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typedef vector<node> Layer;

typedef double{*ActivationFunction)(double x); 1302
class node;

typedef node* NodePtr;

class node

{

private: 1306
double output; -

1307
ActivationFunction g: e
vector<double> weights; —— 1308
vector<NodePtr> inputs; 1309

public:
void activate(); = 1310

void setOutput{double out){output = out;};} 1312

> 1304

double getOutput() { return output;};
Y /

class neuralNet h

{

private: 1316
int numLayers; _

>
vector<Layer> layers; = 1318 1314
public:
void f(vector<double> x, vector<double>& y);

2 N 1320

void node::activate()

{

AR

intj;
double sum = weights[0] * -1: > 1322
for (j = 0; j < inputs.getDimension(); j++)

sum += inputsfj]->getOutput() * weights[j+1]:
output = g(sum); 7

void neuralNet::f(vector<double> x, vector<double>& y) h
{

inti, j;

e 1326

for {j = 0; j < layers[0].getDimension(); j++) layers[0][j]. setQutput(x[j]);

for (i=1; i < numLayers; i++) r 1324
for (j = 0: j < layers{i].getDimension(); j++) ( 1327
layers[0][i].activate();
s 1328
for ( = 0; ] < layers[numLayers - 1].getDimension(); j++)
y[i] = layersfnumlayers - 1][j].getOutput();

FIG. 13
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SYSTEMS THAT DEPLOY AND MANAGE
APPLICATIONS WITH HARDWARE
DEPENDENCIES IN DISTRIBUTED

COMPUTER SYSTEMS AND METHODS
INCORPORATED IN THE SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of Provisional
Application No. 63/226,420, filed Jul. 28, 2021.

TECHNICAL FIELD

[0002] The current document is directed to distributed-
computer-systems and, in particular, to systems, and meth-
ods incorporated within the systems, that automatically
deploy and manage applications that are associated with
hardware dependencies.

BACKGROUND

[0003] During the past seven decades, electronic comput-
ing has evolved from primitive, vacuum-tube-based com-
puter systems, initially developed during the 1940s, to
modern electronic computing systems in which large num-
bers of multi-processor servers, work stations, and other
individual computing systems are networked together with
large-capacity data-storage devices and other electronic
devices to produce geographically distributed computing
systems with hundreds of thousands, millions, or more
components that provide enormous computational band-
widths and data-storage capacities. These large, distributed
computing systems are made possible by advances in com-
puter networking, distributed operating systems and appli-
cations, data-storage appliances, computer hardware, and
software technologies. The advent of distributed computer
systems has provided a computational platform for increas-
ingly complex distributed applications, including service-
oriented applications. Distributed applications, including
service-oriented applications and microservices-based
applications, provide many advantages, including efficient
scaling to respond to changes in workload, efficient func-
tionality compartmentalization that, in turn, provides devel-
opment and management efficiencies, flexible response to
system component failures, straightforward incorporation of
existing functionalities, and straightforward expansion of
functionalities and interfaces with minimal interdependen-
cies between different types of distributed-application
instances. As new distributed-computing technologies are
developed, and as general hardware and software technolo-
gies continue to advance, the current trend towards ever-
larger and more complex distributed computing systems
appears likely to continue well into the future.

[0004] As the complexity of distributed computing sys-
tems has increased, the management and administration of
distributed computing systems and applications has, in turn,
become increasingly complex, involving greater computa-
tional overheads and significant inefficiencies and deficien-
cies. In fact, many desired management-and-administration
functionalities are becoming sufficiently complex to render
traditional approaches to the design and implementation of
automated management and administration subsystems
impractical, from a time and cost standpoint. Therefore,
designers and developers of distributed computer systems

Feb. 2, 2023

and applications continue to seek new approaches to imple-
menting automated management-and-administration facili-
ties and functionalities.

SUMMARY

[0005] The current document is directed to methods and
systems that automatically deploy and manage applications
that are associated with hardware dependencies. As one
example, many machine-learning-based applications use
specialized hardware accelerators during training phases
since, in many cases, training of machine-learning-based
applications and systems would be computationally intrac-
table without the increased computational bandwidth pro-
vided by hardware accelerators. However, such hardware
dependencies may prevent machine-learning-based applica-
tions from being deployed and managed effectively by
widely used automated orchestration systems, and manual
deployment of applications with hardware dependencies
may suffer significant inefficiencies and problems related to
maintenance downtime within distributed computer sys-
tems. The currently disclosed methods and systems provide
centralized maintenance-and-hardware-dependency sched-
uling information along with an asynchronous protocol for
access to the maintenance-and-hardware-dependency sched-
uling information by automated orchestration systems and
managers and administrators of distributed computer sys-
tems to facilitate efficient deployment of machine-learning-
based applications with hardware dependencies.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 provides a general architectural diagram for
various types of computers.

[0007] FIG. 2 illustrates an Internet-connected distributed
computing system.

[0008]
[0009] FIG. 4 illustrates generalized hardware and soft-
ware components of a general-purpose computer system,
such as a general-purpose computer system having an archi-
tecture similar to that shown in FIG. 1.

[0010] FIGS. 5A-D illustrate two types of virtual machine
and virtual-machine execution environments.

[0011] FIG. 6 illustrates an OVF package.

[0012] FIG. 7 illustrates virtual data centers provided as an
abstraction of underlying physical-data-center hardware
components.

[0013] FIG. 8 illustrates virtual-machine components of a
VI-management-server and physical servers of a physical
data center above which a virtual-data-center interface is
provided by the VI-management-server.

FIG. 3 illustrates cloud computing.

[0014] FIG. 9 illustrates a cloud-director level of abstrac-
tion.
[0015] FIG. 10 illustrates virtual-cloud-connector nodes

(“VCC nodes”) and a VCC server, components of a distrib-
uted system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds.

[0016] FIG. 11 illustrates fundamental components of a
feed-forward neural network.

[0017] FIG. 12 illustrates a small, example feed-forward
neural network.
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[0018] FIG. 13 provides a concise pseudocode illustration
of the implementation of a simple feed-forward neural
network.

[0019] FIG. 14 illustrates back propagation of errors
through a neural network during training.

[0020] FIGS. 15A-B show the details of the weight-
adjustment calculations carried out during back propagation.
[0021] FIG. 16A-B illustrate neural-network training as an
example of machine-learning-based-subsystem training.

[0022] FIG. 17 illustrates a fundamental Kubernetes
abstraction.
[0023] FIG. 18 illustrates a next level of abstraction pro-

vided by Kubernetes, referred to as a “Kubernetes cluster.”
[0024] FIG. 19 illustrates the logical contents of a pod.
[0025] FIG. 20 illustrates the logical contents of a Kuber-
netes management node and a Kubernetes worker node.

[0026] FIGS. 21A-E illustrate operation of a Kubernetes
cluster.
[0027] FIG. 22 illustrates the Tanzu Kubernetes Grid
(“TKG”) containerized-application automated orchestration
system.
[0028] FIG. 23 illustrates the nature of certain application

dependencies.
[0029] FIGS. 24A-B illustrate general characteristics of a
typical central processing unit (“CPU”).

[0030] FIGS. 25A-B illustrate general characteristics of a
typical GPU.
[0031] FIGS. 26A-B provide an example of the increase in

speed of a simple matrix operation obtained by use of a GPU
to accelerate component arithmetic operations.

[0032] FIGS. 27A-F illustrate a matrix-operation-based
method for neural-network training that allows for straight-
forward GPU acceleration.

[0033] FIGS. 28A-F illustrate one problem domain spe-
cifically addressed by the currently disclosed methods and
systems.

[0034] FIGS. 29A-B illustrate two possible approaches to
addressing the problem of deploying machine-learning-
based application instances on computational nodes of a
distributed computer system.

[0035] FIG. 30 illustrates two different control planes that
provide functionalities used by the currently disclosed meth-
ods and systems.

[0036] FIGS. 31A-C illustrate a logical, centrally man-
aged maintenance-and-training schedule that provides a
basis for the currently disclosed methods and systems.
[0037] FIG. 32 illustrates two metrics used in the subse-
quent discussion of one implementation of the currently
disclosed methods and systems.

[0038] FIG. 33 illustrates a process by which machine-
learning-based workloads requiring hardware acceleration
are submitted to, and processed by, an enhanced Kubernetes
automated orchestration system.

[0039] FIG. 34 illustrates additional details regarding
operation of the accelerator-time operator.

[0040] FIG. 35 illustrates vCenter-mediated portions of
the currently disclosed methods and systems.

[0041] FIG. 36 provides a complete view of the steps and
components illustrated in FIGS. 33-35.

DETAILED DESCRIPTION

[0042] The current document is directed to systems, and
methods incorporated within the systems, that automatically
deploy and manage applications that are associated with
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hardware dependencies. In a first subsection, below, a
detailed description of computer hardware, complex com-
putational systems, and virtualization is provided with ref-
erence to FIGS. 1-10. In a second subsection, neural net-
works are discussed with reference to FIGS. 11-16B. In a
third subsection, a widely used automated orchestration
system is discussed with reference to FIGS. 17-22. In a
fourth subsection, hardware accelerators for machine-learn-
ing applications are discussed, with reference to FIGS.
23-27F. In a fifth subsection, problems with deployment and
management of applications with hardware dependencies
are discussed with reference to FIGS. 28A-F. Finally, in a
sixth subsection, the currently disclosed methods and sys-
tems are discussed with reference to FIGS. 29A-36.

Computer Hardware, Complex Computational
Systems, and Virtualization

[0043] The term “abstraction” is not, in any way, intended
to mean or suggest an abstract idea or concept. Computa-
tional abstractions are tangible, physical interfaces that are
implemented, ultimately, using physical computer hardware,
data-storage devices, and communications systems. Instead,
the term ““abstraction” refers, in the current discussion, to a
logical level of functionality encapsulated within one or
more concrete, tangible, physically-implemented computer
systems with defined interfaces through which electroni-
cally-encoded data is exchanged, process execution
launched, and electronic services are provided. Interfaces
may include graphical and textual data displayed on physical
display devices as well as computer programs and routines
that control physical computer processors to carry out vari-
ous tasks and operations and that are invoked through
electronically implemented application programming inter-
faces (“APIs”) and other electronically implemented inter-
faces. There is a tendency among those unfamiliar with
modern technology and science to misinterpret the terms
“abstract” and “abstraction,” when used to describe certain
aspects of modern computing. For example, one frequently
encounters assertions that, because a computational system
is described in terms of abstractions, functional layers, and
interfaces, the computational system is somehow different
from a physical machine or device. Such allegations are
unfounded. One only needs to disconnect a computer system
or group of computer systems from their respective power
supplies to appreciate the physical, machine nature of com-
plex computer technologies. One also frequently encounters
statements that characterize a computational technology as
being “only software,” and thus not a machine or device.
Software is essentially a sequence of encoded symbols, such
as a printout of a computer program or digitally encoded
computer instructions sequentially stored in a file on an
optical disk or within an electromechanical mass-storage
device. Software alone can do nothing. It is only when
encoded computer instructions are loaded into an electronic
memory within a computer system and executed on a
physical processor that so-called “software implemented”
functionality is provided. The digitally encoded computer
instructions are an essential and physical control component
of processor-controlled machines and devices, no less essen-
tial and physical than a cam-shaft control system in an
internal-combustion engine. Multi-cloud aggregations,
cloud-computing services, virtual-machine containers and
virtual machines, communications interfaces, and many of
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the other topics discussed below are tangible, physical
components of physical, electro-optical-mechanical com-
puter systems.

[0044] FIG. 1 provides a general architectural diagram for
various types of computers. The computer system contains
one or multiple central processing units (“CPUs”) 102-105,
one or more electronic memories 108 interconnected with
the CPUs by a CPU/memory-subsystem bus 110 or multiple
busses, a first bridge 112 that interconnects the CPU/
memory-subsystem bus 110 with additional busses 114 and
116, or other types of high-speed interconnection media,
including multiple, high-speed serial interconnects. These
busses or serial interconnections, in turn, connect the CPUs
and memory with specialized processors, such as a graphics
processor 118, and with one or more additional bridges 120,
which are interconnected with high-speed serial links or
with multiple controllers 122-127, such as controller 127,
that provide access to various different types of mass-storage
devices 128, electronic displays, input devices, and other
such components, subcomponents, and computational
resources. It should be noted that computer-readable data-
storage devices include optical and electromagnetic disks,
electronic memories, and other physical data-storage
devices. Those familiar with modern science and technology
appreciate that electromagnetic radiation and propagating
signals do not store data for subsequent retrieval and can
transiently “store” only a byte or less of information per
mile, far less information than needed to encode even the
simplest of routines.

[0045] Of course, there are many different types of com-
puter-system architectures that differ from one another in the
number of different memories, including different types of
hierarchical cache memories, the number of processors and
the connectivity of the processors with other system com-
ponents, the number of internal communications busses and
serial links, and in many other ways. However, computer
systems generally execute stored programs by fetching
instructions from memory and executing the instructions in
one or more processors. Computer systems include general-
purpose computer systems, such as personal computers
(“PCs”), various types of servers and workstations, and
higher-end mainframe computers, but may also include a
plethora of various types of special-purpose computing
devices, including data-storage systems, communications
routers, network nodes, tablet computers, and mobile tele-
phones.

[0046] FIG. 2 illustrates an Internet-connected distributed
computing system. As communications and networking
technologies have evolved in capability and accessibility,
and as the computational bandwidths, data-storage capaci-
ties, and other capabilities and capacities of various types of
computer systems have steadily and rapidly increased, much
of modern computing now generally involves large distrib-
uted systems and computers interconnected by local net-
works, wide-area networks, wireless communications, and
the Internet. FIG. 2 shows a typical distributed system in
which a large number of PCs 202-205, a high-end distrib-
uted mainframe system 210 with a large data-storage system
212, and a large computer center 214 with large numbers of
rack-mounted servers or blade servers all interconnected
through various communications and networking systems
that together comprise the Internet 216. Such distributed
computing systems provide diverse arrays of functionalities.
For example, a PC user sitting in a home office may access
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hundreds of millions of different web sites provided by
hundreds of thousands of different web servers throughout
the world and ma access high-computational-bandwidth
computing services from remote computer facilities for
running complex computational tasks.

[0047] Until recently, computational services were gener-
ally provided by computer systems and data centers pur-
chased, configured, managed, and maintained by service-
provider organizations. For example, an e-commerce retailer
generally purchased, configured, managed, and maintained a
data center including numerous web servers, back-end com-
puter systems, and data-storage systems for serving web
pages to remote customers, receiving orders through the
web-page interface, processing the orders, tracking com-
pleted orders, and other myriad different tasks associated
with an e-commerce enterprise.

[0048] FIG. 3 illustrates cloud computing. In the recently
developed cloud-computing paradigm, computing cycles
and data-storage facilities are provided to organizations and
individuals by cloud-computing providers. In addition,
larger organizations may elect to establish private cloud-
computing facilities in addition to, or instead of, subscribing
to computing services provided by public cloud-computing
service providers. In FIG. 3, a system administrator for an
organization, using a PC 302, accesses the organization’s
private cloud 304 through a local network 306 and private-
cloud interface 308 and also accesses, through the Internet
310, a public cloud 312 through a public-cloud services
interface 314. The administrator can, in either the case of the
private cloud 304 or public cloud 312, configure virtual
computer systems and even entire virtual data centers and
launch execution of application programs on the virtual
computer systems and virtual data centers in order to carry
out any of many different types of computational tasks. As
one example, a small organization may configure and run a
virtual data center within a public cloud that executes web
servers to provide an e-commerce interface through the
public cloud to remote customers of the organization, such
as a user viewing the organization’s e-commerce web pages
on a remote user system 316.

[0049] Cloud-computing facilities are intended to provide
computational bandwidth and data-storage services much as
utility companies provide electrical power and water to
consumers. Cloud computing provides enormous advan-
tages to small organizations without the resources to pur-
chase, manage, and maintain in-house data centers. Such
organizations can dynamically add and delete virtual com-
puter systems from their virtual data centers within public
clouds in order to track computational-bandwidth and data-
storage needs, rather than purchasing sufficient computer
systems within a physical data center to handle peak com-
putational-bandwidth and data-storage demands. Moreover,
small organizations can completely avoid the overhead of
maintaining and managing physical computer systems,
including hiring and periodically retraining information-
technology specialists and continuously paying for operat-
ing-system and database-management-system upgrades.
Furthermore, cloud-computing interfaces allow for easy and
straightforward configuration of virtual computing facilities,
flexibility in the types of applications and operating systems
that can be configured, and other functionalities that are
useful even for owners and administrators of private cloud-
computing facilities used by a single organization.
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[0050] FIG. 4 illustrates generalized hardware and soft-
ware components of a general-purpose computer system,
such as a general-purpose computer system having an archi-
tecture similar to that shown in FIG. 1. The computer system
400 is often considered to include three fundamental layers:
(1) a hardware layer or level 402; (2) an operating-system
layer or level 404; and (3) an application-program layer or
level 406. The hardware layer 402 includes one or more
processors 408, system memory 410, various different types
of input-output (“I/O”) devices 410 and 412, and mass-
storage devices 414. Of course, the hardware level also
includes many other components, including power supplies,
internal communications links and busses, specialized inte-
grated circuits, many different types of processor-controlled
or microprocessor-controlled peripheral devices and con-
trollers, and many other components. The operating system
404 interfaces to the hardware level 402 through a low-level
operating system and hardware interface 416 generally
comprising a set of non-privileged computer instructions
418, a set of privileged computer instructions 420, a set of
non-privileged registers and memory addresses 422, and a
set of privileged registers and memory addresses 424. In
general, the operating system exposes non-privileged
instructions, non-privileged registers, and non-privileged
memory addresses 426 and a system-call interface 428 as an
operating-system interface 430 to application programs 432-
436 that execute within an execution environment provided
to the application programs by the operating system. The
operating system, alone, accesses the privileged instructions,
privileged registers, and privileged memory addresses. By
reserving access to privileged instructions, privileged reg-
isters, and privileged memory addresses, the operating sys-
tem can ensure that application programs and other higher-
level computational entities cannot interfere with one
another’s execution and cannot change the overall state of
the computer system in ways that could deleteriously impact
system operation. The operating system includes many
internal components and modules, including a scheduler
442, memory management 444, a file system 446, device
drivers 448, and many other components and modules. To a
certain degree, modern operating systems provide numerous
levels of abstraction above the hardware level, including
virtual memory, which provides to each application program
and other computational entities a separate, large, linear
memory-address space that is mapped by the operating
system to various electronic memories and mass-storage
devices. The scheduler orchestrates interleaved execution of
various different application programs and higher-level
computational entities, providing to each application pro-
gram a virtual, stand-alone system devoted entirely to the
application program. From the application program’s stand-
point, the application program executes continuously with-
out concern for the need to share processor resources and
other system resources with other application programs and
higher-level computational entities. The device drivers
abstract details of hardware-component operation, allowing
application programs to employ the system-call interface for
transmitting and receiving data to and from communications
networks, mass-storage devices, and other 1/O devices and
subsystems. The file system 436 facilitates abstraction of
mass-storage-device and memory resources as a high-level,
easy-to-access, file-system interface. Thus, the development
and evolution of the operating system has resulted in the
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generation of a type of multi-faceted virtual execution
environment for application programs and other higher-level
computational entities.

[0051] While the execution environments provided by
operating systems have proved to be an enormously suc-
cessful level of abstraction within computer systems, the
operating-system-provided level of abstraction is nonethe-
less associated with difficulties and challenges for develop-
ers and users of application programs and other higher-level
computational entities. One difficulty arises from the fact
that there are many different operating systems that run
within various different types of computer hardware. In
many cases, popular application programs and computa-
tional systems are developed to run on only a subset of the
available operating systems and can therefore be executed
within only a subset of the various different types of com-
puter systems on which the operating systems are designed
to run. Often, even when an application program or other
computational system is ported to additional operating sys-
tems, the application program or other computational system
can nonetheless run more efficiently on the operating sys-
tems for which the application program or other computa-
tional system was originally targeted. Another difficulty
arises from the increasingly distributed nature of computer
systems. Although distributed operating systems are the
subject of considerable research and development efforts,
many of the popular operating systems are designed primar-
ily for execution on a single computer system. In many
cases, it is difficult to move application programs, in real
time, between the different computer systems of a distrib-
uted computing system for high-availability, fault-tolerance,
and load-balancing purposes. The problems are even greater
in heterogeneous distributed computing systems which
include different types of hardware and devices running
different types of operating systems. Operating systems
continue to evolve, as a result of which certain older
application programs and other computational entities may
be incompatible with more recent versions of operating
systems for which they are targeted, creating compatibility
issues that are particularly difficult to manage in large
distributed systems.

[0052] For all of these reasons, a higher level of abstrac-
tion, referred to as the “virtual machine.” has been devel-
oped and evolved to further abstract computer hardware in
order to address many difficulties and challenges associated
with traditional computing systems, including the compat-
ibility issues discussed above. FIGS. SA-D illustrate several
types of virtual machine and virtual-machine execution
environments. FIGS. SA-B use the same illustration con-
ventions as used in FIG. 4. FIG. 5A shows a first type of
virtualization. The computer system 500 in FIG. 5A includes
the same hardware layer 502 as the hardware layer 402
shown in FIG. 4. However, rather than providing an oper-
ating system layer directly above the hardware layer, as in
FIG. 4, the virtualized computing environment illustrated in
FIG. 5A features a virtualization layer 504 that interfaces
through a virtualization-layer/hardware-layer interface 506,
equivalent to interface 416 in FIG. 4, to the hardware. The
virtualization layer provides a hardware-like interface 508 to
a number of virtual machines, such as virtual machine 510,
executing above the virtualization layer in a virtual-machine
layer 512. Each virtual machine includes one or more
application programs or other higher-level computational
entities packaged together with an operating system,
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referred to as a “guest operating system,” such as application
514 and guest operating system 516 packaged together
within virtual machine 510. Each virtual machine is thus
equivalent to the operating-system layer 404 and applica-
tion-program layer 406 in the general-purpose computer
system shown in FIG. 4. Each guest operating system within
a virtual machine interfaces to the virtualization-layer inter-
face 508 rather than to the actual hardware interface 506.
The virtualization layer partitions hardware resources into
abstract virtual-hardware layers to which each guest oper-
ating system within a virtual machine interfaces. The guest
operating systems within the virtual machines, in general,
are unaware of the virtualization layer and operate as if they
were directly accessing a true hardware interface. The
virtualization layer ensures that each of the virtual machines
currently executing within the virtual environment receive a
fair allocation of underlying hardware resources and that all
virtual machines receive sufficient resources to progress in
execution. The virtualization-layer interface 508 may differ
for different guest operating systems. For example, the
virtualization layer is generally able to provide virtual
hardware interfaces for a variety of different types of com-
puter hardware. This allows, as one example, a virtual
machine that includes a guest operating system designed for
a particular computer architecture to run on hardware of a
different architecture. The number of virtual machines need
not be equal to the number of physical processors or even a
multiple of the number of processors.

[0053] The virtualization layer includes a virtual-machine-
monitor module 518 (“VMM”) that virtualizes physical
processors in the hardware layer to create virtual processors
on which each of the virtual machines executes. For execu-
tion efficiency, the virtualization layer attempts to allow
virtual machines to directly execute non-privileged instruc-
tions and to directly access non-privileged registers and
memory. However, when the guest operating system within
a virtual machine accesses virtual privileged instructions,
virtual privileged registers, and virtual privileged memory
through the virtualization-layer interface 508, the accesses
result in execution of virtualization-layer code to simulate or
emulate the privileged resources. The virtualization layer
additionally includes a kernel module 520 that manages
memory, communications, and data-storage machine
resources on behalf of executing virtual machines (“VM
kernel”). The VM kernel, for example, maintains shadow
page tables on each virtual machine so that hardware-level
virtual-memory facilities can be used to process memory
accesses. The VM kernel additionally includes routines that
implement virtual communications and data-storage devices
as well as device drivers that directly control the operation
of underlying hardware communications and data-storage
devices. Similarly, the VM kernel virtualizes various other
types of I/O devices, including keyboards, optical-disk
drives, and other such devices. The virtualization layer
essentially schedules execution of virtual machines much
like an operating system schedules execution of application
programs, so that the virtual machines each execute within
a complete and fully functional virtual hardware layer.

[0054] FIG. 5B illustrates a second type of virtualization.
In FIG. 5B, the computer system 540 includes the same
hardware layer 542 and software layer 544 as the hardware
layer 402 shown in FIG. 4. Several application programs
546 and 548 are shown running in the execution environ-
ment provided by the operating system. In addition, a

Feb. 2, 2023

virtualization layer 550 is also provided, in computer 540,
but, unlike the virtualization layer 504 discussed with ref-
erence to FIG. 5A, virtualization layer 550 is layered above
the operating system 544, referred to as the “host OS,” and
uses the operating system interface to access operating-
system-provided functionality as well as the hardware. The
virtualization layer 550 comprises primarily a VMM and a
hardware-like interface 552, similar to hardware-like inter-
face 508 in FIG. 5A. The virtualization-layer/hardware-layer
interface 552, equivalent to interface 416 in FIG. 4, provides
an execution environment for a number of virtual machines
556-558, each including one or more application programs
or other higher-level computational entities packaged
together with a guest operating system.

[0055] While the traditional virtual-machine-based virtu-
alization layers, described with reference to FIGS. 5A-B,
have enjoyed widespread adoption and use in a variety of
different environments, from personal computers to enor-
mous, distributed computing systems, traditional virtualiza-
tion technologies are associated with computational over-
heads. While these computational overheads have been
steadily decreased, over the years, and often represent ten
percent or less of the total computational bandwidth con-
sumed by an application running in a virtualized environ-
ment, traditional virtualization technologies nonetheless
involve computational costs in return for the power and
flexibility that they provide. Another approach to virtualiza-
tion is referred to as operating-system-level virtualization
(“OSL virtualization™). FIG. 5C illustrates the OSL-virtual-
ization approach. In FIG. 5C, as in previously discussed
FIG. 4, an operating system 404 runs above the hardware
402 of a host computer. The operating system provides an
interface for higher-level computational entities, the inter-
face including a system-call interface 428 and exposure to
the non-privileged instructions and memory addresses and
registers 426 of the hardware layer 402. However, unlike in
FIG. 5A, rather than applications running directly above the
operating system, OSL virtualization involves an OS-level
virtualization layer 560 that provides an operating-system
interface 562-564 to each of one or more containers 566-
568. The containers, in turn, provide an execution environ-
ment for one or more applications, such as application 570
running within the execution environment provided by con-
tainer 566. The container can be thought of as a partition of
the resources generally available to higher-level computa-
tional entities through the operating system interface 430.
While a traditional virtualization layer can simulate the
hardware interface expected by any of many different oper-
ating systems. OSL virtualization essentially provides a
secure partition of the execution environment provided by a
particular operating system. As one example, OSL virtual-
ization provides a file system to each container, but the file
system provided to the container is essentially a view of a
partition of the general file system provided by the under-
lying operating system. In essence, OSL virtualization uses
operating-system features, such as name space support, to
isolate each container from the remaining containers so that
the applications executing within the execution environment
provided by a container are isolated from applications
executing within the execution environments provided by all
other containers. As a result, a container can be booted up
much faster than a virtual machine, since the container uses
operating-system-kernel features that are already available
within the host computer. Furthermore, the containers share
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computational bandwidth, memory, network bandwidth, and
other computational resources provided by the operating
system, without resource overhead allocated to virtual
machines and virtualization layers. Again, however, OSL
virtualization does not provide many desirable features of
traditional virtualization. As mentioned above, OSL virtu-
alization does not provide a way to run different types of
operating systems for different groups of containers within
the same host system, nor does OSL-virtualization provide
for live migration of containers between host computers, as
does traditional virtualization technologies.

[0056] FIG. 5D illustrates an approach to combining the
power and flexibility of traditional virtualization with the
advantages of OSL virtualization. FIG. 5D shows a host
computer similar to that shown in FIG. 5A, discussed above.
The host computer includes a hardware layer 502 and a
virtualization layer 504 that provides a simulated hardware
interface 508 to an operating system 572. Unlike in FIG. 5A,
the operating system interfaces to an OSL-virtualization
layer 574 that provides container execution environments
576-578 to multiple application programs. Running contain-
ers above a guest operating system within a virtualized host
computer provides many of the advantages of traditional
virtualization and OSL virtualization. Containers can be
quickly booted in order to provide additional execution
environments and associated resources to new applications.
The resources available to the guest operating system are
efficiently partitioned among the containers provided by the
OSL-virtualization layer 574. Many of the powerful and
flexible features of the traditional virtualization technology
can be applied to containers running above guest operating
systems including live migration from one host computer to
another, various types of high-availability and distributed
resource sharing, and other such features. Containers pro-
vide share-based allocation of computational resources to
groups of applications with guaranteed isolation of applica-
tions in one container from applications in the remaining
containers executing above a guest operating system. More-
over, resource allocation can be modified at run time
between containers. The traditional virtualization layer pro-
vides flexible and easy scaling and a simple approach to
operating-system upgrades and patches. Thus, the use of
OSL virtualization above traditional virtualization, as illus-
trated in FIG. 5D, provides much of the advantages of both
a traditional virtualization layer and the advantages of OSL
virtualization. Note that, although only a single guest oper-
ating system and OSL virtualization layer as shown in FIG.
5D, a single virtualized host system can run multiple dif-
ferent guest operating systems within multiple virtual
machines, each of which supports one or more containers.

[0057] A virtual machine or virtual application, described
below, is encapsulated within a data package for transmis-
sion, distribution, and loading into a virtual-execution envi-
ronment. One public standard for virtual-machine encapsu-
lation is referred to as the “open virtualization format”
(“OVF”). The OVF standard specifies a format for digitally
encoding a virtual machine within one or more data files.
FIG. 6 illustrates an OVF package. An OVF package 602
includes an OVF descriptor 604, an OVF manifest 606, an
OVF certificate 608, one or more disk-image files 610-611,
and one or more resource files 612-614. The OVF package
can be encoded and stored as a single file or as a set of files.
The OVF descriptor 604 is an XML document 620 that
includes a hierarchical set of elements, each demarcated by
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a beginning tag and an ending tag. The outermost, or
highest-level, element is the envelope element, demarcated
by tags 622 and 623. The next-level element includes a
reference element 626 that includes references to all files
that are part of the OVF package, a disk section 628 that
contains meta information about all of the virtual disks
included in the OVF package, a networks section 630 that
includes meta information about all of the logical networks
included in the OVF package, and a collection of virtual-
machine configurations 632 which further includes hard-
ware descriptions of each virtual machine 634. There are
many additional hierarchical levels and elements within a
typical OVF descriptor. The OVF descriptor is thus a
self-describing XML file that describes the contents of an
OVF package. The OVF manifest 606 is a list of crypto-
graphic-hash-function-generated digests 636 of the entire
OVF package and of the various components of the OVF
package. The OVF certificate 608 is an authentication cer-
tificate 640 that includes a digest of the manifest and that is
cryptographically signed. Disk image files, such as disk
image file 610, are digital encodings of the contents of
virtual disks and resource files 612 are digitally encoded
content, such as operating-system images. A virtual machine
or a collection of virtual machines encapsulated together
within a virtual application can thus be digitally encoded as
one or more files within an OVF package that can be
transmitted, distributed, and loaded using well-known tools
for transmitting, distributing, and loading files. A virtual
appliance is a software service that is delivered as a com-
plete software stack installed within one or more virtual
machines that is encoded within an OVF package.

[0058] The advent of virtual machines and virtual envi-
ronments has alleviated many of the difficulties and chal-
lenges associated with traditional general-purpose comput-
ing. Machine and operating-system dependencies can be
significantly reduced or entirely eliminated by packaging
applications and operating systems together as virtual
machines and virtual appliances that execute within virtual
environments provided by virtualization layers running on
many different types of computer hardware. A next level of
abstraction, referred to as virtual data centers which are one
example of a broader virtual-infrastructure category, provide
a data-center interface to virtual data centers computation-
ally constructed within physical data centers. FIG. 7 illus-
trates virtual data centers provided as an abstraction of
underlying physical-data-center hardware components. In
FIG. 7, a physical data center 702 is shown below a
virtual-interface plane 704. The physical data center consists
of a virtual-infrastructure management server (“VI-manage-
ment-server”) 706 and any of various different computers,
such as PCs 708, on which a virtual-data-center manage-
ment interface may be displayed to system administrators
and other users. The physical data center additionally
includes generally large numbers of server computers, such
as server computer 710, that are coupled together by local
area networks, such as local area network 712 that directly
interconnects server computer 710 and 714-720 and a mass-
storage array 722. The physical data center shown in FIG. 7
includes three local area networks 712, 724, and 726 that
each directly interconnects a bank of eight servers and a
mass-storage array. The individual server computers, such as
server computer 710, each includes a virtualization layer and
runs multiple virtual machines. Different physical data cen-
ters may include many different types of computers, net-
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works, data-storage systems and devices connected accord-
ing to many different types of connection topologies. The
virtual-data-center abstraction layer 704, a logical abstrac-
tion layer shown by a plane in FIG. 7, abstracts the physical
data center to a virtual data center comprising one or more
resource pools, such as resource pools 730-732, one or more
virtual data stores, such as virtual data stores 734-736, and
one or more virtual networks. In certain implementations,
the resource pools abstract banks of physical servers directly
interconnected by a local area network.

[0059] The wvirtual-data-center management interface
allows provisioning and launching of virtual machines with
respect to resource pools, virtual data stores, and virtual
networks, so that virtual-data-center administrators need not
be concerned with the identities of physical-data-center
components used to execute particular virtual machines.
Furthermore, the VI-management-server includes function-
ality to migrate running virtual machines from one physical
server to another in order to optimally or near optimally
manage resource allocation, provide fault tolerance, and
high availability by migrating virtual machines to most
effectively utilize underlying physical hardware resources,
to replace virtual machines disabled by physical hardware
problems and failures, and to ensure that multiple virtual
machines supporting a high-availability virtual appliance are
executing on multiple physical computer systems so that the
services provided by the virtual appliance are continuously
accessible, even when one of the multiple virtual appliances
becomes compute bound, data-access bound, suspends
execution, or fails. Thus, the virtual data center layer of
abstraction provides a virtual-data-center abstraction of
physical data centers to simplify provisioning, launching,
and maintenance of virtual machines and virtual appliances
as well as to provide high-level, distributed functionalities
that involve pooling the resources of individual physical
servers and migrating virtual machines among physical
servers to achieve load balancing, fault tolerance, and high
availability.

[0060] FIG. 8 illustrates virtual-machine components of a
VI-management-server and physical servers of a physical
data center above which a virtual-data-center interface is
provided by the VI-management-server. The VI-manage-
ment-server 802 and a virtual-data-center database 804
comprise the physical components of the management com-
ponent of the virtual data center. The VI-management-server
802 includes a hardware layer 806 and virtualization layer
808 and runs a virtual-data-center management-server vir-
tual machine 810 above the virtualization layer. Although
shown as a single server in FIG. 8, the VI-management-
server (“VI management server”) may include two or more
physical server computers that support multiple VI-manage-
ment-server virtual appliances. The virtual machine 810
includes a management-interface component 812, distrib-
uted services 814, core services 816, and a host-management
interface 818. The management interface is accessed from
any of various computers, such as the PC 708 shown in FIG.
7. The management interface allows the virtual-data-center
administrator to configure a virtual data center, provision
virtual machines, collect statistics and view log files for the
virtual data center, and to carry out other, similar manage-
ment tasks. The host-management interface 818 interfaces to
virtual-data-center agents 824, 825, and 826 that execute as
virtual machines within each of the physical servers of the
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physical data center that is abstracted to a virtual data center
by the VI management server.

[0061] The distributed services 814 include a distributed-
resource scheduler that assigns virtual machines to execute
within particular physical servers and that migrates virtual
machines in order to most effectively make use of compu-
tational bandwidths, data-storage capacities, and network
capacities of the physical data center. The distributed ser-
vices further include a high-availability service that repli-
cates and migrates virtual machines in order to ensure that
virtual machines continue to execute despite problems and
failures experienced by physical hardware components. The
distributed services also include a live-virtual-machine
migration service that temporarily halts execution of a
virtual machine, encapsulates the virtual machine in an OVF
package, transmits the OVF package to a different physical
server, and restarts the virtual machine on the different
physical server from a virtual-machine state recorded when
execution of the virtual machine was halted. The distributed
services also include a distributed backup service that pro-
vides centralized virtual-machine backup and restore.
[0062] The core services provided by the VI management
server include host configuration, virtual-machine configu-
ration, virtual-machine provisioning, generation of virtual-
data-center alarms and events, ongoing event logging and
statistics collection, a task scheduler, and a resource-man-
agement module. Each physical server 820-822 also
includes a host-agent virtual machine 828-830 through
which the virtualization layer can be accessed via a virtual-
infrastructure application programming interface (“API”).
This interface allows a remote administrator or user to
manage an individual server through the infrastructure API.
The virtual-data-center agents 824-826 access virtualiza-
tion-layer server information through the host agents. The
virtual-data-center agents are primarily responsible for off-
loading certain of the virtual-data-center management-
server functions specific to a particular physical server to
that physical server. The virtual-data-center agents relay and
enforce resource allocations made by the VI management
server, relay virtual-machine provisioning and configura-
tion-change commands to host agents, monitor and collect
performance statistics, alarms, and events communicated to
the virtual-data-center agents by the local host agents
through the interface APIL, and to carry out other, similar
virtual-data-management tasks.

[0063] The virtual-data-center abstraction provides a con-
venient and efficient level of abstraction for exposing the
computational resources of a cloud-computing facility to
cloud-computing-infrastructure users. A cloud-director man-
agement server exposes virtual resources of a cloud-com-
puting facility to cloud-computing-infrastructure users. In
addition, the cloud director introduces a multi-tenancy layer
of abstraction, which partitions virtual data centers
(“VDCs”) into tenant-associated VDCs that can each be
allocated to a particular individual tenant or tenant organi-
zation, both referred to as a “tenant.” A given tenant can be
provided one or more tenant-associated VDCs by a cloud
director managing the multi-tenancy layer of abstraction
within a cloud-computing facility. The cloud services inter-
face (308 in FIG. 3) exposes a virtual-data-center manage-
ment interface that abstracts the physical data center.
[0064] FIG. 9 illustrates a cloud-director level of abstrac-
tion. In FIG. 9, three different physical data centers 902-904
are shown below planes representing the cloud-director
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layer of abstraction 906-908. Above the planes representing
the cloud-director level of abstraction, multi-tenant virtual
data centers 910-912 are shown. The resources of these
multi-tenant virtual data centers are securely partitioned in
order to provide secure virtual data centers to multiple
tenants, or cloud-services-accessing organizations. For
example, a cloud-services-provider virtual data center 910 is
partitioned into four different tenant-associated virtual-data
centers within a multi-tenant virtual data center for four
different tenants 916-919. Each multi-tenant virtual data
center is managed by a cloud director comprising one or
more cloud-director servers 920-922 and associated cloud-
director databases 924-926. Each cloud-director server or
servers runs a cloud-director virtual appliance 930 that
includes a cloud-director management interface 932, a set of
cloud-director services 934, and a virtual-data-center man-
agement-server interface 936. The cloud-director services
include an interface and tools for provisioning multi-tenant
virtual data center virtual data centers on behalf of tenants,
tools and interfaces for configuring and managing tenant
organizations, tools and services for organization of virtual
data centers and tenant-associated virtual data centers within
the multi-tenant virtual data center, services associated with
template and media catalogs, and provisioning of virtual-
ization networks from a network pool. Templates are virtual
machines that each contains an OS and/or one or more
virtual machines containing applications. A template may
include much of the detailed contents of virtual machines
and virtual appliances that are encoded within OVF pack-
ages, so that the task of configuring a virtual machine or
virtual appliance is significantly simplified, requiring only
deployment of one OVF package. These templates are stored
in catalogs within a tenant’s virtual-data center. These
catalogs are used for developing and staging new virtual
appliances and published catalogs are used for sharing
templates in virtual appliances across organizations. Cata-
logs may include OS images and other information relevant
to construction, distribution, and provisioning of virtual
appliances.

[0065] Considering FIGS. 7 and 9, the VI management
server and cloud-director layers of abstraction can be seen,
as discussed above, to facilitate employment of the virtual-
data-center concept within private and public clouds. How-
ever, this level of abstraction does not fully facilitate aggre-
gation of single-tenant and multi-tenant virtual data centers
into heterogeneous or homogeneous aggregations of cloud-
computing facilities.

[0066] FIG. 10 illustrates virtual-cloud-connector nodes
(“VCC nodes”) and a VCC server, components of a distrib-
uted system that provides multi-cloud aggregation and that
includes a cloud-connector server and cloud-connector
nodes that cooperate to provide services that are distributed
across multiple clouds. VMware vCloud™ VCC servers and
nodes are one example of VCC servers and nodes. In FIG.
10, seven different cloud-computing facilities are illustrated
1002-1008. Cloud-computing facility 1002 is a private
multi-tenant cloud with a cloud director 1010 that interfaces
to a VI management server 1012 to provide a multi-tenant
private cloud comprising multiple tenant-associated virtual
data centers. The remaining cloud-computing facilities
1003-1008 may be either public or private cloud-computing
facilities and may be single-tenant virtual data centers, such
as virtual data centers 1003 and 1006, multi-tenant virtual
data centers, such as multi-tenant virtual data centers 1004
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and 1007-1008, or any of various different kinds of third-
party cloud-services facilities, such as third-party cloud-
services facility 1005. An additional component, the VCC
server 1014, acting as a controller is included in the private
cloud-computing facility 1002 and interfaces to a VCC node
1016 that runs as a virtual appliance within the cloud
director 1010. A VCC server may also run as a virtual
appliance within a VI management server that manages a
single-tenant private cloud. The VCC server 1014 addition-
ally interfaces, through the Internet, to VCC node virtual
appliances executing within remote VI management servers,
remote cloud directors, or within the third-party cloud
services 1018-1023. The VCC server provides a VCC server
interface that can be displayed on a local or remote terminal,
PC, or other computer system 1026 to allow a cloud-
aggregation administrator or other user to access VCC-
server-provided aggregate-cloud distributed services. In
general, the cloud-computing facilities that together form a
multiple-cloud-computing aggregation through distributed
services provided by the VCC server and VCC nodes are
geographically and operationally distinct.

Neural Networks

[0067] FIG. 11 illustrates fundamental components of a
feed-forward neural network. Equations 1102 mathemati-
cally represents ideal operation of a neural network as a
function f(x). The function receives an input vector x and
outputs a corresponding output vector y 1103. For example,
an input vector may be a digital image represented by a
two-dimensional array of pixel values in an electronic
document or may be an ordered set of numeric or alphanu-
meric values. Similarly, the output vector may be, for
example, an altered digital image, an ordered set of one or
more numeric or alphanumeric values, an electronic docu-
ment, or one or more numeric values. The initial expression
1103 represents the ideal operation of the neural network. In
other words, the output vectors y represent the ideal, or
desired, output for corresponding input vector x. However,
in actual operation, a physically implemented neural net-
work F(x), as represented by expressions 1104, returns a
physically generated output vector y that may differ from the
ideal or desired output vector y. As shown in the second
expression 1105 within expressions 1104, an output vector
produced by the physically implemented neural network is
associated with an error or loss value. A common error or
loss value is the square of the distance between the two
points represented by the ideal output vector and the output
vector produced by the neural network. To simplify back-
propagation computations, discussed below, the square of
the distance is often divided by 2. As further discussed
below, the distance between the two points represented by
the ideal output vector and the output vector produced by the
neural network, with optional scaling, may also be used as
the error or loss. A neural network is trained using a training
dataset comprising input-vector/ideal-output-vector pairs,
generally obtained by human or human-assisted assignment
of ideal-output vectors to selected input vectors. The ideal-
output vectors in the training dataset are often referred to as
“labels.” During training, the error associated with each
output vector, produced by the neural network in response to
input to the neural network of a training-dataset input vector,
is used to adjust internal weights within the neural network
in order to minimize the error or loss. Thus, the accuracy and
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reliability of a trained neural network is highly dependent on
the accuracy and completeness of the training dataset.

[0068] As shown in the middle portion 1106 of FIG. 11, a
feed-forward neural network generally consists of layers of
nodes, including an input layer 1108, an output layer 1110,
and one or more hidden layers 1112 and 1114. These layers
can be numerically labeled 1, 2, 3, . . ., L, as shown in FIG.
11. In general, the input layer contains a node for each
element of the input vector and the output layer contains one
node for each element of the output vector. The input layer
and/or output layer may have one or more nodes. In the
following discussion, the nodes of a first level with a
numeric label lower in value than that of a second layer are
referred to as being higher-level nodes with respect to the
nodes of the second layer. The input-layer nodes are thus the
highest-level nodes. The nodes are interconnected to form a
graph.

[0069] The lower portion of FIG. 11 (1120 in FIG. 11)
illustrates a feed-forward neural-network node. The neural-
network node 1122 receives inputs 1124-1127 from one or
more next-higher-level nodes and generates an output 1128
that is distributed to one or more next-lower-level nodes
1130-1133. The inputs and outputs are referred to as “acti-
vations,” represented by superscripted-and-subscripted sym-
bols “a” in FIG. 11, such as the activation symbol 1134. An
input component 1136 within a node collects the input
activations and generates a weighted sum of these input
activations to which a weighted internal activation a, is
added. An activation component 1138 within the node is
represented by a function g( ), referred to as an “activation
function.” that is used in an output component 1140 of the
node to generate the output activation of the node based on
the input collected by the input component 1136. The
neural-network node 1122 represents a generic hidden-layer
node. Input-layer nodes lack the input component 1136 and
each receive a single input value representing an element of
an input vector. Output-component nodes output a single
value representing an element of the output vector. The
values of the weights used to generate the cumulative input
by the input component 1136 are determined by training, as
previously mentioned. In general, the input, outputs, and
activation function are predetermined and constant,
although, in certain types of neural networks, these may also
be at least partly adjustable parameters. In FIG. 11, two
different possible activation functions are indicated by
expressions 1140 and 1141. The latter expression represents
a sigmoidal relationship between input and output that is
commonly used in neural networks and other types of
machine-learning systems.

[0070] FIG. 12 illustrates a small, example feed-forward
neural network, illustrates a small, example feed-forward
neural network. The example neural network 1202 is math-
ematically represented by expression 1204. It includes an
input layer of four nodes 1206, a first hidden layer 1208 of
six nodes, a second hidden layer 1210 of six nodes, and an
output layer 1212 of two nodes. As indicated by directed
arrow 1214, data input to the input-layer nodes 1206 flows
downward through the neural network to produce the final
values output by the output nodes in the output layer 1212.
The line segments, such as line segment 1216, interconnect-
ing the nodes in the neural network 1202 indicate commu-
nications paths along which activations are transmitted from
higher-level nodes to lower-level nodes. In the example
feed-forward neural network, the nodes of the input layer
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1206 are fully connected to the nodes of the first hidden
layer 1208, but the nodes of the first hidden layer 1208 are
only sparsely connected with the nodes of the second hidden
layer 1210. Various different types of neural networks may
use different numbers of layers, different numbers of nodes
in each of the layers, and different patterns of connections
between the nodes of each layer to the nodes in preceding
and succeeding layers.

[0071] FIG. 13 provides a concise pseudocode illustration
of the implementation of a simple feed-forward neural
network. Three initial type definitions 1302 provide types
for layers of nodes, pointers to activation functions, and
pointers to nodes. The class node 1304 represents a neural-
network node. Each node includes the following data mem-
bers: (1) output 1306, the output activation value for the
node; (2) g 1307, a pointer to the activation function for the
node; (3) weights 1308, the weights associated with the
inputs: and (4) inputs 1309, pointers to the higher-level
nodes from which the node receives activations. Each node
provides an activate member function 1310 that generates
the activation for the node, which is stored in the data
member output, and a pair of member functions 1312 for
setting and getting the value stored in the data member
output. The class neuralNet 1314 represents an entire neural
network. The neural network includes data members that
store the number of layers 1316 and a vector of node-vector
layers 1318, each node-vector layer representing a layer of
nodes within the neural network. The single member func-
tion f 1320 of the class neuralNet generates an output vector
y for an input vector x. An implementation of the member
function activate for the node class is next provided 1322.
This corresponds to the expression shown for the input
component 1136 in FIG. 11. Finally, an implementation for
the member function f 1324 of the neuralNet class is
provided. In a first for-loop 1326, an element of the input
vector is input to each of the input-layer nodes. In a pair of
nested for-loops 1327, the activate function for each hidden-
layer and output-layer node in the neural network is called,
starting from the highest hidden layer and proceeding layer-
by-layer to the output layer. In a final for-loop 1328, the
activation values of the output-layer nodes are collected into
the output vector v.

[0072] FIG. 14 illustrates back propagation of errors
through a neural network during training. As indicated by
directed arrow 1402, the error-based weight adjustment
flows upward from the output-layer nodes 1212 to the
highest-level hidden-layer nodes 1208. For the example
neural network 1202, the error, or loss, is computed accord-
ing to expression 1404. This loss is propagated upward
through the connections between nodes in a process that
proceeds in an opposite direction from the direction of
activation transmission during generation of the output
vector from the input vector. The back-propagation process
determines, for each activation passed from one node to
another, the value of the partial differential of the error, or
loss, with respect to the weight associated with the activa-
tion. This value is then used to adjust the weight in order to
minimize the error, or loss.

[0073] FIGS. 15A-B show the details of the weight-
adjustment calculations carried out during back propagation.
FIGS. 15A-B show the details of the weight-adjustment
calculations carried out during back propagation. An expres-
sion for the total error, or loss. E with respect to an
input-vector/label pair within a training dataset is obtained
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in a first set of expressions 1502, which is one half the
squared distance between the points in a multidimensional
space represented by the ideal output and the output vector
generated by the neural network. The partial differential of
the total error E with respect to a particular weight w, ; for
the j* input of an output node i is obtained by the set of
expressions 1504. In these expressions, the partial differen-
tial operator is propagated rightward through the expression
for the total error E. An expression for the derivative of the
activation function with respect to the input x produced by
the input component of a node is obtained by the set of
expressions 1506. This allows for generation of a simplified
expression for the partial derivative of the total energy E
with respect to the weight associated with the j* input of the
i output node 1508. The weight adjustment based on the
total error E is provided by expression 1510, in which r has
a real value in the range [0-1] that represents a learning rate,
a, is the activation received through input j by node 1, and A,
is the product of parenthesized terms, which include a, and
y,, in the first expression in expressions 1508 that multiplies
a; FIG. 15B provides a derivation of the weight adjustment
for the hidden-layer nodes above the output layer. It should
be noted that the computational overhead for calculating the
weights for each next highest layer of nodes increases
geometrically, as indicated by the increasing number of
subscripts for the A multipliers in the weight-adjustment
expressions.

[0074] FIG. 16A-B illustrate neural-network training as an
example of machine-learning-based-subsystem training.
FIG. 16A illustrates the construction and training of a neural
network using a complete and accurate training dataset. The
training dataset is shown as a table of input-vector/label
pairs 1602, in which each row represents an input-vector/
label pair. The control-flow diagram 1604 illustrates con-
struction and training of a neural network using the training
dataset. In step 1606, basic parameters for the neural net-
work are received, such as the number of layers, number of
nodes in each layer, node interconnections, and activation
functions. In step 1608, the specified neural network is
constructed. This involves building representations of the
nodes, node connections, activation functions, and other
components of the neural network in one or more electronic
memories and may involve, in certain cases, various types of
code generation, resource allocation and scheduling, and
other operations to produce a fully configured neural net-
work that can receive input data and generate corresponding
outputs. In many cases, for example, the neural network may
be distributed among multiple computer systems and may
employ dedicated communications and shared memory for
propagation of activations and total error or loss between
nodes. It should again be emphasized that a neural network
is a physical system comprising one or more computer
systems, communications subsystems, and often multiple

instances of computer-instruction-implemented control
components.
[0075] In step 1610, training data represented by table

1602 is received. Then, in the while-loop of steps 1612-
1616, portions of the training data are iteratively input to the
neural network, in step 1613, the loss or error is computed,
in step 1614, and the computed loss or error is back-
propagated through the neural network step 1615 to adjust
the weights. The control-flow diagram refers to portions of
the training data rather than individual input-vector/label
pairs because, in certain cases, groups of input-vector/label
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pairs are processed together to generate a cumulative error
that is back-propagated through the neural network. A
portion may, of course, include only a single input-vector/
label pair.

[0076] FIG. 16B illustrates one method of training a
neural network using an incomplete training dataset. Table
1620 represents the incomplete training dataset. For certain
of the input-vector/label pairs, the label is represented by a
“?” symbol, such as in the input-vector/label pair 1622. The
“?” symbol indicates that the correct value for the label is
unavailable. This type of incomplete data set may arise from
a variety of different factors, including inaccurate labeling
human annotators, various types of data loss incurred during
collection, storage, and processing of training datasets, and
other such factors. The control-flow diagram 1624 illustrates
alterations in the while-loop of steps 1612-1616 in FIG. 16A
that might be employed to train the neural network using the
incomplete training dataset. In step 1625, a next portion of
the training dataset is evaluated to determine the status of the
labels in the next portion of the training data. When all of the
labels are present and credible, as determined in step 1626,
the next portion of the training dataset is input to the neural
network, in step 1627, as in FIG. 16A. However, when
certain labels are missing or lack credibility, as determined
in step 1626, the input-vector/label pairs that include those
labels are removed or altered to include better estimates of
the label values, in step 1628. When there is reasonable
training data remaining in the training-data portion follow-
ing step 1628, as determined in step 1629, the remaining
reasonable data is input to the neural network in step 1627.
The remaining steps in the while-loop are equivalent to
those in the control-flow diagram shown in FIG. 16 A. Thus,
in this approach, either suspect data is removed, or better
labels are estimated, based on various criteria, for substitu-
tion for the suspect labels.

Kubernetes

[0077] Kubernetes is an automated, open-source contain-
erized-application orchestration system that provides an
abstraction layer above virtual and physical computational
resources within a data center or cloud-computing facility.
Containers are a type of virtualized application-execution
environment discussed above with reference to FIGS. 5C-D.
Containerized applications are applications that packaged
for execution within containers. Kubernetes automatically
distributes and schedules containerized applications across
physical and virtual computational resources of a data center
or cloud-computing facility. As one example, modern ser-
vice-oriented applications are generally implemented by
distributed applications running on the multiple virtual
machines or containers within multiple physical servers of a
data center or cloud-computing facility. Rather than manu-
ally installing and managing all of these different virtual
machines and/or containers, a user can develop Kubernetes
workload-resource specifications and supply the workload-
resource specifications along with references to container-
ized applications to a Kubernetes automated orchestration
system, which instantiates and manages operation of the
service-oriented application.

[0078] FIG. 17 illustrates a fundamental Kubernetes
abstraction. A data center, cloud-computing facility, or other
distributed computer system is represented, in FIG. 17, as a
large number of physical computational resources, such as
servers 1702. Kubernetes abstracts a portion of the physical
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and virtual computational resources provided by the under-
lying data center, cloud-computing facility, or other distrib-
uted computer system as a set of Kubernetes nodes 1704,
where horizontal plane 1706 represents the fundamental
Kubernetes abstraction of the underlying physical and vir-
tual computational resources of the data center or cloud-
computing facility. Kubernetes nodes may be virtual
machines, physical computers, or other such computational
entities that provide execution environments for container-
ized applications. The Kubernetes automated orchestration
system is responsible for mapping Kubernetes nodes to the
physical and virtual computational resources, including
physical and virtual data-storage facilities and communica-
tions networks in addition to containerized-application
execution environments.

[0079] FIG. 18 illustrates a next level of abstraction pro-
vided by Kubernetes, referred to as a “Kubernetes cluster.”
A Kubernetes cluster comprises a set of highly available,
interconnected Kubernetes nodes that are managed by
Kubernetes as a computational entity. The nodes in a cluster
are partitioned into worker nodes 1802, often simply
referred to as “nodes.” and master nodes 1804 that together
implement a Kubernetes-cluster control plane. In general,
only one of the masters nodes is active at any given time,
with the inactive master nodes providing for immediate
failover in the case that the active master node fails. The
control plane is responsible for distributing containerized
applications among the worker nodes and scheduling execu-
tion of the containerized applications. In addition, the con-
trol plane manages operation of the nodes and containerized
applications executing within the nodes. The control plane
provides a Kubernetes application programming interface
(“API”) 1806 through which the control plane communi-
cates with the nodes and through which Kubernetes services
and facilities are accessed by users, often via the Kubectl
command line interface 1808. An additional Kubernetes
layer of abstraction 1810 provides a set of pods 1812 that are
deployed to, and that provide execution environments
within, the nodes 1802. A pod is the smallest computational
unit in Kubernetes. A pod supports execution of a single
container or two or more tightly coupled containers, includ-
ing shared data-storage and networking resources, that are
scheduled and deployed together by the cluster control
plane. In many cases, a pod includes only a single container
that provides an execution environment for a single instance
of a containerized application. Pods are created and man-
aged by controllers for workload resources, discussed below,
and are each associated with a pod template, or pod speci-
fication.

[0080] FIG. 19 illustrates the logical contents of a pod.
The pod 1902 includes one or more containers 1904-1905,
shared storage and networking resources 1906, and various
types of metadata 1908, including operational parameters
and resource requirements. A pod is assigned a set of unique
network addresses that is shared, along with a set of ports,
by all of the containers in the pod. Containers within a pod
can communicate with one another via shared memory,
semaphores, and localhost.

[0081] FIG. 20 illustrates the logical contents of a Kuber-
netes management node and a Kubernetes worker node. A
Kubernetes management node 2002 includes an API server
2004 that exposes the Kubernetes API to remote entities and
that implements the control-plane front-end. In addition, a
Kubernetes management node includes a scheduler 2006
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that is responsible for distributing newly created pods
among worker nodes, matching pod requirements, con-
straints, affinities and parameters to the parameters and
characteristics of the worker nodes to which a pod is
distributed. A Kubernetes management node additionally
includes a controller manager 2008 comprising multiple
processes that implement multiple controllers, including a
node controller, a replication controller, an endpoints con-
troller, and a service-account-and-token controller. Control-
lers monitor the operational status of pods within the cluster
and attempt to ameliorate any detected departures from the
specified operational behaviors of the pods. For example, the
node controller detects failed nodes and attempt to mitigate
node failures. As another example, the replication controller
monitors replication objects to ensure that the proper num-
ber of pods are running for each replication object. A
Kubernetes management node further includes an etcd key-
value data store 2010 and a cloud-controller manager 2012,
which includes multiple controllers that manage cloud-
hosted Kubernetes cluster components. The above-discussed
logical components of a master node are implemented above
the computational resources 2014 provided by a virtual
machine or physical server. A worker node 2020 includes a
Kubelet agent 2022 that manages pods running within the
worker node in cooperation with the control plate, with
which the Kubelet agent communicates via the Kubernetes
API, as indicated by dashed arrow 2024. In addition, a
worker node includes a container run time 2026, such as the
Docker container runtime, and one or more pods 2028-2030
that execute using the computational resources 2032 pro-
vided by a virtual machine or physical server.

[0082] FIGS. 21A-F illustrate operation of a Kubernetes
cluster. While there are many ways for a user to access a
Kubernetes cluster and Kubernetes-cluster services through
the Kubernetes API, a common approach to instantiating
containerized applications is to develop a specification,
referred to as a “configuration file,” that specifies one or
more of various types of workload resources 2102 and to
submit the configuration file, along with references to con-
tainerized applications 2104-2106, via the Kubectl com-
mand line interface 2108 to the Kubernetes API 2110
provided by a Kubernetes-cluster control plane 2112. The
Kubernetes-c luster control plane distributes and schedules
execution of a set of pods containing containerized-appli-
cation instances of the containerized applications according
to the workload-resource specification. The Kubernetes-
cluster control plane then monitors the operational behaviors
of the distributed pods over an execution lifetime specified
in the workload-resource specification. Thus, the Kuber-
netes cluster automatically instantiates and manages execut-
able instances of supplied containerized applications accord-
ing to a workload-resource specification.

[0083] There are a number of different types of workload
resources. A replicaSet workload resource 2114 is often used
for instantiating and managing stateless applications. The
Kubernetes control plane manages this type of workload
resource, in part, by ensuring that a specified number of pods
remain operational for each different type of containerized-
application instance specified in the deployment. A stateful-
Set workload resource 2116 can be used to specify instan-
tiation and management of a set of related pods associated
with states. Additional types of workload resources include
daemonSets 2118 and jobs 2120. In addition, Kubernetes
supports specifying a service abstraction layer that includes
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a logical set of pods that are exposed to external commu-
nications and provided with service-related functionalities,
including load-balancing and service discovery.

[0084] When, in the example shown in FIGS. 21A-F, the
configuration file is input to a Kubernetes system via the
Kubectl command line interface 2108, the active master
node of the control plane invokes the scheduler to create and
distribute pods containing the specified number of contain-
erized-application instances among worker nodes of the
cluster as well as to provide additional facilities for sets of
pods defined to compose a service. In the example shown in
FIG. 21A, two pods containing instances of application a
2122-2123, two pods containing instances of application b
2124-2125, and three pods containing instances of applica-
tion ¢ 2126-2128, which together compose a service, as
indicated by dashed contour 2130, are created according to
the input configuration file. As shown in FIG. 21B, the
Kubernetes control plate then invokes the controller man-
ager to launch controllers 2132-2135 to monitor operation of
the distributed pods which, in turn, launch execution of the
containerized applications within the pods according to
specifications contained in the configuration file.

[0085] FIGS. 21C-E illustrate various types of manage-
ment operations carried out by the Kubernetes control plate
during the lifetime of the workload resources instantiated in
FIGS. 21A-B. As shown in FIG. 21C, when a node 2140 that
originally hosted an instance of application a fails, as
indicated by the “X” symbol 2142, a controller within the
Kubernetes control plane detects the failure, after which the
Kubernetes control plane creates a new pod to execute an
instance of application a 2144 and distributes the new pod to
a different, functioning node 2146. As shown in FIG. 21D,
when a user supplies a reference to a new version of
application b 2148 to the Kubernetes control plane via the
Kubectl command line interface 2108, the Kubernetes con-
trol plate arranges for two replacement pods 2150 and 2152
containing instances of the new version of application b to
be distributed to nodes 2154 and 2156, following which the
original pods containing the older version of application b
are terminated. As shown in FIG. 21E, when the Kubernetes
control plane determines that the current workload associ-
ated with the service comprising three pods containing
instances of application ¢ (2130 in FIG. 21A) has increased
above a specified threshold workload, the Kubernetes con-
trol plane automatically scales up this service to include
three new pods 2160-2162 to which portions of the exces-
sively high workload can be distributed. Detecting and
ameliorating node {failures, carrying out updates and
upgrades of executing containerized applications, and auto-
matically scaling up and scaling down a deployed workload
resource are examples of the many different types of man-
agement services and operations provided by a Kubernetes
cluster via a set of controllers running within the active
management node. Controllers monitor pod operations for
occurrences of various types of events and invoke event
handlers to handle the events, with each different type of
controller monitoring and handling different types of events.
The control plane thus dynamically controls the worker
nodes in accordance with the configuration file or files that
define the configuration and operational behaviors of each
workload resource.

[0086] FIG. 22 illustrates the Tanzu Kubernetes Grid
(“TKG”) containerized-application automated orchestration
system. TKG is a higher-level automated orchestration sys-
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tem that automatically instantiates and manages Kubernetes
clusters across multiple data centers and clouds. TKG 2202
provides, through a TKG API 2304, similar services and
functionality to those provided by Kubernetes. In fact. TKG
is layered on top of Kubernetes 2206. However, TKG is also
layered above the multi-data-center and multi-cloud virtu-
alization layer 2208, such as the multi-cloud aggregation
distributed system discussed above with reference to FIG.
10. This allows TKG to support Kubernetes-like clusters
across multiple data centers and cloud-computing facilities
2210-2212. This also allows TKG to migrate nodes among
different data centers and cloud-computing facilities and
provide additional functionalities that are possible because
of TKG’s access to services and functionalities provided by
the multi-data-center and multi-cloud virtualization layer. In
essence, TKG is a meta-level Kubernetes system. Like
Kubernetes. TKG uses both a control plane comprising
specialized control-plane nodes as well as a set of worker
Kubernetes clusters across which TKG distributes workload
resources.

[0087] Kubernetes and TKG provide for user-defined
operators to extend Kubernetes and TKG functionalities and
custom-resource definitions custom resources that extend
the types of workload resources that can be specified by
workload-resource specifications. Operators are associated
with one or more controllers, such as controllers 2132-2135
discussed above with reference to FIG. 21B. The controllers
associated with user-defined operators thus extend the types
of monitoring and management functionality provided by
standard Kubernetes and TKG implementations. User-de-
fines operators may be defined to handle custom resources
defined by custom-resource definitions.

Graphics Processing Units and Passthroughs

[0088] FIG. 23 illustrates the nature of certain application
dependencies. The outer rectangle 2302 in FIG. 23 repre-
sents a server or other physical computer system that
includes a hardware layer 2304, a firmware level 2306, a
virtualization layer 2308, a guest-operating-system layer
2310, and an application layer 2312. The application layer
and guest-operating-system layer together represent an
application-execution environment provided by a virtual
machine, as discussed in preceding subsections. Execution
of a particular containerized-application instance 2314 may
require post-deployment installation of a particular plug-in
2316 to extend the functionality of the application instance.
In addition, proper execution of the application may depend
on the guest operating system including one or more specific
operating-system features 2318 and/or a particular configu-
ration of the guest operating system via parameter settings
2320 or other types of customizations. Similarly, proper
execution of the application may depend on particular
virtualization-layer features 2322 and/or configurations
2324 as well as firmware configurations 2326, such as a
specific basic input-output system (“BIOS”) configuration.
Finally, proper execution of the application instance may
require particular hardware components and features 2328,
such as field programmable gate arrays (“FPGAs”), graphi-
cal processing units (“GPUs”), application-specific inte-
grated circuits (“ASICs”), and precision-time-protocol
(“PTP”) real-time clocks, and may also require virtualiza-
tion-layer pass-throughs 2330 that allow exclusive access by
the guest operating system to particular hardware compo-
nents 2332. Thus, an application instance may have many
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different dependencies on guest-operating-system features,
virtualization-layer features, firmware configurations, and
hardware components and features.

[0089] In an example used to illustrate the currently dis-
closed methods and systems, many machine-learning-based
applications are dependent on access to GPUs or ASICs,
which represent an important class of hardware dependen-
cies, and may also be dependent on various additional
features and components of the virtualization layer and guest
operating systems. These types of dependencies are gener-
ally not considered and supported by many widely used
automated orchestration systems, such as Kubernetes and
TKG, and may also prevent various virtualization-layer
features and facilities from being applied to applications
with such dependencies, including, for example, live migra-
tion of virtual machines running applications that use pass-
throughs for exclusive access of GPUs and/or ASICs.

[0090] FIGS. 24A-B illustrate general characteristics of a
typical central processing unit (“CPU”). As shown in FIG.
24A, a typical CPU 2402 includes complex control logic
2404, a modest number of complex arithmetic and logic
units (“ALUs”) 2406, and multiple levels of memory cache
2408-2409. Modern CPUs generally include multiple cores
that share access to a higher-level cache, such as the L3
cache 2402, and to communication links, such as a high-
speed interconnect 2410 that connects the L3 cache to
system memory 2412. As shown in FIG. 24B, the bulk of the
integrated-circuit real estate in a CPU is taken up by the
control logic 2420 and memory cache 2422, with a com-
paratively modest amount of integrated-circuit real estate
devoted to the modest number of complex ALUs 2424. The
CPU control logic is based on complex instruction sets and
implements complex logical support for pipelined complex-
instruction execution. While modern CPUs do provide for
parallel execution of several different instruction sequences,
they are largely designed and optimized for sequential
execution of large sets of sequentially ordered complex
instructions corresponding to high-level program constructs,
such as routines and functions.

[0091] FIGS. 25A-B illustrate general characteristics of a
typical GPU. As shown in FIG. 25A, a typical GPU includes
multiple cores 2502-2505, each comprising a large number
of relatively simple ALLUs and a relatively small cache, such
as ALUs 2510 and cache 2512 in core 2502. The GPU
supports parallel, high-bandwidth interconnects 2516-2519
to an on-board system memory 2522 to provide a high rate
of parallel memory access to the large number of AL Us. This
allows the ALUs to carry out, in parallel, a large number of
specific types of arithmetic and logical operations. GPUs
were originally developed as accelerators for rendering
graphics data for display. Many display operations involve
large numbers of relatively independent, simple operations,
such as rendering polygons and rotation and translation of
polygon vertices into different coordinate systems. How-
ever, the massively parallel computational bandwidths pro-
vided by GPUs are now routinely exploited for more gen-
eral-purpose computations, including various types of
mathematical operations, such as matrix operations, that
consume significant portions of the computational band-
widths used by modern scientific and artificial-intelligence
applications. General-purpose use of GPUs is facilitated by
various types of programming models for GPU computing,
such as OpenCL. As shown in FIG. 25B, a typical GPU
devotes a comparatively large portion of the integrated-
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circuit real estate to ALUs 2530 and only a relatively small
portion of the integrated-circuit real estate to control logic
and cache, shown in column 2532 in FIG. 25B.

GPU-Assisted Neural Network Training

[0092] FIGS. 26A-B provide an example of the increase in
speed of a simple matrix operation obtained by use of a GPU
to accelerate component arithmetic operations. A matrix
multiplication of a matrix A 2602 by a matrix B 2604 to
produce a resultant matrix C 2606 is shown symbolically at
the top of FIG. 26 A. In general, the elements of the matrices
are real-valued or complex-valued numbers, but, for sim-
plicity, they are represented symbolically by single lower-
case characters, in the case of matrix A. and small integers,
in the case of matrix B. Thus, for example, the first element
2608 in the resultant matrix C 2606 is the sum of four
products, (a*1)+(b*5)+(c*9)+(d*13), where a, b, ¢, d, 1, 5,
9, and 13 represent real numbers, in the current example. A
matrix comprises a set of ordered rows and ordered columns,
with indices for the rows and columns indicated for matrix
A 2602 in FIG. 26A. It is common, in computing, for the first
row and column to have index 0, while in mathematics, the
first row and column of a matrix generally have index 1.
[0093] A short portion of a routine 2610 that carries out
multiplication of matrices A and B is shown in the middle of
FIG. 26A. This is a relatively naive approach to matrix
multiplication, but well illustrates the number of operations
needed for a sequentially programmed matrix operation. In
the routine, loop variable i traverses the row indexes of the
matrices and loop variable j traverses the column indexes of
the matrices. Loop variable k traverses the indices within a
particular row-and-column pair. The outer for-loop 2612
considers each row of the resultant matrix C and matrix A.
An inner for-loop 2614 considers each column of the resul-
tant matrix C and matrix B. An innermost for-loop 2616
generates a sum of four products of elements from a cur-
rently considered row of matrix A and a currently considered
column of matrix B. For each different row and column pair
i/], the statement 2618 sets the corresponding element of the
resultant matrix C to 0 and statement 2620 computes a
product of an element selected from the currently considered
row of matrix A and an element from the currently consid-
ered column of matrix B and adds the product to the
currently considered element matrix C. As shown in a lower
portion of FIG. 26A, execution of the routine portion 2610
to multiply matrices A and B involves 80 memory-store
operations, 64 binary register additions, 128 load operations,
and 84 unary register operations. Thus, the time, in proces-
sor cycles, needed to carry out the matrix multiplication is
shown by expression 2632, where a is a constant that
indicates the time, in processor cycles, needed for a store
instruction relative to the time for a single register operation
and b is a constant that indicates the time, in processor
cycles, needed for a load instruction relative to the time for
single register operation. Assuming that a=b=3, the total
time needed for the matrix operation is 772 (2634 in FIG.
26A). For a 16x16 array multiplication, the time would jump
10 46,096 (2636 in F1G. 26A). Clearly, the time taken for the
matrix multiplication of matrices A and B by the routine
fragment 2610 is proportional to the matrix dimension 4
raised to the third power.

[0094] FIG. 268 illustrates the same matrix multiplication
discussed above, with reference to FIG. 26A, carried out
using GPU acceleration. In this approach, the elements of
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matrices A and B are stored in memory as indicated in
diagram 2640, with the rows of matrix A followed by the
rows of the transpose of matrix B, as shown in diagram
2642. Routine 2644 is used to carry out the GPU-accelerated
matrix multiplication. In this case, the computation carried
out by statement 2618 and the innermost for-loop 2616 in
routine 2610 shown in FIG. 26 A is instead carried out by 16
parallel operations performed by the GPU, indicated by the
column of operations 2646 on the right-hand side of FIG.
26B. As indicated in the lower portion 2648 of FIG. 26B, the
time for the GPU-accelerated matrix multiplication is only
128 (2650 in FIG. 26B) and, for a 16x16 array multiplica-
tion, only 1,824 (2652 in FIG. 268). The time taken by the
GPU to compute the matrix elements is not considered, since
the GPU calculations are assumed to occur in parallel to
execution of the routine portion 2644 by a CPU. Clearly,
GPU acceleration provides a vast increase in speed for the
matrix multiplication in this example. For larger matrices,
the acceleration may be less spectacular, but still significant,
on the order of the reciprocal of the number of parallel
operations performed by the GPU.

[0095] FIGS. 27A-F illustrate a matrix-operation-based
method for neural-network training that allows for straight-
forward CPU acceleration. FIG. 27A illustrates the neural
network and associated terminology. As discussed above,
each node in the neural network, such as node j 2702,
receives one or more inputs a 2703, expressed as a vector
2704, that are multiplied by corresponding weights,
expressed as a vector w; 2705, and added together to produce
an input signal s, using a vector dot-product operation 2706.
An activation function f within the node receives the input
signal s; and generates an output signal z, 2707 that is output
to all child nodes of node j. Expression 2708 provides an
example of various different types of activation functions
that may be used in the neural network. These include a
linear activation function 2709 and a sigmoidal activation
function 2710. As discussed above, the neural network 2711
receives a vector of p input values 2712 and outputs a vector
of q output values 2713. In other words, the neural network
can be thought of as a function F 2714 that receives a vector
of input values x” and uses a current set of weights w within
the nodes of the neural network to produce a vector of output
values 7. The neural network is trained using a training data
set comprising a matrix X 2715 of input values, each of N
rows in the matrix corresponding to an input vector x%, and
a matrix Y 2716 of desired output values, or labels, each of
N rows in the matrix corresponding to a desired output-value
vector y7. A least-squares loss function is used in training
2717 with the weights updated using a gradient vector
generated from the loss function, as indicated in expressions
2718, where o is a constant that corresponds to a learning
rate.

[0096] FIG. 278 provides a control-flow diagram illustrat-
ing the method of neural-network training. In step 2720, the
routine “NNTraining” receives the training set comprising
matrices X and Y. Then, in the for-loop of steps 2721-2725,
the routine “NNTraining” processes successive groups or
batches of entries x and y selected from the training set. In
step 2722, the routine “NNTraining” calls a routine “feed-
forward” to process the current batch of entries to generate
outputs and, in step 2723, calls a routine “back propagated”
to propagate errors back through the neural network in order
to adjust the weights associated with each node.
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[0097] FIG. 27C illustrates various matrices used in the
routine “feedforward.” FIG. 27C is divided horizontally into
four regions 2726-2729. Region 2726 approximately corre-
sponds to the input level, regions 2727-2728 approximately
correspond to hidden-node levels, and region 2729 approxi-
mately corresponds to the final output level. The various
matrices are represented, in FIG. 27C, as rectangles, such as
rectangle 2730 representing the input matrix X. The row and
column dimensions of each matrix are indicated, such as the
row dimension N 2731 and the column dimension p 2732 for
input matrix X 2730. In the right-hand portion of each region
in FIG. 27C, descriptions of the matrix-dimension values
and matrix elements are provided. In short, the matrices W
represent the weights associated with the nodes at level x,
the matrices S” represent the input signals associated with
the nodes at level x, the matrices Z" represent the outputs
from the nodes at level x, and the matrices dZ” represent the
first derivative of the activation function for the nodes at
level x evaluated for the input signals.

[0098] FIG. 27D provides a control-flow diagram for the
routine “feedforward,” called in step 2722 of FIG. 27B. In
step 2734, the routine “feedforward” receives a set of
training data x and y selected from the training-data matrices
X and Y. In step 2735, the routine “feedforward” computes
the input signals S’ for the first layer of nodes by matrix
multiplication of matrices x and W’, where matrix W’
contains the weights associated with the first-layer nodes. In
step 2736, the routine “feedforward” computes the output
signals Z’ for the first-layer nodes by applying a vector-based
activation function f to the input signals S’. In step 2737, the
routine “feedforward” computes the values of the deriva-
tives of the activation function f', dZ’. Then, in the tor-loop
of steps 2738-2743, the routine “feedforward” computes the
input signals S', the output signals 7', and the derivatives of
the activation function dZ' for the nodes of the remaining
levels of the neural network. Following completion of the
for-loop of steps 2738-2743, the routine “feedforward”
computes the output values 7 for the received set of training
data.

[0099] FIG. 27E illustrates various matrices used in the
routine “back propagate.” FIG. 27E uses similar illustration
conventions as used in FIG. 27C, and is also divided
horizontally into horizontal regions 2746-2748. Region
2746 approximately corresponds to the output level, region
2747 approximately correspond to hidden-node levels, and
region 2748 approximately corresponds to the first node
level. The only new type of matrix shown in FIG. 27E are
the matrices D™ for node levels x. These matrices contain the
error signals that are used to adjust the weights of the nodes.

[0100] FIG. 27F provides a control-flow diagram for the
routine “back propagate.” In step 2750, the routine “back
propagate” computes the first error-signal matrix D’ as the
difference between the values § output during a previous
execution of the routine “feedforward” and the desired
output values from the training set y. Then, in a for-loop of
steps 2751-2754, the routine “back propagate” computes the
remaining error-signal matrices for each of the node levels
up to the first node level as the Shur product of the dZ matrix
and the product of the transpose of the W matrix and the
error-signal matrix for the next lower node level. In step
2755, the routine “back propagate” computes weight adjust-
ments AW for the first-level nodes as the negative of the
constant o times the product of the transpose of the input-
value matrix and the error-signal matrix. In step 2756, the
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first-node-level weights are adjusted by adding the current
W matrix and the weight-adjustments matrix AW. Then, in
the for-loop of steps 2757-2761, the weights of the remain-
ing node levels are similarly adjusted.

[0101] Thus, as shown in FIGS. 27A-F, neural-network
training can be conducted as a series of simple matrix
operations, including matrix multiplications, matrix trans-
pose operations, matrix addition, and the Shur product.
Interestingly, there are no matrix inversions or other com-
plex matrix operations needed for neural-network training.
The simple matrix operations are thus the easily accelerated
by use of a GPU, as discussed above with respect to FIGS.
26A-B. Thus, many neural-network-based applications
employ GPU acceleration to greatly decrease the wall-clock
time and the CPU computational bandwidth needed for
neural-network training. Other types of machine-learning-
based applications that use other types of machine-learning
methods also rely on GPU acceleration or other types of
hardware acceleration, including ASIC accelerators, such as
the Tensor processing unit (“TPU”).

Problems with Traditional Approaches to
Deployment of Applications with Hardware
Dependencies

[0102] When users employ automated orchestration sys-
tems to deploy applications, such as Kubernetes and TKG,
discussed above with reference to FIGS. 17-22, users pre-
pare a workload-resource specification for a distributed
application that specifies the various different types of
constraints, requirements, and dependencies for each of the
different types of distributed-application instances, along
with providing references to executables and other informa-
tion needed by the automated orchestration system to deploy
and launch application instances. Users then submit the
workload-resource specification to the automated orchestra-
tion system, which then maps the distributed-application
instances to candidate nodes that meet the constraints,
requirements and dependencies of the distributed-applica-
tion instances, deploys the distributed-application instances
to nodes selected from the set of candidate nodes, and
launches execution of the deployed application instances.
The automated orchestration system then manages the dis-
tributed application over its lifetime, including restarting
instances that were executing on failed nodes, carrying out
scaling operations, and carrying out other types of manage-
ment operations. Unfortunately, many automated orchestra-
tion systems are unable to manage workload specifications
that specify certain types of hardware dependencies, such as
requirements for hardware accelerators that must be
accessed via pass-through mechanisms provided by the
virtualization layer. In addition, a machine-learning-based
application instance may require uninterrupted access to
hardware accelerators during entire training phases. These
types of application instances are often not developed to be
reentrant and thus cannot be restarted following failure of a
node or when the node is placed into a maintenance mode by
the infrastructure management organization. Because train-
ing phases may last for many hours, days, or longer, restart-
ing machine-learning-based applications interrupted by
node failures or node maintenance during training phases
can represent a huge waste of time and money, since they
must be restarted from the beginning of the training phase
that was interrupted. Automated orchestration systems cur-
rently do not have the ability to select candidate nodes that
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are not scheduled for maintenance during the time needed by
machine-learning-based applications to complete training
phases. In many cases, there is not even a reasonable manual
approach for users to manually deploy machine-learning-
based applications in order to avoid training-phase failures
due to maintenance operations conducted by the infrastruc-
ture-management organization.

[0103] FIGS. 28A-F illustrate one problem domain spe-
cifically addressed by the currently disclosed methods and
systems. As shown in FIG. 28A, this problem domain
involves a distributed computer system 2802 represented by
a portion of a dashed-line rectangle within which a number
of computational nodes are represented by smaller rect-
angles, such as rectangle 2804. The computational nodes
may be physical servers, virtual machines, or other compu-
tational entities that support execution of application
instances. Ellipses, such as ellipsis 2806, indicate that the
distributed computer system includes many additional com-
putational modes. The distributed computer system provides
a platform for execution of user applications, and the view-
points of users whose machine-learning-based applications
run on a distributed computer system represent a first
perspective or vantage point 2808. The system-management
personnel and/or management organization that manages
and maintains the distributed-computer-system infrastruc-
ture represents a second perspective or vantage point 2810.
FIG. 28B shows aspects of the distributed computer system
common to both the user and the system-management
perspectives. In both perspectives, the nodes have configu-
rational and operational characteristics that can be deter-
mined by human users and human managers as well as, in
many cases, by automated systems, such as automated
orchestration systems and automated system-management
tools. The configurational and operational characteristics
include access to GPUs and other types of hardware accel-
erators provided by nodes 2812-2814 and current available
computational-support capacities within the nodes, such as
memory capacity, processor bandwidth, networking band-
width, mass-storage capacity, and other such capacities,
collectively represented by dashed-lined rectangles, such as
dashed-line rectangle 2816, in each of the nodes. The larger
the area of the dashed-line rectangles, the greater the current
available capacity for executing application instances.

[0104] FIG. 28C illustrates information about the distrib-
uted computer system that is available to system-manage-
ment personnel, and thus part of the system-management
perspective, but that is generally not available to users. This
information is represented by horizontal timelines, such as
horizontal timeline 2818, below each node. A shaded rect-
angle located on the timeline 2020 represents a time interval
during which maintenance has been scheduled for the node.
The timeline begins with the current time 2822 and extends
forward in time. Thus, the timelines each represents a
maintenance schedule for the nodes of the distributed com-
puter system. As discussed above, the maintenance schedule
is of critical importance to users wishing to deploy machine-
learning-based application instances that need to run to
completion in order to train machine-learning entities, such
as neural networks. Thus, for example, were a user aware of
the maintenance schedule 2824 for computational node
2826, and the user needed to deploy a machine-learning-
based application instance with an upcoming training phase,
the user would not select computational node 2826 for
deployment of the machine-learning-based application
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instance. While it is possible for users to ask for mainte-
nance-schedule information in order to make informed
node-selection decisions, it is generally inconvenient, error-
prone, and unacceptably time-consuming for users to be
required to do so.

[0105] FIG. 28D illustrates information that is available to
users but not to system-management personnel. This infor-
mation includes the training-phase schedule 2828 for a
machine-learning-based application instance, where the
expected time period for the training phase is represented by
a crosshatched block 2830 superimposed on the training-
phase-schedule timeline representation. The information
also includes a Boolean indication of whether or not a GPU
accelerator is needed for the application instance 2832 and
various additional system requirements, configurations,
capacities, and features needed for execution of the
machine-learning-based application instance 2834. It should
be noted that this information may differ in different imple-
mentations. For example, in certain implementations, rather
than a Boolean indication of whether or not a GPU accel-
erator is needed, a list of different types of needed hardware
accelerators may instead be provided, since an application
may be specifically written to use particular types of GPUS
Were system-management personnel aware of this type of
information, following deployment of a machine-learning-
based-application instance, system management might be
able to defer maintenance operations that would occur
during the training phase of the machine-learning-based-
application instance to allow the training phase to complete,
and thus prevent the costs associated with interrupting the
training phase and requiring the machine-learning-based-
application instance to be restarted. However, there is cur-
rently no practical method by which system-management
personnel can obtain this information. In addition, were
automated orchestration systems aware of this type of infor-
mation, the automated orchestration systems could ratio-
nally select computational nodes for deployment of
machine-learning-based application instances. However, in
the currently available automated orchestration systems do
not support consideration of this type of information when
deploying application instances.

[0106] FIG. 28E illustrates how the currently disclosed
methods and systems address of the problem domain dis-
cussed above with reference to FIGS. 28A-D. The currently
disclosed methods and systems provide mechanisms that
allow system-management personnel to publish mainte-
nance schedules for computational nodes of a distributed
computer system 2836-2848, that allow users to publish
training-phase projections, that allow automated orchestra-
tion systems to access the published maintenance schedules
as well as to consider machine-learning-based-application-
specific information 2850, discussed above with reference to
FIG. 28D, and that allow management personnel to access
the published training-phase projections, referred to as train-
ing schedules. This allows an automated orchestration sys-
tem to reject computational nodes as candidates for hosting
machine-learning-based-application instances when the
characteristics of the computational nodes are not compat-
ible with the requirements and constraints associated with
the machine-learning-based-application instances and when
the training schedules associated with the machine-learning-
based-application instances conflict with the published
maintenance schedules. Thus, even though the configura-
tional characteristics of node 2852 meet the requirements
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and constraints for executing a machine-learning-based
application instance 2850, the projected training schedule
for the application instance 2854 conflicts with the mainte-
nance schedule 2836, and thus, as indicated by the “X”
symbol 2856, the automated orchestration system rejects
node 2852 for deployment of the application instance.
Similarly, node 2858 is rejected because the current com-
putational capacity 2860 for the node is insufficient for
supporting execution of the application instance in view of
the computational-capacity requirements 2862 for the appli-
cation instance. However, node 2864 has both the needed
computational capacity, an available GPU, and has a main-
tenance schedule that does not conflict with the projected
training schedule for the application instance, and can there-
fore be confidently selected for deployment of the applica-
tion instance by the automated orchestration system. More-
over, once deployed, the system-management personnel can
access the published projected training schedule for the
application instance in order to defer any maintenance
operations that might be considered after the application
instance is deployed until the training phase is complete.
[0107] FIG. 28F illustrates matching of training schedules
to maintenance schedules. In the problem-domain discus-
sion with reference to FIGS. 28A-E, the training and main-
tenance schedules include only a single training phase and a
single maintenance interval, respectively. However, as
shown in FIG. 28F, a training schedule 2870 may include
multiple training-phase intervals 2872-2874. Furthermore,
maintenance schedules, such as maintenance schedule 2876,
may include multiple maintenance intervals 2878-2882.
Thus, in determining whether or not there are conflicts
between a training schedule and a maintenance schedule, the
training schedule needs to be superimposed over the main-
tenance schedules of candidate computational nodes, as
shown in the right-hand portion of FIG. 28F 2884, with
vertical dashed lines, such as vertical dashed line 2886
showing the training-phase intervals with respect to the
maintenance controls. In this case, maintenance schedule
2888 has no conflicts with training schedule 2870 were the
application instance associated with the training schedule to
begin execution at the current time 2890. There are also no
conflicts with training schedule 2891, but in several cases
2892-2893, training intervals and maintenance intervals are
adjacent, in time, and therefore provide no leeway should
the intervals be displaced in time due to various factors and
events. Thus, the node associated with maintenance sched-
ule 2888 is clearly the best candidate node for hosting the
application instance associated with training schedule 2870
in the ease that the application instance is immediately
launched. Of course, when there is leeway with respect to
the time at which the application instance is launched, the
training schedule can be accordingly shifted, in time, with
respect to the maintenance schedules in order to identify a
launch time for which no conflicts would occur. Thus,
depending on the implementation, matching of training
schedules to maintenance schedules may involve more com-
plex considerations than indicated by the simple training and
maintenance schedules shown in FIGS. 28A-E.

Currently Disclosed Methods and Systems

[0108] The currently disclosed methods and systems spe-
cifically address the problem domain discussed above with
reference to FIGS. 28A-F. However, these methods and
systems also address a wider range of problems associated
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with deploying and managing applications in distributed
computer systems. While the following discussion focuses
on the specific problem of deploying machine-learning-
based application instances through an automated orches-
tration system, such as Kubernetes or TKG, the currently
disclosed methods and systems also provide functionalities
and capabilities that can be used for deploying other types of
application instances and for managing many different types
of distributed applications.

[0109] FIGS. 29A-B illustrate two possible approaches to
addressing the problem of deploying machine-learning-
based application instances on computational nodes of a
distributed computer system. In a first approach, shown as a
control-flow-diagram fragment in FIG. 29A, a user attempts
to cooperate with management personnel to identify an
appropriate computational node for deployment of a
machine-learning-based-application instance. In FIG. 29A,
user-initiated steps are shown in a left-hand portion of the
FIG. 2902 and management-personnel-initiated steps are
shown in a right-hand portion of the FIG. 2904. In step 2906,
the user determines and characterizes a new machine-learn-
ing-based workload and then, in step 2907, requests infor-
mation related to placement of the workload in a distributed
computer system based on workload requirements and char-
acteristics by transmitting a request to management person-
nel. In step 2908, the request is received. In step 2909, the
management personnel select candidate hosts on behalf of
the user by comparing the training schedule associated with
the workload to a maintenance schedule maintained by the
management personnel and by comparing other require-
ments and characteristics of the workload to configurations
and capacities of computational nodes. In step 2910, man-
agement personnel return the one or more selected candidate
hosts to the user, who receives the suggested hosts in step
2911. In the for-loop of steps 2912-2916, the user considers
each of the suggested candidates c. In step 2913, the user
attempts to deploy the workload on the currently considered
candidate c. When deployment fails, as determined in step
2914, and when there is another candidate to consider, as
determined in step 2915, c is set to the next candidate and
control returns to step 2913. When there are no further
candidates, as determined in step 2915, then a handler is
called to handle the deployment failure, in step 2917. This
may involve again requesting candidate hosts from the
management personnel, deferring deployment of the work-
load, changing a range of acceptable launch times for the
workload, and/or other such ameliorative actions. The
attempt to deploy the workload on a candidate host, in step
2913, may fail for various reasons. For example, in the time
between requesting placement information, in step 2907,
and receiving the list of candidate hosts, in step 2911, other
users may have successfully deployed applications on one or
more of the candidate hosts so that they no longer have
configurations and capacities needed for hosting the user’s
workload. For example, the workload may require exclusive
access to a GPU or other accelerator, but that GPU may now
be committed to a different application instance. As another
example, due to workload fluctuations on the candidate host,
the candidate host may have insufficient computational
resources, such as available CPU bandwidth, to host the
users workload at the current time.

[0110] The approach illustrated in FIG. 29A is problematic
for a variety of different reasons. One reason is that man-
agement personnel do not currently provide candidate-host
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suggestions to users and generally lack the ability to field
and respond to placement-information requests in a timely
fashion. The delays between steps 2907 and 2911 may be
considerable, and far greater than can be tolerated by users.
Another problem, suggested in the preceding paragraph, is
that the information needed to make informed host selec-
tions for application deployment is not static, but is often
instead extremely dynamic. As a result, nodes that appeared
to be good candidates for hosting a particular workload at
one point in time may no longer be good candidates at the
point in time when a workload is to be launched. Similarly,
nodes that do not appear to be good candidates for hosting
a workload when placement information is requested may
have become good candidates at the point in time when a
workload is to be launched. Yet another problem is that users
generally expect to be able to deploy and launch application
instances quickly, using information that can be quickly
accessed through information interfaces provided by sys-
tem-management tools or through automated orchestration
systems, such as Kubernetes and TKG, which maintain such
information internally. The approach suggested by the con-
trol-flow-diagram fragment shown in FIG. 29A is both
problematic and, in general, impractical.

[0111] FIG. 29B provides a control-flow-diagram frag-
ment that illustrates an approach to addressing the problem
of deploying machine-learning-based application instances
on a distributed computer system used in the currently
disclosed methods and systems. FIG. 29B is divided into
three vertical sections 2920-2922. The first section 2920
includes steps initiated by users, the second section 2921
includes steps initiated by an automated orchestration sys-
tem, and the third portion 2922 includes steps initiated by
management personnel. Step 2924 is equivalent to step 2906
in FIG. 29A. In step 2925, a user requests placement of the
characterized workload by the automated orchestration sys-
tem. In step 2926, the automated orchestration system
receives the placement request and, in step 2927, selects
candidate hosts compatible with the workload requirements
and constraints, including the training schedule and require-
ments for GPUs or other hardware accelerators. The auto-
mated orchestration system is able to select candidate hosts
compatible with all of the requirements and characteristics
of the workload, including the need for a GPU or other
hardware accelerators and in view of the training schedule
associated with the workload because the automated orches-
tration system can access centrally managed maintenance
and training schedules for computational nodes and appli-
cation instances and because the automated orchestration
system is enhanced, by additional operators, to consider the
need for GPUs and other hardware accelerators by a work-
load and the training schedule associated with the workload.
In step 2928, the automated orchestration system deploys
the workload on a selected host, reserving the GPU and/or
other accelerators for exclusive use by the workload, and
then returns an acknowledgment to the user. In step 2929,
the user receives the acknowledgment and is confident that
the workload has been placed on a node that will allow the
workload to execute to completion. Note that there is no
need for the user to solicit information from management
personnel and that the automated orchestration system main-
tains sufficient internal information to select an available
host computer that is compatible with the deployment
request, with very low possibility of dynamic changes in
host status rendering the selection unviable. In step 2930,
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management personnel determine new maintenance inter-
vals and other such information that need to be used to
update the maintenance schedule. In step 2931, management
personnel transmit the updated information to the centrally
managed maintenance schedule. In step 2932, management
personnel become aware of the need to place one or more
computational nodes into maintenance mode, which results
in evicting or terminating application instances executing on
those computational nodes, and requests schedule and/or
deployment information from the centrally managed main-
tenance and training schedules. In step 2933, the manage-
ment personnel receive the schedule and/or deployment
information, which allows the management personnel to
consider deferring or avoiding placing those computational
nodes into maintenance mode that are currently executing
machine-learning based application instances that are cur-
rently in, or that will soon embark on, training phases and
that should therefore not be interrupted. While there may be
cases in which management personnel cannot defer or delay
unexpected maintenance operations, it is often the case that
they can work around training phases of deployed machine-
learning-based application instances. The centrally managed
maintenance and training schedules provide asynchronous
access to maintenance-schedule and training-schedule infor-
mation by users, automated orchestration systems, and man-
agement personnel. This avoids the need for synchronous
communications between users and management personnel.
In addition, automated management tools can access the
training schedule to generate notifications and alerts to
inform management personal of impending maintenance
mode or termination actions that may result in terminating
execution of machine-learning-based application instances
which are, or will be, executing training of machine-learning
entities.

[0112] FIG. 30 illustrates two different control planes that
provide functionalities used by the currently disclosed meth-
ods and systems. FIG. 30 shows a distributed computer
system composed of multiple servers, such as server 3002.
The servers each includes hardware 3004 and virtualization
3006 layers along with execution environments 3008 for
virtual machines, virtual appliances, and other such compu-
tational nodes. A first control plane 3010 can be thought of
as the individual virtualization layers aggregated together by
various levels of virtualization-management systems, such
as the multi-cloud aggregation discussed above with refer-
ence to FIG. 10. The virtualization-layer control plane 3010
provides a variety of services through one or more applica-
tion programming interfaces (“API”) and graphical-user-
interface (“GUI”) control panels. For example, the virtual-
ization-layer control plane provides services that allow
automated management tools and human managers to deter-
mine the configurations and operational states of the virtu-
alization layers and servers in which they reside as well as
services for launching, migrating, terminating, and monitor-
ing virtual machines executing within the servers. A second
control plane 3012 represents an automated orchestration
system, such as Kubernetes or TKG, that provides interfaces
through which users can deploy distributed-application
instances, as discussed above. The currently disclosed meth-
ods and systems employ enhancements to both control
planes to allow them to cooperate to provide the centrally
managed maintenance and training schedules discussed
above with reference to FIG. 29B as well as to provide, by
the  automated-orchestration-and-management  control

Feb. 2, 2023

plane, intelligent deployment and management of applica-
tion instances that require access to GPUs and other hard-
ware accelerators and that are characterized by training-
phase intervals during which premature termination of the
application instances leads to significant temporal and finan-
cial costs to users.

[0113] FIGS. 31A-C illustrate a logical, centrally managed
maintenance-and-training schedule that provides a basis for
the currently disclosed methods and systems. FIG. 31A
provides a logical illustration 3102 of centrally managed
maintenance and training schedules. In other words, the
maintenance and training schedules are logically combined
into a single maintenance-and-training schedule. In certain
implementations, a single maintenance-and-training sched-
ule may, in fact, be implemented. In other implementations,
including an implementation discussed below, the logical
maintenance-and-training schedule represents separate
maintenance and training schedules that are maintained by
different entities.

[0114] FEach computational node, such as a server running
virtualization layer, is represented in FIG. 31A as a rectangle
3104 containing a host identifier. The centrally managed
maintenance-and-training schedule includes a maintenance-
and-training schedule, represented by a horizontal timeline,
such as horizontal timeline 3106, for each computational
node. The maintenance-and-training schedule includes indi-
cations of time intervals during which maintenance opera-
tions are scheduled, such as time interval 3108, and intervals
during which training phases are expected for application
instances running on the computational nodes, such as
intervals 3110 and 3111. A maintenance schedule, in the
currently described implementation, is maintained by the
virtualization-layer control plane and a training schedule is
maintained with an orchestration system. A maintenance-
and-training schedule can be implemented in a variety of
different ways, including by an in-memory data structure,
such as the in-memory data structure 3120 shown in FIG.
31B, or by some type of database within a database-
management system, represented by a set of relational-
database tables 3130 shown in FIG. 31C. The in-memory
data structure 3120 comprises a linked list of host nodes
3121-3124, each of which references a linked-list of sched-
uled maintenance intervals, such as link list 3125, and a
linked list of claims to one or more hardware accelerators,
such as link list 3126, which represents a projected training
schedule. The various nodes each includes multiple data
fields that specify date and time ranges, host identifiers, and
other related information. Similarly, the database tables
3130 shown in FIG. 31C alternatively represent the main-
tenance-and-training schedule by rows in the relational
database tables. Each row in the Hosts table 3131 is equiva-
lent to a node in the link list of hosts and FIG. 31 B. Each
row in the Maintenances table 3132 is equivalent to a node
in the maintenance link list 3125 in FIG. 31B. Each row in
the Claims table 3133 is equivalent to a node in a claims
linked list 3126 in FIG. 3B. The associations between
scheduled maintenance intervals and hosts are represented
by entries in the Maintenance_Schedule table 3134 and the
associations between claims to accelerators, or training
intervals, are represented by entries in the Claim_Schedule
table 3135. Of course, many alternative implementations of
the centrally managed maintenance-and-training schedule
are possible.
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[0115] FIG. 32 illustrates two metrics used in the subse-
quent discussion of one implementation of the currently
disclosed methods and systems. A particular maintenance
interval 3202 is shown positioned on a horizontal timeline
3204. The metric availAccTime 3206 refers to the time
interval, represented by the dashed arrow 3208, between the
current time 3210 and the beginning of the maintenance
interval 3202. This is the time interval during which a
machine-learning-based application instance with training
phases may safely execute on a computational node asso-
ciated with the maintenance schedule represented by the
timeline 3204 and maintenance interval 3202. This, of
course, assumes that any accelerators required by the
machine-learning-based application instance are available
for exclusive use by the machine-learning-based application
instance until the starting point of the maintenance interval.
The metric desAccTime 3212 refers to a time interval,
represented by dashed arrow 3214, corresponding to the
projected execution time for a particular machine-learning-
based application instance that requires one or more hard-
ware accelerators for a training phase, positioned to start at
the current time 3210. As discussed above with reference to
FIG. 28F, two alternative metrics availAccSchedule 3216
and descAccSchedule 3218 can be alternatively used to
describe more complex maintenance-and-training schedules
that involve multiple maintenance intervals and/or multiple
training phases. Comparison of the available metric to the
desired metric can be used to determine whether or not a
particular machine-learning-based application instance that
requires hardware accelerators can be confidently deployed
on a particular computational node to avoid premature
termination during a training phase for these more complex
cases. For simplicity, in the following discussion, the metrics
are generalized as availM and desM, which are compared by
a suitable comparison method to determine whether or not
the training schedule associated with a machine-learning-
based application instance is compatible with the mainte-
nance schedule associated with a computational node
regardless of whether the training and maintenance sched-
ules are simple, one-event schedules or more complex
multi-event schedules, and regardless of whether additional
factors, such as an ability to offset launching of an applica-
tion instance, are considered in the comparison.

[0116] In the following discussion, one implementation of
the currently disclosed methods and systems is based on the
Kubernetes automated orchestration system and the
VMware vCenter Server (“vCenter”) virtualization-layer-
management system. However, the currently disclosed
methods and systems may be based on alternative automated
orchestration systems and virtualization-layer management
systems. To enable Kubernetes to process machine-learning-
based workloads that require hardware accelerators, such as
GPUs, for execution or training phases, an ML custom
resource definition (“ML_CRD”) is provided. The
ML_CRD allows workload specifications to include a
requirement for access to a GPU and/or other hardware
accelerator and to specify the desM metric, discussed above.
New operators are introduced into Kubernetes to process the
ML_CRD workload specifications. In addition, vCenter is
enhanced to maintain a maintenance schedule that is acces-
sible to the new Kubernetes operators as well as to main-
tenance personnel, and to automated tools used by mainte-
nance personnel, to manage distributed computer systems.
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[0117] FIG. 33 illustrates a process by which machine-
learning-based workloads requiring hardware acceleration
are submitted to, and processed by, an enhanced Kubernetes
automated orchestration system. Machine-learning-based
workloads that include specification of one or more appli-
cation instances requiring hardware acceleration and speci-
fied using ML_CRD fields are referred to, below, as “ML
workloads. FIGS. 33-36 use control-flow-like representa-
tions that include small, numerically-labeled rectangles rep-
resenting steps and larger rectangular and circular entities
representing components and larger-scale functionalities. In
a first step 3302, a user prepares a workload specification for
an ML workload that includes ML_CRD fields describing
requirements for one or more hardware accelerators and one
or more desM metric values. The workload specification
may specify one or more application instances for which
deployment is requested by the user. The workload specifi-
cation is part of a manifest 3303 that is submitted to the API
Server 3304 of the enhanced Kubernetes automated orches-
tration system in a second step 3305. The enhanced Kuber-
netes automated orchestration system identifies the manifest
as containing ML_CRD fields and, in a third step 3306,
forwards an admission-review request, together with por-
tions of the manifest, to a dynamic-admission-control com-
ponent 3307 which, in turn, forwards the admission-review
request and information extracted from the portions of the
manifest, in a fourth step 3308, to a mutating-admission-
webwork admission controller 3309. The mutating-admis-
sion-webwork admission controller, in a fifth step 3310,
forwards the information to an accelerator-time operator
3311. This operator processes the forwarded information
and returns, in a sixth step 3312, a node-affinity specification
to the mutating-admission-webwork admission controller.
The node-affinity specification includes identifying informa-
tion for one or more candidate Kubernetes worker nodes for
hosting ML_CRD application instances specified in the
workload. In a seventh step 3313, the mutating-admission-
webwork admission controller returns a response to the
dynamic admission control 3307 which, in an eighth step
3314, forwards the response to the Kubernetes API server
3304. The response directs the Kubernetes API server to
alter the originally submitted manifest in accordance with
the node-affinity specification. In essence, the altered mani-
fest now contains information that will allow the Kubernetes
scheduler to select appropriate computational nodes for
executing the specified workload in accordance with the
information provided in the ML_CRD fields. The Kuber-
netes API server then persists the manifest in the ETCD
database, in a ninth step 3315, from which the Kubernetes
scheduler retrieves the manifest, in a tenth step 3316, and
uses the information that has been altered in accordance with
the information provided in the ML._CRD fields, to select
nodes on which to deploy one or more application instances
specified by the workload and then, in an eleventh step 3317,
deploys the workload to the selected nodes and launches
execution of the workload.

[0118] FIG. 34 illustrates additional details regarding
operation of the accelerator-time operator. As discussed
above, the accelerator-time operator receives the admission-
review request and information extracted from portions of
the manifest, in step 3310, from the mutating-admission-
webwork admission controller 3309. The accelerator-time
operator employs infrastructure-discovery services 3322 to
identify available worker nodes within the Kubernetes clus-
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ter which offer required features and capacities, including
accelerators, for MI_CRD application instances. In a
twelfth step 3321, the infrastructure discovery services calls
vCenter inventory services to translate worker-node names
into virtual machine names and to determine the hosts for
each of the identified virtual machines. In a thirteenth step
3322, the one or more desM metric values and the deter-
mined hosts are provided, by the accelerator-time operator,
to an accelerator service admission control, which returns a
list of hosts associated with availM metrics that, when
compared to the desM metric values, indicate that scheduled
maintenance intervals for the hosts do not conflict with the
projected training intervals of the specified ML_CRD appli-
cation instances. The infrastructure discovery services trans-
lates the hosts back to Kubernetes worker-node names and,
in a fourteenth step 3323, provides these names to an
affinity-policy service 3324. In a fifteenth step 3325, the
affinity-policy service generates a node-affinity specification
based on the received worker-node names. The affinity-
policy service selects a set of one or more best worker-node
candidates from the list of worker nodes submitted to it,
based on various different criteria. The affinity-policy ser-
vice returns the node-affinity specification to the accelerator-
time operator, which invokes the workload duration publi-
cation services 3326 to prepare an update message that
includes the names of the virtual machines corresponding to
the selected nodes and the desM metric values for the
MIL,_CRD application instances, in a sixteenth step 3327,
and forwards the update message for updating the training
schedule.

[0119] FIG. 35 illustrates vCenter-mediated portions of
the currently disclosed methods and systems. As discussed
above, the accelerator-service-admission control 3502
receives the one or more desM metric values and the
determined hosts from the accelerator-time operator in steps
3504-3505. The accelerator-service-admission control con-
verts the desM metric values into one or more UNIX
timestamps in order to carry out the comparison with the
availM metric values associated with the determined hosts.
In step 3506, the accelerator-service-admission control
accesses the maintenance-mode schedule 3508 to determine
the UNIX timestamps corresponding to any scheduled main-
tenance intervals. The accelerator service admission control
then returns, in steps 3509-3511, indications of those hosts
for which the workload training schedule does not conflict
with the scheduled maintenance intervals. As discussed
above, in steps 3512-3513, the accelerator-time operator
transmits an update message to the accelerator workload
schedule 3514 to indicate that one or more hardware accel-
erators available to one or more of the worker nodes have
been claimed for use by the workload. As discussed above,
management personnel can update the maintenance sched-
ule in step 3516.

[0120] FIG. 36 provides a complete view of the steps and
components illustrated in FIGS. 33-35. Thus, custom Kuber-
netes resource definitions and custom Kubernetes operators
are used, in the described implementation, to enhance the
Kubernetes automated orchestration system to process
ML _CRD fields in workload specifications for machine-
learning-based application instances that require accelerator
support in order to identify Kubernetes nodes that can
provide the required accelerator support for the workloads
and that have maintenance schedules that do not conflict
with the training schedule associated with the workloads. A
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logical maintenance-and-training schedule is centrally man-
aged, as a combination of an accelerator workload schedule
maintained by Kubernetes and a maintenance schedule
maintained by vCenter to provide information needed by
Kubernetes to selects hosts with maintenance schedules for
ML workloads that do not conflict with training schedules
associated with the ML workloads. The logical mainte-
nance-and-training schedule additionally provides informa-
tion to management personnel to allow management per-
sonnel to avoid, when possible, placing virtual machines that
are currently executing, or that are scheduled to execute, ML
workloads into maintenance mode.

[0121] The present invention has been described in terms
of particular embodiments, it is not intended that the inven-
tion be limited to these embodiments. Modifications within
the spirit of the invention will be apparent to those skilled in
the art. For example, any of many different implementations
of the workload placement methods and systems can be
obtained by varying various design and implementation
parameters, including modular organization, control struc-
tures, data structures, hardware, operating system, and vir-
tualization layers, automated orchestration systems, virtual-
ization-aggregation systems and other such design and
implementation parameters.

1. An application-instantiation-and-management system,
within a distributed computer system having multiple com-
putational resources and having virtualization services that
provide for management and monitoring or virtualization
layers within the computational resources that provide com-
putational nodes for execution of application instances, the
application-instantiation-and-management system compris-
ing:

a set of computational nodes provided by a selected one

or more of the multiple computational resources;

a user interface through which the application-instantia-
tion-and-management system receives a workload
specification that specifies one or more ML application
instances that are each machine-learning-based, asso-
ciated with one or more uninterruptible training phases,
and require hardware acceleration;

an ML-application-instance component that accesses vir-
tualization services to identify computational nodes
suitable for executing the one or more ML application
instances and that updates the received workload speci-
fication to include a node-affinity specification that
specifies the identified computational nodes as candi-
date hosts for the one or more ML application
instances; and

scheduling and deployment components that process the
updated workload specification to deploy and launch
the specified application instances, including deploying
the one or more ML application instances to the can-
didate hosts.

2. The application-instantiation-and-management system

of claim 1

wherein the computational resources are computer sys-
tems; and

wherein the computational nodes are virtual machines.

3. The application-instantiation-and-management system
of claim 1 wherein an uninterruptible training phase is a
period of time during which an ML application instance
trains a machine-learning entity, such as a neural network,
using hardware acceleration and during which, were the ML,
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application instance terminated, the training phase would
need to be restarted from the beginning.

4. The application-instantiation-and-management system
of claim 1 wherein the workload specification specifies one
or more application instances, including features, capabili-
ties, and constraints associated with the computational
modes to which the application instances are deployed the
application-instantiation-and-management system.

5. The application-instantiation-and-management system
of claim 4 wherein the workload specification includes, for
an ML application instance:

an indication of one or more hardware accelerators

required for execution of the ML application instance;
and

an indication of one or more time intervals, each corre-

sponding to an uninterruptible training phase.
5. The application-instantiation-and-management system
of claim 1 wherein computational nodes suitable for execut-
ing an ML application instance
provide access to one or more hardware accelerators
needed for execution of the ML application instance;

are associated with no scheduled maintenance intervals
that overlap any projected time interval for a training
phase of the ML application instance; and

provide features, capabilities, and constraints specified for

the ML application in a workload specification.

6. The application-instantiation-and-management system
of claim 5 wherein the ML-application-instance component
accesses the virtualization services to identify, for an ML
application instance, computational nodes with maintenance
schedules that do not contain maintenance time intervals that
overlap any projected time interval for a training phase of
the ML application instance and that provide access to one
or more hardware accelerators needed for execution of the
ML application instance.

7. The application-instantiation-and-management system
of claim 6 wherein the ML-application-instance component
additionally updates a training schedule to indicate that the
time intervals corresponding to the training phases of an ML,
application instance are claimed by the ML application
instance for the computational resource that provides a
computational node selected for deployment of the ML
application instance.

8. The application-instantiation-and-management system
of claim 1 wherein the application-instantiation-and-man-
agement system maintains a training schedule that, for each
computational resource, indicates time intervals claimed for
training phases of ML application instances.

9. The application-instantiation-and-management system
of claim 8 wherein the application-instantiation-and-man-
agement-system user interface provides access, to system
managers and other users, to the training schedule to allow
the system managers and other users to check for ML
application instances executing training phases on a com-
putational resource before placing the computational
resource into maintenance mode or powering down the
computational resource.

10. The application-instantiation-and-management sys-
tem of claim 9 wherein automated management tools access
the training schedule through the application-instantiation-
and-management-system user interface to decide when to
send notifications or alerts to management personnel with
regard to possible interruption of training phases executed
by ML application instances.
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11. The application-instantiation-and-management sys-
tem of claim 1 wherein the virtualization services maintain
a maintenance schedule that, for each computational
resource, indicates time intervals scheduled for maintenance
of the computational resource.

12. The application-instantiation-and-management sys-
tem of claim wherein the virtualization services provide
access to the maintenance schedule by management person-
nel and by the ML-application-instance component of the
application-instantiation-and-management system.

12. The application-instantiation-and-management sys-
tem of claim 1 wherein hardware accelerators include
graphical processing units and tensor processing units.

13. A method for automatically deploying application
instances on computational nodes used by an application-
instantiation-and-management system, the computational
nodes provided by computational resources of a distributed
computer system having multiple computational resources
and having virtualization services that provide for manage-
ment and monitoring of virtualization layers within the
computational resources that provide computational nodes
for execution of application instances, the method compris-
ing:

receiving a workload specification that specifies one or

more ML application instances that are each machine-
learning-based, associated with one or more uninter-
ruptible training phases, and require hardware accel-
eration;

identifying computational nodes of the computational

nodes used by the application-instantiation-and-man-
agement system that are suitable for executing the one
or more ML application instances;

updating the received workload specification to include a

node-affinity specification that specifies the identified
computational nodes as candidate hosts for the one or
more ML application instances; and

deploying the one or more ML application instances to the

candidate hosts for execution.

14. The method of claim 13 wherein the virtualization
services maintain a maintenance schedule that, for each
computational resource, indicates time intervals scheduled
for maintenance of the computational resource.

15. The method 14 of claim wherein the virtualization
services provide access to the maintenance schedule by
management personnel and by the ML-application-instance
component of the application-instantiation-and-manage-
ment system.

16. The method of claim 13 wherein the application-
instantiation-and-management system maintains a training
schedule that, for each computational resource, indicates
time intervals claimed for training phases of ML application
instances.

17. The method of claim 16 wherein the application-
instantiation-and-management-system provides access, to
system managers and other users, to the training schedule to
allow the system managers and other users to check for MLL
application instances executing training phases on a com-
putational resource before placing the computational
resource into maintenance mode or powering down the
computational resource.

18. The method of claim 13

wherein the workload specification specifies one or more

application instances, including features, capabilities,
and constraints associated with the computational
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modes to which the application instances are deployed
by the application-instantiation-and-management sys-
tem; and
wherein the workload specification includes, for an ML
application instance,
an indication of one or more hardware accelerators
required for execution if the ML application
instance; and
an indication of one or more time intervals, each
corresponding to an uninterruptible training phase.
19. The method of claim 13 wherein computational nodes
suitable for executing an ML application instance
provide access to one or more hardware accelerators
needed for execution of the ML application instance;

are associated with no scheduled maintenance intervals
that overlap any projected time interval for a training
phase of the ML application instance; and

provide feature, capabilities, and constraints specified for

the ML application in a workload specification.

20. A physical data-storage device encoded with computer
instructions that, when executed by computational resources
of a distributed computer system having multiple computa-
tional resources and having virtualization services that pro-
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vide for management and monitoring of virtualization layers
within the computational resources that provide computa-
tional nodes for execution of application instances, control
the computational resources to:
receive, by an application-instantiation-and-management
system, a workload specification that specifies one or
more ML application instances that are each machine-
learning-based, associated with one or more uninter-
ruptible training phases, and require hardware accel-
eration;
identify computational nodes of the computational nodes
used by the application-instantiation-and-management
system, by the application-instantiation-and-manage-
ment system, suitable for executing the one or more
ML application instances;
updating the received workload specification, by the
application-instantiation-and-management system, to
include a node-affinity specification that specifies the
identified computational nodes as candidate hosts for
the one or more ML application instances; and
deploying the one or more ML application instances to the
candidate hosts for execution.

#* #* #* #* #*



