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GRAPHICS PROCESSING SYSTEM FOR
PERFORMING DEFERRED VERTEX
ATTRIBUTE SHADING BASED ON SPLIT
VERTEX BITSTREAMS AND RELATED
GRAPHICS PROCESSING METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. provi-
sional application No. 62/032,632, filed on Aug. 3, 2014 and
incorporated herein by reference.

BACKGROUND

[0002] The present invention relates to graphics process-
ing, and more particularly, to a graphics processing system for
performing deferred vertex attribute shading based on split
vertex bitstreams and a related graphics processing method.

[0003] Asknown inthe art, graphics processing is typically
carried out in a pipelined fashion, with multiple pipeline
stages operating on the data to generate the final rendering
output (e.g., a frame that is displayed). Many graphics pro-
cessing pipelines now include one or more programmable
processing stages, commonly referred to as “shaders”, which
execute programs to perform graphics processing operations
to generate the desired graphics data. For example, the graph-
ics processing pipeline may include a vertex shader and a
pixel (fragment) shader. These shaders are programmable
processing stages that may execute shader programs on input
data values to generate a desired set of output data values for
being further processed by the rest of the graphics pipeline
stages. The shaders of the graphics processing pipeline may
share programmable processing circuitry, or may be distinct
programmable processing units.

[0004] For example, the vertex shading operation may
include a vertex position shading operation and a vertex
attribute shading operation for vertices of primitives in each
frame. With regard to a bin-based rendering scheme, there are
two choices for shading vertex attributes. One conventional
design is to perform the vertex attribute shading at the binning
process (i.e., vertex phase (VP) pass) and store the vertex
attribute shading results of vertices of all primitives in the
frame into a bin memory. Since one vertex attribute shading
may be performed for each vertex once, the shading burden
may be reduced. However, since the bin memory is needed to
store vertex attribute shading results of many vertices, the
memory traffic and the memory space requirement is large. In
addition, the performance drop may occur in some cases.

[0005] The other conventional design is to perform the
vertex attribute shading at the rendering process (i.e., pixel
phase (PP) pass) after the binning process is done and store
the vertex attribute shading results of vertices in an on-chip
cache. Since the vertex attribute shading results are stored in
the on-chip cache only, the memory traffic and memory space
requirement of the bin memory can be reduced. However,
since the vertex attribute is shaded on-the-fly when being
used, the performance drop may occur due to excessive
repeated attribute shading for vertices that may have been
shaded before or inefficient SIMD (single input multiple out-
put) execution resulting from insufficient bin vertex count.

[0006] Thus, there is a need for an innovative vertex
attribute shading design which is capable of avoiding exces-
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sive vertex attribute shading results being written to and read
from a bin memory without too much loss of the shading
performance.

SUMMARY

[0007] One of the objectives of the claimed invention is to
provide a graphics processing system for performing deferred
vertex attribute shading based on split vertex bitstreams and a
related graphics processing method.

[0008] According to a first aspect of the present invention,
an exemplary graphics processing system is disclosed. The
exemplary graphics processing system includes a first storage
device, a second storage device, a vertex position shader, a
vertex classification module, and a vertex attribute shader.
The vertex position shader is arranged to perform vertex
position shading for vertices of primitives in a frame at a
binning process. The vertex classification module is arranged
to classify the vertices of the primitives in the frame into
first-type vertices and second-type vertices according to ver-
tex distribution. The vertex attribute shader is arranged to
perform deferred vertex attribute shading for the first-type
vertices and the second-type vertices at a rendering process
following the binning process, wherein vertex attribute shad-
ing results of at least a portion of the first-type vertices clas-
sified by the vertex classification module are stored in the
second storage device, and vertex attribute shading results of
at least a portion of the second-type vertices classified by the
vertex classification module are stored in the first storage
device.

[0009] According to a second aspect of the present inven-
tion, an exemplary graphics processing method is disclosed.
The exemplary graphics processing method includes: per-
forming vertex position shading for vertices of primitives in a
frame at a binning process; classifying the vertices of the
primitives in the frame into first-type vertices and second-
type vertices according to vertex distribution; and performing
deferred vertex attribute shading for the first-type vertices and
the second-type vertices at a rendering process following the
binning process, wherein vertex attribute shading results of at
least a portion of the first-type vertices classified by the clas-
sifying step are stored in a second storage device but not a first
storage device, and vertex attribute shading results of at least
a portion of the second-type vertices classified by the classi-
fying step are stored in the first storage device.

[0010] These and other objectives of the present invention
will no doubt become obvious to those of ordinary skill in the
art after reading the following detailed description of the
preferred embodiment that is illustrated in the various figures
and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a block diagram illustrating a graphics
processing system according to an embodiment of the present
invention.

[0012] FIG. 2 is a diagram illustrating an example of a
vertex classification operation performed by a vertex classi-
fication module shown in FIG. 1.

[0013] FIG. 3 is a diagram illustrating a bin memory
according to an embodiment of the present invention.

[0014] FIG. 4is a diagram illustrating a vertex buffer struc-
ture according to an embodiment of the present invention.
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[0015] FIG. 5 is a diagram illustrating a first example of
grouping/packing un-shaded vertices into a wave of SIMD
execution.

[0016] FIG. 6 is a diagram illustrating a second example of
grouping/packing un-shaded vertices into a wave of SIMD
execution.

[0017] FIG. 7 is a diagram illustrating a third example of
grouping/packing un-shaded vertices into a wave of SIMD
execution.

[0018] FIG. 8 is a diagram illustrating a cache hierarchy
design according to an embodiment of the present invention.
[0019] FIG.9is ablock diagram illustrating another graph-
ics processing system according to an embodiment of the
present invention.

DETAILED DESCRIPTION

[0020] Certain terms are used throughout the following
description and claims, which refer to particular components.
As one skilled in the art will appreciate, electronic equipment
manufacturers may refer to a component by different names.
This document does not intend to distinguish between com-
ponents that differ in name but not in function. In the follow-
ing description and in the claims, the terms “include” and
“comprise” are used in an open-ended fashion, and thus
should be interpreted to mean “include, but not limited to . . .
”. Also, the term “couple” is intended to mean either an
indirect or direct electrical connection. Accordingly, if one
device is coupled to another device, that connection may be
through a direct electrical connection, or through an indirect
electrical connection via other devices and connections.
[0021] FIG. 1 is a block diagram illustrating a graphics
processing system according to an embodiment ofthe present
invention. At least a portion of the graphics processing system
100 may be part of a graphics processing unit (GPU) used in
an electronic device, and may include a vertex shader 101, a
vertex classification module 102, a binning module 103, a
pixel shader 104, a first storage device 106, a vertex packing
module 108, and a second storage device 110. The vertex
shader 101, vertex classification module 102, binning mod-
ule, pixel shader 104, and vertex packing module 108 may be
implemented using programmable processing circuitry. In
this embodiment, the vertex shader 101 may include a vertex
position shader 112 and a vertex attribute shader 114. The
vertex position shader 112 is arranged to perform vertex
position shading (i.e., vertex position computation) ata bin-
ning process (i.e., a vertex phase (VP) pass), while the vertex
attribute shader 114 is arranged to perform vertex attribute
shading (i.e., vertex attribute computation) at a rendering
process (i.e., a pixel phase (PP) pass) after the binning pro-
cess. The pixel shader 104 is arranged to perform pixel (frag-
ment) shading based at least partly on vertex attribute shading
results (or called varying data) of vertices of primitives in a
frame, where the pixel (fragment) shading is performed at the
rendering process (i.e., PP pass). Further details of the graph-
ics processing system 100 are described as below.

[0022] The command and data of a frame are fed into the
vertex position shader 112 to undergo vertex position shad-
ing. As shown in FIG. 1, the positions of vertices of primitives
in the frame are computed at the vertex position shader 112
and then supplied to the vertex classification module 102 and
the binning module 103. In this embodiment, the pixel shader
104 is arranged to employ a bin-based rendering scheme.
Hence, at the VP pass, the binning module 103 divides a
screen space (i.e., one frame) into a plurality of bins accord-
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ing to the vertex position information given by the vertex
position shader 112. Specifically, concerning each primitive
having vertices processed by the preceding vertex position
shader 112 and required to be processed by the following
pixel shader 104, the binning module 103 checks distribution
of the primitive in the screen space to find out bin(s) covered
by the primitive, and stores primitive information of the
primitive into a table (or a list) in the first storage device 106
(e.g., an oft-chip bin memory).

[0023] Since the vertex attribute shading is deferred to a
post-binning pass (i.e., PP pass), the binning process can be
done fast and avoid storing varying data (i.e., vertex attribute
shading results) of vertices into the first storage device 106. In
addition to the vertex shader and the pixel shader, pre-depth
(Pre-Z) processing is a feature supported by many GPUs. The
Pre-Z processing stage is placed before a pixel shading stage
in the pipeline. For example, if the Pre-Z processing stage
decides that a primitive is behind a geometry (i.e., the primi-
tive in a screen space is invisible), the primitive can be dis-
carded such that following processing of the primitive can be
omitted to save the system resource. Hence, the graphics
processing system 100 may be configured to apply hidden
surface removal processing (i.e., Pre-Z operation) per bin/tile
before the vertex attribute shading begins at the PP pass.

[0024] With regard to the vertex classification module 102,
it is arranged to classify vertices of primitives in a frame into
first-type vertices (e.g., in-tile vertices or local vertices) and
second-type vertices (e.g., out-tile vertices or global vertices)
according to vertex distribution indicated by the vertex posi-
tion information generated from the vertex position shader
112, and then store the classification result (i.e., information
associated with in-tile vertices and out-tile vertices) into a
table (or a list) in the first storage device 106. In this embodi-
ment, the vertex classification module 102 is arranged to use
a tile size TS for dividing screen display space (i.e., one
frame) into a plurality of tiles each having at least one bin,
where each of the first-type vertices (in-tile vertices) classi-
fied by the vertex classification module 102 is used by primi-
tive (s) within a single tile of the tiles only, and each of the
second-type vertices (out-tile vertices) classified by the ver-
tex classification module 102 is used by primitive(s) across
multiple tiles of the tiles. That is, when a primitive covers
more than one tile, its associated vertices are classified as
second-type vertices (out-tile vertices). Hence, multiple tiles
may share vertex attribute shading results (varying data) of
the second-type vertices (out-tile vertices) because the mul-
tiple tiles share the same primitive.

[0025] FIG. 2 is a diagram illustrating an example of a
vertex classification operation performed by the vertex clas-
sification module 102 shown in FIG. 1. In this example, the
tilesize TS is setby T, x T, where T represents a tile width,
and T, represents a tile height. Suppose that the tile width T,
(e.g., 64) is two times as large as the bin width B, (e.g., 32),
and the tile height T,, (e.g., 64) is two times as large as the bin
height B, (e.g., 32). Hence, one tile with the tile size TS=64x
64 is composed of 4 bins each having the bin size set by
32x32. For clarity and simplicity, only two tiles Tile 0 and
Tile__1 are illustrated in FIG. 2. As shown in F1G. 2, there are
seven vertices V-V inside the tiles Tile__0and Tile_ 1. Spe-
cifically, the primitive P, has vertices V,, V, and V,; the
primitive P, has vertices V|, V3, and V,,; the primitive P, has
vertices V|, V,, and V; the primitive P has vertices V,, V,,,
and Vs; and the primitive P, has vertices V., V5, and V. The
primitive P, is fully inside the tile Tile__0, and the primitive P,
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is fully inside the tile Tile_ 1. Each of the primitives P, P, and
P, is across multiple tiles Tile 0 and Tile 1. Since each of
the primitives P, P, and P; intersects with more than one tile,
each ofthe primitives P, P, and P, is partially inside one tile
Tile 0 and is further partially inside the other tile Tile 1.

[0026] Concerning the vertex V,, it is used/referenced by a
single primitive P, only. Since the primitive P, is inside a
single tile Tile_ 0 only, the vertex V, is classified as a first-
type vertex (in-tile vertex). Concerning the vertex V, it is
used/referenced by multiple primitives P, P,, and P,. Since at
least one of the primitives P, P,, and P, (i.e., each of primi-
tives P, and P,) is across multipletiles Tile_ Oand Tile__1, the
vertex V| is classified as a second-type vertex (out-tile ver-
tex). Concerning the vertex V,, it is used/referenced by mul-
tiple primitives P,, P,, and P;. Since at least one of the
primitives P, P,, and P; (i.e., each of primitives P, and P5) is
across multiple tiles Tile_ 0 and Tile 1, the vertex V, is
classified as a second-type vertex (out-tile vertex). Concern-
ing the vertex V, itis used/referenced by a single primitive P,
only. Since the primitive P, is across multiple tiles Tile_ Oand
Tile_ 1, the vertex V, is classified as a second-type vertex
(out-tile vertex). Concerning the vertex V,, it is used/refer-
enced by multiple primitives P, P,, P;, and P,. Since at least
one of the primitives P, P,, P,, and P, (i.e., each of primitives
P,, P, and P;) is across multiple tiles Tile 0 and Tile 1, the
vertex V, is classified as a second-type vertex (out-tile ver-
tex). Concerning the vertex V., it is used/referenced by mul-
tiple primitives P, and P,. Since at least one of the primitives
P, and P, (i.e., primitive P;) is across multiple tiles Tile 0
and Tile_ 1, the vertex V. is classified as a second-type vertex
(out-tile vertex). Concerning the vertex V., it is used/refer-
enced by a single primitive P, only. Since the primitive P, is
inside a single tile Tile_ 1 only, the vertex V is classified as a
first-type vertex (in-tile vertex).

[0027] The first-type vertices (called in-tile vertices here-
inafter) and the second-type vertices (called out-tile vertices
hereinafter) are split into two streams of vertices that will be
shaded for attributes after the binning process. The proposed
deferred vertex attribute shading design employs a split-
stream deferred vertex attribute shading scheme, and treats
the in-tile vertices and the out-tile vertices differently in two
ways. For example, vertex attribute shading results of at least
a portion (i.e., part or all) of the in-tile vertices classified by
the vertex classification module 102 are stored in the second
storage device (e.g., an on-chip cache) 110 but not the first
storage device (e.g., an off-chip bin memory) 106, and vertex
attribute shading results of at least a portion (i.e., part of all)
of the out-tile vertices are stored in the first storage device
106. Since an out-tile vertex is used/referenced by a primitive
intersecting with multiple primitive, the vertex attribute shad-
ing result of the out-tile vertex stored in the first storage
device 106 is calculated and used by the pixel shader 104
when pixel/fragment shading is applied to at least one bin in
one tile, and the vertex attribute shading result of the out-tile
vertex can be loaded from the first storage device 106 and can
be reused by the pixel shader 104 when pixel/fragment shad-
ing is applied to at least one bin in another tile. An in-tile
vertex is shaded by vertex attribute shading on-the-fly when
being used, and a vertex attribute shading result of the in-tile
vertex is not written into the first storage device 106 inmost
cases, thus saving the memory traffic of the first storage
device 106. It should be noted that out-tile vertices are shaded
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by the vertex attribute shader 114 with lower priority than
in-tile ones when they are not for immediate use for the
current tile.

[0028] As can be seen from FIG. 2, the tile size TS
(TS=T,;xT,) defines tile boundaries used for judging
whether a primitive interests with a single tile or multiple
tiles. In other words, the tile size TS (TS=T ;xT,,) defines tile
boundaries used for classifying a vertex as an in-tile vertex or
an out-tile vertex. In one exemplary design, the vertex clas-
sification module 102 is arranged to select one tile size TS for
each frame, adaptively.

[0029] For example, thetile size TS for each frame is adap-
tively selected based on static determination. That is, the tile
size TS for each frame is adaptively selected based on non-
frame-adaptive condition(s). The static determination may
depend on a screen resolution of an application because the
ratio of out-tile vertices to in-tile vertices changes with the
screen resolution of the application. Alternatively, the static
determination may depend on the number of shader units
employed because more shading power employed can afford
re-shading and keep less varying data of out-tile vertices
going to the first storage device 106.

[0030] For another example, the tile size TS for each frame
is adaptively selected based on dynamic determination. That
is, the tile size TS for each frame is adaptively selected based
on frame-adaptive condition(s). The dynamic determination
may depend on whether a shader-bound or memory bound
status of a frame changes. Alternatively, the dynamic deter-
mination may depend on whether an average primitive size of
a frame changes.

[0031] The binning result generated by the binning module
103 and the classification result generated by the vertex clas-
sification module 102 are stored into the first storage device
106. In one exemplary design, the first storage device 106
may be implemented using a bin memory 300 shown in FIG.
3. The bin memory 300 may be an off-chip dynamic random
access memory (DRAM), and may include a vertex position
buffer (VPB) 302, a vertex flag buffer (VFB) 304, a vertex
varying buffer (VVB) 306, a bin buffer 308, a circular over-
flow (COV) buffer, and miscellancous buffers (not shown).
The VPB 302, VFB 304 and VVB 306 are used for storing
vertex-related data, including the classification result gener-
ated from the vertex classification module 102 and the vary-
ing data (i.e., vertex attribute shading results) of out-tile ver-
tices generated from the vertex attribute shader 114. The VVB
306 is used to store the varying data (i.e., vertex attribute
shading results) of out-tile vertices generated from the vertex
attribute shader 114. Specifically, the vertex attribute shading
results of out-tile vertices will be always flushed to the VVB
306 at the first priority. The VPB 302 is used to store a vertex
identifier (VID), vertex position data (X, v, z, w) and a pointer
for each vertex. When the vertex is an in-tile vertex, the
pointer is set by a NULL value. When the vertex is an out-tile
vertex, the pointer is set by an address value in the VVB 306
to indicate the location of a corresponding vertex attribute
shading result stored in the VVB 306. That is, the pointer
recorded in the VPB 302 will point to the corresponding
vertex attribute shading result in the VVB 306.

[0032] The VFB 304 is used to store flags of each vertex.
For example, the flags of each vertex may include is_shaded,
is_in_tile, etc. The flag is_shaded is indicative of a shading
status of the vertex. For example, when the flag is_shaded of
a vertex is set by “1” (i.e., is_shaded=1 (true)), it means the
vertex attribute shading has been done to the vertex; and when
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the flag is_shaded of the vertex is setby “0” (i.e., is_shaded=0
(false)), it means the vertex attribute shading has not been
done to the vertex. Initially, the flag is_shaded of each vertex
is set by “0”. The flag is_in_tile is indicative of a vertex type
of the vertex. For example, when a vertex is classified as a
first-type vertex (in-tile vertex), is_in_tile=1 (true); and when
avertex is classified as a second-type vertex (out-tile vertex),
is_in_tile=0 (false).

[0033] FIG. 4is a diagram illustrating a vertex buffer struc-
ture according to an embodiment of the present invention.
Take the primitives P,-P, and associated vertices V-V
shown in FIG. 2 for example. The vertices V-V have VIDs
0-6, respectively. Hence, the VPB 302 stores VIDs and posi-
tion data of the vertices V,-V. As mentioned above, each of
vertices V,, and Vg is an in-tile vertex, while each of the
vertices V-V is an out-tile vertex. Hence, flags is_in_tile of
the vertices Vyand Vare setby “1”, and flags is_in_tile of the
vertices V-V are set by “0”. After the vertices V-V are
processed by the vertex attribute shader 114, the flags
is_shaded of the vertices V-V are set by “1”. Since each of
vertices V, and Vy is an in-tile vertex, the VPB 302 may store
NULL pointers for vertices V,, and V. Since each of the
vertices V-V is an out-tile vertex, vertex attribute shading
results of vertices V-V may be stored into the VVB 306.
Hence, the VPB 302 may store pointers pointing to memory
addresses of stored vertex attribute shading results in the
VVB 306.

[0034] Please refer to FIG. 3 again. The bin buffer 308 is
used to store the binning result generated from the binning
module 103. For each bin, the bin buffer 308 may use list#and
vertex pointers pointing to the VPB 304 for recording infor-
mation of each primitive that intersects with the bin. As the
present invention focuses on the deferred vertex attribute
shading operation, further details of the bin buffer 308 used
for storing the binning result (i.e., primitive and vertex infor-
mation associated with each bin) is omitted here for brevity.

[0035] With regard to the COV buffer 310 shown in FIG. 3,
it is a fixed-size bufter allocated in the bin memory 300, and
is used to buffer varying data (i.e., vertex attribute shading
results) of in-tile vertices generated from the vertex attribute
shader 114 when an overflow condition of the second storage
device 110 is met. When the COV buffer 310 is not full yet, a
free space is allocated in the COV buffer 310 for buffering the
overflowed varying data. In addition, a vertex pointer in VPB
302 is set to point to this allocated space in COV bufter 310.
It should be noted that the COV buffer 310 will circularly
reuse its free space. When the COV buffer 310 is full, the
COV buffer 310 will stall until any free space becomes avail-
able due to a stored vertex attribute shading result of an in-tile
vertex data being referenced by the pixel shader 104. In this
embodiment, the second storage device 110 may be imple-
mented using an on-chip cache. The vertex attribute shading
results of in-tile vertices are not kept in the VVB 306, but may
be kept in the second storage device 110 (if the overflow
condition is not met) or the COV bufter 310 (if the overflow
condition is met). In other words, the priority of writing
vertex attribute shading results of in-tile vertices into the
on-chip cache is higher than the priority of writing vertex
attribute shading results of in-tile vertices into a fixed-size
buffer allocated in an off-chip bin memory. Though the COV
buffer 310 is allocated in the off-chip bin memory, the COV
buffer 310 is implemented using a fixed-size buffer, which is
beneficial for bin memory size control.
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[0036] As mentioned above, the vertex attribute shader 114
is arranged to perform deferred vertex attribute shading at the
PP pass. In this embodiment, the vertex attribute shader 114
may have a plurality of processing elements to support SIMD
(single instruction multiple data) execution. For example, a
fixed number of inputs of the same processing job (for
example, vertices in the same shader kernel/shader type) are
collected together into a wave before being sent to the vertex
attribute shader 114 using SIMD architecture such as SIMD-
64 architecture or SIMD-32 architecture. When the SIMD-64
architecture is employed by the vertex attribute shader 114,
the vertex attribute shader 114 can perform SIMD execution
ofawave of 64 vertices in the same shader kernel/shader type.
When the SIMD-32 architecture is employed by the vertex
attribute shader 114, the vertex attribute shader 114 can per-
form SIMD execution of a wave of 32 vertices in the same
shader kernel/shader type. The vertex packing module 108 is
arranged to group/pack un-shaded in-tile vertices and un-
shaded out-tile vertices of the same shader kernel/shader type
in waves of SIMD execution for the deferred vertex attribute
shading at the vertex attribute shader 114.

[0037] The present invention proposes several manners to
group/pack un-shaded first-type vertices (in-tile vertices) and
un-shaded second-type vertices (out-tile vertices) of the same
shader kernel/shader type. In accordance with a first group-
ing/packing manner, the vertex packing module 108 groups at
least one un-shaded first-type vertex and at least one un-
shaded second-type vertex within a same tile into a wave of
SIMD execution. FIG. 5 is a diagram illustrating a first
example of grouping/packing un-shaded vertices into a wave
of SIMD execution. Take vertices V-V shown in FIG. 2 for
example. Suppose that vertices V-V of the same shader
kernel/shader type are not processed by vertex attribute shad-
ing yet. For the tile Tile_ 0, the vertex packing module 108
groups the un-shaded in-tile vertex V,, and the un-shaded
out-tile vertices V1-V3 into a wave of SIMD execution.
Hence, the vertex attribute shader 114 may shade at least one
in-tile vertex and at least one out-tile vertex together, where a
vertex attribute shading result of each in-tile vertex is part of
a first output bitstream going to an on-chip cache or a COV
buffer allocated in an off-chip bin memory, and a vertex
attribute shading result of each out-tile vertex is part of a
second output bitstream going to a VVB allocated in the
off-chip bin memory.

[0038] To improve un-shaded out-tile vertex grouping, the
first grouping/packing manner is modified to extend the un-
shaded out-tile vertex grouping from a current tile to at least
one neighboring tile (e.g., four neighboring tiles). Hence, in
accordance with a second grouping/packing manner, the ver-
tex packing module 108 groups at least one un-shaded in-tile
vertex within a current tile and un-shaded out-tile vertices
within the current tile and at least one neighboring tile into a
wave of SIMD execution. FIG. 6 is a diagram illustrating a
second example of grouping/packing un-shaded vertices into
a wave of SIMD execution. Take vertices V-V shown in
FIG. 2 for example. Suppose that vertices V-V of the same
shader kernel/shader type are not processed by vertex
attribute shading yet. For the tile Tile 0, the vertex packing
module 108 groups the un-shaded in-tile vertex V, within the
tile Tile_ 0, the un-shaded out-tile vertices V1-V3 within the
tile Tile__0, and the un-shaded out-tile vertices V4-V5 within
the neighboring tile Tile 1 into a wave of SIMD execution,
where a vertex attribute shading result of each in-tile vertex is
part of a first output bitstream going to an on-chip cache or a
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COV buffer allocated in an oft-chip bin memory, and a vertex
attribute shading result of each out-tile vertex is part of a
second output bitstream going to a VVB allocated in the
off-chip bin memory

[0039] In accordance with a third grouping/packing man-
ner, the vertex packing module 108 groups un-shaded in-tile
vertices located only within a same tile into a wave of SIMD
execution, and groups un-shaded out-tile vertices located
only within a same tile into a wave of SIMD execution. FIG.
7 is a diagram illustrating a third example of grouping/pack-
ing un-shaded vertices into a wave of SIMD execution. Take
vertices V-V shown in FIG. 2 for example. Suppose that
vertices V-V of the same shader kernel/shader type are not
processed by vertex attribute shading yet. For the tile Tile 0,
the vertex packing module 108 groups the un-shaded in-tile
vertex V,, into a wave of SIMD execution, and groups the
un-shaded out-tile vertices V1-V3 into another wave of SIMD
execution, where a vertex attribute shading result of each
in-tile vertex is part of a first output bitstream going to an
on-chip cache or a COV buffer allocated in an off-chip bin
memory, and a vertex attribute shading result of each out-tile
vertex is part of a second output bitstream going to a VVB
allocated in the off-chip bin memory.

[0040] The vertex attribute shader 114 applies different
storage strategies to vertex attribute shading results (i.e.,
varying data) of the in-tile vertices and vertex attribute shad-
ing results (i.e., varying data) of the out-tile vertices. Specifi-
cally, the vertex attribute shading results (i.e., varying data) of
at least a portion (i.e., part or all) of the in-tile vertices pro-
cessed by the vertex attribute shader 114 are stored in the
second storage device (e.g., on-chip cache) 110 only, while
the vertex attribute shading results (i.e., varying data) of all
out-tile vertices processed by the vertex attribute shader 114
will be eventually written into the first storage device (e.g.,
off-chip bin memory) 106.

[0041] Consider a case where one tile is composed of mul-
tiple bins. When a vertex attribute shading result of an in-tile
vertex inside one bin of a tile is held in an on-chip cache and
the in-tile vertex is used by a primitive inside the tile, the
vertex attribute shading result of the in-tile vertex can be
reused when another bin of the tile is processed by the pixel
shader 104. In other words, caching vertex attribute shading
results of in-tile vertices can enable in-tile reuse. However,
when an overflow condition of the second storage device 110
is met, meaning that the second storage device 110 is already
full or almost full, vertex attribute shading results (i.e., vary-
ing data) of a portion of the in-tile vertices processed by the
vertex attribute shader 114 may be overtlowed to the first
storage device 106 such as the COV buffer 310 shown in FIG.
3. Alternatively, when an overtlow condition of the second
storage device 110 is met, meaning that the second storage
device 110 is already full or almost full, vertex attribute
shading results (i.e., varying data) of a portion of the in-tile
vertices processed by the vertex attribute shader 114 may not
be held in the second storage device 110 such that the portion
of'the in-tile vertices will be re-shaded by the vertex attribute
shader 114 when needed.

[0042] In this embodiment, the vertex attribute shading
results ofat least a portion of the in-tile vertices and the vertex
attribute shading results of at least a portion of the out-tile
vertices are held in the on-chip cache, and the vertex attribute
shading results of at least a portion of the out-tile vertices are
further copied to the bin memory. FIG. 8 is a diagram illus-
trating a cache hierarchy design according to an embodiment
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of the present invention. The second storage device 110 may
be implemented using the on-chip cache 800 shown in FIG. 8,
and the first storage device 106 may be implemented using the
bin memory 300 shown in FIG. 3. The on-chip cache 800 has
a first-level cache (L1 cache) 802 and a second-level cache
(L2 cache) 803. Within the on-chip cache 800, the vertex
attribute shading results of at least a portion of the in-tile
vertices are cached in the [.1 cache 802 only, and the vertex
attribute shading results of at least a portion of the out-tile
vertices are cached in the [.2 cache 803 only. However, when
an overflow condition of the on-chip cache 800 is met (more
particularly, an overflow condition of the L1 cache 802 is
met), vertex attribute shading results of a portion of the in-tile
vertices are cached in the 1.2 cache 803, and then copied/
overflowed to the COV buffer 310 in the bin memory 300. In
other words, within the on-chip cache 800, vertex attribute
shading results of a portion of the in-tile vertices are cached in
the .1 cache 802, and vertex attribute shading results of
another portion of the in-tile vertices to be overflowed to the
COV buffer 310 and vertex attribute shading results of at least
a portion of the out-tile vertices are cached in the L.2 cache
803.

[0043] When a vertex attribute shading result of a specific
vertex (e.g., a non-overflowed in-tile vertex, an out-tile ver-
tex, or an overflowed in-tile vertex) is requested by the pixel
shader 104 and a cache hit occurs, the requested vertex
attribute shading result of the specific vertex can be read from
the on-chip cache 802 without needing any memory traffic of
the bin memory 300. However, when a vertex attribute shad-
ing result of a specific vertex (e.g., an out-tile vertex or an
overflowed in-tile vertex) is requested by the pixel shader 104
and a cache miss occurs, the requested vertex attribute shad-
ing result of the specific vertex is not available in the on-chip
cache 802, and memory traffic of the bin memory 300 is
needed to obtain the requested vertex attribute shading result
of' the specific vertex.

[0044] With regard to the system configuration shown in
FIG. 1, vertex attribute shading results of out-tile vertices are
written into the first storage device (e.g., off-chip memory)
106 through the second storage device (e.g., on-chip cache)
110. However, this is for illustrative purposes only, and is not
meant to be a limitation of the present invention. Alterna-
tively, vertex attribute shading results of out-tile vertices may
be written into the first storage device (e.g., off-chip memory)
106 without through the second storage device (e.g., on-chip
cache) 110. This also falls within the scope of the present
invention.

[0045] In general, each of the first storage device 106 and
the second storage device 110 has a limited storage capacity.
To buffer vertex attribute shading results of more first-type
vertices (in-tile vertices) and second-type vertices (out-tile
vertices), a data compression and decompression technique
may be employed by a graphics processing system. Hence,
vertex attribute shading results of first-type vertices (in-tile
vertices) and second-type vertices (out-tile vertices) can be
further compressed upon storing and de-compressed upon
use.

[0046] FIG.9 is a block diagram illustrating another graph-
ics processing system according to an embodiment of the
present invention. At least a portion of the graphics process-
ing system 900 may be part of a GPU used in an electronic
device. The major difference between the graphics processing
systems 100 and 900 is that the graphics processing system
900 further includes a compressor 902 and a de-compressor
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904. The compressor 902 may employ a lossless compression
algorithm or a lossy compression algorithm, depending upon
the actual design consideration. The vertex attribute shading
results of first-type vertices (in-tile vertices) and second-type
vertices (out-tile vertices) are stored into the second storage
device 110 through the compressor 902. In this way, the
second storage device 110 shown in FIG. 9 is used to store
compressed vertex attribute shading results of first-type ver-
tices (in-tile vertices) and second-type vertices (out-tile ver-
tices), and the first storage device 106 shown in FIG. 9 is used
to store compressed vertex attribute shading results of sec-
ond-type vertices (out-tile vertices), and is further used to
store compressed vertex attribute shading results of first-type
vertices ifthe overflow condition ofthe second storage device
110 is met.

[0047] The de-compressor 904 is arranged to use a decom-
pression algorithm matching the compression algorithm used
by the compressor 902. The compressed vertex attribute shad-
ing results of the first-type vertices and the second-type ver-
tices are transmitted to the pixel shader 104 through the
de-compressor 904. Hence, the de-compressor 904 receives a
compressed vertex attribute shading result of a requested
vertex from one of'the first storage device 106 and the second
storage device 110, and outputs a de-compressed vertex
attribute shading result of the requested vertex to the pixel
shader 104 for pixel/fragment shading.

[0048] It is noted that, in an alternative design, the com-
pressor 902 may be placed after the second storage device
110. By this implementation, the vertex attribute shading
results of first-type vertices (in-tile vertices) and second-type
vertices (out-tile vertices) are stored into the second storage
device 110 first, and the compressor 902 employs the com-
pression on the vertex attribute shading results thereafter.
Thus, the compressor 902 reads vertex attribute shading
results of first-type vertices (in-tile vertices) from the second
storage device 110 and outputs the compressed vertex
attribute shading results of first-type vertices (in-tile vertices)
to the de-compressor 904, and reads vertex attribute shading
results of second-type vertices (out-tile vertices) and outputs
the compressed vertex attribute shading results of second-
type vertices (out-tile vertices) to the first storage device 106.
[0049] In the example shown in FIG. 2, the tile size TS
employed by the vertex classification module 102 is larger
than the bin size employed by the binning module 103. When
the second storage device 110 is implemented using an on-
chip cache, the on-chip cache has a limited storage capacity
for caching vertex attribute shading results of first-type ver-
tices (in-tile vertices). When the number of first-type vertices
(in-tile vertices) is larger than a predetermined threshold
under a current value of the tile size TS, meaning that there are
too many first-type vertices (in-tile vertices), the vertex clas-
sification module 102 may change the tile size TS from the
current value to a smaller value. For example, the tile size TS
employed by the vertex classification module 102 may be the
same as the bin size employed by the binning module 103.
[0050] As mentioned above, the vertex classification is per-
formed by the vertex classification module 102 at the VP pass,
and the classification result is referenced by the vertex
attribute shader 114 at the PP pass. In one exemplary design,
the vertex attribute shader 114 may be further arranged to tune
the performance adaptively at the PP phase by re-classitying
first-type vertices (in-tile vertices) originally classified by the
vertex classification module 102 as second-type vertices (out-
tile vertices) and/or re-classifying second-type vertices (out-
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tile vertices) originally classified by the vertex classification
module 102 as first-type vertices (in-tile vertices).

[0051] The vertex attribute shader 114 may check a first
predetermined criterion. When some primitives are not
shared by many tiles and the shader kernel/shader type is
short, the first predetermined criterion is met. In a case where
the first predetermined criterion is met, the vertex classifica-
tion module 102 may optionally re-classify some second-type
vertices (out-tile vertices) as first-type vertices (in-tile verti-
ces) at the rendering process (i.e., PP pass) to avoid sending
many vertex attribute shading results to the first storage
device 106. As long as a flag is shaded of a vertex in the VFB
304 is not set by “1” during the vertex attribute shading of one
tile, the vertex attribute shading of another tile will not see the
vertex as “shaded” and will shade the vertex again. Hence,
this re-classification feature is easier to implement.

[0052] In addition, the vertex attribute shader 114 may
further check a second predetermined criterion. When there
are too many first-type vertices (in-tile vertices) in one tile,
the shader kernel/shader type is long, and the first-type ver-
tices (in-tile vertices) are used/referenced by primitives
across multiple bins in the tile, the second predetermined
criterion is met. Hence, in a case where the second predeter-
mined criterion is met, the vertex classification module 102
may optionally re-classify those first-type vertices (in-tile
vertices) in the tile as second-type vertices (out-tile vertices)
atthe rendering process (i.e., PP pass), thereby enabling reuse
of vertex attribute shading results of vertices when the pixel
shader 104 processes different bins in the tile.

[0053] As mentioned above, vertex attribute shading
results of first-type vertices (in-tile vertices) are held in the
second storage device 110 at the first priority. When an over-
flow condition of the second storage device 110 is met, one
option is to re-shade certain first-type vertices (in-tile verti-
ces). However, when re-shading for first-type vertices (in-tile
vertices) still costs a lot of shading power, the vertex attribute
shader 114 may either re-classify the first-type vertices (in-
tile vertices) as second-type vertices (out-tile vertices) or may
overflow vertex attribute shading results of first-type vertices
(in-tile vertices) to an off-chip COV buffer to maximize in-tile
reuse. Though such a design comes with a price of memory
traffic, it will be limited to certain tiles only.

[0054] Alternatively, in-tile vertices and out-tile vertices
can be classified as all in-tile vertices or all out-tile vertices
under certain scenarios. For example, when the application is
severely bound by memory traffic, all of the second-type
vertices (out-tile vertices) can be treated as first-type vertices
(in-tile vertices) at the rendering process (i.e., PP pass). For
another example, when the application consists of big tri-
angles or it is required to have all vertex attribute shading
results stored into the bin memory, all of the first-type vertices
(in-tile vertices) can be treated as second-type vertices (out-
tile vertices) at the rendering process (i.e., PP pass).

[0055] In summary, the proposed graphics processing sys-
tem performs deferred vertex attribute shading operation
based on split vertex streams, where vertex attribute shading
results (i.e., varying data) of in-tile vertices are held in an
on-chip cache most of time, thereby saving the memory traffic
of'an off-chip bin memory. In addition, when compression on
attribute shading results (i.e., varying data) of out-tile vertices
is implemented, more saving on the memory traffic of the
off-chip bin memory can be achieved. Though storing vertex
attribute shading results (i.e., varying data) of in-tile vertices
in the on-chip cache may consume a small part of the shading
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power due to re-shading of in-tile vertices, the performance
gain due to saving on the memory traffic would surpass the
shading loss.

[0056] Those skilled in the art will readily observe that
numerous modifications and alterations of the device and
method may be made while retaining the teachings of the
invention. Accordingly, the above disclosure should be con-
strued as limited only by the metes and bounds of the
appended claims.

What is claimed is:

1. A graphics processing system comprising:

a first storage device;

a second storage device;

a vertex position shader, arranged to perform vertex posi-
tion shading for vertices of primitives in a frame at a
binning process;

a vertex classification module, arranged to classify the
vertices of the primitives in the frame into first-type
vertices and second-type vertices according to vertex
distribution; and

a vertex attribute shader, arranged to perform deferred
vertex attribute shading for the first-type vertices and the
second-type vertices at a rendering process following
the binning process, wherein vertex attribute shading
results of at least a portion of the first-type vertices
classified by the vertex classification module are stored
in the second storage device, and vertex attribute shad-
ing results of at least a portion of the second-type verti-
ces classified by the vertex classification module are
stored in the first storage device.

2. The graphics processing system of claim 1, wherein the
first storage device is a bin memory, and the second storage
device is an on-chip cache.

3. The graphics processing system of claim 2, wherein the
vertex attribute shading results of at least a portion of the
first-type vertices and the vertex attribute shading results of at
least a portion of the second-type vertices are cached in the
on-chip cache, and the vertex attribute shading results of at
least a portion of the second-type vertices are further copied
to the bin memory.

4. The graphics processing system of claim 3, wherein the
on-chip cache has a first-level cache and a second-level cache;
within the on-chip cache, the vertex attribute shading results
of at least a portion of the first-type vertices are cached in the
first-level cache only, and the vertex attribute shading results
of at least a portion of the second-type vertices are cached in
the second-level cache only.

5. The graphics processing system of claim 3, wherein the
on-chip cache has a first-level cache and a second-level cache;
when an overflow condition of the first-level cache is met,
within the on-chip cache, vertex attribute shading results of a
portion of the first-type vertices are cached in the first-level
cache only, and vertex attribute shading results of another
portion of the first-type vertices and the vertex attribute shad-
ing results of at least a portion of the second-type vertices are
cached in the second-level cache only.

6. The graphics processing system of claim 1, wherein at
the rendering process, the vertex attribute shader is further
arranged to check a predetermined criterion and re-classify at
least one of the first-type vertices as at least one second-type
vertex when the predetermined criterion is met.

7. The graphics processing system of claim 1, wherein at
the rendering process, the vertex attribute shader is further
arranged to check a predetermined criterion and re-classify at
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least one of the second-type vertices as at least one first-type
vertex when the predetermined criterion is met.

8. The graphics processing system of claim 1, wherein the
vertex classification module is arranged to use a tile size for
dividing the frame into a plurality of tiles each having at least
one bin; each of'the first-type vertices classified by the vertex
classification module is used by primitive (s) within a single
tile of the tiles only; and each of the second-type vertices
classified by the vertex classification module is used by primi-
tive (s) across multiple tiles of the tiles.

9. The graphics processing system of claim 8, wherein the
vertex classification module is arranged to select a tile size for
each frame, adaptively.

10. The graphics processing system of claim 9, wherein the
tile size for each frame is adaptively selected based on static
determination.

11. The graphics processing system of claim 9, wherein the
tile size for each frame is adaptively selected based on
dynamic determination.

12. The graphics processing system of claim 8, wherein
each of the tiles has a plurality of bins.

13. The graphics processing system of claim 8, further
comprising:

a vertex packing module, arranged to group un-shaded
first-type vertices and second-type vertices of a same
shader kernel in waves of Single Instruction Multiple
Data (SIMD) execution for the deferred vertex attribute
shading at the vertex attribute shader.

14. The graphics processing system of claim 13, wherein
the vertex packing module groups at least one un-shaded
first-type vertex and at least one un-shaded second-type ver-
tex within a same tile into a wave of SIMD execution.

15. The graphics processing system of claim 13, wherein
the vertex packing module groups at least one un-shaded
first-type vertex within a current tile and un-shaded second-
type vertices within the current tile and at least one neighbor-
ing tile into a wave of SIMD execution.

16. The graphics processing system of claim 13, wherein
the vertex packing module groups un-shaded second-type
vertices only within a same tile into a wave of SIMD execu-
tion.

17. The graphics processing system of claim 13, wherein
the vertex packing module groups un-shaded first-type verti-
ces only within a same tile into a wave of SIMD execution.

18. The graphics processing system of claim 1, wherein the
first storage device has an overflow buffer allocated therein;
and when an overflow condition of the second storage device
is met, a vertex attribute shading result of at least one first-
type vertex is overflowed to the overtlow buffer.

19. The graphics processing system of claim 1, wherein
when an overflow condition of the second storage device is
met, a vertex attribute shading result of at least one first-type
vertex is not stored into the second storage device, and the
vertex attribute shader is arranged to re-shade the at least one
first-type vertex.

20. The graphics processing system of claim 1, further
comprising:

a compressor, arranged to perform data compression;

wherein the vertex attribute shading results of at least a
portion of the first-type vertices are stored into the sec-
ond storage device through the compressor.

21. The graphics processing system of claim 1, further

comprising:
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a compressor, arranged to perform data compression;

wherein the vertex attribute shading results of at least a
portion of the second-type vertices are stored into the
first storage device through the compressor.

22. The graphics processing system of claim 1, further

comprising:

a compressor, arranged to compress the vertex attribute
shading results of the first-type vertices or the second-
type vertices stored in the second storage device.

23. A graphics processing method comprising:

performing vertex position shading for vertices of primi-
tives in a frame at a binning process;

classifying the vertices of the primitives in the frame into
first-type vertices and second-type vertices according to
vertex distribution; and

performing deferred vertex attribute shading for the first-
type vertices and the second-type vertices at a rendering
process following the binning process, wherein vertex
attribute shading results of at least a portion of the first-
type vertices classified by the classifying step are stored
in a second storage device but not a first storage device,
and vertex attribute shading results of at least a portion of
the second-type vertices classified by the classifying
step are stored in the first storage device.
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