaggaggaggaggaggaggaggaggaggaggaggag	aaaagaggat aaagtetttg tgacagaaat aaggagaaag gettgeaagg cagagttace 3600
agagaggaag ctgcttacac ctggaggtct ccttagaagc taggaaactg tatcttacag 378 atctagagta caattatagt gggtgacaag gttggagttc agccaaaggg aagcactctc 384 tgagatcaat ggagatggct agtaaaatgt ggcatcccta ggaaacaaga caaatgggta 396 accaataaaa gtttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 397 accaataaaaa aaaaaaaa 397 accaataaaaa aaaaaaaaa 397 accaataaaaa aaaaaaaaa 397 accaataaaaa aaaaaaaaa 397 accaataaaaaa aaaaaaaaa 397 accaataaaaaa agcgatgtcca agggggaga agaagagaggaga ggaggaggaga gggggg	ttcccttccc atacacaaag gcacgtgaca tgagtagaaa ttccagaaag catattctg 3660
atctagagta caattatagt gggtgacaag gttggagttc agccaaaggg aagcactctc tgagatcaat ggagatggct agtaaaatgt ggcatcccta ggaaacaaga caaatgggta accaataaaa gtttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa aaaaaaaaaa aaaaaaaa <210> SEQ ID NO 77 <211> LENGTH: 8433 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt ggtgtagctgc ttctgggctc aaggagagag aggagagatc cgcagagcga caccatgcga tccaaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat gaacctgacc cggacctgct ggccggccag agtgccgag aggagaccga agacggcatc ctgtcccca tccccatggg gccaccgtcc cccttccca ccagcgagga cttcactccc aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattc aatccacca gacttcgagc tacgagagag gtttggccc tacgtggtga cgcccgggc cgcactgaag gaggccgact ttggatggag gcagatgctg acggatacag agttctgct ggcaagcgg tgcatcaaaa agcagatcc tgaagacttg ggcaagaga agttctgctg tggggatctg ggcaagcgg tgcatcaaaa agcagatct tgaagacttg ggcaggaa agttctgctg tgaggaccaa ccaggaggac tgcatcaaaaa agcagatct tgaagacttg ggtagcgaa agttctgct ggatgccaat caggcggggt ctggcagctg gctcaagtac atccgtgtag cgttcctgt tgatgaccaa caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtttcctg tgatgaccaa caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtttcctg tgatgaccaa caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtttcctg tgatgaccaa aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcga cctggagagg aactgttgg gcatgtgaaa gaaggtgcct actccttggg tgtcatggc cccagcttgg atgaggacc cacattccgc tgtgatgagt tctgcaggac ccagctctac gaggcggacc tgaggagccc cacattccgc tgtgatgagt ctgcaggac ccagctctac gaggcggacc tgaggagcac cacaatccgc tgtgatgagt ctgcaggac caggccaagag	gtgcacaaga aagaattttc atagaattga atgttaacag agggagtaag ttatttcaag 3720
tgagatcaat ggagatgget agtaaaatgt ggcatcocta ggaaacaaga caaatgggta 390 accaataaaa gtttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 396 aaaaaaaaaa aaaaaaaa 397 <210	agagaggaag ctgcttacac ctggaggtct ccttagaagc taggaaactg tatcttacag 3780
accaataaaa gtttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 396 aaaaaaaaaa aaaaaaaa 397 <210 > SEQ ID NO 77 <211 > LENGTH: 8433 <212 > TYPE: DNA <213 > ORGANISM: Mus musculus <400 > SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt gtgatagctgc ttctggggctc aaggaggagg agagagattc cgcgagccga caccatgcga 12 tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat 18 gaacctgacc cggacctgct ggccggccag agtgccgag agagagaccga agacggcatc ctgtgcccca tccccatggg gccaccgtc cccttccca ccagcgagga cttcactccc aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca 36 gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagcgg 42 aagatggaaa tcggggagag gctagcccc tacgtggtga cgcccgggc cgcactgaag 43 gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc tgcatcaaaa agcagatct tgaagacttg ggtagcaga agttctgcgt ggatgccaat 60 aaggcggggt ctggcagct gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgcagct gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactaa aagtcattaa ggacatcgag 66 acctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 66 cccagcttgg atgaggacc cacattccgc tgtgatgagt gtgatgagc cttccagtgc 68 aggctggacc tgaggcgcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgagggcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgagggcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgagggcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgaggcgca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgagggcacc caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgagggcacc caagaagtac gcgtgcagct ctgcaggagc ccagctctac 69 aggctggacc tgagggcacac caagaagtac gcgtgcagct ctgcaggac cagctctac 69 aggctggacc tgagggacc caagaagtac gcgtgcagct ctgcaggac ccagctctac 69 aggctgacctag gggaggaacc caagaacag ggccttggcg tgggcagca cggccagcc 69 aggctgacctag gggagaacc caagaacag ggccttggcg tgggcagcacc cagctctac 69 aggctgacctag gggagaacc aagaacacaga ggccttggcg tgggcagcacc cagctctac 69 aggctgac	atctagagta caattatagt gggtgacaag gttggagttc agccaaaggg aagcactctc 3840
aaaaaaaaa aaaaaaaa aaaaaaaa 3397 <210> SEQ ID NO 77 <211> LENGTH: 8433 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 77 gtggctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt gtgaagctgc ttctggggctc aaggaggagg aggagagttc cgcgagccga caccatgcga 12 tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat 18 gaacctgacc cggacctgct ggccggccag agtgccgag aggagaccga agacggcatc 24 ctgtcccca tccccatggg gccaccgtc cccttccca ccagcgagga cttcactccc aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatccacca 36 gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagcgg 42 aagatggaaa tcggggaga gcttggccc tacgtggtga cgccccgggc cgcactgaag 42 aagatggaaa tcggggaga gcagatgctg acggatacag aggtgcatc ccaggagagc 54 tgcatcaaaa agcagatctc tgaagacttg ggtagcgaa agttctgcgt ggatgccaat 66 caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 66 acctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc cccagcttgg atgaggacc cacattccgc tgtgatgagt gtgatgagc cttccagtgc 66 acctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggacc cacattccgc tgtgatgagt gtgatgagc ccagctctac 66 aggctggacc tgaggcgca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 66 aggctggacc tgaggcgca caagaagtac caacatccgc tgtgatgagc cttccagtgc 66 aggctggacc tgagggcca caagaagtac caagaagtac cttccagtgc 66 aggctgaactgag ggaggaact caacatccgc tgtgatgagt gtgatgagc cttccagtgc 66 aggctgaactgag ggaggaact caacatccgc tgtgatgagt gtgatgagc cttccagtgc 66 aggctgaactgag ggaggagacc caacatccgc tgtgatgagt gtgatgagc cttccagtgc 66 aggctgaactgag ggaggaact caacatccgc tgtgatgagt gtgatgagc caacctcagc 66 aggctgaactgag ggaggaact caacatccgc tgtgatgagt gtgatgagc caacctcagc 66 aggctgaactgaact ggaggaact caacatccgc tgtgatgagt gtgatgagc caacctagcg 66 aggctgaactgaact ggaggaact caacatccgc tgtgatgagc tctccagga 66 aggctgaactgaact ggaggaact caacatccgc tgtgatgagc tctcaagcagc 66 aggctgaactgaactgaact caacatccgc tgtgatgagc tctcaagaacgc	tgagatcaat ggagatggct agtaaaatgt ggcatcccta ggaaacaaga caaatgggta 3900
<pre><210> SEQ ID NO 77 <211> LENGTH: 8433 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt gtgtagctgc ttctggggctc aaggaggag aggagagattc cgcgagccga caccatgcga tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat gaacctgacc cggacctgct ggccggccaa agtgccgagg aggagaccga agacggcatc ctgtcccca tccccatggg gccaccgtc cccttcccca ccagcgagga cttcactccc aaggagggct cgcctatga ggctcctgtc tacattcctg aagacattc aatccacca gacttcgagc tacgaggaga gtttggccc tacgtggtga cgcccgggc cgcactgaag gaggccgact ttggatggaa gtttggcccc tacgtggtga cgcccgggc cgcactgaag gaggccgact ttggatggaa gcagatctg ggcacaggaga gtttggccc tacgtggtga cgcccgggc cgcactgaag gaggccgact ttggatggag gcagatgtg acggatacag aggtgtcatc ccaggagagc tgcatcaaaa agcagatctc tgaagacttg ggtagcaaa agttctgctg ggatgccaat caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag cccggagggagagagagagagagagagagagagag</pre>	accaataaaa gtttgttcaa tgtacataat caaataaatc aaagatagat gatcaagaaa 3960
<pre><211> LENGTH: 8433 <212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 77 gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt gtgagctgc ttctgggctc aaggaggag agaagagttc cgcgagccga caccatgcga 12 tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat 18 gaacctgacc cggacctgct ggccggccag agtgccgag aggagaccga agacggcatc ctgcccca tccccatggg gccaccgtcc cccttccca ccagcgagga cttcactccc 30 aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca 36 gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagcgg 42 aagatggaaa tcggggagag gtttggcccc tacgtggtga cgccccgggc cgcactgaag 48 gaggccgact ttggatggag gcagatgctg acggatacag aggtgtcatc ccaggagagc 54 tgcatcaaaa agcagatctc tgaagacttg ggtagcgaa agttctgcgt ggatgccaat 60 caggcgggt ctggcagctg gctcaagtac atccgtgtag cgttcctg tgatgaccaa 66 caggcgggt ctggcagctg gctcaagtac atccgtgtag cgtttcctg tgatgaccaa 66 caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtttcctg tgatgaccaa 66 caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtttcctg tgatgaccaa 66 cacctggaagag aactgttgt gcatgtgaaa gaaggtgcc actccttggg tgtcatggcc 78 cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagc cttccagtgc 96 aggctggacc tgagggcac caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagca cgggcaagcg 96 gagggcctag gggaggacc aagccgaagcg gggccttggcg tgggcaagcg cagcccagcc</pre>	aaaaaaaaa aaaaaaaa 3978
gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt gtgtagctgc ttctgggctc aaggaggag agaagattc cgcgagccga caccatgcga 12 tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat 18 gaacctgacc cggacctgct ggccggccag agtgccgagg aggagaccga agacggcatc 24 ctgtcccca tccccatggg gccaccgtcc cccttcccca ccagcgagga cttcactccc 30 aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca 36 gacttcgagc tacgaggag gtttggcccc tacgtggtga cgcccgggc cgcactgaag 42 aagatggaaa tcgggagag gtttggcccc tacgtggtga cgcccgggc cgcactgaag 42 gaggccgact ttggatgga gcagatgtg acggatacag aggtgtcatc ccaggagagc tgcactgaag 42 gaggccgact ttggatggga gcagatgtg ggtagcgaa aggtgtcatc ccaggagagc 54 tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgggt ggatgccaat 66 aacctcgcca tgtgtcagt gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 72 cctggagagg acggtggg caacttcggc tgtgatgagc actccatggc 24 aggctggacc tgaggagac caacttcggc tgtgatgagc cttccagtgc 84 aggctggacc tgagggacc cacattccgc tgtgatgagt gtgatgagc cttccagtgc 84 aggctggacc tgagggacc caacattccgc tgtgatgagt gtgatgagc ccagctctac 96 aggctggacc tgagggacc caacattccgc tgtgatgagt ctgcaggac ccagctctac 96 aggctggacc tgagggacc caagaagaac caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 aggctggacc tgagggaacc caagaagaac caagaagtac gcgtgcagc tgggcagca cgggcaagcg 96 aggggaggacctag gggaggaacc caagaccgag ggccttggcg tgggcagca cgggcaagcg 96 aggggaggcctag gggaggaacc caagaccgag ggccttggcg tgggcagca cgggcaagcg 96 aggggaggacctag gggaggaacc caagaccgag ggccttggcg tgggcagcag cgggcaagcg 96 aggggagggcctag ggggaggaacc caagaccgag ggccttggcg tgggcagcag cgggcaagcg 96 aggggagggcctag ggggaggaacc aaggccaagcg gggcaagcg cgggcaagcg cgggcaagcg aggggagggcctag ggggaggaccaagcg gggcaagcga gggcaagcga aggggaggaccaagcag aggggaggaccaagcagaagcgaagaaccaagaagagagaaccaagaag	<211> LENGTH: 8433 <212> TYPE: DNA
gtgtagctgc ttctgggctc aaggaggagg agaagaattc cgcgagccga caccatgcga tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat gaacctgacc cggacctgct ggccggccag agtgccgagg aggagaaccga agacggcatc ctgtcccca tccccatggg gccaccgtcc cccttcccca ccagcgagga cttcactccc aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagcgg aagatggaaa tcggggagag gtttggcccc tacgtggtga cgccccgggc cgcactgaag gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgcgt ggatgccaat caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc cccagcttgg atgaggaccc cacattccgc tgtgatgagg tgtgatgagc cttccagtgc gaggctggacc tgagggcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac gaggctggacc tgagggcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac gaggctggacc tgagggcaca caagaagtac gcgtgcagct ctgcaggagc ccagctctac gaggggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg	<400> SEQUENCE: 77
tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat gaacctgacc cggacctgct ggccggccag agtgccgagg aggagaccga agacggcatc ctgtccccca tccccatggg gccaccgtcc cccttcccca ccagcgagga cttcactccc aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagggg aagatggaaa tcggggagag gtttggccc tacgtggtga cgccccgggc cgcactgaag gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgcgt ggatgccaat caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa cagccgggg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc aggctggacc tgaggcgca caagaagtac gcgtgcagct ctgcaggagc ccagctctac gaggggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg	gtgctctgtg cgcatgtgcg aaggtgtcca aactgacaat gctagggaga tgaagatagt 60
gaacctgacc cggacctgct ggccggccag agtgccgagg aggagaccga agacggcatc ctgtcccca tccccatggg gccaccgtce cccttcccca ccagcgagga cttcactccc aaggagggct cgcctatga ggctcctgtc tacattcctg aagacattcc aatcccacca gacttcgagc tacgaggag ctccatacca ggagctggcc tggggatctg ggccaagcgg 42 aagatggaaa tcggggagag gtttggcccc tacgtggtga cgccccgggc cgcactgaag 48 gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc 54 tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgcgt ggatgccaat caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 72 cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggacc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgagggccca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 aggctggacc tgagggcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 aggctggacc tgagggccca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 agggggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96 agggggcctag gggaggaact caagcccgag ggccttggcg tgggcagca cgggcaagcg	gtgtagctgc ttctgggctc aaggaggagg agagagattc cgcgagccga caccatgcga 120
ctgtccccca tccccatggg gccaccgtcc cccttcccca ccagcgagga cttcactccc aaggagggct cgccctatga ggctcctgtc tacattcctg aagacattcc aatcccacca gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagcgg aagatggaaa tcggggagag gtttggcccc tacgtggtga cgccccgggc cgcactgaag gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagcc tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgcgt ggatgccaat caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc cccagcttgg atgaggaccc cacattccgc tgtgtatgagt gtgatgagct cttccagtgc aggctggacc tgaggcgca caagaagtac gcgtgcagct ctgcaggagc ccagctctac gaggggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg	tccaaggcga gggcgaggaa gctagccaaa agtgacggtg acgttgtaaa taatatgtat 180
aaggaggget egecetatga ggeteetgte tacatteetg aagacattee aateceacea gacttegage tacgagagte etceatacea ggagetggee tggggatetg ggecaagegg 42 aagatggaaa tegggggag gtttggeeee tacgtggtga egeceeggge egeactgaag 48 gaggeegact ttggatgga geagatgetg acggatacag aggtgteate eeaggagage 54 tgcateaaaa ageagatete tgaagacttg ggtagegaga agttetgegt ggatgeeaat 60 caggeggggt etggeagetg geteaagtae atecgtgtag egtgtteetg tgatgaceaa 66 accetegea tgtgteagat eaacgaacag atttactata aagteattaa ggacategag 72 eetggagagg aactgttggt geatgtgaaa gaaggtgeet acteettggg tgteatggee 78 eecagettgg atgaggace eacatteege tgtgatgagt gtgatgaget etteeagtge 84 aggetggace tgagggeea caagaagtae gegtgeaget etgeaggage eeagetetac 96 gagggeetag gggaggaact eaageeegag ggeettggeg tgggeageg egggeaageg 96 gagggeetag gggaggaact caageeegag ggeettggeg tgggeagega egggeaageg 96 gagggeetag gggaggaact eaageeegag ggeettggeg tgggeagega egggeaageg 96 gaggggeetag ggggagaact eaageeegag ggeettggeg tgggeagega egggeaageg 96 gaggggeetag ggggagaact eaageeegag ggeettggeg tgggeagega egggeaageg	gaacctgacc cggacctgct ggccggccag agtgccgagg aggagaccga agacggcatc 240
gacttegage tacgagagte etceatacea ggagetggee tggggatetg ggecaagegg 42 aagatggaaa teggggagag gtttggeee tacgtggtga egeceeggge egeaetgaag 48 gaggeegaet ttggatggga geagatgetg aeggatacag aggtgteate eeaggagage 54 tgeateaaaa ageagatete tgaagaettg ggtagegaga agttetgegt ggatgeeaat 66 caggeggggt etggeagetg geteaagtae ateegtgtag egtgtteetg tgatgaecaa 66 aacetegeea tgtgteagat eaacgaacag atttactata aagteattaa ggacategag 72 cetggagagg aactgttggt geatgtgaaa gaaggtgeet acteettggg tgteatggee 76 ceeagettgg atgaggaeee eacatteege tgtgatgagt gtgatgaget etteeagtge 84 aggetggaee tgagggeea caagaagtae gegtgeaget etgeaggage eeagetetae 96 gagggeetag gggaggaact eaageeegag ggeettggeg tgggeagega egggeaageg 96 gagggeetag gggaggaact eaageeegag ggeettggeg tgggeagega egggeaageg	ctgtcccca tccccatggg gccaccgtcc cccttcccca ccagcgagga cttcactccc 300
aagatggaaa tcggggagag gtttggccc tacgtggtga cgccccgggc cgcactgaag 48 gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc 54 tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgcgt ggatgccaat 66 caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 72 cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgagggccca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg	aaggaggget egeectatga ggeteetgte tacatteetg aagacattee aateecaeca 360
gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc 54 tgcatcaaaa agcagatctc tgaagacttg ggtagcgaga agttctgcgt ggatgccaat 66 caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 66 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 72 cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgaggcgca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96	gacttcgagc tacgagagtc ctccatacca ggagctggcc tggggatctg ggccaagcgg 420
tgcatcaaaa agcagatcte tgaagacttg ggtagegaga agttetgegt ggatgeeaat 660 caggeggggt etggeagetg geteaagtae ateegtgtag egtgtteetg tgatgaeeaa 660 aacetegeea tgtgteagat eaacgaacag atttactata aagteattaa ggacategag 72 cetggagagg aactgttggt geatgtgaaa gaaggtgeet acteettggg tgteatggee 780 ceeagettgg atgaggaeee eacatteege tgtgatgagt gtgatgaget etteeagtge 840 aggetggaee tgaggegeea eaagaagtae gegtgeaget etgeaggage eeagetetae 900 gagggeetag gggaggaact eaageeegag ggeettggeg tgggeagega egggeaageg 960 aggeggeetag gggaggaact eaageeegag ggeettggeg tgggeagega egggeaageg 960 aggggaggeetag gggaggaact eaageeegag ggeettggeg tgggeagega egggeaageg	aagatggaaa teggggagag gtttggeece taegtggtga egeeceggge egeactgaag 480
caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 666 aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 72 cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgaggcgcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96	gaggccgact ttggatggga gcagatgctg acggatacag aggtgtcatc ccaggagagc 540
aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 72 cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgaggcgcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 90 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96	
cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 78 cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgaggcgcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 96 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96	caggcggggt ctggcagctg gctcaagtac atccgtgtag cgtgttcctg tgatgaccaa 660
cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 84 aggctggacc tgaggcgcca caagaagtac gcgtgcagct ctgcaggagc ccagctctac 90 gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96	aacctcgcca tgtgtcagat caacgaacag atttactata aagtcattaa ggacatcgag 720
aggetggace tgaggegeca caagaagtae gegtgeaget etgeaggage eeagetetae 90 gagggeetag gggaggaact caageeegag ggeettggeg tgggeagega egggeaageg 96	cctggagagg aactgttggt gcatgtgaaa gaaggtgcct actccttggg tgtcatggcc 780
gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 96	cccagcttgg atgaggaccc cacattccgc tgtgatgagt gtgatgagct cttccagtgc 840
	aggetggace tgaggegeca caagaagtae gegtgeaget etgeaggage ceagetetae 900
catgagtgca aggattgcga gcggatgttc cccaacaagt acagcttgga gcaacacatg 102	gagggcctag gggaggaact caagcccgag ggccttggcg tgggcagcga cgggcaagcg 960
	catgagtgca aggattgcga gcggatgttc cccaacaagt acagcttgga gcaacacatg 1020

atcgtccaca cggaagagcg tgagtacaaa tgtgaccagt gtcccaaggc cttcaactgg 1080

aagtccaacc	tcatccgcca	ccagatgtct	cacgacagtg	gcaagcgctt	cgaatgtgaa	1140
aactgtgtca	aggtgttcac	ggaccccagc	aacctccagc	gtcacatccg	ctcacagcat	1200
gtcggtgccc	gggcccatgc	ctgccctgac	tgtggcaaga	ccttcgccac	atcctctggc	1260
ctcaaacagc	acaagcatat	ccacagcacg	gtgaagccat	tcatatgcga	ggtctgccac	1320
aagtcctaca	cgcagttctc	caacctgtgc	cggcacaagc	ggatgcacgc	cgactgcagg	1380
acgcagatca	agtgcaagga	ctgtgggcag	atgttcagca	ctacctcctc	cctcaacaag	1440
catcggagat	tetgegaggg	caagaaccat	tacacgcctg	gcagcatctt	caccccaggc	1500
ctgcccttga	cccccagccc	catgatggac	aagacaaaac	cctccccgac	cctcaaccac	1560
gggggcctag	gcttcagcga	gtacttcccc	tccagacctc	atcctgggag	cctgcccttc	1620
teggetgete	ctccggcctt	ccccgcactc	actccgggct	tecegggeat	ctttcctcca	1680
tecetgtace	cacgaccacc	tctgctacct	cccacgccgc	tgctcaagag	ccccctgaac	1740
cacgcgcagg	acgccaagct	acccagcccg	ctgggaaacc	cagecetgee	ccttgtctcc	1800
geggteagea	atagcagcca	gggtgccaca	geggeeaeeg	ggtcagagga	gaaatttgat	1860
ggccgcttgg	aagacgcata	tgcggagaag	gtcaaaaata	ggagccctga	catgtcggat	1920
ggcagtgact	ttgaggatat	caacaccacg	accgggacag	acttggacac	taccacgggc	1980
acggggtcag	acctggacag	cgacctggac	agtgacagag	acaaaggcaa	ggacaagggg	2040
aagccagtgg	agagcaaacc	tgagtttggg	ggtgcatctg	tgccccctgg	ggccatgaac	2100
agtgtggccg	aggtaccggc	cttctactca	cagcattcct	tetteeegee	acccgaggaa	2160
cagctgctga	eggeeteggg	agetgeegge	gactccatca	aggccatcgc	gtccatcgcg	2220
gagaaatact	tcggtcctgg	cttcatgagc	atgcaggaga	agaagctggg	ctcactaccc	2280
taccactccg	tgttcccctt	ccagttcctg	cctaactttc	cccactccct	ctaccccttt	2340
acggaccgag	ccctcgccca	caacttgctg	gtcaaggctg	agccaaagtc	accccgggat	2400
gccctcaagg	tgggcggccc	cagtgcggag	tgccccttcg	acctcaccac	caaaccaaaa	2460
gaggccaaac	ccgccctgct	cgcacccaag	gtccccctca	tcccctcatc	tggcgaggaa	2520
cagccactgg	acctgagcat	cggcagcagg	gccagggcaa	gccagaacgg	aggtggccgt	2580
gagccgcgga	agaaccacgt	ctacggtgaa	cggaagccgg	gggtcagcga	ggggctgcct	2640
aaggtgtgcc	cagcacagct	gccccagcag	ccctccttgc	attatgctaa	gccttcaccg	2700
ttcttcatgg	atcccatcta	cagggtagaa	aagcggaagg	tggcagaccc	tgtgggagtc	2760
ctgaaagaga	agtacctgcg	gccgtcccca	cttctgttcc	acccccagat	gtcagccata	2820
gaaaccatga	cggagaagct	ggagagcttt	gcagccatga	aggccgactc	aggcagctcc	2880
ctgcagcccc	tgcctcacca	cccgttcaac	ttccgctccc	cacccccaac	gctctcggat	2940
cccatcctca	ggaaggggaa	ggagagatac	acgtgcaggt	actgtggcaa	gatcttcccc	3000
agatctgcaa	atctcacaag	acatctgagg	acacacacag	gggagcagcc	atacaggtgc	3060
aagtactgtg	accggtcatt	cagcatctcc	tccaacctcc	agcggcacgt	gaggaacatc	3120
cacaacaaag	agaagccgtt	caagtgccat	ctgtgcaacc	gctgcttcgg	gcagcagacc	3180
aacctagacc	ggcacctgaa	gaagcacgaa	cacgagggcg	caccagtgag	ccagcactcc	3240
ggggtgctca	cgaaccacct	gggcaccagc	gcctcctccc	ccacctccga	gtcggacaac	3300
catgcacttt	tagatgagaa	ggaagattct	tacttctccg	agatccgaaa	cttcatcgcc	3360

aacagcgaga	tgaaccaggc	atccactcga	atggacaaac	ggcctgagat	ccaagacctg	3420
gacagcaacc	caccgtgtcc	aggctcagcc	agtgcaaagc	cagaggacgt	agaggaggag	3480
gaagaggagg	agctggagga	agaggatgat	gacagettag	ccgggaagtc	acaggaggac	3540
acggtgtccc	ccacacctga	gccccaagga	gtctatgaag	atgaagagga	tgaggaacca	3600
cccagcctga	ccatgggctt	tgaccatacc	cggaggcata	tgcaatgatg	ctgtccctct	3660
ctgaagacac	tcctctccac	geeceeteee	agagctcact	ggatgcttgg	ttgaacatca	3720
caggaccctc	gtcagagtcc	ggagccttta	accccatcaa	ccacctctga	ggtcctggag	3780
gccccagggc	cagagtccaa	agccagggta	ccagctgcag	gagatggaga	aggggccagg	3840
gagcagcccc	ccaccctcaa	cacctccact	ttgcaaagtc	cagcttctcc	attgaaactc	3900
agaacccgaa	ggtcccttga	gtagccgctg	gccttcatca	cctctcagaa	ctggcctcaa	3960
ggacacgatc	tgcagtgggt	gcggtgcacg	ggccacccag	gagctgctca	caggagccat	4020
ggatcagaaa	actcgtgggc	aagggtgggg	tctctatccc	agcaggagcc	agttggccac	4080
atccaggcaa	ctgcatggta	tgaaagagga	aatcggaaag	acgtgggcaa	gtgctatgga	4140
gagagacctc	atcaatgatt	tttataatga	gaatcacatg	attaagcctt	ttggtaatct	4200
tattgactat	agagtctatt	taagcatgtg	ggttttaaaa	aaaatagacg	gtattttta	4260
aaaatcaaaa	aaaaaaaaa	aagacttgca	aaatgttttt	ttaaaagtaa	ttttgcatcg	4320
ctttggaatt	tcagcttatt	ggcaaaccca	cacctgccag	gacatcgagt	acggctcggg	4380
tgtgcccttt	ataatgtaaa	taatggagaa	tttttttct	atctctgacc	tgtttgtata	4440
agccaaggtg	attccagtgt	gcccgacaca	ggataagggg	catggagcca	ctctgctaag	4500
tcagatgctg	actacacaag	aattcatgga	cgtggtgcct	ggctgcaggt	ttgcagaggg	4560
aggccaggag	aaagaggtcg	ccttgccctg	tgtgctctgc	agaggaatcc	acgggtccca	4620
cccaagaccc	tccccaattg	tatggggaag	tegggageea	gtggctcagg	tcttccatgc	4680
tggacaccta	aggatettee	ccttcagcag	cagcactggc	cttgactgct	gctcttctga	4740
aggcagggct	ctgggccatg	tggaggcctc	cagccttcta	ccctccccaa	ccctggcagg	4800
ctgatgccct	ccccatggcc	actgagtgtg	ggacgcctgc	ccacctgcta	ctccactcca	4860
ggacaccaag	cactacctgt	gcctaagact	ccagatcaat	cacacagtcg	ccacttctgc	4920
tctttgtgtg	ggttcctggt	gagaatagga	cggggacagg	aggaagatcc	aggggacctg	4980
ccacagcaaa	gaacagagac	agtacagacc	ccaagaccgg	atgcctcact	catttgggac	5040
ggtcagaacg	tgtctacttc	tctgcttgga	tgggctttaa	attatcccat	aggggccaat	5100
ttcaaataat	ttetttteet	gatggaattt	accttaatct	gtatataact	tgtaattttt	5160
ttttctaatt	catttctttc	cttattttat	ttcttcctta	acagtatttt	tggcattgga	5220
caacttattc	tgaagaaatg	atgttaatat	aagtatgtag	tgaaggacca	aaccgtgtga	5280
taaggttgtg	tgctgtgtga	teggtaceca	gggagcgggg	cggtgttaat	gtgccaaata	5340
cccctgtgtc	cctccctcca	ggagttccac	ggtcaccact	gcccacttac	cagacaatca	5400
tatgattttg	ttaaatttga	gtttcagtta	cattttaaga	caagtgttct	atttatttta	5460
ttgtttggaa	ggagggggc	atatcccaac	aagataagaa	ggaacagaga	ccgcctgggt	5520
tgtcatttaa	aactacaaga	gattgtgatt	gtgtgagcgt	cagcaaactc	ggagcacgcg	5580
tgtcatgccg	tgggcctgtc	agcggttccc	tctgggagca	acttaaacat	ccaagcacag	5640

atcttttata	tttgctaagg	ccgttctggg	acaaagaccg	tcatctttgc	tgatgctcag	5700
tggtccaggc	tacgctggga	tccgtgatgg	ggatatccca	gaagacacca	ttcccctgca	5760
ggttgcggtg	aatctcagtg	acatagcatg	gaacagtcag	tcctgtgccg	tgctcagaag	5820
cacacteteg	agtgcacact	ggacggcctg	aggcagcagg	gacactctgc	agaggaactt	5880
gccatggtcc	agtggtaagg	attcgtaggt	ctaactgctc	atgcttctca	tgggttcgtg	5940
acatcatctc	catggeggge	caggcctcgg	cttgagaatc	ccagtttcct	ctaggtggga	6000
gctagtcctg	tgtaagttca	acctcagata	tacatgcccc	acttttgtaa	accccaaatt	6060
atatgettte	ttctcagaaa	gagcaaggtg	tgtgcttttt	ttttcccccg	cggtatgact	6120
ttetetetee	ggtacgggga	gtctatctgg	atggggatct	tetgtggace	tttttgacag	6180
cagcagagca	gctaaaggct	cccttctcat	cctctggcac	gcacaacccc	tgtccatctc	6240
taacccaaga	gtcccatctg	tgctgagtta	aatgetttge	ccccacaaag	tgatgattcc	6300
aaactcaggt	tatcctgaac	agtcatcccc	ttgggcccag	cacttggaat	ttgaaggact	6360
ccgtccttgc	ttgccacccc	cgacaaagac	agcacttgat	tttctgcact	gagttccaga	6420
tattctgcct	ctactctgca	ttgccctcaa	ccagtgagct	ctgcccacct	ggcgtctctg	6480
cagtcttaat	agtgcccagc	tggctcaagc	aagcatcaga	tcaggtacag	gagaccctct	6540
cagagtcagg	aagctggacc	aggtgtgagt	tcaaaggtct	tggccactgg	agaaccagac	6600
cattaacttg	gctctcttgc	ctgttgctgt	gcaggataga	ggggcagggc	agaggttcag	6660
ccacgattgt	ttcccaatga	tactttccat	tgtttgcact	tgcctcctca	aatagaaatt	6720
cattcatcgg	gaggccacct	agcttgcatt	ccctctagcc	ccgggcaagg	ccacacttag	6780
gccctgtcat	tgctgccaca	cctaggatga	tcaggtagga	aacgcagggc	ttcactgtcc	6840
tgcaggaagg	tagateetge	atgagtaaga	ccccgtacat	ccctgtgcaa	acccagggtg	6900
taaacctcag	taatgggaga	gcatgacatg	gccaagcctg	tggggcccta	ctctccaagg	6960
ccggggagag	caggtaatct	acccagaccc	agactgacct	gacccctctg	cctcccaggg	7020
tccagaccca	gagctcttgg	cttcctctcc	ctcatctgcc	tccacagtga	gtgtctgcga	7080
agcacttgct	taaatacata	tcacgtgttt	tagactcgaa	gctcaaagca	ctggattgtg	7140
gtccctgtcc	ctgcccaagt	ggctgagacc	tactgagctg	ttcactgtgc	cgttcgaggt	7200
agggaagaaa	aggcctccga	gctgttgctg	ggacaggagg	gtggagaggc	ctgggacaga	7260
cagegeteee	tcctgccagt	agacactggg	acatccctgt	ccacggagat	cagccgggta	7320
tcgaaagcca	tgaagactgt	ccctagccct	gagcgatact	gtgacaagac	attcttgaat	7380
tctccccaga	caaggtcact	tcccccacca	ttccagccat	tgtctgtctg	tcaccaattc	7440
acatcctcac	ttctaggagg	gggaaaggtt	gagtctttag	atgtgcgatt	gatccccttg	7500
caactggggg	aagctggggg	tttcctcagt	gtctcccaca	gcgcagctac	tctcttcagt	7560
gtggggaaag	gggggccctg	gtgtcagaat	acgtaactta	aagcctgtgc	gtgtggtggt	7620
gcgtggtgtg	tgtgtgtgtg	catgtgtgct	gtatgtgtgt	actttgaacc	aatagtatat	7680
aaatataaat	ataaatatat	atatatatcc	ctgacacccg	cgagaatctc	caccctgtat	7740
gagagttgcc	attgttacat	tcagatcgga	ttcagttcgt	ttctgtttct	gtttttgttg	7800
ttgttgggtt	tttttttt	tccttttaga	actatatagt	gttgagaaag	gaatcaaatg	7860
taaatgtctg	gtttccatat	aacgttaaaa	aagaaaatta	aaaaaccatt	aaggagggg	7920

-continued	
ctggtgtctg ccctgcccc ttccctgtaa attgctgttg tgttgataaa gctgtgcatg	7980
getegtgttt ageggteatt attgtgtetg tttgtggaat tettatgatg aggaaaatee	8040
cgtagatgca cttattgaat atgtgattag gtctaagtca gggccaggag tcccaaaacg	8100
cccacaagaa aaagataaaa agaaaaaaaa atggaccaca gttcctggtg actatggaaa	8160
togoogtgag agaatogtga atogagaaga ogoggottga gaatagtcaa atgtgatttt	8220
tttttttttt ttttttttt gcagatetea ttetgagget tatggcaaag acaaatgtae	8280
ttgtgtagag gtttctgtga ggtaaaagcc aggagggcct ggctttgagg tcaatgctgt	8340
agaataggac tgactggata ccaaatgtaa tctttccgat gctacaatga atttatacac	8400
gagattgata tgcaataaat ctgtgtgttt ttc	8433
<210> SEQ ID NO 78 <211> LENGTH: 2182 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 78	
gaggaggggc ctggccgcgg ggagccgagg agggaggtgg ggattctggg agccgagctc	60
attrectect eceggeegee ceaggeeege acceeatete caegtgegge geeteeggag	120
cgcggccgag ccacggagga tgctgggcat gtacgtacca gacaggttcg ccctgaagtc	180
gtcccgggtc caggacggga tggggctcta cacggcccgc cgcgtgcgca agggtgaaaa	240
atttggaccc ttcgctgggg agaagcgaat gcctgaagac ttggatgaaa atatggacta	300
cagactgatg tgggaggtac gtgggagcaa gggagaagtt ctgtatattt tggatgctac	360
caacccaaga cactccaact ggcttcgctt tgttcacgag gcaccatctc aggagcggaa	420
gaacctggct gccattcaag aaggagaaaa tattttctac ttggcagttg atgatataga	480
aacagataca gagettttga ttggetaeet ggacagtgat gtggaggeag aggaggagga	540
gcaacaaget etgaceatga ecaaagaagg caaagttgae eactetaagg gacagttgge	600
agctggaagt aaaggtcacc ttggctgtga agaggacttt gcctgtccac agtgtgaatc	660
gagettteee agtgaggaag teettaetga geacetteag agettgeace agaageeeae	720
aggggagaaa gagttcaaat gcgagaactg cgggaagaaa ttccctgtga ggcaggcctt	780
gcagagacat tttgagcagc accggaaggc ttgccgaggg gaggccaggt ttgtgtgcaa	840
agccgacagc tgcgggaaga ggctgaaaag caaggatgcc ctgcgaaggc accaggaaaa	900
tgtccacacc ggtgatccta agagaaaact catatgctcg gtgtgcaata gaaaatgtac	960
ctcagtgtca agcctgcagg agcacaggaa gattcatgag atatttgatt gtcaagaatg	1020
tatgaaaaag tttatttotg ctaatcagot gaagogtcac atgattacoc actcagaaaa	1080
gcggccttat aactgtgaga tetgtaacaa gteetteaag aggetegate aagtgggege	1140
ccacaaagtg atccacagtg aggacaaacc ctaccagtgc aagctctgtg gcaagggctt	1200
tgctcacaga aacgtttaca agaaccacaa gaagacccac tccgaggaga gacctttcca	1260
gtgtgatgca tgtaaagcct tgttccgcac gcccttttct ctgcagagac acctgttaat	1320
ccacaacagt gagaggactt ttaagtgtca ccactgtgat gccacattta aaaggaagga	1380
tacattaaac gttcatgtcc aggtggtcca tgaaagacac aagaagtacc gatgtgagct	1440

gtgcaataag gcctttgtca caccttcagt gcttaggagt cataagaaga cacacacagg 1500

agaaaaggag aaagtctgcc catattgtgg ccagaaattt gccagcagtg ggaccctgag	1560
agttcacatc cggagccaca caggtgagcg cccctatcaa tgcccgtact gtgaaaaagg	1620
tttcagtaaa aatgacggac tgaagatgca cattcgtact cacaccaggg agaagcccta	1680
ccagtgctca gagtgcagca aggccttcag ccagaagcgg ggcctcgatg aacacaagag	1740
gacacacaca ggagaaaagc cttttcagtg tgacgtatgt gacttggctt ttagcctgaa	1800
gaaaatgett attegacaca agatgacaca caateetaae egteegatgg cagagtgeca	1860
tttctgccat aagaagttta caagaaatga ctacctcaaa gtgcacatgg acaacatcca	1920
tggggtagct gacagctaag aggagcggca aggaaccaca ccatgtgaaa gagcttctac	1980
tatgaateee agattettet eacetgateg gettaaeaga aatageeaca aaggatteat	2040
tgatctgaca gtgtttatgt gcctatcttt gtaatctata gatgcaaaaa aaatcctttt	2100
accaaaaata aattcaaaat agaaaacaat aatactttgt agattacaga gtattctggc	2160
tgattaaaaa ttaaatacag ag	2182
<210> SEQ ID NO 79 <211> LENGTH: 2789 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 79	
taaatgatca tttggatcaa ttacaggctt ttagctggct tgtctgtcat aattcatgat	60
tcggggctgg gaaaaagacc aacagcctac gtgccaaaaa aggggcagag tttgatggag	120
ttcgtggact tttctgtgcg gctcgcctcc acacctagag gataagcact tttgcagagc	180
gcggtgcgga gagatcatgt ttgactgtat ggatgttctg tcagtgagtc ccgggcagat	240
cctggatttc tacaccgcga gcccttcctc ctgcatgctg caggaaaagg ctctcaaagc	300
ctgcctcagt ggattcaccc aggccgaatg gcagcaccgg catactgctc aatccatcga	360
gacacagagt accagetetg aggagetegt eccgageeca ecateteeae tteeteetee	420
tegggtgtae aageeetget tegtttgeea ggacaagtea tegggetaee actatggegt	480
cagtgcctgc gaggggtgca agggcttttt ccgcagaagt attcagaaga acatgatcta	540
cacttgccat cgagataaga actgcgtcat taacaaggte actaggaace gatgccagta	600
ctgccgcctg cagaagtgct ttgaagtggg catgtccaaa gagtctgtta ggaatgacag	660
gaacaagaaa aagaaggagc cttcaaagca ggaatgcaca gagagctatg agatgacagc	720
ggagetagae gaceteactg agaagateeg gaaageeeae eaggaaacet tteeeteact	780
ctgccagctg ggtaaataca ccacgaattc cagcgctgac caccgggtcc gattggactt	840
gggcctctgg gacaaattca gtgagctggc caccaagtgc attattaaga tcgtggagtt	900
cgccaagcgt ctgccgggct tcacaggtct gaccatcgca gaccagatca ccctgctcaa	960
agccgcctgc ttggatatct tgattctcag aatttgtacc aggtataccc cagagcaaga	1020
caccatgact ttctctgatg gccttacact aaatcgaact cagatgcaca atgctggctt	1080
eggteetetg actgacettg tgtteacett tgccaaceag etectgeett tggaaatgga	1140
tgacacagaa acaggcette teagtgeeat etgtttaate tgtggagace geeaggacet	1200
tgaggaacca acaaaagtag acaagctcca agaaccactg ctggaagcac taaagattta	1260

cattagaaaa cgacgaccca gcaagcctca catgtttcca aagatcttaa tgaaaatcac 1320

-continu	red
agateteege ageateageg egaaaggtge egaaegtgta attacettga a	aaatggaaat 1380
teetggatea atgeeacete teatteagga aatgetggag aattetgaag g	gacatgaacc 1440
cttgacccca agttcaagtg ggaatatagc agagcacagt cccagcgtgt c	ececcagete 1500
agtggagaac agtggagtca gtcagtcacc actgctgcag tgagacattt c	ccagctgttg 1560
cagacattcc ccaggacctt cagttccaga ttgaaaatgc aaggaaaaca t	ttttactgc 1620
tgcttagttt ttgaactgaa atatgttaaa ctcaaaaagg accaagaagt t	ttcatatgt 1680
atcaatatat attccttact gtataacttc cctagaaata caaacttttc a	aaattctgaa 1740
aatcagccat ttcatgccac cagaatctag tttaaagctt ctactttcct c	etetgaatag 1800
tcaagatgca tggcaaagac ccagttgaga tgatttagcc ctggttaagt t	tctgaagac 1860
tttgtacata tagaagtacg gctctgttct ttctatactg tatgttggtg c	etttettttg 1920
tettgeatae teaataacea agacacegag gttgtggagt aaaceaetgt a	acatccactg 1980
tacgtcctgc tttcatgaat aaccaggcct cacggtaagg aaccagggcc t	cctgtacagt 2040
acaagatgac actaaagaca ctctggttta agtagtgtgg aagcttctcc t	tgctttttg 2100
atgeteteaa getteattet tteeettatg ttgeeeagat agagtacace a	acttcactgc 2160
actagcagaa ttctgtatca ctgaaactgc cagttcagtt	cattgttcaa 2220
ttgttaatga tgtcacttta aattaaaagt ggtttgttcc ttaatgacac a	aactaccgaa 2280
tgaaaaaaaa aatgaagcat ttttacagtc atgatagcct ccaaggcaaa a	aacactgtcc 2340
agtgttaata agtttgttta cctgttcaca agccattgga gaaatatcac a	aggataatca 2400
gcaagttagt ctgccgtctg gactctagta gcccagtgtc cttgctgact c	caggeetgat 2460
cetgggattt ceeccagtet tgatgettga aggtatggge aagtggeete e	etetggeett 2520
gttcaatcac catgatgcag actgacagct ctgggagaat gagtggttga c	cagactcaag 2580
tgtcggcttc tgagttctca tgtaagcact agtggaattt ttgtttgttc g	gtttttgata 2640
tattagcaaa agtctgtgat gtaccactag ctctgtttgt acattgagat g	ggtttaacag 2700
tgctttctat gttcatatac tgtttacctt tttccatgga gtctcctggc a	aaagaataaa 2760
tatatttatt ttaaaaaaaa aaaaaaaaa	2789
<210> SEQ ID NO 80 <211> LENGTH: 6199 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 80	
geggeegeta tggacecetg acceegeggg gteattegga etetaaegtg t	ggactgacc 60
gctactgact gcaccgcctg cccccgtctc ctgccggccc ttagcatgag c	gagtgggac 120
ccagccgggt gacattgtgc cggttggcgg atcctcgatt gccccctttc c	etgtettget 180
cctccctcat gaagcgatte tgagtacggg gggttccgga ttattgttct c	cacggaccc 240
cgcttgtggt tgggggggta tttaatctga ggccttaggg tccttcgttg t	cettttgagt 300
gttttgtgtg tgtacatatt ttgctcttaa gtttataaat atacatatat t	gagagtgtc 360
caegteteet egetgaacet taggaatett ttgecacaat gteetgtgtg o	
tttcctctaa actcaactac gacaccgtca cttttgatgg gctccatatc t	
TTTTTTTAA ACCOMMENT GACACCGCCA CCCCCGACGG GCCCCACACC C	

atttaaagaa gcagattatg gggagagaaa agctgaaagc tgccgatagc gatctgcaga

540

tcaccaacgc	acagacgaaa	gaagaataca	ctgatgacaa	tgcgctcatt	cctaagaact	600	
catctgtgat	tgtcaggagg	attcctattg	gaggtgtcaa	gtctacaagc	aagacatatg	660	
ttataagtcg	aactgaacca	gtgatgggaa	ctacaaaagc	aattgatgac	gcttctgcat	720	
ctatttctct	ggcccagctt	acaaagactg	ccaatctggc	tgaagccaat	gcttctgaag	780	
aagacaaaat	taaagcaatg	atgtcacagt	ctggccatga	atacgaccca	atcaattaca	840	
tgaagaaaac	tctagtaggt	ccaccacctc	catcttacac	ctgctttcgt	tgtggtaaac	900	
ctggtcatta	tattaagaat	tgcccaacaa	atggggataa	gaactttgaa	tctggtccta	960	
ggatcaaaaa	gagcactgga	attcctagaa	gttttatgat	ggaagtgaaa	gatcctaaca	1020	
tgaaaggtgc	aatgcttaca	aacactggaa	aatatgcaat	accaactata	gatgcagagg	1080	
cctatgcaat	cgggaagaaa	gagaaaccac	ccttcttacc	agaggagcca	tcatcatctt	1140	
cagaagaaga	tgatcctatc	ccagacgagc	tettgtgeet	catctgcaaa	gacatcatga	1200	
ctgatgctgt	ggtcattccc	tgctgtggaa	acagttactg	tgatgaatgt	ataagaacag	1260	
cactcttgga	gtcagatgaa	catacatgtc	caacatgtca	ccaaaatgat	gtttctcctg	1320	
atgctttaat	tgccaacaag	tttttacgac	aggctgttaa	taactttaaa	aatgaaactg	1380	
gctatacaaa	acgactacga	aaacagttac	ctccaccccc	acccccagta	ccaccaccaa	1440	
gaccactcat	gcagcggaac	ctgcagcctc	tgatgagatc	tcccatatca	agacagcagg	1500	
atcctctgat	gattccagtg	acatcgtcct	ccgctcactc	agctccctct	atatcttcat	1560	
taacttcaaa	tccatctgcc	ctggctcctt	ctgtgtctgg	aaatccatct	tctgccccag	1620	
ctccagtacc	tgatataact	gcaaccgtgt	ctatatcagt	ccactcagaa	aaatcggatg	1680	
gaccttttcg	ggattctgat	aataaattat	tgccagctgc	cgcccttaca	tcagaacatt	1740	
caaagggagc	ctcttcaatt	gctattactg	ctcttatgga	agaaaagggg	taccaggtac	1800	
cagtccttgg	aactccatct	ttgttgggac	agtcattatt	acatggacag	ttgattccca	1860	
caactggccc	agtaagaatc	aatgetgete	gtccaggtgg	tggccggcca	ggctgggagc	1920	
attccaacaa	gcttgggtac	ctagtttctc	caccacagca	aattagaaga	ggagaaagaa	1980	
gctgttacag	aagtataaac	cgcgggcgac	accacagcga	acgatcacag	aggactcaag	2040	
gcccatcact	tccagcaact	ccagtctttg	tgcccgttcc	accacctcct	ttgtatccgc	2100	
ctcctcccca	tacacttcct	cttcctccag	gtgtacctcc	cccacagttt	tctcctcagt	2160	
tteeteetgg	ccagcctcca	ccagcaggat	atagtgtccc	teeteeaggg	tttccaccag	2220	
ctcctgccaa	tatatcaaca	ccttgggtat	catcaggagt	gcagactgcc	cattcaaata	2280	
ccatccctac	aacacaagca	cctcctttgt	ccagggaaga	attctataga	gagcaacgac	2340	
ggctaaagga	agaggaaaag	aaaaagtcca	agctagatga	gtttacaaat	gattttgcta	2400	
aggaattgat	ggaatacaaa	aagattcaaa	aggagcgtag	gcgctcattt	tccaggtcta	2460	
aatctcccta	tagtgggtca	tcgtattcaa	gaagttcata	cacttattca	aagtcaaggt	2520	
ctggctcaac	acgttcacgc	tcttactctc	ggtccttcag	ccgctcacat	tctcgctcct	2580	
attcacgatc	acccccatac	cccaggagag	gcagaggcaa	gagccgcaat	taccgttcac	2640	
ggtccagatc	tcacggatac	caccgatcta	ggtcaaggtc	acctccctat	agacgatacc	2700	
actcacggtc	cagateteet	caagcattta	ggggacagtc	tcccactaaa	cgcaatgtac	2760	
ctcaaggaga	aacagagcgt	gagtatttta	atagatacag	agaagttcca	ccccttatg	2820	

acatcaaagc	ctattatggg	cggagtgtcg	actttagaga	cccatttgag	aaagaacgct	2880
accgggaatg	ggaaaggaaa	taccgagagt	ggtatgagaa	gtactacaaa	gggtacgcgg	2940
tgggagctca	acctagaccc	tcagccaata	gagaggactt	ttctccagag	agactcttac	3000
ctcttaatat	cagaaattca	ccctttacaa	gagggcgcag	agaagactat	gctgctggac	3060
aaagtcatag	aaatagaaat	ctaggtggca	actatccaga	aaagctttca	acaagggaca	3120
gtcacaatgc	aaaagataat	ccaaaatcga	aggagaagga	gagtgagaat	gttccaggag	3180
acggcaaagg	gaacaagcat	aagaaacaca	ggaaacgaag	aaagggggaa	gagagtgaga	3240
gcttcctgaa	cccagagcta	ctggagacgt	ctaggaaatg	cagggaatcg	tcagggattg	3300
atgaaacgaa	gacagataca	ctgtttgttc	tcccaagcag	agacgatgct	acacctgtta	3360
gggatgagcc	aatggacgca	gaatcgatca	ctttcaagtc	agtatctgac	aaagacaaga	3420
gggaaaagga	taagccaaaa	gtaaaaagtg	acaagaccaa	acggaaaagt	gacgggtctg	3480
ctacagccaa	gaaagacaat	gttttaaaac	cttctaaagg	acctcaagaa	aaggtagatg	3540
gagaccgtga	aaagtctcct	cggtctgagc	cgccactcaa	aaaagccaaa	gaggaggcta	3600
caaagattga	ctctgtaaaa	ccttcctcgt	cttctcagaa	ggatgagaag	gtcactggaa	3660
cccctagaaa	agcccattct	aaatctgcaa	aagaacacca	ggaggcaaag	ccagccaagg	3720
acgagaaggt	caaaaaggac	tgttccaaag	acatcaagtc	agaaaagcca	gccagtaagg	3780
acgagaaggc	caagaagcct	gagaaaaata	aactacttga	tagcaaggga	gaaaaacgaa	3840
agagaaaaac	ggaagaaaag	agtgtagata	aagattttga	gtcgtcttca	atgaaaatct	3900
ctaaagtaga	aggaacagaa	atagtgaaac	catcaccaaa	acggaaaatg	gaaggtgatg	3960
ttgaaaagct	ggaaaggacc	ccagaaaagg	acaagattgc	atcatcaact	actccagcca	4020
aaaaaatcaa	actcaacaga	gaaactggaa	aaaaaattgg	aaatgcagaa	aatgcatcta	4080
ctacaaaaga	accctctgaa	aaattggagt	caacatctag	caaaatcaaa	caggaaaaag	4140
tcaagggaaa	ggccaaacgg	aaagtagctg	ggtcggaagg	ctccagctcc	acgcttgtgg	4200
attacaccag	tacaagttca	actggaggca	gtcctgtgag	gaaatctgaa	gaaaagacag	4260
atacaaagcg	aacagtcatt	aaaactatgg	aggaatataa	taatgataac	acageteetg	4320
ctgaagatgt	tataattatg	atccaggttc	ctcagtccaa	atgggataaa	gatgactttg	4380
agtctgaaga	agaagatgtt	aaaaccacac	aacctataca	gagtgtaggg	aaaccatcga	4440
gtattataaa	aaatgtcact	actaagccat	cggctacggc	taagtacacc	gagaaggaaa	4500
gcgagcagcc	cgagaaactg	cagaagcttc	ccaaggaggc	gagccacgag	ctgatgcagc	4560
acgagctcag	gagctcaaag	ggcagtgcgt	ccagtgagaa	gggcagagcc	aaggaccggg	4620
agcactcagg	gtcggagaag	gacaaccctg	acaagaggaa	gagcggtgcc	cagccagaca	4680
aggagagcac	tgtggaccgc	ctgagtgagc	agggacattt	taagactctc	tctcagtctt	4740
ccaaagagac	caggacttca	gagaagcacg	agtctgttcg	tggttcctca	aataaagact	4800
tcactcctgg	tagagacaag	aaagtggact	acgacagcag	ggattattcc	agttccaagc	4860
gaagagacga	gagaggtgaa	ttagcaagga	gaaaagactc	tcctccccgg	ggcaaagagt	4920
ctctgtctgg	gcagaaaagc	aagctgaggg	aggagagaga	tttacctaaa	aagggggccg	4980
agtcaaaaaa	aagtaattct	agccccccaa	gagacaaaaa	gcctcatgat	cataaagccc	5040
cctacgaaac	taaacgccca	tgtgaagaga	caaagcctgt	agataaaaac	tctgggaagg	5100

			-contir	iuea	
agcgggagaa gcatgctgct	gaagctcgca	atgggaaaga	gtccagtggt	ggcaaactgc	5160
catgtatacc taacccgcca	gaccctccca	tggagaagga	gctggctgct	gggcaggtgg	5220
agaagagcgc cgtcaagccg	aaaccccagc	tgagccattc	ctcgaggctt	tectetgace	5280
tgacccggga gacggacgag	gctgcctttg	aaccagatta	taatgagagc	gacagtgaga	5340
gtaatgtgtc tgtgaaggaa	gaagaagctg	ttgccagtat	ctccaaggac	ttgaaagaga	5400
aaacaacaga gaaagcgaaa	gagagettga	ctgtagcaac	ggccagccag	ccaggtgcag	5460
acaggagcca gagccaaagt	agccccagtg	ttagtccaag	tagaagtcat	agecetteeg	5520
ggagccagac ccgaagccac	agcagcagtg	ccagctcagc	cggaagccag	gacagcaaaa	5580
agaagaagaa gaagaaggag	aagaaaaagc	acaagaagca	taaaaagcac	aagaagcaca	5640
agaagcacgc aggcgccgac	ggcgacgtgg	agaagagcca	gaaacacaaa	cacaagaaga	5700
agaaggccaa gaagaacaaa	gacaaggaga	aggagaaaga	tgaccaaaaa	gtgagatctg	5760
tcactgtgtg aaggacggat	gtgttaattg	acttaattac	taagtcatct	gtattaaatt	5820
ctgttataat gtaaagagat	tccagccttg	taaataatga	atggaagacc	ctgtgctgca	5880
cttaaaagta tttgctgctt	gattatttca	tttttacatc	agagctttat	aacgaacttt	5940
tgtacagaat tgtgagttgt	gaccatggaa	catgagaggt	tttgctaggg	cctattattt	6000
ttaaccacca ttaattagtt	ggggtggagt	ttactgtact	gtgaaatttt	cacatttgaa	6060
ttttttaat tgcctggcaa	atgctgatat	cagttcaaaa	atatcagcag	aatgattgct	6120
gaactcatta cagccccgtt	atgtcacttt	ttgattacaa	taaaagtttt	cagtaaactt	6180
ttcacttgtt gcaaatgta					6199
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mr</pre>	usculus				6199
<210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA	usculus				6199
<210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus m		tgcccagagc	ctgccagcag	cgcgtcctcg	6199
<210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mu <400> SEQUENCE: 81	geggeeeege				
<210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mi <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt	geeegeegee	tegeeteete	ggteteggee	gegteeegae	60
<210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mm <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc	geggeeeege geeegeegee teggaggtee	tegeeteete	ggteteggee	gegteeegae	60 120
<210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mi <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc	geggeeeege geeegeegee teggaggtee egeageeege	tegecteete eegecegeeg eeegggggaa	ggtctcggcc gtccgtctcg ggtagcagcg	gegteeegae geteteeget ggegagegeg	60 120 180
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mi <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggctc gcgccgccg gctccagccc</pre>	geggeceege geeegeegee teggaggtee egeageeege	tegeeteete eegeeegeeg eeegggggaa agteeegege	ggteteggee gteegteteg ggtageageg ggegaegaag	gegteeegae geteteeget ggegagegeg gaeegggaag	60 120 180 240
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mm <400> SEQUENCE: 81 cgagagaaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccgcccg gctccagccc ccctcgccct cgcctccaac</pre>	geggeecege geeegeege teggaggtee egeageeege ceegegeece egagaaggag	tegeeteete eegeeegeeg eeegggggaa agteeegege aacaccccga	ggteteggee gteegteteg ggtageageg ggegaegaag gegaggeeaa	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag	60 120 180 240 300
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mi <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccgccg gctccagccc ccctcgccct cgcctccaac atgaacggcg gcggcaaagc</pre>	geggeceege geeegeegee teggaggtee egeageeege eeegegeeee egagaaggag tgteageggt	tegeeteete eegeeegeeg eeegggggaa agteeegege aacaccccga etgeetetgg	ggteteggee gteegteteg ggtageageg ggegaegaag gegaggeeaa acatcaagee	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag ccgagagctg	60 120 180 240 300 360
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mm <400> SEQUENCE: 81 cgagagaaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccgcccg gctccagccc ccctcgccct cgcctccaac atgaacggcg gcggcaaagc gaggaggtcc ggaccctatt</pre>	geggeeeege geeegeege teggaggtee egeageeege eeegegeeee cgagaaggag tgteageggt caagggetat	tegeeteete cegeeegeeg ceeggggaa agteeegee aacacceega etgeetetgg gaaggttete	ggteteggee gteegteteg ggtageageg ggegaegaag gegaggeeaa acateaagee teataaaget	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag ccgagagctg cacatctaaa	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mi <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccccg gctccaaccgc ccctcgccct cgcctccaac atgaacggcg gcggcaaagc gaggaggtcc ggaccctatt tacctgctct tcagaccatt</pre>	geggeceege geeegeege teggaggtee egeageeege ceegegeeee egagaaggag tgteageggt caagggetat ttttgaeagt	tegeeteete eegeeegeeg eeeggggaa agteeegee aacacceega etgeetetetg gaaggttete egeteagaag	ggteteggee gteegteteg ggtageageg ggegaegaag gegaggeeaa acateaagee teataaaget	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag ccgagagctg cacatctaaa aaagaacgct	60 120 180 240 300 360 420
<pre><210 > SEQ ID NO 81 <211 > LENGTH: 2547 <212 > TYPE: DNA <213 > ORGANISM: Mus mm <400 > SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccgcccg gctccagccc ccctcgccct cgcctccaac atgaacggcg gcggcaaagc gaggaggtcc ggaccctatt tacctgctct tcagaccatt cagcccgtag gctttgtcag</pre>	geggeeeege geeegeegee teggaggtee egeageeege eeegegeeee egagaaggag tgteageggt eaagggetat ttttgacagt	tegectecte cegecegeeg ceeggggaa agteeegege aacaceega etgeetetgg gaaggttete egeteagaag cegeaaaege	ggtctcggcc gtccgtctcg ggtagcagcg ggcgacgaag gcgaggccaa acatcaagcc tcataaagct cagaggccgc	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag ccgagagctg cacatctaaa aaagaacgct	60 120 180 240 300 360 420 480
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mm <400> SEQUENCE: 81 cgagagaaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccgccg gctccagccc ccctcgccct cgcctccaac atgaacggcg gcggcaaagc gaggaggtcc ggaccctatt tacctgctct tcagaccatt cagcccgtag gctttgtcag ttgaacggca tccgcttcga</pre>	geggeecege geeegeege teggaggtee egeageeege ceegegeeee egagaaggag tgteageggt caagggetat ttttgaeagt teetgaaate	tegeeteete cegeeegeeg ceeggggaa agteeegee aacaceega etgeetetgg gaaggttete egeteagaag eegeaaaege gtagggaete	ggteteggee gteegteteg ggtageageg ggegaegaag gegaggeeaa acateaagee teataaaget cagaggeege taegaetaga caaaceeag	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag ccgagagctg cacatctaaa aaagaacgct gtttgctaag tactcctctg	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 81 <211> LENGTH: 2547 <212> TYPE: DNA <213> ORGANISM: Mus mi <400> SEQUENCE: 81 cgagagaaag cgcgctgcgt gcggctccgg tcccaaccgc tccggggctc gcccggcctc gcgccccg gctccaaccgc ccctcgccct cgcctccaac atgaacggcg gcggcaaagc gaggaggtcc ggaccctatt tacctgctct tcagaccatt cagcccgtag gctttgtcag ttgaacggca tccgcttcga gcaaacacga agatggccaa</pre>	geggeccege geeegeege teggaggtee egeageege cegggeeee egagaaggag tgteageggt caagggetat ttttgacagt tectgaaate gaacaaacte cattgccagg	tegeeteete eegeeegeeg eeeggggaa agteeegge aacaceeega etgeetetgg gaaggttete egeteagaag eegeaaaege gtagggaete gaggcatatg	ggteteggee gteegteteg ggtageageg ggegaegaag gegaggeeaa acateaagee teataaaget cagaggeege tacgaetaga caaaceceag	gcgtcccgac gctctccgct ggcgagcgcg gaccgggaag ccttcaggag ccgagagctg cacatctaaa aaagaacgct gtttgctaag tactcctctg acctgcactt	60 120 180 240 300 360 420 480 540 600

atccctccct ccgaggccac ttcccagggc tggaagtccc ggcagttctg ctgaggctgt

gtctcgggtg tgtgatggcg gctgcaatct gtcttgtggg tattaatgcg gtcttcactg	960
gtggcgactg tcatccagct gttctgcaaa actggagctt gctggcttga aaacaccctg	1020
ccccgttttg accccttcaa gacttcacaa cagcctctat cacacatctg ttttcctcaa	1080
agaaaaaaat atatataata aaatgtgttt tgctctttta cactgtataa ttttaagaaa	1140
tgtgttattt gtgaatgcat ggtctgacat ttctgtacag tttgaagaca tagaacaaag	1200
acagcaacag taaagccaag atcgttagta tttttataaa gacattttaa gaatggacag	1260
atggattett acactaggtt atateaegae tittegettg agtittgaat getittaatg	1320
gtgtttatct tatttttctt ctgaaataag atgcatgttt gaagcatatc tctagcatca	1380
aaattttcca caattgtgtt gtaaatgtgt ggactccctc tgcctggccc agtgtcaggc	1440
cctgttatta gtaacgcggt gtagaaatga gcttctgcag tactagctct gtaatcctgg	1500
ctcccaggga tctctctgca agacaatcag tgcccccaag agcatttgcc attgtagtat	1560
attcaccact gggcaaagac tacttaggta atgtctctga aacccatggc cactccagct	1620
gagactatac caactgtgcc cagggacata gtgacattct atacttagca tttatgatag	1680
cacceteaga gtgtgtaace taatatatat cacceacett ceataaactg tetecattte	1740
cccagtggaa ccttatattt aaggggaggg accttagttt ggaggtaacc attgcctcaa	1800
gaggagcagg ccctgcccac tcagcctgca gtggacatca catctctctc aagtgattca	1860
gcaaagcatt ggcctacctg agtagctagc tggtctggca gccatgtcag atagaccgcc	1920
catcatgttc tctggacgtg ctcatcttga gactacctac tacattgcac agggcaggga	1980
atgaaacagt ggccctctgc aatgaatacc cttgcttcaa gacttcaagg cccaaagtta	2040
gtottgtgtt atgtgcaaca catttccaga ggctgtgaca gcacagcete teetgeteet	2100
caaaaaagag ctatgtatta ttatgttgac ctcagaattc ccagctgctg ttactagaca	2160
taatcacaat ctttgtatct ttgtttttga tctgcttgtg ttgtgttgaa aagggtcata	2220
ttttaatgat ttttgtcagt ggtttgggag ggttatttca ttatttttca tgagaagtaa	2280
tgtcaagttt ttaaaggttt aaaaaaagaa acaccaaggc ctggaatatg ggccttttca	2340
ctgtaaacta gaggacgggg gcaggcagca ctgggaactt agacatccaa gctggtgttc	2400
agggactget catggeecca geeceegtge caettgaetg tgagaeteet aettgettta	2460
tcatcaatta tgcttttata aattgtgtaa aggtactttt gtattgtcat tttttaaaaa	2520
aaataataaa agtttattcc agccatt	2547
<210> SEQ ID NO 82 <211> LENGTH: 5795 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 82	
ttetttggac etcataaaca accacagaac cacaagttgg gtageetgge agtgtcagaa	60
gtgtaagccc agcacagtgg tcagcaggca ggacgaatca cactgaatgc aaaccacagg	120
ctttcgcaga gcggtgaaag aaattataga atcccccgcc ttcaggagag gtgcgttttc	180
gaaaggaaac gatggettea gacageattt ttgagteatt teetteatat eeacagtget	240
tcatgagaga tgccagcacg agccgccgct tcacgccgcc ttccaccgcg ctgagccccg	300

gcaagatgag cgaggcgctg ccgctgggcg ccccggatgg cggcgccgcc ctggccagca

agctgaggag	cggcgaccgc	agcatggtgg	aggtactagc	tgaccaccct	ggcgagctag	420	
tgcgcaccga	cagccccaac	ttcctctgct	ccgtgctacc	cactcactgg	cgctgcaaca	480	
agaccctgcc	categettte	aaggtggtgg	cactggggga	cgtcccggat	ggcactctgg	540	
tcaccgtcat	ggcaggcaac	gatgaaaact	actcggcaga	actgagaaat	gctaccgcgg	600	
ccatgaagaa	ccaggtagcg	agattcaacg	acctcaggtt	tgtcgggcgg	agcggtagag	660	
gcaagagctt	cactctgacc	atcaccgtct	ttacaaatcc	gccacaagtt	gccacctacc	720	
atagagccat	caaaatcaca	gtggacggcc	cccgagaacc	ccgaagacat	cggcagaaac	780	
tagatgatca	gaccaagccc	gggagtttgt	ccttttccga	gcggctcagt	gaattggagc	840	
agctgcggcg	cacggccatg	agggtcagcc	cgcaccaccc	agcccccacg	cccaaccctc	900	
gggcctcctt	gaaccactcc	actgccttta	accctcagcc	tcaaagtcag	atgcaggatg	960	
ccaggcagat	ccagccatcc	ccaccgtggt	cctatgacca	gtcctaccag	tacctgggat	1020	
ccatcacctc	ttcctctgtc	cacccagcga	cacccatttc	acccggccgt	gccagcggca	1080	
tgaccagcct	ctctgcagaa	ctttccagtc	gactctcaac	ggctccggac	ctgaccgcct	1140	
teggegaeee	acgccagttc	cctactctgc	cgtccatctc	cgacccgcgc	atgcactacc	1200	
caggcgcctt	cacctactcg	ccgcccgtca	cgtcgggcat	cggcatcggc	atgtcagcca	1260	
tgagctcggc	ctctcgctac	cacacctacc	tgccgccgcc	ctaccccggc	tcatcacagg	1320	
cgcaggccgg	gcccttccag	accggctcgc	cctcctacca	tctatactac	ggcgcctcgg	1380	
ccggttccta	ccagttctcc	atggtgggcg	gagagagatc	gcccccgcgc	atcctgccgc	1440	
cctgcaccaa	cgcatccacc	ggcgccgcgc	tgctcaaccc	cagcctcccc	agccagagcg	1500	
acgtggtgga	gaccgagggc	agccatagca	actcgcccac	caacatgccc	cccgcgcgcc	1560	
tggaggaggc	cgtgtggcgg	ccctactgag	ctgagcgcca	tcgccatcga	gggactgggc	1620	
ctgccgtcca	tgcacagacc	ccgccaggag	ggcccttgga	ggccaccagg	aagaatcccg	1680	
gagggaaact	gtgaatgctt	ctgatttagc	aatgctgtga	ataaaagaaa	gattttatac	1740	
ccttgacttc	actttttaac	cacgttgttt	attccaaaga	gtgtggaatg	ttttcggttc	1800	
ggggtgggga	agacgcagcc	catcctgttt	ggcatctatt	tcttatttcg	gagttttctt	1860	
ttccgcacct	tatcgattgc	aaaaatgcct	gtttgcatct	gggtggtcat	ttatttttaa	1920	
gtgtgtatag	atttgagctt	gcttttttt	cttcctttga	ccaactcaaa	gaaataaaat	1980	
tcccttctct	gtaaggttta	tttaactttt	agactttcat	gtagctgggg	gttttatttg	2040	
tgtttggttt	ttgtttttat	ttttaaagag	acagctacag	ctttgggtca	ttttttaact	2100	
actgtatttc	cacaaagaaa	tccctagata	tttatgtatc	ttgatgtttg	aacatttaca	2160	
tatgtgttga	tactttttta	attatttaaa	tgtacttata	ttaagaaaga	tatcaagtac	2220	
tacattttc	tttataatag	ccaaagttaa	atattattgc	gttgaagatg	tctggaaaaa	2280	
aaagagatcg	cttggttaac	tagaaatatt	gtttacatta	aactcccttt	atgttattca	2340	
aacaagttgg	taggtaacgc	agcaatgttt	ttaattggat	tgtagacact	gagggtcact	2400	
ccaaggtcag	aagtacaaaa	ttttctgcta	ggctcaacaa	atagteteat	acctggctcc	2460	
ttcccttcaa	aaagagaggc	aaactctgtc	ctgaaagggt	tcagagaggt	gccaaggatt	2520	
tgctctgaag	aggatttcat	tttggcctgg	agatatactt	gccccaaggc	ctcctcattc	2580	
tggcatgctt	tatcacagag	ctcaaccaag	taagctgttg	gtcaggggtt	tacttacata	2640	

gtatttacat	agacccaaac	cactgaatgt	gatttttaaa	ttgccttcca	ttaatagtac	2700
ccgttcattg	atgaaaacca	aaacttgagg	ctgtacccca	aagatccaaa	tagaagagtt	2760
aagaccaggt	gtctttgagg	cctaaaggct	gagttttaag	agagtgtacc	ccaaaagtct	2820
gaaggagccg	gtttccttct	cccagtctta	gtggaatcag	tcatgggagg	cagatgccac	2880
geceacetgt	gcaggatgct	cctcagaagc	tgccccttca	ccagcatctt	ctcccaccag	2940
geegageeee	tgacctttgg	ggtgcatcag	tgtgatagat	cctggtctct	gcagtccgcc	3000
atggctacgg	ttcagatgtg	catcgtgtca	ctgtaaatgt	aatggtactg	ttgttacagt	3060
ggaggacttg	gtcaaaatcc	agttgttcta	caacgtatga	agcctaaccg	ctggttctga	3120
catacatgtg	ctcaaaatga	tctggttgtt	tggatttttc	ttttgttgtt	ttgtttttta	3180
atgtacctct	taaattagtt	gaagtgatgt	caggtcaact	ccgaagagcg	tttgaaagca	3240
ggacttcagc	acagtgtttg	attttttat	tattattaat	attattttat	aaatttaagc	3300
attcagatta	gatctttggc	tgcaggcagc	aaaaacggct	ggacttattt	aaaaaaata	3360
cagettgttt	tttgagttat	ctatatctat	atctatatgt	tgattctttg	tcttacatag	3420
agcagcagca	ctttggtaac	ctgtgatacc	aggttgctct	tgtctggaga	agagegetag	3480
caggattcag	agaaactcag	aatagatctt	catatcagcc	ataccttcct	cctccatccg	3540
gtctccactc	agttattcca	cagaacactt	tgacagctgt	gttgtcagaa	aaataaaaaa	3600
aaatttaatt	tctcaaaagg	agtttgtttc	tccaacatta	gatgttcctc	ttaccatagg	3660
ctgccgtatc	tggcctgaga	aaacggtagg	gaaggacgaa	ggaaagagat	ttctattttt	3720
tcatattaat	tttgatatct	aaagatacgc	tagccctcag	aggagcagat	aatctcacac	3780
attgaatttt	cgccctgggc	accatgcatc	aagaaggctt	gtcactgtgt	tagagccatt	3840
tagtgcttcc	taaactttta	tcaacatagg	cagtatttag	tctcagagaa	aaaaaaatcc	3900
atcaggcaca	tgtagtcttg	gagatagatt	ccacggggca	ggtatttctc	tacctgagaa	3960
attgtgttca	ttgccttcgg	gtgcttccag	eggteteete	attegetgte	ttcaaggaag	4020
acccataagc	caattctgag	ataatggagc	tgttgggaat	actggtccag	agaaagaaaa	4080
atgggataag	ccattcttac	tgcttattca	agcccctatt	tataatttta	acacactttc	4140
cattccttct	ggttttctcg	ccgtctatat	cctcccaata	gcccttctca	cttttcttt	4200
ccctcctgca	aacacacaca	cacacacaca	cacacacaca	cataaggcac	acacacacac	4260
atcctctccc	ccataccaag	tgtccagaac	acagaaagtc	cagttettet	ccgtttatta	4320
aagaacaggg	tgagtcagcc	attctcttgc	tcacgggttt	ttttccccaa	cagaacagag	4380
gcgttgccag	ccattttggg	tetgetttet	gtccagatac	tgcagcaaaa	actcttgagg	4440
atcacaaccc	gttggctgag	cagctgtgct	gctgcccaaa	cgtcctgcgc	agacaaacgc	4500
acgctgggac	cggaaggggt	gteteteett	ctgcctcttt	tctttcatac	gtttctctcg	4560
aaaggcctca	actgaggact	gcaaatttct	ttcttgaaat	aactttcccc	cagggacatt	4620
cggtcttagg	gattttttgg	ttttgatggg	ttttgttttg	ttttggtttt	tttggttctt	4680
ctcattttct	ttgtaggaga	aggcatgaga	tgttgagggt	ctttcataca	tgaaaataaa	4740
tagtttgaca	gcaatctcag	aatatatttt	ttccttattt	gaacaaagta	ctgttttgtt	4800
tactctacag	tacaccttta	tttggtgggt	ttggctgttg	gtcggaaatg	ccttccctct	4860
	tcggtatagc					4920
30	-	=				

Concinaca	
gaagagttgt atccacaaac tcaattgtat ttatgtatgt aaatagattt catgcttcat	4980
tataaaatat tgttaatgcc tgtaataact tttttcacat tttgtgtgtg tttctaagga	5040
ctttttctta tgttcgctaa atattgtaga agaaaaatgc ttctcttaac ttgtttattt	5100
tagattttaa aaaaaccaag ctacttctta ctcactttta taaacataat aaacaagcat	5160
ggttccaatg ggttttttt aagttcacct tatgttctag gagaaatgaa tgtgcaaaaa	5220
aaaaaatcaa tottoaaatg aactgttggg tatttotgtt actotggatg gaaaaagato	5280
aatggaaaac aaaaaacaaa aaaacaaact tccaaattga aatagcagta aaacacatgt	5340
attgggggta aaaaaaaaa aaaaaaacac acctcagaaa atgcagttct ccagcctcca	5400
gctactgccc acacatgtgg caagtgttag atgtggtcgt gaggaatccc aaaatcagtg	5460
cccgggcctt ttccttcctg gtactaacat taagaacacc tcctaagggg cactgtcagg	5520
ctcaggtctt aaagcacata gataagagag aatgtcccag aacgattctc agtagcccag	5580
gccagcaggt actcacggca ctgcacctgc teactgcaca cagtcgctga ggcagacccc	5640
tctcctgggg gccatgcaga gccagggcag ggcagcccta agctactgat gttttctttc	5700
ctttgtacta tggtcttttc tgtaactcca atattcaaac ccatgtgaat ggcaaataaa	5760
caatttgaca agcacctaaa aaaaaaaaaa aaaaa	5795
<210> SEQ ID NO 83 <211> LENGTH: 5862 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 83	
ctggaactgg ggcaggagga agagtggaga aagggagaca ggagttgtga tactttgtac	60
acacgteect gteattgtte tgeetgaaga gacagggetg ggtteaagge cacatgtgtt	120
cotgtoatec tgcacattte tgctccaagt gcaatecgga gtgtcagete tecatetgte	180
totgootggo aggogoacgo gocoagoaco otgootoggo coatgoogoo coagococto	240
tgatggccct cctctccacc gccccgcaca ttccagaaca ggaggcatga gcccgcatcg	300
cgctccctct taacacagag ttgctttcag tgtgttacac gctggattcc gggatgcctg	360
atogtacoga gaagcactoc acaatgocag actoacotgt ggatgtgaag acgoagtota	420
ggctgactcc cccagcaatg ccacctcctc caaccactca aggagctcca agaaccagct	480
catttacgcc aacgacatta acgaatggca ccagccattc acccacggcc ttgaatggcg	540
ctccctcacc gcctaatggc tttagcaacg ggccttcttc ttcctcttcc tcttctctgg	600
ctaatcagca gctgcccca gcctgtggtg ctaggcaact cagcaagctg aaacgatttc	660
ttactaccct gcagcagttt ggcaatgaca tttcaccaga gattggagaa agagttcgca	720
cocttgtact gggactggtg aactotactt tgacaattga agaatttcat tocaaactgc	780
aagaagctac taacttccca ctgagacctt ttgtcatccc gtttttgaag gccaacctgc	840
coctgeteca gogtgaacte etceactgeg caaggetage caaacagaac cetgeecagt	900
acctegetea geacgaacag etgettetgg atgecageac caceteccet gtegactect	960
	1020
aaaatggett tgacagagag eetttgeact cagaacatee aagcaagega eeatgeacta	1080

ttagcccagg ccagcggtac agtccaaata atggcttatc ctaccagcca aatggcctgc 1140

ctcaccccac	cccacctcca	cctcagcatt	accgattgga	tgatatggcc	attgcccacc	1200
actacaggga	ctcctatcga	caccccagcc	acagggacct	cagggacaga	aatagaccta	1260
tggggttaca	tggcacacgt	caagaagaaa	tgattgacca	cagactaaca	gacagagaat	1320
gggcagaaga	gtggaaacat	ctcgatcatc	tgttaaactg	catcatggac	atggtggaga	1380
agacaagacg	atccctcact	gtactaagac	gatgtcagga	ageggaeegg	gaagaactga	1440
attactggat	acggcggtac	agtgatgctg	aggacttaaa	aaagggtggc	agcagtagca	1500
gcagccactc	caggcagcag	agtcctgtca	atccagaccc	agtcgcatta	gatgcacatc	1560
gggaatteet	tcacaggcct	gcgtctggat	acgtgccaga	ggagatctgg	aagaaagctg	1620
aggaagctgt	gaatgaggtg	aagcgacagg	caatgacgga	gctgcaaaaa	gccgtgtctg	1680
aggcagagag	gaaagcccat	gacatgatca	ccacggagcg	agccaagatg	gaacgcacgg	1740
tggctgaagc	gaagaggcag	gcagcagaag	atgctctagc	agtcatcaac	cagcaggaag	1800
actccagtga	gagttgctgg	aactgtggcc	ggaaagcaag	tgagacgtgc	agcggctgta	1860
acacggcccg	atactgtggc	tctttttgcc	agcataaaga	ctgggagaag	catcaccaca	1920
tctgtggaca	gaccctgcag	gccccacagc	agggagacac	gcccgctgtc	agctcctcag	1980
tcacacccag	cagtggggct	gggagcccaa	tggacacacc	accagcagcc	actccgaggt	2040
ctaccacccc	gggaaccccc	tctaccatag	agacgacgcc	tcgctagacc	taaactcaga	2100
ctgtcagagg	aaagacacca	caaccaacac	gaaagcaatt	cctcatcctc	agatgctcaa	2160
agtccctttt	ctgtttgttt	gtttatagat	gaactatcta	tcttatttca	gtacttcggc	2220
aagagagaac	ctaactgtat	ctttgaggcg	atagtagaac	acagaggcca	gtaacgggtc	2280
gtaatgactt	actgtggata	acaaagatat	cttttcttta	gagaactgaa	aagagaggaa	2340
agaatataac	gtgaaatgct	agatttgacc	tcctccctgt	tatttccaag	tagctgggat	2400
tttaaactag	atgacctcat	taaccagtgc	tttaccaaac	agcaaaccaa	gagattgcta	2460
attgctgttg	aaagcaaaaa	tgctaatatt	aaaagtcaca	gtgttcttta	tatacaataa	2520
tggaaaaaaa	aaaaagaggc	aattcctcaa	gggcatgagc	ggtggataca	gaagtagaca	2580
ttttaacaag	aagatgaatg	gcgtctgtgg	gttgctaact	gaactttgaa	gacccgctgc	2640
aaaacgcgca	gatgtgcagc	agattggaag	gagacacaga	tggtcctttt	tttcctgttt	2700
ctgaaaaaga	aataataata	tccaggtcaa	cagaatgaaa	aatgaaagat	gatttccagt	2760
gcggtgtatg	actacagcag	caagaaaaaa	aaatgccata	atacaaaggc	tcctttttat	2820
atatatagtc	acacacacac	acacacacac	acacacacac	acacacacac	acttaagaga	2880
ctcagcctgc	agttaattag	cattctggca	gcttccaagt	cagccagctg	ccctaaataa	2940
cccttcaaca	tttcttcact	tttgcaaggt	tccacagact	aagacattgg	gtctattcca	3000
gctcattcat	tttatattga	aaactaattt	aaaaaaaaat	ggtggcttca	gctccagccc	3060
ctttccaaaa	tttttcaacc	ccaccctgtt	tggattttta	attaaaatct	agtagttctc	3120
ttggtattaa	aacacttctg	tcctgtgagg	ttttcccaat	ggtgttttc	ttgtaaatgt	3180
gttggacaaa	tgtgaagatg	cgttgtagtt	tacccatatg	cccacattta	gtctctttat	3240
tcctagttgg	tgagaaacct	gtatetttet	atgctgcttt	tatatctgta	tgtattagtg	3300
atatttctct	agtagttaaa	aaaaaaaaa	aagaaaaaaa	aaacttttt	ggttgtcctc	3360
aagaaaagaa	aagaagaaaa	gaaaagaaaa	gaaaaagcta	tcttttggag	ctgctaactc	3420

actctcttat	aggattttt	ttcctggaaa	ccagcatgct	tcatggaatg	ctagcacatg	3480
gatgttttaa	gagggatgta	cataaatgta	ttttgcactg	tcacaatgac	tccctaggca	3540
tgctttcttt	ttttcaaacc	aactttttaa	atatgctaga	gccatttcac	caattttagc	3600
tgtagcatag	agtagtagtg	gaatttttct	ttcttttatc	ctttttttat	gaaaagaaat	3660
tattagggac	ttttttaaaa	aaaataaaat	aagatatcct	actttaaaaa	aaaaaaggac	3720
agtgcatgca	tattgctgta	aggttgttta	agtatttcta	attttacaaa	aaaaaaatga	3780
aaaaaatcat	tagageteca	aatgctgagg	tgtagacgaa	cagctttaac	cctgctgagt	3840
gccaggtaat	acagtgttct	tacaaaaggg	aaatcagcca	aagactgatc	tgagggacca	3900
aaatcggaac	tttgaaaagc	accagtggta	ctttccaaat	gatcagcagg	ttgaacatgt	3960
tcagtgtgaa	tccattaacc	cttcgttgtc	cagggtccag	accagaacta	ctggttagtt	4020
ttgaaacaca	ttagcccagg	atgtggttgt	gtgctttaag	agteggeagt	gctgcaggct	4080
gtgtagacaa	ccaaagttga	caaggctggg	aagacacttc	tccacatacc	catacaccag	4140
gcatttcttt	acaaattgag	tacaatccat	tagcttgcgg	gagggggagg	ggagcgggta	4200
atgtagccct	tggatacagt	tttaagtggt	tgtatttaag	ttatctgcat	agaggcaatc	4260
ctcctgggtt	tgctttatgt	ctcgaaaatc	taagattttt	cttaaaccat	ttcccccata	4320
ttttcatata	ccagtcggtt	ttgattttgt	tccggtggtg	ttgtgttctt	tctttcttt	4380
tttttttt	tttttttct	tttttctttt	caatggcctt	ttaatttagg	aagttctgat	4440
gagcaaataa	atgcatctat	atctatctgc	atgttggaag	tecatetgee	agcacacctg	4500
ctaaaggcaa	cgagaagcac	ataagcaggc	tctgaatggg	ttctatctta	ccatggtgct	4560
cccagaatcc	tttgacctca	ttctgctttc	tagtctgctt	gtgacactgg	acagtccttt	4620
cttagagcta	ttctatgttc	taggctacga	agggttaaat	aatcccaaaa	atgaggtatg	4680
tcataccctc	acgtctcgat	ctcaagaagc	tgtgatgtac	gtggaacagc	actgttattc	4740
tgaacactag	tgtgtaaagt	aaggattagt	acagtccgtc	tcattacttt	ttaattcagg	4800
gcaccctgag	tgaaaaccaa	tacaaaaaaa	aaaaaaatcc	ctaactctga	gctctatctc	4860
taattcctct	tectecttec	cctcttcctc	ctcctcttcc	teteeteetg	ttttgctaca	4920
ttctcctcag	tggcaaaaag	tttcactcta	cctctgacag	catgtatatt	gcaccagtag	4980
ctaacaaaaa	ctggtctagt	caaaccaaat	gggcacaaaa	gaaccaggat	accaaaagtc	5040
atacagctgc	aaaccatatc	acttcttggt	aacaatgcag	acctcataaa	cctaaaaaag	5100
agaaagaaaa	gaaaactttt	gttactttcc	ttttttgctt	gtcacttata	tacaggctat	5160
gtgagagtat	tgatttgtag	gtattacaca	ttaaaaaaaa	agttatcttc	attggataga	5220
attgaatggt	ggtcgctgat	aggaataggg	cgtcctctat	ctcttatctc	tgtctctttt	5280
ctctttctct	ttctctgtca	tgagactgtg	tgtgacaggg	ccacctgtct	tttttatttt	5340
tatttttctg	aactttttt	tttttaatgt	gtaggtgcat	gtcttgggga	tttaaaaatt	5400
tcaaggctgg	tttacttatg	caaagcatgc	ctatgtctgg	aatacttagg	gaaagaaagc	5460
gactccatgt	tgtccgaatt	cctcaaggga	cagaaaaaaa	aaaattggag	actgttgaaa	5520
tgcagatttg						
	aagtaatttt	attttaatta	ttttgggttc	tgcgacatta	ttgtgaaaaa	5580
ttaaagttgt		attttaatta ttaattcaga				5580 5640
	tgtgcaatac		cacgtgccac	aagttaacgg	tagactaaca	

ctatgtccga actgtggttt cttgtttatc cttttttttt tttttcctta gttggactgt	5760
aatgtatggt ctgtcaacct gtgaatcttt aaagtatgat tcaggtattg ttgtactctt	5820
tactgtgtaa taaaaatgct taaaaaaaaaa aaaaaaaaaa	5862
<210> SEQ ID NO 84 <211> LENGTH: 2971 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 84	
agactggcat atgatgggag gcagccaatg actccgcggc gctcctccgg gggccctcag	60
tgtgcgtttg aggagaacaa aaaagagaga gagcgccgag agggggaacg agcgagggag	120
ctgagtccag agaaagagcc gccgggcgct gcctcgccaa acctcgctgg gaccgcgggg	180
ccaccaggag gcactttggt gaaggggggg gggggcgacc tcggcagccg cggcgcccga	240
agegacecag egeagegtgg ggegggetge gacetetget teggtggatt geatttttaa	300
ttaaggattc ctagcagctc tttgggattt ttttttccg gcttccactc atgtgttgac	360
accogcgttc aggagagact tgccccaagt gcaccgagcg cccgggacct gagacggaat	420
tgcttttcgt gcgtgcaaaa tccaagcatt ttgagttttg tttgggacct ttttcttgct	480
ttgcttttat ttctattttt attttgttgc agggatatgg gagttatcca caagccttag	540
tttcggatcc tgcagggaaa gcccatgtag catagcttgg cttttgaagg cagagttgtg	600
cagacacatt tgggggcacg acgcaagege tttgtgeteg tgtaccagee gegcaaettt	660
tgaaggeteg eeggeeeatg eagggtgtet etageategt ttegetggtg getteeetaa	720
ggctccaaag cagctggagt tgagcggtcc cggcccatcg tgatccatgt agcccgctgg	780
tecetegegg actgaggete aacaegegeg tgtteeegge eeggeeegge eeggettgge	840
ccggcgcgag ctccctcatg ttgcagccct gcggtgcccc ttcgacgaca ggctgtgcgc	900
ggtctgcacg gcgccccgcg gcagagcttc atgtggggct gcggcccgct cagccggcgc	960
ctcgttgagg gaacggaccc ccggtaaccg gagaccgcct cccctcccac caccccaggc	1020
gccaaagggt atcgtatgtt caggtctaaa cgttcggggc tggtgcggcg actttggcga	1080
agtegtgtgg tecetgateg ggaggaagge ageggeggeg geggtggtgt egaegaggat	1140
gggagcetgg geageegage tgageetgee eegegggeae gagagggegg aggetgeage	1200
cgctccgaag tccgctcggt agccccgcgg cggccccggg acgcggtggg accgcgaggc	1260
geogegateg egggeaggeg eeggegeaca gggggeetee egaggeeegt gteggagteg	1320
ggggccgggg ctgggggctc cccgctggat gtggcggagc ctggaggccc aggctggctg	1380
cctgagagtg actgcgagac ggtgacctgc tgtctcttct ccgaacggga cgcagcaggc	1440
gcgccccggg actctggcga tccccaagcc agacagtccc cggagccgga ggagggggc	1500
gggcctcgga gtcgcgaagc ccgctcgcga ctgctgcttc tggagcagga gctcaagacg	1560
	1620
gtcacgtact cgctgctcaa gaggctcaag gagcgttcgc tggacacgct gttggaggct	
gtggagteee gaggeggegt acegggegge tgegtgetgg tgeegegege egaceteege	1680
ttgggeggee ageeegegee acegeagetg etgeteggee geetetteeg etggeeagae	1740
ctgcagcacg cagtggaget gaaacccetg tgcggctgcc acagetttac cgccgccgcc	1800
gacgggccca cggtgtgttg caacccctac cacttcagcc ggctctgcgg gccagaatca	1860

-continued	
ccgccgccc cctattctcg gctgtctcct cctgaccagt acaagccact ggatctgtcc	1920
gattetacat tgtettacae tgaaacegag gecaecaaet eeeteateae tgeteegggt	1980
gaatteteag atgecageat gteteeggat gecaecaage egageeactg gtgeagegtg	2040
gcgtactggg agcaccggac acgcgtgggc cgcctctatg cggtgtacga ccaggctgtc	2100
ageattttet acgacetace teagggeage ggettetgee tgggeeaget caacetggag	2160
cagegeagtg agteggtgeg gegeaegege ageaagateg gttttggeat aetgeteage	2220
aaggagccag acggcgtgtg ggcctacaac cggggcgagc accccatctt cgtcaactcc	2280
ccgacgctgg atgcgcccgg aggccgcgcc ctggtcgtgc gcaaggtgcc accgggttac	2340
tccatcaagg tgttcgactt tgagcgctca gggctgctgc agcacgcaga cgccgctcac	2400
ggcccctacg acccgcacag tgtgcgcatc agcttcgcca agggctgggg accctgctac	2460
tegegacagt teateacete etgeceetgt tggetggaga teetaeteaa caaccacaga	2520
tageaatgeg getgeeactg tgeegeageg teecceaace tetgggggge cagegeecag	2580
agacaccacc ccagggacaa cctcgccctc cccccagata tcatctacct agatttaata	2640
taaagtttta tatattatat ggaaatatat attatacttg taattatgga gtcattttta	2700
caacgtaatt atttatatat ggtgcaatgt gtgtatatgg agaaacaaga aagacgcact	2760
ttggcttgta attctttcaa tacagatata tttttttctt tctttccctc tttccttttt	2820
taaagagaat tatacagtag aactaggtgg aaagcctagg tttggtgtat ggctttttta	2880
aaaaatatta atgcccagac caaaaaaaaa caaaacaaaa	2940
tcactcttga taataaagtg tttgcattat a	2971
tcactcttga taataaagtg tttgcattat a <210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus	2971
<210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA	2971
<210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus	2971 60
<210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85	
<210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt	60
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg</pre>	60 120
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tetetcageg agagceggga aacccagett cggggtecta cetegacce tetecagegg aggagtggag gteetaacca geegagtagg tetetetaaa tatgccccag gatgacggag eggeegeega gegaggegge acgcagtgac</pre>	60 120 180
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgccccag gatgacggag cggccgcga gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcatgg ccccccgca cctagtcctg</pre>	60 120 180 240
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgccccag gatgacggag cggccgcag gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcctagg ccccccgca cctagtcctg ctcaacggcg tcgccaagga gacgagccgc gcagccccg ctgagcccc cgtcatcgag</pre>	60 120 180 240 300
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgccccag gatgacggag cggccgcaga gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcatgg cccccccgca cctagtcctg ctcaacggcg tcgccaagga gacgagccgc gcagccccgg ctgagcccc cgtcatcgag ctaggagcgc gcagcggcgc ggggggcgc cctgccagtg ggggcggtc cgcgagggac</pre>	60 120 180 240 300 360
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgccccag gatgacggag cggccgcag gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcctag ccccccgca cctagtcctg ctcaacggcg tcgccaagga gacgagccgc gcagccccgg ctgagcccc cgtcatcgag ctaggagcgc gcagcggcgc ggggggcggc cctgccagtg ggggcggtgc cgcgagggac ttaaagggcc gcgacgcagt agcagccgaa gctcgcctc gggtgcccac caccgagctg</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaaa tatgcccaag gatgacggag cggccgcga gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcatgg cccccccgca cctagtcctg ctcaacggcg tcgccaagga gacgagccgc gcagcccgg ctgagcccc cgtcatcgag ctaggagcgc gcagcggcgc ggggggcggc cctgccagtg ggggcggtgc cgcgagggac ttaaaagggcc gcgacgcagt agcagccgaa gctcgccttc gggtgcccac caccgagctg tgcagacctc ccggacccgc cccggcgcc gcgccgcct cggctcctgc agagctgct</pre>	60 120 180 240 300 360 420
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus <400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgcccag gatgacggag cggccgcag gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgccaga gcgaggcggc acgcagtgac ctcaacggcg tcgccaagga gacgagccgc gcagccccgg ctgagcccc cgtcatcgag ctaggagcgc gcagcggcgc ggggggcggc cctgccagtg ggggcggtgc cgcgagggac ttaaaagggcc gcgacgcagt agcagccgaa gctcgccttc gggtgccac caccgagctg tgcagacctc ccggacccgc cccggcgcc gcgcccgct cggcccctgc agagccccc ggagacggcc gcatggtgca gctgagcccc ccgccctgc agagccccc ggagacgcc gcatggtgca gctgagcccc cccgcgctgc cacccctgc cggccccgcc ggagacggcc gcatggtgca gctgagcccc cccgcgctgc cagcccctgc cggccccggc</pre>	60 120 180 240 300 360 420 480
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgccccag gatgacggag cggccgcga gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcctagg ccccccgca cctagtcctg ctcaacggcg tcgccaagga gacgagccgc gcagcccgg ctgagcccc cgtcatcgag ctaggagcgc gcagcggcg ggggggcggc cctgccagtg gggggggtgc cgcgagggac ttaaaagggcc gcagcgcgc agcagccgaa gctcgcctc gggtgccac caccgagctg tgcagacctc ccggacccgc cccggcgccc gcgcccgct cggctcctgc agagctgct ggagacggcc gcatggtgca gctgagcccg cccgccttc gggtcccac caccgagctg cgagcgctgc tctatagcct tagccagccg cccgcctcac taggcagtgg gttctttggg cgagcgctgc tctatagcct tagccagccg ctcgcctcac taggcagtgg gttcttttggg</pre>	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 85 <211> LENGTH: 4161 <212> TYPE: DNA <213> ORGANISM: Mus musculus </pre> <pre><400> SEQUENCE: 85 ggacctcacg gcaagctaag taactgctgg tctctcagcg agagccggga aacccagctt cggggtccta cctcgacccc tctccagcgg aggagtggag gtcctaacca gccgagtagg tctctctaaa tatgcccag gatgacggag cggccgcga gcgaggcggc acgcagtgac ccgcaactag agggacagga cgcggccgag gccgcctagg cccccccgca cctagtcctg ctcaacggcg tcgccaagga gacgagccgc gcagcccgg ctgagcccc cgtcatcgag ctaggagcgc gcagcggcg ggggggcggc cctgccagtg ggggggggc cgcgagggac ttaaagggcc gcagcgcgc ggggggcggc cctgccagtg ggggcggtc cgcgagggac ttaaagggcc gcagcagt agcagccgaa gctcgcttc gggtgcccac caccgagctg tgcagacctc ccggacccgc cccggcgcc gcgcccgct cggctcctgc agagctgct ggagacggcc gcatggtgca gctgagcccg cccgcgcttc cggctcctgc agagctgct ggagacggcc tctatagcct tagccagccg cccgcctcac taggcagtgg gttctttggg gaaccggatg ccttccccat gttcaccaac aacaaccggg tgaagaggag gccctcccca</pre>	60 120 180 240 300 360 420 480 540 600

aagtacatca atttcctggc caagttactc aatgaccagg aggaggaagg cacccagcgt

gccaagcctg	gcaaggaccc	cgtggtggga	gctggtgggg	gtggggcagg	gggtggcatc	960		
cccctgaag	accttctaca	ggacgtgctt	tcccccaact	ccagctgtgg	cagctctctg	1020		
gatggggcag	ccagcccgga	cagttacaca	gaggagccaa	cacccaagca	cacttcccgc	1080		
agcctccatc	ctgccctgct	gcctgccgct	gatggggctg	gcccccggtg	atgcgtctgg	1140		
ggctgcccag	ggccagcagg	caggggcctt	taggcccctg	ggttgctggg	cttcagggca	1200		
ggtgggatga	gaagcaggtc	aatggactta	tgtgaacttc	ccttacagtt	tgaactttgg	1260		
gaagtcccaa	ctgaccctag	gctggcattt	ctgtttcctg	catggaaaca	gaagaggcaa	1320		
acagagtgaa	gtagtaggta	ctttttctga	agatggcacg	gtetteteee	tttcccaagc	1380		
ccaaagattt	ccccaatgat	gaggctcaag	tgtctagttt	tggtctagag	tttgtgagcc	1440		
ttgttttgga	caagatctgg	ggttgtcacc	tgttacctga	ggcatccaat	tggcctctgc	1500		
cttgcctttc	teccateceg	agctggctgg	gtggcttttg	tggcagcttc	tgttcaaata	1560		
cttaggtacc	caagagctga	ccatttcttg	agccccatct	tcacccaggt	ccatgttgat	1620		
ccatccagct	tgccagctgc	tgtggagagt	caagctttga	ggtgccttct	tcagggcctg	1680		
gttggaaaag	atggccagta	aacagacaac	ctgctctcaa	ctagctgggg	cagaaaaccc	1740		
aacagcccct	tttgctccag	ggaatcagag	ctctctccct	cactgagact	tgccttccta	1800		
teetgtgget	gtgaggacca	agtcagcagc	cttgagcatg	ctttgttggg	ctgtgtgcag	1860		
gcacagaaag	ggaaagtgac	attagggcaa	gcaaagcaag	agtgtttggg	gcactgggtt	1920		
tcaactccag	cgcatccctg	tttgtgcagg	agagcaaagg	atagagtgct	ggtgcattgc	1980		
atgttggtgc	tggggctgtg	cagcccatag	gcttccccag	gaagcccgaa	ggaagettee	2040		
cattgcaaga	tgtctgttgg	ctgatggtct	ggatgtccaa	atggaggaca	aactgtcctg	2100		
tacatactct	atttgggatt	ctgcctgacc	agttgttggt	tggcaactct	aggccatgat	2160		
accacccaag	atgcagcctg	atgctaaggc	aaggagtcca	gtcagaggca	aggccctggc	2220		
tgagacctgg	gcatgcacct	ttgctcagct	taactttaag	tactctcccc	tcacacaact	2280		
gcaggcccta	cgtgtgtgca	tggtaggttg	gcttaacatg	aaacgagtgc	cccctctaaa	2340		
acttgtacat	gaaagttttg	taaagcagac	ccttctcctc	catcttttaa	agacacaacc	2400		
cctgcaagtc	attttgtaaa	gtggagaatc	cttttgtagt	atggacaaat	accccattgt	2460		
ttctcccctg	tgtcaatcca	ggtggtggga	ccgatctatc	ctaaagctag	gcctgcctat	2520		
aatgaagttc	aagctcatga	aacaaagtgc	gcagaagtcc	tgtgtatctg	tcattgtatt	2580		
ggtgtcactc	agttctcact	ctctccaggg	tttgcctttg	agctagagag	aaaatatcca	2640		
aaggccccat	catgtaacgt	atgageceat	cacttttctg	ttggagtttc	agcatgatgt	2700		
ttcagttcac	accatgatgg	agcctgagta	tagacttagg	cagacagaga	ctgatcctgt	2760		
teetgeteee	ctccccttct	tattaagtac	tgagggcccc	caggtaatgg	gacaatgtgg	2820		
tcagctacta	aggcattgtg	attctttgtc	tcctatcaca	ttctgctatc	acatgaacat	2880		
taaggctggt	tctttcccat	tgcgtgggag	ttagttcaag	gggtctgacc	catgaggaaa	2940		
tgggtccaaa	gctgtgtttg	cttcttagtg	gaatgagttg	ggaatgaaaa	ctgtggctct	3000		
gtaggtggat	tctatgagag	ggatcacact	tttgttggga	gcctaagctg	cagttcccta	3060		
catcagcttt	gcagcttcac	tgggataaac	acgctaggcg	gtggacggac	tgtgatcata	3120		
acattggaag	tccattgggt	ccgtaaagac	tgctctggag	cacagagggc	cggtgcatcg	3180		

c333333333	gggggcgggg	attgcacaca	cggggttctg	tgttctacac	ccagcacagg	3240	
cacaaaagaa	gcttcataac	ccttagtact	gaccgtgccg	tgaggttcca	gccagagttc	3300	
aggcctgggc	agttgatgtg	tttgtgtcat	ttggattata	aaatattttc	cattgagtta	3360	
tgtagatgct	aatttctcaa	gattaatctt	aatttctccc	cgattccaag	gcaagaaaca	3420	
ggagtgagaa	ggggtgagag	atttcgaaag	tttctaaagg	ggctgggcag	ggaagagcca	3480	
gggttttggt	ctttgtaaga	tctaaggaag	accctgaatt	ctgttctcat	actccatacc	3540	
ccatatcttt	cttcctctgt	gtcttccttg	cccttaaaga	aattgcagca	ttccaagaac	3600	
aatatctgta	caaaggggga	aatgtaagca	tgagaaaaca	ttaaaaaaaa	aaaacagtga	3660	
tgaacataac	cacagagaga	atcccaccct	tcaagaataa	ttcatgttta	tttgtggtgg	3720	
caaataacaa	aatggtacaa	cctttatcct	tttccagaaa	caaaaaccaa	gggcacagca	3780	
actagagtga	gctgacagct	attttggcct	ttttggtggg	tctagccgta	cttgggatcc	3840	
cagtggtaca	tgaccctctg	ccgaaggctt	gcctcagtct	gtgtacatag	cacgccatgt	3900	
ctgtgggcaa	gcccagcact	ttgcgtcagt	gtcgtactgt	atgtaatgaa	ctgtgttggt	3960	
ctctgtgttt	tttttttctg	aagaagagga	gtaactactc	cgggtacctt	gatatttgta	4020	
cagcctatag	gccaacactg	cgggcgtgtg	actctttatt	gaaaaacaaa	aacaaaaaaa	4080	
taccagtgtg	gtgatgatag	tgtgtgtata	tatatataag	gttatatggg	gaagatttct	4140	
aaataaaagt	tttacaaagg	g				4161	
	TH: 949 : DNA NISM: Mus mu	ısculus					
<400> SEQUI	ENCE: 86						
cccgcggccg	ggcgcccatg	gcgttcgcgc	tgctgcgccc	ggtcggcgcg	cacgtgctgt	60	
acccggacgt	gaggetgetg	agcgaggacg	aggagaaccg	cagcgagagc	gacgcgtcgg	120	
accagtcgtt	cggctgctgc	gaagggctgg	aggcggcacg	gegtggeeeg	ggtcccggga	180	
gcgggcggcg	ggcgagcaac	ggcgcgggcc	ccgtggtggt	ggtgcggcag	cgacaggcgg	240	
ccaacgcgcg	cgagcgagac	cgcacgcaga	gcgtgaacac	ggccttcacc	gccctgcgca	300	
cgctcatccc	caccgagccc	gtggaccgaa	agctgtctaa	gatcgagacg	ctgcgtctgg	360	
cgtccagcta	catcgcccac	ctggccaacg	tgctgctgct	gggcgacgcg	gccgacgacg	420	
ggcagccgtg	tttccgcgcg	gcgggcggtg	gcaagagcgc	ggtccccgcc	gccgacggcc	480	
gtcagccgcg	ctccatctgc	accttctgtc	tcagcaacca	gcgcaagggg	ggcagccgtc	540	
gtgacctggg	gggcagctgc	ttgaaagtga	ggggtgtagc	cccgctccga	gggcctcggc	600	
gatgaacctg	gatccctggt	tttctccaag	aaggactcca	gagaaagagg	ccatgagcca	660	
gcccctagct	ggacagagga	gaagattcca	gaagcccaaa	ccactcctgc	gttgtgtaag	720	
gaccggagga	caatggcctg	ggcacagggc	tcaccctgga	gagccacaag	gacccatcta	780	
gccatccagg	cctagctggc	cagggacaag	gcagaaattt	tagaaaacca	aagactattt	840	
ttgaaagtgt	gtgtgtgtgt	ctatatatat	atataaatat	agtatgtgag	caaat.cgggg	900	
3 3 3	3 3 3 3 3	cegegegeee	gegegaaege	99-99			
	aataaaggta					949	

<211> LENGTH: 4354
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 87

aaaagctgct gccgagccct	aagcacggga	agegeegage	tgtgtgtcca	ccgccagacc	60
agagttettt tggttggaca	gatctgtgag	tcttcccagg	agagcaccct	tgggctctgc	120
tegeceetge teetteaggg	atggaggcaa	tggcagccag	cacctccctg	cctgaccctg	180
gtgactttga ccggaatgtg	cctcggatct	gtggagtgtg	tggagaccga	gccacgggct	240
tccacttcaa cgctatgacc	tgtgaaggct	gcaagggttt	cttcaggcgg	agcatgaagc	300
gcaaggccct gttcacctgc	cccttcaatg	gagattgccg	catcaccaag	gacaaccggc	360
gacactgcca ggcctgccgg	ctcaaacgct	gcgtggacat	tggcatgatg	aaggagttca	420
teeteacaga tgaggaggtg	cagcgtaagc	gagagatgat	catgaagagg	aaggaggaag	480
aggccttgaa ggacagtctg	aggcccaagc	tgtctgagga	gcaacagcac	attatcgcca	540
teetgetega tgeecaceae	aagacctacg	accccaccta	tgccgacttc	cgggacttcc	600
ggcctccaat tcgtgcagac	gtaagtacag	ggagctattc	tccaaggccc	acactcagct	660
teteeggaga eteeteetea	aactctgatc	tgtacacccc	ctcactggac	atgatggaac	720
cggccagctt ttccacgatg	gatctgaatg	aagaaggctc	cgatgacccc	tctgtgaccc	780
tggacctgtc tccgctctcc	atgctgcccc	acctggctga	tcttgtcagt	tacagcatcc	840
aaaaggtcat cggctttgcc	aagatgatcc	ctggcttcag	ggacctcacc	tctgatgacc	900
agattgtcct gcttaagtca	agtgccattg	aggtgatcat	gttgcgctcc	aaccagtctt	960
ttaccttgga tgacatgtcc	tgggactgtg	gcagccaaga	ctacaaatat	gacatcactg	1020
atgtctccag agctgggcac	accctggagc	tgatcgaacc	cctcataaag	ttccaggtgg	1080
ggctgaagaa gctgaacctc	catgaggaag	aacatgtgct	gctcatggcc	atctgcattg	1140
tctccccaga ccgacctggg	gtacaggatg	ctaagctggt	tgaagccatt	caggaccgcc	1200
tatccaacac actgcagacc	tacatccgct	gccgccaccc	geeeeeggge	agccaccagc	1260
tctacgccaa gatgatccag	aagctggctg	acctgcgaag	cctcaatgag	gagcactcca	1320
aacagtaccg ttccctctcc	ttccagccgg	agaacagcat	gaagctcaca	ccccttgtgc	1380
tagaggtgtt cggcaatgag	atctcctgac	cagggtggcc	tgcagtggtg	cctgggtagg	1440
geogeteete tggggeeetg	tgcccaggcc	ctgggctggt	tgcagcccag	cagtgcctcc	1500
tgcccctcct ggagttcagc	tcctcctctg	ccgtggcccg	tgtctgtctg	gctcatcctt	1560
teteetgeee ageeteacae	ctgatctccc	tttcctgtag	actgcaggtt	gctcctgtcc	1620
cttgagatct cagttaggag	acactgctgt	ttatttgaca	aagaaactca	agtgtgggat	1680
ggggggaaga gggtagaggg	cagaggctga	aggcagagag	ctctgcctag	ggaatgcctc	1740
cgccataagg ggccactgct	tgtgtcaagg	gaggcaggca	gaagagatga	gtccattcct	1800
cagggacagg tacctgtacc	taccccgatt	ccaaacctac	ctgcctggtg	agaactcctg	1860
cccctgccta caaagggtac	acaacctacc	catcatccct	agtgtgtccc	gtctcctcct	1920
gccacctgtc tgtattattc	tgacccaggg	gagtcagtca	ctgtggggcc	teetteetet	1980
gctggtatac tcatggactc	attcactgcc	aagatgacca	aatactctac	cacactaacc	2040
aaggagccct ccctagccct	gcagttccca	cctttgaggt	tttgttatgg	taagtcccca	2100

agtccagtac ctctggtaaa gtgg	gacttet teececatee etagaac	cag ggacctagaa :	2160
accaccattg gaaagtcccc aggg	gaatgga atacagagcc caagcaa	ga ggagcaggca	2220
aagccagcct cccagcagga caac	caaatgg aggtccatct atctttg	ca ccaagctgag	2280
gtgtctgaag cctggagcta ctgg	ggacccc tectetecte tatageta	att agatgtgtca	2340
ggaccaagtt gaccccaact ttca	agaacgt ccctagccct gtcttca	ce etteceetge	2400
cagtgeetta ecaeetaeee agga	aaagcag gteettgage cacceagg	gee ttacaatttg :	2460
atcaccaaga gtatcccaga agtt	atotoa gottotocat caccoco	act tggagcaaca	2520
gtgtcacatc tccaccccac ttac	ccaataa aagctaccct ttccacc	ag tggaatggga	2580
tggcagaaaa ccaacagtgg ccca	agatgga cctccaagtc tgctttt	cag gtgtaaagcc	2640
agacatgage teteceacet cage	ggaaaag gtagaggggg caggttag	gaa cttgtggtac :	2700
agtgatattg gtccagttcc tcct	gactet teactetace acceaaa	agt caatgtagac	2760
ctacgaaacg gtcaggtgat gggc	rtaggga cgtatettea aacteea	tt cttcctctgt	2820
agtageceag tecaggaett tgga	aaccctg gtctcattca ccccaaa	at acttettget	2880
gatcatgcgt tgtgggggtg tggg	ggggacc catgcagagg aggttct	ett cataaggggg	2940
actcacagaa ggaccttcca gtga	aatgttt gacctaggga atgcagc	cac actggaagca	3000
ccaatagagg gctaaggtca gacg	ggagcat ggccccacga gccccaga	att ccctgaaaat :	3060
cctgagatca atcacattta acat	cagaag aaccettagt gtecace	gg ccctatgttt	3120
cccagaattc aagcggaaaa catc	etgagaa tggettteee atattge	att acggcatgca	3180
gaaggettta ttttaaagte atte	ccatcag aggtgttctc agaattag	gac cccacctgta :	3240
ctgtgttcta acactgaggg tggt	ggcacc tgattcagag cagtgtg	gt gtgtgtgaaa :	3300
atactgtata ttaatgatta ttgt	tactgc acacacacac acataca	aaa aaaaaaaaaa :	3360
aaccctagag aaagaccttt gatt	ttagca gcagaacaca ttgatcto	ggc ttactactca :	3420
acaggaggga aagtetgaaa gttg	gataage tagttegaet eetttata	aat gagaacctga	3480
catcagagga gagtgtgatt tacc	tgggct catataatta gaagcat	etc caggeetgga	3540
gaaaatttga acttatggtc ccgg	ggctgct ttgtagtgag cctgttt	cca ctgctctggt	3600
agctgagcca ggctatgagg aaac	ccctgga tatcagcata aacctato	gtc tgggactacg	3660
atecetttte eetgggtaat aaac	ctcagcc acccatccta aggaggca	aag cacttggcct	3720
ctttgagtga gacttggctt tagg	gactete tgeateagee ttgtgtge	cat caggcactgg	3780
aaageetetg tetteeeage eett	geetet ceaggaaaet eeacagg	cct ccagagaata	3840
ccagtttctc agcccaaggg gtcc	catcact gagaagtgcc caaaggg	aag tcagggagct	3900
gggaggaaaa gacagcagga ccaa	agtagga ttccgaagcc gaactgg	gag agaacagcat	3960
catctatttt tattctgaat gtac	caaaggc agggccttga aagagcto	cac acttccgagg	4020
cggaaatggg taccaaaatg agag	gatcagc aagatttccc aagatag	gag aatceteetg	4080
ctgcctgcgt gggagaaagt aggg	ggaggag tecaaaceag gecaeea	gag atggttgaga '	4140
taaatgacaa atctggtgga agtc	cagacat ggctctaaag agcttcc	aa gagacttccc -	4200
gagagagaga caaaagtgtt tgtt	tgtttt gtttccagga gcttgtca	aaa taaaccaatg	4260
aaaaagcttt gccgatgata ataa	aaagatg ctcacacttt catagego	ctt gctacgtgac	4320
aagtaccgct gtaaataaat gcct	catgaa aacc		4354

<210> SEQ ID NO 88 <211> LENGTH: 3579 <212> TYPE: DNA <213 > ORGANISM: Mus musculus <400> SEQUENCE: 88

ggggtccatg ccaagatggc cgcgcccaca agcaatctcc gcaggtctcc gccatcgaag 60 cccccggacc ctctgaagcg gtgcccgggg tggccgccat atcggcctct gactccatcg 120 aggacctgac aaagccagag gcgctggatc ggaggagtgc ggacaaagcc aggcgtccgg aggagatggc tacatccgag cctgcggaaa gcgatgcgga atgggagcag ctggaacctg 240 300 tqcaqaqaqa tqtqtacaaq qatacqaaqc taqaqaactq caqcaatcca qcctccatqq gaaatcaaga toocaaacaa gacatagtot cogtgttgga agaagaagag coatcatogg 360 gaaaggggaa aaaagccagc ccaagtagtc tgaaaaaaat agcaaggccc aagacagcag 420 gaacaagtgc aaaactccaa caagatgatg agcataggga ggaaaagcag aagtcccaaa 480 qcaaacttac taaqqaaqtq acactcaqqa aqaaaaqttc caacaqcaaq aaaaqcaqtq 540 agtatggttt gttggagaac aaaagtctcc actcaaaaca cactccttcc gagaaaaaac 600 tgcttaagtc cagttcccgt gggaagaact cgaatcagaa ttcagactct ctgaaaaaga 660 aacctgacac agctaatgac cacaggaaat cactcagcca ttctgcatct gatgtgaaca 720 aagatgaaat tecaactaga aagaaatgeg acaagttace caacaataag ttgtetgata 780 aaggtgacaa aaaccaaacc agcaaaaaat gtgagaaagt atgccgtcat agtgcatccc 840 ataccaagga agacaaaatt cagaccgggg agaaacggaa atcacactgc cgtactccat 900 ctaaacctga aaaagcccca ggttctggga aaccttatga atgtaaccac tgtgggaagg 960 tecteageea taaacaggga eteettgace atcaaagaac teacaetggg gagaaaceat 1020 atgaatgtaa tgaatgtggg atagctttca gccagaagtc ccaccttgtt gtacatcaga 1080 gaactcacac tggggaaaaa ccatacgagt gtgaacagtg tggcaaagca cacggacata 1140 aacatgccct cactgaccat ctaagaatcc atactggaga aaagccctac aaatgtaatg 1200 aatgtggcaa aacgtttaga cacagctcaa accttatgca acacctaaga tctcacacgg 1260 gtgagaagcc gtatgaatgt aaggaatgtg gcaaatcctt tagatataat tcatctctta 1320 ctgaacatgt gagaacacac acaggtgaaa taccatacga atgtaacgaa tgtggcaaag 1380 ctttcaagta tggctcatcc ctgactaaac atatgcggat tcatacaggg gagaaaccat 1440 ttgaatgtaa tgaatgtggg aaaactttta gcaaaaagtc acacctagtt atacatcaaa 1500 gaactcatac aaaggagaaa ccttataaat gtgatgagtg tgggaaagcc tttggacata 1560 gctcatctct tacctaccat atgagaactc atacaggtga ctgccccttt gaatgtaatc 1620 aatgtggtaa ggcctttaaa cagattgaag gccttaccca acaccagaga gttcacacag 1680 gggagaaacc ctatgagtgt gttgaatgtg ggaaagcctt tagtcagaag tcacacctca 1740 tcgtacacca gagaactcat acaggggaga aaccctttga atgttatgag tgtggaaaag 1800 ccttcaatgc aaaatcacaa cttgttattc atcagagatc ccacactgga gagaaaccct 1860 atgaatgtat tgaatgtggt aaagcettca agcaaaatge etetettace aaacatatga aaattcactc agaagaacaa tctgaggaag aagattaatg taggaaacct gacaactgac 1980 tggtttggta ttatttaacc ttaaagatgt tctcaatttg atgatgttag aatatctttt 2040

-continued	
tttaggaaat cattcctggt gatacatgag agaatttgaa tatggatctt tacataagat	2100
ggtaataaaa tttaaccttg atcccaaacc taaacagaaa atactgtatt tttacactta	2160
ttataaattg tctccatatt tagattaaaa tacgaatctt ttaaaagagt gaataaggag	2220
atatcataat cagtaaagtg cttgttaagc aagtacagag atctgaattc catccctaag	2280
gattgataaa aagctagatg tgggggcatg ctcttgcaat ctcacaattg ggaaagttga	2340
gacaggagag teetgagaac teetgaceaa eeagaettat ttaatttgea ageeataggt	2400
cacaagaaaa aagaactgtt ttaaaaatag ggtagagggt tcctgagaaa cagtactcaa	2460
ggttgacaca tgtacacaca cagacacaca cagacacaca gacacacaca	2520
cacagacaca cacagataca cacacacaca cacacagaca cacacacaca gacacacac	2580
cagttgtgaa aatgttaacg aattagagca acaaacagta aaatatgaca cttcatgaac	2640
tttctaggtg tgtgcttaag ctccacagtt agtatttaat ttgtatttat tcttattgca	2700
tacttaccgc cttgtgtaaa atacaagtga gggtgagggt atcctctggt attgtctagc	2760
tttetttgtt aatgtetetg ttagettetg aattagtaga aaaetttegg gagttgtttt	2820
gttttgtttg agacaatate teaceatata gteetggeta geetggaaet tgttaegtgt	2880
accaggetgg cettgaactt gttatgtaga ccaggetgae ettgaactea cagagatatg	2940
tetgtetetg ceteceaagt getagattta aagaetteag tagaaaaett taaggggttt	3000
tgtctagatt ttgttaagag gttcataaaa aagtggaaaa cagctgaaaa tgtgttgata	3060
gtgagtgata cttgttatat tgttaagtat agaaaatgga ttgttaaacc atctatatag	3120
tatgttetea ttgtggacag agtgtgtatg tgtgteeetg taetetgtgt acatatatat	3180
gtgtttatcc ccatatattt gtatatgaat agactttttt ttaacctata agaaaattaa	3240
tggtggcttc cactgaacac aagagtgcag cattgaggtc tgacatgttt atcatgtaca	3300
tgtgtctaat tcaaatatgt attatataaa aatacattca tatgtgcaaa ttaacacaat	3360
ttaaaacaat agctgagtct atttcacagt gttatttgaa aaagtgacat aagatttcta	3420
tgctccttta tgaacaatga atttaagaca tatggcattg aaccttgata ttgaattcac	3480
aaagaatttc ctatagagca cagatttttg ttaacatgag tcataactgt taacaatatt	3540
ttatttctct tatttgctat taaaaactaa agatgaatg	3579
<210> SEQ ID NO 89 <211> LENGTH: 3276 <212> TYPE: DNA <213> ORGANISM: Mus musculus	
<400> SEQUENCE: 89	
ctgcggggag gatccccagg agcgggagta gggttcctcg ggatagagga agggtccagt	60
gcgaaagggc aggaaacggg ctcagggatg gggctggtcg ggagcgaagg acgctgacag	120
ggtctgtggc ctgatcacct aggagagcca ctcctggtgg ccatgagaga gaccctggag	180
gccctgaact ccttgggatt ctcagtggga cagccagaga tggctcccca gagtgagccc	240
agggatgggt tcagtaatgc ccaggagaag atgtcatcca gaggagagag cacactgcac	300
teetgeteag ggeatgagae teetggeeag aaagaaggea teeacacaga acaagetgaa	360

gctccttgta tgggcagcca ggccagtacc ccacagaagg ccgaacctgc aggctctgtc ccaggggagg aatggatgat tcggaaggtg aaggtagagg atgaggatca ggaggcagag

420

gaggaggtgg aatggcccca	gcatctctcc ttcctt	ccca gtccttttcc	cactcctgac	540	
ttgggtcagt tggctgttac	gtacaaactg gagcca	ggga ctccgggago	actaggtgga	600	
ategegetgt eegggtggge	cccgatccct gagaag	cctt atggctgcga	ggaatgcgag	660	
cggcgtttcc gggatcagct	aactctgcgg ctccac	caga ggttgcacco	gggtgagggt	720	
ccttgtgcct gcccggactg	tggccgcagc ttcacc	cage gtgeteatat	gctcctgcac	780	
caacgcagcc accgcggaga	gegteeette eegtge	tcag agtgcgacaa	gegetteage	840	
aagaaggccc acctgacccg	ccacctgcgc acgcac	actg gcgagcgtcc	ctacccgtgc	900	
gctgagtgcg gcaaacgctt	cagccagaag attcac	ctag gctcgcatca	gaagacccac	960	
accggagagc ggcccttccc	ctgcaccgaa tgcgag	aaac gtttccgcaa	gaagacgcat	1020	
ctgateegee accagegtat	ccacaccggc gagagg	ccct accagtgcac	ccagtgcacg	1080	
cgcagcttca cacacaagca	acacctggtg cggcac	caga gggtgcacga	tgctgctagc	1140	
cgcacccggt cctctccaga	catteetgtt geteed	catt cccccaccgo	gtctcttacc	1200	
ccgtcccctc ctgggcccaa	geettteget tgttee	cact gegggeagag	cttcggctgg	1260	
aaaaagaacc tcgctacgca	ccagagtctg catcto	accg agggtcgtcc	ttttgggtgc	1320	
gatgaatgtg cactcggcac	caacgtggac cccgcc	geeg ageeetegge	ctgcactccc	1380	
catgegeetg aetgtggaee	gggttegggg ceegeg	gcac cccagcgcac	cacctccagc	1440	
gagegeteet tettetgeee	ggactgcggg cgaggc	tttg cccacgggca	gcacctggcc	1500	
cgccaccggc gggtgcacac	gggcgaaagg ccattt	geet gtgeteagte	tggccgccgc	1560	
ttcggctcac gacccaatct	agtegeecae teeege	gece atageggege	cagacctttt	1620	
gcctgtgcgc aatgtggccg	ccgcttcagt cgcaaa	tete acetgggeeg	ccaccaggca	1680	
gtgcacactg gtagtcgccc	ccacgectge geegte	tgcg cccgctgctt	cagctctaaa	1740	
accaacctgg teegecatea	ggcaatccat acaggt	tece geceetttte	ctgccctcag	1800	
tgcgccaaga gcttcagccg	caagacccat ctggtg	cggc accaacgcat	ccatggggac	1860	
geggeeetee eageeeeage	ctcgaacctc tctgct	ccag cctggtccaa	teceteegag	1920	
gtggtaccac ctccaatctt	tttctaagcg aagttc	tgac cctcatcctc	cctttcctga	1980	
cagatttggg agactcatat	ctggagactt agtggg	tttt caacattcac	acctaagttg	2040	
ctgccaaagc accaggacac	ttgggccatt tcttta	attg teetttettt	aatgttagtt	2100	
gagaagtcca gaaaaactta	gctcttgaca gttgtg	acaa cacacagaga	ctateettge	2160	
agataccacg ctgagaaaca	gacatttatg gggato	agec aggteaagge	gagattgact	2220	
gagcaagaga cctctaaata	gaggataaga atagtt	attt atgtacttga	agttcattaa	2280	
agttcagatc tgaggttctg	gagetgttaa etgage	cact gaaggaaaac	ctgactcttt	2340	
attegetgee aetteeatee	acaggaaaaa gacctt	ttct gtcagtccag	ggacgtaaac	2400	
ttagctaggt ggtttttccc	aacaaagtgc aagatg	caca caggecaaac	aactaccatg	2460	
gtecegeaag tgegegegeg	cgtgtgtgtg tgtgtg	tgtg tgtgtgtgtg	tgtgtgtgtg	2520	
acagaaattt ggctcagagg	gagtaggtga ggacca	gagg ggacaggctg	ctcttgggcg	2580	
ctcccagggg accagcactg	ttactctagg tgctgc	tgcg gctccatacc	acctgtttcc	2640	
aggoottoaa gaggottoco	agaagcatcc ttacct	atct ctgcctagga	ggtacagaag	2700	
gaggcagtgc gtgaacaggc				2760	
	5 5				

				-contir	nued		
tccttttgag	gactgcttga	gcctgcaggc	actgcaactg	tacaccccgc	tgtgactgaa	2820	
gcacaggggc	tgggctgcct	gacagtgaag	gagcagtcag	ggcatggggt	gtgagtttag	2880	
agagaactat	tttgggttca	acctcacaga	ggacttggag	ggaatccttt	actctcccgg	2940	
aacttcaatt	tctcattaaa	atgagagctg	gtgttgatga	aagctgagag	tactttctat	3000	
cctattgtta	gattactaac	aacaaaaata	cccaaggcaa	tggtctcctg	ggtgctaagc	3060	
actgggaagg	atcaggagcc	atcacagctt	aagtaggttt	cctggtttgt	gttactgttg	3120	
ctgggataaa	atactgacct	tggctttcca	agggtggctt	tcacgtctac	attgatgccc	3180	
ctggagtgat	agtcaacgtt	ttctttgctg	ttcattgttg	aaccaataaa	gtctgtgaac	3240	
cctaaagaaa	aaaatactga	ccttgaaaaa	aaaaaa			3276	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	ΓH: 6152	usculus					
<400> SEQUE	ENCE: 90						
cgggaccccc	tectecetee	cgctccccgc	gctctcgcct	tttaatcatg	cccctctgtc	60	
tgtgtgtgag	tgcaggcagg	ctgacaatga	tttcctcagt	gattacgtac	agagcgagtc	120	
cctgcgggtt	aggggccccc	tctggagcca	tcctgatggc	tttgggggcc	ttgcttccat	180	
tttccattat	tatgtggact	accggagcga	cagcgcagtc	caagaccttg	caggatgtct	240	
cgccgcaagc	aagcgaaacc	gagatecete	aaagacccca	actgtaaact	tgaagacaag	300	
attgaagatg	gggaggcagt	agactgcaag	aagaggccag	aagacgggga	ggagttggag	360	
gaggacgctg	tgcacagctg	tgacagctgc	ctccaggtgt	ttgagtcact	gagcgacatc	420	
acagagcaca	agatccatca	gtgccagctg	acagatggcg	ttgacgttga	ggacgacccc	480	
agctgctctt	ggccagcctc	ctcgccttcc	agtaaggacc	agacttcccc	cagccatgga	540	
gaagggtgtg	atttcggaga	ggaagaaggt	ggccctggac	tgccttaccc	atgccagttc	600	
tgtgacaagt	cctttagccg	cctcagctac	ctaaagcacc	atgaacagag	ccacagtgac	660	
	tcaagtgcac					720	
cgccacataa	agctccacac	tggggataag	aagtatcact	gtagcgagtg	tgacgcagcc	780	
ttctcccgga	gcgatcatct	caagatccac	ttaaagactc	acacctccaa	caagccatat	840	
	tetgeegeag					900	
	ggaacaagga					960	
	agaagtgcag					1020	
aagcacattg	cagaatgcca	ccccgagtgc	tcccctaatg	aggaccgagc	agccctccag	1080	
tgcatgtact	gccacgagct	gtttgtggag	gagacgtccc	tcatgaacca	catcgagcag	1140	
gtacacgggg	gtgagaagaa	gaactcttgc	agcatttgct	cagagagctt	cctcacggtc	1200	
gaggagctgt	atagccacat	ggacagtcac	cagcagccag	agteetgeaa	tcacagcaac	1260	
agcccttccc	tggtcactgt	gggttacacc	tcagtgtcca	gcacgactcc	agactcgaac	1320	
ctctcagtgg	acagetegae	catggtagag	gctgcaccac	cgattccaaa	gageegeggg	1380	
aggaagcgag	ctgctcagca	gacctccgat	atgactggcc	cctctagtaa	gcaggcgaaa	1440	

gtcacctaca gctgtattta ctgcaacaag cagttatttt ccagtctcgc ggttctgcag 1500

attcacttga	aaactatgca	tttagataag	cctgagcagg	ctcatatctg	tcagtattgc	1560
ttggaggtct	taccctcact	ctataaccta	aatgaacatc	ttaaacaagt	gcacgaagct	1620
caggaccccg	gcctgattgt	ttcggccatg	cctgccattg	tttaccagtg	caacttctgt	1680
teegaagttg	tcaatgacct	caacaccctt	caggagcaca	teegatgtte	tcatgggttt	1740
gccaatcccg	cggccaagga	cagcaatgcg	ttettttgte	cccattgtta	catggggttt	1800
ctcactgact	cttcacttga	agagcatata	agacaggtcc	attgtgacct	cagtggctcc	1860
cggtttgggt	ctcctgtgct	tgggactcca	aaagaaccgg	tggttgaagt	ctactcctgt	1920
teetattgta	caaattcgcc	aatattcaac	agtgttctta	aactgaataa	gcatattaaa	1980
gagaatcata	aaaacattcc	cttggccctg	aattatattc	acaatgggaa	gaaatcccgg	2040
gccttgagcc	ctttgtcccc	tgtggctata	gaacaaacaa	ctcttaagat	gatgcagact	2100
gtgggaggeg	ggcctgcccg	cgcctctgga	gagtatatct	gtaatcagtg	tggtgctaag	2160
tacacgtccc	tagacagett	tcagactcac	ctcaaaaccc	atttggacac	cgtgctgcca	2220
aaactgacct	gccctcagtg	taacaaagaa	ttccccaacc	aagagtcctt	gctaaagcac	2280
gtgaccatcc	actttatgat	cacctcaacc	tactacatct	gtgagagctg	tgacaagcag	2340
ttcacctccg	tggatgacct	ccagaagcac	ctgctggaca	tgcacacctt	cgtcttcttc	2400
cgctgcacac	tctgccagga	agtgttcgac	tccaaggtct	ctatccagct	gcacttggcc	2460
gtgaagcaca	gtaacgagaa	gaaggtgtac	cgctgcacgt	cctgcaactg	ggacttccgc	2520
aacgagaccg	acctgcagct	gcacgtgaag	cacaaccact	tggagaacca	aggcaaagtg	2580
cacaagtgca	tcttctgcgg	cgagtcgttt	ggcaccgagg	tggagctgca	gtgccacatc	2640
accacccaca	gcaagaagta	caactgcagg	ttctgcagca	aagccttcca	cgccgtcatc	2700
ctgctggaga	agcacctgcg	ggagaaacac	tgtgtgtttg	aaaccaagac	ccccaactgt	2760
ggcaccaacg	gggcctcgga	gcaagtgcag	aaggaggagg	ctgagctgca	gaccttgctc	2820
accaacagcc	aggagtccca	taacagccat	gatgggagtg	aggaggacgt	ggacagctct	2880
gaacccatgt	atggctgtga	aa+ a+ aaaaa	gcggcctaca	ccatggagac		
		carcigoggg	3-33		gttgctgcag	2940
aaccaccagc	teegagaeea					3000
		caacatcagg	cccggagaaa	gcgccatcgt	gaagaagaag	
geggagetea	teegagaeea	caacatcagg ttacaagtgt	cccggagaaa	gcgccatcgt	gaagaagaag	3000
gcggagctca	tccgagacca ttaaagggaa	caacatcagg ttacaagtgt gcagacccac	cccggagaaa aacgtttgct ttaggcccgg	gegecategt egagaacett teaaacaeta	gaagaagaag cttctccgaa catgtgccct	3000
gcggagetea aacgggetee atetgtggag	tccgagacca ttaaagggaa gtgaacacat	caacatcagg ttacaagtgt gcagacccac ttccctgtta	cccggagaaa aacgtttgct ttaggcccgg actctcacag	gcgccatcgt cgagaacctt tcaaacacta agcacaaagt	gaagaagaag cttctccgaa catgtgccct cacacacagc	3000 3060 3120
gcggagctca aacgggctcc atctgtggag aagagcctgg	tccgagacca ttaaagggaa gtgaacacat agcgcttccc	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc	gcgccatcgt cgagaacctt tcaaacacta agcacaaagt ccctgcagag	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag	3000 3060 3120 3180
geggagetea aaegggetee atetgtggag aagageetgg tttttggage	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt	gcgccatcgt cgagaacctt tcaaacacta agcacaaagt ccctgcagag	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt	3000 3060 3120 3180 3240
gcggagctca aacgggctcc atctgtggag aagagcctgg tttttggagc	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca	gegecategt egagaacett teaaacaeta ageacaaagt ecetgagag ecetgaetgg aaatecaegg	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac	3000 3060 3120 3180 3240
geggagetea aaegggetee atetgtggag aagageetgg tttttggage gtggtgtgta atgeagaaga	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat tgcagactgt	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca cagaccaccg	gcgccatcgt cgagaacctt tcaaacacta agcacaaagt ccctgcagag ccctgactgg aaatccacgg	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac gcacgttcag	3000 3060 3120 3180 3240 3300
geggagetea aaegggetee atetgtggag aagageetgg tttttggage gtggtgtgta atgeagaaga aaaetgtata	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat tgcagactgt	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc gtcctccgtg	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca cagaccaccg	gcgccatcgt cgagaacctt tcaaacacta agcacaaagt ccctgactgg aaatccacgg ggcgtggcca ccaagcaaga	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac gcacgttcag tctggtgaaa	3000 3060 3120 3180 3240 3300 3360
geggagetea aaegggetee atetgtggag aagageetgg tttttggage gtggtgtgta atgeagaaga aaaetgtata etegaeatea	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat tgcagactgt cggggaatgg	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc gtcctccgtg ttgcctcaaa atatggtctg	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca cagaccaccg gagttccgtt tgtgccggct	gegecategt egagaacett teaaacacta ageacaaagt ecetgaetgg aaatecaegg ggegtggeca ecaagcaaga gtgtgaatet	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac gcacgttcag tctggtgaaa cagtaagagc	3000 3060 3120 3180 3240 3300 3360 3420
gcggagctca aacgggctcc atctgtggag aagagcctgg tttttggagc gtggtgtgta atgcagaaga aaactgtata ctcgacatca agtagcccgg	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat tgcagactgt cggggaatgg agtgcgcatc acggcctgcc	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc gtcctccgtg ttgcctcaaa atatggtctg	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca cagaccaccg gagttccgtt tgtgccggct gccagcaggc	gegecategt egagaacett teaaacaeta ageacaaagt ecetgeagag ecetgaetgg aaateeaegg ggegtggeea ecaageaaga gtgtgaatet eaggettggg	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac gcacgttcag tctggtgaaa cagtaagagc ccagaatgag	3000 3060 3120 3180 3240 3300 3360 3420 3480
gcggagctca aacgggctcc atctgtggag aagagcctgg tttttggagc gtggtgtgta atgcagaaga aaactgtata ctcgacatca agtagcccgg	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat tgcagactgt cggggaatgg agtgcgcatc acggcctgcc gcctcagtct	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc gtcctccgtg ttgcctcaaa atatggtctg ccctcctggt aaaaggcaag	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca cagaccaccg gagttccgtt tgtgccggct gccagcaggc gcggggggac	gcgccatcgt cgagaacctt tcaaacacta agcacaaagt ccctgactgg aaatccacgg ggcgtggcca ccaagcaaga gtgtgaatct caggcttggg tgaagacgcg	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac gcacgttcag tctggtgaaa cagtaagagc ccagaatgag ctgttcaagc	3000 3060 3120 3180 3240 3300 3360 3420 3480 3540
geggagetea aaegggetee atetgtggag aagageetgg tttttggage gtggtgtgta atgeagaaga aaaetgtata etegaeatea agtageegg agtetgageg	tccgagacca ttaaagggaa gtgaacacat agcgcttccc ataccggaaa actgccagat tgcagactgt cggggaatgg agtgcgcatc acggcctgcc gcctcagtct ccatggaagg	caacatcagg ttacaagtgt gcagacccac ttccctgtta ctgtcgtatt gcaccctgac gacctccacc gtcctccgtg ttgcctcaaa atatggtctg ccctcctggt aaaaggcaag	cccggagaaa aacgtttgct ttaggcccgg actctcacag tgtaagatgc ctgaggaatt ttggaactca cagaccaccg gagttccgtt tgtgccggct gccagcaggc gcggggggac ctgcagaacc	gegecategt egagaacett teaaacacta ageacaaagt ecetgaetgg aaatecaegg ggegtggeca ecaageaaga gtgtgaatet eaggettggg tgaagaegeg acatecagg	gaagaagaag cttctccgaa catgtgccct cacacacagc cgaagaggag gtttcgttgt gaccttccac gcacgttcag tctggtgaaa cagtaagagc ccagaatgag ctgttcaagc ggtgcaccgg	3000 3060 3120 3180 3240 3300 3360 3420 3480 3540 3600

agaatcagtc	cctcccagtc	cgatgagaag	aagacctacc	agtgtatcaa	gtgtcagatg	3840
gttttctaca	acgagtggga	catccaggtt	catgtggcaa	atcacatgat	tgatgaaggg	3900
ctgaaccatg	agtgcaaact	ctgcagccag	acctttgact	cccccgccaa	acttcagtgt	3960
cacctgatag	agcacagctt	cgaagggatg	ggtggtacct	tcaagtgccc	cgtctgtttc	4020
acagtgtttg	ttcaagctaa	caagttgcaa	cagcatatat	tetetgeeca	tggacaagaa	4080
gacaagatct	atgactgcac	acaatgccca	cagaagtttt	tettecaaac	agagctacag	4140
aatcatacga	tgactcagca	cagcagttag	ttcatgtatg	cacggcctct	caaggagaag	4200
gacttttgtg	gcacaaaaag	ggaacatgtt	ttactctttg	cacgaaactc	ccattgttaa	4260
tgtatactct	tcagaagcat	tgtattgtat	catacaacgt	gtactatcaa	aactgttgga	4320
tgttcatgtg	ttggaacttt	tgagcaccag	atagacagac	tccttgtata	taaagtgttg	4380
cacatgtatt	atgtcgtcga	tgctaaaatg	gtcttataaa	gacaagtgga	cttgggccct	4440
attcaggcaa	gattttcaaa	gtgaacaaaa	tggcttaaga	gaaaatgttt	tcaaggaaga	4500
cagaacttaa	atgaactgtt	ctcatgtgac	tatggttgga	cttcctttta	tgtacactta	4560
agcctagaat	ttctcttttg	gtatatcaat	ggttaaaacc	caagactatt	ttttactgct	4620
ggagattete	gtgaactatg	aagagacatt	ctcacagaac	agaaccccac	atctggatac	4680
ggcccatata	tatatttgta	agccttgcag	tgtgacaggt	agcctcacca	tatatgcaat	4740
agttgttatg	tagactgtca	aagattttt	tttcctggct	acatttgaag	ctttgagtgt	4800
tcaaggtttt	ccttaatgat	ttcacacagc	caaattcttg	aatcagttga	actaacctgt	4860
atgttactgc	tctcaatgtt	taccctgcgg	cctgaacctg	gagattactg	gaattgtttt	4920
ccaagaggaa	ataaattcag	tttaccatca	gctgtgagtg	tatttgtgtg	ttttcctttt	4980
ctagttagtc	ttaccattaa	gaaagaaagc	aagaaaagga	aatctaatgc	ctgcaccctt	5040
ggctatgaaa	cttgctccag	agctgattgc	aggcatagcc	tcaatcatat	ttaaccttag	5100
cacaccgggc	cagatgcagc	tgggaagaga	tccatcatgc	ggcacaggaa	gaaagcagac	5160
ccagtctatt	tgaactgtct	tagatctacc	aggtcacatt	gtacttgaag	agtctgacat	5220
cacagatgga	tgtgatggct	gttttctgca	taatttgcag	cccaattcac	atcatgctgt	5280
gcagatctga	actcgtggtg	gatgactgca	attggagcgg	ctgtttggct	tatgtgtact	5340
taagaagcag	cgtcgttcca	aagacaaagt	gcagagcatc	atcgagtcag	agggctgtta	5400
gttctgcttc	tgctgccgac	tcccagtgga	gccttctcca	aatggcttca	tctcctggcc	5460
tgggatcacc	cgaccaggga	aggtaatgga	acttggtcat	cagcctttcg	acagggagga	5520
gatggctcta	tgagatgcct	teegeageet	accacaaaat	gctgaaaaag	agaagcccct	5580
gatttcagag	ctttttgtgc	aatttttaa	agatgagaag	ggtggcattg	tgtgccctgg	5640
accttgatag	acgtcattag	tctgagtagt	gtaagtatga	actccacact	cacggagcgc	5700
attcatggca	tcgtgcttaa	aatggttacc	acactctgag	tcctatgacc	tcttttaaac	5760
ttggaagatc	tcaagcaaat	agcaataatc	accacagaac	tttgaggtaa	gaaaaatgca	5820
acctggactg	atggatgtgt	gaccccttgt	caccaatgga	ctagcctgtg	acagccacat	5880
ctccagcatc	acaacgcagg	gtcactgccc	catggttcta	acccttaacc	tccttgacat	5940
tecettgeag	gacttgcttg	ttacatcttg	gcgtgctggt	ccctgaagcc	tcaagcttgg	6000
gctctcctaa	gaatttctgg	gtaatgctgg	ttgcagacca	cactttgaga	accactaccc	6060

ctcattc acaagtcatg gaatgaacca agtgtgaata accaagcaca tgatattatt 6120 tgtgttt tcaataaaaa aatttttta aa 6152 0> SEQ ID NO 91 1> LENGTH: 5512 2> TYPE: DNA 3> ORGANISM: Mus musculus 0> SEQUENCE: 91
0 > SEQ ID NO 91 1 > LENGTH: 5512 2 > TYPE: DNA 3 > ORGANISM: Mus musculus 0 > SEQUENCE: 91
1> LENGTH: 5512 2> TYPE: DNA 3> ORGANISM: Mus musculus 0> SEQUENCE: 91
teteece accecagggg tgtetteeat tettttgtgg eteagtttaa ggegaaaagg 60
ccaaacc actaactaac agaagggagc cctttcttcc acctcctggg agaatctcag 120
gaattta tetgaagata gegtgetete ttettaetta ttgecaceat taegaggagg 180
gcacaac caccacettg getteaagat eetgggtaga gaggeteaeg ggeatttttt 240
caaccat ctttggcgag gccttgcatc cttccactcc agcctggtga ctggggctgc 300
taaccct ttcctatttg cagagaatgc aactgtgtga cagtaactga acactgggcc 360
gtctttt caaaaggtca aggttcacaa gaactgatca aattcatgac catgggggat 420
aagaccc cagactttga tgacctcttg gcagcatttg acataccaga tatggtcgat 480
aaagcag cgattgagtc cggacacgat gaccatgaga gccacattaa gcagaatgct 540
gtggatg acgactetea caccecatea teeteagaeg teggegteag tgtgattgtg 600
aatgtoo gcaacatoga otootoogag ggggtggaaa aagatggoca caatoocaca 660
aatggtt tgcataatgg gttcctcacg gcatcctctc ttgacagcta tggtaaggat 720
gccaagt ccttaaaagg agacacacct gcctcggagg tgactcttaa ggacccggca 780
agccagt tcagccccat ctccagcgcc gaggagtttg aggacgatga gaagatagag 840
gacgacc cgcctgataa ggaggaggcg cgggccggtt tcagatcgaa tgtgctgacg 900
tcagcac cccagcagga cttcgacaaa ctgaaggcac ttggagggga aaactccagc 960
actggag tetetacate aggecacaeg gataaaaaca aggteaagag ggaggeagaa 1020
aattota taaoootgag tgtttatgag ooatttaagg toagaaaago agaggataag 1080
aaggaga actotgagaa gatgottgag agoagggtoo ttgaogggaa googagotoo 1140
aagageg acteeggeat egetgetgee geatetteea aaacgaagee gteeteeaag 1200
teetegt geatagegge cattgeggeg eteagegeta aaaaggetge gteegaetee 1260
aaagagc ctgtggccaa ctccagggaa gcctccccgt taccaaaaga agtgaatgac 1320
cccaaag ctgccgacaa gtctcccgag tcccagaatc tcatcgatgg caccaagaag 1380
tccctga agccatcaga cagtcccagg agcgtatcca gtgagaacag cagcaaaggg 1440
ccatect caccegtggg etetaceeca gecateecca aagteegeat caagaceate 1500
acatcgt ctggggagat caagaggact gtgaccagag tgctgccaga agtggacctg 1560
acategt etggggagat caagaggaet gtgaceagag tgetgeeaga agtggaeetg 1560 tetggaa agaageette tgageaggea gegteegtga tggegtetgt gacateaete 1620
tetggaa agaageette tgageaggea gegteegtga tggegtetgt gacateacte 1620
tetggaa agaageette tgageaggea gegteegtga tggegtetgt gacateacte 1620 teatett eageateage eaeggteete teeteeeege eeagggeace tetgeagaeg 1680
tetggaa agaageette tgageaggea gegteegtga tggegtetgt gacateacte 1620 teatett eageateage eaeggteete teeteeege eeagggeace tetgeagaeg 1680 atggtta eaagtgeagt tteetetgea gagetgaeee eeaaaeaggt eaecateaag 1740

gtgccggcat	ccagcctggc	caatgccaaa	ctcgtgccaa	agactgtgca	ccttgccaac	1980
cttaaccttc	tgcctcaggg	tgcccaggcc	acctctgaac	tccgccaagt	gctcaccaaa	2040
cctcagcagc	aaataaagca	ggcaataatc	aatgcagcgg	cctcgcagcc	acctaagaag	2100
gtgtctcggg	tccaggtggt	gtcgtccttg	cagagttctg	tggtggaagc	tttcaacaag	2160
gtgctgagca	gcgtcaaccc	agtcccggtt	tacaccccca	acctcagtcc	tcctgccaac	2220
gcagggatca	cgttaccgat	gcgtgggtac	aagtgcttgg	agtgcgggga	cgcctttgcc	2280
ctggagaaga	gcctgagcca	gcactacgac	aggcgaagcg	tgcgcatcga	agtgacgtgc	2340
aaccactgta	ccaagaacct	tgttttttac	aacaaatgca	gcctcctttc	tcacgcccgc	2400
gggcataagg	agaaaggcgt	ggtgatgcag	tgctcccacc	tgatcctaaa	gccggtcccg	2460
gcagaccaga	tgatagttcc	tccatccagc	aatactgctg	cttccactct	gcagagetet	2520
gtgggagctg	ccacacacac	tgtcccaaaa	gtccagcctg	gcatagccgg	ggcagttatc	2580
tcagctccgg	caagcacacc	catgagecea	gccatgcccc	tagacgaaga	cccctccaag	2640
ctctgtagac	acagteteaa	gtgtttggag	tgtaatgaag	tetteeagga	tgagccgtcc	2700
ctggccacac	atttccagca	cgctgcagac	accagtggac	aacaaatgaa	gaagcacccg	2760
tgccgccagt	gtgacaagtc	tttcagctcc	teccacagee	tgtgccgcca	caatcgcatc	2820
aagcacaaag	gcatcaggaa	agtttacgcc	tgctcgcact	gcccagactc	ccggcggacc	2880
ttcaccaagc	ggctgatgct	ggagaggcac	atacagctga	tgcacgggat	caaggaccct	2940
gatgtaaaag	agctgagtga	tgacgctggt	gatgttacca	acgatgagga	ggaggaggcg	3000
gagataaagg	aggacgccaa	ggttcccagt	cccaagcgga	agttggagga	gccggtttta	3060
gagttcaggc	ctcccagagg	agccatcact	cagccactga	agaaactgaa	aatcaatgtc	3120
tttaaggtcc	acaagtgtgc	cgtgtgtggc	ttcaccaccg	agaacctgct	gcagttccac	3180
gaacacatcc	cacagcacag	gtcggacggc	tecteccace	agtgccggga	gtgtggcctg	3240
tgctacacgt	cccacggctc	cctggccagg	cacctcttca	tegtgeacaa	gctgaaggag	3300
cctcagcccg	tgtccaagca	gaacggggct	ggggaagaca	gccagcagga	gaacaagccc	3360
agccctgagg	acgaggccgc	cgagggggca	gcatcagaca	ggaagtgcaa	agtgtgcgcc	3420
aagacttttg	aaacggaagc	tgccttaaac	acacacatgc	ggacacatgg	catggccttc	3480
atcaaatcca	aaagaatgag	ttcagctgaa	aaatagccac	agaacttcca	ggaggacaac	3540
ccctatccac	ataggaatgg	agaataagac	gtttttgtta	ccaaaagttg	gcagtataac	3600
aagagttacc	agtaccgtct	aggetgtege	cacagactcc	ctgtcctgcc	ctctcacctc	3660
tgcagatgtg	tcccttccca	taagtgttaa	ggcagtattt	gagttttaaa	gagttttgta	3720
tatatttaaa	taacgtttta	tactctttgt	tacatgtttg	tatcagtatt	tggtggaaaa	3780
tgttttgagg	tttctttgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	attaggattc	3840
tcttttttt	gtactgtttc	tttaaaatgg	agttcttagt	aacagcggca	gttcctgaat	3900
tegaaccaac	cattttgtat	gttacaaatt	tgaatgagtt	caataataac	aggctatcat	3960
gccttttta	gtgttttta	atttttagaa	ctcgccacat	aaattgtaag	tgattgtggg	4020
tctcacaaca	ctagcaactt	ttaagtgtct	tagcaccaca	cgcagcgtgc	ctgctcctag	4080
caaccgaggg	ctccaaggac	aacatcaccc	aggtgaggat	gtggcctgag	ccaccccaga	4140
	att aanaaa	atagatatat	ccacactoca	caaaagaggt	caggagttca	4200
cagcgtcagc	Cttccaggcc	Ctacctctgt	ccacagegga	o a a a a g a g g o	oaggagooa	

				-contir	nuea		
gtagggtgtc	cttcagtcca	tctgggagag	tgaggaagaa	gagattcaaa	aagtggagac	4260	
agtggagctg	gcgagttttc	taggttagtt	cacaggctga	cttacagggc	actaggaggc	4320	
aggctaggaa	aagggcagcc	tgtggtcaga	gttgaaagtc	ataattagac	ctatagctct	4380	
ctattgtcag	gttttgtcat	agaactcacc	aactattccg	aagacatata	tatacttcaa	4440	
gggtatcaag	tatatctctg	gttcttgata	gggacaaaag	ggcaggtttg	acttaaccct	4500	
ttgctgtcta	cacagttggg	ttcctgttct	gggtgctact	gccaaatgtt	ctggtactta	4560	
agtgtcgaga	cgcccagcct	caccaccgac	ttagcactgc	agcagcctgt	actctgcaac	4620	
tggccataga	cgagccacca	ggcttctaga	gtcgtctcag	caccctctca	aggtcacctg	4680	
actggagcac	tgccgacgac	gtgctcttgg	tcacatccct	gtatagttct	ctgggaaagc	4740	
tataaatata	tatattttgg	ttattgtttt	gtgttttccg	ttacatttta	tatcttgtat	4800	
ttatcgcccg	atatgttttg	tacttttgtt	ttcctaaaac	aaagaaatcc	atgtgtgtgt	4860	
atatagagac	ttgcatgcta	gactgtagtc	aatgttcagt	tccttgaaaa	gtcttgctgc	4920	
tgtcgggtgt	gcaccttaca	ccgccgcgac	tgtattcaac	ccatttcaca	tgtaaataaa	4980	
tgaggaacgt	ctggcccttg	agcttcttca	agagagttat	tggtgggtct	ctgacatcat	5040	
acagtcgggg	gagtgactca	ttgggggaca	ggctgcagaa	cactgcaggc	ttettteece	5100	
ctctgaagaa	tggcttctgg	ttcctatcgg	cgaccaactt	gtcgccactc	tgccgctctc	5160	
tgttgacgac	atgggtacaa	tccaagggtg	tgagatattc	ctcggcttga	agtgtagttg	5220	
ctgttgcgtg	tcacatcctc	acccacttgt	gtccactgca	ctttcacacg	ttcctgcatt	5280	
tgaaccttgc	aataagcctg	cgtggcagac	acgcaggtcc	gtgcagccgt	acagttgagg	5340	
aggetgegee	caggttcagc	tcttcgcccg	gtccctcata	gctggtaagt	ggctttgcat	5400	
aatagaaccc	aaatattttg	ctctcaatct	tgccctttgt	ggttatgtac	atattgacaa	5460	
atattcattt	attcaacaaa	taaaagttat	gtgcaaaaaa	aaaaaaaaa	aa	5512	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 4902	ısculus					
<400> SEQUE	ENCE: 92						
ggaccgtgct	gcgcaggtga	gtgcggaccc	attgcggttc	gcggtgtgtc	ttggcggaca	60	
gcacgcaggg	gctcccgcag	ccagcctcgc	gggccaccaa	gtctccgtgt	ccacagcggt	120	
gacgcttgag	tggcgaccat	tgtcagaccc	agaaaactca	gcaggtggcg	gatcggggaa	180	
gctgtgtcac	ttcacagagg	ggtagctgcg	tgcgggggg	aagcggctcg	aggtgacatc	240	
gcaggtctct	tgacccgccg	cggccctgca	gctccagtcc	ttccttgaga	gggagaccag	300	
gtgacagcag	ccatgatece	atcggtttgg	ccccagaagt	cggtgacctt	tgaggacgtg	360	
gctgtgtact	tcacccagac	ggaatgggat	ggtctgtctc	ctgggcagag	agcgctgtac	420	
agggatgtca	tgctggagaa	ctataggaac	ctggcctctg	taggatttcc	acttctcaaa	480	
cctgctgtga	tctcacagct	agaggaacga	aaggatctgg	aaaacctgtt	tcagctggcc	540	
actggaacgg	actcccaggg	cctctggact	gaatgtactg	ctgtccagtc	cggcaataat	600	
						660	

660

720

ctgacaaaag aagtgcatga agaagaaaag agtacattat ttgaacttca gaaggacttt

tctcaggaaa caaacttttc aaaaacgtat attttgggcc aacaacagga aatccggtca

gcaggaagtg agaggggag	g tgccagtgcc accgatggaa	gagetaagge gagetetgtg	780
gaagggtgtt tgtttagtca	a gactccacaa ttgtcccago	g atcataccag ctccactgga	840
gagctatatt ctgataccaa	a acttagtaag agtgaaagaa	tcactacaga ggaaagacct	900
ctgaaaccca gagaattagc	c agaggettet caaggeaged	ctcaagttaa tcagcttcca	960
gagatetgtg atgtggagaa	a gccctaccag tgtgcagaat	gtggcaaagc cttcagtgtt	1020
aaagccaagt tcgtctggca	a tcagagactt cataatggag	g agaaaccttt caaatgtgtg	1080
gaatgtggga agtgcttcag	g ctacagttcc cactacatca	cacatcagac aatccacagt	1140
ggagagaagc cttatcagtg	g taaggtatgc ggcaaggcct	tcagtgttaa tggaagtctc	1200
gttagacacc agaggatcca	a cacaggagag aagccgtato	agtgcaagga ctgcggggct	1260
ggcttcggct gcagttctgc	c gtacattact catcagagas	cccacactgg agagaagcct	1320
tacgagtgta gtgactgtgg	g gaaageette aatgttaaeg	g caaaactgat tcagcatcaa	1380
agaattcaca ctggagagaa	a gccttatgag tgcgatgtgt	gegggaaggg etteeggtge	1440
agcacccagc ttaggcagca	a tcagagtata cacactgggg	g aaaagccgca tcgctgcagc	1500
gagtgtggga aaggetteac	c taaaaatgca aagctcatto	aacatcageg agtgeacaeg	1560
ggggagaage cetacgeete	g cagtgactgc ggaaagactt	tcagtgccaa agggaagctg	1620
atccagcacc agaggatcca	a cacgggcgag cggccgtato	g aatgcagtga gtgtgggaag	1680
tettteaggt gtaacteeca	a gcttcggcag catctgagaa	tccatactgg ggagaagcca	1740
tataagtgca gtgagtgtgg	g caaggeette aaegteaate	g cgaagetgat geageacegg	1800
agaacccaca ccggggagaa	a gcccttcgaa tgcaaggagt	gegggaaatg etttaettet	1860
aaaagaaacc tgctggatca	a ccagcgagcc cacaccggag	g aaaageegta teaatgtage	1920
gagtgtggga aagctttcag	g tatcaatgcc aagttaacca	gacatcagca aatacatacc	1980
agggagaagc ctttcaagtg	g tatggaatgc gagaaagcgt	tcagctgtag ctctgactat	2040
attgtgcacc agaggatcca	a cactggagag aaacccttto	agtgtggcga gtgtggcaaa	2100
gccttccacg tcaatgctca	a cttaattaga caccagagaa	gccatactgg ggagaaacct	2160
ttccggtgca cagaatgtgg	g caagggette ageettagtt	ctgactgtat tatacatcag	2220
actgtccata cttggaagaa	a accctatgta tgtaacgtat	gtgggaaaac tttcaggttt	2280
agcttccaac taagccagca	a ccaagatgtt cacaatgaag	g acaaatccta atgaagaaaa	2340
aaaaaactaa aaaaacaaaa	a aaaccccaac ccaccaacca	aacaaacaaa aaaacacccc	2400
aaaaacaaca acaacaacaa	a acccacacag atacacaaaa	taataccaac aaacaagcca	2460
aaaccaaacc aaccaaccaa	a acctatgttt aataagaaad	ggattgtggc tcatcaatta	2520
ttacttggag gaaaaccatt	agagggaaat gattgtggca	gtcttcattt ggaaacaatt	2580
tttctctttt atttttaatc	c aggatgagca gctggaaaaa	tatatcaaaa ataacgtttt	2640
ttaaaaatgt atatttgttt	ttcaagacag ggtttccct	tgtagetttg getateetgg	2700
agetggetgt gtagaceage	g ctggcctcca actcagatgo	acctgcctct gcctcctgag	2760
tgctgatgtt aaaggtgtgc	c atcaccacca cccaactaat	aacttgattt atagcagtaa	2820
ccagtcagga aatataatga	a aagaaaacat cctattccca	gcagcaccac gaaaagtaga	2880
ttttctagga attttgtggg	g gctgaagaaa atgagggatt	ctcaactgag ggagaccaaa	2940
ggaaacaaat acaagaaggc	c ggagagaaat gaatgtattg	g ctgcttcatt ttgacaacaa	3000

```
gaatgcatta cactttcttt aaaaggggga aaagcaaaca ttaaaataaa aattgttcaa
                                                                    3060
agaagccttt aaaaacatca gatccaaagt ggagatgaac aagaaggaaa atgttggcaa
                                                                    3120
atgaccactc aaaaataaac aaacctgtgt gtttggttgt aaatacttcc aaataagttt
                                                                    3180
gagttgtaaa acacagacat acacacaca acaaatggaa agacctttgt aaaatctgtg
                                                                    3240
atataaagtg taatatctag tgctcagatt ttaacaaaag ataacttaaa aatcaatagt
                                                                    3300
gacattaaca gacagtatto tagagtoaca agagttotaa agaaccocaa ggagtgcaaa
                                                                    3360
ttagtgaaga cttgcatgca tgtcacattg agtatatgat atgcttaccc cccaatcctc
tgcagccctc agtgaatgta gatgctgtat ttgctatcga tgcctgccat acaagcatac
                                                                    3480
actatattaa cagcatgtta gagtteetae tttgtattga etgaactett caaacatage
                                                                    3540
tacgccctga aggaaggtat cctgctttga ttttgatgct ttgtgaattg ggctccatga
                                                                    3600
agatgttgga attettgaga taccetttga aatetettae cecetttaag aaaaatgtaa
                                                                    3660
gccattagta agagcacttg agctgcccag aagctgagaa acagctgttg tttctctgtt
                                                                    3720
gtcaactggt aatagttaag aaaagttttc ttacttaaaa cacctctagt accaaatatt
                                                                    3780
catqtttcca caccaqttca attqtttqaa qacaccaact qqatqtcctc caatctatat
                                                                    3840
caatttagtc tctacccata atatcctgct agtgagatgg gcttagtctg agaagactgt
                                                                    3900
ctctccccac cctccccaca ttcagacatt aatgaggagt cctacattac tgatttggct
                                                                    3960
acagattgaa ccctctgggt tcagtaattt gctatggtaa ctcaccaaac ataaattgtt
                                                                    4020
taaagttacc atttactcta tattgtgaat gtcacaggag cagccagatg aagagatgga
                                                                    4080
acaagatcca aagggttccc acgtgaaggt gtgtttgtct ttatagagtt ggagtgcctt
                                                                    4140
accetattga geettgttta gtgettttat ggagattaea etgtgtgeee atgattgatg
                                                                    4200
aagteettgg etgttacata agttteeeet geeagaagte aacaggggtt getgaaagtt
                                                                    4260
ccaactctgt tagcacatag ttggctcctt tgacaatcag ccctaatcct ggagttagtg
                                                                    4320
acactgagtc tagcaacaag tcactttagc ataaacagat ggctgtaaga gaccttagga
                                                                    4380
gtaacaaaag gctttataat atttttctgc tggaaacaag agagaccaaa catacttaag
                                                                    4440
tcacagacag aaacccattt acttggttca catcccctta tgtctgtctg ggcaatttgg
                                                                    4500
ggatttgttt gtctttggtt cagtagttaa gtgggataaa atgaaaatgc agcactctgg
                                                                    4560
aagctgtcaa tctaggaaca cacacgaaca ttagacagtg cagaatatta gtgtttttcc
ataaagcagt totttocaaa atgtottoat ttaaaagtat gtaatggota gtgacatggo
                                                                    4680
tcagcaggta aaggcgaagc ccaacctgag tttcaacctc tagagcccac atggtgggaa
                                                                    4740
ggacagactg acacacagtt gtcctctggt ctctgtgcat gcatgaaaac aatgtcattc
                                                                    4800
ttaaaaacta aaatacctat actgaaatta agcattttga tcatcttgaa gtgtgcaact
                                                                    4860
                                                                    4902
tgtctattca aataaatcta ataaaactgc agaattgctg ag
```

```
<210> SEQ ID NO 93
```

<211> LENGTH: 1000

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer

<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (1)..(1000)

<223> OTHER INFORMATION: This sequence may be 30-1000 bases in length

<400> SEQUENCE: 96

```
<220> FEATURE:
<223> OTHER INFORMATION: See specification as filed for detailed
  description of substitutions and preferred embodiments
<400> SEQUENCE: 93
60
300
360
420
480
                              540
600
660
720
                              780
840
900
960
1000
<210> SEQ ID NO 94
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
  primer
<400> SEQUENCE: 94
                               24
cctgtcctcg cccgagtccc tgcc
<210> SEQ ID NO 95
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
  primer
<400> SEQUENCE: 95
ctcgtcccga gcccaccatc tccacttcct cc
                               32
<210> SEQ ID NO 96
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
```

```
caacaaccgt atgcccatga cagg
                                                                       24
<210> SEQ ID NO 97
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 97
ggaggtggga tggagggaat ccttg
                                                                       25
<210> SEQ ID NO 98
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 98
gggaaattga agtccagcca agagtg
                                                                       26
<210> SEQ ID NO 99
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 99
cccggtgaac aagcgagagt cggcgtc
                                                                       2.7
<210> SEQ ID NO 100
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 100
gcatgggttc ctcggtcaat gacg
                                                                       24
<210> SEQ ID NO 101
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 101
                                                                       24
gcgccctcgg tcatggatct cagc
<210> SEQ ID NO 102
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
```

```
<400> SEQUENCE: 102
gaccctattt gtcagcggtc tgcctc
                                                                       26
<210> SEQ ID NO 103
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 103
ctccagaggc ttcggtttcg tcac
<210> SEQ ID NO 104
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 104
gtggagaccg gaaagtacca ggaagg
                                                                       26
<210> SEQ ID NO 105
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 105
ggaggccgac tttggatggg agcag
                                                                       25
<210> SEQ ID NO 106
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 106
ggatgggttc agtaatgccc aggagaag
                                                                       28
<210> SEQ ID NO 107
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 107
caggtttaga tggagtacgg cagtgtg
                                                                       27
<210> SEQ ID NO 108
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 108
catcaccaag gacaaccggc gacac
                                                                       25
<210> SEQ ID NO 109
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 109
                                                                       27
cgaggaagaa gagggagaga aactgtc
<210> SEQ ID NO 110
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 110
                                                                       25
ggtgaccttt gaggacgtgg ctgtg
<210> SEQ ID NO 111
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEOUENCE: 111
caacgggcct tcttcttcct cttcctc
                                                                       27
<210> SEQ ID NO 112
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 112
                                                                       24
ctgctccgtg ctacccactc actg
<210> SEQ ID NO 113
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 113
cgattaccta cccagcgacc actc
<210> SEQ ID NO 114
<211> LENGTH: 28
<212> TYPE: DNA
```

```
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 114
ccaacacttg agttcctttc cgcctgtc
                                                                       28
<210> SEQ ID NO 115
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 115
ccgaaagctg tctaagatcg agacg
                                                                       25
<210> SEQ ID NO 116
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 116
                                                                       25
ggcagcaccc acatcagcag cagag
<210> SEQ ID NO 117
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 117
ctggatgaaa gagtcgaggc aaac
                                                                       24
<210> SEQ ID NO 118
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 118
gagtttggat gaagcgcagg ccag
                                                                       24
<210> SEQ ID NO 119
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 119
                                                                       24
caagggtctc caaacgtcca caac
<210> SEQ ID NO 120
```

```
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 120
                                                                       24
gccatcgaaa ggaagagcct ggac
<210> SEQ ID NO 121
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 121
gagcagagat gacgtagccc agtg
                                                                       24
<210> SEQ ID NO 122
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 122
cgctctcctt cgcgggctta ccctcc
                                                                       26
<210> SEQ ID NO 123
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 123
gaactgggcc atccgcgcca tcgagac
                                                                       27
<210> SEQ ID NO 124
<211> LENGTH: 28
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 124
gtettettea accatetega etegeagg
                                                                       28
<210> SEQ ID NO 125
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 125
                                                                       27
gggtttcgtt gtgtggtgtg tatgcag
```

```
<210> SEQ ID NO 126
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 126
                                                                       28
cggcagcggg aaggtgaacg ggagctac
<210> SEQ ID NO 127
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 127
                                                                       27
cggtcccggc agaccagatg atagttc
<210> SEO ID NO 128
<211> LENGTH: 28
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 128
gcacgagaag cggatgtcaa aggacgag
                                                                       28
<210> SEQ ID NO 129
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 129
                                                                       27
ctgatgtggg aggtacgtgg gagcaag
<210> SEQ ID NO 130
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 130
gagcgaggac cagtcactat ttgag
                                                                       2.5
<210> SEQ ID NO 131
<211 > LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 131
```

cgtcgccgcc gggtcaggta gcgattg	27
<210> SEQ ID NO 132 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: primer	Synthetic
<400> SEQUENCE: 132	
gcaaaggtga acacaaggtc agtcagagg	29
<210> SEQ ID NO 133 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: primer	Synthetic
<400> SEQUENCE: 133	
catectette tggteettea ceaac	25
<210> SEQ ID NO 134 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: primer	Synthetic
<400> SEQUENCE: 134	
caatttcatc gggaacagca accatg	26
<210> SEQ ID NO 135 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: primer	Synthetic
<400> SEQUENCE: 135	
ctgcacccga tttcttacgg cttg	24
<210> SEQ ID NO 136 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: primer	Synthetic
<400> SEQUENCE: 136	
gttgacgctc caggatgttg tggttg	26
<210> SEQ ID NO 137 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: primer	Synthetic

```
<400> SEOUENCE: 137
gtccttatca gggtcatcat cgtc
                                                                        24
<210> SEQ ID NO 138
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 138
                                                                        27
ccatgttgtt ctttctgcgc ctcgccc
<210> SEQ ID NO 139
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 139
gaaagcggca ggaggaggaa gagc
                                                                        24
<210> SEQ ID NO 140
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 140
ctgccatagg ttgccacaaa gttg
                                                                        24
<210> SEQ ID NO 141
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 141
                                                                        27
gtttgcccat actccttccc acgatac
<210> SEQ ID NO 142
<211> LENGTH: 29
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 142
cttctcgttg gtgatatgct ctggacctg
                                                                        29
<210> SEQ ID NO 143
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
```

```
primer
<400> SEQUENCE: 143
ccaccoggac agogogatto cacc
                                                                       24
<210> SEQ ID NO 144
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 144
gcaaggccca agacagcagg aacaag
                                                                       26
<210> SEQ ID NO 145
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEOUENCE: 145
                                                                       24
caqcatqqaq aqcqqaqaca qqtc
<210> SEQ ID NO 146
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 146
ctgccgctgt ctcttgcact tgtacc
                                                                       26
<210> SEQ ID NO 147
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 147
                                                                       27
gactaaacaa acaccettee acagage
<210> SEQ ID NO 148
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 148
cattatttgg actgtaccgc tggcctgg
                                                                       28
<210> SEQ ID NO 149
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
```

```
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 149
gaggctgagg gttaaaggca gtggag
                                                                       26
<210> SEQ ID NO 150
<211> LENGTH: 28
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 150
cgtcaggtag cgattgtagt gaaactcc
                                                                       28
<210> SEQ ID NO 151
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 151
gcaggacagt tctttctccg aatc
                                                                       24
<210> SEQ ID NO 152
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 152
ctgccccca ggtcacgacg gctgc
                                                                       25
<210> SEQ ID NO 153
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 153
                                                                       25
cgccgaagaa ggatcgaaat agctc
<210> SEQ ID NO 154
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 154
                                                                       25
ggtagttgga aggcagcgcg taggc
<210> SEQ ID NO 155
<211> LENGTH: 24
```

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 155
gatgccgcac ttcttggcta actc
                                                                       24
<210> SEQ ID NO 156
<211> LENGTH: 24
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 156
gtcacatttg gcaggtcatc atcg
                                                                       24
<210> SEQ ID NO 157
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 157
                                                                       2.7
ccactcgtag atgtcttgtt cacacac
<210> SEQ ID NO 158
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 158
gtggttgttc tcctgctgta gcctgg
                                                                       26
<210> SEQ ID NO 159
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 159
                                                                       25
gtggagcgag catgtagcca gttgg
<210> SEQ ID NO 160
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
<400> SEQUENCE: 160
cttcaggttt ctgccttctt tgccaatc
                                                                       28
```

```
<210> SEQ ID NO 161
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 161
                                                                       28
ggtatcgggt ggtgtgttgc aggctggg
<210> SEQ ID NO 162
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
     primer
<400> SEQUENCE: 162
                                                                       25
gaacaaacac tgtgaaacag acggg
<210> SEQ ID NO 163
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 163
gcacagggtg aggaggaggc tgaagag
                                                                       2.7
<210> SEQ ID NO 164
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 164
ctcctcctcc tcatcgttgg taacatc
                                                                       27
<210> SEQ ID NO 165
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 165
                                                                       27
cacatcatct actggactct ccatctc
<210> SEQ ID NO 166
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 166
caggcaaagt cctcttcaca gccaagg
```

```
<210> SEQ ID NO 167
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      primer
<400> SEQUENCE: 167
                                                                       24
ccatattctt tcaccgccca ctcc
<210> SEQ ID NO 168
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 168
                                                                       26
acacggccgt gtattactgt gcaagg
<210> SEQ ID NO 169
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 169
                                                                       25
cacggccgtg tattactgtg caagg
<210> SEQ ID NO 170
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 170
acacggccgt gtattactgt
                                                                       20
<210> SEQ ID NO 171
<211> LENGTH: 26
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 171
acteggeegt gttteeetgt geaagg
                                                                       26
<210> SEQ ID NO 172
<211> LENGTH: 27
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 172
```

```
tacacggccg tgtattactg tgcaagg
                                                                       27
<210> SEQ ID NO 173
<211> LENGTH: 13
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 173
caaggaggcc tta
                                                                       13
<210> SEQ ID NO 174
<211> LENGTH: 11
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 174
aggaggcctt a
                                                                       11
<210> SEQ ID NO 175
<211> LENGTH: 19
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 175
gcaagacagg ggctactat
                                                                       19
<210> SEQ ID NO 176
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 176
cctgatggtt aggg
                                                                       14
<210> SEQ ID NO 177
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 177
                                                                       21
gatagtagct ggctttttct t
<210> SEQ ID NO 178
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: a, c, t, g, unknown or other
<400> SEQUENCE: 178
cctgatggtt agggn
                                                                       15
<210> SEQ ID NO 179
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 179
cctgatggtt agggc
                                                                       15
<210> SEQ ID NO 180
<211> LENGTH: 10
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 180
                                                                       10
tactacggta
<210> SEQ ID NO 181
<211> LENGTH: 14
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 181
caaggcacca ctct
                                                                       14
<210> SEQ ID NO 182
<211> LENGTH: 18
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 182
                                                                       18
totgcacatt ccaattot
<210> SEQ ID NO 183
<211> LENGTH: 14
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 183
                                                                       14
caaggcacca ctct
<210> SEQ ID NO 184
```

```
<211> LENGTH: 16
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oliqonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (2)..(3)
<223> OTHER INFORMATION: a, c, t, g, unknown or other
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: a, c, t, g, unknown or other
<400> SEQUENCE: 184
enngneecce ttteac
                                                                        16
<210> SEQ ID NO 185
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEOUENCE: 185
qtqactactt tqactact
                                                                        18
<210> SEQ ID NO 186
<211> LENGTH: 17
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> SEQUENCE: 186
ctttgactac tggggcc
                                                                        17
```

1. A hematopoietic stem cell (HSC) inducing composition comprising one or more expression vector encoding four or more HSC inducing factors selected from: CDKN1C, DNMT3B, EGR1, ETV6, EVI1, GATA2, GFI1B, GLIS2, HLF, HMGA2, HOXA5, HOXA9, HOXB3, HOXB4, HOXB5, IGF2BP2, IKZF2, KLF12, KLF4, KLF9, LMO2, MEIS1, MSI2, MYCN, NAP1L3, NDN, NFIX, NKX2-3, NR3C2, PBX1, PRDM16, PRDM5, RARB, RBBP6, RBPMS, RUNX1, RUNX1T1, SMAD6, TAL1, TCF15, VDR, ZFP37, ZFP467, ZFP521, ZFP532, ZFP612, and ZPF467.

2-47. (canceled)

- **48**. The HSC inducing composition of claim **1**, wherein the four or more HSC inducing factors are HLF, RUNX1T1, PBX1, LMO2, PRDM5, ZFP37, MYCN, MSI2, NKX2-3, MEIS1, and RBPMS.
- **49**. The HSC inducing composition of claim **1**, wherein the four or more HSC inducing factors are HLF, RUNX1T1, ZFP37, PBX1, LMO2, and PRDM5.
- **50**. The HSC inducing compositions of claim **1**, wherein the expression vector is a retroviral vector.
- **51**. The HSC inducing compositions of claim **1**, wherein the expression vector is a lentiviral vector.

- **52**. The HSC inducing composition of claim **51**, wherein the lentiviral vector is an inducible lentiviral vector.
- **53**. A method for preparing an induced hematopoietic stem cell (iHSC) from a somatic cell comprising:
 - a. transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding RUNX1T1; a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding LMO2; and a nucleic acid sequence encoding PRDM5, wherein each said nucleic acid sequence is operably linked to a promoter; and
 - b. culturing the transduced somatic cell in a cell media that supports growth of hematopoietic stem cells, thereby preparing an iHSC.
- **54**. The method of claim **53**, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding PRDM16 a nucleic acid sequence encoding ZFP467; and a nucleic acid sequence encoding VDR wherein each said nucleic acid sequence is operably linked to a promoter.
- 55. The method of claim 53 further comprising transducing the somatic cell with one or more vectors comprising a nucleic acid sequence encoding ZFP37; a nucleic acid sequence encoding MYCN; a nucleic acid sequence encoding

MSI2; a nucleic acid sequence encoding NKX2-3; a nucleic acid sequence encoding MEIS1; and a nucleic acid sequence encoding RBPMS; wherein each said nucleic acid sequence is operably linked to a promoter.

- **56**. The method of claim **53**, wherein the expression vector is a retroviral vector.
- 57. The method of claim 53, wherein the expression vector is a lentiviral vector.
- **58**. The method of claim **57**, wherein the lentiviral vector is an inducible lentiviral vector.
- **59**. The method of claim **53**, wherein the somatic cell is a fibroblast cell.
- **60**. The method of claim **53**, wherein the somatic cell is a hematopoietic lineage cell.
- 61. The method of claim 60, wherein the hematopoietic lineage cell is selected from promyelocytes, neutrophils, eosinophils, basophils, reticulocytes, erythrocytes, mast cells, osteoclasts, megakaryoblasts, platelet producing megakaryocytes, platelets, monocytes, macrophages, dendritic cells, lymphocytes, NK cells, NKT cells, innate lymphocytes, multipotent hematopoietic progenitor cells, oligopotent hematopoietic progenitor cells, and lineage restricted hematopoietic progenitors.
- **62**. The method of claim **60**, wherein the hematopoietic lineage cell is selected from a multi-potent progenitor cell (MPP), common myeloid progenitor cell (CMP), granulo-cyte-monocyte progenitor cells (GMP), common lymphoid progenitor cell (CLP), and pre-megakaryocyte-erythrocyte progenitor cell.
- **63**. The method of claim **60**, wherein the hematopoietic lineage cell is selected from a megakaryocyte-erythrocyte progenitor cell (MEP), a ProB cell, a PreB cell, a PreProB

- cell, a ProT cell, a double-negative T cell, a pro-NK cell, a pro-dendritic cell (pro-DC), pre-granulocyte/macrophage cell, a granulocyte/macrophage progenitor (GMP) cell, and a pro-mast cell (ProMC).
- **64**. A method of promoting transdifferentiation of a Pro-PreB cell to the myeloid lineage comprising:
 - a. transducing a ProPreB cell with one or more vectors comprising a nucleic acid sequence encoding ZFP467, a nucleic acid sequence encoding PBX1; a nucleic acid sequence encoding HOXB4; and a nucleic acid sequence encoding MSI2; wherein each said nucleic acid sequence is operably linked to a promoter; and
 - b. culturing the transduced ProPreB cell in a cell media that supports growth of myeloid lineage cells, thereby transdifferentiating the ProPreB cell to the myeloid lineage.
- **65**. The method of claim **64**, wherein the transducing of step (a) further comprises one or more vectors comprising one or more of: a nucleic acid sequence encoding HLF, a nucleic acid sequence encoding LMO2; a nucleic acid sequence encoding PRDM16; and a nucleic acid sequence encoding ZFP37.
- **66.** The method of claim **63**, wherein the expression vector is a retroviral vector.
- **67**. The method of claim **63**, wherein the expression vector is a lentiviral vector.
- **68**. A kit for making induced hematopoietic stem cells (iHSCs) comprising the HSC inducing compositions of claim 1.

* * * * *