
United States Patent

US007072639B2

(12) (10) Patent No.: US 7,072,639 B2
Marsh et al. (45) Date of Patent: *Jul. 4, 2006

(54) SYSTEM AND METHOD FOR 5,287,270 A 2/1994 Hardy et al. 364,408
DETERMINING OPTIMIAL WIRELESS 5,325,290 A 6/1994 Cauffman et al. 364/401
COMMUNICATION SERVICE PLANS BASED 5,553,131 A 9/1996 Minervino, Jr. et al. 379,221
ON HISTORICAL PROJECTION ANALYSIS 5,615,408 A 3/1997 Johnson et al. 455,331

5,659,601 A 8/1997 Cheslog 455,406
(75) Inventors: William Marsh, Austin, TX (US); 5,684,861 A 11/1997 Lewis et al. 379.59

David Langworthy, Austin, TX (US);
Juan Gonzales, Austin, TX (US) (Continued)

(73) Assignee: Trag Wireless, Inc., Austin, TX (US) FOREIGN PATENT DOCUMENTS

(*) Notice: Subject to any disclaimer, the term of this EP 0541.535 7/1997
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1182 days.

Primary Examiner Marceau Milord
This patent is Subject to a terminal dis- (74) Attorney, Agent, or Firm—Thomas, Kayden,
claimer. Horstemeyer & Risley LLP

(21) Appl. No.: 09/758,824 (57) ABSTRACT

(22) Filed: Jan. 11, 2001
(65) Prior Publication Data In general, a system and method for analyzing wireless

communication data for determining an optimal wireless
US 2002fOO26341 A1 Feb. 28, 2002 communication service plans based on historical projection

analysis is disclosed. A transceiver is configured to receive
Related U.S. Application Data billing information associated with a subscriber of a tele

(60) Provisional application No. 60/230,846, filed on Sep. communications service under a current rate plan. A storage
7, 2000. unit stores the billing information. A processor processes the

s Subscriber related billing information to produce organized
(51) Int. Cl. data in a calling profile record for each telecommunication

H04M II/00 (2006.01) service being used by the subscriber. The processor then
(52) U.S. Cl. ass406,455,414.1455,4561 creates a usage history table and a call detail table within the

455/422.1455/405: 379/114.02: 379/126: storage unit from the processed billing information in accor
379,221.02 379/ 14.01. 379/1 14.12. 379/120 dance with a specified billing period. A determination is then

(58) Field of Classification search. so made of the cost of the current rate plan and the cost of at
455/414.1, 456.1405. 422: 379/126, 221 02. least one other rate plan via use of the usage history table and

379,12. 11401 114 12 120 114 02 call detail table. The processor then determines at least one
See application file for complete search history proposed rate plan that would save the subscriber telecom

munication costs relative to the current rate plan. A report of
(56) References Cited at least one proposed rate plan is then produced and provided

U.S. PATENT DOCUMENTS

4,979,207 A
5,027.388 A

12, 1990 Baum et al. 379,112
- - - - - - - - - - 379,112 6, 1991 Bradshaw et al.

cEN GA
PROCESSOR

53

cent
SERVER

51

SERVER
31a

CoMMUNICATIONLINE 41

to the subscriber, which enables selection of a best telecom
munication service provider.

36 Claims, 44 Drawing Sheets

ANAYZNG
OTAL

ProCSSR
71.

10

ANALY2NG
SERVER

81

SRWr

US 7,072,639 B2
Page 2

U.S. PATENT DOCUMENTS 6,529,722 B1* 3/2003 Heinrich et al. 455,404.1
6,574.464 B1* 6/2003 Chen 455,406

3.06. A Yall. - - - - - - - - - - - 3. 6,697.469 B1* 2/2004 Koster 379,114.29
- W - - - - - - - - - - - - - - ck

6,125,173 A 9/2000 Jagadish et al. 379,112 200 St. R o Mail - - - - - - - - - - - - - - - 455,406
6, 192.223 B1 2/2001 Barnett et al. 455,164.2 f f N e A.
6,198.915 B1 3/2001 McGregor et al. 455,406 2001 0037269 A1 11 2001 Marsh et al.
6,240,169 B1 5/2001 Haskins et al. 379,114 2002/0026341 A1 2/2002 Marsh et al.
6.252,952 B1 6/2001 Kung et al. 379,114
6,301,471 B1 10/2001 Dahm et al. 455,405 FOREIGN PATENT DOCUMENTS
6,345,090 B1 2/2002 Walker et al. 379/114.12 WO WO91/O3O23 3, 1991
6,408,174 B1* 6/2002 Steijer 455,407
6,509,833 B1* 1/2003 Tate 340,539.1 * cited by examiner

US 7,072,639 B2 Sheet 2 of 44 Jul. 4, 2006

ARHOWE IN

U.S. Patent

HOV-TMIELNI TV/™OOT |// ESVÆV LVCI

US 7,072,639 B2

X{}-IOWA LEIN

Sheet 3 of 44 Jul. 4, 2006

ARHOINE IN

U.S. Patent

EZ "SDIH (s)HOIABCI lfnd LTTO EKOV-!>HELLNI TV/OOT |69 ESVÆV LVCI

99

cs :

19

U.S. Patent Jul. 4, 2006 Sheet 4 of 44 US 7,072,639 B2

120

Data provided
by carrier

130

Data loaded into
database

140 BuildProfile creates a
calling profile for each
billing period for which

data is available

Optimator identifies 150
optimal service plan

options for each single
profile period

MAMBA process
repeated on a
periodic basis

Decide lar 160
recommends the best
service plan with plan
options across multiple

profile periods

70

Results are
rendered to user

F.G. 3

?7 "SDI

US 7,072,639 B2 U.S. Patent

US 7,072,639 B2

099

U.S. Patent

0

U.S. Patent Jul. 4, 2006 Sheet 7 of 44 US 7,072,639 B2

C
N
V

s s

U.S. Patent Jul. 4, 2006

Application

Run dataLoader Script

End data loader
Application

Sheet 8 of 44 US 7,072,639 B2

324

25
Get Parameters from

DataLoader Application

326
Check users authorization to run

OOCeSS

327

Execute all of the pre-process
SQL scripts

328

Use Data Transformation Services
(DTS) to load data

329
Execute all of the post-process

SQL scripts

331

Exit dataLoader Script th a e as as as as

US 7,072,639 B2 U.S. Patent

U.S. Patent Jul. 4, 2006 Sheet 11 of 44 US 7,072,639 B2

351
Start mambalaunch Application 382

381
Start Runprofiler

Ca
twiMamba.clsMamba.RunProfiler

Read Profile ds file
93

383

384

Write Evalds to file
e Va CS OR Call twiOptimizer.Optimator. DoEval

94.
NO

391
Exit mamba Launch

Application
fall Profile ids have
been evaluated

392

Exit RunProfiler

385
a -1

Start DoEva

386
Read Current Calling Profile

387
F G 1 O Evaluate profile for lower cost

calling plans

Create RatePlan evaluation,
service plan, and package

instance records

Exit DOEval

388

US 7,072,639 B2 Sheet 12 of 44 Jul. 4, 2006 U.S. Patent

?, ?.

S????Old ?6em?AV/

spuoo?u e?oudT6u?IIeo

US 7,072,639 B2

|- — — — — — — — ------ - - ------

Sheet 14 of 44 Jul. 4, 2006

(L = po?uºd quæ30.) jsou) po?uad

U.S. Patent

Jooe. fuu fleM

U.S. Patent Jul. 4, 2006 Sheet 15 of 44 US 7,072,639 B2

1010
NO ? 1000

- 1020
YES 1040

ES Y 1060

f getNumbers ByClien
(rsNumbers) = TRUE

and Count > 0

YES 1080

Do While NOT
rsNumbers.EOF

YES 100

If getZipFromPhone R TRUE
YES

FIG. 14

1120

f getCalDetailBy Number
(rsCalDetail) = TRUE

and Count > 0

getzipCodes

buildProfileDicS YES 1140
Do WhileNOT

rSCalDetail.EOF
YES

if getType, getWhen
or getWhere = FALSE

YES YES

TotalRejectedCalls =
TotalRejectedCalls +1 rs Numbers.MoveNext

1340
rsCalDetaji.MoveNext

U.S. Patent Jul. 4, 2006 Sheet 16 of 44 US 7,072,639 B2

1021

Enter Function

1022

Select D from Client
where Name F Client Name

FIG. 15

U.S. Patent Jul. 4, 2006 Sheet 17 of 44 US 7,072,639 B2

1. 1040

1041

Enter Function

Select Postal Code from
Address

Exit Function

FIG. 16

U.S. Patent Jul. 4, 2006 Sheet 18 of 44 US 7,072,639 B2

1. 1060

1061

Enter Function

1062

Select" from Telephone
for Client d

Exit Function

FIG. 17

U.S. Patent Jul. 4, 2006 Sheet 19 of 44 US 7,072,639 B2

? 1100

1101

Enter Function

1102

Call twigetzipFromPhone
stored procedure

1103

Exit Function

FIG. 18

U.S. Patent Jul. 4, 2006 Sheet 20 of 44 US 7,072,639 B2

1181

11.83

increment local call
Counter

1182
If number called

'OOO" or '555' or '411" or
en = 3

lf getLataAndState
for cin and m_n =

TRUE

If called LATA =
OFree

lf mobile ATAF
called AA

If mobileState F
calledState

increment interstate counter

increment intrastate
Counter

F.G. 19

U.S. Patent Jul. 4, 2006 Sheet 21 of 44 US 7,072,639 B2

1186

Enter Function

1187

Call twigeflataAndState
stored procedure

1188

Exit Function

F.G. 20

U.S. Patent Jul. 4, 2006 Sheet 22 of 44 US 7,072,639 B2

1201 1200
Enter Function y

204
12O2

lf dOWild = YES lf CalTime < increment Weekend
Monday PEAK START TIME Counter

12O7

Elsef Cairne Increment Peak
SPEAK END TIME Counter

NO 1208 increment Off eak
Counter

1210 1211

lf CalTime < YES increment Off Peak
PEAK START TIME Counter

increment Peak
COunter

increment OffPeak
COuter

increment Peak
Counter

increment Weekend
Counter

increment Weekend
Counter

FIG. 21 120 Exit Function
1205

lf dowd =
Tuesday -
Thursday

if dowd F
Friday

lf CalTime <
SEAK START TIM

Elself came
SPEAK END TIM

Else dowd =
Saturday or
Sunday

U.S. Patent Jul. 4, 2006 Sheet 23 of 44 US 7,072,639 B2

1222

Enter Function

lf number called
= "OOO"

1221
1.

1224

increment HomeZip
counter

if getzipFromCityState
OriginatingCityState)

if retzip = HomeZip

lf retzips Corpzip increment Corp.Zip
Counter

NO

Add Zip to ZipCode Dictionary

FIG. 22

U.S. Patent Jul. 4, 2006 Sheet 24 of 44 US 7,072,639 B2

1226

1227

Enter Function

1228

Ca
twigetzipFromCityState

stored procedure

1229

Exit Function

F.G. 23

U.S. Patent Jul. 4, 2006 Sheet 25 of 44 US 7,072,639 B2

280

if ZipCode count
>= MAXUS ZIPS

Loop through all ZipCodes
in ZipDictionary

Tempzip = Left(Testlen)
characters
of ZipCode if Max Zip and Count

& Current ZipArray ite

Add Tempzip and Count to
TempZipDictionary

Remove Max Zip and Count
from Dictionary

If Zip Dictionary
Count > 0

Roll up remaining Zip
Dictionary items in to
the first Zip Array item

Exit Function

U.S. Patent Jul. 4, 2006 Sheet 26 of 44 US 7,072,639 B2

1301

Enter Function

1302

1300 1.

f total is less
than any individual

Value

1305

Add actual values to
Profile Dictionary

Add default values to
Profile Dictionary

Exit Function

1303

FIG. 25

U.S. Patent Jul. 4, 2006 Sheet 27 of 44 US 7,072,639 B2

1321

Enter Function

1323

insert into Calling Profile

1324

Exit Function

F.G. 26

U.S. Patent Jul. 4, 2006 Sheet 28 of 44 US 7,072,639 B2

1400

1401
Enter Function

Set OProfiler = 1402
Createobject("TWIOptimizer. Optimator")

1403

YES

if oProfiler. DOEva
= TRUE

Set oProfiler F. Nothing

FIG. 27

U.S. Patent Jul. 4, 2006 Sheet 29 of 44 US 7,072,639 B2

1410

Enter Function

1420

NO lf getUserProfile
is NOT nothing

1460

f findPackages R True

1490

lf calcCosts F True

YES ? 1600

luation CreateEva

1440

FIG. 28

U.S. Patent Jul. 4, 2006 Sheet 30 of 44 US 7,072,639 B2

1420 y

1425

Enter Function

1430
Clear out m dicProfile

1435
getProfile

1440

FIG. 29

U.S. Patent Jul. 4, 2006 Sheet 31 of 44 US 7,072,639 B2

1436

1437

Select from CALLINGPROFILE

1438

Exit Function

FIG. 30

U.S. Patent Jul. 4, 2006 Sheet 32 of 44 US 7,072,639 B2

nter Function 1460
-

1462

FIG. 31 NO
if Profile is Found

YES

Get Home Zip

twiOptimizer. SPPackage...get 1464
PackagesByZIP

1465
add packages to

All Packages dictionary

1466
Get Corp Zip

1464
1467

YES twicoptimizer. SPPackage.getP
ackagesByZIP

Add packages to
AIPackages dictionary

1468 1465

1463

Corp Zip found
and Corp Zip <> Home

Zip

Remove all items from
m dictasePackages

Add all base Packages from
All Packages dictionary to
m dicBasePackages

1469

Add all non-base Packages
from

All Packages dictionary to
mdicBasePackages 1470

Exit Function
1463

U.S. Patent Jul. 4, 2006 Sheet 33 of 44 US 7,072,639 B2

1472 1A73

rs = getPackagesbyZip

s

getPackagesbyZipAnd Carrier

lfrs is NOT nothing
and rS.EOF = FALSE

While NOT rs,EOF

new Packade

Package type
F Base or E.L,C

lf Carriers Count = 0

1471

NO

1480

Arezips in package
coverage area

Add minutes for Digital and 1483
Analog Roaming

Save Profile Zip for Package 1484

1485

Add Package to retDic

Exit Function

1476

U.S. Patent Jul. 4, 2006 Sheet 34 of 44 US 7,072,639 B2

1480
1.

1486

1487
Call

arezPsin PackageCoverag
eArea

1488

Exit Function

FIG. 33

U.S. Patent Jul. 4, 2006 Sheet 35 of 44 US 7,072,639 B2

1490
1491 1492 1.

if Profile is Ford

YES

For each base package F G 3 4.A
1494

1495 twiptimizer. SPPackage.
calcCost 1496

For each optional
packade (B 1498

1495
twidptimizer. SPPackage. f

catcCost Current savings
> max savings

YES
lfpackage type = NO
longdistance

1501

package type R
offpeak, weekend,
offpeakweekeng

if current savings >
max savings

S

Save current savings

1504
NO f Current savings >

max savings

Save current savings

lfpackage type =
extended localCalling

U.S. Patent Jul. 4, 2006 Sheet 36 of 44 US 7,072,639 B2

1506

Calculate minimum Costs (B)

1507

Add costs to m dicBasePackages

1508

Use
twicoptimizer. ServicePlan.GetServicePl

ansByld
to Get Activation Fee and add it to

m dicBasePackages 1510

Loop through array of
Build Array of lowest cost package ids loWest Cost package ids and set the

matching packages
includedlnEval flag to true

1509

1493

(a) Exit Function 1490 u1 O earnen D

FIG. 34B

U.S. Patent Jul. 4, 2006 Sheet 37 of 44 US 7,072,639 B2

1511
Calculate peak over minutes 1513

Enter Function 1514

YES Calculate off-peak over minutes

1515

lf Package type = base Calculate D minutes

1516
Calculate roaming minutes

1517
Get the total roaming minutes for those profile

ZPS not in the current callind area

1518
Now calculate the corresponding costs

Calculate the number of minutes over the 1520
plan minutes

Find how much this package saves against 1521
the current base packade cost

1522

Now calculate the corresponding costs

NO

lf Package type
= longdistance

NO

1524
Calculate the offpeak minutes cost

1525

1526 Find how much this package Saves against
the Current base package Cost

1527
YES Calculate the Weekend (A)

minutes COSt
NO 1528 (B) w

Find how much this 1495
package Saves against the
current base package cost

ves FIG. 35A
1530 if Package

type = extended local
Calling

U.S. Patent Jul. 4, 2006 Sheet 38 of 44 US 7,072,639 B2

1531

How much does package
Save against Current base

package cost

Calculate the extended
local calling minutes cost

How much does package

1533

1534

Save against Current base
package

FIG. 35B

1535

U.S. Patent Jul. 4, 2006 Sheet 39 of 44 US 7,072,639 B2

1535 1. 1508

Enter Function

1536

rs = getServicePlan BylD

1537

fNOT rs is nothing
and NOT rS.EOF

Savers to serviceplan
object

1539

1538

FIG. 36

U.S. Patent Jul. 4, 2006 Sheet 40 of 44 US 7,072,639 B2

? 1600

1601
Enter Function

1620

putEvaluation

1640

FIG. 37

U.S. Patent Jul. 4, 2006 Sheet 41 of 44 US 7,072,639 B2

1621
Enter Function

insert in to Rate Plan
Evaluation

Loop through base
Packages

fincluded in Eval F
TRUE

1622

FIG. 38

1620 N
Insert in to Service Plan

instance

Insert in to SPLRPE LINK

Insert in to Package
instance

Loop through optional
Packades

ackage Selected
True

YES

Insert in to Package
instance

1633

Next Optional Package

Next Base Package

Exit Function
626

U.S. Patent Jul. 4, 2006 Sheet 42 of 44 US 7,072,639 B2

1700 y Enter Function 1701

NO 1702
If getClientld = TRUE

fgetNumbersByClien 1704
(rsNumbers) = TRUE

and Count > 0

1705

Do While NOT
rSNumberS.EOF

lf avgprofilesByAccount
= TRUE

YES

rsNumbers.MoveNext

C enfunction yr"

FIG. 39

U.S. Patent Jul. 4, 2006 Sheet 43 of 44 US 7,072,639 B2

1750

NO lf getProfileRecords
(rsProfiles) = TRUE and

Count DO

Do While

f HomeZip is the same

YES

Sum all call values

1810

iPeriods = Periods + 1

getzipCodes

1830
lf iPeriods DO

YES
1840

Average all sums

1300
Build Profile Dictionary

1320
addProfileRecord

1820

1770

U.S. Patent Jul. 4, 2006 Sheet 44 of 44 US 7,072,639 B2

1761

Enter Function

1762

Call twi getProfileRecords
stored procedure

1763

Exit Function

FIG. 41

US 7,072,639 B2
1.

SYSTEMAND METHOD FOR
DETERMINING OPTIMAL WIRELESS

COMMUNICATION SERVICE PLANS BASED
ON HISTORICAL PROJECTION ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/230,846, filed on Sep. 7, 2000, and 10
entitled “System and Method for Analyzing Wireless Com
munications Records and for Determining Optimal Wireless
Communication Service Plans, which is incorporated by
reference herein in its entirety into the present disclosure.

15
FIELD OF THE INVENTION

The present invention is generally related to wireless
telecommunication, and, more particularly, is related to a
system and method for analyzing wireless communication 20
data, via use of historical projection analysis, to enable the
determination of an optimal wireless communication service
plan.

BACKGROUND OF THE INVENTION 25

Because immediate access to information has become a
necessity in virtually all fields of endeavor, including busi
ness, finance and Science, communication system usage,
particularly for wireless communication systems, is increas- 30
ing at a Substantial rate. Along with the growth in commu
nication use has come a proliferation of wireless communi
cation service providers. As a result, a variety of wireless
communication service alternatives have become available
to consumers and businesses alike. 35

Subscribers to communication services, particularly wire
less communication services, and the businesses that may
employ them, who are dissatisfied with the quality of service
or the value of the service provided by a particular provider,
may terminate their current service and Subscribe to a 40
different service. Unfortunately, due to the vast number of
communication service providers available, it is difficult to
determine an optimal service plan, as well as optional
service packages. In addition, due to the competitive nature
of the wireless communication field, the cost and options 45
made available with service plans frequently change, adding
to the difficulty of finding the most optimal service plan
available at a specific time.

Thus, a heretofore unaddressed need exists in the industry
to address the aforementioned deficiencies and inadequa- 50
C1GS.

SUMMARY OF THE INVENTION

In light of the foregoing, the invention is a system and 55
method for determining optimal wireless communication
service plans based on historical projection analysis.

Generally, describing the structure of the system, the
system uses at least one transceiver that is configured to
receive billing information associated with a subscriber of a 60
telecommunications service under a current rate plan that is
stored in a storage unit. A processor is also used by the
system which is configured to: process the Subscriber related
billing information to produce organized data in a calling
profile record for each telecommunication service being 65
used by the Subscriber, create a usage history table and a call
detail table within the storage unit from the processed billing

2
information in accordance with a specified billing period;
determine the cost of the current rate plan and the cost of at
least one other rate plan via use of the usage history table and
call detail table; determine at least one proposed rate plan
that would save the subscriber telecommunication costs
relative to the current rate plan; and, produce a report of the
at least one proposed rate plan to enable selection of a best
telecommunication service provider and a best rate plan.
The present invention can also be viewed as providing a

method for analyzing wireless communication records and
for determining optimal wireless communication service
plans. In this regard, the method can be broadly Summarized
by the following steps: receiving billing information asso
ciated with a subscriber of a telecommunication service
under a current rate plan; processing the Subscriber related
billing information to produce organized data in a calling
profile record for each telecommunication service being
used by the Subscriber, creating a usage history table and a
call detail table from the processed billing information in
accordance with a specified billing period; determining the
cost of the current rate plan; determining the cost of at least
one other rate plan via use of the usage history table and call
detail table; and determining at least one proposed rate plan
from the at least one rate plan of at least one telecommu
nication service provider that would save the subscriber
telecommunication costs relative to the current rate plan.
The invention has numerous advantages, a few of which

are delineated hereafter as examples. Note that the embodi
ments of the invention, which are described herein, possess
one or more, but not necessarily all, of the advantages set out
hereafter.

One advantage of the invention is that it automatically
provides a subscriber with the best telecommunication ser
Vice provider and the best rate plan without necessitating
unnecessary Subscriber interaction.

Another advantage is that it improves the quality of
service and the value of the telecommunication services
received by a subscriber.

Other systems, methods, features, and advantages of the
present invention will be or become apparent to one with
skill in the art upon examination of the following drawings
and detailed description. It is intended that all such addi
tional systems, methods, features, and advantages be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to
the following drawings. The components in the drawings are
not necessarily to scale, emphasis instead being placed upon
clearly illustrating the principles of the present invention.
Moreover, in the drawings, like reference numerals desig
nate corresponding parts throughout the several views.

FIG. 1 is a block diagram illustrating a system and method
for analyzing wireless communications records and advising
on optimal wireless communication service plans.

FIG. 2A is a block diagram illustrating a more detailed
view of an analyzing digital processor depicted in FIG. 1.

FIG. 2B is a block diagram illustrating a more detailed
view of a client digital processor depicted in FIG. 1.

FIG. 3 is a flowchart that illustrates logical steps taken by
the Moving Average Monthly Bill Analysis (MAMBA)
system of FIG. 1.

US 7,072,639 B2
3

FIG. 4 is a block diagram illustrating a breakdown of an
ad hoc profiler process according to profiles, optimator, and
service plan instance processes.

FIG. 5 illustrates a flowchart of the major MAMBA
process of FIG. 1 and its read from/write to interaction with 5
significant data tables.

FIG. 6 is a flowchart illustrating the dataLoader (DL)
architecture and process of FIG. 5.

FIG. 7 is a flowchart illustrating the dataLoader process of
FIG. 6.

FIG. 8 is a flowchart illustrating the build profiles process
of FIG. 5, which follows the dataLoader process of FIG. 7.

FIG. 9 is a flowchart illustrating the input and output of
the optimator of FIG. 5, which follows the buildProfile
process of FIG. 8. 15

FIG. 10 is a flowchart illustrating the process of creating
rate plan evaluations of FIG. 5, which follows the optimator
processes of FIG. 9.

FIG. 11 is a flowchart illustrating the process of averaging
profiles of FIG. 5, and how it is implemented.

FIG. 12 is a flowchart illustrating the organization and
sequence of steps that make up the decideplan process of the
decision engine of FIG. 5.

FIG. 13 is a graph plotting period versus weighting factor,
for n=0, n=0.5, n=1, n=2, for the output data of the decid
ePlan process of FIG. 12.

FIG. 14 is a flowchart illustrating the build profiles
process of FIG. 8.

FIG. 15 is a flowchart illustrating the getClientId process
of FIG. 14.

FIG. 16 is a flowchart illustrating the getCorpZip process
of FIG. 14.

FIG. 17 is a flowchart illustrating the getNumbers3yCli
ent process of FIG. 14.

FIG. 18 is a flowchart illustrating the get ZipFromPhone
process of FIG. 14.

FIG. 19 is a flowchart illustrating the getType process of
FIG 14.

FIG. 20 is a flowchart illustrating the getLataAndState
process of FIG. 19.

FIG. 21 is a flowchart illustrating the getWhen process of
FIG 14.

FIG.22 is a flowchart illustrating the getWhere process of
FIG 14.

FIG. 23 is a flowchart illustrating the getZipFromCityS
tate process of FIG. 22.

FIG. 24 is a flowchart illustrating the get ZipCodes pro
cess of FIG. 14.

FIG. 25 is a flowchart illustrating the buildProfilesDic
process of FIG. 14.

FIG. 26 is a flowchart illustrating the addProfileRecord
process of FIG. 14.

FIG. 27 is a flowchart illustrating the runProfiler process
of the optimator of FIG. 5.

FIG. 28 is a flowchart illustrating the doEval process of
FIG. 27.

FIG. 29 is a flowchart illustrating the getUserProfile
process of FIG. 28.

FIG. 30 is a flowchart illustrating the getProfile process of 60
FIG. 29.

FIG. 31 is a flowchart illustrating the findPackages pro
cess of FIG. 28.

FIG. 32 is a flowchart illustrating the getPackagesByzip
process of FIG. 31.

FIG.33 is a flowchart illustrating the selectCoveredZIPS
process of FIG. 32.

10

25

30

35

40

45

50

55

65

4
FIGS. 34A and 34B are flowcharts illustrating the cal

cCost process of FIG. 28.
FIGS. 35A and 35B are a continuation of the calcCost

process of FIG. 34.
FIG. 36 is a flowchart illustrating the getServicePlanByID

process of FIG. 34.
FIG. 37 is a flowchart illustrating the createEvaluation

process of FIG. 28.
FIG. 38 is a flowchart illustrating the putEvaluation

process of FIG. 29.
FIG. 39 is a flowchart illustrating the avgProfilesByClient

process of FIG. 11.
FIG. 40 is a flowchart illustrating the avgProfilesBy Ac

counts process of FIG. 39.
FIG. 41 is a flowchart illustrating the getProfileRecords

process of FIG. 40.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The moving average monthly bill analysis (MAMBA)
system 100, as is structurally depicted in FIGS. 1, 2A, and
2B can be implemented in software, hardware, or a combi
nation thereof. In the preferred embodiment, as illustrated by
way of example in FIG. 2A, the MAMBA system 100, along
with its associated methodology, is implemented in Software
or firmware, stored in computer memory of the computer
system, and executed by a suitable execution system. If
implemented in hardware, as in an alternative embodiment,
the MAMBA system 100 can be implemented with any or a
combination of the following technologies, which are well
known in the art: a discrete logic circuit(s) having logic gates
for implementing logic functions upon data signals, an
application-specific integrated circuit (ASIC) having appro
priate combinational logic gate(s), programmable gate array
(s) (PGA), field programmable gate array(s) (FPGA), etc.
Note that the MAMBA system 100, when implemented in

Software, can be stored and transported on any computer
readable medium for use by or in connection with an
instruction execution system, apparatus, or device. Such as a
computer-based system, processor-containing system, or
other system that can fetch the instructions from the instruc
tion execution system, apparatus, or device and execute the
instructions. In the context of this document, a “computer
readable medium' can be any means that can contain, Store,
communicate, propagate, or transport the program for use by
or in connection with the instruction execution system,
apparatus, or device. The computer-readable medium can
be, for example but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, device, or propagation medium. More specific
examples (a nonexhaustive list) of the computer-readable
medium would include the following: an electrical connec
tion (electronic) having one or more wires, a portable
computer diskette (magnetic), a random access memory
(RAM) (magnetic), a read-only memory (ROM) (magnetic),
an erasable programmable read-only memory (EPROM or
Flash memory) (magnetic), an optical fiber (optical), and a
portable compact disc read-only memory (CDROM) (opti
cal). Note that the computer-readable medium could even be
paper or another Suitable medium upon which the program
is printed, as the program can be electronically captured, via
for instance optical scanning of the paper or other medium,
then compiled, interpreted or otherwise processed in a
Suitable manner if necessary, and then stored in a computer
memory. As an example, the MAMBA system 100 software

US 7,072,639 B2
5

may be magnetically stored and transported on a conven
tional portable computer diskette.
By way of example and illustration, FIG. 1 illustrates a

typical Internet based system upon which the MAMBA
system 100 of the present invention may be implemented. It
should be noted that while the present disclosure provides
implementation of the MAMBA system 100 within an
Internet based system, the MAMBA system 100 need not be
provided via use of the Internet. Instead, one of reasonable
skill in the art will appreciate that the MAMBA system 100
may be implemented within other mediums, such as, for
example, but not limited to, a local area network (LAN), or
wide area network (WAN).

Alternatively, instead of implementing the MAMBA sys
tem 100 via use of the Internet, the MAMBA system 100
may also be implemented via use of a first transmitting and
receiving device such as, but not limited to, a modem located
at a customer premise, which is in communication with a
second transmitting and receiving device such as, but not
limited to, a modem located at a central office. In accordance
with Such an embodiment, personal computers may be
located at the customer premise and the central office having
logic provided therein to perform functions in accordance
with the MAMBA system 100.

Referring to FIG. 1, a plurality of networks 21a, 21b are
shown wherein each network 21 includes multiple digital
processors 33, 35, 37. Digital processors 33, 35, 37 within
each network 21 may include, but are not limited to,
personal computers, mini computers, laptops, and the like.
Each digital processor 33, 35, 37 is typically coupled to a
host processor or server 31a, 31b for communication among
processors 33, 35, 37 within the specific corresponding
network 21.
The host processor, or server, 31 is coupled to a commu

nication line 41 that interconnects or links the networks 21a.
21b to each other, thereby forming an Internet. As such, each
of the networks 21a, 21b are coupled along the communi
cation line 41 to enable access from a digital processor 33a,
35a, 37a of one network 21a to a digital processor 33b, 35b,
37b of another network 21b.
A client server 51 is linked to the communication line 41,

thus providing a client with access to the Internet via a client
digital processor 53, as further described hereinbelow. In
accordance with the preferred embodiment of the invention,
the software for implementation of the MAMBA system 100
is provided by a software program that is operated and
located on an analyzing digital processor 71, and connected
through an analyzing server 61, to the communication line
41 for communication among the various networks 21a, 21b
and/or digital processors 33, 35, 37 and the client connected
to the Internet via the client server 51.

It should be noted that the number of client servers, client
digital processors, analyzing digital processors, and analyZ
ing servers may differ in accordance with the number of
clients provided for by the present MAMBA system 100. As
an example, if five separately located clients were utilizing
the MAMBA system 100, five separate client digital pro
cessors may be connected to a single client server, or five
separate client servers.

In accordance with the preferred embodiment of the
invention, the client digital processor 53 may be any device,
Such as, but not limited to, a personal computer, laptop,
workstation, or mainframe computer. Further, the networks
used by the MAMBA system 100 are preferably secure and
encrypted for purposes of ensuring the confidentiality of
information transmitted within and between the networks
21a, 21b.

5

10

15

25

30

35

40

45

50

55

60

65

6
The analyzing digital processor 71, further depicted in

FIG. 2A, is designed to analyze the wireless communication
data, received either from the wireless communication pro
vider, the client, or a third party in order to determine the
optimal wireless communication service plans. As shown by
FIG. 2A, the analyzing digital processor 71 includes logic to
implement the functions of the MAMBA system 100, here
inafter referred to as the MAMBA software 21, that deter
mines the optimal service plan stored within a computer
memory 73.

Several embodiments of the analyzing digital processor
71 are possible. The preferred embodiment of analyzing
digital processor 71 of FIG. 2A includes one or more central
processing units (CPUs) 75 that communicate with, and
drive, other elements within the analyzing digital processor
71 via a local interface 77, which can include one or more
buses. A local database 74 may be located within the
analyzing digital processor 71. It should be noted that the
database 74 may also be located remote from the analyzing
digital processor 71. Furthermore, an input device 79, for
example, but not limited to, a keyboard or a mouse, can be
used to input data from a user of the analyzing digital
processor 71. An output device 81, for example, but not
limited to, a screen display or a printer, can be used to output
data to the user. A network interface 83 can be connected to
the Internet to transfer data to and from the analyzing digital
processor 71.

Referring to FIG. 2B, the client digital processor 53 of
FIG. 1 is further illustrated. Several embodiments of client
digital processor 53 are possible. In accordance with the
preferred embodiment of the invention, the client digital
processor 53 includes one or more CPUs 57 that commu
nicate with, and drive, other elements within the client
digital processor 53 via a local interface 59, which can
include one or more buses. A local database 56 may be
located within the client digital processor 53. It should be
noted that the database 56 may also be located remote from
the client digital processor 53. The client digital processor
53 also includes a memory 55 that houses software to
provide a browser 16. Furthermore, an input device 61, for
example, a keyboard or a mouse, can be used to input data
from a user of the client digital processor 53. An output
device 63, for example, but not limited to, a screen display
or a printer, can be used to output data to the user. A network
interface 65 can be connected to the Internet to transfer data
to and from the client digital processor 53.

FIG. 3 is a flowchart that illustrates logical steps taken by
the MAMBA system 100. Any process descriptions or
blocks in flow charts illustrated or described in this docu
ment should be understood as representing modules, seg
ments, or portions of code which include one or more
executable instructions for implementing specific logical
functions or steps in the process, and alternate implemen
tations are included within the scope of the preferred
embodiment of the present invention in which functions may
be executed out of order from that shown or discussed,
including Substantially concurrently or in reverse order,
depending on the functionality involved, as would be under
stood by those reasonably skilled in the art of the present
invention.
As shown by block 120, data regarding a given cellular

account, Subscriber, or group of Subscribers if the service is
provided for a corporate customer, is provided by a carrier.
As shown by block 130, the data is loaded into the analyzing
digital processor database 74 by a dataloader process 320
(shown in FIG. 5 below). The loaded data is then analyzed.
Analysis of the loaded data includes, but is not limited to, the

US 7,072,639 B2
7

steps of: creating a calling profile (block 140) for each
billing period by running a buildProfile process (explained
in detail below, with reference to FIG. 5); identifying
optimal service plan options for each profile period (block
150); and making recommendations as to the best service
plan and options (block 160), wherein service plan options
are across multiple profile periods, by running a decideplan
process (FIG. 5400). The results are then rendered to a user
(block 170). In accordance with the preferred embodiment
of the invention, the MAMBA system 100 then repeats the
logical steps beginning with block 130 in accordance with a
predefined periodic basis (block 180). The logical steps
taken by the MAMBA system 100 are further explained
hereinbelow.

The MAMBA system 100 can be offered on an application
service provider (ASP) basis to telecommunication person
nel at the customer premise, or to purchasing or other
appropriate managers or administrators of wireless services
at corporations, government agencies and/or similar orga
nizations as a “cost assurance' tool. The MAMBA system
100 assures that all of the wireless accounts or subscribers
under the management or control of administrators are on
the best possible service plan, given their specific usage
profile trends, and therefore minimizes overall expenditures
for wireless services by the enterprise.
The MAMBA system 100 is an extension of the existing

“one user at a time' Hypertext Markup Language (HTML)-
based profiler application, which takes as input from an
individual account or subscriber, via an HTML or Web
based interface, an interactively constructed user-defined
profile, i.e., how many minutes of airtime a user may
consume according to the three “W’s” that, combined,
bound the mobile calling environment: “When' (peak, off
peak, or weekend), “What' (local or toll), and from “Where'
(home market or non-home market) the call is made. This
calling profile, entered via the profiler HTML page, is then
provided as input to an analysis component labeled an
“optimator,” which provides as output the best set of pos
sible service plans, including optional packages, promo
tions, etc., based upon the entered calling profile. The results
are presented to the user in the same HTML/Web-based
format.

Several embodiments of a profiler application 200 are
possible. By way of example, the flow of logic comprising
one possible embodiment of the profiler application 200 is
shown in FIG. 4. The logic is represented in flow charts that
interrelate. In the profiler application 200 of FIG. 4, an
inc plan loading.asp function 205 collects a user's usage
profile information via a user interface, such as, but not
limited to, an HTML-based input page/screen. The usage
profile preferably comprises the following: the expected
quantity of wireless usage to be utilized during a given
billing period (usually, but not exclusively, a one month
period); how the expected usage will be distributed accord
ing to time-of-day and day-of-week; how the usage was
expected to be distributed by local versus toll calling; and
the expected distribution according to the location where
calls are made or received. A db Account putProfile function
215, which is connected to a bus Account putProfile func
tion 210, then writes this profile information to the analysis
digital processor database 74.
The bus Account putProfile function 210 is connected to

an optimator doeval function 250 and to service plan
instances 260, 270 via the inc plan loading.asp function
205, which presents the usage profile information stored via
the db Account putProfile function 215 to the optimator
doEval function 250.

10

15

25

30

35

40

45

50

55

60

65

8
The optimator doEval function 250 then presents a list of

user-provided ZIP codes, symbolic of where the user can
purchase service (at least their home Zip code and possibly
one or more Zip codes of locations for the user's place of
employment) from the user profile, to an optimator find
Packages function 225. The optimator findPackages func
tion 225 is, in turn, is connected to an SPPackage getPack
agesByZIP function 220 which determines which wireless
service plan packages are offered within the user provided
ZIP codes. The SPPackage getPackagesByzIP function 220
then presents these wireless service plan packages to the
optimator doEval function 250 via the optimator findPack
ages function 225. The optimator doEval function 250, in
turn, presents the plan packages and the user profile infor
mation to an optimator calcCosts function 235 which then
calls an SPPackage calcCost function 230 to calculate and
organize, from lowest cost to highest cost, the cost of each
service plan package combination for the given user usage
profile. The cost information is then presented to the opti
mator doEval function 250 which uses an optimator create
Evaluation function 245 and a dbOptimator putEvaluation
function 240 to write the resulting evaluations, which rep
resent comparison of the user usage profile to available
service plans, to a database.

Finally, the optimator doEval function 250 utilizes a
combination of an SPInstance getEvalID function 255, an
SPInstance getEval function 260, a dbinstance getSPIn
stance function 265 and an SPInstance getSPInstance func
tion 270 to present the results to the user via the inc plan
loading.asp function 205.
The MAMBA system 100 extends the ad hoc profiler

application 200 into a multi-account or subscriber-auto
mated and recurring process that provides an analysis of
periodically loaded wireless service usage of a given
account or Subscriber, and/or group of accounts or Subscrib
ers (e.g., a set of Subscribers all employed by the same
company and all Subscribing to the same carrier), and
determines whether or not that subscriber, or group of
Subscribers, is on the optimal wireless service plan accord
ing to the particular Subscribers usage patterns across a
variable number of service billing periods. If not, the
MAMBA system 100 suggests alternative cellular service
plans that better meet the users usage patterns and that
reduce the overall cost of service to the account/subscriber.

FIG. 5 represents the functional “flow” among the major
MAMBA system 100 components and their read from/write
to interaction with the most significant data tables that are
most directly utilized or affected by the analysis. Function
ally, the MAMBA system 100 is comprised of the following
five (5) processes, which further elaborate upon the flow
chart of FIG. 3:
1) Using the Data Loader (DL) process 320, call detail

records are imported from either the subscriber or the
carrier information sources 310, either in the form of CDs
and/or diskettes provided by an end user or via direct
connection with carriers through file transfer protocol
(FTP) or other communication means, into usage history
330 and call detail tables 340. While this step is actually
not a part of the MAMBA system 100 per se, as the DL
process 320 application may serve the analysis service
offered, it may be a prerequisite process that should be
modified in order to support the MAMBA system 100.
Depending upon the final implementation strategy for the
DL process 320, a staging table may be utilized as a Subset
of the total data set potentially provided by each carrier as
may be used by the MAMBA system 100. Such a staging
table would allow for a minimum set of data used to

US 7,072,639 B2
9

populate the call detail table 340 to be extracted. It should
be noted that the DL Process 320 is further defined with
reference to FIGS. 6 and 7 hereinbelow.

2) In accordance with the second process, the buildProfile
process 350 of FIG. 5 is created from the imported call
detail tables 340. The MAMBA system 100 uses the call
detail tables 340 for a given billing period to create a
calling profile record 360, within a calling profile table,
for each account of a given client. The calling profile
record 360 represents in a single data record the wireless
service usage for the client’s account, which for a single
Subscriber and in a single billing period could represent
the sum total of the information captured by hundreds or
thousands of individual calls as recorded by the wireless
service provider in the form of call detail records (CDRs).
The calling profile record 360 assesses a subscribers
CDRs according to the following three parameters: “when
calls are made/received, according to time-of-day and
day-of-week; “what kind of calls are made or received,
either local or toll; and, “where calls are made or
received which is categorized into home, corporate and/
or a variable number of alternate zip codes. With refer
ence to the “where' parameter, if the number of alternate
zip codes exceeds the number available for the calling
profile record, then an additional algorithm is used to map
the alternate zip codes in excess of those allowed by the
calling profile data record into one of the allowed alter
nate zip codes “buckets'. As an example, for four alter
nate markets, the MAMBA system 100 uses additional
"bucketizing logic to map any “where' usage informa
tion that goes beyond the four (4) alternate market buckets
onto one of the four (4) markets. It should be noted that
bucketizing is further defined with reference to FIG. 8
hereinbelow.

3) In accordance with the third process, namely the optima
tor process 370, the calling profile records 360 are used by
the optimator process 370, as is further described here
inbelow. The optimator process 370 evaluates the calling
profile records 360 to determine whether or not the
client’s current calling plan is the most cost effective for
the usage represented by the calling profile 360 under
analysis and recommends a variable number of cost
effective calling plans. This recommendation may take the
form of a rate plan evaluation record 380 and at least one
linked service plan instance record 390. It should be noted
that the optimator process 370 is further defined with
reference to FIG. 9 hereinbelow.

4) The fourth process, namely the decide plan process, uses
the decidePlan process 400 to compare the results from
the optimator process 370 to the cost, based upon usage
history, for the current service plan an account, or client
subscriber, is using. The decidePlan process 400 then
selects the best possible plan using a “historical predictor”
algorithm and several related statistical filters that,
together, make a decision engine. It should be noted that
the decidePlan process 400 is further defined with refer
ence to FIG. 12 hereinbelow.

5) In a fifth process, namely the presentResults process 410.
the MAMBA system 100 renders the recommendations

10

15

25

30

35

40

45

50

55

10
from the optimator process 370 to the client and executes
any actions the client wants to take as a result of those
recommendations. As such, the MAMBA system 100
gathers information at different points during its process
ing and stores that information for use in presentation to
the client in a rendition of the results 410. It should be
noted that the present results process is further described
hereinbelow under the title "Presentation of Recommen
dations or Actions.”

dataLoader (DL)
FIG. 6 further illustrates the DL process 320 architecture

and process 320. The DL process 320 is used to import data
from external data sources, such as, for example, CD-ROMs
or other storing mediums, such as diskettes provided by
customers, or through direct data feeds from carriers serving
those customers, to populate the database 74, preferably a
Microsoft-structured query languageTM (MS-SQLTM) data
base, which is manufactured by, and made commonly avail
able from, Microsoft Corporation, U.S.A., with the call
detail and usage history information used by the MAMBA
system 100. Other suitable database packages may be used,
of which MS-SQLTM is merely an example. Preferably, the
DL process 320, the results of which also support the
Analysis ASP offering in addition to the MAMBA system
100, makes use of a set of ActiveX components to load
requisite data from the provided sources. These components
may, for instance, Support the import of data from Microsoft
AccessTM, Dbase IVTM, Microsoft ExcelTM and Microsoft
SQLTM databases 430–430. It should be noted that other
databases may be used in accordance with the present
invention.

The DL process 320 makes use of two text files, namely,
a "Map” file 440 and a “Visual Basic, Scripting Edition
(VBS)TM file 450, to flexibly define or control the configu
ration of the data import process. The "Map file 440
dictates to the DL process 320 how to map incoming data
fields to destination data fields. The 'VBS file 450 is used
by the DL process 320 to perform any custom transforma
tions of input data before writing it to a destination, e.g., get
dow id from day of week. The Map 440 and VBS files 450
are developed as part of the data conversion process under
taken whenever new input data formats are presented by a
customer base or carrier relationship base.
The DL process 320 is used to import initial customer data

as well as to import ongoing call detail data. In one imple
mentation of the invention, each of these data loads has a
“base' set of user-provided data exist in a destination
database. Such as, for example, the local database 74 located
within the analyzing digital processor 71, and then loads
new data into the database. In accordance with the preferred
embodiment of the invention, data shown in Table 1 here
inbelow exists in the database prior to execution of the DL
process 320. It should be noted that the following is by no
means a conclusive list of data and, as such, other data may
exist within the database, or less data may exist within the
database.

TABLE 1.

Data Tables that Exists in Database Prior to Running the DL Process

ACCESSORY ITEMS
ACTIVITY LINK

ACCESSORY PRODUCT LINK ACTIVITY
ADDRESS ADDRESS TYPE

US 7,072,639 B2
11

TABLE 1-continued

12

Data Tables that Exists in Database Prior to Running the DL Process

BTA CARRIER
CARRIER CONTACT LINK CARRIER DBA
CONTACT TYPE COUNTY
COVERAGE AREA MRSA LINK DB HISTORY
FCC PCS LICENSE LERG FOREIGN
MRSA MTA
NATION PHONE ITEMS
PRODUCT BUNDLE ITEMS
REQUEST STATUS
SERVICE PLAN STATUS TYPE
SP FEATURE BUNDLE LINK
SP PACKAGE COVERAGE LINK
SP TAX
TECHNOLOGY TYPE

PRODUCT FAMILY
REQUEST TYPE
SP FEATURE
SP FEATURE TYPE
SP PACKAGE TYPE
STATE
USERINFO STATUS TYPE

The initial customer data load may then be loaded within
the tables shown in Table 2.

TABLE 2

Data Tables into which Customers Initially Load Data

ACCOUNT ACCOUNT ADDRESS ADDRESS
LINK

ADDRESS CLIENT CLIENT ADDRESS LINK
DEPART PHONE ITEMS REQUEST LOOKUP
MENT
TELE- USAGE HISTORY USER
PHONE

In accordance with one embodiment of the DL process
320, in the ongoing call detail data load the initial customer
load may be completed prior to the running of the DL
process 320. The ongoing call detail load may load data into
the following tables shown in Table 3.

TABLE 3

25

30

35

Data Tables into which Customers May Load Ongoing Call Detail

CALL DETAIL
SERVICE PLAN INSTANCE

PACKAGE INSTANCE
SP PACKAGE

The call detail table shown in Table 3 contains the
minimum set of information provided by the wireless pro
viders detailing calls made which can be reduced into a
single calling profile by the buildProfile process 350. The
layout of the call detail table is shown in Table 4.

TABLE 4

Layout of Call detail Table

Field Name Data Type

Call detail id Integer
Usage id Integer
billing period Datetime
mkt cycle end Datetime
invoice number Varchar
billing telephone number Varchar
originating date Datetime
originating time Varchar
originating city Varchar
originating state Varchar
terminating number Varchar
call duration Decimal

45

50

55

60

65

CARRIER ADDRESS LINK
CONTACT
COVERAGE AREA BTA LINK
FCC CELL LICENSE
LERG US
MTA MRSA LINK
PHONE PRODUCT LINK
PRODUCT INFO STATUS TYPE
SERVICE PLAN
SP FEATURE BUNDLE
SP PACKAGE
SP PHONE ITEM LINK
STATE MTA LINK
ZIP CODE

TABLE 4-continued

Layout of Call detail Table

Field Name Data Type

air charge Money
land charge Money
Surcharge Money
Total Money
user last updt Varchar
timsp last updt Datetime
dow id Integer

It should be noted that the dow_id field, as well as other
fields, may contain a numerical representation of data to be
inputted within a field, such as, instead of text for the day of
the week that a call was placed, using 1=Sunday, 2=Monday,
etc.

SERVICE PLAN

Operation of DataLoader Process
FIG. 7 is a logical diagram that depicts operation of the

DL process 320. As shown by block 321, the DL process 320
application can be started manually or as a result of a trigger
event such as the posting of a customer's monthly data on an
FTP site, or some similar type of event. As shown by block
322, initial user data is then selected. The DL script process
is then run, as shown by block 323.

In accordance with the preferred embodiment of the
invention, the DL. Script process includes the following
steps. As shown by block 324, the DL script process is first
started. Parameters are then retrieved from the dataloader
process 320 application, as shown by block 325. As shown
by block 326, the user's authorization is then checked in
order to run the dataloader process 320 application. As
shown by block 327, all pre-process SQL scripts are then
executed to check the integrity/validity of the data and to
otherwise put the data into the appropriate format for data
transformation. Data transformation services (DTS)328 are
then used to load the pre-processed data. As shown by block

US 7,072,639 B2
13

329, all post-process SQL scripts are then executed to
confirm the integrity/validity of the data, after which the DL
script is exited (block 331).

After the DL script process 323 is run, the DL process 320
selects a wireless service provider, or carrier, provided 5
customer account and related (e.g., usage history) data 332.
The DL script process is then run again 333, after which the
DL process 320 selects “CallDetail Data”334. As shown by
block 335, the DL script process once again runs, after
which the DL application ends block 336. 10
Build Profile Process
The following further illustrates the build profile process

350 with reference to FIG. 5, in accordance with the
preferred embodiment of the invention. FIG. 5 depicts input

15 and output of the optimator 370. The MAMBA system 100
provides a method to create calling profile records 360 from
the call detail data 340 imported using the DL process 320.
These calling profile records 360 provide a rolled-up view
of each accounts call usage, reducing for a given account or

2O subscriber what may be, for example, the hundreds or
thousands of individual call detail records (N) generated into
a single calling profile record 360. This data reduction
reduces the computations performed by optimator 370 in
order to analyze a single account or Subscriber by a similar 25
amount.

The calling profile record 360 is created by the buildPro
file process 350. This record is used by the optimator process
370, which provides a service plan comparison and gener
ates a list of potential service plans that may better fit the 30
account or subscriber's particular calling profile. The call
ing profile record 360 contains the fields and source data
shown in Table 5.

TABLE 5 35

Fields and Source Data Contained in calling profile Record

Field Name Data Type Len Source data

profile id Integer DENTITY field
account id Integer rom the user? account record 40
date created DateTime current date
billing period DateTime contains the billing period
periods averaged Integer contains the number of

periods averaged for this
record

monthly minutes Integer Sum of all minutes for a 45
Oll

peak percentage Decimal buildProfile process
offpeak percentage Decimal buildProfile process
local percentage Decimal buildProfile process
home Zip Varchar 20 From the user address record
corp Zip Varchar 20 From the userf client address 50

record
alt Zip 1 Varchar 20 buildProfile process
alt zip2 Varchar 20 buildProfile process
alt zip3 Varchar 20 buildProfile process
alt Zip4 Varchar 20 buildProfile process
home Zip percentage Decimal buildProfile process
corp zip percentage Decimal buildProfile process 55
alt Zip 1 percentage Decimal buildProfile process
alt zip2 percentage Decimal buildProfile process
alt zip3 percentage Decimal buildProfile process
alt Zip4 percentage Decimal buildProfile process
total calls Integer buildProfile process
total rejected calls Integer buildProfile process 60
user last updt Varchar 20 Username of person creating

record
timsp last updt DateTime Current date

The originating city and originating state from each 65
call detail record 340 may be used to determine the origi
nating postal code from the Zip code table. This process

14
results in Some degree of approximation because of the
different methods employed by the carriers to input the
destination city information, e.g., Kansas cit for Kansas
City. However, using both the originating city and originat
ing state minimizes the chances of selecting the wrong city,
e.g., avoiding selecting Austin, Pa. instead of Austin, Tex.,
because of including the originating state in this process.

All calls not made from either the home or corporate zip
code are separated by originating city, originating state Zip
code and the total number of minutes added for each. Once
calls have been separated into separate Zip codes, using one
implementation of the buildProfile process 350, if there are
four or fewer zip codes, the zip codes may be written to the
Zip code fields, e.g., alt Zip1, alt zip2, alt zip3 and alt Zip4.
in descending order by the amount of minutes for each Zip
code and the corresponding minutes, as a percentage of the
total, may be written to the corresponding Zip code percent
age fields, e.g., alt Zip1 percentage, alt zip2 percentage,
alt Zip3 percentage and alt. Zip4 percentage.

However, in this particular implementation, if there are
more than four Zip code sets, the Zip code with the highest
number of minutes is written to alt Zip1. Then the remaining
Zip codes are grouped by combining Zip codes with the same
first 3 digits, e.g., 787XX, and adding up the associated
minutes.
Once this grouping has been completed, and if there are

more than three groupings in this implementation, the Zip
code from the grouping with the highest number of minutes
is added to alt zip2. The remaining Zip codes may then be
grouped by combining Zip codes with the same first two
digits, e.g., 78XXX, and adding up the associated minutes.
Once this grouping has been completed, and if there are

more than two groupings in this implementation, the Zip
code from the grouping with the highest number of minutes
is added to alt Zip3. The remaining Zip codes may then be
grouped by combining Zip codes with the same first digit,
e.g., 7XXXX, and adding up the associated minutes. Once this
grouping has been completed, the Zip code with the highest
number of minutes may be added to alt Zip4.
Once completed, the percentages may be computed from

the total number of minutes and written to each zip code
percentage field, including the home Zip percentage and
corp zip percentage fields. The periods averaged field of
the buildProfile process 350 contains the number of periods
averaged to create this record. Records that are created by
the buildProfile process 350 contain a value of 1 in this field.
Records created by the “AvgProfilesByClient’ or the “Avg
ProfilesBy Account' functions contain the number of profile
records found for the given client or account with a billing
period during the given dates. However, this value may be
decremented due to the fact that the user has changed home
market during that time frame.
Operation of BuildProfile Process

FIG. 8 depicts the operation of a buildProfile process 350.
As shown by block 351, a MAMBALaunch application is
started either manually or based upon a trigger event Such as
those mentioned above. As shown by block 352, the build
Profile process 350 calls a “TwiMAMBA.clsMAMBA
Build Profiles' function. As shown by block 353, the
buildProfile process 350 is then started. As shown by block
354, the process gets “calletail” records for the accounts
for the given client and date range. As shown by block 355,
the process analyzes the calls and, as shown in block 356,
creates the profiles record. As shown by block 357, the
program then exits the buildProfile process 350. The process
then returns to the MAMBALaunch application and, as

US 7,072,639 B2
15 16

shown by block 358, executes a function write profile These tests may use a table that allows a local access
identifications to file. As shown by block 359, the buildPro- transport area (LATA) number to be associated with an
file process 350 then exits MAMBALaunch Application. npa nXX. The LATA (npa XXX) information also con

tains city and State information. A Local Exchange Data “Bucketizing Functions
The data “bucketizing functions, previously mentioned

with reference to the buildProfile process 350 portion of
FIG. 5, guide the analyzing and classifying of the call detail
data 340 for use in the MAMBA system 100 processes.
These functions provide the data classification and reduction
used to populate the calling Profile record 360 of the
MAMBA system 100. This structure is organized according
to three dimensions or parameters of a call, and are as
follows:

& G a set of data “bucketizing parameters, there may be the
1) Y.en time of day (ToD) and day of week (DoW). 15 following six (6) possible buckets defined: home Zip,

en' parameters are used to determine when a call was
made or received as determined by three (3) “buckets”: corp zip, alt1 Zip, alt2. Zip, alt3 Zip, alta Zip.
peak, off peak or weekend. The service plan record of the The Home/non-Home parameters are as follows:
service plan that a subscriber is currently using functions If the originating city equals <nulld or the lata number of
as the default ToD and DoW parameters. the originating city, originating state pair the lata number

of mobile id number (npa nXX matching), then the call was
made from the “Home” region and allocated to the home
Zip percentage. Otherwise, the call is allocated to either the
corporate Zip percentage or one of the alt Zip percentage
"buckets, depending upon the Zip code associated with the
originating city and according to the alt Zip percentage
rules previously defined.

5 Routing Guide (LERG) table may also contain the
information used.

3) “Where'. Where calls are made or received (home or
non-home). These parameters determine where calls were
made or received by the mobile end of the wireless

10 communications connection represented by the call detail
record under consideration. Several possible buckets may
be defined according to different embodiments of the
invention. By way of example, under one embodiment of

2O

The ToD/DoW parameters are as follows:
For the subscriber under consideration, if the call date,
dow id (1–7 with each number corresponding to a
fixed day of the week) is not between the weekend
start dow and the weekend end dow, and was placed 25
between weekday peak start and weekday peak end
times, then the call is characterized as a “peak call.”

For the subscriber under consideration, if the call date, The Optimator Process
dow id is not between the weekend start dow and the FIG. 9 depicts the optimator process 370, and how it is
weekend end dow, and was not placed between Week- 30 implemented. The optimator process 370 uses the calling
day peak start and weekday peak end times, then the profile record 360 for a given subscriber as input for the
call is considered an “off-peak call.” analysis of the usage patterns to provide recommendations

If the call date, dow id equals the weekend start dow for the most economical cellular service plans (see FIG. 7)
and was made between the after the Weekday peak for the specific billing period associated with that profile
end time or if the call date, doW_id is on the Weekend 35 record. Further, the optimator process 370 receives as input
end dow and was made between the before the week- the various service plans 720, service plan (sp) packages
day peak start time, or if the call date, dow id falls 730, and coverage areas 740 that are offered by various
between the weekend start dow and the weekend carriers and that are associated with each sp. package 730.
end dow, then the call is considered a “weekend call.” The optimator process 370 may return different numbers of

2) "What': Type of Call local or toll. These parameters 40 recommendations per analysis. For example, in one imple
determine the type of call that was made/received as mentation, the optimator process 370 returns up to three
determined by three (3) “buckets': local, intrastate toll recommendations per analysis. The number of recommen
and interstate toll. dations can be changed through an “instance variable.”

The recommendations are created as records in the Ser
vice plan instance 390 and package instance tables 710.
These records are linked to the associated account by a
record in the rate evaluation table 380 which, in turn,
is associated with the specific billing period associated with
the calling profile record. The optimator process 370 returns
the identification of this new record.

The local/toll parameters are as follows: 45
If called city equals “incoming” or <nulld or called num

ber equals <nulld then the call is a “local call.”
If the mobile id number lata number (as derived from

npa-nxX number combination) destination number
lata number, as derived from the npa-nXX number 50
combination, then the call is considered to have been
originated and terminated within the same Local Operation for Creating Rate Plan Evaluations
Access Transport Area (LATA) and is therefore catego- FIG. 10 depicts the operation for the process of creating
rized as a "local call.” As known by those skilled in the rate plan evaluations 440. Block 351 depicts the step of
art, a npa-nXX is defined as the numbering plan area 55 starting the MAMBALaunch Application. As shown by
(NPA) and office code (NXX) of an end user's telephone block 381, a “TwiMAMBA.clsMAMBA.Run Profiler” pro
number. cess is called. As shown by block 382, a “runProfiler

If neither of the two parameters above is true, then the call process is started. As shown by block 383, the profile
is a “toll call. identification files created in block 358 of FIG. 8 are then

If the mobile id number lata number state (as derived 60 read. As shown by block 384, a program “TwiOptimizer. Op
from the npa-nXX number combination) destination timator. DoEval' is called. As shown by block 385, a
numberlata number state, as derived from the npa-nXX “doEval' process is started. As shown by block 386, the
number combination, then the call is considered to have current calling profile is read. As shown by block 387, the
originated and terminated within the same sate and is profile for the lower cost calling plans are then evaluated. As
therefore categorized as an “intrastate toll call.” 65 shown by block 388, the rate plan evaluation 380, service

If none of the above parameters are applicable, then the plan 390 and package instance 710 records are created. As
call is an “interstate toll call.” shown by block 389, the doEval process is then exited. As

US 7,072,639 B2
17

shown by block 391, the runProfiler process makes the
decision as to whether all profile identifications have been
evaluated. If the answer is “no', the program returns to block
384, in which TwiOptimzer. Optimator. DoEval function is
again called and the program continues through each step
again until block 391 is reached again. If the answer is “yes”
in block 391, the runProfiler process is exited, as shown in
block 392. The MAMBAlaunch application then writes the
eval identifications (Ids) to the file, as shown in block 393.
Then as shown by block 394, the MAMBAlaunch applica
tion is exited.

Averaging Profiles
FIG. 11 depicts the process of averaging profiles 810 and

how it is implemented. The MAMBA system 100 allows the
user to obtain a moving average 820 of the calling totals
assigned to any calling profile records 360 that have a billing
date within a given date range. This average 820 provides
the user with a snapshot of cellular service use within a
given period.

AvgProfilesByClient and avgProfilesBy Account (see
“The MAMBA Component’) methods (FIGS. 39 and 40)
allow the user to average the calling profiles by either client
or individual account. These methods create a calling profile
record 820 that contains the average of usage for the calling
profiles 360 created during the given period, and then return
the identification of the new record.

The decidePlan Process
Returning to FIG. 5, the optimator process 370 output,

specifically a variable number of service plan instances
390, reflects the lowest cost options based upon the calling
profile analyzed. As such, the optimator 370 results repre
sent a single point-in-time period, for example, one month,
for that particular user without taking into account any
historical trending information that might be available for
that user. What is therefore needed but has been heretofore
unaddressed in the art, is a methodology for using a series
of single period optimator 370 results 390 to determine the
optimal service plan for that user over an appropriate period
of time, as depicted in FIG. 5. The decidePlan process 400
leverages available chronological information to assist in the
determination of what service plan would be optimal for a
given wireless user.
The decidePlan process 400 is based upon what can best

be described as a “historical prediction' algorithm. Given
the fundamental complexity of determining the optimal
service plan Solution set, the application of a traditional
trend-based predictive methodology, e.g., a linear or other
form of extrapolation, is not practical. Rather, the decideplan
process 400 leverages the “hindsight' intrinsic to a series of
historical single period optimator 370 analyses in order to
predict the optimal solution looking forward.
The decideplan process 400 takes advantage of the “reac

tive system' type of behavior that is inherent in the analysis
or decision process for selecting the optimal plan for a given
subscriber. Specifically, the decision engine 400 calculates
the total cost for a given set of optimator 370 generated
service instances 390 over a known set of historical
periods. The decidePlan process 400 then compares this total
cost to the optimator 370 results of the corresponding
service instances 390 for the most recent single period
available, and on that basis predicts the optimal service plan
going forward.
The known set of historical optimator 370 results is

referred to herein as the “training set,” while the single most
recent set of period results is referred to as the “test set',
where the test set period can also be included as part of the

10

15

25

30

35

40

45

50

55

60

65

18
training set. An optimal service plan Solution is selected
from the training set and then compared to the result of the
test set to determine how well the training set would have
predicted the test set result. In implementing the training and
test set, the data set to execute the historical prediction
analysis is preferably a minimum of two periods, two
periods for the training set and one period for the test set, in
order to execute the historical prediction.
The relative attractiveness of a service plan instance 390

is determined by comparing it to the corresponding actual
billed usage of the current service plan for the given period
(s). The specific measure, termed “efficiency', is calculated
as the following ratio:

efficiency current plan costs service plan instance
estimated cost

If the efficiency factor is greater than 1, then the service plan
instance is more cost effective than the current plan. Among
a group of service plan instances, the plan instance with the
highest efficiency factor is the optimal Solution.

Implementation of the historical prediction analytic and
decisionmaking model is best demonstrated by way of
example. Table 6 shows an exemplary two period set of
optimator 370 results for a single subscriber.

TABLE 6

Example of Historical Prediction Model for a
Two Period Set of Results

Training
Set Efficiency Test Set Efficiency

Month 1 (Current/Plan X) Month 2 (Current Plan X)

Calling 200 250

Profile

MOUS

PLANS

A. S50 1.38 S50 1.38

B S65 1.06 S65 1.06

C S40 1.73 $458 1.53%

D S60 1.15 S60 1.15

E S30: 2.30% S45 1.53%

Current S69 1.00 S69 1.OO

Where * indicates the lowest cost plan option

Based upon this minimum two period data set, the training
set predicts plan E as the optimal choice, a selection con
firmed by the corresponding results for the test set (Month
2).
The larger the data set, where larger is measured by the

number of periods of service plan instance results available
for the training set, the better the forward looking “predic
tion' will likely be. Table 7 shows the same two period data
set presented earlier in Table 6, extended by an additional
four periods, for a total of six periods, with five applied to
the training set and one to the test set.

US 7,072,639 B2
19

TABLE 7

Example of Historical Prediction Model for a Six Period Set of Results

20

Training Set Training

Mon Mon Mon Mon Mon Sum Set Mon
1 2 3 4 5 1-5 efficiency 6

Calling 2OO 2SO 3OO 26O 310 225
Profile
MOUS
PLANS

A. S50 S50 S60 S60 S62 S282 122 S50
B S65 S65 S65 S65 S65 S325 1.06 S65
C S40 S45 SSO S46 S52 S233* 1488 S42
D S60 S60 S60 S60 S62 S302 1.14 S60
E S30 S45 S60 S48 S62 S245 1.41 S378
Current S69 S69 S69 S69 S69 S345 1.00 S69

Where * indicates the lowest cost plan option

In this case, use of only the most recent periods, month 6.
optimator 370 output would have resulted in the selection of
plan E as the optimal service plan option for this user or
account. However, applying the historical prediction analy
sis, the total of 1–5 ranked by efficiency factor, the optimator
370 output indicates that plan C would be optimal choice for
this user. Although plan E would have been the best option
in for the most recent period, month 6, when the variability
of this subscriber's usage profile is taken into account over
the available six period data set, plan C would have been
selected as the Superior Solution.
The above analysis assumes that the data in the test set has

equal “value” in the analysis. In reality, the more recent the
data set, or the “fresher the data, the more relevant it is to
the analysis as it reflects the more recent behavior of the
user. Thus, the use of a weighting strategy which gives
greater relevance to more current, fresher data as compared
to the older, more stale data, improves the predictive results.
Optionally, the weighing strategy can be added to the

Calling
Profile

Current
Weighting
Factor
=

PLANS

Current

Mon 6
Efficiency

25

30

35

1.38
1.06
1.64
1.15
186*
1.OO

decidePlan process if needed to provide such increase rel
evance to more recent data.

There are a number of possible weighting functions that
can be applied. One possible weighting function would be an
exponential envelope of the type:

weighting factor-in-he'" where n>=0

The weighting functions for n=0, n=0.5, n=1 and n=2 are
plotted in FIG. 13. Data that is four periods old is weighted
as 14% of that of the most recent month. The n=0 function
more aggressively discounts older data than does the n=1
function, where the same four period back data is weighted
at a level about one-half that of the most recent period data
Set.

Applying these two versions of exponential weighting
envelopes to the previous six periods of training and test data
sets generates the result set shown in Table 8, with the
original “equal weighting results shown as well for refer
CCC.

TABLE 8

Results of Table 7 Data. After Applving the Weighting Factor

Training Set Training

Mon Mon Mon Mon Mon Sum Set Mon Mon 6
1. 2 3 4 5 1-5 efficiency 6 Efficiency

2OO 2SO 3OO 26O 310 225

S50 S50 S60 S60 S62 S282 122 S50 1.38
S65 S65 S65 S65 S65 S325 1.06 S65 1.06
S40 S45 S50 S46 S52 S233* 1.48 S42 1.64
S60 S60 S60 S60 S62 S302 1.14 S60 1.15
S30 S45 S60 S48 S62 S245 1.41 S378 186*
S69 S69 S69 S69 S69 S345 1.00 S69 1.00
1.02 1.OS 1.14 1.37 2.00 Sum Training Mon Mon 6

1-5 Set 6 Efficiency
efficiency

S51 S53 S68 S82 S124 S378 120 S50 1.38
S66 S68 S74 S89 S130 S428 1.06 S65 1.06
S41 S47 S57 S63 S104 S312* 146* S42 1.64
S61 S63 S68 S82 S124 S399 1.14 S60 1.15
S31 S47 S68 S66 S124 S336 1.35 S378 186*
S70 S72 S79 S95 S138 S454 1.00 S69 1.00

US 7,072,639 B2
21

TABLE 8-continued

Results of Table 7 Data. After Applving the Weighting Factor

Training Set Training

Mon Mon Mon Mon Mon Sum Set Mon
1 2 3 4 5 1-5 efficiency 6

Weighting 0.02 0.05 0.14 0.37 1.00 Sum Training Mon
Factor 1-5 Set 6
n = 0 efficiency
PLANS

A. S1 S3 S8 S22 S62 S96 1.13 S50
B S1 S3 S9 S24 S65 S103 1.06 S65
C S1 S2 S7 S17 S52 S79 1.38: S42
D S1 S3 S8 S22 S62 S97 1.13 S60
E S1 S2 S8, S18 S62 S91 120 S378
Current S1 S3 S10 S26 S69 S109 1.00 S69

Where * indicates the lowest cost plan option
2

Although the result of the historical prediction analysis in
this specific scenario does not change per se as a result of
applying either weighting scheme to the training set, where
both the n=1 and n=0 weightings identify Plan C as the
optimal plan, the application of these two weighting enve
lopes do have the effect of increasing the “spread between
the efficiency factor of the optimal plan, plan C, as compared
to the next best Solution, plan E. This is compared against
the actual cost because the weighting function that more
heavily favors recent or fresher data, i.e., the n=0 exponen
tial decay envelope, provides a greater efficiency spread
(1.38-1.20, or 0.18) compared to the n=1 weighting function
that less aggressively discounts older or more 'stale' data
(1.46-1.35 or 0.11).

2

3

Baseline
Calling
Profile
MOUS
Ave. - X
>StdDev
Second
Calling
Profile
MOUS
Ave. - X
>StdDev

The methodology, historical prediction with time-based
weighting, described thus far does not take into account the
intrinsic period-to-period variability in the user or accounts
behavior. One way this variability is reflected is by the user's
usage of the account, as measured by the minutes of wireless
service use on a period-by-period basis. By measuring the
standard deviation in a usage set for the user or account, and
comparing it to per period usage data, the Suitability of the
data set for each period can be assessed relative to the total
available array of periodic data sets. In particular, a signifi

60

65

22

Mon 6
Efficiency

Mon 6
Efficiency

1.38
1.06
1.64
1.15
186*
1.00

O

cant "discontinuity” in a usage pattern of a user or account,
for example, as a result of an extraordinary but temporary
amount of business travel, especially if such a spike occurs
in a current or near-current data period, could skew the
results of the analysis and provide a less-than-optimal Ser
Vice plan Solution or recommendation on a going-forward
basis.

5

To appreciate the potential impact of period-to-period
deviations, consider for example two calling profiles arrays:
one for the baseline data set that has been examined thus far,
and another for a more variable data set. These two data sets,
their average and standard deviations and the deviations of
the usage profile of each period to the average, are shown in
Table 9.

O

TABLE 9

Comparison of Baseline and Variable Data Sets

Training Set Test Set

Mon Mon Mon Mon Mon 1–5 1-5 Mon 1–6 1–6
1 2 3 4 5 Ave Std)ew 6 Ave Std)ew

2OO 2SO 300 26O 31 O 264 43.9 225 258 42.4

64 14 36 4 46 33
yes O O O yes O

3SO 400 37S 600 325 410 109.8 32O 395 104.9

60 10 3S 190 85 75
O O O yes O O

Using one standard deviation unit (one sigma, or O) as the
“filter to identify and exclude discontinuities in a sequence
of calling profiles, results in months 1 and 5 of the baseline
sequence, and month 4 of the second calling profile
sequence, being excluded from the analysis.

Another parameter that can be factored into the decision
process of the present invention of what service plan to
select for a given user or account, based upon an array of
calling profiles and optimator 370 service plan instance 390
inputs, is the sensitivity of the result set to changes in calling

US 7,072,639 B2
23

profile. Specifically, the service plan solution set, plans A-E
in the example used up to this point, should be tested by
perturbing the usage profile in a positive and negative
fashion by a fixed usage amount, for example, one O. The
results are shown in Table 10.

TABLE 10

24
b. Calling profile selection filter: yes/no (default no)

within Sigma
c. Sensitivity analysis range: it % or

Sigma
d. Minimum savings filter: % (default 20%)

Results of Perturbing the Usage Profile by One Sigma

+1 Sigma

Sum Mon
1-5 Training

(using n = 0 Set Ave? Mon 6

weighting) efficiency StdDev Mon 6 efficiency Cost

Calling 264f 225 269
Profile 43.9
MOUS
PLANS

A. S96 1.13 S50 1.38 S52
B S103 1.06 S65 1.06 S65
C S79 1.38: S42 1.64 S47
D S97 1.13 S60 1.15 S60
E S91 1.2O S37 186* S47
Current S109 1.OO S69 1.00 S69**

Where * indicates the lowest cost plan option
**this sensitivity cannot be performed unless the current plan is known

Based on the above “t one sigma' analysis, the optimal
service plan option, minimizing the sensitivity of the deci
sion to variations in usage both up and down, is plan E.
Using only the upside variation results in the selection of
plan C. Because there is less sensitivity to an upside in usage
than a downside for many wireless service plans currently
offered by the wireless service providers, either weighting
the +1 analysis more heavily than the -1 analysis, or using
only the +1 analysis results in the selection of plan C.
The implementation of the decision algorithms into the

decidePlan process must allow for one of the following four
(4) possible recommendations or actions:

1. The current plan is optimal; take no action.
2. There is a more optimal plan; if the savings is Sufficient

(efficiency>1.X) where X is the historical percentage
Savings, then change plans.

3. As a result of insufficient data, e.g., only one period of
usable data is available, there is a >itl Sigma variation
in the most recent periods calling profile, etc.; there
fore, take no action, and flag the reason why no action
was taken.

. Even though an optimal plan was identified, other
parameters (e.g., a maximum period-to-period vari
ance) were exceeded and therefore an accurate recom
mendation cannot be possible.

As with the dataLoad 320, buildProfile 350 and optimator
370 processes, decidePlan 400 can be implemented as a
manual or automated process. The following inputs may be
used to launch the decidePlan process 400. Please note that
blank spaces indicate input variable numbers that are con
sidered to be within the scope of the present invention.

1. Client Name

2. Account: active accounts (default) or
file

3. Analysis Parameters

acCOunt

a. Data window: available periods (default) or
periods

- Sigma

eff Cost eff.

181

1.33 S50 1.38
1.06 S65 1.06
1478 S37 1.86
1.15 S60 1.15
1478 S27 2.56*
1.OO S69** 1.OO

FIG. 12 shows the anticipated organization/sequence of
steps of the decision process 900 that make up the decid

35

40

45

50

55

60

65

ePlan 400 process, which is described in detail herein below.
Presentation of Recommendations or Actions

If the MAMBA system 100 returns any recommendations
for the given user, the MAMBA system 100 takes the user
information and the information for the recommended cel
lular service plans and dynamically creates a report Web
page that details this information. The HTML for this report
Web page is stored in the database 74 for later display. Once
the report Web page has been generated, the MAMBA
system 100 sends an electronic mail message (email) to the
specified user informing the user of the availability of more
economical cellular service plans. This email may contain a
hyperlink that will allow them to navigate to the stored
HTML Web report. The HTML Web report page contains the
information shown in Table 11. It should be noted that the
presentation may also be made without use of the Web, but
instead may be presented via any means of communication.

TABLE 11

Information contained in HTML Web Report

Client Name Date Generated
Department ID
User Name Recommend Plan

Name 1 (hyperlink)
Recommend Plan
Name 2 (hyperlink)
Recommend Plan
Name 3 (hyperlink)

Current Plan Name (hyperlink)

The user information is repeated for all requested users or
accounts. The hyperlinks allow the viewer to view the
specific information for the given plan.
The MAMBA system 100 causes the creation of a table

that contains the HTML code for the report Web page and an
ID value that will be part of the hyperlink that is sent to the

US 7,072,639 B2
25

user. The MAMBA system 100 may also cause the fields in
Table 12 to be added to the USER table.

TABLE 12

Fields the MAMBA System May Add to USER Table

Field Name Data Type Length

MAMBA Varchar 1

MAMBAMailDate DateTime

MAMBAViewDate DateTime

MAMBAReviewUser Varchar 50

MAMBAHTML Text 32765

The MAMBA field may contain either a “Y” or “N” to
denote to which user to send the MAMBA email for a given
account. The MAMBAMailDate may contain the date the
email was sent to the specified user, and the MAMBARe
viewDate may contain the date the MAMBA report Web
page was viewed. Further, the MAMBAReview User field
may contain the user name of the person who viewed the
MAMBA report Web page. Also, the MAMBAHTML field
may contain the HTML code for the Web report page.

The MAMBA Component
The MAMBA Component (twiMAMBA) may be config

ured to implement a number of different methods, a few of
which are shown by example in Tables 13–16 for completing
the preferred functionality. These methods are as follows:

TABLE 13

BuildProfile - Method that builds the calling profile record

Name Type Description

A. Parameters:

IclientID Integer client id to process
DloadStartDate Date first date to process
DloadEndDate Date last date to process
IprofileIds() Integer array returned array of created profile ids
InumZips Integer number of Zip codes to process
B. Returns

True - upon Successful completion
False - upon failed completion

TABLE 1.4

RunProfiler - Method that launches the optimator process 370

Name Description Type

A. Parameters:

iProfileIDs() Integer array array of profile ids - returned by
buildProfile

dLoadStartDate returned array of evaluation ids
B. Returns:

Date

True - upon Successful completion
False - upon failed completion

10

15

25

30

35

40

45

50

55

60

65

26

TABLE 1.5

AvgProfilesByClient - Method that takes a client name, a start and an
end date, and then averages the usage totals for all profile records with a

billing period between those dates and creates a new profile record.

Name Type Description

A. Parameters:

ScientName string name of client to process
DstartDate date first date to process
Dend Date date last date to process
IavgProfileIDs() integer array array of average profile ids - returned

by build Profile
B. Returns:

True - upon Successful completion
False - upon failed completion

TABLE 16

AvgProfilesBy Account - Method that takes an account ID, a start and an
end date, and then averages the usage totals for all profile records with
a billing period between those dates and creates a new profile record.

Name Type Description

A. Parameters:

IAccountd integer account id
DStartDate date first date to process
DEndDate date last date to process
IAvgProfileIDs() integer array array of average profile ids - returned

by build Profile
B. Returns:

True - upon Successful completion
False - upon failed completion

FIG. 12 depicts the decision process 900 of the decidePlan
process 400 (FIG. 5). The inputs of block 905, client id,
accounts, data periods, cp filter, sensitivity range, and Sav
ings hurdle, are directed to the select account info function
of block 910. The Select account info of 910 includes
account id, cp ids, and service plan instances. Once the
select account info 910 has been processed, the process
proceeds to the decision block 915, where the decision is
made if the cp count is less than 2. If “YES, the process
proceeds to block 920, for no action because of insufficient
data or records. If the decision of block 915 is “NO, the
process proceeds to block 925 for the functions of determine
cp data and set using cp filter input. From block 925, the
process moves to the decision block 930, where the decision
is made if the cp count is less than 2. If “YES, the process
again moves to block 920 for no action because of unsuf
ficient trend data. If the decision of block 930 is “NO”, the
process proceeds to block 935 for the function of create
candidate spid list based on most recent period. From the
function of block 935, the process proceeds to block 940, for
the function of compare candidate list to spids for spin
stances in all applicable periods, based on cp list. From
block 940, the process then proceeds to the decision block
950, where the decision is made, “are all spids represented
in all applicable periods? If “NO”, the process proceeds to
block 955, for the function of run optimator 370 to create
additional sp instances. From the function of 955, the
process then proceeds to the function of block 960, perform
historical prediction analysis and rank candidate spids by
efficiency factor. If the decision of block 950 is “YES” (all
sp ids are represented in applicable periods), then the pro

US 7,072,639 B2
27

cess proceeds directly to the function of block 960 of
performing historical prediction analysis. After the historical
prediction analysis of block 960 is complete, the process
proceeds to block 965 for performing sensitivity analysis,
and rank candidate sp ids by relative sensitivity. Once the
function of block 965 is complete, the process then moves
to the final step of 970, for recording decision results,
mapping to the corresponding action and/or recommenda
tion.

The Application Related to MAMBA System
The following represents a detailed description of the

logic of the system and method for analyzing the wireless
communication records and for determining optimal wire
less communication service plans.

FIG. 14 depicts the operation 1000 of the buildProfile
process 350. In block 1010, the process begins with the
“Enter function. In block 1020, a decision is made if
getClientId is TRUE. If the answer is “NO”, the process then
goes to the Exit function, shown in block 1220. If the answer
is “YES, then the process proceeds to block 1040. In block
1040, the decision is made if getCorpZip is TRUE. If not, the
process proceeds to the Exit function 1220, if “YES', the
process proceeds to block 1060, where the decision is made
if getNumbers3yClient (rsNumbers) is TRUE and the Count
is greater than Zero. If the answer is “NO”, the process
proceeds to the Exit function 1220. If “YES', the process
proceeds to block 1080, where the decision is made to Do
while NOT reNumbers.EOF. If the answer is “NO”, the
process goes to Exit function 1220. If “YES, the process
proceeds to block 1100, where the decision is made if
get ZipFromPhone is TRUE. If"NO" the process proceeds to
Exit function 1220. If “YES, the process proceeds to block
1120, where the decision is made if getCallDetailByNumber
(rsCallDetail) is TRUE and the Count is greater than Zero. If
the answer is “NO”, the process proceeds to the Exit
function 1220. If “YES', the process proceeds to block
1140, where the decision is made to Do while NOT rsCall
Detail.EOF. If the answer is “NO”, the process proceeds to
the get ZipCodes function of block 1280. If the answer is
“YES, the process proceeds to block 1160, where the
decision is made if getType 1180, getWhen 1200, or get
Where 1221 are FALSE. If the answer is “NO”, the process
moves to the “rsCall)etail. MoveNext function of block
1260. If “YES, the process moves to block 1240, where
totalRejectedCalls is equal to total RejectedCalls--1. The
process then proceeds to block 1260, where the function
“rsCall)etail.MoveNext is performed. Following this func
tion, the system will again move to block 1140, Do while
NOT rsCallDetail.EOF. This process is repeated until block
1140 is “NO”, and the process proceeds to the getZipCodes
function of block 1280.
The get ZipCodes process of block 1280, then proceeds to

a decision in block 1300 if build ProfileDic is TRUE. If
“NO”, the process goes to the Exit function of block 1220.
If “YES, the process proceeds to block 1320 where a
decision is made if addProfileRecord is TRUE. If “NO”, the
process proceeds to Exit function 1220. If “YES, the
process proceeds to block 1340, the “rsNumbers.MoveN
ext function. From here, the process then returns to the
decision block 1080 of do while NOT rsNumbers.EOF.
The getClientID process of block 1020 (FIG. 14) is

depicted in FIG. 15. The process 1020 begins with block
1021, the Enter function, and continues to block 1022, the
function of Select ID from client where name is equal to
client name. The process ends in block 1023, the Exit
function.

10

15

25

30

35

40

45

50

55

60

65

28
The getCorpZip process of block 1040 (FIG. 14) is

depicted in FIG. 16. The process 1040 is entered in block
1041, and continues to block 1042, where the postal code is
selected from the address. The process ends in block 1043,
the Exit function.
The getNumbers3yClient process of block 1060 (FIG.

14) is detailed in FIG. 17. The process begins with block
1061, the Enter function, and continues in block 1062, the
function Select * from Telephone for client Id. The process
ends in block 1063, the Exit function.
The getZipFromPhone process of block 1100 is detailed

in FIG. 18. The process 1100 begins with block 1101, the
Enter function, and continues to block 1102, the function
call twi get ZipFromPhone stored procedure. The function
ends in block 1103, the Exit function.
The getType process 1180 shown in block 1160 (FIG. 14)

is detailed in the flowchart of FIG. 19. The process begins
in block 1181, the Enter function, and continues in block
1182, where the decision is made if number called is equal
to "000 or 555 or '411 or len equals 3. if the answer of
decision block 1182 is “YES, the process moves to the
Increment local call counter of block 1183, and then exits the
process in block 1184. If the decision of block 1182 is “NO”,
the process moves to the decision block 1185. In block 1185,
the decision is made if getLataAndState for called number
and mobile number is TRUE. If the answer is “NO”, the
process moves to the Exit function block 1184. If “YES', the
process moves to the decision block 1189, where the deci
sion is made if called LATA is TollFree. If the answer is
“YES, the process proceeds to block 1183, for an Increment
of local call counter. If the answer of decision block 1189 is
“NO”, the process proceeds to the decision block 1190,
where the decision. If mobileLATA is equal to called LATA.
If the decision of block 1190 is “YES, the process proceeds
to the Increment local call counter block 1183, and then the
Exit function of block 1184. If the decision of block 1190 is
“NO”, the process proceeds to the decision block 1191,
where the decision is made if mobileState is equal to the
calledState. If the answer of decision block 1191 is “YES,
the process proceeds to block 1192 for the Increment Intr
astate counter, and then to the Exit function of block 1184.
If the decision of block 1191 is “NO”, the process proceeds
to the Increment Interstate counter of block 1193, and then
to the Exit function of block 1184.
The getLataAndState function of block 1185 (FIG. 19) is

detailed in the flowchart of FIG. 20. In FIG. 20, the process
begins in the Enter function in block 1186, and continues to
block 1187, the function call twi getLataAndState store
procedure. Then, the process is exited in block 1188.
The getWhen function 1200 depicted in block 1160 (FIG.

14) is depicted in the flowchart of FIG. 21. The process is
entered in block 1201, and proceeds to the decision block
1202, if dowId is Monday. If the answer is “YES', the
process proceeds to the decision block 1203, where the
decision is made if the callTime is less than peak start time.
If the answer of decision block 1203 is “YES, the block
1204 Increment Weekend counter is signaled, followed by
the Exit function 1205. If the answer is “NO’ to decision
block 1203, the process proceeds to the decision block 1206,
where the decision is made if Elself callTime is less than
peak end time. If the answer is “YES, the process pro
ceeds to block 1207 where the Increment Peak counter is
signaled, and then the process proceeds to the Exit function
1205. If the decision is “NO” in decision block 1206, the
process proceeds to block 1208, for the Increment OffPeak
counter, and then proceeds to the Exit function of block
1205. If the decision of block 1202 is “NO” (dowIddoes not

US 7,072,639 B2
29

equal Monday), then the process proceeds to decision block
1209, where the decision is made if dowId is equal to
Tuesday Thursday. If the answer is “YES, the process
proceeds to decision block 1210, where the decision is made
if the callTime is less than the peak start time. If the answer
to decision block 1210 is “YES, the process proceeds to
block 1210, the Increment OffPeak counter, and then to Exit
function of block 1205. If the decision of block 1210 is
“NO”, the process proceeds to block 1212, the increment
peak counter, and then to the Exit function of block 1205. If
the decision to block 1209 is “NO” (dowId is not equal to
Tuesday-Thursday), then the process proceeds to decision
block 1213, where the decision is made if the dowId is equal
to Friday. If the decision is “YES, the process proceeds to
the decision block 1214, where the decision is made if
callTime is less than peak start time. If “YES, the call
Time is less than the peak start time, then the process
proceeds to block 1215, the increment offpeak counter, and
then to the Exit function 1205. If the answer to decision
block 1214 is “NO”, the process proceeds to decision block
1216, and the decision is made if Elself callTime is less than
peak end time. If the answer is “YES, the process pro
ceeds to the increment peak counter of block 1217, and then
to the Exit function of block 1205. If the decision of block
1216 is “NO”, the process proceeds to block 1218, the
increment weekend counter, and then to the Exit function of
block 1205. If the decision of block 1213 is “NO” (the
dowId does not equal Friday), then the process proceeds to
the decision block 1219, where the decision is made if Else
dowId is equal to Saturday or Sunday. The decision of block
1219 is necessarily “YES, wherein the process proceeds to
block 1220, the Increment Weekend counter, and then to the
Exit function 1205.
The getWhere process 1221 of block 1160 (FIG. 14) is

depicted in the flowchart of FIG. 22. The getWhere process
1221 begins with the Enter function in block 1222, and
proceeds to the decision block 1223, where the decision is
made if number called is equal to "000. If “YES, the
process proceeds to block 1224, the Increment HomeZip
counter, and then to the Exit function of block 1225. If the
decision of block 1223 is “NO”, the process proceeds to the
decision block 1226, where the decision is made if getZip
FromCityState (originatingCityState) is TRUE. If the
answer to decision block 1226 is “NO”, the process proceeds
to the Exit function of block 1225. If the answer to decision
block 1226 is “YES, the process proceeds to decision block
1230, where the decision is made if retzip is equal to the
homeZip. If “YES, the process proceeds to block 1224, the
Increment HomeZip counter, and then to the Exit function of
block 1225. If the decision of block 1230 is “NO”, the
process proceeds to the decision block 1231, where the
decision is made if retzip is equal to corpZip. If the answer
to the decision block 1231 is “YES, the process proceeds
to block 1232, the Increment CorpZip counter, and then to
the Exit function of block 1225. If the decision of block 1231
is “NO”, the process proceeds to block 1233, the Add Zip to
ZipCode dictionary, and then to the Exit function of block
1225.
The getzipFromCityState process referred to in block

1226 (FIG. 22) is detailed in the flowchart of FIG. 23. The
process 1226 begins with the Enter function in block 1227,
and then proceeds to the Call twi getzipFromCityState
stored procedure command of block 1228. The process then
exits in block 1229.
The get ZipCodes process of 1280 of FIG. 14 is detailed

in the flowchart of FIG. 24. The get ZipCodes process 1280
begins with the Enter function in block 1281, and proceeds

5

10

15

25

30

35

40

45

50

55

60

65

30
to the decision block of 1282, where the decision is made if
ZipCode count is greater than Zero. If “NO”, the process
proceeds to the Exit function of bolck 1283. If the ZipCode
count is greater than Zero (“YES), the process proceeds to
the decision block of 1284, wherein the decision is made If
ZipCode count is greater than or equal to max us Zips. If
“NO”, the process proceeds to block 1285, the looping
operation through Zip Array. The ZipArray may contain any
number of items according to several embodiments of the
invention. By way of example, in one embodiment, the
Zip Array contains four items. The process may either then
proceed to the decision block 1291, or continue on to block
1286, the looping operation through ZipDictionary. From
block 1286, the process can then either proceed to the
decision block of 1287 or continue on to block 1290, the
function Save max zip and count. At block 1290, the process
then returns to the looping operation through ZipDictionary
of block 1286.

If the looping operation through ZipDictionary of block
1286 proceeds through the decision block of 1287, the
decision is made if the max Zip and count is greater than the
current zip Array item. If “NO”, the process returns to block
1285, the looping operation through Zip Array. If the answer
to decision block 1287 is “YES' (max zip and count are
greater than current Zip Array item), then the process pro
ceeds to block 1288, where the max zip and count are added
to Zip Array. The process then proceeds to block 1289, to
remove max Zip and count from dictionary. From block
1289, the process then returns to block 1285, the looping
operation through Zip Array. Once the looping operation
through Zip Array of block 1285 is completed, the process
proceeds to the decision block 1291, wherein the decision is
made if ZipDictionary count is greater than Zero. If “NO”.
the process then proceeds to the Exit function of block 1283.
If “YES, the process then proceeds to roll up remaining Zip
dictionary items in to the first Zip Array item as instructed
in block 1292, and then proceeds to the Exit function of
block 1283. Returning to the decision block of 1284, if
“YES (ZipCode count is greater than or equal to max us Z
ips), then the process proceeds to the decision block 1293,
wherein the decision is made if testLen is greater than Zero.
If “NO”, the process proceeds to the Exit function of block
1283. If “YES' (testLen is greater than Zero), then the
process proceeds to the function of block 1294, and looping
operation through all ZipCodes in ZipDictionary.
The loop then proceeds to block 1295, where tempZip is

equal to left(testLen) characters of ZipCode. The process
then proceeds to block 1296, where the function Add
tempZip and count to tempZipDictionary is performed, and
then returns to the looping operation through all ZipCodes in
zipDictionary of block 1294. If in block 1294 the testLen is
equal to the testLen-1, the process proceeds to the Enter
function of block 1281, and the getzipCodes begins again.
The buildProfilesDic process of block 1300 (FIG. 14) is

detailed in the flowchart of FIG. 25. The process 1300
begins with the Enter function of block 1301, and proceeds
to the decision block 1302, where the decision is made if
total is less than any individual value. If “NO”, the process
proceeds to the Exit function of block 1303. If “YES” (total
is less than any individual value), then the process proceeds
to the decision block 1304, where the decision is made if the
total is greater than Zero. If “NO”, the process proceeds to
block 1306, for adding default values to profile dictionary,
and then to the Exit function of block 1303. If the decision
of block 1304 is “YES' (total is greater than Zero), then the

US 7,072,639 B2
31

process proceeds to block 1305, for adding actual values to
profile dictionary, and then to the Exit function of block
1303.
The addProfileRecord process of block 1320 (FIG. 14) is

detailed in the flowchart of FIG. 26. The process 1320
begins with the Enter function of block 1321. The process
then proceeds to block 1323 for inserting into the calling
profile. The process then ends with the Exit function 1324.
Once the profiles are built, according to the steps detailed

in the flowchart of FIGS. 14–26, the profiles are then run, as
detailed in the flowchart of FIG. 27. The runProfiler process
1400 begins with the Enter function of block 1401, and
proceeds to the function of block 1402, of Set
oProfiler Create0bject("TWIOptimizer. Optimator”). The
process then proceeds to block 1403, For iCount=0 to
Ubound (iProfilelds). From block 1403, the process may
proceed to block 1404, Set oProfiler-Nothing, and then to
the Exit function of block 1405. Block 1403 may also
proceed to the decision block of 1406, where the decision is
made If oProfiler. DoEval is TRUE. If “NO”, the process
then proceeds to the Exit function of block 1405. If “YES”
(oProfiler. DoEval is TRUE), then the process returns to
block 1403, For iCount=0 to Ubound(iProfilelds).

The doEval process of block 1406 (FIG. 27) is detailed in
the flowchart of FIG. 28. The doEval process 1406 begins
with the Enter function of block 1410, and proceeds to the
decision block 1420, where the decision is made If getUser
Profile is NOT nothing. If “NO, the process proceeds to the
Exit function of block 1440. If “YES' (getUserPrfile is NOT
nothing), then the process proceeds to the decision block
1460, where the decision is made If findpackages is True. If
“NO”, the process proceeds to the Exit function of block
1440. If “YES (findPackages is True), then the process
proceeds to the decision block of 1490. In the decision block
of 1490, the decision is made If calcCosts is True. If “NO”,
the process proceeds to the Exit function of block 1440. If
“YES, the process then proceeds to block 1600 for create
Evaluation, and then to the Exit function 1440.
The getUserProfile process of block 1420 (FIG. 28) is

described in greater detail in the flowchart of FIG. 29. The
getUserProfile process 1420 begins with the Enter function
of block 1425, proceeds to block 1430 for Clear out
m dicrofile. The process then proceeds to block 1435 for
getProfile, and then to the Exit function 1440.

The getProfile process of block 1435 (FIG. 29) is
described in greater detail in the flowchart of FIG. 30. The
getProfile process 1435 begins with the Enter function of
block 1436, and proceeds to block 1437 for Select from
calling profile. The process then proceeds to the Exit func
tion of block 1438.

The findPackages process of block 1460 (FIG. 28) is
described in greater detail in the flowchart of FIG. 31. The
findpackages process 1460 begins with the Enter function of
block 1461, and then proceeds to the decision block of 1462,
where the decision is made if profile is found. If “NO”, the
process proceeds to the Exit function of block 1463. If
“YES' (profile is found), the process proceeds to block 1463
for Get home Zip, and then to block 1464, twiOptimizer.
SPPackage...getPackagesByzIP, where packages are added to
allPackages dictionary 1465. The process proceeds to block
1466 where it performs the Get corp zip function, and then
proceeds to the decision block of 1467, where the decision
is made if corp zip is found and corp zip is greater than or
less than the home Zip. If the decision of block 1467 is
“NO”, the process proceeds to block 1468 for removing all
items from m dicBasePackages. The process then proceeds
to block 1469 for performing the function Add all base

10

15

25

30

35

40

45

50

55

60

65

32
packages form allPackages dictionary to m dicBasePack
ages. The process then proceeds to block 1470 where it
performs the function Add all non-base packages from
allPackages dictionary to m dicBasePackages, and then
proceeds to the Exit function 1463. If the decision of block
1467 is “YES' (corp zip is found and corp zip is greater than
or less than home Zip), the process proceeds to block 1464,
where it performs the function twiOptimizer. SPPackage..get
PackagesByZip. The process then proceeds to block 1465
where it performs the function Add packages to allPackages
dictionary. From block 1465, the process continues on to
block 1468, where it performs the function Remove all items
from m dicBasePackages, and the process continues on
until the Exit function of block 1463.
The getPackagesByzIP process of block 1464 (FIG. 31)

is described in greater detail in the flowchart of FIG. 32. The
getPackagesBy ZIP process 1464 begins with the Enter func
tion 1471, and proceeds to the decision block 1472, where
the decision is made if carriers count is equal to Zero. If
“NO”, the process proceeds to block 1474, where rs equals
getPackagesBy Zip AndCarrier, and then to the decision
block 1475. If the answer to the decision block 1472 is
“YES (carriers count is equal to Zero), then the process
proceeds to block 1474, where rs equals getPackagesBy Zip.
From block 1473, the process then proceeds to the decision
block 1475, where the decision is made if rs is NOT nothing
and rs.EOF is FALSE. If the answer is “NO”, the process
proceeds to the Exit function of block 1476. If the answer to
the decision block 1475 is “YES” (rs is NOT nothing and
rs.EOF is FALSE), then the process proceeds to block 1477,
While NOT rSEOF.
From block 1477, the process may then proceed to the

Exit function of block 1476, or it may proceed to block
1478, where it performs the function Save rs values to
newPackage. From block 1478, the process proceeds to the
decision block 1479, where the decision is made if package
type equals base or extendedLocalCalling. If “NO”, the
process proceeds to the decision block of 1482. If “YES
(package type is equal to base or extendedLocalCalling), the
process then proceeds to the decision block 1480. In the
decision block 1480, the decision is made areZips in pack
age coverage area. If “NO”, the process then proceeds to the
decision block 1482. If “YES (arezips in package coverage
area), then the process proceeds to block 1481, where it
performs the function Add minutes to newPackage cov
eredZips.
From block 1481, the process then proceeds to the deci

sion block 1482, where the decision is made is package type
equal to Base. The answer to the decision block 1482 is
necessarily “YES, and the process proceeds to block 1483,
where it performs the function Add minutes for Digital and
Analog Roaming. From block 1483, the process proceeds to
block 1484, where it performs the function Save profile Zip
for package.
From block 1484, the process proceeds to block 1485,

where it performs the function Add package to retDic. From
block 1485, the process returns again to block 1477, and this
loop is repeated until the function is rs.EOF. Then the
process proceeds from block 1477 to the Exit function of
block 1476.
The selectCovered ZIPs process of block 1480 (FIG. 32)

is described in greater detail in the flowchart of FIG.33. The
selectCovered ZIPs function 1480 begins with the Enter
function of block 1486, and then proceeds to block 1487,
where it performs the function Call areaZIPsInPackageCov
erage Area. Upon completion of the function of block 1487,
the process proceeds to the Exit function of block 1488.

US 7,072,639 B2
33

The calcCosts process of block 1490 (FIG. 28) is
described in greater detail in the flowcharts of FIG. 34A and
FIG.34B. The process calcCosts 1490 begins with the Enter
function of block 1491, and proceeds to the decision block
1492, where the decision is made if profile is found. If “NO”,
the process proceeds to the Exit function of block 1493. If
“YES (Profile is Found), the process proceeds to the
function of block 1494, For each base package, and then
proceeds to the function of block 1495, twiOptimizer. SP
Package.calcCost. From block 1495, the process proceeds to
a looping operation beginning with block 1496, for each
optional package.

From block 1496, the process can either proceed directly
to the Calculate minimum costs function of block 1506, or
the function of block 1495, twiOptimizer. SPPackage.cal
cCost. From block 1495, the process proceeds to the deci
sion block 1497, where the decision is made whether pack
age type equals longdistance. If “YES' (package type is
longdistance), the process proceeds to the decision block
1498, where the decision is made if current savings is greater
than max savings. If the answer to the decision block 1498
is "NO" (current savings is not greater than max savings),
the process proceeds to the decision block 1500. If “YES”
(current savings is greater than max Savings), the process
proceeds to the function of block 1499, Save current sav
ings.

From block 1499, the process then proceeds to the deci
sion block 1500. In the decision block 1500, the decision is
made if package type is equal to offpeak, weekend, or
offpeakweekend. If “YES' (package type is either offpeak,
weekend, or offpeakweekend), the process proceeds to the
decision block 1501. In the decision block 1501, the deci
sion is made whether current savings are greater than max
savings. If “NO”, the process proceeds to the decision block
1503. If “YES' (current savings are greater than max
savings), the process proceeds to the function of block 1502,
Save current savings.
From block 1502, the package type then proceeds to the

decision block 1503. If the decision of block 1500 is “NO’
(package type is not offpeak, weekend, or offpeakweekend),
then the process proceeds to the decision block 1503, where
the decision is made if package type is equal to extended
LocalCalling. If “NO”, the process returns back to the
function of block 1406, for each optional package, and then
proceeds to the function of block 1495, twiOptimizer. SP
Package.calcCost, and the procedure is run again. If the
decision of block 1503 is “YES' (package type is extend
edLocalCalling), the process then proceeds to the decision
block 1504. In the decision block 1504, the decision is made
whether current savings is greater than max Savings. If the
answer to the decision of block 1504 is “NO”, the process
returns again to the looping operation of block 1496, and the
procedure is run again for each optional package. If the
answer to block 1504 is “YES' (current savings is greater
than max savings), then the process proceeds to the function
of block 1505, Save current savings.

From block 1505, the process then returns to block 1496,
where the procedure is repeated. Once the procedures have
been calculated for each optional package of block 1496, the
process then continues on to the function of block 1506,
Calculate minimum costs. From block 1506, the process
then proceeds to the function of block 1507, Add costs to
m dichBasePackages. From block 1507, the process pro
ceeds to the function of block 1508, Use twiOptimizer. Ser
vicePlan.GetServicePlansById to Get activation fee and add
it to m dicBasePackages.

5

10

15

25

30

35

40

45

50

55

60

65

34
From block 1508, the process continues to the function of

block 1509, Build array of lowest cost package ids. The
array may contain any number of items according to several
embodiments of the invention. By way of example, in one
embodiment of the invention, the array contains three items.
From block 1509, the process continues to the function of
block 1510, a looping operation through array of lowest cost
package ids and set the matching packages includedInEval
flag to true. From block 1510, the process then proceeds to
the Exit function of block 1493.
The process for the calcCost function of block 1495 (FIG.

34) is detailed in the flowchart of FIGS. 35A and 35B. The
process 1495 begins with the Enter function of block 1511,
and proceeds to the decision block of 1512, where the
decision is made if package type is equal to base. If “YES
(package is base), then the process proceeds to the function
of block 1513, Calculate peak over minutes. The process
then proceeds to the function of block 1514, Calculate
off-peak over minutes, followed by the function of block
1515, Calculate long distance (LD) minutes.
The process then proceeds to the function of block 1516,

Calculate roaming minutes, and then to block 1517, Get the
total roaming minutes for those profile ZIPS not in the
current calling area. From block 1517, the process proceeds
to block 1518, the function Now Calculate the correspond
ing costs, and then proceeds to the decision block 1519,
where the decision is made if package type is longdistance.
Further, if the decision of block 1512 is "NO" (package type
is not base), the process proceeds to the decision block of
1519. If the decision of block 1519 is “NO, the process then
proceeds to the decision of block 1523, as to whether
Package type is equal to offpeak. If the decision of block
1519 is “YES' (package type is equal to longdistance), the
process proceeds to the function of block 1520, Calculate the
number of minutes over the plan minutes.
From block 1520, the system proceeds to block 1521, the

function Find how much this package saves against the
current base package cost. Once the function of 1521 is
complete, the process moves to the function 1522. Now
calculate the corresponding costs. Once the function of
block 1522 is completed, the process then moves to the
decision block 1523, where the decision is made if package
type is equal to offpeak. If the decision is “NO”, the process
proceeds to the decision block of 1526. If the decision of
block 1523 is “YES' (package type is offpeak), then the
process proceeds to the function of block 1524, Calculate the
offpeak minutes cost.

After the function of block 1524, the process proceeds to
the function of block 1525, Find how much this package
saves against the current base package cost. Upon comple
tion of the function 1525, the process then proceeds to the
decision block of 1526, where the decision is made if
package type is equal to weekend. If “NO”, the process
proceeds to the decision block 1529. If the decision of block
1526 is “YES' (package type is weekend), then the process
proceeds to the function of block 1527, Calculate the week
end minutes cost. Upon the completion of the function of
block 1527, the process proceeds to the function of block
1528, Find how much this package saves against the current
base package cost. Upon completion of the function of block
1528, the process will then proceed to the decision block
1529, where the decision is made if package type is equal to
offpeak weekend. If “NO”, the process proceeds to the
decision block 1532. If the decision of block 1529 is “YES
(package type is offpeak weekend), then the process pro
ceeds to the function of block 1530, Calculate the offpeak
minutes cost.

US 7,072,639 B2
35

Upon completion of the function of block 1530, the
process continues to the function of block 1531, Find how
much this package saves against the current base package
cost. Upon completion of this function, the process then
proceeds to the decision block 1532, where the decision is
made if package type is equal to extended local calling. If
“NO”, the process then proceeds to the Exit function of
block 1535. If the decision of block 1532 is “YES' (package
is extended local calling), then the process proceeds to the
function of block 1533, Calculate the extended local calling
minutes cost. After the function of block 1533, the process
continues to the function of block 1534, Find how much this
package saves against the current base package cost. The
process then proceeds to the Exit function 1535.

The getServicePlanByID process of block 1508 (FIG.34)
is detailed in the flowchart of FIG. 36. The getServicePlan
ByID process 1508 begins with the Enter function of block
1535, and proceeds to the function of block 1536, rs equals
getServicePlanByID. The process then proceeds to the deci
sion block 1537, where the decision is made if NOT rs is
nothing and NOT rs.EOF. If “NO”, the process proceeds to
the Exit function of block 1538. If “YES (NOT rs is nothing
and NOT rs.EOF), then the process continues to the function
of block 1539, Save rs to serviceplan object. From block
1539, the process then proceeds to the Exit function of block
1538.

The createEvaluation function of block 1600 (FIG. 28) is
detailed in the flowchart of FIG. 37. The process create
Evaluation 1600 begins with the Enter function of block
1601, proceeds to the function of block 1620, putEvaluation,
and then finishes with the Exit function of block 1640.

The putEvaluation process of block 1620 (FIG. 37) is
detailed in the flowchart of FIG. 38. The process putEvalu
tion 1620 begins with the Enter function 1621, proceeds to
the function of block 1622. Insert in to rate plan evaluation,
and then proceeds to the function of block 1623, a looping
operation through base packages. The process then proceeds
to the decision block 1624, where the decision is made if
includedIn Eval is TRUE. If “NO”, the process then proceeds
to the next base package, as depicted in block 1625.

From block 1625, the process then returns to the looping
operation base packages of block 1623. If the decision of
block 1624 is “YES” (includedInEval is TRUE), then the
process proceeds to the function of block 1627. Insert in to
service plan instance. The process then proceeds to the
function of block 1628, Insert in to SPI RPE LINK, before
proceeding to the function of block 1629. Insert in to
package instance. The process then continues to the function
of block 1630, the looping operation through optional pack
ages. In the looping operation, the process proceeds to the
decision block 1631, where the decision is made if package
selected is True. If “NO”, the looping operation then goes
directly to the next optional package, as shown in block
1633, before returning through to the looping operation
through optional packages of block 1630. If the decision of
block 1631 is “YES” (if package selected is True), then the
process proceeds to the function of block 1632. Insert in to
package instance, and then to the function of block 1633 for
the next optional package.
Once the looping operation is completed, the process then

proceeds from block 1633 to the function of block 1625 for
the next base package, which is part of the looping operation
through based packages as depicted in block 1623. Once the
looping operation through base packages is complete, the
process then moves from block 1625 to the Exit function of
block 1626.

5

10

15

25

30

35

40

45

50

55

60

65

36
The calling profiles may be averaged by client or account.

The avgProvilesByClient process 1700 is depicted in the
flowchart of FIG. 39. The avgProfilesByClient process 1700
begins with the Enter function of block 1701, and proceeds
to the decision block 1702, where the decision is made if
getclientId is TRUE. If “NO”, the process then proceeds to
the Exit function of block 1703. If “YES' (getclientId is
TRUE), then the process proceeds to the decision block
1704. In block 1704, the decision is made If getNumbers
ByClient (rsNumbers) is TRUE and count is greater than
Zero. If “NO”, the process proceeds to the Exit function of
block 1703. If “YES' (getNumbersbyClient (rsNumbers) is
TRUE and count is greater than Zero), the process proceeds
to the decision block 1705, where the decision is made Do
While NOT rsNumbers.EOF. If “NO”, the process proceeds
to the Exit function of block 1703. If “YES (NOT rsNum
bers.EOF), then the process proceeds to the decision block
17O6.

The decision is made in block 1706 if avgProfilesBy Ac
count is TRUE. If “NO”, the process proceeds to the Exit
function of block 1703. If “YES (avgProfilesByAccount is
TRUE), the process proceeds to the function of block 1707.
rsNumbers.MoveNext. From the function of block 1707, the
process then returns to the decision block 1705, and is
repeated while NOT rsNumbers.EOF. The getclientId func
tion of block 1702 has been previously described and is
depicted in process 1020 (FIG. 15). The getNumbersbyCli
ent function of block 1704 has been previously described
and is depicted in the flowchart of process 1060 (FIG. 17).
The avgProfilesBy Account process 1706 (FIG. 39), is

depicted in the flowchart of FIG. 40. The avgProfilesBy Ac
count process 1706 begins with the Enter function shown in
block 1750. The process then proceeds to the decision block
1760, where the decision is made if getProfileRecords
(rsProfiles) is TRUE and the count is greater than Zero. If
“NO”, the process proceeds to the Exit function of block
1770. If “YES' (getProfileRecords is TRUE and count is
greater than Zero), then the process proceeds to the decision
block 1780, a Do while NOT rsProfiles.EOF function. If
“NO”, the process proceeds to the get ZipCodes function of
block 1820. If “YES (NOT rsProfiles.EOF), then the pro
cess proceeds to the decision block 1790. In the decision
block 1790, the decision is made if homeZip is the same. If
“NO”, the process proceeds to the get ZipCodes function of
block 1820. If “YES” (homeZip is the same), then the
process proceeds to the function of block 1800, Sum all call
values.

From block 1800, the process then continues to the
function of block 1810, iPeriods equals iPeriods plus 1. The
process then returns to the function Do while NOT rsPro
files.EOF of block 1780. Once the block 1780 is “NO, and
leads to the getzipCodes function of block 1820, the process
then continues to the decision block 1830. The decision is
made in block 1830 if iPeriods is greater than Zero. If “NO”,
the process proceeds to the Exit function of block 1770. If
“YES' (iperiods is greater than Zero), then the process
continues to the function of block 1840, Average all sums.
The process then continues to the Build profile dictionary
function of block 1300. The Build profile dictionary function
is depicted in process 1300 (FIG. 25). The process then
continues to the addProfileRecord of block 1320 (FIG. 26),
before proceeding to the Exit function of block 1770.
The getProfileRecords process of block 1760 is depicted

in greater detail in the flowchart of FIG. 41. The getProfil
eRecords process 1760 begins with the Enter function 1761,

US 7,072,639 B2
37

proceeds to the Call twi getProfileRecords stored procedure
of block 1762, and then finishes with the Exit function of
block 1763.

It should be emphasized that the above-described embodi
ments of the present invention, particularly, any "preferred
embodiments, are merely possible examples of implemen
tations, merely set forth for a clear understanding of the
principles of the invention. Many variations and modifica
tions may be made to the above-described embodiment(s) of
the invention without departing substantially from the spirit
and principles of the invention. All Such modifications and
variations are intended to be included herein within the
Scope of this disclosure and the present invention and
protected by the following claims.
The following is claimed:
1. A method, comprising the steps of
receiving billing information associated with a Subscriber

of a telecommunication service under a current rate
plan;

processing the Subscriber related billing information to
produce organized data in a calling profile record for
each telecommunication service being used by the
Subscriber;

creating a usage history table and a call detail table from
the processed billing information in accordance with a
specified billing period;

determining the cost of the current rate plan;
determining the cost of at least one other rate plan via use

of the usage history table and call detail table; and
determining at least one proposed rate plan from the at

least one rate plan of at least one telecommunication
service provider that would save the subscriber tele
communication costs relative to the current rate plan.

2. The method of claim 1, wherein the step of determining
at least one proposed rate plan further comprises the steps of

providing a training set of data comprising the at least one
proposed rate plan;

providing a test set of data comprising a most recent rate
plan selected, wherein the most recent rate plan is one
of a group of rate plans made of the at least one rate
plan;

comparing the at least one proposed rate plan from the
training set to the most recent rate plan of the test set;
and

determining an ability of the training set to predict cost
results of the test set.

3. The method of claim 2, wherein the step of determining
the cost of at least one other rate plan comprises the step of
using billing information from more than one period.

4. The method of claim 1, wherein the step of determining
at least one proposed rate plan comprises the step of calcu
lating an efficiency rating of various rate plans.

5. The method of claim 4, wherein the step of determining
at least one proposed rate plan comprises the step of indi
vidually dividing a cost of the current rate plan by the cost
of each of individual rate plan within the group of various
other rate plans, resulting in the efficiency rating.

6. The method of claim 5, wherein an efficiency rating of
greater than one indicates that the individual rate plan is
more cost effective than the current rate plan.

7. The method of claim 4, wherein the highest efficiency
among the various rate plans is the most cost effective rate.

8. The method of claim 1, wherein the step of determining
atast one proposed rate plan comprises the step of using a
weighting factor that gives greater relevance to more current
billing information as compared to older billing information.

5

10

15

25

30

35

40

45

50

55

60

65

38
9. The method of claim 8, further comprising the step of

calculating the weighting factor by computing the Sum of the
number of billing periods and the natural log of one minus
the number of billing periods.

10. The method of claim 1, wherein the step of determin
ing at least one proposed rate plan further comprises testing
the at least one proposed rate plan for sensitivity to changes
in the calling profile record.

11. The method of claim 10, wherein the step of testing for
sensitivity comprises the step of perturbing the calling
profile record.

12. The method of claim 11, wherein the step of perturb
ing the calling profile record comprises the step of perturb
ing the calling profile record in a positive and negative
fashion by a fixed usage amount.

13. The method of claim 11, wherein the step of perturb
ing the calling profile record comprises the step of perturb
ing the calling profile record in a positive and negative
fashion by one standard deviation.

14. The method of claim 10, wherein the step of deter
mining at least one proposed rate plan further comprises the
step of excluding any discontinuities found in the calling
profile record.

15. A system, comprising:
a means for receiving billing information associated with

a Subscriber of a telecommunication service under a
current rate plan;

a means for processing the Subscriber related billing
information to produce organized data in a calling
profile record for each telecommunication service
being used by the Subscriber, the means for processing
being communicatively coupled to the means for
receiving;

a means for creating a usage history table and a call detail
table from processed billing information in accordance
with a specified billing period, the means for creating
being communicatively coupled to the means for pro
cessing and the means for receiving;

a means for determining cost of the current rate plan, the
means for determining cost of the current rate plan
being communicatively coupled to the means for cre
ating, the means for processing and the means for
receiving;

a means for determining cost of at least one other rate plan
via use of the usage history table and call detail table,
the means for determining cost of at least one other rate
plan being communicatively coupled to the means for
determining the cost of the current rate plan, the means
for creating, the means for processing, and the means
for receiving; and

a means for determining at least one proposed rate plan
from the at least one rate plan of at least one telecom
munication service provider that would save the sub
scriber telecommunication costs relative to the current
rate plan, the means for determining at least one
proposed rate plan being communicatively coupled to
the means for determining cost of at least one other rate
plan, the means for determining cost of the current rate
plan, the means for creating, the means for processing,
and the means for receiving.

16. The system of claim 15, further comprising a means
for producing a report of the at least one proposed rate plan
to enable selection of a best telecommunication service
provider and a best rate plan, wherein the means for pro
ducing is communicatively coupled to the means for deter
mining at least one proposed rate plan, the means for
determining cost of at least one other rate plan, the means for

US 7,072,639 B2
39

determining cost of the current rate plan, the means for
creating, the means for processing, and the means for
receiving.

17. The system of claim 15, further comprising a means
for recommending that is communicatively coupled to the
means for determining at least one proposed rate plan, the
means for determining cost of at least one other rate plan, the
means for determining cost of the current rate plan, the
means for creating, the means for processing, and the means
for receiving.

18. The system of claim 17, wherein said means for
recommending recommends at least one plan in the form of
a rate plan evaluation record.

19. The system of claim 15, wherein the number of
proposed rate plans is predefined.

20. The system of claim 15, wherein the means for
determining at least one proposed rate plan also calculates
an efficiency rating of various rate plans.

21. The system of claim 20, wherein the means for
determining at least one proposed rate plan also individually
divides a cost of the current rate plan by the cost of each of
individual rate plan within the group of various other rate
plans, resulting in the efficiency rating.

22. The system of claim 21, wherein an efficiency rating
of greater than one means that the individual rate plan is
more cost effective than the current rate plan.

23. The system of claim 21, wherein the highest efficiency
among the various rate plans is the most cost effective rate
plan.

24. A system, comprising:
at least one transceiver configured to receive billing

information associated with a subscriber of a telecom
munication service under a current rate plan;

a storage unit configured to store the billing information,
wherein the storage unit is communicatively coupled to
the transceiver,

a memory comprising Software, wherein the memory is
communicatively coupled to the transceiver and the
storage unit;

a processor, communicatively coupled to the transceiver,
storage unit, and memory, configured by the Software
tO:

process the subscriber related billing information to
produce organized data in a calling profile record for
each telecommunication service being used by the
subscriber;

create a usage history table and a call detail table within
the storage unit from the processed billing informa
tion in accordance with a specified billing period;

determine the cost of the current rate plan;
determine the cost of at least one other rate plan via use

of the usage history table and call detail table:
determine at least one proposed rate plan from the at

least one rate plan of at least one telecommunication
service provider that would save the subscriber tele
communication costs relative to the current rate plan;
and

produce a report of the at least one proposed rate plan
to enable selection of a best telecommunication
service provider and a best rate plan; and

wherein the transceiver is configured to transmit the
report.

25. The system of claim 24, wherein the report is trans
mitted to the subscriber.

26. The system of claim 24, wherein a location of the
report is transmitted to the subscriber.

10

15

25

30

35

40

45

50

55

60

65

40
27. The system of claim 26, wherein the location of the

report is on a Web site.
28. The system of claim 24, wherein determining at least

one proposed rate plan is performed by:
providing a training set of data comprising the at least one

proposed rate plan;
providing a test set of data comprising a most recent rate

plan selected, wherein the most recent rate plan is one
of a group of rate plans made of the at least one rate
plan;

comparing the at least one proposed rate plan from the
training set to the most recent rate plan of the test set;
and

determining an ability of the training set to predict cost
results of the test set.

29. The system of claim 24, wherein determining the cost
of at least one other rate plan comprises the use of billing
information from more than one period.

30. The system of claim 24, wherein determining at least
one proposed rate plan comprises calculating an efficiency
rating of various rate plans.

31. The system of claim 30, wherein determining at least
one proposed rate plan comprises individually dividing a
cost of the current rate plan by the cost of each of individual
rate plan within the group of various other rate plans,
resulting in the efficiency rating.

32. The system of claim 31, wherein an efficiency rating
of greater than one means that the individual rate plan is
more cost effective than the current rate plan.

33. The system of claim 30, wherein the highest efficiency
among the various rate plans is the most cost effective rate
plan.

34. A computer readable medium having a computer
program stored thereon, the computer readable medium
comprising:

logic configured to process Subscriber related billing
information to produce organized data in a calling
profile record for each telecommunication service
being used by the subscriber, where the subscriber is
under a current rate plan;

logic configured to create a usage history table and a call
detail table from the processed billing information in
accordance with a specified billing period;

logic configured to determine the cost of the current rate
plan;

logic configured to determine the cost of at least one other
rate plan via use of the usage history table and call
detail table; and

logic configured to determine at least one proposed rate
plan from the at least one rate plan of at least one
telecommunication service provider that would save
the subscriber telecommunication costs relative to the
current rate plan.

35. The computer readable medium of claim 34, further
comprising logic configured to produce a report of the at
least one proposed rate plan to enable selection of a best
telecommunication service provider and a best rate plan.

36. A system, comprising:
a storage unit configured to store billing information

associated with a Subscriber of a telecommunication
service under a current rate plan;

a memory comprising Software, wherein the memory is
communicatively coupled to the storage unit; and

a processor, communicatively coupled to the storage unit,
and memory, configured by the Software to:

US 7,072,639 B2
41 42

process the subscriber related billing information to determine at least one proposed rate plan from the at
produce organized data in a calling profile record for least one rate plan of at least one telecommunication
each telecommunication service being used by the service provider that would save the subscriber tele
subscriber; communication costs relative to the current rate plan;

create a usage history table and a call detail table within 5 and
the storage unit from the processed billing informa- produce a report of the at least one proposed rate plan
tion in accordance with a specified billing period; to enable selection of a best telecommunication

determine the cost of the current rate plan; service provider and a best rate plan.
determine the cost of at least one other rate plan via use

of the usage history table and call detail table: k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,072,639 B2 Page 1 of 1
APPLICATIONNO. : 09/758824
DATED : July 4, 2006
INVENTOR(S) : Marsh et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

On the front page of the patent, Item (73) Assignee, delete “Trag Wireless, Inc. and
insert therefor-Trad Wireless, Inc.--.

Signed and Sealed this

First Day of May, 2007

WDJ
JON. W. DUDAS

Director of the United States Patent and Trademark Office

