a9y United States

DICKIE et al.

US 20170032014A1

a2y Patent Application Publication (o) Pub. No.: US 2017/0032014 A1l

43) Pub. Date: Feb. 2, 2017

(54)

(71)

(72)

(73)

@
(22)

(1)

BALANCED PARTITION PLACEMENT IN
DISTRIBUTED DATABASES

Applicant: International Business Machines

Inventors:

Assignee:

Appl. No.:

Filed:

Publication Classification

Int. CL.

GO6F 17/30

1

0

W

14/815,464

Jul. 31, 2015

(2006.01)

REPLICA 2

STORAGE
108

Corporation, Armonk, NY (US)

GARTH A. DICKIE, Framingham,
MA (US); AMINA SHABBEER,
Marlborough, MA (US)

International Business Machines
Corporation, Armonk, NY (US)

(52) US.CL
CPC ... GOGF 17/30584 (2013.01); GOGF 17/30292
(2013.01); GOGF 17/30876 (2013.01)

(57) ABSTRACT

For balanced partition placement in a distributed database, a
first node in a set of nodes is identified, at an application
executing using a processor and a memory, for a first
primary partition of the distributed database, such that the
primary partition and a first replica corresponding to the
primary partition reside on different nodes in the set of
nodes. A second node in the set of nodes is selected to place
the first replica such that the second node does not include
a second replica of a second primary partition, wherein the
first primary partition and the second primary partition are
co-resident on the first node. The first primary partition is
placed on the first node and the first replica is placed on the
second node.

DEVICE 132

APPLICATION
105

DATABASE
PARTITION 1

CLIENT 114

NETWORK
102

~ REPLICA1
109

HNIE

l | ’ CLIENT 112
/D\ATABASE
PARTITION 2

(1]
07

SERVER 106



Feb.2,2017 Sheet 1 of 9 US 2017/0032014 A1

Patent Application Publication

L1 LN3ITO

L1 LN3ITD

ob
Z NOILILdvVd

Q|

0l d3NH3S

asvavivd

601

b1 LN3ITO

L vOIidTy -~/

20F
MHOMLIN

¢l 30IA3A

1 H4ND11

FPREINSES

L NOILlLHvd
asvaviva

Gor QIJ

NOILYOI1ddV
[AJelRI=E]




US 2017/0032014 A1

t[4Y4
y3Lldvay
_— — -z MHOMLIN
574 k474 ¥aLldvay STo1A3a S1¥0d
noy W3QOW 3ISNOW ANV oo/ 1od YIHLO (74 [744
QuVOgAIN anv gsn NOY-aD Msia
ot ¥0¢ % snd
8ec SN HOI/aS

]34 9z @

ols ¥3ldvav olanvy (0124
— s ¥4
802 A”V Z0e A”V
¥0SSI00Nd
AHOWIN NIVIN HOW/EN SOIHAYYD

{

90z

“ ’ LINN ONISS3D0dd

Feb. 2,2017 Sheet 2 of 9

Q
Q
N

¢ HYNOIA

Patent Application Publication



Patent Application Publication  Feb. 2,2017 Sheet 3 of 9 US 2017/0032014 A1

]

©
0

theezis

el Lo

%R0 EXTRA
STORAGE

RESTORE REDUNDANCY
0

(O TERITARY

)

<
€0

SECONDARY

FIGURE 3
(PRIOR ART)

MIGRATE FOR RECOVERY
0

COMPUTE x 2 %2
PERFORMANCE

[

] PRIMARY

[a]
[Sp)

INITIAL PLACEMENT
0)




Advidar O AYVANOD3IS i} ANVINIEd ]
o0 vov 207
AONVANNQIY IHOLSIY AYIA0DTY HO4 ILVHDIN LINIWIOV1d TVILINI

US 2017/0032014 A1

ozsil@zD

(515! [@m) @D

GLD ey 1S3 Iy
N Lidl/Ls: @D @D
-S [01d] CImy @D D
- vorsleid]]
3 I | @D —
W | | EDlvIS]
2 IS 1CDIE rers iG]
“ Zid 2| CEDF IS
— P = @D :w_E @D ] @D
m lalsis e |@Dpoiss ﬁ @ 0td
_ﬁ_ [6d]

, |- < < 6]
S {551 A& ] — | .. [edl|CED el m @D
S WESE (] _fiE @ | @@
= [od] _mmm.." @ | )
- Rk 1] LS @|Ld G|
= iest Calf Y| 0 (@) el GV [£d]
3 ey |©@ Fzd |
2 kv (F5] L] _ |CD il @
2 [oafios: D [od] @ Wy N Fon)
P 9 S 14 € Z 5 9 14 £ Z 5 i 9 ) p ¢ z )
=
(=]
S
S
.M.. 00% NOILVY2I1ddY 00% NOILYDI1ddY 00F NOILYDI1ddY
o
«
~N
g ¥ YNOIA
=
[~™




Advlar O A¥VANOD3S .

AdvINed [

¥0%
(ONILSIX3 ANV MAN) SIAON 11V
SSOYOV A3LNAMLSIATH SNOILILEYd

905
AUVINIYd d31VYNOIS3A S3Id0D

208
NOILYHNOIANOD TVILINI

US 2017/0032014 A1

iels | 6ld | {6iS L1
easashal N
[ 210 ki
D | id il 2id JCaLL)
f lllllll
e [ 9ld | 9l ' tols
w, [ sid |GV *
b Vil [vid Jlivis vl
= o) igisiCed] gLl
x Za IGD|z] ' {Zigt
e~ QD[S £.lS.
= WIER =R N
< GD CGD
N 683
S ] e
= [e4] Coa]| @D
Ceal Csal

= Cea] (7 |
.m D CD
=
>
oh
= @ |83
=W 4 | ¥ g 4 |
=
(=]
ﬁ
S
= T0S NOILYOITddV 005 NOILYDdd¥ 005 NOILYOdd¥
=
=
«
= S TINOIA
&
=
A




Feb. 2,2017 Sheet 6 of 9 US 2017/0032014 A1

Patent Application Publication

9
S3JON 3153738 IHL NO S3I1d0D
VOITd3d FHL ANV AdVAIEd FHL 30Vd

A
oIS 809
3JON FHL NO AdOD 3HL ONIOYd JTOHSIUHL vV 0330X3
& 01 3AON FHL 40 NOLLVZITILN
A9 J3SVIYONI LSVYIT SINOILVZITILN [«
VY 3SNVvO LON S300 3AON
ISOHM (4ILNIOVLYAMOVY
31GYTIVAY ANV 1V) 3AON LD313S 3HL NO AT 3HL ONIOV1d LvHl
HONS AdOD V¥V 04 3AON V 103738
A
909
JdON NOWWOD V NO
SARVYINIAd LN3AISTH-0D 709
40 SVOI1d3y 40 INJNIDV1d < 3AON LNI¥34410 ¥V NO s3dis3d
FHL IZINININ J0/378I1SSOd 4l B AdOD HOV3A 1LVHL HONS VOI1d3ad HOV3
SAAON F1VHVd3S NO d30Vid 34V ANV AJVIIYd FHL J04 S3A0N LO3713S8
SIRIVNILD LN3IAISTH-0D 4O
SVYOI1d3d 1VHL HONS S3A0N Lo3713s A
05
209

I

(&
O

9 JYNOIA

NOILILYYd 3SVYaVLva AdVYNIbd vV 40
SY2ITd3d 40 d3dNNN V¥ ININY31L3d

1HVY1S




Feb. 2,2017 Sheet 7 of 9 US 2017/0032014 A1

Patent Application Publication

an3a

0FZ SNOILIGNOD
40 13S TYNIDIFO NV ONIALSILYS

A

JTHM NOILVZITILN NI ISVYIHONI
1Sv37 IHL IONIIHAIIX3 1TIM
JAON ISOHM VOINd3d 1VHL 1237338

907
NOILVZITILN NI ISVY3IHONI

807
Q314SILYS IV SNOILIANOD 1VILINI
8yl 1vHL HONS 3AON LN3Y3441a V LV
VOIld3d MIN V¥ 31v3d0

A

A

1Sv37 IHL IONIIHAIIX3 1TIM
JAON ISOHM VOINd3d 1VHL 1237338

0.

JAON 43HIONY NO AYVAIbd
JHL 40 VOI1d3d V 31LONO™d
‘IQON Q3 TIV4 IHL NO ONILNOIXT
NOILILIVYd AHVYINIEd ¥ HOd

A

ol
[
~|

2oz
ANIT440 /NMOALNHS
/34N11v4 3AON v 103133

L H4NOIA

1dvis



Feb. 2,2017 Sheet 8 of 9 US 2017/0032014 A1

Patent Application Publication

908
JAON MIN IHL OL
NOILILYYd FHL JAON

%08
3AON LVHL NO NOILILIVd AdVINI-L
3HL ONIOV1d A9 AISYIHONI LSV
SI NOILVZITILN ISOHM JAON 103138

208
NOILVZITILN S.3dON 3HL NI
NOILONA3Y 1S31v3dO 3HL SVH
JAON V NOHd TYAOWTIY ISOHM
NOILILIVd AYVINIYd V LO313S

14v1s

8 AYNOIA

Ol



Feb. 2,2017 Sheet 9 of 9 US 2017/0032014 A1

Patent Application Publication

016
VOI1d3d ¥V O1 3QON 470 3HL
NO AYVWIHd ONILSIX3 IHL 3LON3A

A

806
IAON M3AN IFHL NO AdVINIEL
Ol YOI7d3d M3IN 3HL 31ONOHd

A

906
3JAON M3AN FHL NO NOILILyvd
d312373S FHL 40 YOI1d3d V 3LV3d0

A

06 SNOILIANOD
40 13S TVYNIDIHO NV ONIALSILYS
ITHM FOVLINVAQY NOILNGIF1SIa3y
804 3AON M3N 3HL NO d3D0V1d
/d31N23X3 39 ATNOHS 1vHL
NOILILYVd AUV V LO313S

A

206
NOILIddY 3AdON M3IN VvV 10313d

14v1S

6 FANOIA

[
(9



US 2017/0032014 Al

BALANCED PARTITION PLACEMENT IN
DISTRIBUTED DATABASES

TECHNICAL FIELD

[0001] The present invention relates generally to a
method, system, and computer program product for operat-
ing a distributed database or a massively parallel processing
(MPP) data warehouse. More particularly, the present inven-
tion relates to a method, system, and computer program
product for balanced partition placement in distributed data-
bases.

BACKGROUND

[0002] A distributed data processing environment includes
several data processing systems that are configured and
operated to share the workload of the data processing
environment. In case of a distributed database, the database
is divided into partitions and various data processing sys-
tems in the distributed environment serve those partitions.

[0003] A high availability (HA) system is a data process-
ing system configured to ensure a threshold level of opera-
tional continuity during a given period. Availability refers to
the ability of the users and applications to access the data
processing system, whether to submit new work, update or
alter existing work, or collect the results of previous work.
If a user or application cannot access the system, the system
is said to be unavailable. Generally, the term downtime is
used to refer to periods when a system is unavailable. HA
systems are often employed in business organizations to
deliver business critical applications and services. A distrib-
uted database is configured for higher availability, improved
reliability, and better performance as compared to single
instance monolithic databases. A database distributed across
multiple data processing systems, an MPP database, an MPP
data warehouse, and other variations thereof are collectively
referred to herein as a distributed database.

[0004] Data distribution in distributed databases is critical
in providing availability and performance guarantees
through component failures and system expansion. Com-
modity-type data processing system hardware fails fre-
quently, causing nodes that host a database partition to
become unavailable.

[0005] Replication techniques have been widely used in
distributed databases to provide fault tolerance. Essentially,
replication creates one or more copies of a partition. The
partition and a replica of the partition are preferably stored
on different nodes. When a node serving the partition
becomes unavailable, such as due to a failure, shutdown, or
disconnection, another node that is maintaining a replica of
the partition takes over the serving of the partition.

[0006] Expansion of a distributed database environment is
also a difficult problem. For example, presently, when a new
node is added, the database has to be redistributed over all
available nodes, causing a significant amount of network
traffic during the redistribution. When the expansion adds a
larger capacity node, some presently used configurations
simply copy over the data from a node to the larger node,
again creating a significant amount of network traffic.

SUMMARY

[0007] The illustrative embodiments provide a method,
system, and computer program product for balanced parti-
tion placement in distributed databases. An embodiment

Feb. 2, 2017

includes a method for balanced partition placement in a
distributed database. The embodiment identifies, at an appli-
cation executing using a processor and a memory, a first
node in a set of nodes for a first primary partition of the
distributed database, such that the primary partition and a
first replica corresponding to the primary partition reside on
different nodes in the set of nodes. The embodiment selects
a second node in the set of nodes to place the first replica
such that the second node does not include a second replica
of a second primary partition, wherein the first primary
partition and the second primary partition are co-resident on
the first node. The embodiment places the first primary
partition on the first node and the first replica on the second
node.

[0008] Another embodiment includes a computer usable
program product comprising a computer readable storage
device including computer usable code for balanced parti-
tion placement in a distributed database.

[0009] Another embodiment includes a data processing
system for balanced partition placement in a distributed
database.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0010] The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood
by reference to the following detailed description of the
illustrative embodiments when read in conjunction with the
accompanying drawings, wherein:

[0011] FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented;

[0012] FIG. 2 depicts a block diagram of a data processing
system in which illustrative embodiments may be imple-
mented;

[0013] FIG. 3 depicts a block diagram of an example
partition placement in presently used distributed databases
that can be improved in accordance with an illustrative
embodiment;

[0014] FIG. 4 depicts a block diagram of an example
partition placement for distributed databases in accordance
with an illustrative embodiment;

[0015] FIG. 5 depicts a block diagram of an example
partition placement for distributed databases during expan-
sion in accordance with an illustrative embodiment;

[0016] FIG. 6 depicts a flowchart of an example process
for balanced partition placement in distributed databases in
accordance with an illustrative embodiment;

[0017] FIG. 7 depicts a flowchart of an example process
for balanced partition placement in distributed databases
during a recovery operation in accordance with an illustra-
tive embodiment;

[0018] FIG. 8 depicts a flowchart of an example process
for balanced partition placement in distributed databases
during a redistribution operation in accordance with an
illustrative embodiment; and

[0019] FIG. 9 depicts a flowchart of an example process
for balanced partition placement in distributed databases
during an expansion operation in accordance with an illus-
trative embodiment.



US 2017/0032014 Al

DETAILED DESCRIPTION

[0020] A partition that is actively serving a portion of a
distributed database is also referred to herein as a primary or
a primary partition. A replica of a primary partition—also
referred to herein as a replica partition—is a current copy of
the data and state of the primary partition. Thus, a primary
and a corresponding replica are each a copy of the portion
of a distributed database.

[0021] A node is a data processing system that hosts a
partition—whether serving a primary or maintaining a rep-
lica. A node belongs to a cluster. A cluster can span all or part
of arack in a datacenter or more than one rack in one or more
data centers. Any number of clusters can exist in this
manner, including any number of nodes, spanning any
number of racks, across any number of data centers. Con-
sequently, a distributed database can be distributed across
different nodes of one cluster, different nodes of different
clusters, nodes in one rack, nodes across different racks,
nodes in one datacenter, nodes across different data centers,
or some combination thereof.

[0022] The illustrative embodiments recognize that deter-
mining the nodes on which the primary and the correspond-
ing replicas should be placed to satisfy performance and
availability requirements is a challenge in distributed data-
bases. Preserving locality, i.e., processing a database parti-
tion on the node where the partition is stored locally is a
significant factor in determining database performance.
Using current techniques, recovery from a node failure by
activating replicas of the primaries that were operating on
the failed node is undesirably slow. During the recovery
time, database performance as a whole, or at least the
performance of an affected partition is undesirably reduced.
[0023] The illustrative embodiments further recognize that
the possibility of concurrent failures of multiple nodes
within a failure zone, such as due to a common rack outage,
further complicate the recovery process in the presently used
recovery methods. It is not uncommon for a recovery
process to take several hours, which is highly undesirable in
distributed databases.

[0024] The illustrative embodiments further recognize that
distributing partitions to available nodes is a complex utili-
zation problem as well. It is quite likely different nodes have
different amounts of computing resources available to them.
Therefore, not all nodes can host all partitions effectively,
perform within the desired performance parameters with
certain partitions, or operate with the desired degree of
reliability with all partitions.

[0025] Some prior art methods, e.g. consistent hashing,
have the separation of partitions and replicas as a goal, but
such methods cannot guarantee the separation because those
methods essentially rely on randomized distribution of par-
titions. The illustrative embodiments recognize that in the
context of MPP, the number of possible undesirable con-
figurations is many orders of magnitude greater than the
desirable configurations. Therefore, relying on randomiza-
tion to achieve separation of partitions and replicas is not a
practical solution. The illustrative embodiments recognize
that strict satisfaction of a set of conditions is required to
achieve the performance and HA benefits described herein.
[0026] Placing a partition on a node requires not only
partition-specific operational considerations but also node-
specific operational considerations, such as reserve capacity
remaining at the node after the partition placement, or a
utilization of the node exceeding a threshold utilization as a

Feb. 2, 2017

result of the partition placement. Thus, the illustrative
embodiments recognize that for distributed database sys-
tems, there is a need for a method for wide distribution of
replicas across the cluster to speed the recovery and mini-
mize the effect of failures while preserving data locality and
uniform load-distribution.

[0027] The illustrative embodiments recognize that these
considerations are also useful for smooth system expansion,
i.e., addition of nodes to satisfy increasing demand for
storage and other computing resources. Currently available
methods cause severe performance degradation during
node-bootstrap, to wit, expansion by addition of nodes—in
massively parallel, input/output (1/0) intensive clusters, as
in the case of distributed databases.

[0028] The illustrative embodiments recognize that to
keep network traffic and /O minimal during failure recovery
or expansion operations, the number of partitions that should
be moved should be minimized. Additionally, the illustrative
embodiments also recognize that post-node-failure, one or
more surviving nodes should preferably each take on only a
fraction of the load from the failed node, to avoid significant
reduction in performance.

[0029] The illustrative embodiments used to describe the
invention generally address and solve the above-described
problems and other problems related to managing distrib-
uted database partitions. The illustrative embodiments pro-
vide a method, system, and computer program product for
balanced partition placement in distributed databases.
[0030] Anembodiment executes as an application in, or in
conjunction with, a data processing system used for admin-
istrating a distributed database. In some cases, an embodi-
ment may execute on a node that is hosting a partition of the
distributed database. In other cases, an embodiment may
execute on a system that does not host a partition but
performs a management function relative to the distributed
database.

[0031] An embodiment solves an initial placement prob-
lem. The embodiment provides and evaluates a set of
conditions that should be satisfied for initially placing vari-
ous primaries and replicas on various nodes. For example,
suppose that a particular database is configured to operate
with two replicas of each primary. As one example condition
on the placement, the embodiment ascertains that a replica
is placed on a node other than the node where the primary
is placed. The nodes can be in the same or different clusters,
same or different racks, same or different data centers, or a
combination thereof, as an implementation may desire.
[0032] As another example condition on the placement,
the embodiment ascertains that different replicas are placed
on different nodes. Again, the nodes can be situated any-
where without limitation within the scope of the illustrative
embodiments.

[0033] As another example condition on the placement,
the embodiment ascertains that the placement of a copy
(whether primary or a replica) on a node does not cause a
utilization of that node to exceed a threshold utilization set
for that node. For example, different nodes can have differ-
ent resource reserves requirements, which translate into
different amounts of resources that can be utilized by opera-
tions at that node, thereby setting the threshold utilization for
that node.

[0034] As another example condition on the placement,
the embodiment ascertains that when a copy (whether pri-
mary or a replica) can be placed on any of the several



US 2017/0032014 Al

alternative nodes, the copy is placed on that alternative node
whose utilization will increase by the least amount as a result
of the placement while maintaining that node’s reserves
requirements.

[0035] As another example condition on the placement,
the embodiment ascertains that when two or more primaries
are co-resident or co-hosted on a common node, their
replicas are not also co-resident on another node, if possible,
given the nodes in the configuration. When the node avail-
ability in a given configuration necessitates that some rep-
licas of co-resident primaries have to be co-resident at
another node, the condition ascertains that a number of
co-resident replicas of the co-resident primaries is mini-
mized in the configuration.

[0036] Another embodiment solves a recovery placement
problem. The embodiment provides and evaluates a set of
conditions that should be satisfied for placing various pri-
maries and replicas on various nodes in a recovery operation
after a failure or removal of a node that was hosting a
partition. As an example, when a node that was hosting a
primary fails, a replica of the primary has to be activated on
another node. When several replicas corresponding to the
failed primary are available for activation, the embodiment
ascertains that the replica that causes the utilization of its
node by the least amount while maintaining that node’s
reserves requirements is activated.

[0037] Another embodiment solves a redistribution place-
ment problem. The embodiment provides and evaluates a set
of conditions that should be satisfied for changing the
placing of certain primaries and replicas on various nodes
when a previous placement solution has to be changed, such
as due to a change in node conditions, preferences, perfor-
mance requirements, and other reasons. As an example, the
embodiment ascertains that when a primary can be placed on
any of the several alternative nodes, the copy is placed on
that alternative node whose utilization will increase by the
least amount as a result of the placement while maintaining
that node’s reserves requirements.

[0038] The new configuration must continue to satisfy the
original set of conditions such that the new configuration
remains amenable to future changes due to failure or expan-
sion. Note that redistribution may also be performed in two
steps, (1) Processes are migrated to nodes where partition
copies are locally present, and (2) Replicas are regenerated
in locations that satisfy the original set of conditions on the
existing set of nodes. Alternatively, a new node may be
added after failover step (1) and the steps described herein
with respect to expansion may be followed to redistribute
partitions and copies in a balanced way.

[0039] Another embodiment solves an expansion place-
ment problem. The embodiment provides and evaluates a set
of conditions that should be satisfied for changing the
placing of certain primaries and replicas on various nodes
when a new node is made available for use with the
distributed database. As an example, the embodiment ascer-
tains that a primary is either moved from an existing node to
the new node or not moved at all, avoiding any moves of a
primary from one existing node to another existing node.
[0040] Furthermore, the embodiment performs the move
of a primary to the new node in two steps. First, the
embodiment creates a replica of the primary on the new
node. Next, when the replica is ready on the new node, the
embodiment promotes the replica to a primary state and
demotes the existing primary to a replica state. Thus, the

Feb. 2, 2017

embodiment moves the primary to the new node with
minimal service disruption or adverse affect on the parti-
tion’s performance.

[0041] Note that the various example conditions are
described with respect to certain operations and embodi-
ments only as examples and not with an intent to limit those
conditions to those embodiments or operations. From this
disclosure, those of ordinary skill in the art will be able to
conceive additional conditions for similar purposes, use
these and other conditions with any embodiment described
herein, and such adaptations are contemplated within the
scope of the illustrative embodiments.

[0042] A method of an embodiment described herein,
when implemented to execute on a device or data processing
system, comprises substantial advancement of the function-
ality of that device or data processing system for balanced
partition placement in distributed databases. For example,
prior-art method of placing and moving distributed database
partitions causes some nodes to take on more load from a
failed node than others causing a resource crunch and
performance degradation at those nodes. An embodiment
distributes the partitions across the available nodes subject
to a set of conditions that ensure minimal performance
impact from the placement, activation, or movement of
partitions. Such manner of balanced partition placement in
distributed databases is unavailable in presently available
devices or data processing systems. Thus, a substantial
advancement of such devices or data processing systems by
executing a method of an embodiment is in reducing the
time and effort of failure recovery, improvement of overall
database performance, minimization of performance degra-
dation due to failures or transitions, and smoother expansion
of the configuration for serving distributed databases.
[0043] The illustrative embodiments are described with
respect to certain nodes, clusters, racks, data centers, com-
puting resources, partitions, numbers of replicas, conditions,
databases, devices, data processing systems, environments,
components, and applications only as examples. Any spe-
cific manifestations of these and other similar artifacts are
not intended to be limiting to the invention. Any suitable
manifestation of these and other similar artifacts can be
selected within the scope of the illustrative embodiments.
[0044] Furthermore, the illustrative embodiments may be
implemented with respect to any type of data, data source,
or access to a data source over a data network. Any type of
data storage device may provide the data to an embodiment
of'the invention, either locally at a data processing system or
over a data network, within the scope of the invention.
Where an embodiment is described using a mobile device,
any type of data storage device suitable for use with the
mobile device may provide the data to such embodiment,
either locally at the mobile device or over a data network,
within the scope of the illustrative embodiments.

[0045] The illustrative embodiments are described using
specific code, designs, architectures, protocols, layouts,
schematics, and tools only as examples and are not limiting
to the illustrative embodiments. Furthermore, the illustrative
embodiments are described in some instances using particu-
lar software, tools, and data processing environments only as
an example for the clarity of the description. The illustrative
embodiments may be used in conjunction with other com-
parable or similarly purposed structures, systems, applica-
tions, or architectures. For example, other comparable
mobile devices, structures, systems, applications, or archi-



US 2017/0032014 Al

tectures, may be used in conjunction with such embodiment
of the invention within the scope of the invention. An
illustrative embodiment may be implemented in hardware,
software, or a combination thereof.

[0046] The examples in this disclosure are used only for
the clarity of the description and are not limiting to the
illustrative embodiments. Additional data, operations,
actions, tasks, activities, and manipulations will be conceiv-
able from this disclosure and the same are contemplated
within the scope of the illustrative embodiments.

[0047] Any advantages listed herein are only examples
and are not intended to be limiting to the illustrative embodi-
ments. Additional or different advantages may be realized by
specific illustrative embodiments.

[0048] Furthermore, a particular illustrative embodiment
may have some, all, or none of the advantages listed above.

[0049] With reference to the figures and in particular with
reference to FIGS. 1 and 2, these figures are example
diagrams of data processing environments in which illus-
trative embodiments may be implemented. FIGS. 1 and 2 are
only examples and are not intended to assert or imply any
limitation with regard to the environments in which different
embodiments may be implemented. A particular implemen-
tation may make many modifications to the depicted envi-
ronments based on the following description.

[0050] FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented. Data processing environment 100 is a
network of computers in which the illustrative embodiments
may be implemented. The depicted network of computers
can be configured to operate within a single rack, across
different racks in a datacenter, or across different data
centers. Data processing environment 100 includes network
102. Network 102 is the medium used to provide commu-
nications links between various devices and computers
connected together within data processing environment 100.
Network 102 may include connections, such as wire, wire-
less communication links, or fiber optic cables.

[0051] Clients or servers are only example roles of certain
data processing systems connected to network 102 and are
not intended to exclude other configurations or roles for
these data processing systems. Server 104 and server 106
couple to network 102 along with storage unit 108. Software
applications may execute on any computer in data process-
ing environment 100. Clients 110, 112, and 114 are also
coupled to network 102. A data processing system, such as
server 104 or 106, or client 110, 112, or 114 may contain data
and may have software applications or software tools
executing thereon.

[0052] Only as an example, and without implying any
limitation to such architecture, FIG. 1 depicts certain com-
ponents that are usable in an example implementation of an
embodiment. For example, servers 104 and 106, and clients
110, 112, 114, are depicted as servers and clients only as
example and not to imply a limitation to a client-server
architecture. As another example, an embodiment can be
distributed across several data processing systems and a data
network as shown, whereas another embodiment can be
implemented on a single data processing system within the
scope of the illustrative embodiments. Data processing
systems 104, 106, 110, 112, and 114 also represent example
nodes in a cluster, partitions, and other configurations suit-
able for implementing an embodiment.

Feb. 2, 2017

[0053] Device 132 is an example of a device described
herein. For example, device 132 can take the form of a
smartphone, a tablet computer, a laptop computer, client 110
in a stationary or a portable form, a wearable computing
device, or any other suitable device. Any software applica-
tion described as executing in another data processing
system in FIG. 1 can be configured to execute in device 132
in a similar manner. Any data or information stored or
produced in another data processing system in FIG. 1 can be
configured to be stored or produced in device 132 in a
similar manner.

[0054] Assume as a non-limiting example that an embodi-
ment is implemented in a node that also serves a partition.
Server 104 is such a node and serves database partition 1
(103), which is a primary partition of a distributed database.
Application 105 implements an embodiment described
herein. Server 106 is another node, which serves database
partition 2 (107), which is another primary partition of the
distributed database. Server 104 hosts replica 2 (101), which
is a replica of partition 2 (107). Server 106 hosts replica 1
(109), which is a replica of partition 1 (103).

[0055] Servers 104 and 106, storage unit 108, and clients
110, 112, and 114 may couple to network 102 using wired
connections, wireless communication protocols, or other
suitable data connectivity. Clients 110, 112, and 114 may be,
for example, personal computers or network computers.
[0056] In the depicted example, server 104 may provide
data, such as boot files, operating system images, and
applications to clients 110, 112, and 114. Clients 110, 112,
and 114 may be clients to server 104 in this example. Clients
110, 112, 114, or some combination thereof, may include
their own data, boot files, operating system images, and
applications. Data processing environment 100 may include
additional servers, clients, and other devices that are not
shown.

[0057] In the depicted example, data processing environ-
ment 100 may be the Internet. Network 102 may represent
a collection of networks and gateways that use the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) and
other protocols to communicate with one another. At the
heart of the Internet is a backbone of data communication
links between major nodes or host computers, including
thousands of commercial, governmental, educational, and
other computer systems that route data and messages. Of
course, data processing environment 100 also may be imple-
mented as a number of different types of networks, such as
for example, an intranet, a local area network (LAN), or a
wide area network (WAN). FIG. 1 is intended as an example,
and not as an architectural limitation for the different illus-
trative embodiments.

[0058] Among other uses, data processing environment
100 may be used for implementing a client-server environ-
ment in which the illustrative embodiments may be imple-
mented. A client-server environment enables software appli-
cations and data to be distributed across a network such that
an application functions by using the interactivity between a
client data processing system and a server data processing
system. Data processing environment 100 may also employ
a service oriented architecture where interoperable software
components distributed across a network may be packaged
together as coherent business applications.

[0059] With reference to FIG. 2, this figure depicts a block
diagram of a data processing system in which illustrative
embodiments may be implemented. Data processing system



US 2017/0032014 Al

200 is an example of a computer, such as servers 104 and
106, or clients 110, 112, and 114 in FIG. 1, or another type
of device in which computer usable program code or instruc-
tions implementing the processes may be located for the
illustrative embodiments.

[0060] Data processing system 200 is also representative
of a data processing system or a configuration therein, such
as data processing system 132 in FIG. 1 in which computer
usable program code or instructions implementing the pro-
cesses of the illustrative embodiments may be located. Data
processing system 200 is described as a computer only as an
example, without being limited thereto. Implementations in
the form of other devices, such as device 132 in FIG. 1, may
modify data processing system 200, such as by adding a
touch interface, and even eliminate certain depicted com-
ponents from data processing system 200 without departing
from the general description of the operations and functions
of data processing system 200 described herein.

[0061] In the depicted example, data processing system
200 employs a hub architecture including North Bridge and
memory controller hub (NB/MCH) 202 and South Bridge
and input/output (I/O) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are coupled to North Bridge and memory controller hub
(NB/MCH) 202. Processing unit 206 may contain one or
more processors and may be implemented using one or more
heterogeneous processor systems. Processing unit 206 may
be a multi-core processor. Graphics processor 210 may be
coupled to NB/MCH 202 through an accelerated graphics
port (AGP) in certain implementations.

[0062] In the depicted example, local area network (LAN)
adapter 212 is coupled to South Bridge and I/O controller
hub (SB/ICH) 204. Audio adapter 216, keyboard and mouse
adapter 220, modem 222, read only memory (ROM) 224,
universal serial bus (USB) and other ports 232, and PCl/
PCle devices 234 are coupled to South Bridge and 1/O
controller hub 204 through bus 238. Hard disk drive (HDD)
or solid-state drive (SSD) 226 and CD-ROM 230 are
coupled to South Bridge and 1/O controller hub 204 through
bus 240. PCI/PCle devices 234 may include, for example,
Ethernet adapters, add-in cards, and PC cards for notebook
computers. PCI uses a card bus controller, while PCle does
not. ROM 224 may be, for example, a flash binary input/
output system (BIOS). Hard disk drive 226 and CD-ROM
230 may use, for example, an integrated drive electronics
(IDE), serial advanced technology attachment (SATA) inter-
face, or variants such as external-SATA (eSATA) and micro-
SATA (mSATA). A super /O (SIO) device 236 may be
coupled to South Bridge and I/O controller hub (SB/ICH)
204 through bus 238.

[0063] Memories, such as main memory 208, ROM 224,
or flash memory (not shown), are some examples of com-
puter usable storage devices. Hard disk drive or solid state
drive 226, CD-ROM 230, and other similarly usable devices
are some examples of computer usable storage devices
including a computer usable storage medium.

[0064] An operating system runs on processing unit 206.
The operating system coordinates and provides control of
various components within data processing system 200 in
FIG. 2. The operating system may be a commercially
available operating system such as AIX® (AIX is a trade-
mark of International Business Machines Corporation in the
United States and other countries), Microsoft® Windows®
(Microsoft and Windows are trademarks of Microsoft Cor-

Feb. 2, 2017

poration in the United States and other countries), Linux®
(Linux is a trademark of Linus Torvalds in the United States
and other countries), iOS™ (i0S is a trademark of Cisco
Systems, Inc. licensed to Apple Inc. in the United States and
in other countries), or Android™ (Android is a trademark of
Google Inc., in the United States and in other countries). An
object oriented programming system, such as the C++,
Python, Java™ programming system, may run in conjunc-
tion with the operating system and provide calls to the
operating system from Java™ programs or applications
executing on data processing system 200 (Java and all
Java-based trademarks and logos are trademarks or regis-
tered trademarks of Oracle Corporation and/or its affiliates.
Python is a trademark of Python Software Foundation).
[0065] Instructions for the operating system, the object-
oriented programming system, and applications or pro-
grams, such as application 105 in FIG. 1, are located on
storage devices, such as hard disk drive 226, and may be
loaded into at least one of one or more memories, such as
main memory 208, for execution by processing unit 206.
The processes of the illustrative embodiments may be per-
formed by processing unit 206 using computer implemented
instructions, which may be located in a memory, such as, for
example, main memory 208, read only memory 224, or in
one or more peripheral devices.

[0066] The hardware in FIGS. 1-2 may vary depending on
the implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.
[0067] In some illustrative examples, data processing sys-
tem 200 may be a personal digital assistant (PDA), which is
generally configured with flash memory to provide non-
volatile memory for storing operating system files and/or
user-generated data. A bus system may comprise one or
more buses, such as a system bus, an I/O bus, and a PCI bus.
Of course, the bus system may be implemented using any
type of communications fabric or architecture that provides
for a transfer of data between different components or
devices attached to the fabric or architecture.

[0068] A communications unit may include one or more
devices used to transmit and receive data, such as a modem
or a network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found in North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs.

[0069] The depicted examples in FIGS. 1-2 and above-
described examples are not meant to imply architectural
limitations. For example, data processing system 200 also
may be a tablet computer, laptop computer, or telephone
device in addition to taking the form of a mobile or wearable
device.

[0070] With reference to FIG. 3, this figure depicts a block
diagram of an example partition placement in presently used
distributed databases that can be improved in accordance
with an illustrative embodiment. An example cluster of
nodes is depicted in which primary and replica partitions of
a distributed database are hosted and operated. The cluster
includes seven example nodes, similar to data processing
system 106 in FIG. 1.

[0071] The seven nodes are labeled nodes 0, 1, 2, 3, 4, 5,
and 6. A primary partition has a label that begins with letter



US 2017/0032014 Al

“P” and has a number. For example, partitions P0, P1, P2,
P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15,
P16, P17, P18, P19, and P20 are twenty one example
primary partitions of the distributed database.

[0072] Only as a non-limiting example, each primary has
two replicas. Only for the clarity of the description and
without implying any particular ranking, order, or priority
therefrom, the replicas as labeled secondary and tertiary
replicas.

[0073] A secondary replica has a label that begins with
letter “S” and has a number that is the same as the number
of the corresponding primary. For example, replica S0 is a
secondary replica of primary P0. In a like manner replicas
S0, S1, S2, 83, S4, S5, S6, S7, S8, 89, S10, S11, 812, S13,
S14, S15, S16, S17, S18, S19, and S20 are twenty one
example secondary replicas of the twenty one corresponding
primary partitions described earlier

[0074] A tertiary replica has a label that begins with letter
“T” and has a number that is the same as the number of the
corresponding primary. For example, replica T0 is a tertiary
replica of primary P0. In a like manner replicas T0, T1, T2,
T3, T4, TS5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15,
T16, T17, T18, T19, and T20 are twenty one example
tertiary replicas of the twenty one corresponding primary
partitions described earlier

[0075] Configuration 302 depicts an initial placement of
the partitions across the seven nodes. For example, P0, P1,
P2 are placed on node 0 with corresponding S0, S1, S2 on
node 1, and T0, T1, T2 on node 2. Other primaries and
replicas are distributed as shown.

[0076] Configuration 304 represents a state of migration
and recovery after a failure or removal of node 0. S0 in node
1 is promoted to PO in node 1, S1 in node 1 is promoted to
P1 in node 1, and S2 in node 1 is promoted to P2 in node 1.
Now, node 1 is operating six primaries—P0-P2 due to the
failure of node 0, and P3-P5 that were already on node 1.

[0077] As can be seen, the demand on the computing
resources of node 1 has increased significantly, perhaps
double or more depending upon the partitions. As can also
be seen the other nodes—nodes 2-6 are not sharing any load
increase from the failure of node 0. This manner of operating
node 1 causes a significant reduction in the performance of
node 1. When the overall performance of the database is
measured by the worst performing node, it is evident that the
overall performance of the database has suffered signifi-
cantly in configuration 304.

[0078] Configuration 306 shows the restoration of the
original redundancy after the failure of node 0. Node 0 was
hosting T15-17 and S18-20 as well. Those replicas have to
be migrated to some other active node as well to restore the
redundancies of P15-20. Furthermore, because S0-S2 have
been promoted to P0-P2, new S0-S2 are also needed so that
P0-P2 can each have two replicas again. In the depicted
example, T0-T2 at node 2 from configuration 304 are made
secondary in configuration 306, and new T0-T2 are created
in node 3 in configuration 306. Similar renumbering and
migration of T15-17 and S18-S20 occurs as shown in
configuration 306.

[0079] As can be seen, node 1 is not only executing six
primary partitions, it is also storing more replicas. The
demand on the storage devices of node 1, node 2, and node
3 has increased, whereas the demand on the storage devices
of nodes 4-6 is unaffected by the failure in configuration
304. This uneven consumption of computing resources, such

Feb. 2, 2017

as storage, makes certain nodes, e.g., nodes 1-3, more
critical than nodes 4-6 in case of future failures.

[0080] With reference to FIG. 4, this figure depicts a block
diagram of an example partition placement for distributed
databases in accordance with an illustrative embodiment.
Application 400 is an example of application 105 in FIG. 1.
In the depicted example, application 400 is shown to execute
outside the nodes used for hosting or serving the distributed
database. For example, application 400 can be regarded as
executing in an administration server (not shown) of the
distributed database.

[0081] In the manner of the cluster of nodes described in
FIG. 3, an example cluster of nodes is depicted in which
primary and replica partitions of a distributed database are
hosted and operated in accordance with an embodiment. The
cluster includes seven example nodes, similar to data pro-
cessing system 104 or 106 in FIG. 1.

[0082] The seven nodes are labeled nodes 0, 1, 2, 3, 4, 5,
and 6. As an example, partitions P0, P1, P2, P3, P4, P5, P6,
P7, P8, P9, P10, P11, P12, P13, P14, P1, P16, P17, P18, P19,
and P20 are twenty one example primary partitions of the
distributed database.

[0083] Again, only as a non-limiting example, each pri-
mary has two replicas. Only for the clarity of the description
and without implying any particular ranking, order, or
priority therefrom, the replicas as labeled secondary and
tertiary replicas. For example, replicas S0, S1, S2, S3, S4,
S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S1, S16, S17,
S18, S19, and S20 are twenty one example secondary
replicas and replicas T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
T10, T11, T12, T13, T14, T1, T16, T17, T18, T19, and T20
are twenty one tertiary replicas of the twenty one corre-
sponding primary partitions described earlier

[0084] Configuration 402 depicts an initial placement of
the partitions across the seven nodes. For example, P0, P1,
P2 are co-resident on node 0. S0, S1, and S2 are distributed
according to one or more conditions described herein to
nodes 5, 3, and 6, respectively. Similarly, according to one
or more conditions described herein, T0, T1, T2 are distrib-
uted to nodes 2, 1, and 4, respectively. Other primaries and
replicas are distributed as shown.

[0085] As one example condition on the placement, appli-
cation 400 ascertains that a replica is placed on a node other
than the node where the primary is placed. As another
example condition on the placement, application 400 ascer-
tains that different replicas are placed on different nodes. As
another example condition on the placement, application
400 ascertains that the placement of a copy (whether a
primary or a replica) on a node does not cause a utilization
of that node to exceed a threshold utilization set for that
node. As another example condition on the placement,
application 400 ascertains that when a copy (whether pri-
mary or a replica) can be placed on any of the several
alternative nodes, the copy is placed on that alternative node
whose utilization will increase by the least amount as a result
of the placement while maintaining that node’s reserves
requirements.

[0086] As another example condition on the placement,
application 400 ascertains that when two or more primaries
are co-resident or co-hosted on a common node, their
replicas are not also co-resident on another node, if possible,
given the nodes in the configuration. When the node avail-
ability in a given configuration necessitates that some rep-
licas of co-resident primaries have to be co-resident at



US 2017/0032014 Al

another node, the condition ascertains that a number of
co-resident replicas of the co-resident primaries is mini-
mized in the configuration.

[0087] Configuration 404 represents a state of migration
and recovery achieved using application 400 after a failure
or removal of node 0. As an example, when a node that was
hosting a primary fails, application 400 selects a replica of
the primary that should be activated on another node accord-
ing to one or more conditions. For example, when several
replicas corresponding to the failed primary are available for
activation, application 400 ascertains that the replica, which
causes the least increase in utilization of its node while
maintaining that node’s reserves requirements, is activated.
[0088] In the depicted example, application 400 evaluates
the one or more conditions and promotes SO in node 5 to P0
in node 5, promotes S1 in node 3 to P1 in node 1, and
promotes S2 in node 6 to P2 in node 6. Now, no single node,
unlike node 1 in configuration 304 in FIG. 3, is taking over
a disproportional load of the failed primaries P0-P2 due to
the failure of node 0. The load distribution during migration
results from judicious distribution of the replicas by appli-
cation 400.

[0089] This manner of operating the nodes does not cause
any one node to experience significant reduction in the
performance. When the overall performance of the database
is measured by the worst performing node, the overall
performance of the database does not suffer as badly as in
configuration 304 in FIG. 3.

[0090] Configuration 406 shows the restoration of the
original redundancy by application 400 after the failure of
node 0. Node 0 was hosting S3, S8, S9, S14, T17, and T19
as well. Application 400 migrates those replicas to other
active node as well according to one or more conditions
described herein, to restore the redundancies of P3, P8, P9,
P14, P17, and P19. Furthermore, because S0-S2 have been
promoted to P0-P2 in various nodes, new S0-S2 are also
needed so that P0-P2 can each have two replicas again.
[0091] For example, application 400 evaluates a set of
conditions that should be satisfied for changing the placing
of replicas on various nodes. As an example, application 400
ascertains that when a replica can be placed on any of the
several alternative nodes, the replica is placed on that
alternative node whose utilization will increase by the least
amount as a result of the placement while maintaining that
node’s capacity limitations. The new configuration contin-
ues to satisfy the original set of conditions so that in the
event of a secondary failure, partial node failure, or expan-
sion, the system can easily be reconfigured to have a
balanced distribution with minimal additional I/O.

[0092] As can be seen, in performing this manner of
distributing and placing of the replicas on various nodes,
application 400 causes a balanced increase of utilization and
consumption of resources at various nodes. Thus, the
demand on the storage devices of the nodes used for
migrating the replicas increases in a more balanced manner
as compared to the increase in the demand in configuration
306 in FIG. 3. This balanced consumption of computing
resources, such as storage, avoids or mitigates making
certain nodes more critical than other nodes in case of future
failures.

[0093] With reference to FIG. 5, this figure depicts a block
diagram of an example partition placement for distributed
databases during expansion in accordance with an illustra-
tive embodiment. Application 500 is an example of appli-

Feb. 2, 2017

cation 400 in FIG. 1. In the depicted example, application
500 is shown to execute outside the nodes used for hosting
or serving the distributed database. For example, application
500 can be regarded as executing in an administration server
(not shown) of the distributed database.

[0094] In the manner of the cluster of nodes described in
FIG. 3, an example cluster of nodes is depicted in which
primary and replica partitions of a distributed database are
hosted and operated in accordance with an embodiment. The
cluster initially includes five example nodes in configuration
502. Configuration 502 is expanded to include seven
example nodes in configurations 504 and 506. A node in any
of the depicted configurations is similar to data processing
system 104 or 106 in FIG. 1. Node and partition labeling
follows the same labeling notation as has been described
with respect to FIGS. 3 and 4.

[0095] Configuration 502 depicts an initial placement of
the partitions across the five initial nodes—nodes 0, 1, 2, 3,
4. For example, P0, P1, P2, P3 are co-resident on node 0. S0,
S1, S2, and S3 are distributed according to one or more
conditions described herein to nodes 1, 3, 4, and 2, respec-
tively. Similarly, according to one or more conditions
described herein, T0, T1, T2, T3 are distributed to nodes 2,
4, 3, and 1, respectively. Other primaries and replicas are
distributed as shown.

[0096] Configuration 504 represents a first step of expan-
sion using application 500 after nodes 5 and 6 are added to
the configuration 502. Application 500 applies a set of
conditions to perform a redistribution of partitions from the
five existing nodes of configuration 502 to the seven nodes
now in configuration 504.

[0097] As an example, application 500 ascertains that
when a primary can be placed on any of the several
alternative nodes, the copy is placed on that alternative node
whose utilization will increase by the least amount as a result
of the placement while maintaining that node’s reserves
requirements. As another example, application 500 ascer-
tains that a primary is either moved from an existing node to
the new node or not moved at all, disallowing any moves of
a primary from one existing node to another existing node.
Such a restriction minimizes I/O over a data network, which
is expensive.

[0098] In compliance with these and other similarly pur-
posed conditions, application 500 creates, as a first step in
the expansion process, replicas—secondary and/or ter-
tiary—of certain partitions. Some of these replicas will
remain in the replica form and some will be promoted to
primaries in the next step.

[0099] In the next step, application identifies the primaries
that can be migrated to the new nodes in compliance with
one or more conditions. For a primary that is to be migrated
to a new node, e.g., primary P12 from existing node 3 to new
node 5, application 500 changes the state of the newly
created replica of the primary on the new node, to promote
the replica as the primary. During the creation of the replica
on the new node and the promotion of the replica to a
primary state, the original primary on the existing node is
kept operational to minimize or avoid disruption of service
provided by that primary.

[0100] Once the replica has been successfully promoted to
primary, application 500 demotes the original primary to a
replica state. For example, replica 112 in node 5 of configu-



US 2017/0032014 Al

ration 504 is promoted to P12 in node 5, and original P12 in
node 3 of configuration 504 is demoted to 112 in node 3 in
configuration 506.

[0101] With reference to FIG. 6, this figure depicts a
flowchart of an example process for balanced partition
placement in distributed databases in accordance with an
illustrative embodiment. Process 600 can be implemented in
application 400 of FIG. 4 or application 500 of FIG. 5.
[0102] The application determines a number of replicas of
each primary partition that are to be maintained in a dis-
tributed database (block 602). The application performs the
operations of block 603 any number of times, in any suitable
order, and as needed in a given distributed database envi-
ronment. Under certain circumstances the illustrative
embodiments contemplate that a step within block 603 may
be omitted as well.

[0103] Recall that the primary partition and each replica
thereof is regarded as a copy of the partition. For example,
for a primary, within block 603, the application selects two
or more nodes for the primary and each replica such that
each copy resides on a different node (block 604). In
selecting the nodes, the application selects the nodes such
that replicas of co-resident primaries are placed on separate
nodes when possible, and that the placement of the replicas
of co-resident primaries on a common node is minimized
(block 606).

[0104] Furthermore, the application ensures that a node
for a copy is selected such that the original set of conditions
is satisfied and placing the copy on that node does not cause
the utilization of that node to exceed a threshold utilization
of that node (block 608). As an additional consideration, the
application can also select a node whose utilization is least
increased by such placement of the copy on the node (block
610).

[0105] The application places the primaries and replicas
on their respective selected nodes (block 612). The appli-
cation ends process 600 thereafter.

[0106] Note that as depicted, process 400 indicates a
greedy approach for making the best decision for one node,
without considering whether the decision is optimal or
suboptimal in the larger scheme of things where numerous
partitions are to be placed. An adaptation of process 400
where a decision reached for placing a partition on a node
according to the depicted process 400 is fixed or put on hold
while placements decisions for one or more other partitions
are similarly computed. The decision making process for the
various partitions may be repeated, in different order of the
partitions, before arriving at a solution configuration which
minimizes utilization and minimizes co-located copies of
co-resident partitions across several nodes and several par-
titions.

[0107] With reference to FIG. 7, this figure depicts a
flowchart of an example process for balanced partition
placement in distributed databases during a recovery opera-
tion in accordance with an illustrative embodiment. Process
700 can be implemented in application 400 of FIG. 4 or
application 500 of FIG. 5.

[0108] The application detects a node failure or shutdown
in a distributed database (block 702). The application per-
forms the operations of block 703 any number of times, in
any suitable order, and as needed in a given distributed
database environment. Under certain circumstances the
illustrative embodiments contemplate that a step within
block 703 may be omitted as well.

Feb. 2, 2017

[0109] For example, for a primary on the failed node,
within block 703, the application promotes a corresponding
replica on a different node (block 704). To promote, the
application selects that replica whose activation or promo-
tion will cause the least increase in the corresponding node’s
utilization (block 706).

[0110] Furthermore, the application creates a new replica
at a different node using the placement principles and
conditions described earlier (block 708). To create the new
replica, the application selects that node whose utilization
will be least increased from placing the new replica thereon
(block 710). The application ends process 600 thereafter.
[0111] With reference to FIG. 8, this figure depicts a
flowchart of an example process for balanced partition
placement in distributed databases during a redistribution
operation in accordance with an illustrative embodiment.
Process 800 can be implemented in application 400 of FIG.
4 or application 500 of FIG. 5.

[0112] The application selects a primary whose removal
from a source node has the greatest reduction in the source
node’s utilization (block 802). The application selects a
target node whose utilization is least increased by placing
the primary on the target node (block 804). The application
moves the primary from the source node to the target node
(block 806). The application ends process 800 thereafter.
[0113] With reference to FIG. 9, this figure depicts a
flowchart of an example process for balanced partition
placement in distributed databases during an expansion
operation in accordance with an illustrative embodiment.
Process 900 can be implemented in application 400 of FIG.
4 or application 500 of FIG. 5.

[0114] The application detects an addition of a new node
(block 902). The application selects a primary that should be
placed on the new node, such as to achieve some advantage
from the added node (block 904).

[0115] The application creates a replica of that primary on
the new node (block 906). The application promotes the
replica on the new node to a primary (block 908). The
application demotes the original primary at its original node
to a replica (block 910) or disregards the primary or an
existing copy, so that the total number of replicas is as
before. The application ends process 900 thereafter. The
choice of which replica is moved is determined not only by
the individual gains made by moving that partition but by
overall gains of moving any partition to any node.

[0116] Thus, a computer implemented method, system or
apparatus, and computer program product are provided in
the illustrative embodiments for balanced partition place-
ment in distributed databases. Where an embodiment or a
portion thereof is described with respect to a type of device,
the computer implemented method, system or apparatus, the
computer program product, or a portion thereof, are adapted
or configured for use with a suitable and comparable mani-
festation of that type of device.

[0117] The illustrative embodiments are described with
respect to nodes, node additions, and node failures only as
non-limiting examples. Principles of an embodiment can be
adapted for partial failures of a node, such as a failure of a
storage device at a node. For example, just as a database is
partitioned, replicas of partitions are created, and the various
copies are placed and migrated, the data of a partition can be
divided, distributed to different storage devices across one or
more nodes. By distributing the data across storage devices
in the manner of an embodiment, a failure or addition of a



US 2017/0032014 Al

storage device triggers a similar rebalancing of data distri-
bution without disruption of service.

[0118] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0119] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0120] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0121] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be

Feb. 2, 2017

connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0122] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0123] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0124] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0125] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by



US 2017/0032014 Al
10

special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
What is claimed is:
1. A method for balanced partition placement in a distrib-
uted database, the method comprising:
identifying, at an application executing using a processor
and a memory, a first node in a set of nodes for a first
primary partition of the distributed database, such that
the primary partition and a first replica corresponding
to the primary partition reside on different nodes in the
set of nodes;
selecting a second node in the set of nodes to place the
first replica such that the second node does not include
a second replica of a second primary partition, wherein
the first primary partition and the second primary
partition are co-resident on the first node; and
placing the first primary partition on the first node and the
first replica on the second node.
2. The method of claim 1, further comprising:
determining whether placing the first primary partition on
the first node causes a utilization of the first node to
exceed a first utilization threshold, wherein the placing
the first primary partition on the first node is responsive
to the determining being negative.
3. The method of claim 1, further comprising:
determining that the first primary partition can be placed
on any of the first node and a third node in the set of
nodes;
computing a first increase in a utilization of the first node
from placing the first primary partition on the first
node;
computing a second increase in a utilization of the third
node from placing the first primary partition on the
third node; and
selecting the first node for placing the first primary
partition responsive to the first increase being less than
the second increase.
4. The method of claim 1, further comprising:
detecting that the first node is inoperational;
designating the first replica in the second node as the first
primary partition; and
creating a second replica of the first primary partition at
a third node.
5. The method of claim 4, further comprising:
determining that the first primary partition has a third
replica hosted at a third node;
computing a first increase in a utilization of the second
node from designating the first replica as the first
primary partition on the second node;
computing a second increase in a utilization of the third
node from designating the third replica as the first
primary partition on the third node; and
selecting the first replica for the designating responsive to
the first increase being less than the second increase.
6. The method of claim 4, further comprising:
determining that the third node and a fourth node are both
eligible for hosting the second replica;
computing a first increase in a utilization of the third node
from placing the second replica on the third node;
computing a second increase in a utilization of the fourth
node from placing the second replica on the fourth
node; and

Feb. 2, 2017

selecting the third node for placing the second replica
responsive to the first increase being less than the
second increase, and wherein placing the second rep-
lica on the third node does not violate a total capacity
limitation of the third node.

7. The method of claim 1, further comprising:

determining, as a part of a redistribution operation, that a
utilization of the first node has to be reduced;

determining that a removal of the first primary partition
from the first node reduces the utilization of the first
node more than a removal of the second primary
partition from the first node;

computing a first increase in a utilization of a third node
from placing the first primary partition on the third
node;

computing a second increase in a utilization of a fourth
node from placing the first primary partition on the
fourth node;

selecting the third node for placing the first primary
partition responsive to the first increase being less than
the second increase; and

moving the first primary partition from the first node to
the third node.

8. The method of claim 1, further comprising:

detecting that a new node has been added to the set of
nodes;

selecting the first primary partition from the first node for
migration to the new node;

creating a second replica of the first primary partition on
the new node; and

promoting the second replica as the first primary partition
on the new node.

9. The method of claim 1, further comprising:

partitioning the distributed database into a plurality of
primary partitions, the plurality of primary partitions
including the first primary partition;

determining a numerosity of replicas that are to be main-
tained for each primary partition in the plurality of
primary partitions; and

creating, for the first partition, replicas in the determined
numerosity, the replicas including the first replica.

10. The method of claim 1, further comprising:

determining that a third replica of a third primary partition
is collocated with the first replica on the second node;
and

placing the third primary partition on a third node to avoid
collocating the third primary partition and the first
primary partition.

11. A computer usable program product comprising a

computer readable storage device including computer usable
code for balanced partition placement in a distributed data-
base, the computer usable code comprising:

computer usable code for identifying, at an application
executing using a processor and a memory, a first node
in a set of nodes for a first primary partition of the
distributed database, such that the primary partition and
a first replica corresponding to the primary partition
reside on different nodes in the set of nodes;

computer usable code for selecting a second node in the
set of nodes to place the first replica such that the
second node does not include a second replica of a
second primary partition, wherein the first primary
partition and the second primary partition are co-
resident on the first node; and



US 2017/0032014 Al

computer usable code for placing the first primary parti-
tion on the first node and the first replica on the second
node.
12. The computer usable program product of claim 11,
further comprising:
computer usable code for determining whether placing the
first primary partition on the first node causes a utili-
zation of the first node to exceed a first utilization
threshold, wherein the placing the first primary parti-
tion on the first node is responsive to the determining
being negative.
13. The computer usable program product of claim 11,
further comprising:
computer usable code for determining that the first pri-
mary partition can be placed on any of the first node
and a third node in the set of nodes;
computer usable code for computing a first increase in a
utilization of the first node from placing the first
primary partition on the first node;
computer usable code for computing a second increase in
a utilization of the third node from placing the first
primary partition on the third node; and
computer usable code for selecting the first node for
placing the first primary partition responsive to the first
increase being less than the second increase.
14. The computer usable program product of claim 11,
further comprising:
computer usable code for detecting that the first node is
inoperational;
computer usable code for designating the first replica in
the second node as the first primary partition; and
computer usable code for creating a second replica of the
first primary partition at a third node.
15. The computer usable program product of claim 14,
further comprising:
computer usable code for determining that the first pri-
mary partition has a third replica hosted at a third node;
computer usable code for computing a first increase in a
utilization of the second node from designating the first
replica as the first primary partition on the second node;
computer usable code for computing a second increase in
a utilization of the third node from designating the third
replica as the first primary partition on the third node;
and
computer usable code for selecting the first replica for the
designating responsive to the first increase being less
than the second increase.
16. The computer usable program product of claim 14,
further comprising:
computer usable code for determining that the third node
and a fourth node are both eligible for hosting the
second replica;
computer usable code for computing a first increase in a
utilization of the third node from placing the second
replica on the third node;
computer usable code for computing a second increase in
a utilization of the fourth node from placing the second
replica on the fourth node; and
computer usable code for selecting the third node for
placing the second replica responsive to the first

11

Feb. 2, 2017

increase being less than the second increase, and
wherein placing the second replica on the third node
does not violate a total capacity limitation of the third
node.

17. The computer usable program product of claim 11,
further comprising:

computer usable code for determining, as a part of a

redistribution operation, that a utilization of the first
node has to be reduced;

computer usable code for determining that a removal of

the first primary partition from the first node reduces
the utilization of the first node more than a removal of
the second primary partition from the first node;

computer usable code for computing a first increase in a

utilization of a third node from placing the first primary
partition on the third node;

computer usable code for computing a second increase in

a utilization of a fourth node from placing the first
primary partition on the fourth node;
computer usable code for selecting the third node for
placing the first primary partition responsive to the first
increase being less than the second increase; and

computer usable code for moving the first primary parti-
tion from the first node to the third node.

18. The computer usable program product of claim 11,
wherein the computer usable code is stored in a computer
readable storage device in a data processing system, and
wherein the computer usable code is transferred over a
network from a remote data processing system.

19. The computer usable program product of claim 11,
wherein the computer usable code is stored in a computer
readable storage device in a server data processing system,
and wherein the computer usable code is downloaded over
a network to a remote data processing system for use in a
computer readable storage device associated with the remote
data processing system.

20. A data processing system for balanced partition place-
ment in a distributed database, the data processing system
comprising:

a storage device, wherein the storage device stores com-

puter usable program code; and

a processor, wherein the processor executes the computer

usable program code, and wherein the computer usable
program code comprises:
computer usable code for identifying, at an application
executing using a processor and a memory, a first node
in a set of nodes for a first primary partition of the
distributed database, such that the primary partition and
a first replica corresponding to the primary partition
reside on different nodes in the set of nodes;

computer usable code for selecting a second node in the
set of nodes to place the first replica such that the
second node does not include a second replica of a
second primary partition, wherein the first primary
partition and the second primary partition are co-
resident on the first node; and

computer usable code for placing the first primary parti-

tion on the first node and the first replica on the second
node.



