US 20180032319A1

a9y United States

12y Patent Application Publication o) Pub. No.: US 2018/0032319 A1

Pistoia et al.

43) Pub. Date: Feb. 1, 2018

(54)

(71)

(72)

@

(22)

(1)

SYSTEM, METHOD AND APPARATUS FOR
PREVENTING VULNERABLE
INTERLEAVINGS IN WEB APPLICATIONS
AT COMPILE TIME

Applicant: International Business Machines

Corporation, Armonk, NY (US)
Inventors: Marco Pistoia, Amawalk, NY (US);
Omer Tripp, Yorktown Heights, NY
(US)

Appl. No.: 15/222,460

Filed: Jul. 28, 2016

Publication Classification

Int. CL.

GO6F 9/45 (2006.01)

300

(52) US.CL

CPC GO6F 8/433 (2013.01)

(57) ABSTRACT

Systems, methods, and computer program products are
disclosed including receiving a computer program, compil-
ing the computer program, performing data flow analysis on
the computer program to identify accesses to data locations
by execution units at compile-time, generating a list of
data-flow paths including accesses to one or more of the data
locations, determining that more than one of the execution
units accesses the same data location based on the list of
data-flow paths, determining the existence of a potential
vulnerability in at least one of the data-flow paths based at
least in part on the determination that more than one of the
execution units accesses the same data location, synthesiz-
ing a scheduling constraint for the data location based at
least in part on the determination of the existence of the
potential vulnerability in the at least one of the data-flow
paths, and implementing the scheduling constraint for the
data location

| RECEIVE PROGRAM |~-302

| COMPILE PROGRAM |’\—304

PERFORM DATA FLOW ANALYSIS ON PROGRAM AT COMPILE-TIME
TO IDENTIFY ACCESSES TO SHARED DATA LOCATIONS

!

DETERMINE LIST OF DATA-FLOW PATHS INCLUDING
ACCESSES TO THE SHARED DATA LOCATIONS

!

DETERMINE IF THERE IS MORE THAN ONE EXECUTION
UNIT THAT MAY ACCESS THE SAME DATA LOCATION

MORE THAN
ONE EXECUTION
UNIT?

FOR EACH SHARED DATA LOCATION, DETERMINE
WHETHER AT LEAST ONE OF THE DATA-FLOW
PATHS CONSTITUTES A POTENTIAL VULNERABILITY

306
- 308
310
312
NO
314

POTENTIAL
VULNERABILITY?

316
NO

SYNTHESIZE SCHEDULING CONSTRAINT
ON SHARED DATA LOCATION

~—318

!

IMPLEMENT SCHEDULING CONSTRAINT |'\' 320

END

Patent Application Publication Feb. 1, 2018 Sheet 1 of 3 US 2018/0032319 A1

100
112~1 PROCESSOR(S) MEMORY 116 118
PROGRAM
10+ MODULES STORAGE
SYSTEM

!
124

~114 1%2

- » NETWORK ADAPTOR

!
I/O INTERFACE(S) |~120

[

DISPLAY 128

\
DEVICE(S) |~126

FIG. 1

Patent Application Publication Feb. 1, 2018 Sheet 2 of 3 US 2018/0032319 A1

~110
| compuTER STATIC ANALYSIS L
202~ PROGRAM MODULE ~— 204
SCHEDULE PROGRAM
206~4~ CONSTRAINT TRANSFORMATION
MODULE MODULE

FIG. 2

Patent Application Publication

Feb. 11,2018 Sheet 3 of 3

300

RECEIVE PROGRAM

!

COMPILE PROGRAM

!

~— 302

~ 304

US 2018/0032319 A1l

PERFORM DATA FLOW ANALYSIS ON PROGRAM AT COMPILE
TO IDENTIFY ACCESSES TO SHARED DATA LOCATIONS

-TIME L _ 306

!

DETERMINE LIST OF DATA-FLOW PATHS INCLUDING
ACCESSES TO THE SHARED DATA LOCATIONS

!

~ 308

DETERMINE IF THERE IS MORE THAN ONE EXECUTION
UNIT THAT MAY ACCESS THE SAME DATA LOCATION

~ 310

312
NO

MORE THAN

ONE EXECUTION
UNIT?

FOR EACH SHARED DATA LOCATION, DETERMINE
WHETHER AT LEAST ONE OF THE DATA-FLOW
PATHS CONSTITUTES A POTENTIAL VULNERABILITY

316
NO

POTENTIAL

~— 314

VULNERABILITY?

SYNTHESIZE SCHEDULING CONSTRAINT
ON SHARED DATA LOCATION

!

IMPLEMENT SCHEDULING CONSTRAINT

~31

~— 32

8

0

END
FIG. 3

US 2018/0032319 Al

SYSTEM, METHOD AND APPARATUS FOR
PREVENTING VULNERABLE
INTERLEAVINGS IN WEB APPLICATIONS
AT COMPILE TIME

TECHNICAL FIELD

[0001] The present disclosure relates to systems, methods,
and computer program products for preventing vulnerable
interleavings in software applications.

BACKGROUND

[0002] Race conditions may occur when a device or
system attempts to perform two or more operations at the
same time but the operations must instead be performed in
a proper sequence to execute correctly. Such race conditions
may cause subtle functional bugs in multithreaded software
systems. Race conditions may impact functional perfor-
mance by allowing incorrect or corrupted data to be received
or acted on by an unintended portion of the software system.
Race conditions may also lead to security vulnerabilities.

BRIEF SUMMARY

[0003] The systems, apparatus, methods, and computer
program products described herein provide the capability to
prevent vulnerable interleavings related to race conditions in
software applications. A vulnerable interleaving may occur
during a race condition, for example, when a first operation
and a second operation execute at the same time, the first
operation alters or overwrites original data stored in a shared
data location, and the second operation, expecting to read
and use the original data that was stored in the shared data
location, instead reads and uses the altered or overwritten
data from the shared data location.

[0004] In an aspect of the present disclosure, a method is
disclosed. The method includes receiving a computer pro-
gram, compiling the computer program, at compile-time,
performing data flow analysis on the computer program to
identify accesses to data locations by execution units, gen-
erating a list of data-flow paths including accesses to one or
more of the data locations based on the data flow analysis,
determining that more than one of the execution units
accesses the same data location based on the list of data-flow
paths, determining the existence of a potential vulnerability
in at least one of the data-flow paths based at least in part on
the determination that more than one of the execution units
accesses the same data location, synthesizing a scheduling
constraint for the data location based at least in part on the
determination of the existence of the potential vulnerability
in the at least one of the data-flow paths, and implementing
the scheduling constraint for the data location on the com-
puter program.

[0005] In aspects of the present disclosure apparatus,
systems, and computer program products in accordance with
the above aspect may also be provided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The details of the present disclosure, both as to its
structure and operation, can best be understood by referring
to the accompanying drawings, in which like reference
numbers and designations refer to like elements.

Feb. 1,2018

[0007] FIG. 1 is an exemplary block diagram of a com-
puter system in which processes involved in the system,
method, and computer program product described herein
may be implemented.

[0008] FIG. 2 is exemplary block diagram of functional
components of the system according to an embodiment of
the present disclosure; and

[0009] FIG. 3 is a flow chart of a method according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION

[0010] The system, method, and computer program prod-
uct described herein provide ways to prevent vulnerable
interleavings in web or other applications. In one example,
an interleaving in software may occur when operations
having different priority execute at the same time. For
example, on a single processor or thread of system or
application, a low priority operation may be temporarily
halted to allow for the execution of a high priority operation.
An interleaving may also occur in a multithreading system
where, for example, first and second operations may be
performed at the same time using different threads. Such
interleavings have the potential to cause race conditions
when the operations share or manipulate one or more of the
same data locations, attributes, variables, memory locations,
hardware registers, or any other data storage location.
[0011] Race conditions related to interleavings may also
impact the security of a system. For example, when one of
the operations is a security critical operation, a race condi-
tion related to a particular data location may cause the
security critical operation to receive, use, and/or propagate
invalid, corrupt, or malicious data.

[0012] As an example, during an execution sequence, a
low priority operation, e.g., an uncontrolled operation, may
read the initial value of a data location, store the initial value
of the data location in a temporary location (memory, ram,
hardware registry, etc.), set the value of the data location to
a new value, execute operations on the new value, and then
return the value of the data location back to the initial value
before completing execution.

[0013] In an interleaving, the low priority operation may
be halted at any time during this process to give the high
priority operation (e.g., a security critical operation) access
to the system. For example, the low priority operation may
be halted after changing the value of the data location but
before returning the value of the data location back to the
initial value. In the case where the high priority operation
uses the data location as an input, a race condition may occur
where the high priority operation now uses the altered value
of the data location as an input. In other words, the data
location has been corrupted due to the interleaving between
the low priority operation and the high priority operation,
thereby causing a race condition.

[0014] Such a race condition due to an interleaving may
cause, for example, a functional component of the system to
fail or act in a manner that is inconsistent with the functional
components purpose. For example, a mission critical com-
ponent may malfunction or fail due to a race condition. Such
a race condition due to an interleaving may also potentially
lead to security vulnerabilities. For example, an attacker
may be able to insert malicious code into a system through
the use of an interleaving associated race condition by
storing the malicious code in the data location using the low
priority operation, e.g., an operation with low security

US 2018/0032319 Al

requirements, with the understanding that eventually the
high priority operation, e.g., a security related operation or
an operation with a high security access level, will read the
malicious code from the data location during an interleav-
ing, use the malicious code in security operations, propagate
the malicious code throughout the rest of the system, send
the malicious code to security critical locations, activate the
malicious code, and/or allow the malicious code to access
restricted portions of the system.

[0015] One issue with detecting and avoiding data races is
that they often manifest only in specific thread interleavings.
The issue is aggravated in cases where the race is not only
a functional problem, but also a security risk. The following
snippet of code provides an example where such an inter-
leaving between two servlets in a web application may
potentially make parallel access to the same data location
thereby creating a security vulnerability:

Servlet A {
Public void doGet(Request req, Response resp) {
Session session = req.getSession();
String userPrefs = session.getAttribute(“uprefs™);
if (userPrefs == null) {
String uname = req.getParameter(“name”);
userPrefs = readUserPrefsFromDB(uname); // Source }
userPrefs = sanitize(userPrefs); // Sanitizer
session.setAttribute(“uprefs”, userPrefs); }

String uprefs = session. getAttribute(*“prefs”);

resp.getWriter(). write(“Your recorded preferences: ” +
uprefs); // Sink }

Servlet B {
Public void doGet(Request req, Response resp) {
Session session = req.getSession();
String userPrefs = session.getAttribute(“uprefs™);
if (userPrefs == null) {
String uname = req.getParameter(“name”);
userPrefs = readUserPrefsFromDB(uname); // Source }
session.setAttribute(“uprefs”, userPrefs); }

L)

[0016] Inthe above snippet, both servlets A and B manipu-
late the same session attribute, “uprefs”. This introduces the
potential for race condition using the attribute “uprefs” when
“uprefs” is not initially set. The situation is complicated by
the fact that servlet B neglects to sanitize the value it reads
from the database into variable “userPrefs” before inserting
it into the session attribute. For example, servlet B may
neglect to execute a malicious code scan on the value and
remove any potential malicious code before inserting the
value into the session attribute. The failure to sanitize the
value may introduce the following vulnerable interleaving
sequence:

[0017]

[0018] 2. Servlet A then reads the value of “uprefs” from
the database and sanitizes it.

[0019] 3. Servlet B checks for “uprefs”, and also finds that
it’s not in the database.

1. Servlet A finds that “uprefs” is not in the session.

[0020] 4. Servlet A inserts the sanitized “uprefs” into the
session object.
[0021] 5. Servlet B inserts the un-sanitized “uprefs” into

the session object, thereby overwriting servlet A’s sanitized
value with an un-sanitized value.

Feb. 1,2018

[0022] 6. Servlet A reads “uprefs” from the session, and—
assuming that it’s sanitized—uses the read value in a secu-
rity-sensitive operation.

[0023] By unknowingly using the un-sanitized value, serv-
let A may introduce vulnerability into the system. The
present disclosure provides ways to prevent vulnerabilities
due to interleaved race conditions from being introduced
into the system.

[0024] FIG. 1 illustrates a schematic of an example com-
puter or processing system 100 that may implement such a
system in one embodiment of the present disclosure. The
computer system 100 is only one example of a suitable
processing system and is not intended to suggest any limi-
tation as to the scope of use or functionality of embodiments
of'the methodology described herein. The processing system
shown may be operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the processing system shown in FIG. 1 may
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing envi-
ronments that include any of the above systems or devices,
and the like.

[0025] The computer system 100 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. The computer system may be practiced
in distributed cloud computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed cloud
computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

[0026] The components of computer system 100 may
include, but are not limited to, one or more processors or
processing units 112, a system memory 116, and a bus 114
that couples various system components including system
memory 116 to processor 112. The processor 112 may
include one or more program modules 110 that perform the
methods described herein. The program modules 110 may be
programmed into the integrated circuits of the processor
112, or loaded from memory 116, storage device 118, or
network 124 or combinations thereof.

[0027] Bus 114 may represent one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, and not limitation,
such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnects (PCI) bus.

[0028] Computer system 100 may include a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system, and

US 2018/0032319 Al

it may include both volatile and non-volatile media, remov-
able and non-removable media.

[0029] System memory 116 can include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) and/or cache memory or
others. Computer system 100 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 118 can be provided for reading from and writing to
a non-removable, non-volatile magnetic media (e.g., a “hard
drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 114 by one or more data media interfaces.

[0030] Computer system 100 may also communicate with
one or more external devices 126 such as a keyboard, a
pointing device, a display 128, etc.; one or more devices that
enable a user to interact with computer system 100; and/or
any devices (e.g., network card, modem, etc.) that enable
computer system to communicate with one or more other
computing devices. Such communication can occur via
Input/Output (I/0) interfaces 120.

[0031] Still yet, computer system 100 can communicate
with one or more networks 124 such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 122. As
depicted, network adapter 122 communicates with the other
components of computer system via bus 114. It should be
understood that although not shown, other hardware and/or
software components could be used in conjunction with
computer system 100. Examples include, but are not limited
to: microcode, device drivers, redundant processing units,
external disk drive arrays, RAID systems, tape drives, and
data archival storage systems, etc.

[0032] System 100 may be configured to automatically
implement one or more program modules 110 including a
computer program 202, a static analysis module 204, sched-
ule constraint module 206, and program transformation
module 208, as illustrated, for example, by FIG. 2. A method
300 of preventing vulnerable interleavings is illustrated in
FIG. 3.

[0033] With reference now to FIGS. 2 and 3, at 302,
computer program 202 is received. For example, the com-
puter program 202 may be received from a user device, may
be installed on a device of system 100, may be used to access
aweb server of system 100, etc. Computer program 202 may
be any computer program that may include vulnerability to
interleavings. In non-limiting examples, computer program
202 may include applications on a mobile device, web
browsers, computer programs, or any other program that is
executable by system 100 or by another device. In some
embodiments, computer program 202 may be executed on a
web server. In some embodiments, computer program 202
may be configured to receive inputs from system 100, wired
or wirelessly from another source, via the internet, or in any
other manner, and may be configure to perform one or more
functions based on the inputs. In some embodiments, com-
puter program 202 may include security features that are
configured to prevent or protect a device from malicious
code or access, e.g., malware.

Feb. 1,2018

[0034] At 304, system 100 compiles computer program
202. The computer program 202 may be compiled using any
commercial or free-ware compiler. At 306 static analysis
module 204 performs data flow analysis on computer pro-
gram 202 at compile-time to identify any accesses to a data
location.

[0035] Static analysis module 204 is configured to perform
data flow analysis on computer program 202 to determine if
computer program 202, alone or in conjunction with other
processes of system 100, includes any potential vulnerable
interleavings. For example, static analysis module 204 may
perform a data flow analysis on computer program 202 at
compile-time to determine if any data locations, e.g., session
objects, variables, database records, etc., may be accessed by
multiple execution units (e.g., servlets). Static analysis mod-
ule 204 may configure the data flow analysis to find any
accesses to a data location, for example, any accesses to the
session attribute “uprefs” in the above example. Static
analysis module 204 may configure data flow analysis by
setting data-flow seeds for the analysis. For example, a
data-flow seed for the data flow analysis may be set to search
for specific actions that may be performed by computer
program 202 at compile-time, e.g., any accesses to a data
location.

[0036] Static analysis module 204 may perform an analy-
sis of computer program 202 based on the set data-flow
seeds to identify any accesses to the data location by
different execution units. For example, static analysis mod-
ule 204 may analyze computer program 202 at compile-time
and may determine that servlets A and B both make accesses
to the same session object under “uprefs.” Because both
servlets A and B may access the same session object under
“uprefs” there is a potential race condition and vulnerability
in system 100 if the accesses are made in parallel.

[0037] Insome embodiments, computer program 202 may
be analyzed at compile time such that, for example, execu-
tion units that access any shared objects may be tracked and
followed. An example data flow analysis that may be imple-
mented by static analysis module 204 is the Z3 Satisfiability
Modulo Theories (SMT) Solver created by Microsoft®.

[0038] At 308, static analysis module 204 generates a list
of data-flow paths that include accesses to the data location.
For example, static analysis module 204 may track the
program flow of computer program 202 and any other
portion of system 100 to find any accesses to the data
location. Each data-flow path that accesses the data location
may be added to the list of data-flow paths. At 310 Static
analysis module 204 analyzes the list of data-flow paths to
determine if there is more than one execution unit that may
access each data location. At 312, if static analysis module
204 determines that the data location may not be accessed by
more than one execution unit, no further action is required.
If static analysis module 204 determines that the data
location may be accessed by more than one execution unit,
execution proceeds to 314 where static analysis module 204
determines whether at least one of the data-flow paths
corresponding to the data location constitutes a potential
vulnerability, e.g., a security vulnerability. For example, if
one of the operations involved in a data-flow path that
accesses the data location is a security critical operation, or
the data-flow path is implemented by a security critical
execution unit, static analysis module 204 may determine
that the data-flow path constitutes a potential vulnerability.
In some embodiments a list of security critical operations

US 2018/0032319 Al

and/or execution units may be identified in advance by
computer program 202 and/or otherwise provided to system
100 for use by static analysis module 204 at compile-time.
[0039] At 316, if static analysis module 204 determines
that none of the data-flow paths corresponding to the data
location constitutes a potential vulnerability, no further
action is required. If static analysis module 204 determines
that at least one of the data-flow paths corresponding to the
data location constitutes a potential vulnerability, execution
proceeds to 318.

[0040] At 318, schedule constraint module 206 synthe-
sizes a scheduling constraint on the data location based on
the determination that there is at least one data-flow path
corresponding to the data location that constitutes a potential
vulnerability. Schedule constraint module 206 is configured
to generate a scheduling constraint for each data location
that may be accessed by more than one execution unit or
operation that was also found to constitute a potential
vulnerability by static analysis module 204. In some
embodiments, the scheduling constraint may include a lock-
ing mechanism that is configured to lock shared access to the
data location when one of the execution units or operations
is executing. For example, the scheduling constraint may
lock shared access to the data location when a first execution
unit having access to the data location starts execution. Once
locked, only the first execution unit may access the data
location. The shared access to the data location may be
unlocked when the first execution unit completes execution
thereby allowing other execution units to access the data
location. The scheduling constraint may uniquely corre-
spond to the data location such that every shared access to
the data location is controlled by a unique scheduling
constraint.

[0041] At 320, program transformation module 208 imple-
ments the synthesized scheduling constraints in the com-
piled program. For example, program transformation mod-
ule 208 may add code corresponding to each scheduling
constraint at each data location to the compiled program to
allow the data location to be locked for use by a single
execution unit at a time. In some embodiments, the sched-
uling constraints may be implemented in any other manner.
[0042] In some embodiments, the use of scheduling con-
straints may cause a deadlock. For example, a first execution
unit may have a scheduling constraint on a first data location
and a second execution unit may have a scheduling con-
straint on a second data location. The first execution unit
may require access to the second data location to complete
execution and the second execution unit may require access
to the first data location to complete execution. Since each
of the first and second data locations are locked by a
scheduling constraint, neither of the first and second execu-
tion units may complete execution. Accordingly, the first and
second execution units may be said to be deadlocked.
[0043] In some embodiments, schedule constraint module
206 may avoid deadlocks by determining and enforcing a
total order on the scheduling constraints that are applied to
computer program 202. In some embodiments, the total
order may be arbitrary. At compile time, schedule constraint
module 206 may build a call-graph representation of com-
puter program 202 and annotate each method of computer
program 202 with the schedule constraints for each data
location that may require access by computer program 202.
Based on the call-graph, schedule constraint module 206 or
the compiler may generate for each method of computer

Feb. 1,2018

program 202 a list of schedule constraints for each data
location that may require access by the method. In some
embodiments, the list of schedule constraints may also
include schedule constraints for data locations that may
require access by possible transitive callees of the method.
For example, a transitive callee may include any sub-
method, method, hardware, or other call implemented by the
method itself. Finally, at run time, a method of computer
program 202 may activate all of the schedule constraints for
data locations that the method itself and the method’s callees
may require access to according to the total order deter-
mined by schedule constraint module 206. In this manner,
deadlocks between conflicting execution units may be
avoided. In some embodiments, the scheduling constraints
may include, for example, synchronized, volatile, and/or
reentrant locks. An example algorithm that may be used to
introduce a scheduling constraint may be found, for
example, in “Autolocker: synchronization inference for
atomic sections” by Bill McCloskey et al., published in the
POPL ’06 Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, Pages 346-358, the entirety of which is incorporated
herein by reference.

[0044] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a
“circuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable medi-
um(s) having computer readable program code embodied
thereon.

[0045] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combi-
nation of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0046] A computer readable signal medium may include a
propagated data signal with computer readable program
code embodied therein, for example, in baseband or as part
of a carrier wave. Such a propagated signal may take any of
a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage

US 2018/0032319 Al

medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

[0047] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0048] Computer program code for carrying out opera-
tions for aspects of the present invention may be written in
any combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages, a scripting
language such as Perl, VBS or similar languages, and/or
functional languages such as Lisp and ML and logic-ori-
ented languages such as Prolog. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider).

[0049] Aspects of the present invention are described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

[0050] These computer program instructions may also be
stored in a computer readable medium that can direct a
computer, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

[0051] The computer program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other devices to cause a series of opera-
tional steps to be performed on the computer, other pro-
grammable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable
apparatus provide processes for implementing the functions/
acts specified in the flowchart and/or block diagram block or
blocks.

[0052] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the

Feb. 1,2018

present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0053] The computer program product may comprise all
the respective features enabling the implementation of the
methodology described herein, and which—when loaded in
a computer system—is able to carry out the methods.
Computer program, software program, program, or soft-
ware, in the present context means any expression, in any
language, code or notation, of a set of instructions intended
to cause a system having an information processing capa-
bility to perform a particular function either directly or after
either or both of the following: (a) conversion to another
language, code or notation; and/or (b) reproduction in a
different material form.

[0054] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the invention. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises”
and/or “comprising,” when used in this specification, specify
the presence of stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.

[0055] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements, if
any, in the claims below are intended to include any struc-
ture, material, or act for performing the function in combi-
nation with other claimed elements as specifically claimed.
The description of the present invention has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without depart-
ing from the scope and spirit of the invention. The embodi-
ment was chosen and described in order to best explain the
principles of the invention and the practical application, and
to enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

[0056] Various aspects of the present disclosure may be
embodied as a program, software, or computer instructions
embodied in a computer or machine usable or readable
medium, which causes the computer or machine to perform
the steps of the method when executed on the computer,
processor, and/or machine. A program storage device read-
able by a machine, tangibly embodying a program of

US 2018/0032319 Al

instructions executable by the machine to perform various
functionalities and methods described in the present disclo-
sure is also provided.

[0057] The system and method of the present disclosure
may be implemented and run on a general-purpose computer
or special-purpose computer system. The terms “computer
system” and “computer network™ as may be used in the
present application may include a variety of combinations of
fixed and/or portable computer hardware, software, periph-
erals, and storage devices. The computer system may
include a plurality of individual components that are net-
worked or otherwise linked to perform collaboratively, or
may include one or more stand-alone components. The
hardware and software components of the computer system
of the present application may include and may be included
within fixed and portable devices such as desktop, laptop,
and/or server. A module may be a component of a device,
software, program, or system that implements some “func-
tionality”, which can be embodied as software, hardware,
firmware, electronic circuitry, or etc.

[0058] Although specific embodiments of the present
invention have been described, it will be understood by
those of skill in the art that there are other embodiments that
are equivalent to the described embodiments. Accordingly, it
is to be understood that the invention is not to be limited by
the specific illustrated embodiments, but only by the scope
of the appended claims.

1. A method comprising:

receiving, by at least one processor, a computer program;

compiling, by at least one processor, the computer pro-

gram;
at compile-time, performing, by at least one processor,
data flow analysis on the computer program to identify
accesses to data locations by execution units;

generating, by at least one processor, based on the data
flow analysis, a list of data-flow paths including
accesses by execution units to one or more of the data
locations;

determining, by at least one processor, based on the list of

data-flow paths, that a first of the execution units
having a first priority and a second of the execution
units having a second priority different than the first
priority, access the same data location; and

determining, by at least one processor, the existence of a

potential vulnerability in at least one of the data-flow
paths based at least in part on the determination that the
first of the execution units having the first priority and
the second of the execution units having the second
priority different than the first priority, access the same
data location.

2. The method of claim 1, further comprising:

synthesizing a scheduling constraint for the data location

based at least in part on the determination of the
existence of the potential vulnerability in the at least
one of the data-flow paths; and

implementing the scheduling constraint for the data loca-

tion on the computer program.

3. The method of claim 2, wherein the scheduling con-
straint is configured prevent parallel access to the same data
location by more than one execution unit at a time.

4. The method of claim 2, wherein the scheduling con-
straint is a lock.

5. The method of claim 1, wherein determining that the at
least one of the data-flow paths constitutes a potential

Feb. 1,2018

vulnerability includes determining that the at least one of the
data-flow paths includes a security critical execution unit
accessing the data location.

6. The method of claim 1, wherein implementing the
scheduling constraint includes inserting code into the com-
piled computer program.

7. The method of claim 1, further comprising:

synthesizing a plurality of scheduling constraints for a

plurality of the data locations based at least in part on
determinations that data-flow paths including accesses
to one or more of the plurality of the data locations
constitute potential vulnerabilities;

generating a call-graph representation of the computer

program;
correlating each execution unit of the computer program
with the scheduling constraints for each data location
that each execution unit may require access to based at
least in part on the call-graph representation; and

upon execution of each execution unit, activating all of
the scheduling constraints that have been correlated
with that execution unit.

8. A system comprising:

at least one processor programmed for:

receiving, by at least one processor, a computer pro-
gram;

compiling, by at least one processor, the computer
program;

at compile-time, performing, by at least one processor,
data flow analysis on the computer program to
identify accesses to data locations by execution
units;

generating, by at least one processor, based on the data
flow analysis, a list of data-flow paths including
accesses by execution units to one or more of the
data locations;

determining, by at least one processor, based on the list
of data-flow paths, that a first of the execution units
having a first priority and a second of the execution
units having a second priority different than the first
priority, access the same data location; and

determining, by at least one processor, the existence of
a potential vulnerability in at least one of the data-
flow paths based at least in part on the determination
that the first of the execution units having the first
priority and the second of the execution units having
the second priority different than the first priority,
access the same data location.

9. The system of claim 8, wherein the at least one
processor is further programmed for:

synthesizing, by at least one processor, a scheduling

constraint for the data location based at least in part on
the determination of the existence of the potential
vulnerability in the at least one of the data-flow paths;
and

implementing, by the at least one processor, the schedul-

ing constraint for the data location on the computer
program.

10. The system of claim 9, wherein the scheduling con-
straint is configured prevent parallel access to the same data
location by more than one execution unit at a time.

11. The system of claim 9, wherein the scheduling con-
straint is a lock.

12. The system of claim 8, wherein determining that the
at least one of the data-flow paths constitutes a potential

US 2018/0032319 Al

vulnerability includes determining that the at least one of the
data-flow paths includes a security critical execution unit
accessing the data location.

13. The system of claim 8, wherein implementing the
scheduling constraint includes inserting code into the com-
piled computer program.

14. The system of claim 8, wherein the at least one
processor is further programmed for:

synthesizing a plurality of scheduling constraints for a

plurality of the data locations based at least in part on
determinations that data-flow paths including accesses
to one or more of the plurality of the data locations
constitute potential vulnerabilities;

generating a call-graph representation of the computer

program;
correlating each execution unit of the computer program
with the scheduling constraints for each data location
that each execution unit may require access to based at
least in part on the call-graph representation; and

upon execution of each execution unit, activating all of
the scheduling constraints that have been correlated
with that execution unit.

15. A non-transitory computer readable medium storing
instructions that, when executed by at least one processor,
program the at least one processor for:

receiving, by at least one processor, a computer program;

compiling, by at least one processor, the computer pro-

gram;
at compile-time, performing, by at least one processor,
data flow analysis on the computer program to identify
accesses to data locations by execution units;

generating, by at least one processor, based on the data
flow analysis, a list of data-flow paths including
accesses by execution units to one or more of the data
locations;

determining, by at least one processor, based on the list of

data-flow paths, that a first of the execution units
having a first priority and a second of the execution
units having a second priority different than the first
priority, access the same data location;

determining, by at least one processor, the existence of a

potential vulnerability in at least one of the data-flow
paths based at least in part on the determination that the
first of the execution units having the first priority and

Feb. 1,2018

the second of the execution units having the second
priority different than the first priority, access the same
data location;

16. The non-transitory computer readable medium of
claim 15, wherein the instructions further program the at
least one processor for:

synthesizing, by at least one processor, a scheduling

constraint for the data location based at least in part on
the determination of the existence of the potential
vulnerability in the at least one of the data-flow paths;
and

implementing, by the at least one processor, the schedul-

ing constraint for the data location on the computer
program.

17. The non-transitory computer readable medium of
claim 16, wherein the scheduling constraint is configured
prevent parallel access to the same data location by more
than one execution unit at a time.

18. The non-transitory computer readable medium of
claim 15, wherein determining that the at least one of the
data-flow paths constitutes a potential vulnerability includes
determining that the at least one of the data-flow paths
includes a security critical execution unit accessing the data
location.

19. The non-transitory computer readable medium of
claim 15, wherein implementing the scheduling constraint
includes inserting code into the compiled computer pro-
gram.

20. The non-transitory computer readable medium of
claim 15, the instructions further program the at least one
processor for:

synthesizing a plurality of scheduling constraints for a

plurality of the data locations based at least in part on
determinations that data-flow paths including accesses
to one or more of the plurality of the data locations
constitute potential vulnerabilities;

generating a call-graph representation of the computer

program;
correlating each execution unit of the computer program
with the scheduling constraints for each data location
that each execution unit may require access to based at
least in part on the call-graph representation; and

upon execution of each execution unit, activating all of
the scheduling constraints that have been correlated
with that execution unit.

#* #* #* #* #*

