
USOO5999722A

United States Patent (19) 11 Patent Number: 5,999,722
Ketterer et al. (45) Date of Patent: *Dec. 7, 1999

54 METHOD OF CATALOGING REMOVABLE 5,077,658 12/1991 Bendert et al. 395/600
MEDIA ON A COMPUTER 5,317,728 5/1994 Tevis et al. 395/600

5,319,780 6/1994 Catino et al. 395/600
75 Inventors: Scott R. Ketterer, Hillsboro; Roger D. 55: S.E. Mctory al. 3.

2- - IOWIl el al.

EEE's John 5,386,545 1/1995 Gombos, Jr. et al. 395/575
gman, s 5,423,018 6/1995 Dang et al. 395/425

5,455,926 10/1995 Keele et al. 395/404
73 Assignee: Iomega Corporation, Roy, Utah 5,463,772 10/1995 Thompson et al. 395/600

5,608,865 3/1997 Midgely et al. 395/18O
* Notice: This patent is Subject to a terminal dis- 5,613,097 3/1997 E. - 395/500

CC.
Primary Examiner Kevin J. Teska
ASSistant Examiner Lonnie A. Knox

21 Appl. No.: 08/760,692 Attorney, Agent, or Firm Woodcock Washburn Kurtz
22 Filed: Dec. 5, 1996 Mackiewicz & Norris LLP

Related U.S. Application Data 57 ABSTRACT
A method of automatic and user intuitive cataloging of

63 Continuation of application No. 08/342,929, Nov. 18, 1994, removable media on a computer. The method does not
Pat. No. 5,613,097. require the user to launch an application to catalog because

(51) Int. Cl." .. G06F 3/00 it operates within the existing System Software and does not
52 U.S. Cl. 395/500.42: 395/681 require a user to learn to operate a separate cataloging
58 Field of Search 360/48; 364/DIG. 1, program. This applies to cataloging as well as Searching

364/DIG. 2, 200, 245.3, 478, 488; 382/140; entries. The method presents the data in the catalog in the
395/404, 425, 441, 488, 180, 600, 621, Same way that actual files on the computerS hard disk or Start

700, 477, 500 up Volume are presented. The method includes modifying
and/or creating pointer files So that when activated it can

56) References Cited remember where the original file is located, even the file is
on a Volume that is not accessible to the computer when the

U.S. PATENT DOCUMENTS pointer file is activated. The pointer file created by this
4,408,273 10/1983 Plow 364,200 method can be resolved when accessed through the operat
4,688,169 8/1987 Joshi 364/200 ing System interface or from within an application, just like
4,799,145 1/1989 Goss et al. 364/200 actual files.
4,897,780 1/1990 Lakness 364/200
4,897,782 1/1990 Bennett et al. 364/200 30 Claims, 5 Drawing Sheets

ACTIVATE
AAS FE

S A
CAAOG FILE

YES

is
OPEN CATALOGS OPEN
"ROOT FILE" ACTUAL FILE

s a
RECREATE ACCESS AAS
ALAS DATA DATA FROM FILE

NO

PROMPT USER TO INSERT 23
APPROPRIATE DISK S.

OPEN FILE SPECIFIED 24.
BY AAS DATA

RETURN WITH DESRED
FILE OFENED

U.S. Patent Dec. 7, 1999 Sheet 1 of 5 5,999,722

DISPLAY

3

FLOPPY DISKS
CARTRIDGE DISKS

FIG.

U.S. Patent Dec. 7, 1999 Sheet 2 of 5 5,999,722

SYSTEMS
"UNMOUNT"
COMMAND

NEED TO CATALOG
p

CREATE CUSTOM DATABASE
USING "ROOT FILE"

CATALOG ALL FLES

COMPLETE UNMOUNT
COMMAND

FIG. 2

U.S. Patent Dec. 7, 1999 Sheet 3 of 5 5,999,722

ACTIVATE
ALAS FILE

IS IT A
CATALOG FILE

NO

OPEN
ACTUAL FILE

ACCESS ALAS
DATA FROM FILE

OPEN CATALOGS
"ROOT FILE"

RECREATE
ALIAS DATA

PROMPT USER TO INSERT
APPROPRIATE DISK

OPEN FILE SPECIFIED
BY ALAS DATA

RETURN WITH DES RED
FLE OF ENED

24

FIG. 3

U.S. Patent Dec. 7, 1999 Sheet 4 of 5 5,999,722

"UNMOUNTED" COMMAND FIG 4

-
YES S DISK

N DATABASE
p

36

HAS THE
DISK CHANGED ASSGN CATALOG NUMBER

ASK USER
TO CATALOG

YES

37
CREATE FOLDER
FOR THIS DISK

UPDATE THIS DISKS
"ROOT FILE"

CREATE THIS DISKS 38
"ROOT FILE" 1.

UPDATE ENTRY IN
CATALOG'S DATABASE

CREATE ENTRY IN
CATALOG'S DATABASE

STORE UNOUE ID 39
ON THE DISK (OPTIONAL)

40

CATALOG ALL ENTRIES
FOR THIS DISK COMPLETE UNMOUNT COMMAND

U.S. Patent Dec. 7, 1999 Sheet 5 of 5

OPEN FILE COMMAND

50

IS IT A
CATALOG FILE NO

YES STANDARD OFEN
OF SPECIFIED FILE

OPEN
"ROOT FILE"

RETURN OPENED FLE

FIG. 5

GET ALIAS COMMAND

60

S THE ALAS

LET THE SYSTEM
GET ALIAS FROM FILE

CREATE ALAS
DATA STRUCTURE

FIG. 6

5,999,722

5,999,722
1

METHOD OF CATALOGING REMOVABLE
MEDIA ON A COMPUTER

This application is a continuation of U.S. patent appli
cation Ser. No. 08/342,929, filed Nov. 18, 1994 and issued
Mar. 18, 1997 as U.S. Pat. No. 5,613,097.

TECHNICAL FIELD

The present invention relates generally to information
Storage and retrieval, and particularly to a method of cata
loging and accessing files that may not be directly accessible
to a computer at all times.

BACKGROUND OF THE INVENTION

FIG. 1 shows a typical computer configuration. The basic
computer is comprised of electronicS 1, display 2 and
keyboard 3. The electronics component will typically con
tain Storage devices, Such as hard drive 4, floppy drive 6, and
optional cartridge drive 8, and other Similar Storage devices.

These computers use a variety of electronic Storage media
like hard disks 4, floppy diskS 7, cartridge diskS 9, tapes,
CD’s and more. Typically a user will have a primary drive
4 from which the computer boots. A “Boot volume will
have a form of System code Stored on it which gives the
computer critical information that the computer needs to
operate. In most cases the System code is located on hard
disk 4 that is kept with the computer along with other
important files and applications the user wants immediate
acceSS to.

ConsumerS have a wide variety of choices for Storing files
on other media. Often additional Storage Space is needed for
additional files, archiving old files or backing up the Soft
ware from their primary disk. These forms include non
removable type media like other hard disks and networked
Volumes or removable media like floppies, cartridges, tapes
and CD’s. With removable media, the user has many remov
able disks or cartridges. Only one Such disk can be inserted
and be on-line at any given time. The remaining disks are all
off-line and thus not directly accessible to the computer.
With the typical users Storage Space requirements
increasing, people need to use cataloging programs on their
computer to help keep track the location files on various
forms of removable media.

Traditional methods for tracking files located off the main
Volume of a computer has been to obtain a Stand-alone
cataloging program. First one launches the program and Sets
up the catalog format. Then each piece of off-line media is
cataloged one at a time. When the cataloging is complete the
the user exits the program.
To Search the entries in the catalog one launches the

cataloging program and Starts the Search. Once the desired
file is located, the user notes the location and quits the
program. The user locates and inserts the proper disk into the
computer. Once attached the user finds the file and loads it.
With this traditional method of cataloging, a user must be
familiar with the cataloging program and the interface in
which the entries in the catalog are kept. Because the
cataloging programing is a separate program, it has an
interface with commands that are different from the com
puter's operating System and there is a learning a curve
asSociated with using it. Most people require a more con
Venient mechanism for finding and accessing off-line mate
rial.

With the traditional method of cataloging the catalog is
only as current as the last time the program was launched

15

25

35

40

45

50

55

60

65

2
and all media recataloged manually. A user must dedicate a
certain amount of time periodically to maintain the catalog.

It is desirable, therefore, that off-line cataloging be more
convenient and operate in transparent fashion for the user
with little or no direct interaction between the use and the
cataloging program. The Subject matter of the present inven
tion provides Such a cataloging function.

SUMMARY OF THE INVENTION

Cataloging under the present invention is performed in an
automatic way whenever a particular computer Storage
device is removed from the computer and requires almost no
Specific action by the operator (user). Likewise, the catalog
of all files that have been removed is stored in a manor that
allows the user to Search the catalog in a way identical to that
which would be used if the files are already directly
accessible, and in fact all files, on-line and cataloged, can be
Searched with a single operation.
An object of the present invention is, therefore, to provide

a method of cataloging off-line media that, other than the
initial configuration, requires no action by the user. Volumes
other than the primary Volume are automatically cataloged
or updated when encountered by the computer.

Another object of this invention is the method of imple
menting pointer files that use minimal Space in the catalog,
yet appear to the System to be Standard pointer files that take
up much more room.

Another object of this invention is the method of creating
pointer files for applications So that any document that might
resolve to that pointer files original application can be
accessed though that pointer file.
Another object of the invention is to assign a unique

number to each new Volume cataloged by the program that
will identify that volume to the catalog even if the contents
and/or name have been changed Since the last encounter.
That number corresponds to a similarly numbered Sticker
that may be placed on the physical media.
A further object of this invention is the method to have the

catalog always available to the user on the desktop in the
form of a completely separate Volume. There is no need to
launch an application to have access to the catalog. The
entries in this volume graphically look and act like entries on
any other volume including the “boot volume. However
these entries are pointer files that, when accessed, automati
cally result in access to the appropriate off-line files.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a System computer configuration showing Some
of the possible forms of Storage devices.

FIG. 2 is a system level flow diagram showing the
operations that take place when a disk or other media are
unmounted or removed from the computer.

FIG. 3 is a system level flow chart showing what opera
tions take place whenever an “alias', or pointer, file is
activated.

FIG. 4 is a detailed flow diagram showing the operations
that take place when a disk or media are unmounted or
removed from the computer.

FIG. 5 is a flow diagram showing the operations that take
place when a file is opened.

FIG. 6 is a flow diagram showing the operations that take
place when an “alias’ (pointer file data structure) is
accessed.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

The description used in this disclosure will provide details
of implementation using the Macintosh" computing plat
form. The function, however, is not limited to that platform.

5,999,722
3

The present invention includes a method of cataloging
off-line media that is automatic to the user. To accomplish
this without the user explicitly running an application the
System is modified at Start up with the code necessary to
have the computer catalog or recatalog Volumes as encoun
tered.

A file is provided, called an “INIT that is automatically
executed by the operating system each time the Macintosh TM
computer is started. This file contains code that will utilize
Standard System procedures to install pointers to Small
pieces of computer code that are to be executed whenever a
particular System "function' is executed in order to modify
the behavior of that function. Using the system functions
“GetTrap Address” and “SetTrap Address”, the INIT code
modifies the system functions “Unmount”, “Open”, and
"GetIndResource” Such that the the enhanced cataloging and
retrieval operations of the present invention can be per
formed in a fully automatic manner. The particular modifi
cations to these functions will be described later. These
System modifications are necessary to allow performance of
the computer System to be modified in a way that does not
require any Specific action by the user.

Once installed, the System operating under the present
invention will automatically catalog any Volume the com
puter comes in contact with. When the disk or media is
removed, an “Unmount” function is executed by the system
which, under the present invention, in turn causes cataloging
to take place automatically.

FIG. 2 shows the overall sequence of actions whenever a
disk, or media, is removed from the computer System. A
more detailed description will be given later in conjunction
with FIG. 4. The system function “Unmount” has been
modified, by the Startup code to cause additional program
code to be executed automatically. The code in block 10 first
determines if the particular disk or media needs to be
cataloged. This is determined by the type of media being
unmounted, determining if it has been cataloged before, and
if So, whether the contents of the disk has changed. At this
point, a dialog window may be presented to the user
allowing for input from the user to Set catalog options,
assign a unique catalog number, and confirm whether to
catalog the media or not. If cataloging is required, then block
11 updates a custom data base with information about the
media about to be unmounted, a new folder (directory) is
created in the catalog Volume, and block 12 adds empty files
to the catalog Volume that correspond to each file that exists
on the media about to be unmounted.

In a typical computer operating System with a graphical
user interface like MicroSoftTM Windows 95TM or the
AppleTM Macintosh TM System 7TM, graphical elements are
used to represent files and applications. These graphically
oriented operating Systems include the ability to create
pointer files. A pointer file is a empty graphical representa
tion of an actual file or program. For example on the
Macintosh' operating System one places a particular appli
cation inside a folder(directory) which is inside a folder and
that folder is located at the upper most level of the graphical
user interface. One may wish to launch (execute) the appli
cation from a variety of locations in other parts of the
interface. System 7 allows the operator to create a pointer
file called an “alias'. One places an alias, which is a
representation of the original application, on the desktop or
in another folder without moving the actual original file
from its folder.

Cataloging under the present invention automatically cre
ates a collection of pointer files. One browses through or

15

25

35

40

45

50

55

60

65

4
Searches the catalog in the same manner used to Search
through any other on-line Volume. Because the catalog is
made up of pointer files however it takes up very little Space.
Catalog entries are accessible at all times because the
catalog is a collection of Standard files created within a
mounted Volume.

Using existing System capabilities, opening a pointer file
causes the operating System to Search for the original file. If
the original file is on-line then the System opens it. If the
pointer references an off-line file then the System prompts
the use to insert the appropriately named disk. In the present
invention, a unique number is also used to identify the
required disk. Once the disk is inserted the System locates
the original file and opens it.

Standard pointer files, though much Smaller than the
actual files they represent, take up memory on the Volume on
which they are located. They contain a MacintoshTM data
Structure called an alias, which is comprised of Volume
name, creation date, file name, creation date, and location.
The size of these pointer files make it impractical to use tens
of thousands of them to build an extensive catalog. The
method of the present invention, however, builds a pointer
file containing no data bytes whatsoever, only requiring the
file System entry, making it possible to have hundreds of
thousands of Such entries in a Single catalog Volume. In this
embodiment, common information Such as Volume name
and creation date are Stored once for each Volume cataloged,
not one for every file cataloged.

FIG. 3 is an overview of the normal operation of access
ing a pointer (alias) file. Full details of the modified System
behavior is covered in FIGS. 5 and 6 which follow. Block 20
determines if the pointer file being opened is a catalog entry.
This is indicated if the file being opened is within the catalog
Volume, the file is of type alias, and it does not already
contain an alias data Structure. If it is not, the normal System
functions, as represented by blockS 25 and 26, are per
formed. If the file is a catalog file, then a template file, or
“Root File' is opened by block 21. Next the appropriate alias
data Structure is created by combining the contents of the
Root File with the catalogs file name, etc. in block 22.
Normal system functions, represented by blocks 23 and 24,
are performed. If the alias refers to an off-line file, then block
23 is activated to prompt the user to insert the appropriate
disk. Finally, with the appropriate disk inserted, block 24
opens the requested file.

Applications in today's GUIs(Graphical User Interface)
have special attributes to control their behavior. If a docu
ment is opened, the operating System must find and open the
application that created it. The information Specifying the
type of creator application is included in the document itself.
The operating System then finds the appropriate application,
launches it and loads the document that was opened. If an
application is Saved or cataloged as an alias, then the System
will not be capable of recognizing the alias file as a pointer
to the documents creator, thus the System will be unable to
locate the application and the open document command will
fail. In the present invention, however, the application files
are cataloged as Zero byte applications. The System will now
be able to find and open the catalog application, which in
turn results in the original application being loaded from the
off-line media and the Selected document file being opened.
For example, if a document was opened and its program is
not available on the main drive, the catalog Volume may
contain a an entry for the application. The operating System
will open (launch) the cataloged application which will in
turn prompt the user for the disk containing the needed
program, and finally launch the actual program on the
inserted disk.

5,999,722
S

It is common for disks, especially removable media to be
used on Several computers. This method includes the ability
to track and or recognize disks when they are reinserted into
the same computer. This is important because the cataloging
program needs to know which disks are new, which need to
be updated and which haven’t changed. To accomplish this,
a unique number is assigned to each disk cataloged. By
providing pre-printed Stickers, the user in encouraged to
number his physical disk as a further and in locating and
inserting the proper disk when needed. This number is Stored
on the disk itself and in the catalog database. In addition, the
count of files and folders on the disk are Saved and compared
that allow the catalog code to determine if a disk has been
modified Since last cataloged.

Existing catalog programs Store lists of cataloged files in
proprietary databases, requiring a separate application to be
run to access the data base. The user is forced to use one
command to Search the on-line files, then enter an applica
tion and issue a different command to Search the catalog data
base. In the present invention, however, the catalog is a
Standard mounted Volume or file System and is thus available
to the operating System at all times. This has the advantage
of always being available to the user without having to run
a separate application. The interface is not only immediately
familiar, but a single command can be used So Search both
the on-line files, but also the cataloged files. In addition,
under the present invention, the catalog Volume like any
other Volume can be shared over a computer network, thus
making the catalog easily accessible to other users on the
computer network.

FIG. 4 is a flow diagram showing the detailed operations
that takes place when a disk or media are unmounted or
removed from the computer. This is an expansion of the
operation as Summarized by FIG. 2. The normal operation of
Unmount is modified allowing the cataloging code to
eXecute.

This code first determines if the cataloging function is
required, and if so performs that operation. Block 30 first
determines if the disk is already in the catalog's database.
The data base is a Single invisible file in the catalog that
contains the name, creation date, catalog number, and cata
log folder number for each piece of media currently entered
in the catalog Volume.

If the media does not match any entry in the data base,
then block 31 assigns a unique catalog number to that disk.
If the disk is not in the data base, but has been cataloged
before, as indicated by a unique number already Stored on
the disk, then that number is used, even if the number is not
unique. Block 32 presents a dialog window to the user in
order to allow the user to make a choice whether to catalog
the disk or not. At this point the user may change the name
of the disk, change the assigned unique disk ID, and change
the cataloging options to be used for that disk.

Cataloging options relate to the amount of graphical
information (icons) that is cataloged for each file. Catalog
ing with no graphical information allows all catalog files to
be 0 bytes in size, but the Visual presentation on the Screen
may not match the original file. Cataloging all graphical
information from the original file into the catolog will result
in complete visual presentation but will cause the catalog file
size of some files to become 1024 bytes to over 20,000 bytes
for Some applications. The options available to the user
include cataloging custom icons for applications, custom
icons for all files, and whether to catalog black/white or
color icons. The implementation of cataloging graphical
information involves copying the required icon resources
(ICN+, “ics#, icl4, and ics4.) from the original to the
catalog file.

15

25

35

40

45

50

55

60

65

6
If the user chooses to catalog, then a Sequence of opera

tions is performed to complete the cataloging. Block 33
creates a folder(directory) entry (using “DirCreate”) in the
catalog Volume, giving it the same name as the Volume or
media being unmounted. Block 34 adds an file within the
folder that is invisible to the user. This file, named "icon,
will contain information about the media being cataloged.
This information comprises of the custom graphical icon to
depict the class of media (floppy disk, cartridge disk,
CompactIDisk, etc.) that is being cataloged, an “alias’ data
Structure necessary to allow the computer System to locate
and Verify the media being cataloged, and program code for
use by cataloged applications. The alias data is created via
the “New Alias” system function to create such a structure
for the media being cataloged. Block 35 creates an entry in
the catalog Volume data base and Stores the disk’s name,
creation date, catalog number, current file count, next file id,
and folder id for folder created by block 33.

If block 30 determines that the disk has already been
cataloged, then block 36 determines if any changes have
been made to the disk Since last cataloged. Disk changes are
determined by comparing the file count
(pb.volumeParam.ioVFilCnt) and next file id numbers
(pb.volumeParamioVNxtCNID) currently in the disk to
those numbers Stored in the catalog's data base file. If the
two numbers are identical, then no cataloging is required and
the execution may exit and the Unmount function may
complete. If the numbers are different, then files or folders
have been added or removed and the catalog entry needs to
be updated. Block 37 and 38 update the Root File and the
catalogs data base respectively.

Next, whether new or updating, block 39 stores the disks
unique id on the disk in a location that is not used by any
other MacintoshTM functions. This location corresponds to
unused bytes following the disk Volume header data Struc
ture. The disk ID is stored in conjunction with a verifying
unique code, and is Stored in two Separate locations for
redundancy. It is deemed unlikely that other programs will
utilize both these two locations, but if So, the cataloging
functions are designed to rely on disk name and creation date
if neither codes are present. Future cataloging of this disk
can not require the presence of the disk ID, Since the disk
being cataloged may be “write protected’, thus preventing
the placement of this code on the disk. In this case the
cataloging function will have to rely on the disk name and
creation date to determine if it has been cataloged before.

Finally, block 40 performs the actual cataloging. At this
point, for each folder(or directory) on the disk being
cataloged, a corresponding folder in the catalog is created
(using “NewDir”). For each file on the disk being cataloged,
a corresponding file is created in the catalog volume (using
“Create”). Numbers used to determine the viewing mode
(the way the file(s) are presented to the user) are maintained
So the Visual presentation of the catalog matches as close a
possible to the dislik being cataloged. This is achieved by
using the “Get Catinfo' and “SetCatinfo' commands to copy
the contents of the “pb.hFileInfo.ioFIFndrInfo' and “pb.h-
FileInfo.ioFXFndrinfo data fields from the Unmount file
to the catalog file. Each file created in the catalog is a pointer
or “Alias’ type file. That is to signify that it is not the actual
file, but a pointer to that, possibly removed, file.

In the normal implementation of the MacintoshTM file
System, an alias file contains a data Structure called an
“alias’ which contains all information necessary to properly
prompt the user for the disk, and to locate the file within the
disk once inserted. Under the present invention, however, in
order to Save Space, the individual file entries within the

5,999,722
7

catalog do not contain this alias data. The information Stored
within an alias Structure that relates to the Volume name and
Volume creation date is identical for every file cataloged
from a single disk. Because of this, a Single “template' alias
structure is stored with the Root File. The one unique
number, the file id (pb.hFileInfo.ioDirD) of the file being
cataloged, is Stored within the catalog's file directory entry
normally used to store the “last backup date”
(pb.hFileInfo.ioFIBkDat). This backup date is not needed
for the catalog entries. This means that no information needs
to be stored within the file itself, thus the file size is zero.
When the user Searches the catalog Volume and locates a

file and asks to access that file, a Sequence of Steps take place
under the present invention that result in the appropriate
alias data Structure being created So that the appropriate disk
and file are accessed. This is a two step operation, where the
catalog file is first opened and then the alias data is requested
from within that open file.

FIG. 5 shows the steps that take place whenever a file is
opened. The normal operation of “open' is modified allow
ing catalog code to exucute. Block 50 first determines the
file being opened is a Zero byte file within the catalog
Volume. If it is not, then the code exits allowing the normal
file open function to complete. If the file is a catalog file,
then a search is made to locate the "Root File” within the
folder that holds the file being opened. The “root file” is then
opened in place of the actual file being opened. The root file
contains an alias data Structure that matches the original
media cataloged. The file name and the "last backup date'
information is stored for future reference. They will be
needed when the System attempts to access the alias Struc
ture (a “resource”) from the opened alias file.

FIG. 6 shows the steps that take place whenever a
“GetIndResource” or “Get 1 IndResource” system call is
made. Block 60 first determines if the request is for a 'alias
type resource Stored within the last opened catalog file. If
not, the code exits so the normal “GetIndResource” system
call may proceed. If the requested alias is from within the
catalog file, then the appropriate file alias data is recreated
by block 61 and returned. The disk’s alias information is first
retrieved from the alias data stored within the (open) “root
file’. This is combined with the remembered file name and
file id (from the last backup date) to form the needed alias
data. This data is then returned to the System and used to
prompt the user from the appropriate file.

In addition to the above operation, additional consider
ation is made for cataloging of application files. It is desired
that the catalog entries for applications NOT be alias entries,
but rather an actual application. This is desired So that the
normal operation of the MacintoshTM, which is to look for
the application whenever a document is opened, will find a
cataloged application entry in the catalog. In this
embodiment, the catalog entry is also a Zero byte file that
results in common Special code being executed. In this case,
the steps outlined in FIG. 5 are followed. The result of
opening the catalog entry is that the “root file' is opened.
The root file contains application code that looks up and
executes the corresponding application from the cataloged
disk. In this embodiment, the catalog application attempts to
open the matching “alias' data Structure. This gets per
formed by the mechanism described above for FIG. 6. The
alias data Structure is then used to prompt the user for the
original disk, and once inserted, program execution as
passed on, using the standard MacintoshTM system “Launch”
instruction.

Under he present invention, the catalog Volume is a
Separate Volume from the user's normal disk Volume. This is

15

25

35

40

45

50

55

60

65

8
because the catalog may easily contains tens of thousands to
hundreds of thousands of file entries. Placing all these
entries on the normal disk Volume will end up in Slowing
down many of the day to day file System operations because
both the normal disk Volume and the catalog entries have to
be search or changed whenever a normal disk command is
executed. With the catalog Stored in a separate Volume, then
the catalog entries will only be Searched or modified when
ever a catalog Search or modification is performed. The
Separate catalog Volume is not an inconvenience during
normal Search command, however, Since the System Search
command will automatically examine all available Volumes.
AS with all cataloging programs, a file is created on the

users normal disk Volume to hold the catalog information.
Normally, a Separate program must be executed to access
this data base. Under the present invention, however, a
Standard System driver is provided that translates read/write
requests directed to the catalog Volume to access addresses
within the catalog file. In this way, a normal data file may be
used to Store a Separate file System data structure. Because
of the presence of the driver, the mounted file volume
appears to the user in a manner identical to other disk
Volumes.

Table 1 lists the details of the data structures that are
created and Stored as part of the preferred embodiment of
this invention as described above. Each Structure contains a
collection of variables that are Stored within Specific files as
specified within the table.

TABLE 1.

DATASTRUCTURES:

/* The following is the structure used in the MacintoshTM
to implement an alias. The fields named from
“id to “file inclusive are identical for all files
on a single volume. This portion of the alias
data structure is stored in the Root File. The
remaining fields “fid to “creator inclusive can be
filled in using the numbers stored in the files
directory entry.

typedef struct
{
shor type: ff internal to operating system
shor length; ff internal to operating system
uchar data 32: ff internal to operating system

SubAlias;
typedef struct

{
long id: If use to identify creator
shor size; ff total size of alias
shor pad1,pad2;
uchar askboa28; If prompt string to insert media
ulong vcreated; If creation date of volume
shor fsid:
shor wa:
long parent; // id of parant folder (directory)
uchar file64: If name of file
long fid: // unique file id of actual file
ulong created; If creation date of file
long type: // file type
long creator; If file creator
long pad35:
Sub Alias field;
my Alias;

/* A singie invisible “data base' file is created to
hold information about each volume cataloged. This
file begins with DBHdr structure that describes the
data base file itself.

*/
typedef struct

{
short dbVersion; ff version of data base structure

5,999,722
9

TABLE 1-continued

DATASTRUCTURES:

short dbAvail; ff total entries availabie within db file
short dbOsed; // total entries currently in db file
short dbindex; // next unique disk id to be assigned
ulong dbCCrDate: If creation date of data base file
ulong dbCLSMod; A? last modified date of data base
long dbDefDirID; // directory to place new entries
long dbBxtra; ff unused
DBHdr:

/* Following the header, the data base file contains
a DBEntry for each volume cataloged. This is used
to quickly determine if a volume being unmounted has
already been cataloged, and if so; how to find the
folder containing that volumes catalog entries.

typedef struct
{
ulong dbVCrDate: ff volume creation date
ulong dbDirID; // folder ID of entries top folder
short dbindex; // unique ID of this entry
} DBEntry;

f* For each volume cataloged, additional information
about that volume is stored in a DBInfo data structure.
This structure is stored as a Resource within the
“Root File' of each volume cataloged.

typedef struct
{
ushort dbindex; // unique ID of this entry
uchar dbMode, dbSpair; if cataloging mode
long dbVFIDrCnt; If count of files/folders on disk
long dbVNxtCNID; // next unique file id to use
long dbdent; // extra identifier field (Ticks)
ulong dbVCrDate: ff volume creation date
long dbnDisk: // total bytes stored on disk
long dbAvail; // total bytes free
uchar dbName 32: If name of disk
long dbSrcID; // directory id of top folder
short dbNumLevels; if count of available levels
uchar dbLevels 16; // cataloging folder levels
} DBInfo:

/* The disks unique ID (index) is stored on the disk
(if the disk is not write protected). This is
stored in the 3rd sector, which contains the header
information about the volume. It is stored at unused
locations corresponding to an offset of 244 bytes and
256 bytes from the start of that sector. It is deemed
unlikely that both these locations will ever by used
by another program.

typedef struct
{
long dbMagic; // use to validate entry (RDGB)
long dbdent; // extra identifier field (Ticks)
long dbindex; // unique ID of this entry
DBStamp;

It will be obvious to those having skill in the art that many
changes may be made to the details of the above described
preferred embodiment of the present invention without
departing from the underlying principles thereof. The Scope
of the present invention should be determined, therefore,
only by the following claims.
We claim:
1. A method of cataloging off-line media wherein Said

media to be removed comprises at least one of an optical and
a magnetic media, the method comprising the Steps:

providing a computer System, the computer System
including a programmable processing element and disk
drive Storage device, the processing element executing
programming including a removable media unmount
procedure and a file acceSS procedure;

modifying Said unmount procedure relative to normal
programming to reference a catalog of off-line media

15

25

35

40

45

50

55

60

65

10
Stored on Said hard disk, Said modifications to Said
unmount procedure comparing identification and Status
indicia of a media to be removed with entries in Said
catalog, modifying Said catalog when Said identifica
tion and Status indicia fail to match Said catalog entry;
and

modifying Said file access procedure to examine Said
catalog for entry therein of a file to be accessed and if
found therein prompt a user of the computer System to
mount a media indicated in Said found catalog entry.

2. The method as recited in claim 1 further comprising the
Step of creating on Said hard drive a graphical representation
of said media to be removed Such that said media to be
removed appear to a user to be accessible on the hard drive.

3. The method as recited in claim 1 further comprising the
Step of creating an empty file on Said hard drive that is
representative of a file on Said media to be removed Such that
the file on the media to be removed appears to be accessible
on the hard drive.

4. A System for accessing files on a removable medium,
comprising:

a first Storage device for Storing files,
at least one removable medium Storage device that

accepts removable media;
means for cataloging the removable media on Said first

Storage device Such that files Stored on the removable
media appear to reside on the first Storage device.

5. The system as recited in claim 4 wherein the means for
cataloging the removable media comprises a file pointer on
Said first Storage device that maintains a link to a program
for identifying the removable medium that contains the
actual file.

6. The system as recited in claim 4 wherein the first
Storage device is a hard disk drive.

7. The system as recited in claim 5 wherein the removable
media comprises optical media.

8. The system as recited in claim 5 wherein the removable
media comprises magnetic media.

9. An application program Stored in an operational
medium for use with a computer System to track files Stored
on a plurality of off-line media, the computer System com
prising a first Storage medium, a processor for executing Said
application program, and an operating System for controlling
the processor, Said application program comprising:

a group of instructions for Storing on the first Storage
medium, an identifier associated with an off-line
medium to be tracked;

a group of instructions for Storing on the first Storage
medium, file entries for the off-line medium to be
tracked and coupling Said file entries with Said identi
fier;

open file instructions for interpreting a command to open
one of Said file entries So that a user is prompted with
the identifier associated with the off-line medium if the
file to be opened is contained on one of Said plurality
of off-line media when said off-line medium is off-line.

10. The application program as recited in claim 9 wherein
said first medium is a fixed hard drive.

11. The application program as recited in claim 9 wherein
Said off-line media comprises a removable medium.

12. The application program as recited in claim 11
wherein Said removable medium comprises at least one of:
a floppy disk, a CD-ROM, a hard disk cartridge, a magnetic
tape cartridge.

13. The application program as recited in claim 9 wherein
Said identifier and file entries are Stored in a database.

5,999,722
11

14. The application program as recited in claim 9 wherein
Said identifier comprises a unique identifier assigned to the
off-line medium to be cataloged.

15. The application program as recited in claim 9 further
comprising update instructions for adjusting the file entries
when Said application program determines that a file has
been added or deleted from said off-line medium.

16. The application program as recited in claim 9 wherein
a pointer file is created on the first medium for each file entry
of the off-line medium to be tracked.

17. The application program as recited in claim 9 wherein
the operating System comprises at least System 7 version of
an APPLE MACINTOSH operating system.

18. The application program as recited in claim 9 wherein
the operating system comprises at least WINDOWS 95
version of a MICROSOFT WINDOWS operating system.

19. The application program as recited in claim 9 wherein
a graphical representation is Stored for each file entry.

20. The application program as recited in claim 9 wherein
said file entries for said off-line medium to be tracked are
Stored Such that they appear to a user to be available on-line
on Said first medium.

21. The application program as recited in claim 9 further
comprising instructions to create a directory on the first
medium for each off-line medium to be tracked.

22. A method for coupling removable media to a primary
media in a computer System having an operating System,
wherein Said operating System provides a set of media
access functions, Said method comprising the Steps of

recording information relating to the removable media on
the primary media Such that a file on the removable
media also appears as a file available on the primary
media,

15

25

12
intercepting at least Some of the media access functions,
if Said media access function is attempting to access on

the primary media a file that is Stored on the removable
media, taking action to perform Said media access
function on Said removable media.

23. The method as recited in claim 22 further comprising
the Step of updating the files on the primary media to reflect
operations to add or delete files from the removable media.

24. The method as recited in claim 22 wherein the primary
media is a fixed disk drive.

25. The method as recited in claim 22 wherein the
removable media comprises magnetic media.

26. The method as recited in claim 22 wherein the
removable media comprises optical media.

27. The method as recited in claim 22 wherein the step of
taking action to perform Said media acceSS function on Said
removable media comprises the Step of alerting a user of the
computer System of a request to access a file on the remov
able media.

28. The method as recited in claim 22 wherein the step of
taking action to perform Said media acceSS function on Said
removable media comprises the Step of checking the com
puter System for a removable media containing the file.

29. The method as recited in claim 22 wherein the
operating system comprises at least WINDOWS 95 version
of a MICROSOFT WINDOWS operating system.

30. The method as recited in claim 22 wherein the
operating System comprises at least a System 7 version of an
APPLE MACINTOSH operating system.

.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5, 999, 722
DATED December 7, 1999
INVENTOR(S) : Scott R. Ketterer, Roger D. Bates and

John Bridgman

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

In the Abstract:

Line 11, after "even" insert -when-.

Col. 3, line 16, "the" second occurrence should be
deleted.

Col. line 63, "a" should be deleted.

Col. line 5, after adds "an" should be deleted.

Col. line 54, after close "a" should be deleted.

Col. line 55, "disilk" should be -disk-.

Col. line 21, "exucute" should be -execute-.

Col. line 66, "he" should be -the-.

Signed and Sealed this
Nineteenth Day of September, 2000

2.76%
Q-ToDD DICKINSON

Attesting Officer Director of Patents and Trade marks

