Office de la Proprieté Canadian CA 2533737 C 2012/10/23
Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 533 737
Un organisme An agency of 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C

(86) Date de déepot PCT/PCT Filing Date: 2004/08/13

(87) Date publication PCT/PCT Publication Date: 2005/02/24
(45) Date de délivrance/lssue Date: 2012/10/23

(85) Entree phase nationale/National Entry: 2006/01/25

(86) N° demande PCT/PCT Application No.: US 2004/026506
(87) N° publication PCT/PCT Publication No.: 2005/017746

(30) Priontes/Priorities: 2003/08/14 (US60/495,368);
2003/09/03 (US60/500,096); 2004/08/12 (US10/917,660)

(51) Cl.Int./Int.Cl. GO6F 9/46 (2006.01),
GO6F 9/50(2006.01)

(72) Inventeur/Inventor:
COLRAIN, CAROL, US

(73) Proprietaire/Owner:
ORACLE INTERNATIONAL CORPORATION, US

(74) Agent: SMITHS IP

(54) Titre : NOTIFICATION D'APPLICATION RAPIDE POUR APPLICATIONS EXPLOITEES DANS UN SYSTEME
INFORMATIQUE EN GRAPPE
54) Title: FAST APPLICATION NOTIFICATION IN A CLUSTERED COMPUTING SYSTEM

1 - T T SERVER CLUSTER 104
: SUBSCRIBERS T eRRVIC
. O SERVICE —
| } 1 p6a |INSTANCE| NODE B
| . LT Oa
| CL]ENT | : E :L- | 1083 B l,.l_)_@
’ 1022 | ‘ :
| ! | S Rm ‘g{,CE INSTANCE| NODE
f r | 108h 1ob | | —
| | | DATABASE
| 112
| B : , . : | .
| CLIENT| 1t é : : ~ *
| Hn . SERVICE INSTANCE| NODE _
‘ . 106n 108n 110n
| EVENT | NOTIFICATION
HANDLER - SERVICE DAEMON
120 118
(57) Abréegée/Abstract:

With fast notification of changes to a clustered computing system, through which a number of events are published for system
state changes, applications can quickly recover and sessions can quickly be rebalanced. VWhen a resource associated with a
service experiences a change In status, such as a termination or a start/restart, a notification event is iImmediately published.
Notification events contain information to enable subscribers to identify, based on matching a session signature, the particular
sessions that are affected by the change In status, and to respond accordingly. This allows sessions to be quickly aborted and
ongoing processing to be quickly terminated when a resource fails, and allows fast rebalancing of work when a resource Is
restarted.

SRR VNEEEN
R 5. sas ALy
O
A

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

CA 02533737 2006-01-25

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/017746 A3

(51) International Patent Classification’”: GOOF 9/46, 9/50 (74) Agent: HENKHAUS, John, D.; Hickman Palermo
Truong & Becker LLP, Suite 550, 2055 Gateway Place,

(21) International Application Number: San Jose, CA 95110-1089 (US).
PCT/US2004/026506

(43) International Publication Date

24 February 2005 (24.02.2005)

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, K7, L.C, LK, LR, LS, LT, LU, L.V, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

(22) International Filing Date: 13 August 2004 (13.08.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/495,368 14 August 2003 (14.08.2003) US PH, PL, PT, RO, RU, SC, 8D, SE, SG, SK, SL, SY, TJ, TM,
60/500,096 3 September 2003 (03.09.2003) US IN, IR, T1, T2, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
10/917,660 12 August 2004 (12.08.2004) US L.

(71) Applicant (for all designated States except US): ORACLE (84) Designated States (unless otherwise indicated, for every

INTERNATIONAL CORPORATION [US/US]; 500 Or- kind of regional protection available): ARIPO (BW, GH,

acle Parkway, Redwood Shores, CA 94065 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(72) Inventor; and European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, 1,

(75) Inventor/Applicant (for US only): COLRAIN, Carol FR, GB, GR, HU, IE, IT, LU, MC, NL, PL., PT, RO, SE, SI,

[AU/US]; 20 Dockside Circle, Redwood Shores, CA SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
94065 (US). GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: FAST APPLICATION NOTIFICATION IN A CLUSTERED SYSTEM

- - SERVER CLUSTER 104
SUBSCRIBERS e e
. ! iQERVICE .
— S . 106a INSTANCE;{ NODE
CLIENT SR g | 1o
e E ESI«:F;HCE |
[| L
T RV INSTANCE| NODE
100k 108h 110b —
 DATABASE
112
CLIENT | S |
—— | SERICE INSTANCE| NODE | |
z : 108n 1i0n
| EVENT NOTIFICATION
HANDLER |- SERVICE DAEMON
120 118

5/017746 A3 0V AT DO 000 A A L AR A

& (57) Abstract: With fast notification of changes to a clustered computing system, through which a number of events are published
& for system state changes, applications can quickly recover and sessions can quickly be rebalanced. When a resource associated with
N ; service experiences a change in status, such as a termination or a start/restart, a notification event is immediately published. Notifi-
cation events contain information to enable subscribers to identify, based on matching a session signature, the particular sessions that
are affected by the change in status, and to respond accordingly. This allows sessions to be quickly aborted and ongoing processing
to be quickly terminated when a resource fails, and allows fast rebalancing of work when a resource is restarted.

O
=

CA 02533737 2006-01-25

WO 2005/017746 A3 |IHIHHVA!H DDA IO 11 0 O A A A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gazette.

claims and to be republished in the event of receipt of

amendments

(88) Date of publication of the international search report:
20 October 2005

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

FAST APPLICATION NOTIFICATION IN A CLUSTERED COMPUTING
SYSTEM

FIELD OF THE INVENTION
[0001] The present invention relates generally to clustered computing systems and,
more specifically, to techniques for fast notification of a change in state 1n a clustered

system, using events.

BACKGROUND OF THE INVENTION

CLUSTERED COMPUTING SYSTEM

[0002] A clustered computing system 1s a collection of interconnected computing
elements that provide processing to a set of client applications. Each of the computing
elements 1s referred to as a node. A node may be a computer mterconnected to other
computers, or a server blade interconnected to other server blades in a grid. A group of
nodes 1n a clustered computing system that have shared access to storage (e.g., have
shared disk accesé to a set of disk drives or non-volatile storage) and that are connected
via interconnects 1s referred to herein as a work cluster.

[0003] A clustered computing system 1s used to host clustered servers. A serveris
combination of integrated software components and an allocation of computational
resources, such as memory, a node, and processes on the node for executing the
integrated software components on a processor, where the combination of the software
and computational resources are dedicated to providing a particular type of function on
behalf of clients of the server. An example of a server 1s a database server. Among other
functions of database management, a database server governs and facilitates access to a
particular database, processing requests by clients to access the database.

[0004] Resources from multiple nodes 1n a clustered computing system can be
allocated to running a server's software. Each allocation of the resources of a particular

node for the server is referred to herein as a "server instance" or instance. A database

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

server can be clustered, where the server instances may be collectively referred to as a
cluster. Each instance of a database server facilitates access to the same database, in

which the integrity of the data is managed by a global lock manager.

SERVICES FOR MANAGING APPLICATIONS ACCORDING TO SERVICE
LEVELS

[0005] Services are a feature for database workload management that divide the
universe of work executing in the database, to manage work according to service levels.
Resources are allocated to a service according to service levéls and priority. Services are
measured and managed to efficiently deliver the resource capacity on demand. Source
high availability service levels use the reliability of redundant parts of the cluster.

[0006] Services are a logical abstraction for managing workloads. Services can be
used to divide work executing in a database cluster into mutually disjoint classes. Each
service can represent a logical business function, e.g., a workload, with common
attributes, service level thresholds, and priorities. The grouping of services is based on
attributes of the work that might include the application function to be invoked, the
priority of execution for the application function, the job class to be managed, or the data
range used 1n the application function of a job class. For example, an electronic-business
suite may define a service for each responsibility, such as general ledger, accounts
receivable, order entry, and so on. Services provide a single system image to manage
competing applications, and the services allow each workload to be managed in isolation

and as a umit. A service can span multiple server instances in a cluster or multiple clusters
In a grid, and a single server instance can support multiple services.

[0007] Middle tier and client/server applications can use a service by, for example, by
specifying the service as part of the connection. For example, application server data
sources can be set to route to a service. In addition, server-side work sets the service

name as part of the workload definition. For example, the service that a job class uses is

-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

defined when the job class is created, and during execution, jobs are assigned to job

classes and job classes run within services.

DATABASE SESSIONS

[0008] In order for a client to interact with a database server on a database cluster, a
session is established for the client. A session, such as a database session, is a particular
connection established for a client to a server, such as a database instance, through which

the client 1ssues a series of requests (e.g., requests for execution of database statements).

For each database session established on a database instance, session state data is
maintained that reflects the current state of a database session. Such informatiop
contains, for example, the identity of the client for which the session is established, the
service used by the client, and temporary variable values generated by processes
executing software within the database session. An application may “borrow” a
connection from a connection pool and put the connection back into the pool when the
session 1s ended. Generally, a session is a vehicle to perform work with a database. Each

session may each have its own database process or may share database processes, with

the latter referred to as multiplexing.

HIGH AVAILABILITY

[0009] Certain changes occur within clustered computing systems which reduce high
availability and cause client applications to waste time. Such changes can be generally
classified as either a “down” change, an “up” change, or a “not restarting” change. A
down change occurs when a service, a server instance, or a node machine (generally, a
“component”) terminates, or “goes down.” An up change occurs when a service, a server
instance, or a node initializes, or “comes up.” A ‘“not restarting” change occurs when a
service, mnstance or node can no longer start. Some changes may affect the existing

sessions, as well as connections that are not currently in use but that are already created

and associated with a service, instance or node.

3.

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

[0010] Applications waste significant amounts of time and resources in their
interactions with a clustered system, via a session, when the state of the clustered system
changes. In particular, client applications of a clustered database waste time and
resources when the state of the clustered system changes. For example, when a node or a
server 1nstance that the session is using “goes down,” the application may not be
interrupted for a long period of time. Specifically, if the node or network fails to close
the session sockets, the application waits for a TCP/IP timeout error from the local
TCP/IP stack. For another example, work may not be distributed across all instances
supporting a service when a new service, node or instance becomes available, i.e., “comes
up.” In other words, time 1s wasted by not connecting with a service, node or instance
when 1t becomes available. One other way in which time and resources are wasted is
when clients keep retrying to communicate with a component that will not be coming
back up, or has not restarted. O

[0011] In general, traditional systems perform very poorly when a node goes down.
Application sessions can wait up to two hours to be interrupted. In general, traditional
systems function poorly in allocating work to a restored entity when a failed system entity
1s restored (1.e., an entity that has come up). Thus, traditional systems provide reduced
availability, and potentially reduced service times, from what such a system could
provide. Furthermore with traditional systems, following repair or restore of a failed
component, traditional cold-failover systems typically offer fallback of the entire
workload to the restored entity, rather than offering load balancing across the complement
of components in the cluster.

[0012] During runtime, sessions typically are in one of four states in relation to
respective database server instances. A session may be (1) actively connecting to an

instance, 1.e., establishing a session with the instance; (2) actively issuing a command to

the mstance, such as i1ssuing SQL statements; (3) passively blocked, waiting for a

_4.-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

response to 1ssued SQL statements; and (4) processing a previous request, e. g.,aSQL
statement. State (1) is distinct from the other states because the client is entering the
TCP/IP stack. In the other states, the client is inside the TCP/IP stack.

[0013] Clients of servers waste significant amounts of time and resources in their
interactions with a clustered system, via a session, when the state of the clustered system
changes. In particular, client applications of a clustered database waste time and
resources when the state of the database cluster changes. For example, work may not be
distributed across all instances supporting a service when a new service, node or instance
becomes available, i.e., “comes up.” In other words, time is wasted by not connecting
with a node or instance when a service on the node or instance becomes available. One
other way i which time and resources are wasted is when clients keep retrying to
communicate with a component that will not be coming back up (i.e., communicating
with a dead node) or has not yet restarted. For example, when a node or a server instance
that the session is using “goes down,” the application may not be interrupted for a long
period of time (e.g., two hours is typical). Specifically, if the node or network fails to
close the session sockets, the application waits for a TCP/IP timeout error from the local
TCP/IP stack.

[0014] Scenario (1) can be alleviated by using a virtual IP address that is always
available. This is because the client is outside the TCP/IP stack. Thus, when a node goes
down the IP address fails over to a different node. However, when the node comes back
up, there is no similar solution to address the change in system state. In general, the vast
majority of problems occur when a session is in states (2), (3) or (4). The vast majority of
wasted time occurs when an application and/or session must wait for resolution of
problems when the session is in state (3). Even worse, applications are in state (3)

approximately 90% of the time. In addition, with connection pool clients, time is wasted

by providing dead connections to applications.

5

10

15

20

25

CA 02533737 2012-07-31

[0015] In general, traditional systems function poorly in allocating work to a restored
entity when a failed or otherwise terminated system entity is restored. Thus, traditional
systems provide reduced availability, and potentially reduced service times, from what
such a system could provide. Furthermore with traditional systems, following repair or
restore of a failed component, traditional cold-failover systems typically offer fallback of
the entire workload to the restored entity, rather than offering load balancing across the
complement of components in the cluster. Furthermore, when there is only one node
configured for cold-failover, standby, and the like, there is no redundancy in the system.
Such a system is referred to as an “active/passive” system, in which all resources are
available to all the connected applications.

[0016] Based on the foregoing, there is room for improvement in reacting to system

state changes in a clustered computing system.

SUMMARY OF THE INVENTION
[0016A) In one aspect, the invention comprises a method for communicating changes
about a clustered computing environment that comprises a plurality of interconnected nodes
that host server instances, comprising the computer-implemented steps of receiving an
indication of a status change to a resource associated with a particular service that performs
work in a cluster, in response to the status change to the service resource, immediately
generating first data that 1dentifies the particular service and second data that indicates a

status of the resource, publishing the first and second data to a set of one or more subscribers,

and wherein the first data is used by a subscriber to identify, based on identification
information that is generated in response to establishing a session with the cluster and that
identifies a service associated with the session, one or more sessions with the cluster that are
affected by the status change to the service resource.

[0016B] In another aspect of the invention, the status of the resource that is identified in

the event is one from a group consisting of (a) termination of the resource, (b) starting of the

resource, and (¢) unable to restart the resource.

10

13

20

2

CA 02533737 2012-07-31

{0016C] In another aspect of the invention, the cluster is a database cluster, and the
resource 1s 1dentified in the first data by identifying the database cluster that is affected by the
status change.

[0016D] In another aspect of the invention, the work is associated with a service, and the
resource is further identified in the first data by identifying the service that is affected by the
status change.

[0016E] In another aspect of the invention, the location of the resource is further
identified in the first data by identifying an instance and a node that are affected by the status
change.

[0016F] In another aspect of the invention, the method may further comprise the
computer implemented step of identifying one or more sessions with the database cluster that
are affected by the status change, based on matching the identification information that is
associated with the session with the first data that identifies the resource.

[0016G] In another aspect, the method may further comprise the computer-implemented
step of interrupting the one or more sessions.

[0016H] In another aspect, the resource is identified in the first data by identifying a
node that is affected by the status change.

[0016]] In further aspect of the invention, the work is associated with a service, and the
resource is identified in the first data by identifying that a service has terminated at a
particular instance and by identifying the particular instance at which the service has
terminated.

[0016J] In another aspect of the invention, the work is associated with a service, and the

resource is identified in the first data by identifying that an entire service has terminated and

by identifying the service that has terminated.

[0016K] In another aspect of the invention, the resource is identified in the first data by
identifying that a particular instance has terminated and by identifying the particular instance

that has terminated.

[0016L] In a further aspect of the invention, the resource is identified in the first data by

6A

10

15

20

25

CA 02533737 2012-07-31

identifying that all the instances have terminated and that identifies the cluster with which the
instances are associated.

[0016M] In another aspect of the invention, the work is associated with a service, and the
resource 1s identified in the first data by identifying that a service has started at a particular
instance and by identifying the particular instance on which the service has started.

[0016N)] In further aspect of the invention just described, the resource is identified in the
first data by identifying the number of instances that support the service that has started.
[00160} In another aspect of the invention, the work is associated with a service, and the
resource 1s identified in the first data by identifying that a service has started on any instance

and by identifying the service that has started.
[0016P] In turther aspect of the invention just described, the resource is identified in the

first data by identifying a number of instances that support the service that has started.
[0016Q)] In another aspect of the invention, the resource is identified in the first data by
identifying that a particular instance has started and by identifying the instance that has
started.

[0016R] In another aspect, the resource is identified in the first data by identifying that
an instance has started and by identifying the cluster with which the instance is associated.
[0016S) In another aspect, the resource is identified in the first data by identifying that a
node has terminated and by identifying the node that has terminated.

[0016T) In another aspect, the step of publishing comprises publishing the first and
second data through processes that are not part of clusterware that manages the cluster.

[0016U} In another aspect, a subscriber to the first and second data is a connection pool
manager that responds to the status change by redistributing, based on the first and second
data, connections to the cluster.

[0016V] In another aspect, a subscriber to the first and second data is a client application
that responds to the status change by requesting, based on the first and second data,
redistribution within the cluster of the work that is affected by the status change.

[0016W] In another aspect, a subscriber to the first and second data is a batch job that

responds to the first and second data by calling for execution of a routine within the cluster

68

10

15

20

25

CA 02533737 2012-07-31

based on the status change.

[0016X] In another aspect, the work is associated with a service, and the resource is
identified in the first data by identifying that the service is not restarting so that subscribing
applications are interrupted from retrying to use the service.

[0016Y] In a further aspect, the invention comprises a computer-readable medium
carrying one or more sequences of instructions which, when executed by one or more
processors, causes the one or more processors to perform any of the methods recited above.
[0016Z] In another aspect, the invention comprises a system comprising of a database
cluster comprising a set of server instances hosted by a set of interconnected nodes
communicatively coupled to a database, cluster management software that manages resources
in the cluster, wherein the resources are associated with respective particular services, a
notification system that publishes information about status changes of the resources, for use
in identifying, based on identification information that is generated when a session is
established with the cluster and that identifies resources associated with the session, one or
more sessions with the cluster that are affected by a respective status change, and wherein
each the information about a status change to a resource comprises identification of one or
more particular services associated with the resource and a status of the resource.

[0016AA] In another aspect of the invention, the status of the resource that is identified in
the information about a status change consists of one from a group consisting of (a)
termination of the resource, (b) starting of the resource, and (c) unable to restart the resource.
[0016AB] In another aspect of the invention, the resource that is identified in the
information about a status change is associated with at least one from a group consisting of
(a) a service, (b) a service member that is executing on a particular instance of the instances,

(c) the database cluster, (d) one of the instances, and (e) one of the nodes.

The foregoing was intended as a summary only and of only some of the aspects of the
invention. It was not intended to define the limits or requirements of the invention. Other
aspects of the invention will be appreciated by reference to the detailed description of the

preferred embodiments.

6C

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Embodiments of the present invention are depicted by way of example, and
not by way of limitation, in the figures of the accompanying drawings and in which like
reference numerals refer to similar elements and in which:
[0018] FIG. 1 1s a block diagram that 1llustrates an operating environment in which an
embodiment can be implemented;
[0019] FIG. 2 1s a block diagram that generally illustrates a High Availability (HA)
system, 1 which an embodiment of the invention may be implemented; and
[0020] FIG. 3 1s a block diagram that depicts a computer system upon which an

embodiment of the invention may be implemented.

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

FUNCTIONAL OVERVIEW OF EMBODIMENTS

[0021] Techniques for fast notification of changes to a clustered computing system
are described, in which a number of events are published for system state changes, for
enabling fast application recovery and fast rebalancing of sessions with the clustered
system. One example of such a clustered computing system is a database cluster
comprising multiple instances of a database server executing on multiple node machines,
configured to access and manipulate shared data from a database in response to requests
from multiple client applications.

[0022] When a resource associated with a service experiences a change in status, a

notification event 1s immediately published for use by various subscribers to the event.
For example, a notification event 1s issued whenever a service becomes available on an
istance and whenever a service becomes unavailable on an instance. The notification
events occur for status changes for services and for the resources that support the
services, such as a particular instance, an instance, a node or a database cluster. When a
service offered by one or more instances starts, a notification event (UP) 1s 1ssued that
may be used to start applications that are dependent on the service. When the service
offered by one or more instances terminates, and also when an instance or node
terminates, a notification event (DOWN) 1s issued to halt the dependent applications.
When managing clusterware can no longer manage the service because the service has
exceeded its failure threshold, a notification event (NOT RESTARTING) is issued to
interrupt applications retrying the service. In one embodiment, the NOT RESTARTING
event initiates switching to a disaster service.

[0023] Upon connecting to the cluster, a unique signature (i.e., a locator) is generated
for an associated session and recorded on a handle as part of the connection. In an

embodiment, the signature comprises a service identifier, a node identifier, and database

_8-

CA 02533737 2006-01-25

WO 2005/017746 PCT/US2004/026506

unique name, and an instance identifier, each of which 1s associated with the session. In
the context of a database cluster, notification events contain information to enable
subscribers to identify the particular sessions that are affected by the change in status, 1.e.,
the signatures of the affected sessions. For some types of events, information used to
identify affected sessions includes identification of the service and the database
associated with the status change. For other types of events, the information used to
identify affected sessions additionally includes identification of the instance and node
associated with the status change. The affected sessions are the sessions with signatures
that match the signature included in the event payload.

[0024] Consequently, applications and sessions are quickly notified when a relevant
resource changes state. With use of these techniques, notification events can be used to

overcome the problems with traditional systems, previously described herein.

OPERATING ENVIRONMENT

10025] FIG. 1 is a block diagram that illustrates an operating environment 1n which an
embodiment can be implemented. Use of element identifiers ranging from a to #, for
example, clients 102a-102n, services 106a-106m, instances 1082a-108n, and nodes 110a-
110n, does not mean that the same number of such components are required. In other
words, 7 is not necessarily equal for the respective components. Rather, such 1dentifiers

are used in a general sense for in reference to multiple similar components.

CLUSTERED COMPUTING ENVIRONMENT

[0026] One or more clients 102a-102n are communicatively coupled to a server
cluster 104 (“server”) that is connected to a shared database 112. Server 104 refers
collectively to a cluster of server instances 108a-108n and nodes 110a-110n on which the
instances execute. Other components may also be considered as part of the server 104,
such as a notification service daemon 118 and an event handler 120. However, the actual

architecture in which the foregoing components are configured may vary from

-0-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

implementation to implementation. Clients 102a-102n may be applications executed by
computers interconnected to an application server or some other middleware component
between clients and server 104 via, for example, a network. In addition, one server
instance may be a client of another server instance. Any or all of clhients 102a-102n may
operate as subscribers of published events, as described herein.

[0027] In the context of a database cluster, database 112 comprises data and metadata
that is stored on a persistent memory mechanism, such as a set of hard disks that are
communicatively coupled to nodes 110a-110n, each of which is able to host one or more
instances 108a-108n, each of which hosts at least a portion of one or more services. Such
data and metadata may be stored in database 112 logically, for example, according to
relational database constructs, multidimensional database constructs, or a combination of
relational and multidimensional database constructs. Nodes 110a-110n can be
implemented as a conventional computer system, such as computer system 300 illustrated
in FIG. 3.

[0028] As described, a database server is a combination of integrated software
components and an allocation of computational resources (such as memory and
processes) for executing the integrated software components on a processor, where the
combination of the software and computational resources are used to manage a particular
database, such as database 112. Among other functions of database management, a
database server typically facilitates access to database 112 by processing requests from

clients to access the database 112. Instances 108a-108n, in conjunction with respective

nodes 110a-110n, host services 106a-106mn.

SERVICES 106
[0029] As previously described herein, services are, generally, a logical abstraction
for managing workloads. More specific to the context of embodiments of the invention, a

service, such as service 106a-106n, has a name and a domain, and may have associated

-10-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

goals, service levels, priority, and high availability attributes. The work performed as
part of a service includes any use or expenditure of computer resources, including, for
example, CPU processing time, storing and accessing data in volatile memory, read and
writes from and/or to persistent storage (i.e. disk space), and use of network or bus
bandwidth.
[0030] In one embodiment, a service is work that is performed by a database server
during a session, and typically includes the work performed to process and/or compute
queries that require access to a particular database. The term query as used herein refers
to a statement that conforms to a database language, such as SQL, and mcludes
statements that specify operations to add, delete, or modify data and create and modify
database objects, such as tables, objects views, and executable routines. A system,
including a clustered computing system, may support many services.
[0031] Services can be provided by one or more database server instances. Thus,
multiple server instances may work together to provide a service to a client. In FIG. 1,
service 106a (e.g., FIN) is depicted, with dashed brackets, as being provided by instance
108a, service 106b (e.g., PAY) is depicted as being provided by instances 103a and 108D,
and service 106n is depicted as being provided by instances 108a-108n.
[0032] Generally, the techniques described herein are as service-centric, where events
occurring within server 104 can be identified and/or characterized based on the service(s)

which is affected by the event. The payload of notification events is described hereafter.

NOTIFICATION SYSTEM

[0033] In general, a daemon is a process that runs in the background and that
performs a specified operation at predefined times or in response to certain events. In
oeneral, an event is an action or occurrence whose posting is detected by a process.
Notification service daemon 118 is a process that receives system state change

information from server 104, such as from clusterware that 1s configured to manage the

11-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

cluster of instances 106a-106n. Such state change information may include, for example,
service, instance and node up or down event information. The server 104 posts events
when conditions change within the cluster, as described herein.

[0034] Notification service daemon 118 has a publisher-subscriber relationship with
event handler 120 through which system state change information that is received by
daemon 118 from server 104 is transmitted as notification events to event handler 120. In
general, an event handler 1s a function or method containing program statements that are
executed 1n response to an event. In response to receiving event information from
daemon 118, event handler 120 at least passes along the event type and attributes, which
are described herein. A single event handler 120 is depicted in FIG. 1 as serving all
subscribers. However, different event handlers may be associated with different
subscribers. The manner in which handling of notification events is implemented by
various subscribers to such events is unimportant, and may vary from implementation to
implementation.

[0035] Transmission of event information from server 104 to notification service
daemon 118, and from notification service daemon 118 to event handler 120, is “out-of-
band”. In this context, out-of-band means that such transmission is not through the
session communication path because that path may be blocked due to the event. For
example, the out-of-band notifications may be issued asynchronously through gateway
processes that are not part of the clusterware that manages the cluster. For a non-limiting
example, notification service daemon 118 may use the Oracle Notification System (ONS)
API, which 1s a messaging mechanism that allows application components based on the
Java 2 Platform, Enterprise Edition (J2EE) to create, send, receive, and read messages.
[0036] “Subscribers” represents various entities that may subscribe to and respond to

notification events for various respective purposes. Non-limiting examples of subscribers

_12-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

include clients 102a-102n, connection pool managers, mid-tier applications, batch jobs,

callouts, paging and alert mechanisms, high availability logs, and the like.

NOTIFICATION EVENTS

[0037] When the state of a given service changes, 1.e., when the state of a cluster
resource that participates in performing the work of the given service changes, the new
state is notified to interested subscribers through notification events. Applications can
use this notification, for example, to achieve very fast detection of failures in order to stop
processing previous results, to clean up connection pool sessions, and for balancing of
connection pools following failures and when the failed components are repaired. For
example, when the service starts at an instance, the events may be used to immediately
trigger work executing on the instance. When the service terminates at an instance, the
event may be used to interrupt applications using the service at that instance.

[0038] Use of notification events by various client subscribers eliminates, for
example, the client waiting for TCP timeouts or wasted processing of the last result at the
client after a failure and before being interrupted. Without such notifications, 1f a node
fails without closing sockets, any sessions that are blocked in I/O wait (read or write)
could wait minutes to hours for a timeout, and sessions processing last results would not

receive an interrupt until the next data 1s requested.

NOTIFICATION EVENT PAYLOAD

[0039] In an embodiment, notification events include 1dentification of an event type
and event properties. Table 1 describes parameters associated with notification events,

according to an embodiment of the invention.

_13-

CA 02533737 2006-01-25

WO 2005/017746 PCT/US2004/026506
Parameter Description
Event type | The event type for the cluster component: service,
L service_member, database, instance, node.
Service name The service name.
Database name The unique database supporting the service.
Instance The name of the instance supporting the service.
Node name The node name supporting the service or the node that
has gone down.
Status The new status: UP, DOWN, NOT RESTARTING.
Incarnation Date and time stamp; can be used to order notification
o events. B
Cardinality The number of instances supporting the service.
Reason The reason for the system change: planned or unplanned.
Table 1

[0040] A “service” event type is triggered when an entire service goes down, i.e.,
when the service goes down on every instance supporting the service. A
“service_member” event type is triggered when a service goes down on a particular
nstance. A “database” event type is triggered when the entire database goes down, i.e.,
every instance managing the database goes down. A “node” event type is triggered when
a node machine goes down and, consequently, the instances running on that node are
unavailable to support any services. The “node name” is the name of the node as known
by the managing clusterware. DOWN events are often followed by UP events, such as
when service members failover to another instance upon a failure of a supporting instance
and when failed components are repaired.

[0041] It 1s not necessary that event payloads for each event type contain each of the

event properties. Table 2 denotes the properties that are included in event payloads for

each event type, according to an embodiment of the invention.

-14-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

Database | Instance | Node Status | Time Cardinality
Name Name name | stam
o

Service
member

X X X X
Instance X X X X X X
Node) X — X
Table 2

[0042] According to embodiments, events may be published to the notification
system described herein (which provides a programmatic interface to events), to server-
side callouts, and to call interface callbacks.

[0043] Some examples of system state change scenarios follow.

[0044] When an mstance fails, several notification events are published: (1) one with
an event type = mstance, to notify that the instance is down; (2) one for each service that
was running on the terminated instance, with event type = service_member, to notify that
the service 1s down on that particular instance. In addition, if a service restarts on another
supporting mstance (1.e., an instance available as a backup instance to support a service),
an event 1s published with an event type = service member, to notify that the service is
newly available on a particular instance. If and when the terminated instance is repaired
and comes back up, notification events may be published for each service that had no
available supporting instances (i.e., no backup instances to support the service): (1) one
with an event type = instance, to notify that the previously terminated instance is up; and
(2) one with an event type = service_member, to notify that the service is up on the
previously terminated instance.

[0045] Since each of the notification events for the preceding scenario are either an
“instance” or “‘service_member” type, Table 2 shows that all of the properties are
included in the event payload. If the database is configured with a database domain, such

_15-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

as us.acme.com, then the domain name qualification is expected to appear for the
database and service names in the event property. For example, database =
databaseX.us.acme.com and service = serviceY.us.acme.com. In addition, by using the
cardinality in response to an UP event, work can be redistributed to use available
resources 1n a balanced manner.

[0046] When all the instances that support a service go down, i.e., an entire service is
down, then several notification events are published: (1) events are triggered with an
event type = service_member for each instance that supports the service, to notify that the
service 1s down on each respective instance; (2) an event is triggered with an event type =
service, to notify that the entire service is down; and (3) events are triggered with an
event type = instance for each instance that supports the service, to notify that that each
respective mstance 1s down. Likewise, when the terminated instances are restarted, then
similar events are triggered with an UP status, to notify that the service is up on each
respective mnstance, that the entire service is up, and that the instance are up.

[0047] For “service” type events, Table 2 shows that the instance name, node name
and cardmality properties can be excluded from the event payload for this type of event.
This 1s because, by definition, a “service” type event means that the entire service is up or
down, 1.e., the service is up or down on all instances and associated nodes supporting the
service, where the supporting instances and nodes for a given service is mapped and
available elsewhere. Therefore, the instance, node and cardinality properties are
unnecessary for responding to such an event. Similarly, for “database” type events, Table
2 shows that the instance name and node name properties can be excluded from the event
payload for this type of event. This is because, by definition, a database type event means
that the entire database is up or down, i.e., all instances and nodes in the database are up

or down, where the configuration of the database cluster is available elsewhere.

-16-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

[0048] When a node fails, an event with event type = node is triggered, notifying that
the node 1s down. In one embodiment, no other events are triggered, i.e., no service,
service_member or 1nstance type events are necessary due to the available mapping of
nodes to mstances and services. The node event includes the cluster incarnation, thereby
facilitating the elimination of duplicate processing of duplicate events. Table 2 shows
that the service name, database name, instance name and cardinality properties can be
excluded from the event payload for this type of event. If for any reason, a particular
node 1s unable to be restarted, then an event with event type = node and status

NOT_ RESTARTING is triggered, indicating that intervention is required.

EVENT PROCESSING

[0049] Generally, a given subscriber responds to notification events by identifying
one or more sessions that are affected by the system state change and that are associated
with the given subscriber, by matching the information in the event payload with session
location information that 1s recorded when a session connection is established. Session
location information (i.e., session signature) identifies the location of a session, such as
what service, database, istance, node and database are associated with the session. A
similar “event” signature is provided as part of the event payload, which can be precisely
matched with the signature of one or more sessions that was recorded upon session
establishment, to determine the sessions that are affected by the system state change.
[0050] The manner in which session location information is recorded may vary from
implementation to implementation. For non-limiting examples, session location
information may be posted on a “bulletin board” mechanism that is accessible to various
subscribers, or the session location information may be stored in an indexed table or a
hash table. Detailed actions that various subscribers may perform in response to

notification events are beyond the scope of this description.

-17-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

[0051] For example, a connection pool manager is described as one potential
subscriber, or client, of notification events that are published in response to state changes
to a resource 1 the cluster. A connection pool manager is a software component that
manages connection pools and requests for connections for sessions with server 104 (FIG.
1). Manners in which a connection pool manager may respond to various types of
notification events, such as to redistribute connections from connection pools across
instances 108a-108n of server 104, are described in detail in U.S. Patent Application No.
10/XXX, XXX (Docket No. 50277-2335) entitled “Fast Reorganization of Connections In
Response To An Event In a Clustered Computing System.”

[0052] For example, a connection pool manager maintains, for each service, a
mapping of connections to physical location, 1.e., instances, nodes, databases. Thus, the
location of each session, including client-server sessions and batch sessions, are uniquely
1dentified. Whenever a connection is established, the connection pool manager records
the location for the connection. These data are used for fast redistribution of the
connection pool, whenever a system status change notification event is received. A fast
redistribution of the connections in response to events benefits the runtime distribution of
work 1n the cluster by ensuring that the pool has connections that are ready to use when
session requests are received.

[0053] For other non-limiting examples, (1) in response to server-side callouts, jobs
and batch processes can be stopped when a service stops for any reason, and
started/restarted immediately when a service starts; (2) callouts can be used for paging
and e-mail alerting mechanisms; and (3) callouts can be used for high availability uptime
recording, where uptime and downtime can be distinguished, along with the reason for

the system change, such as “planned” (e.g., initiated by a user) or “unplanned” (e.g.,

initiated by a failure).

18-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

IMPLEMENTATION MECHANISMS

[0054] The techniques for fast application notification 1n a clustered computing
system, as described herein, may be implemented in a variety of ways and the invention is
not limited to any particular implementation. The approach may be itegrated into a
system or a device, or may be implemented as a stand-alone mechanism. Furthermore,
the approach may be implemented in computer software, hardware, or a combination
thereof.

[0055] FIG. 2 1s a block diagram that generally illustrates a High Availability (HA)
system, 1 which an embodiment of the invention may be implemented. “Layers” of the
illustrated HA system 200 include a Cluster Service Node Membership module; an
Internal Event System; an HA Framework, which includes Services, Databases, and
Instances; which are communicatively coupled to an External Event System.

[0056] HA system 200 executes start and stop actions for resources, 1.€., Services,
Databases and Instances. The start action posts UP events, and the stop action posts

DOWN events. The HA system 200 posts NOT RESTARTING events when a resource

can no longer execute.

HARDWARE OVERVIEW

[0057] FIG. 3 is a block diagram that depicts a computer system 300 upon which an
embodiment of the invention may be implemented. Computer system 300 includes a bus
302 or other communication mechanism for communicating information, and a processor
304 coupled with bus 302 for processing information. Computer system 300 also
includes a main memory 306, such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 302 for storing information and instructions to be executed
by processor 304. Main memory 306 also may be used for storing temporary variables or
other intermediate information during execution of instructions to be executed by

processor 304. Computer system 300 further includes a read only memory (ROM) 308 or
-19-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

other static storage device coupled to bus 302 for storing static information and
instructions for processor 304. A storage device 310, such as a magnetic disk or optical
disk, 1s provided and coupled to bus 302 for storing information and instructions.

[0058] Computer system 300 may be coupled via bus 302 to a display 312, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
314, including alphanumeric and other keys, 1s coupled to bus 302 for communicating
information and command selections to processor 304. Another type of user input device
1s cursor control 316, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 304 and for
controlling cursor movement on display 312. This input device typically has two degrees
of freedom 1n two axes, a first axis (e.g., X) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

[0059] The mvention 1s related to the use of computer system 300 for implementing
the technques described heren. According to one embodiment of the invention, those
techniques are performed by computer system 300 in response to processor 304 executing
one or more sequences of one or more instructions contained in main memory 306. Such
instructions may be read mto main memory 306 from another computer-readable
medium, such as storage device 310. Execution of the sequences of instructions
contained 1 main memory 306 causes processor 304 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place
of or 1n combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

[0060] The term “computer-readable medium’ as used herein refers to any medium
that participates in providing instructions to processor 304 for execution. Such a medium

may take many forms, including but not limited to, non-volatile media, volatile media,

220-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

and transmission media. Non-volatile media includes, for example, optical or magnetic
disks, such as storage device 310. Volatile media includes dynamic memory, such as
main memory 306. Transmission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 302. Transmission media can also take the
form of acoustic or light waves, such as those generated during radio-wave and infra-red
data communications.

[0061] Common forms of computer-readable media include, for example, a floppy
disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-
ROM, any other optical medium, punchcards, papertape, any other physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, a carrier wave as described hereinafter, or any other medium from
which a computer can read.

[0062] Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 304 for execution. For example,
the mstructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
300 can receive the data on the telephone line and use an infra-red transmitter to convert
the data to an infra-red signal. An infra-red detector can receive the data carried in the
inira-red signal and appropriate circuitry can place the data on bus 302. Bus 302 carries
the data to main memory 306, from which processor 304 retrieves and executes the
instructions. The instructions received by main memory 306 may optionally be stored on
storage device 310 either before or after execution by processor 304.

[0063] Computer system 300 also includes a communication interface 318 coupled to

bus 302. Communication interface 318 provides a two-way data communication coupling

to a network lik 320 that is connected to a local network 322. For example,

21-

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

communication interface 318 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 318 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 318 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

[0064] Network link 320 typically provides data communication through one or more
networks to other data devices. For example, network link 320 may provide a connection
through local network 322 to a host computer 324 or to data equipment operated by an
Internet Service Provider (ISP) 326. ISP 326 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet’” 328. Local network 322 and Internet 328 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 320 and through communication
interface 318, which carry the digital data to and from computer system 300, are
exemplary forms of carrier waves transporting the information.

[0065] Computer system 300 can send messages and receive data, including program
code, through the network(s), network link 320 and communication interface 318. In the
Internet example, a server 330 might transmit a requested code for an application program
through Internet 328, ISP 326, local network 322 and communication interface 318.
[0066] The received code may be executed by processor 304 as it is received, and/or
stored in storage device 310, or other non-volatile storage for later execution. In this

manner, computer system 300 may obtain application code in the form of a carrier wave.

0.

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

EXTENSIONS AND ALTERNATIVES

[0067] Alternative embodiments of the invention are described throughout the
foregoing description, and in locations that best facilitate understanding the context of the
embodiments. Furthermore, the invention has been described with reference to specific
embodiments thereof. It will, however, be evident that various modifications and changes
may be made thereto without departing from the broader spirit and scope of the invention.
For example, embodiments of the invention are described herein in the context of a
server, however, the described techniques are applicable to any clustered computing
system over which system connections are allocated or assigned, such as with a system
configured as a computing cluster or a computing grid. Therefore, the specification and
drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
[0068] In addition, in this description certain process steps are set forth in a particular
order, and alphabetic and alphanumeric labels may be used to identify certain steps.
Unless specifically stated in the description, embodiments of the invention are not
necessarily limited to any particular order of carrying out such steps. In particular, the
labels are used merely for convenient identification of steps, and are not intended to

specify or require a particular order of carrying out such steps.

23-

08-02-2006 - . S - US0426506

Oracle International Corporation | PCT/US 2004/26506
. 50277-2596 / CX-13195 | February 08, 2006
(Clean Copy)
CLAIMS
1 1 A method for communicating changes about a clustered computing environment
2 that comprises a plurality of interconnected nodes that host server instances,
3 comprising the computer-implemented steps of:
4 receiving an indication of a status change to a resource allocated to a particular
S service that performs work in a cluster;
6 in response to said status change to said service resource, immediately generating
7 first data that identifies said particular service and second data that
8 | indicates a status of said resource;
9 publishing said first and second data to a set of one or more subscribers; and
10 wherein said first data is used by a subscriber to identify, based on identification
11 | information that is generated in response to establishing a session with said
12 | cluster and that identifies a service associated with said session, one or
13 more sessions with said cluster that are affected by said status change to
14 said service resource.
1 2 The method of Claim 1, wherein said status of said resource that i$ identified in
2 said event is one from a group consisting of (a) termination of said resource, (b)
3 starting of sz}id resource, and (¢) unable to restart said resource.
1 3. The method of Claim 1, wherein said cluster is a database cluster, and wherein
2 said resource is identified in said first data by identifying said database cluster that
3 is affected by said status change.

-1-

(O1D-2003-179-01-PCT)
AMENDED SHEET

08-02-2006 R US0426506

Oracle International Corporation ' . | PCTUS 2004/26506
. 50277-2596 / CX-13195 . February 08, 2006
(Clean Copy)
1 4. The method of Claim 3, wherein said work is associated with a service, and
2 wherein said resource is further identified in said first data by identifying said
3 service that is affected by said status change.
1 8. The method of Claim 4, wherein said location of said resource is further identified
2 in said first data by identifying an instance and a node that are affected by said
3 status change.

1 6. The method of Claim 3, further comprising the computer-implemented step of:

2 identifying one or more sessions with said database cluster that are affected by
3 said status change, based on matching said identification information that
4 is associated with said session with said first data that identifies said
S resource.
1 7 The method of Claim 6, further comprising the computer-implemented step of:
2 interrupting said one or more sessions.
1 8 The method of Claim 1, wherein said resource is identified in said first data by
2 identifying a node that is affected by said status change.
1 9 The method of Claim 1, wherein said work is associated with a service, and
2 wherein said resource is identified in said first data by identifying that a service
3 has terminated at a particular instance and by identifying said particular instance
4 at which said service has terminated.

2.

(01D-2003-179-01-PCT)
AMENDED SHEET

' 0%--02-2006 US0426506

Oracie [nternational Corporation ' : | ~ PCT/US 2004/26506
50277-2596 / CX-13195 . | February 08, 2006
(Clean Copy)

1 10. The méthod of Claim 1, wherein said work is associated with a service, and
2 wheréin said resource is identified in said first data by identifying that an entire

3 service has terminated and by identifying said service that has terminated.

1 11. The method of Claim 1, wherein said resource is identified in said first data by
2 identifying that a particular instance has terminated and by identifying said

3 particular instance that has terminated.

1 12. The method of Claim 1, wherein said resource is identified in said first data by
2 identifying that all said instances have terminated and that identifies said cluster

3 with which said instances are associated.

1 13. The method of Claim 1, wherein said work is associated with a service, and

2 wherein said resource is identified in said first data by identifying that a service
3 has started at a particular instance and by identifying said panicular Instance on
4 which said service has started.

1 14. The method of Claim 13, wherein said resource is identified in said first data by

2 identifying the number of instances that support said service that has started.

1 15. The method of Claim 1, wherein said work is associated with a service, and
2 wherein said resource is identified in said first data by identifying that a service

3 has started on any instance and by identifying said service that has started.

{ 16. The method of Claim 15, wherein said resource is identified in said first data by

2 identifying a number of instances that support said service that has started.

-3

(O1D-2003-179-01-PCT)
AMENDED SHEET

" . ‘211’

US0426506

08-02-2006 |
| Oracle Intemnational Corporation ‘ ~ PCT/US 2004/26506
y 50277-2596 / CX~13195 February 08, 2006
{Clean Copy)
1 17. The method of Claim 1, wherein said resource 1s identified in said first data by
2 identifying that a particular instance has started and by identifying said instance
3 that has started.
t 18. The method of Claim 1, wherein said resource is identified in said first data by
2 identifying that an instance has started and by identifying said cluster with which
3 said instance is associated.
1 19. The method of Claim 1, wherein said resource is identified in said first data by
2 identifying that a node has terminated and by identifying said node that has
3 terminated.
I 20. The method of Claim 1, wherein the step of publishing comprises publishing said
2 first and second data through processes that are not part of clusterware that
3 manages said cluster.
] 21. The method of Claim 1, wherein a subscriber to said first and second data is a
2 connection pool manager that responds to said status change by redistributing,
3 based on said first and second data, connections to said cluster.
1 22. The method of Claim 1, wherein a subscriber to said first and second datais a
2 client application that responds to said status change by requesting, based on said
3 first and second data, redistribution within said cluster of said work that is affected
4 by said status change.

"

(OID-2003-179-01-PCT)

AMENDED SHEET

08-02-2006

-

| US0426506
Oracle International Corporation ' PCT/US 2004726506
50277-2596 / CX-13195 February 08, 2006
(Clean Copy)

23.

24,

23.

26.

27.

28.

The method of Claim 1, wherein a subscriber to said first and second data is a

batch job that responds to said first and second data by calling for execution of a

‘routine within said cluster based on said status change.

The method of Claim 1, wherein said work is associated with a service, and
wherein said resource is identified in said first data by identifying that said service
is not restarting so that subscribing applications are interrupted from retrying to

use said service.

A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more

processors to perform the method recited i Claim 1.

A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more

processors to perform the method recited in Claim 2.

A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more

processors to perform the method recited in Claim 3.

A computer-readable medium carrying one or more sequences of instructions
which, when executed by one or more processors, causes the one or more |

processors to perform the method recited in Claim 4.

-5.

(O1D-2003-179-01-PCT)

AMENDED SHEET

08-02-2006 & US0426506

Oracle International Corporation " . PCT/US 2004/26506
50277-2596 / CX-13195 February 08, 2006
(Clean Copy)

1 29. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 5.

1 30. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited i Claim 6.

1 31. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 7.

1 32. A computer-readable medium carrying one or more sequences of instructions

2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 8.

1 33. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 9.

1 34. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 10.

1 35. A computer-readable medium carrying one or more sequences of instructions

2 which, when executed by one or more processors, causes the one or more
3 processors to perform the method recited in Claim 11.
-6-

(O1D-2003-179-01-PCT)
AMENDED SHEET

!6%8'--02-,‘20,06 o ' US0426506

Oracle International Corporatio.. ' - | PCT/US 2004/26506
50277-2596 7/ CX-13195 February 08, 2006

(Clean Copy)

1 36. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 12.

1 37. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 13.

1 38. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 14.

1 39. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 15.

1 40. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 16.

1 41. A computer-readable medium carrying one or more sequences of instructions

2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 17.

1 42. A computer-readable medium carrying one or more sequences of instructions

2 which, when executed by one or more processors, causes the one or more
3 processors to perform the method recited in Claim 18.
.7-

(01D-2003-179-01-PCT)
AMENDED SHEET

:Oé--92~2006 -' - US0426506

Oracle International Corporation | | ' - PCT/US 2004726506
50277-2596/ CX-13195 February 08, 2006
(Clean Copy)

1 43. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 19.

1 44, A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 20.

1 45. A computer-readable medium carrying one or more sequences of instructions

2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 21.

1 46. A computer-readable medium carrying one or more sequences of instructions
2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 22.

1 47. A computer-readable medium carrying one or more sequences of instructions

2 which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 23.

1 48. A computer-readable medium carrying one or more sequences of instructions
2 ‘which, when executed by one or more processors, causes the one or more

3 processors to perform the method recited in Claim 24.

1 49. A system comprising:

2 a database cluster comprising a set of server instances hosted by a set of
3 interconnected nodes communicatively coupled to a database;
8.

(OID-2003-179-01-PCT)
AMENDED SHEET

’0;"3‘;92-2006 . ' ' US0426506

Oracle International Corporation | | ~ PCT/US 2004/26506
50277-2596 / CX-13195 February 08, 2006
(Clean Copy)
4 ~ cluster management software that manages resources in said cluster and
5 distribution and performance of work in said cluster, wherein said
6 resources are associated with respective particular services;
7 a notification system that publishes information about status changes of said
8 resources, for use in identifying, based on identification information that is
9 generated when a session is established with said cluster and that identifies
10 resources associated with said session, one or more sessions with said
11 cluster that are affected by a respective status change; and
12 wherein each said information aboui a status change to a resource comprises
13 identification of one or more particular services to which said resource has
14 been allocated and a status of said resource.

1 50. The system of Claim 49, wherein said status of said resource that is identified in

2 said information about a status change consists of one from a group consisting of
3 (a) termination of said resource, (b) starting of said resource, and (c¢) unable to
4 restart said resource.

I 51. The system of Claim 49, wherein said resource that is identified in said

2 information about a status change is associated with at least one from a group
3 consisting of (a) a service, (b) a service member that is executing on a particular
4 instance of said instances, (c) said database cluster, (d) one of said instances, and
5 (e) one of said nodes.

9.

(O1D-2003-179-01-PCT)
AMENDED SHEET

CA 02533737 2006-01-25

PCT/US2004/026506

WO 2005/017746

1/3

811
NOWHVU dOIAYHS
NOILVOIAILON

41
HSVAV.LVA

e30] -
HAAON |dONVISNI| 2V

YOI THLSNTD JHAYAS

- 0]

HOIAYAS |

CA 02533737 2006-01-25
WO 2005/017746 PCT/US2004/026506

2/3

EXTERNAL EVENT SYSTEM

e aaa e T SV

RESOURCES

SERVICES [(DATABASES | INSTAN CESJ_1

| HIGH AVAILABILITY FRAMEWORK

INTERNAL EVENT SYSTEM

CLUSTER SERVICE NODE
MEMBERSHIP J

200

CA 02533737 2006-01-25

PCT/US2004/026506

WO 2005/017746

743
1SOH

0ct
[44%
NI]
NHOMLAN YTTNER

OO

3/3

9Ct

1INES1N

3Gt

Ott
dINGSS

iy @00 e PR AL Ve el e

¢ DId

J0V4ud1N|
NOILYIINANNOD

¢0b

0Lt
J0IN3A

JOVHOLS

SNd

3()

o

NOd

70€

d0SS300dd

9

0¢
AdONSN
NIVIA

—rty e, A, — Ay B

PEp-—— ————— B S AV L

e —

e
1OE1INOD
a0SdNd

30IA3d LNdNI

453
AY 1dSIC

- T T SERVER CLUSTER 104
SUBSCRIBERS pas g e .
¢ ISERVICE ——
} 0 T 1o6a |INSTANCE| NODE B
CL]ENT 1 ; - - 1083 w' _]_-.1._0_@
s | 1 ESFRVICE
| : 3, - = T
[T 06b INSTANCE| NODE
r | 108b 110b b —
| | DATABASE |
112
CLIENT | 1 i;' . : ~ i
1020 é SE%;;ICE INSTANCE! NODE
' e 108n 110n
| EVENT | NOTIFICATION
HANDLER - ——{SERVICE DAEMON
120 | | 118

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - abstract drawing

